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1.0 EXECUTIVE SUMMARY 

This report describes a 2-year unexploded ordnance (UXO) classification demonstrating the 
application of the Linear Genetic Programming (LGP) Discrimination Process™ to the problem 
of UXO discrimination and residual risk analysis. In support of project objectives, we analyzed 
multisensor electromagnetic and magnetic data acquired at two live sites.  
 
The objective of this project was to discriminate a variety of potentially hazardous munitions 
from items that may be safely left in the ground.  At former Camp San Louis Obispo (SLO) the 
targets of interest (TOI) included 60 mm mortars, 81 mm mortars, 2.36-inch rockets, and 4.2-
inch mortars.  At former Camp Sibert, the lone TOI was a 4.2-inch mortar. 
 
The LGP Discrimination Process™ begins with the digital geophysical mapping (DGM) from a 
site suspected of containing UXO. It then (1) extracts attributes from the DGM near potential 
targets that may be UXO, (2) uses LGP and the attributes to rank the potential targets in their 
order of likelihood of being UXO, and (3) applies statistical residual risk analysis to determine 
which of the ranked targets may be safely left in the ground as Not-UXO. 
 
The attributes extracted for each target are analyzed by information-theoretic and statistical 
methods to reduce the attribute set to a handful of highly predictive attributes. Then, LGP is used 
to rank the “blind” targets as either UXO or Not-UXO using a small “training” set of targets for 
which ground truth was provided. Finally, statistical residual risk analysis is applied to the 
rankings and to the training ground truth to determine the stop-digging cutoff. 
 
For data acquired at Sibert, 100% of the UXO and 89.6% of the non-UXO were correctly 
classified.  For data acquired at SLO, the LGP process correctly classified 98.6% of the UXO 
and 35.9% of the non-UXO.  
 
Finally, the intention in this project was to test an iterative process that would be very useful in 
actual Military Munitions Response Program (MMRP) site cleanups. It is based on the fact that 
DGM and ground truth do not come in all at once in actual cleanups. Accordingly, the first 
iteration of LGP rankings and risk analysis was used to sample further ground truth. That further 
ground truth would be used as the basis for additional LGP ranking and risk analysis. That 
process would have iterated until a stop-digging decision was reached. The goal of iteration was 
to improve the receiver operating characteristic (ROC) charts and to improve the accuracy of the 
stop-digging cutoff with additional ground truth.   
 
For data acquired at Sibert, no iterations were required because the original classification was 
nearly perfect.  At SLO, the sampling of additional ground truth for a second iteration of 
discrimination and risk analysis very significantly improved the performance of the technology 
over the first iteration by almost any metric. In other words, intelligently selecting which targets 
to “dig” and then rebuilding discrimination models using those new targets as training targets 
significantly improved UXO discrimination results and the accuracy of our residual risk 
assessment. 
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2.0 INTRODUCTION 

2.1 BACKGROUND 

In 2003, the Defense Science Board observed:  “The … problem is that instruments that can 
detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads 
to an enormous amount of expensive digging.  Typically 100 holes may be dug before a real 
UXO is unearthed!  The Task Force assessment is that much of this wasteful digging can be 
eliminated by the use of more advanced technology instruments that exploit modern digital 
processing and advanced multi-mode sensors to achieve an improved level of discrimination of 
scrap from UXO.”1  The FY06 Defense Appropriation contains funding for the “development of 
advanced, sophisticated discrimination technologies for UXO cleanup” in the Environmental 
Security Technology Certification Program (ESTCP).   
 
Significant progress has been made in discrimination technology.  To date, these technologies 
have primarily been tested at constructed test sites, with only limited application at live sites.  
The routine implementation of discrimination technologies will require demonstrations at real 
UXO sites under real world conditions. 

2.2 OBJECTIVE OF THE DEMONSTRATION 

Our objective was to advance and improve munitions and explosives of concern (MEC) 
discrimination performance by validating a decision process that (1) combines statistical 
analyses of DGM products and LGP methods to enable classification and (2) provides iterative 
quantitative residual risk assessments that may be used during the excavation phase to determine 
a stop-digging cutoff. In addition, we sought to test an iterative UXO discrimination and risk 
analysis process by intelligently sampling selected ground truth for Iteration 2, using the results 
from Iteration 1. 

2.3 REGULATORY DRIVERS 

Senate Report 106-50, pages 291–293, accompanying the National Defense Authorization Act 
for Fiscal Year 2000 (Public Law 106-65),2 included a provision entitled “Research and 
development to support UXO clearance, active range UXO clearance, and explosive ordnance 
disposal.”  This provision requires the Secretary of Defense to submit to the Congressional 
defense committees a report that gives a complete estimate of the current and projected costs, to 
include funding shortfalls, for UXO response at active facilities, installations subject to base 
realignment and closure (BRAC), and formerly used defense sites (FUDS). 
 
In 2001, the Department of Defense (DoD) reported to Congress: “Decades of military training, 
exercises, and testing of weapons systems has required that we begin to focus our response on 
the challenges of UXO . . . . This report provides a UXO response estimate in a range between 
$106.9 billion and $391 billion in current year [2001] dollars . . . . Technology discovery, 
development, and commercialization offer some hope that the cost range can be decreased . . . .”3   
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3.0 TECHNOLOGY 

