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1.0 INTRODUCTION

The Thermal Desorption Sampler (TDS) is designed to collect a soil sample and perform an in situ
analysis for the presence of Volatile Organic Compounds (VOCs).  The TDS system performs rapid
field screening to determine either the presence or absence of VOCs within the unsaturated
subsurface soil of a site.  In addition, the TDS interfaced to an Ion Trap Mass Spectrometer (ITMS)
provides identification of specific analytes based on their mass spectra and provides estimates of
contaminant concentrations.  The TDS system is deployed by the Tri-Service Site Characterization
and Analysis Penetrometer System (SCAPS).  

The TDS principle of operation is based on capturing a known volume of subsurface soil in situ ,
heat ing the sample chamber, and purging the VOC contaminants with helium carrier gas while
heating the soil.  The VOCs in the carrier gas are then collected on a sorbent trap that concentrates
the VOCs prior to introduction into the ITMS for quantification and identification of the VOCs.

The TDS system was demonstrated at five separate DoD facilities located in diverse geological
conditions.  The TDS/ITMS system performed well during the collection and analysis of 170 in situ
samples.  More than 600 verification samples were also collected for off-site laboratory analysis.
There was a strong correlation between the off-site laboratory verification sample results and the
TDS ex situ mode analysis results.

Limitations of the TDS system involve the mechanical operation of the probe and the desorption
efficiency of the sampler.  Lithologies containing gravels, cobbels, and clay may prevent the sample
chamber from opening properly and filling with soil.  Clay and saturated soils may exhibit reduced
VOC desorption efficiencies that necessitate heating the sample chamber for increased sampling
times.

Cost of operating the TDS system is comparable to conventional sample collection and analysis
techniques.  The main savings produced by using the TDS system are a reduction in time spent
characterizing a site, the reduced exposure of workers to contaminants, and the minimization of
investigation wastes.
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Figure 1.  Thermal Desorption Sampler System.

2.0 TECHNOLOGY DESCRIPTION

The TDS was designed to collect a soil sample and perform an in situ analysis for the presence of
Volatile Organic Compounds (VOCs).  The TDS system performs rapid field screening to determine
either the presence or absence of VOCs within the subsurface unsaturated soil of a site.  In addition,
t he T DS provides identification of specific analytes based on their mass spectra and provides
estimates of contaminant concentrations.  The TDS system is deployed by the Tri-Service Site
Characterization and Analysis Penetrometer System (SCAPS).

2.1 THERMAL DESORPTION SAMPLER SYSTEM

The TDS principle of operation is based on capturing a known volume of subsurface soil in a sample
chamber in situ and purging the VOC contaminants with helium carrier gas while heating the sample
chamber.  The TDS system (shown in Figure 1) is comprised of a sample collection probe linked
indirectly by an umbilical to an Ion Trap Mass Spectrometer (ITMS).  The 61-m (200-ft) umbilical
cable consists of heat shrink plastic that contains:
 
a. An unheated, 1.6-mm- (1/16-in.-) diameter, fused silica-lined stainless steel analyte transfer

line. 

b. T hree 3.1-mm- (1/8-in.-) diameter lines supplying carrier gas to support mechanical
functions. 

c. The heater, thermocouple, and position indicator wires. 

Soil gases desorbed from the sample chamber within the TDS probe are returned to the surface via
the analyte transfer line where they are collected on a sorbent trap.  Samples are collected under
vacuum, as needed, to keep a balance between the flow up through the analyte transfer line and the
flow down through the carrier gas line.  The sorbent trap can be extracted with methanol or heated
at a controlled rate to force analytes present to enter the ITMS for analysis.
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Figure 2.  Thermal Desorption Sampler Probe.

2.1.1 Thermal Desorption Sampler Probe

The TDS probe design is a series of steel cylinders with gas channels and piston chambers made tight
by o-rings (Figure 2).

