Naval Construction Battalion Center at Port Heuneme Selected as Host Site for EPA-Sponsored MTBE Demonstration Project

Introduction
Methyl tertiary butyl ether (MTBE) has been identified as a contaminant in groundwater aquifers in many states across the U.S. In a survey of sites conducted by Chevron, MTBE concentrations exceeded 1000 µg/L in 47 percent of 251 California sites surveyed, 63 percent of 153 Texas sites surveyed, and 81 percent of 41 Maryland sites surveyed. The Environmental Protection Agency (EPA) Drinking Water Provisional Health Advisory is 20-40 micrograms per liter (µg/L). More information is needed on the most cost-effective ways to treat MTBE at contaminated sites and in drinking water.

Project Background
EPA has assembled a workgroup to conduct field evaluations of technologies and processes to treat drinking water (or wellhead treatment) and groundwater contaminated with MTBE.

This work group consists of staff in the following EPA offices: National Risk Management Research Laboratory (NRMRL); Office of Solid Waste and Emergency Response (OSWER) (Office of Underground Storage Tanks and the Technology Innovation Office); Office of Water (OW); Office of Air Quality Planning and Standards (OAQPS); and Region 9. In addition, the California Water Resources Control Board and the California Department of Health Services are participating on the workgroup. The focus of the field demonstrations is to conduct performance evaluations on field-ready technologies and processes for drinking water treatment and for treatment of groundwater and aquifer materials at the source of contamination.

The workgroup solicited locations to host technology demonstrations. Proposals were due to CLEANUP TECHNOLOGIES to mitigate the current and future liability of past activities through remediation.
- Novel Technologies to Locate Buried Unexploded Ordnance (UXO)
- Data Fusion and Processing Methods to Improve Discrimination of UXO
- Metals in Soils—Remediation and Bioavailability
- Perchlorate in Groundwater—Cleanup and Ecotoxicity Effects
- Remediation Site Long-Term Monitoring Optimization

COMPLIANCE TECHNOLOGIES to reduce the environmental impact of current activities.
- Sustainable Training and Testing Ranges
- Air Emissions from DoD Operations

CONSERVATION TECHNOLOGIES to preserve natural resources while sustaining military operations.
- Detecting, Monitoring, and Managing Our Cultural Resources
- Outside the Fence—Impacts of Development/Growth on DoD/DOE Facilities

POLLUTION PREVENTION TECHNOLOGIES to reduce or eliminate environmental impacts in defense manufacturing through substitution, recycling, and resource conservation.
- Green Chemistry for Defense Applications
- Strategic P2—Designing for the Environment
- Total Environmental Cost Accounting
SERDP-funded research and development efforts and ESTCP-funded demonstration and validation activities continue to provide a rapidly increasing number of outstanding technical advances. These developments are highly important and relevant to the Department of Defense (DoD), Department of Energy (DOE), Environmental Protection Agency (EPA), and many other user communities.

Next Generation Computer-Based Land Management Support System Now Available

Military land managers and decision-makers face an ever-increasing challenge to balance maximum flexibility for the mission with a diverse set of other land use, social, political, and economic goals. These goals encompass environmental requirements for maintaining ecosystem health and sustainability over the long term. Adding to the complexity of the equation is the need to comply with natural resource regulations and to consider the consequences of land use at local, regional, and even global levels. Effective land use and land management decisions call for assessing several components of the ecosystem simultaneously, in terms of their relationship to each other as well as the way they are affected by land use and management decisions. As such, Department of Defense (DoD) land managers require flexible, adaptive, and cost-effective technologies that bring together disparate data and software that can address integrated natural resources planning and ecosystem management.

Through SERDP funding, an integrated, multi-disciplined approach to modeling/decision support has been developed for military training and testing lands that supports current activities and planning for future military exercises. For the first time, military planners, trainers/testers, and environmental managers have a framework that provides a comprehensive environment to dynamically evaluate “what-if” scenarios and adaptive management strategies that support local, regional, and global sustainment. This framework for integrated dynamic modeling and simulation, known as the Object-Oriented Integrated Dynamic Landscape Analysis and Modeling System (OO-IDLAMS), is the result of a partnership between Argonne National Laboratory and the U.S. Army’s Engineering Research and Development Center—Construction Engineering Research Laboratory. OO-IDLAMS is built on Argonne’s Dynamic Information Architecture System (DIAS), a generic object-oriented architecture that supports distributed, dynamic representation of interlinked processes.