3.1 TECHNOLOGY DEVELOPMENT 

This technology has not been previously developed under grant from ESTCP. Before ESTCP’s 
involvement, the technology was in development since approximately 2002, when Science 
Applications International Corporation (SAIC) applied RML Technologies, Inc.’s (RML) LGP 
software to the publicly available data from the Jefferson Proving Grounds IV UXO 
demonstration test bed.4  Our UXO discrimination results were by far superior to the best 
reported results from the demonstrators on these data.5  Accordingly, using internal financing, 
RML and SAIC developed and applied an early version of the LGP Discrimination Process to 
the Jefferson Proving Grounds V6 EM61 MK2 test bed data. We reported those results in 2004.7  
In addition, in 2004, we developed and reported a technique for iteration through successive 
rounds of classification using information theoretic methods to select targets at each iteration for 
improving UXO discrimination performance in subsequent iterations.8  Then, in 2006, in support 
of a remedial investigation performed by URS Corporation for F.E. Warren Air Force Base, we 
applied this technology to production-grade data from an EM61 MK2 to approximately 30,000 
TOIs. The result was successful discrimination of all 75 mm and 37 mm projectiles from clutter 
and a stop-digging threshold that correctly identified a large proportion of all targets as high-
confidence Not-UXO.9 

3.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY 

Key differences between LGP and other learning algorithms are: (1) LGP does not just derive 
parameters for a specified functional form—it derives the functional form itself and optimizes 
the parameters of the derived functional form, in one pass; (2) Because LGP software operates 
directly on populations consisting of Intel machine code functions, it is approximately two orders 
of magnitude faster than comparable inductive-learning technologies;10 (3) LGP software has 
been subjected to extensive in-house and third-party testing on a wide variety of data sets over a 
9-year period. Results have been published by RML and SAIC11 and by third-parties12; (4) LGP 
was designed to prevent, insofar as possible, building models of the training-set noise rather than 
the signal sought to be modeled. LGP’s resistance to fitting noise has been noted in the literature; 
and (5) The version of Discipulus used in this project uses as its fitness function, the area under 
the curve (AUC) of the ROC curve defined by the evolved program ranking. In other words, the 
evolution process is geared toward creating a good ranking. Most other inductive learning 
algorithms perform some kind of classification and then convert that into a ranking.  
 
A disadvantage of LGP is that it requires experienced data modelers for its operation. It is a very 
powerful modeling tool because of the breadth of the search it can conduct over a very large 
solution space—both because of its speed and because it evolves functional form, not just 
parameterization of a preexisting functional form. If used improperly, it can produce wonderful-
looking results on known data and very poor results when applied to new data. 
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4.0 PERFORMANCE OBJECTIVES 

The relevant objectives for Camp Sibert included: (1) TOI retention rate, (2) non-TOI reduction 
rate, and (3) analysis time (Table 1).   
 

Table 1.  Performance objectives summary for Camp Sibert. 
 

Performance 
Objective Metric Data Required 

Success 
Criteria Result 

TOI retention 
rate 

Percent TOI correctly classified 
as TOI at demonstrator stop-
digging recommendation 

1. Prioritized dig list 
2.  Excavation results 

or scoring report 

>0.95 Success 

Non-TOI 
reduction rate 

Number of false targets 
eliminated at demonstrator stop-
digging recommendation 

3. Prioritized dig list 
4. Excavation results 

or scoring report 

>40% Success 

Analysis time Person-days in production until 
stop-digging recommendation 

5. Log of data 
analysis time  

< 60 person-
days 

Success on two 
of the three 
tracks 

 
The relevant objectives for Camp SLO included: (1) maximize TOI retention rate, (2) maximize 
non-TOI reduction rate, (3) specification of stop-digging threshold; (iv) minimize number of 
targets that cannot be analyzed; and (5) minimize the number of blind targets sampled (Table 2).  
 

Table 2. Performance objectives summary for Camp SLO. 
 

Performance 
Objective Metric Data Required Success Criteria Result 

Maximize correct 
classification of 
munitions 

Number of TOIs 
retained 

Prioritized anomaly lists 
and scoring reports from 
the Institute of Defense 
Analyses (IDA) 

Approach correctly 
classifies 100% of TOIs 

Correctly classified 
98.6% of TOIs 

Maximize correct 
classification of 
non-munitions 

Number of false alarms 
(Nfa) eliminated 

Prioritized anomaly lists 
and scoring reports from 
IDA 

Reduction of false 
alarms by >30% while 
retaining all TOIs 

False alarm rate 
reduced by 28.4% 
while retaining all 
TOIs 

Specification of 
no-dig threshold 

Probability of correct 
classification (Pclass) and 
Nfa at demonstrator 
operating point 

Demonstrator specified 
threshold and scoring 
reports from IDA 

Threshold specified by 
demonstrator to achieve 
criteria above 

98.6% of TOIs 
correctly 
classifiedCFalse 
alarm rate reduced 
by 35.9% 

Minimize number 
of anomalies that 
cannot be analyzed 

Number of anomalies 
that must be classified as 
“unable to analyze” 

Demonstrator target 
parameters 

Reliable target 
parameters can be 
estimated for >90% of 
anomalies 

Reliable target 
attributes estimated 
for 82% of targets 

Minimize the 
number of blind 
targets sampled 

Number of targets 
sampled in the second 
and subsequent 
iterations 

Requests for ground 
truth on second and 
subsequent iterations 
initial blind data list 

Requested ground truth 
for sampling does not 
exceed 20% of initial 
blind targets in the 
aggregate 

20% of blind targets 
sampled 
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The main failure is misclassifying a TOI as an item that can be left in the ground.  Items that may 
be safely left in the ground included high explosive (HE) fragments, single fins, cultural debris 
and geology. 
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5.0 SITE DESCRIPTION 

The former Camp Sibert consists of mainly sparsely inhabited farmland and woodland and 
encompasses approximately 37,035 acres near Gadsden, AL.  The site is located approximately 
50 miles northwest of the Birmingham Regional Airport and 86 miles southeast of the Huntsville 
International Airport. 
 
The former Camp SLO is approximately 2101 acres situated along Highway 1, approximately 5 
miles northwest of SLO, CA.  Most of the area consists of mountains and canyons.  The site for 
this demonstration is a mortar target on a hilltop. 