Figure 3 shows the operation of the TDS probe during sample collection.  A central actuator rod with
retractable tip is held in place by locking lugs in the closed position while the probe is being pushed
into the ground.  Once the probe reaches sampling depth, the locking lugs are pneumatically released
and the piston is retracted to reveal the sample chamber.  At sampling depth, the probe is pushed an
additional 4.5 to 5.1 cm (1.75 to 2.0 in.) to acquire a sample of soil of a known diameter and an
estimated volume.  Depending upon soil density, the plug weight ranges from 3.5 to 5.0 grams.
Helium is introduced through a stainless steel tube located along the inner wall of the outer housing
at  a rat e of 50 ml/min.  The gas enters the sample chamber area from behind and below. It is
preheated to temperatures between 170 and 200 �C as it moves across the surface of the heater
before sweeping upward over the soil sample to purge the VOCs as they are volatilized into the
chamber.  The gas carries the volatilized analytes up through the analyte line and into a sample
collection device at the surface (Figure 1).  Once the analytes have been desorbed from the soil, the
soil is ejected by forcing a burst of high-pressure gas down the line while lowering the actuator rod.
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Figure 3.  TDS Probe Sampler Collection.

A sensor in the probe indicates the rod's position to the operator at the surface.  After the spent soil
is ejected and the actuator rod is locked in the closed position, the TDS probe is pushed to a new
depth and the sampling process is repeated. 

2.1.2 Ion Trap Mass Spectrometer Analytical System

The ITMS analytical system is a field portable ITMS with an OI Analytical purge and trap (P&T)
sample concentrator as the analyte introduction device.  Volatilized analytes are collected on the
sorbent trap attached to the control manifold.  To capture the broadest range of VOCs, an OI
Analytical style No. 9 trap filled with a mixture of Tenax, silica gel, and charcoal is used.  Once the
TDS probe collects a sample, it can be analyzed in one of two ways.  If low level concentrations are
expected (less than 50 ppb of analyte per 5 gram mass of soil), the trap can be inserted into the P&T
and desorbed directly in to the ITMS.  If higher concentrations are suspected, the trap is eluted with
1 ml of P&T grade methanol.  An aliquot of the methanol is placed into water in the P&T vessel then
desorbed into the ITMS for analysis and quantitation.  After the VOCs are eluted from the trap, any
remaining methanol is flushed with inert gas.  The trap is placed in a small 180 �C oven and baked
for 5 minutes with continuous flushing to regenerate the sorbent material.

2.2 S ITE CHARACTERIZATION PENETROMETER AND ANALYSIS SYSTEM
(SCAPS)

T he SCAPS Program is a Tri-Service effort to develop sensor and hybrid sensor/sampler
technologies to utilize the capabilities of cone penetrometer technology for characterizing subsurface
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Figure 4.  Army SCAPS Truck.

contamination at military installations.  Cone penetrometery has long been used to characterize soil
for geotechnical parameters such as soil classification, strength, and liquefaction potential.  This is
accomplished by advancing (pushing) a standard cone penetrometer probe by hydraulic rams into
the ground and measuring the resistance to penetration. 

The SCAPS truck (Figure 4) is a standard 18.2 MT (20-ton) cone penetrometer platform used to
advance contaminant and geotechnical sensing probes.  The forward portion of the SCAPS truck
houses the hydraulic rams used to translate the weight of the truck (reaction mass) into pushing force.
The combination of reaction mass and hydraulics can advance a 1-meter-long by 3.57-cm diameter
steel rod into the ground at a rate of approximately 1 meter per minute in accordance with American
Society of Testing and Materials (ASTM) Method D3441 (ASTM 1995).  The rods, various sensing
probes, or sampling tools can be advanced to depths in excess of 50 m in naturally occurring soils.
As the rods are withdrawn, grout can be injected through 6.2-mm- (1/4-in.-) diameter tubing within
the interior of the some SCAPS probe umbilical cables, hydraulically sealing the push hole.  The
T DS p robe is currently not configured for retraction grout.  Also, while the rods are being
withdrawn, they are cleaned within a hot-water manifold housed outside and beneath the truck.  The
rinse water is contained for proper handling and disposal.

The rear portion of the truck is comprised of a data acquisition room in which components of the
SCAPS sensor technologies and onboard computers are located.  An ITMS and associated laboratory
equipment are installed in the data acquisition room during TDS field investigations.   

T he s t andard cone penetrometer probes are instrumented with strain gauges measuring cone
resistance and sleeve friction in accordance with ASTM Standard D3441.  The soil type is then
determined from a ratio of cone resistance and sleeve friction using one of the empirically derived
classification schemes (Lee et al. 1994; Olsen 1988).  The soil class information is crucial to
selecting the depth and soil strata for sample collection. 
 