OO-IDLAMS demonstrates a next-generation computer-based land management support system upheld by the highest level protocols defined by the Army’s Land Management System (LMS) initiative. The system offers several important advantages over more traditional approaches to model integration. Computer processes dynamically interact with each other indirectly via real-world ecosystem objects that package attribute information together with behavior (how the object acts and reacts). Therefore, OO-IDLAMS can reflect the true dynamics of living ecosystems, land uses, and land management activities and more easily accommodates adding and removing software applications to the integration framework. Additionally, external applications are executed in their native language (e.g., FORTRAN and C) and can be accessed over the Internet if they reside on external networked computers. OO-IDLAMS also provides a unique way of introducing land use/land management plans into a simulation through the use of course-of-action (COA) objects that model procedural or organizational processes.

The OO-IDLAMS flexible object-oriented architecture provides for improved dynamic process modeling and extends a powerful decision-support framework to formulate informed decisions impacting training and testing ranges for long-term sustainment. In addition, this innovative approach to integrated modeling and simulation offers substantial cost savings through substantial cost savings through the use of course-of-action (COA) objects that model procedural or organizational processes.

![Conceptual Diagram of OO-IDLAMS Architecture Integrating Course-of-Action Models and External Applications](image-url)
The use of this technology to support the evolving footprint reduction methodology. The technology developed for use at these sites was an airborne magnetometer system deployed on a commercial helicopter platform.

Project Site. Located in the northwestern-most portion of the Pine Ridge Indian Reservation is a large plateau known as Cuny Table. This area, which is approximately 10,000 acres in size and is characterized as having relatively flat topography, is being used for farming and grazing of livestock. The Cuny Table is part of the BBR and is known to contain a number of aerial gunnery targets, aerial bombardment targets, and waste burial pits associated with the presence of ordnance and explosives. The project team conducted surveys on six sites. These sites included four known areas, a calibration test site, and a recently discovered potential target in an area of Cuny Table known as the Stronghold area. The survey consisted of about 400 acres across these six sites.

Technology Description. The technology demonstrated at BBR consisted of an innovative array of cesium-vapor magnetometers mounted in carbon-fiber “booms” attached to the airframe of a commercial four-passenger helicopter. This configuration enabled the magnetometers to be flown at altitudes ranging from 3 to 9 feet above the ground surface at speeds upwards of 50 mph. This configuration optimized the sensitivity of the magnetometers, enabling performance approaching that of surface-based magnetometer systems. However, unlike surface-based systems, this airborne system enabled detection and precision mapping (sub-meter accuracy) of potential UXO without risk to humans and without damaging sensitive plant or animal habitats or significant cultural sites.

Results. The airborne magnetometer system identified more than 2000 “anomalies” across the survey sites. In fact, for the newly discovered site at the Stronghold area, more than 600 anomalies were identified within a 60-acre area. As part of the ground

true reality necessary for results validation, a sampling of these “anomalies” were excavated. More than 150 pieces of UXO and UXO-related debris were recovered, including three “live” rounds. More than 90 percent of the items recovered were M-38 practice bombs and 2.25-inch aerial rockets. These items were recovered at depths ranging from a few inches to more than 3 feet.

Based upon these preliminary results, the research team believes that this is an appropriate cost-effective technology for remote sensing of UXO that reduces UXO life cycle costs and the time required for remediation. Specifically, this technology 1) does not require surface clearance, 2) can survey 100 percent of the chosen area without destroying habitat, 3) does not require regulator buy-in as with statistical sampling methods, and 4) avoids the “wasting” of resources on areas that contain no UXO.