5.1 SITE SELECTION 

These two sites were selected by ESTCP as a progression of increasingly more complex sites for 
demonstration of the classification process.  The first site in the series, Camp Sibert, had only 
one TOI, the 4.2-inch mortar.  Camp SLO was the second site chosen and contained four TOIs: 
60 mm, 81 mm, 4.2-inch mortars, and 2.36-inch rockets. 

5.2 SITE HISTORY 

Camp Sibert was acquired in July 1942 by the U.S. Army as a replacement training center for the 
Chemical Warfare Service (CWS). At Camp Sibert the CWS conducted various training 
exercises such as smoke screen defense, chemical decontamination, chemical depot maintenance, 
and chemical impregnation of clothing. Chemical troops equipped the camp with chemical field 
filling stations, a toxic gas yard, and decontamination areas. The camp was closed at the end of 
the war in 1945, and the chemical school transferred to Fort McClellan, AL. The Army declared 
the property excess and transferred it to the War Assets Administration on November 18, 1946, 
and then to the Farm Mortgage Corporation. The government terminated the leases on the area 
on December 13, 1946. After decontamination of the various ranges and toxic areas in 1948, the 
land was transferred back to private ownership. The airfield, however, was transferred to the City 
of Gadsden. 
 
Camp SLO was established in 1928 by California as a National Guard Camp. Identified at that 
time as Camp Merriam, it originally consisted of 5800 acres.  Additional lands were added in the 
early 1940s until the acreage totaled 14,959.  During World War II, Camp SLO was used by the 
U.S. Army from 1943 to 1946 for infantry division training that included artillery, small arms 
ranges, mortar, rocket, and grenade ranges.  According to the Preliminary Historical Records 
Review (HRR), a total of 27 ranges and thirteen training areas were located on Camp SLO 
during World War II.  The U.S. Army used the former camp during the Korean War from 1951 
through 1953 where the Southwest Signal Center was established for Signal Corps training.  The 
HRR identified 18 ranges and 16 training areas present at Camp SLO during the Korean War.  A 
limited number of these ranges and training areas were used previously during World War II.  
Following the Korean War, the camp was maintained in inactive status until it was relinquished 
by the Army in the 1960s and 1970s. 
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5.3 MUNITIONS CONTAMINATION 

The munitions-of-concern at Camp Sibert were 4.2-inch mortars. 
 
At the former Camp SLO study site, 60 mm mortars, 81 mm mortars, 2.36-inch rockets, and 4.2-
inch mortars and mortar fragments had been observed before the demonstration. 
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6.0 TEST DESIGN 

6.1 CONCEPTUAL EXPERIMENTAL DESIGN 

The principal objective was to demonstrate an iterative methodology for the use of classification 
and risk analysis in the munitions response process.  The focus was to identify items that may be 
safely left in the ground. 
 
The ESTCP Program Office coordinated data collection and validation digging activities.  All 
anomalies on the master dig list were investigated.  The identities of a small number of the 
recovered items plus the DGM were provided to the demonstrator for use as “training” data. The 
identities of the remainder of the targets were retained by the Program Office as “blind” data to 
validate demonstrator’s results. 
 
The demonstrator received and processed the DGM data extract attributes for each Program 
Office designated target.  The project was designed to proceed iteratively. Demonstrator would 
produce a prioritized dig list for all then “blind” targets, a stop-digging threshold and a 
probability that any UXO remained on the site, given the then known ground truth and the stop-
digging threshold. Demonstrator would then request further ground truth for some of the 
currently “blind” targets, produce a new dig list and stop-digging threshold, given the then 
known ground truth. Demonstrator expected and performed two such iterations. 

6.2 SITE PREPARATION 

Before the start of the surveys, each site was seeded with examples of the items of interest under 
the guidance of the Program Office Seeding Plan. A Calibration Strip containing two of each 
item of interest and a selection of canonical objects (e.g., metal spheres) was installed near the 
demonstration site and the site logistics location. 

6.3 SYSTEM SPECIFICATIONS 

This data were acquired using the Naval Research Laboratories’ Multisensor Towed Array 
Detection System (MTADS) the magnetometer MTADS array (MAGMTADS), and EM61 
arrays13 (EM61MTADS). The MTADS hardware consists of a low-magnetic-signature vehicle 
that measures position, roll, pitch and yaw with great accuracy and that is used to tow different 
sensor arrays over large areas (10-25 acres/day) to detect buried UXO.  The EM61MTADS array 
is MTADS hardware configured to contain a specially modified EM61 MkII sensor, configured 
with an overlapping array of three pulsed-induction sensors consisting of 1 m1 m coils.  These 
data were collected with the EM61MTADS in four-channel mode using delay-time configuration 
for the four channels of 307, 508, 738, and 1000 µs, respectively. MAGMTADS consists of 
MTADS hardware configured to contain a linear array of eight geometrics Cs-vapor 
magnetometer sensors (Geometrics, Inc., G-822ROV/A).   

6.4 DATA COLLECTION PROCEDURES 

EM61MTADS data were collected with nominal down-track spacing of 15 cm and cross track 
spacing of 50 cm. Because the three transmitters in the EM61MTADS array are synchronized, 
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data are collected in two orthogonal directions to increase the number of “looks” or directions of 
illumination of each anomaly by the array.  
 
Magnetometer data were collected with nominal down-track spacing of 10 cm and cross-track 
spacing of 25 cm. Location of the sensor was measured by real-time kinematic (RTK) Global 
Positioning System (GPS) receivers.  