2.3 PERSONNEL TRAINING REQUIREMENTS

Personnel operating the SCAPS CPT platform are trained in installing groundwater monitoring wells
and other traditional drilling methods.  Operators of the ITMS vary in skill and training, but usually
have some experience in operating standard laboratory equipment.  All personnel are required to
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operate computer software and to be familiar with the work environment around heavy equipment.
All personnel conducting field investigations at potentially contaminated sites are required to
complete the 40-hr Hazardous Waste Worker Training and annual 8-hr Hazardous Waste Worker
Update Training.  Other than health and safety training requirements, there is no mandated training
required to operate the CPT technology or the ITMS.

2.4 ADVANTAGES OF THE TECHNOLOGY

The TDS is an in situ field-screening technique for characterizing the subsurface distribution of VOC
contamination before installing bore holes.  The method is not intended to be a complete replacement
for traditional soil bores, but a means to optimize the placement of a reduced number of bores to
achieve site characterization and monitoring.  Using a CPT platform, the TDS system provides near
real-time field screening of the distribution of VOC contamination at hazardous waste sites.  The
sy s t em is configured to quickly and cost-effectively distinguish VOC contaminated areas from
uncont aminated areas and provide semiquantitative estimates of soil VOC contaminant
concentration.  This capability allows further investigation and remediation decisions to be made
more efficiently and reduces the number of samples that must be submitted to laboratories for
analysis.  In addition, the SCAPS CPT platform allows for the characterization of contaminated sites
with minimal exposure of site personnel and the community to toxic contaminants, and minimizes
t he volume of investigation-derived waste generated during conventional site characterization
activities.

2.5 LIMITS OF THE TECHNOLOGY

This section discusses the limits of the SCAPS TDS system, as they are currently understood.

2.5.1 Truck-Mounted Cone Penetrometer Access Limits

The SCAPS CPT support platform is a 18.2 MT (20-ton), all wheel drive diesel-powered truck.  The
truck has a minimum access width of  3 m (10 ft) and a height clearance of 4.6 m (15 ft).  It is
conceivable that some sites, or certain areas of sites, might not be accessible to a vehicle of this size
and weight.  The access limits for the SCAPS CPT vehicle are similar to those for conventional drill
rigs and heavy excavation equipment. 

2.5.2 Cone Penetrometer Advancement Limits

The CPT sensors and sampling tools may be difficult to advance in subsurface lithologies containing
cemented sands and clays, buried debris, gravel units, cobbles, boulders, and shallow bedrock.  As
wit h all intrusive site characterization methods, it is extremely important that all underground
utilities and structures be located using reliable geophysical equipment operated by trained
professionals before undertaking activities at a site.  This should be done even if subsurface utility
plans for the site are available for reference.

2.5.3 Thermal Desorption Sampler Limitations

Limitations of the TDS system are in three categories: maintenance and mechanical functioning; the
ability to take and expel a physical soil sample; and analyte vapor recovery from the soil sample.
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As with any device deployed through subsurface strata, a certain amount of wear and maintenance
is to be expected.  The system needs to be checked for leaks and the seals and o-rings checked daily
for wear.  Since the movable piston is also the tip of the TDS probe, the elevated ram force required
to push through densely packed strata such as cemented sands, gravel or cobbles may cause the
locking lugs to jam and prevent the TDS from opening.  Also due to the small diameter of the sample
port, rocks and cobbles may prevent soil from entering the sample chamber.  Densely packed clays
can swell after entering the sample chamber.  After drying, the sample forms a hardened plug that
can be difficult to eject without bringing the sampler to the surface.  

The upper limit of detection for the TDS is determined by the system's ability to completely desorb
analy t es from the soil sample.  Recovery is a function of the desorption efficiency and the
completeness of the seal at the bottom of the sample chamber.  The TDS design assumes that the soil
material will fill the sample chamber and plug the bottom opening to form a seal.  Loosely packed
soils may form an incomplete seal.  The completeness of the seal is determined by monitoring the
gas flows down into the TDS and then back up through the manifold.  Vacuum applied to the exit
end of the sorbent trap is used to augment the gas flow by creating a gradient in favor of the gas
returning up the analyte line and into the trap.  During TDS development, soil type and moisture
cont ent  were shown to affect analyte desorption efficiency with wet clays having the lowest
efficiencies (Myers et al. 1995).  By keeping temperatures above 170 �C during the desorption
process and extending the sampling time to 20 minutes, analyte recovery can be maximized while
keeping the sampling period down to a reasonable length of time.