Future Activity. The project team will be returning to BBR this summer to perform another ESTCP-funded project using the next generation of airborne geophysical technology. Additionally, efforts are under way to integrate this technology in the Engineering Evaluation/Cost Analysis (EE/CA) project currently under way at BBR as well as to investigate the application of statistical methods to airborne geophysical detection and mapping for UXO.
ESTCP and ETV Complete First Two Cooperative Efforts

Approximately one year ago, the Department of Defense (DoD) and the Environmental Protection Agency (EPA) signed a Memorandum of Agreement (MOA) to facilitate closer cooperation and coordination on joint technology verification efforts. The MOA built a partnership between DoD’s ESTCP Program and EPA’s Environmental Technology Verification (ETV) Program. Recently, the first two technology verifications were completed under this partnership. Both demonstrations evaluated the performance of explosives detection technologies and resulted in verification statements. One verification statement provides a summary of the test results for Research International’s FAST 2000™, and the other provides a summary of the test results for Barringer Instruments’ GC-IONSCAN™. Both of these verifications represent successful partnering efforts between two Federal agencies.

ESTCP Co-Sponsors Bioremediation Class

ESTCP is working with the Interstate Technology and Regulatory Cooperation (ITRC) Work Group and the Remediation Technologies Development Forum (RTDF) to present a two-day training class entitled Accelerated Bioremediation of Chlorinated Solvents. Patterned after the highly-acclaimed course entitled Natural Attenuation of Chlorinated Solvents in Groundwater that was offered by the ITRC Work Group from 1997 until 1999, this new class offers students lecture, regulatory discussion, and hands-on problem-solving sessions in a highly-interactive environment. Topics covered include bioremediation basics, mass transfer, injection system design, and a special section on performance validation that presents tools to determine if a bioremediation system is operating as intended.

The Accelerated Bioremediation of Chlorinated Solvents class most recently was offered June 6-7, 2000, in Atlantic City, New Jersey, in conjunction with the International Environmental Technology Exposition 2000. A capacity audience of approximately 100 students from consulting, industry, and regulatory agencies participated. To date, more than 150 members of regulatory agencies from 25 states have taken this class.

The Accelerated Bioremediation of Chlorinated Solvents class is scheduled to be offered until well into 2002. The following classes are planned for the remainder of 2000: September 19-20, Boston, MA; October 19-20, San Antonio, TX; and December 5-6, Tampa, FL.

For further information or to request registration materials, contact Cloyce Brackett or Vicki Nelson of Southern States Energy Board at (770) 242-7712, or see www.itrcweb.org.
a common and flexible framework to capitalize upon existing DoD investments in models and other software applications, as well as software products developed by private industry and other governmental agencies.

The object-oriented integration framework, DIAS, upon which the OO-IDLAMS application is built transparently operates over computer networks and can run on Windows 95/98, Windows NT, and UNIX platforms. The DIAS framework currently is being used for several other applications: 1) an application to simulate environmental effects on general Intelligence Preparation of the Battlefield (IPB); 2) an application to simulate all major aspects of health care delivery; 3) an application to simulate the transition of wind generated waves in the deep water to waves in the near shore environment, then to surf height and currents; and 4) an application that dynamically models Red-Cockaded Woodpecker populations. The OO-IDLAMS prototype, developed using Fort Riley, Kansas, as a case study, has been presented and demonstrated to several potential user sites (both within the DoD community and from other Federal agencies) where there is substantial interest in getting the framework technology to additional users. Accelerated efforts are under way to prioritize user needs and to pursue technology demonstrations and case studies.

For additional information, please contact either Ms. Pamela J. Sydelko, Department of Energy’s Argonne National Laboratory, Argonne, IL, at (630) 252-5128, or via e-mail at psydelko@anl.gov or Ms. Kim Majerus, U.S. Army Corps of Engineers’ Construction Engineering Research Laboratory, Champlain, IL, at (217) 352-6511, or via e-mail at k-majerus@ceer.army.mil.

Technology/Process Selection Schedule

<table>
<thead>
<tr>
<th>Action</th>
<th>Tentative Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology vendor solicitation available</td>
<td>April 17, 2000</td>
</tr>
<tr>
<td>Proposals due for candidate technologies/processes</td>
<td>June 9, 2000</td>
</tr>
<tr>
<td>Technology selection completed</td>
<td>Week of June 26, 2000</td>
</tr>
<tr>
<td>Begin field demonstration(s)</td>
<td>September 2000</td>
</tr>
</tbody>
</table>

Ongoing MTBE-Related Efforts

ESTCP also has initiated the sponsorship of two FY 2000 new start DEM/VAL projects at Port Hueneme focused on the remediation of MTBE in the extensive groundwater plume. **In-Situ Remediation of MTBE Contaminated Aquifers** is the ESTCP-funded new start led by researchers from Envirogen, Inc., and Naval Facilities Engineering Services Center (NFESC). The objective of the project is to demonstrate and validate a biostimulation methodology to degrade dissolved-phase MTBE in-situ. The project will involve bench- and field-scale assessments of aerobic biostimulation of indigenous propane oxidizing bacteria that are now known to degrade MTBE completely to CO₂ and water. The process involves the addition of propane to stimulate the production of the enzyme propane monooxygenase, which catalyzes the destruction of MTBE.