6.5 VALIDATION 

After data collection activities, all anomalies (targets) on the master anomaly list assembled by 
the Program Office were excavated. Each item encountered was identified, photographed, its 
depth measured, its location determined using cm-level GPS, and the item removed if possible. 
All nonhazardous items were saved for later in-air measurements as appropriate. 
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7.0 DATA ANALYSIS AND PRODUCTS 

7.1 DESCRIPTION OF DATA 

We received as input fully processed spatially registered EM61 and magnetometer data.  We also 
received target locations and IDs from the ESTCP Program Office and ground truth labels (for 
training purposes).   

7.2 OVERVIEW OF PROCEDURES 

We took the following steps in this project in this order: 
 

1. Applied data quality assurance (QA)/quality control (QC) and preprocessing. 
2. Identified cannot-analyze targets. 
3. Characterized each target with a parameterized ellipse. 
4. Extracted attributes that characterize each target from the ellipses. 
5. Performed modeling and risk analysis iteration. 

a. Built a simple prediscriminator. 
i. Attributed reduction. 
ii. Performed residual risk analysis for prediscriminator. 
iii. Assigned low risk targets to do-not-dig. 

b. Built LGP discriminator on remaining targets. 
c. Performed residual risk analysis on LGP rankings. 
d. Produced Iteration 1 prioritized dig list. 

6. Requested and received ground truth for selected blind targets. 
7. Performed second modeling and risk analysis iteration (same steps as Iteration 1). 

 
These steps are described in more detail below. 

7.3 DEFINE TARGET POLYGONS AND ELLIPSES FOR EACH TARGET 

We first defined a polygon for each program office target. Figure 1 is an example of such a 
polygon. We then converted the polygons into ellipses, which defined the spatial region occupied 
by the target for the remainder of the project. 
 
 

 

Figure 1.  A target polygon. 
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7.4 REMOVE CANNOT-ANALYZE TARGETS 

We identified targets for which good discrimination was not possible using several criteria: (1)  
overlapping targets, (2) targets with missing sections of DGM, (3) targets with local data 
inconsistency, and (4) targets with insufficient DGM density to support a conclusion (not enough 
data points in the ellipse or one of the measured regions of the ellipse). 
 
Figure 2 is a picture of nine targets that were labeled “cannot-analyze” targets because of target 
overlap. The red polygons show our attempt to separate them from each other, in our judgment, 
unsuccessfully. 
 

 

Figure 2.  Example of a cannot-analyze one blob. 

7.5 ATTRIBUTE EXTRACTION 

Attribute extraction is the process of converting the DGM in the vicinity of a picked target into 
meaningful statistics about the target. For this project, we extracted and used three types of 
attributes: 
 

• Attributes that measure a statistic of the amplitude of the signal value of a single 
channel (Amplitude Statistics) 

• Attributes that measure the ratio as between two different channels of Amplitude 
Statistics (Ratio Statistics) 

• Attributes that measure the ratio of adjacent Ratio Statistics (Rate of Change 
Statistics). 

 
Attributes were calculated on the DGM data points within different regions around the target. 
Figure 3 illustrates those regions. The ellipse in that figure is the entire ellipse as defined above 
around the target. The red and blue regions are sub regions in the ellipse from which features are 
extracted from the DGM data points contained therein. 
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Figure 3.  A simple illustration of ellipsoidal rings for attribute extraction. 
 
The attributes calculated for each target consisted of the first three moments calculated for each 
of the different regions around the target, including the entire ellipse and the two subregions as 
follows: 
 

1. For Amplitude Attributes: The value for channels 1, 2, 3, 4, and sum 

2. For Ratio Attributes: The values for all possible ratios between the DGM value 
for channels 1,2,3, and 4 

3. For Rate of Change Attributes: The value of all ratio attributes, respecting the 
decay order of the channels (e.g., ratio of Channel 1 to Channel 2/ratio of Channel 
2 to Channel 3). 

4. The result of this process is hundreds of attributes for each target. They are 
inserted into a control database and used for subsequent analysis. 

7.6 DESCRIPTION OF A MODELING AND RISK ANALYSIS ITERATION  

Each iteration of modeling and risk analysis proceeds in the following steps: (1) Filter out easy-
to-find high-probability Not-UXO with a simple prediscriminator; (2) Rank all remaining targets 
with an LGP ensemble predictor; (3) Set a stop-digging threshold for the ranked targets using 
residual risk analysis. 
 
We begin our filtering out easy-to-find, high-probability Not-UXO by surveying the existing 
attributes for the training targets. Using Mutual Information and Chi-Square Binning, we reduce 
those attributes to a single attribute that ranks the training targets in order of likelihood that the 
target is UXO. This ranking is the prediscriminator. 
 
At that point, residual risk analysis is performed on the rankings using kernel regression on the 
training data, regressing probability of UXO as a function of rank. The blue line in Figure 4 
shows the modeled probability of UXO in a simple prediscriminator step for Camp SLO. 
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Figure 4.  Prediscriminator model of falling probability of UXO as a function of rank for a 
simple prediscriminator.  

Red circles show rankings of known UXO in training data. Green circles show rankings of 
known Not-UXO. 

 
The resulting kernel regression function is then applied to the blind data and we then assess the 
cumulative probability that UXO remains on site were we to stop digging at each ranked blind 
target. The ranking at which that probability falls below 0.05 for the entire project is selected as 
the stop-digging threshold for that step. All targets below that rank may be assigned as high-
probability Not-UXO. Figure 5 shows the application of the kernel regression model to the blind 
data at Camp SLO. The red line shows the cumulative probability at each rank that UXO remains 
on site. So at the 95% confidence level, we would set the stop-digging threshold between rank 
900 and rank 1000. Targets above that rank would be assigned as high-probability Not-UXO. 
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Figure 5.  Prediscriminator model of falling probability of UXO applied to blind data. 
 