2.5.4 ITMS Limitations

The ITMS methodology used to identify and quantitate desorbed VOC contaminants from the TDS
follows EPA SW-846 draft Method 8265.  This method is intended for field screening applications
using an ITMS.  Because the ITMS does not utilize a separation technique, it cannot distinguish
between analytes that yield identical mass fragments.  For example, 1,1-dichloroethene,
cis-1,2-dichloroethene and  trans-1.2-dichloroethene are identified by the same mass ion (96) and
cannot  be distinguished from each other.  Results for this mass ion are reported as total
dichloroethene (DCE).  Ethylbenzene, toluene, and xylenes are also identified with the same mass
ion (92) and are reported as a total.  It should be noted that the current laboratory method, EPA
SW-846 8260B (U.S. EPA 1995), using gas chromatography separation with mass spectrometry
detection (GC/MS) is not able to differentiate some analyte pairs such as meta- and para-xylene.  

A second limitation is associated with high concentrations of contaminants such as trichloroethylene
(T CE) whose mass ion (132) can fragment into smaller mass ions that can cause false positive
responses for total DCE and vinyl chloride.  It may be necessary to raise the lower limit of detection
for some analytes to reduce the probability of false positives.  A third limitation associated with the
ITMS instrumentation used during this demonstration was the low dynamic range of the instruments.
Essentially all analytical systems have upper limits of detection as well as lower limits of detection.
T he up per limit of detection for the ITMS is determined by the upper limit of the number of
molecules that it can analyze before the detector is “saturated” with ions.  Without an automatic gain
control to adjust for high concentrations of analyte introduced into the system at any point in time,
t he IT M S detector can become saturated causing the analytical response to flatten out as the
concentration of analyte increases.  To compensate for this, the ITMS operator makes a series of
dilutions to bring the analytes of interest into range of the calibration curve.  Contaminants with
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lesser concentrations could be masked or diluted out during the analysis if the analyst focuses on the
contaminant with the highest concentration.  This diluting out effect is not unique to ITMS analysis.
However, when coupled with mass ion fragmentation and the lack of a chromatographic separation,
it could have a significant impact on analyte reporting limits.

2.5.5 Extremely High Level Contamination Carryover

The effective dynamic range for the TDS is determined by three factors: the dynamic range of the
ITMS; the desorption efficiency from various soil types; and the potential for carryover or cross
contamination between samples after desorption.  Extremely high levels (greater than 10 mg/kg) of
VOC contamination will cause carryover of analytes between successive samples.  That is, after
desorption of a very high level sample, residual VOC analytes may remain in the lower portion of
the TDS analyte transfer line where they slowly desorb into successive samples over time.  This is
considered sample carryover between sampling events.  While this residual carryover can have an
addit ive effect on the reported concentration of a sample, it mostly impacts the lower limit of
detection.  This problem cannot be completely eliminated, but the effects of sample carryover can
be controlled.  A system blank is analyzed after every TDS sampling event.  During the analysis of
blank samples, carryover is present when VOC analytes are detected above system background
response.  When carryover is detected the sample transfer lines are purged with inert gas until the
sy s t em blanks return to normal.  This procedure requires approximately 30 min, equivalent to
approximately two-thirds the time required for a normal TDS sampling event.  After an extremely
high level sample has been analyzed, the TDS system can be removed and a backup TDS system
installed to allow sampling to continue while the contaminated system is purged. 
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3.0 DEMONSTRATION DESIGN

This section discusses the demonstration objectives, monitoring procedures, and facilities visited
during the demonstration. 

3.1 PERFORMANCE OBJECTIVES

The primary objectives of this demonstration were to evaluate the TDS sampling technology in the
following areas:  

a. Its performance compared to conventional sampling and analytical methods.

b. The logistical and economic resources necessary to operate the technology.

c. Data quality.

d. The range of usefulness in which the technology can be operated.  

Secondary objectives for this demonstration were to evaluate the SCAPS TDS technology for
reliability, ruggedness, and ease of operation.

3.2 PHYSICAL SETUP AND OPERATION

Five sites were investigated during the field phase of this demonstration.  Sites were selected in
different geographic locations to facilitate exposure to soils with varying geophysical properties and
to facilitate wide exposure to user communities.  Sites were selected based on the following criteria:

a. Known soil VOC contamination in concentrations from low ng/g to µg/g.

b. Subsurface geology sufficiently complex to demonstrate the advantage of rapid on-site
analysis compared to conventional site characterization practices.

The five demonstrations sites selected and dates when visited are shown in Table 1.

Table 1.  TDS System Demonstration Locations and Dates.