In-Situ Bioremediation of MTBE in Groundwater is the other ESTCP-funded new start led by a team from Arizona State University and NFESC. The technology involves the addition of MTBE-degrading bacteria and oxygen or air to a contaminated aquifer to promote the aerobic degradation of the MTBE. Over the past decade, Equilon Enterprise Ltd. researchers have developed both mixed cultures and single isolates for use in this process. These cultures are comprised of natural bacteria that were enriched and then isolated from an industrial wastewater treatment plant. The objective of this project is to demonstrate the use of this technology to create an in-situ biotreatment barrier designed to prevent the migration of MTBE dissolved in groundwater.

For more information about the MTBE Demonstration project only, contact Dr. Carl Enfield, EPA, at (519) 569-7489 or via e-mail at enfield.carl@epa.gov. For more information about MTBE in drinking water, contact the Safe Drinking Water Hotline at (800) 426-4791. For more information about the ESTCP-funded new start projects, contact either Ms. Catherine Vogel, ESTCP Program Manager for Cleanup, at (703) 696-2118 or via e-mail at cvogel@aqc.osd.mil or Ms. Karen Miller, NFESC, at (805) 982-1010 or via e-mail at millerkd@nfesc.navy.mil.
SUBJECT: NEW DoD/ EPA UXO POLICY

Q: The Department of Defense (DoD) and the Environmental Protection Agency (EPA) developed an interim set of management principles to address unexploded ordinance (UXO) at closed, transferring, and transferred military ranges. What effect will these management principles have on technology requirements?

A: The DoD and EPA are committed to moving away from traditional “mag and flag” methods toward more effective new technology to address UXO at these military ranges. There are two most important aspects of the new policy that affect technology requirements. First, adequate site characterization is necessary. Adequate site characterization will require a permanent record of data gathered to characterize a site and clear audit trails of data analyses and resulting decisions. The new policy states that to the extent practicable, permanent records should include digitally recorded and georeferenced sensor data, thus establishing the DoD policy to move away from the traditional “mag and flag” approach. In addition, technologies must be evaluated based on the critical metrics: the probability of detection as well as the probability of false alarms. Second, advances in technology can provide significant improvements in UXO detection. Rapid employment of better performing, demonstrated technologies will need to occur, and full project costs also must be considered when evaluating a detection technology.

To address these two aspects of the UXO policy, research, development, and demonstration investments are required to improve detection, discrimination, recovery, identification, and destruction technologies. It is the goal of SERDP and ESTCP to continue to fund qualified researchers pursuing state-of-the-art advanced UXO technologies to assist DoD and EPA in the implementation of these interim UXO management principles.

SUBJECT: SERDP PROJECT REPORTING

Q: Can you provide any tips when using the SERDP Principal Investigator Reporting System (SPIRS)?

A: All SERDP-funded projects are required to submit several Project Management Reports, including a Project Plan, an annual Execution Plan, Quarterly Progress Reports, Monthly Financial Reports, and an annual technical report. These reports (except for the annual technical report) are submitted via SPIRS on the SERDP web site (www.serdp.org). While SERDP refers to these requirements as “reports,” the PI’s responsibility here is to enter data as requested at the appropriate web “button.” From this data, the PI and SERDP management can generate the specific reports. Following is some helpful information to facilitate your data submission.