Remaining targets are then the subject of LGP discrimination. To apply LGP, we first reduce our 
attribute set for the remaining targets to a handful of highly predictive attributes using a 
collection of tools to reduce attributes. The tools include (1) numeric input binning, 
(2) maximum relevance minimum redundancy (MRMR), (3) correlation-based feature selection 
(CFS), (4) decision trees, and (5) Discipulus™ input impacts analysis. These are all well-
understood machine-learning and data-mining techniques. 
 
The selected attribute set is then modeled using LGP. To protect against overfitting, we added 
noise to the training data, used cross-validation to set key LGP parameters, and then generated 
our discrimination model using bagging techniques. 
 
At the end of this process, we had constructed an LGP ensemble predictor, consisting of 30-50 
evolved programs from LGP, each of which had been trained on a different bagged sample from 
the training data set. The outputs from those thirty programs was reduced to a single predictor for 
the training and blind targets. 
 
At this point, the prediction for each target is used as a ranking for a residual risk analysis step 
using kernel regression. A stop-digging threshold is set using the cumulative probability of 
remaining UXO discussed above. Figure 6 shows the probability models after one of our LGP 
modeling steps on the blind data. In this figure, the stop-digging threshold would be set at about 
600 at the 95% confidence level, and all targets below that would be assigned as high-probability 
Not-UXO. 
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Figure 6.  LGP model of falling probability of UXO as a function of rank  
after LGP modeling. 

7.7 SAMPLING OF ADDITIONAL GROUND TRUTH  

When we have finished an iteration of discrimination modeling, the results let us intelligently 
select specific targets for sampling to help us build better models in the next iteration. We use the 
probabilities from the risk analysis from the previous iteration (the blue line in Figure 6 would be 
an example of those probabilities) to make that intelligent selection. This would be the 
equivalent on an actual site cleanup of requesting that additional targets be dug and then 
including those targets in additional discrimination steps and risk analysis. As more well-selected 
targets come in, the models and risk analysis should improve. 
 
Sampling additional ground truth between iterations was performed based on four criteria:  
 

1. Entropy. Entropy is a measure of the uncertainty of a target for which ground 
truth is unknown. 

2. Entropy per Unit of Expected Cost of Sample. Entropy per unit of expected cost is 
a criterion designed to get looks at likely UXO at the lowest possible cost. In 
other words, entropy measures expected information content, and expected cost 
measures the likelihood that we are digging Not-UXO. Thus entropy per unit of 
expected cost looks for the targets that provide “cheap” information.  

3. Visual Picks around Training Outliers. In this project, during the Iteration 1 
training, three training UXO targets consistently stood out as more difficult to 
discriminate than the remainder. We picked blind targets manually in the 
immediate vicinity of these targets, in attribute space to sample. Figure 7 shows 
the three outliers in red. The brown ellipse designates the region around those 
outliers from which we sampled. 
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4. Random Sample from Tail of Risk Analysis Probability. The rankings on our dig 
list between the last training UXO and the dig threshold comprise a region in 
which we wish to acquire more information so that the tail of the declining 
probability is better defined. 
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Figure 7.  Region of selection of blind targets for sampling around an outlier UXO. 
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8.0 PERFORMANCE ASSESSMENT  

8.1 CAMP SIBERT 

We submitted three dig lists for scoring our analysis of the Camp Sibert data.  One dig list was 
based on our analysis of the EM61 data alone, a second on EM61 and magnetometer data, and a 
third based on intrinsic magnetic polarizabilities derived from the EM61 data. The following 
sections show the ROC curves on the blind data for Camp Sibert. 

8.1.1 EM ONLY 

Figure 8 shows that all TOIs were retained above our stop-digging threshold. In other words, 
we found and dug all UXO. Therefore, this track was a success on this metric. 
 

 
Figure 8.  ROC chart showing blind scoring for EM-only track. 

 
As noted above, the black line on the left of Figure 8 highlights the cannot-analyze targets. 
Approximately 4% of the blind targets (29 targets) were classified as cannot-analyze.  
 
Once we started classifying targets (the near-vertical red line that starts at about FP=29), we 
generated a near-perfect ROC chart—that is, almost all UXO were ranked above all non-UXO;  
89.6% of the non-UXO were correctly classified.  

8.1.2 MAG AND EM 

As noted above, the black line on the left of Figure 9 highlights the cannot-analyze targets. 
Approximately 7% of all blind targets (86 targets) were classified as cannot-analyze. 
 

 



 

22 

 

Figure 9.  ROC chart showing blind scoring for combined track. 
 
Once we started classifying targets (the near-vertical red line that starts at about FP=86), we 
generated a near-perfect ROC chart—that is, almost all UXO were ranked above all Not-UXO.  
 
The light blue circle shows the final UXO item prioritized on our inversion track dig list. The 
dark blue circle shows our stop-digging threshold. The key point to draw from these two data is 
that all UXO were above the stop-digging threshold. That is, no UXO were left in the ground;   
86.8% of the non-UXO were correctly classified. 

8.1.3 INVERSION FEATURES 

The black line on the left of Figure 10 highlights the cannot-analyze targets for this track. 
Approximately 26% of all blind targets (260 targets) were classified as cannot-analyze.  

 

Figure 10.  ROC chart showing blind scoring for inversion track. 
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Once we started classifying targets (the near-vertical red line that starts at about FP=260), we 
generated a near-perfect ROC chart—that is, almost all UXO were ranked above all non-UXO.  
 
The light blue circle shows the final UXO item prioritized on our inversion-track dig list. The 
dark blue circle shows our stop-digging threshold. The key point to draw from these two data is 
that all UXO were above the stop-digging threshold. That is, no UXO were left in the ground.  
 
Therefore, this track was a success on this objective, which was 100% retention of TOIs (UXO);  
67.1% of the non-TOIs were correctly classified. 

8.2 CAMP SLO 

We submitted two prioritized dig listsCone for each of two iterationsCfor Camp SLO, based on 
our analysis of EM61 data. The following sections show the ROC curves generated on the Camp 
SLO blind targets in both Iteration 1 and Iteration 2. Note that the target set gets smaller from 
Iteration 1 to Iteration 2. The reason for this is that, after Iteration 1, about 200 blind targets were 
sampled for ground truth to improve the classification (that is, we learned the ground truth for 
the targets). Thus, for Iteration 2, those targets had to be and were treated as training targets, not 
as blind targets any longer. 

8.2.1 ITERATION 1 

Figure 11 shows the ROC curve generated by our prioritized dig list on the blind targets for 
Iteration 1 at SLO. 
 

 

Figure 11.  ROC curve on blind data for Iteration 1 prioritized dig list. 
 
 



 

24 

In this figure, the gray line starts at approximately 220 on the x-axis. That represents all cannot-
analyze targets for this iteration. The gray line represents the top-ranked targets on our dig list. 
They were tied for “first-place.” What the gray line indicates is that in the first 180 targets on our 
dig list, we located 90% of the UXO. The dark blue circle is the point at which we set the stop- 
digging threshold, and the green line is all targets below the stop-digging threshold. The final 
UXO was located at the light blue circle at about ranking 950 on the x-axis. Altogether, 98.6% of 
UXO were ranked above the stop-digging threshold and 1.4% were ranked below the stop-
digging threshold. 
 
The areas under the curve for this ROC chart may be measured in two ways. A perfect (or 
vertical) ROC curve has an AUC of 1.0. 
 

1. Including the cannot-analyze targets, the AUC is 0.683. 

2. Including only targets we ranked with our discriminators, the AUC is 0.858. 

8.2.2 ITERATION 2 

Figure 12 is the ROC chart showing the performance of our process on the reduced blind-data set 
for Iteration 2. 
 

 

Figure 12.  ROC curve on blind data for Iteration 2 prioritized dig list. 
 
In this figure, each red dot represents a UXO located on our dig list. The first one is shown at 
approximately 220 on the x-axis. That gap before 220 represents all cannot-analyze targets for 
this iteration. This chart shows that we located 90% of the UXO in the first 100 targets ranked by 
our LGP ensemble predictor or the amplitude discriminator. The dark blue circle in this figure is 
the point at which we set the stop-digging threshold, and the green line represents all targets 
below the stop-digging threshold. The final UXO was located at the light blue circle at about 
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ranking 540 on the x-axis. Altogether, 98.6% of UXO were ranked above the stop-digging 
threshold and 1.4% were ranked below the stop-digging threshold. 
 
The AUCs for this ROC chart may be measured in two ways. 
 

1. Including the cannot-analyze targets, the AUC is 0.703. 

2. Including only targets we ranked with our discriminators, the AUC is 0.936. 

8.2.3 SAMPLING OF GROUND TRUTH BETWEEN ITERATIONS 

Our iterative modeling approach in this project is, as far as we know, unique. The results were 
quite dramatic. The ROC charts for these two iterations are Figure 11 and Figure 12, 
respectively. The nearly vertical ROC chart for Iteration 2 is clearly greatly superior to the ROC 
chart from Iteration 1. 
 
In every respect, the Iteration 2 using the larger training set was superior to or equal to Iteration 
1. Table 3 shows that comparison. 
 

Table 3.  Comparison of Iteration 1 and Iteration 2 results. 
 

Criterion Iteration 1 Iteration 2 
AUC 0.858 0.936 
Count of not-UXO left in ground after last UXO 124 364 
Percent not-UXO left in ground after stop-digging 27.59% 35.88% 
False negatives 3 3 
False negatives other than mistaken cannot-analyze 3 2 

 
The count of Not-UXO ranked below the final UXO approximately tripled while the amount of 
Not-UXO ranked lower than the stop-digging threshold increased by about 30%. 
 
In addition, the increase in the AUC from Iteration 1 to Iteration 2 is very substantial. The error 
implied by the AUC is more than halved. 
 
In short, the intelligent sampling of new ground truth between modeling iterations improved the 
UXO classification significantly by several metrics. 
 
The 200-target request for ground truth between iterations was expected to yield 157.3 Not-UXO 
and 98.7 UXO. These were straightforward predictions from our Iteration 1 probabilistic risk 
analysis models. When we received the ground truth from the Program Office, the actual 
distribution was 162 Not-UXO and 94 UXO. This close match between predicted and actual is a 
strong validation of the usefulness of the residual risk analysis approach to analyzing a 
prioritized dig list. 
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9.0 COST ANALYSIS 

The cost reductions in a typical large cleanup project, given these results, would have been quite 
substantial. Figure 12 shows that, based on the blind data at Camp SLO, about 30% of all targets 
could have been safely left in the ground, depending on the track. Thus, were there 100,000 
targets on a project with a similar ratio of TOI to non-TOI and a similar environmental setting, 
30,000 targets would fall below the stop-digging threshold.  If the hypothetical project had a 
ratio of TOI to non-TOI and discrimination results similar to Camp Sibert, almost 90% of the 
non-TOI could have remained unearthed.  In other words, 90,000 out of the 100,000 targets 
could have been left in the ground. 

9.1 COST MODEL 

A cost decision to use this technology would need to balance the added costs to the project of 
performing discrimination against the cost-savings occasioned by the targets that may be left in 
the ground as high-probability Not-UXO.  The three main elements are: 
 

1. Data collection costs, since data required for classification may cost more to 
collect than does data used solely for detecting the presence of anomalies  

2. Data analysis costs, since analysis requirements for classification are greater than 
that required for detection 

3. Excavation costs, by identifying some percentage as high confidence clutter, we 
anticipate savings either from digging fewer holes or changing the safety 
protocols. 

 
Table 4. Cost model for a detection/discrimination survey technology. 