General
—When logging into SPIRS, enter only the number of your Project ID, e.g., 1060 not CP1060.
—To save a text entry, click on “Next.”
—Memo fields (i.e., Objective, Technical Approach, Benefits, etc.) are text only and do not support tables, graphics, superscript, subscript, underline, or bold. A spell check function is available for all memo fields.
—After all sections for a data type have been completed, the “Review Data” button will appear at the bottom of the menu so that all sections can be reviewed at a glance before submission.
—The “Home” button on the bottom of the menu screens will take you back to the SPIRS Home Screen. The “Main” button on the bottom of the section screens will take you back to the Main Menu of the Data set (i.e., Project Plan, Execution Plan, Progress Reporting) on which you have been working. The “Next” button on each Main Menu screen will take you to the first section of that Data set.

Project Plan
—Data in this section covers the life of the project.
—Project Summary is an “Executive Summary” that should be no longer than two paragraphs.

Execution Plan
—Data in this section is REQUIRED for each fiscal year the project receives SERDP funding.
—A Directly Funded Performer (DFP) is one that receives funds directly from SERDP. A Second-tier performer receives funds from a DFP.
—SERDP follows DoD guidance which states that funds should be 100 percent obligated by September 30 (end of fiscal year) and expended by December 31. Obligated is defined as funds that are placed on a contract or in a Federal payroll account. Expended is defined as work completed and the contract has been invoiced (not necessarily paid) or the Federal payroll account debited. Non-Federal projects’ funds are considered 100 percent obligated when the non-Federal organization receives its funds.
—Amounts should be entered on an incremental monthly basis, not on a cumulative basis.

Quarterly Reporting (Progress Reporting Data)
—The following sections are REQUIRED: Accomplishments, Obligations/Expenditures, and Milestones.
—If an estimated completion date for a milestone falls within the reporting period, you must enter either the completion date or a comment in the milestone comment field explaining why the date was not met. To access the Comments field, click on Progress Reporting Data and Project Milestones and then click on the milestone number. The Comments field then will appear.
—In the Obligation and Expenditure section, numbers are entered in thousands, e.g., $500,000 should be entered as 500.
—You may add or cancel (but not delete or modify) a Task in this section (originally entered in the Project Plan). When a Task is completed, enter the completed date in the Project Task section. All associated Milestones must be completed before a Task is completed.

Monthly Financial
—Ensure that the correct funded year is selected.
—It is possible to have a project that is being funded by two separate funding years. Accordingly, two reports need to be submitted.
SERDP Highlighted on CNBC Television Program

A recently broadcast edition of an award-winning television series took a look at the progress being made to clean up and close hazardous waste sites, an environmental concern to us all. Questions such as the following were addressed: What are the risks of nuclear and hazardous waste, both real and perceived? What does the future hold for hazardous and radioactive waste disposal and transportation? How are new technologies developed that address the difficult cleanup problems of soil and groundwater contamination? What are the best methods and tools to use? Other issues also were explored, such as community safety, pollution control, and the partnerships between industry, the government, educational institutions, and municipalities that are bringing research and development ideas from the drawing board to reality.

C. Herb Ward, Professor of Environmental Science and Engineering and Foyt Family Chair of Engineering at Rice University and Chair of SERDP’s Scientific Advisory Board, co-hosted The Cutting Edge Technology Report: Hazardous Waste Cleanup: The Future is Now that aired on CNBC Saturday, April 22, 2000. In addition, some SERDP-funded remediation research efforts were highlighted during the program and included interviews with the SERDP Program Manager for Cleanup Catherine Vogel and two SERDP-funded Principal Investigators, Drs. Carl Enfield and Lynn Wood.

The program was produced by the Information Technology Network and sponsored by the U.S. Department of Energy, Office of Environmental Management, and two EPA-sponsored Hazardous Substance Research Centers South & Southwest and Gulf Coast.

THE ESTCP REVIEW COMMITTEE MEETINGS WILL BE HELD IN ARLINGTON, VA, IN AUGUST. The schedules are as follows: Compliance (August 15), Pollution Prevention (August 16-17), Cleanup (August 21-23), and UXO (August 24-25). For more information, contact Amy Kelly at (703) 696-2124 or via e-mail at kellya@acq.osd.mil.

ESTCP OBLIGATION AND EXPENDITURE PLANS FOR CONTINUING PROJECTS IN FY 2000 are due with October 5th Quarterly Reports. Continuation projects should ensure that their FY 2001 Obligation and Expenditure Plans are entered through the ESTCP web site. Financial guidance and instructions will be sent to each Project Lead responsible for a continuing ESTCP project.