 

Cost Element Data Tracked During Demonstration Estimated Costs 
Discrimination 
data processing 

Unit: $ cost per anomaly 
• Average cost per anomaly over four tracks and 2 years 
• Time required (hours) per anomaly 
• Personnel required 

• $19.15 per anomaly 
• 0.19 hours per anomaly 
• Two to three data analysts 

 
As a practical matter, these measured costs from the project are, in our opinion, much higher 
than would occur in actual implementation on a real munitions cleanup site. The main difference 
arises from the following facts: (1) An actual cleanup project might involve 100,000 targets as 
opposed to the approximately 1000 to 1500 targets at Sibert and SLO and (2) Many of the cost 
drivers for discrimination would not increase linearly with the number of anomalies (see 
Section 9.2). 
 
As an example of the expected economies of scale for larger sites, the discrimination and risk 
analysis technologies reported here were applied in 2006 to data from an actual remedial 
investigation at F.E. Warren Air Force Base. There were about 30,000 targets on the portion of 
that site analyzed. The cost per anomaly at Warren was less than $5. The difference between the 
$19.15 per-anomaly cost reported above and the $5 Warren cost per-anomaly provides some 
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measure of the economies of scale that accrue in applying these technologies to the larger 
anomaly lists involved in actual site cleanups.  
 
For prime contractors, the decision criterion for using these technologies in this regard will 
recognize that they may be economically applied to sites that meet a minimum threshold for 
anomalies to be analyzed, depending on what portion of anomalies may remain unexcavated 
because of the use of discrimination technology. That minimum threshold is almost certainly 
considerably greater than the number of anomalies involved in either Camp Sibert or SLO. 

9.2 COST DRIVERS 

Data Collection: Generally speaking, data collection costs will be greater for classification than 
for detection only. The electromagnetic induction (EMI) classification process utilizes 
sometimes subtle changes in the anomaly shape. Care must be taken during data collection to not 
only sample the anomaly fine enough, but also to not introduce noise due to inappropriate 
collection methods. The costs for data collection vary widely, depending on site conditions such 
as topography, vegetation, geologic background, known munitions types, and weather 
conditions. We did not gather data in this project, so this cost element was not tracked. 
 
Data Analysis: Data analysis costs will be greater for classification than for detection only. Data 
analysis costs are affected by the presence of complex geology, which can make filtering and 
parameter estimation more complicated. The munitions of interest will also have a great effect on 
complexity and costs of processing, as will anomaly density. In the case considered here, only 
isolated targets were analyzed and target size proved to be a good attribute, but that will not be 
the case everywhere. The number of non-munitions that can be removed with high confidence at 
another site may be much lower. In addition, the job of the processor in determining the 
important features and training the classifier may be harder.  
 
As noted in Section 9.1, the data analysis costs tracked in this project are probably not reflective 
of what would occur on an actual site cleanup. Per track, we averaged about 1200 targets per 
track. A portion of our costs require data analyst judgments about issues such as cannot-analyze 
target selection and feature selection. These costs would scale approximately linearly with the 
number of anomalies. Thus, they could be expected to increase at about the same rate as number 
of anomalies. On the other hand, the other analysis costs consist of processing the data through 
steps and performing QA/QC on the steps. While computer processing time would increase 
linearly with number of anomalies, analyst time would not increase nearly so quickly. The F.E. 
Warren costs reported in Section 9.1 may provide some indication of the economies of scale in 
performing discrimination on larger projects. 
 
Finally, these were the first projects on which we tracked costs per anomaly. Our observation is 
that costs per target dropped considerably as our experience running the process increased. 
Accordingly, the numbers provided in Table 4 are probably high in assessing costs for future 
research and development projects and are almost certainly high for production projects, which 
would almost always involve many more anomalies than were found in the Sibert or SLO sites. 
 
Excavation Cost: The costs associated with excavating anomalies vary widely and the goal is to 
reduce these costs via classification. Safety procedures and nominal burial depth drive 
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remediation costs. When minimal engineering controls are used, costs as low as $45-$90 per dig 
have been reported. When safety procedures are far more elaborate due either to the type of 
munitions or to their proximity to high value objects, the costs per dig are measured in the 
hundreds of dollars. With regards to burial depth, it is less costly to recover shallow, near-surface 
items than large deep targets. We did not excavate targets in this project, so we did not track 
these costs. 

9.3 COST BENEFIT 

The cost benefit of the classification approach relates to savings realized by not excavating items 
that are not of interest. The ROC curve in Figure 13 shows a three-category classification scheme 
with a threshold set such that all the items on the right are high confidence non-TOI. Although 
this is an example ROC only, it is very similar in nature to those presented in Figure 11 and 
Figure 12. Note that the anomalies to the right of the threshold were correctly classified as high 
confidence not munitions. Cost savings can be realized, therefore, if we make use of the 
classification information and remediate accordingly, as illustrated in Figure 13. 
 

 

Figure 13.  Example ROC curve that illustrates cost savings due to skillful classification. 
 
Figure 14 shows how notional costs accumulate through the process of data collection and 
processing, digging the munitions, and excavation. In the figure, the detection only (solid black 
line) assumes a lower density data collection for detection only; all anomalies are excavated 
using intrusive recovery procedures that require trained UXO qualified personnel and safety 
equipment. The classification 1 (dashed green line) assumes higher density and quality data 
collection followed by classification processing; all high-confidence clutter items are left 
unexcavated. Finally, the classification 2 (dotted green line) assumes higher density and quality 
data collection followed by classification processing, but a less expensive alternative to the 
current operational methods of intrusive recovery is used on the anomalies determined to be 
clutter with high confidence.  
 

 



 

30 

 

Figure 14.  Conceptual cost model illustrating potential savings from a skillful UXO 
discrimination project assuming a stop-digging threshold 50% of the way through 

prioritized dig list. 
 