NEW PUBLICATIONS NOW AVAILABLE ON THE ESTCP HOME PAGE www.estcp.org

Cost and Performance Reports:
Clean up
Enhanced In-Situ Anaerobic Bioremediation of Fuel-Contaminated Groundwater
In-Situ Radiation Detection Demonstration

Compliance
Use of Sorbent Materials for Testing Hazardous Wastes

REQUESTED FULL PROPOSALS IN RESPONSE TO THE BROAD AGENCY ANNOUNCEMENT (BAA) are due to the Program Office by 4:00 p.m. EST on July 27, 2000.

THE PROGRESS REPORT FOR THE THIRD QUARTER OF GOVERNMENT FY 2000 IS DUE ON JULY 31, 2000. For assistance, please contact your Program Manager Assistant.

SERDP EXECUTION PLAN DATA FOR PROJECTS CONTINUING IN FY 2001 ARE DUE SEPTEMBER 1. Continuing project Principal Investigators should ensure that their Execution Plan data has been entered in SPIRS. For assistance, contact your Program Manager Assistant or Jenny Rusk at (703) 326-7801.

THE SERDP EXECUTIVE WORKING GROUP (EWG) WILL MEET SEPTEMBER 7 AND THE SERDP COUNCIL WILL MEET SEPTEMBER 27 to review and approve the FY 2001 Program and the FY 2002 Strategic Guidance. For additional information, contact Amy Kelly at (703) 696-2124 or via e-mail at kellya@acq.osd.mil.

THE SERDP SCIENTIFIC ADVISORY BOARD (SAB) WILL MEET August 9-10 and September 13-15 in Arlington, VA, and October 16-17 in Idaho. Contact Amy Kelly at (703) 696-2124 or via e-mail at kellya@acq.osd.mil for additional information.

SUMMER 2000 BULLETIN
JULY 2000

July 27
ESTCP requested full proposals due in response to the Broad Agency Announcement (BAA)

July 31
SERDP progress report due for the third quarter of Government FY 2000

AUGUST 2000

August 9-10
SERDP Scientific Advisory Board (SAB) meeting

August 15
ESTCP Compliance Phase II Review Committee meetings

August 16-17
ESTCP Pollution Prevention Phase II Review Committee meetings

August 21-23
ESTCP Cleanup Phase II Review Committee meetings

August 24-25
ESTCP UXO Phase II Review Committee meetings

SEPTEMBER 2000

September 1
Poster presentation abstracts due for SERDP and ESTCP Partners in Environmental Technology Technical Symposium & Workshop

September 7
SERDP Executive Working Group (EWG) meeting

September 13-15
SERDP Scientific Advisory Board (SAB) meeting

September 18
SERDP Conservation In-Progress Review (IPR) meeting for New Start projects

September 19-20
Compliance In-Progress Review (IPR) meeting for New Start projects

September 21-22
Pollution Prevention In-Progress Review (IPR) meeting for New Start projects

September 27
SERDP Council meeting

OCTOBER-NOVEMBER 2000

October 2-6
Cleanup In-Progress Review (IPR) meeting for New Start projects

October 5
ESTCP quarterly reports due for the fourth quarter of Government FY 2000

October 16-17
Scientific Advisory Board (SAB) meeting

October 31
SERDP progress report due for the fourth quarter of Government FY 2000

November 28-30
SERDP and ESTCP Partners in Environmental Technology Technical Symposium & Workshop

RELATED CONFERENCES & EVENTS

August 6-10
Ecological Society of America (ESA) 2000, 85th Annual Meeting
Snowbird, Utah
For additional information, see http://esa.sdsc.edu.

August 21-24
5th Annual Joint Services Pollution Prevention & Hazardous Waste Management Conference & Exhibition
Henry B. Gonzales Convention Center
San Antonio, Texas
For more information, visit http://www.p2-hwmconference.com.

October 16-19
16th Annual International Conference on Contaminated Soils, Sediments, and Water
University of Massachusetts, Amherst
Amherst, MA
For more information, see www.aehs.com.

October 16-20
Interstate Technology and Regulatory Cooperation (ITRC) Work Group Fall Conference "New Environmental Technologies and Market Opportunities"
St. Anthony Hotel
San Antonio, TX
For more information, see www.itrcweb.org.