The classification examples are tied to the different regions of the ROC curve in Figure 14. 
There are several important points to note in interpreting this curve:  
 

• The cumulative cost curves start out on the y-axis at different points. This reflects 
that the initial costs of higher density data collection and processing for 
classification are higher than the standard methods. The costs of digging the 
munitions, which must be borne in all cases, are included here.  

• The detection-only curve (solid black line) has a constant slope and ends at the 
total number of anomalies. All detected anomalies are dug using the same 
procedures at the same costs.  

• For both classification examples, all of the items determined to be high 
confidence munitions or can’t-decide must be dug as though they are munitions. 
Thus, the two classification examples rise at a slope equal to the detection slope 
until the threshold is reached on the ROC curve where clutter is identified with 
high.  

• In the region where there is high confidence that the remaining anomalies are 
clutter (green portion of the ROC curve) and it is decided not to dig these 
anomalies at all, no additional costs are incurred.  

• In the region where there is high confidence that the remaining anomalies are 
clutter and it is decided to dig these anomalies but using alternative dig 
procedures, additional costs are incurred, but the cost of each of these digs is 
lower so the slope is more gradual.  
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• The break point in cost saving will be determined by the true dollars associated 
with the data collection, processing, and excavation costsCall of which are site- 
specific. Generally, the more targets on the site, the more cost savings. 

 
The benefits to the participants in the munitions cleanup community are significant. 
 
To begin with, this 2-year project was performed with a technology (LGP), features, and 
ordering of digs by iteration that are quite different from the standard technologies used for 
discrimination for munitions response. Its success, along with the success of other demonstrators 
on the diverse data sets and features sets at Sibert and SLO, represent significant progress toward 
establishing that information sufficient to solve the UXO discrimination problem exists in the 
DGM data gathered for cleanup sites and that cost-effective discrimination is possible on real 
munitions cleanup sites. 
 
These proposals are also the first ESTCP and Strategic Environmental Research and 
Development Program (SERDP) results using principled entropy-based iteration and residual 
risk analysis approaches toward discrimination. We believe this is a significant contribution to 
the community that may improve all existing discrimination technologies. In particular, 
establishing a solid statistical basis for a stop-digging decision will be a key element in 
regulatory acceptance of these technologies, and this project is a significant step forward in that 
regard. 
 
Finally, the demonstrated technologies show significant promise in reducing the number of 
metallic items that must be excavated to close a site. The number of FUDS that must be cleaned 
up is quite large and budgets to accomplish that are fixed. The demonstrated technology, if 
applied to future cleanups, would reduce the excavation costs to close sites substantially and 
would increase the number of sites that may be closed, given a fixed budget. The end result of 
this would be that cleanup of our FUDS inventory will take less time and cost less. 
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10.0 IMPLEMENTATION ISSUES 

10.1 COST OBSERVATIONS 

The discrimination and risk analysis approach demonstrated here utilizes the spatial distribution 
of the measured EM signatures. As such, it requires high signal-to-noise data with a high degree 
of spatial precision across the footprint of the anomaly.  
 
The costs to acquire data that will support discrimination decisions are higher than that required 
if the goal is only to detect the presence of an object. The factors affecting acquisition costs 
relate to particulars of the sensing system, spatial registration system, the target objectives, and 
the site environment. Although these costs are not the focus of this demonstration, they are 
important to the ultimate transferability of this approach. 
 
The analysis costs are also higher if attempts are made to quantitatively classify rather than only 
to detect. The factors affecting analysis time are significantly affected by (1) the degree to which 
the anomalies are spatially separated, (2) the number of anomalies, and (3) the amount of 
geologic related signatures with similar wavelengths as the targeted signatures. The data density 
is also a factor but only marginally so compared to the factors listed above because it affects 
computer run time and not analysts’ labor. 

10.2 PERFORMANCE OBSERVATIONS 

Discrimination performance is measured by our ability to characterize and classify one object 
from another. The factors that affect performance, therefore, relate to (1) the similarity (in 
feature space) between the TOI and non-TOI, (2) our ability to accurately measure the responses, 
(3) the presence of signatures that spatially interfere or otherwise compete with the UXOs 
response, and (4) our ability to quantitatively characterize the source objects. Many of these 
factors are not under our direct control. 
 
The utility of discrimination at a given site is inversely proportionate to the number of can’t- 
analyze targets. The goal is to say something definitive about each anomaly that is selected. In 
this demonstration, anomalies were selected based on single point amplitudes. The spatial 
information content was not used during target selection. In an ideal situation, the number of 
anomalies placed in the  can’t-analyze category would be zero. The can’t-analyze category is 
necessary in practice, however, because some targets have signal-to-noise ratios that are 
detectable but not sufficient for data analysis. 

10.3 SCALE-UP 

There are no critical issues with regard to scaling up the demonstration costs reported here to 
larger, full-scale implementations. The cost categories may not, however, scale linearly. The 
factors listed in Section 10.1 will determine which, if any, cost categories dominate future 
technology deployments. Attention should be paid during project planning to the fact that data 
does not come in all at once on a typical cleanup site. It is often a rolling process where 
additional data is being constantly acquired over time. This would increase the cost for 
discrimination and risk analysis by an undetermined amount. 
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10.4 OTHER SIGNIFICANT OBSERVATIONS 

There are many technical factors that can affect implementation of the analysis technology 
discussed in this report. As mentioned earlier, the analysis approach demonstrated here utilizes 
the spatial distribution of the measured magnetic or EMI signatures. As such, it relies on accurate 
3-D spatial measurements as well as on stable geophysical measurements. The measurement of 
the attitude of the geophysical sensor is also critically important to inverting for meaningful 
model parameters. If the data going into the inversion routines are noisy or contain systemic 
problems, the final discrimination decisions will not be acceptable. 
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