Facility Demonstration Date
Bush River Study Area June 1996
U.S. Army Aberdeen Proving Ground
Edgewood, MD
Davis Global Communication Site December 1996 and February 1997
McClellan Air Force Base, Sacramento, CA
U.S. Cold Regions Research and Engineering June 1997
Laboratory Hanover, NH
Lake City Army Ammunition Plant June 1998
Independence, MO
Longhorn Army Ammunition Plant August 1998
Karnack, TX
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Figure 5.  Ex Situ TDS Mode.

3.3 MONITORING PROCEDURES

Soil samples were collected by traditional soil core methods from a region within 0.3 m (1 ft)
laterally and ±2.5 mm (0.1 in.) vertically of each in situ TDS system analysis location.  This was
accomplished by centering the length of the soil core on the TDS analysis depth.  After the soil core
was retrieved, the soil core was subsampled three times at a depth corresponding with the 5-cm
(2-in.) in situ TDS analysis.  Two of the subsamples were collected and preserved according to EPA
Method 5035.  These verification samples were sent to an off-site laboratory and analyzed by EPA
Method 8260B.

The third subsample was taken with a stainless steel syringe
designed to fit into an adapter fitted on the end of the TDS probe
(Figure 5).  The syringe was pre-weighed, filled with sample, then
re-weighed and placed into the heated TDS sample chamber
where it was desorbed and analyzed under the same conditions as
t he in situ TDS sample.  The dried, desorbed soil plug was
collected and preserved according to EPA Method 5035
procedures and sent to the off-site laboratory along with the
verification samples for analysis. 

Validation samples were analyzed using this ex situ method in order to minimize the effects of VOC
heterogeneity distribution in the soil and to provide a direct comparison of sampler and laboratory
validation results.

T he T DS sy s tem analytical results are reported in concentrations of µg/g in soil; the same
concentration units reported by EPA Method 8260B analysis.  Therefore, direct comparison of the
SCAPS T DS system data with that from the verification sample analyses is simple and
straightforward.  The strength of comparisons between the TDS data and the conventional laboratory
method of analysis for verification samples was evaluated using least squares linear regression over
the entire concentration range of data collected by each method at every site investigated.  The TDS
data and verification data were considered to strongly agree if the correlation coefficient of the linear
regression was in the range of 0.8-1.0 and the slope of the regression line was 1.0 + 0.3.

3.4 DEMONSTRATION SITE/FACILITY BACKGROUND AND CHARACTERISTICS

T he following sections provide information about each of the last three sites visited during the
demonstration of the SCAPS TDS System.

3.4.1 Cold Regions Research and Engineering Laboratory

The U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL)
is located on 12.1 ha (30 acres) of land, west of and adjacent to State Highway 10, 2.4 km (1.5 miles)
north of Hanover, NH.

CRREL history.  The CRREL was established February 1, 1961 by the U.S. Army Corps of
Engineers to combine the work of two predecessor organizations: the Snow, Ice, and Permafrost
Research Establishment and the Arctic Construction and Frost Effects Laboratory.  The CRREL



13

Fi gure 6.  U.S . Army Corps of Engineers
Cold Regions Research and Engineering
Laboratory, Hanover, NH.

performs basic and applied research in snow, ice and frozen ground.  The CRREL also provides the
U.S. Department of the Army with practical engineering research to develop equipment and
procedures for applications in cold regions.

The CRREL site contains several locations where past spills, disposal practices, and operations have
contaminated soils and ground water.  Past investigations (Little 1994) have identified and
prioritized 16 Areas of Concern (AOC) where contaminant sources may be located.  Two AOCs
were suitable for TDS interrogation (Figure 6).

Area of Concern 9 is located in the vicinity of the Ice Well, i.e., a cased boring fitted with a
refrigeration coil for freezing water in the boring.  The 0.9-m (3-ft) diameter, approximately 61-m-
(200-ft-) deep Ice Well was formerly used for testing ice-drilling technologies and not constructed
or used for injection or withdrawal of fluids from the ground.  Trichlorethene was used in
refrigeration lines and drilling fluid mixtures.  This area may also contain TCE-contaminated soils
as a result of a 1970 explosion in a formerly used TCE tank in AOC 1.  This explosion released
approximately 11 kl (3,000 gal) of TCE to the pavement and nearby unpaved area to the west of
AOC 1.  The refrigeration system for the Ice Well is no longer in operation, but liquids and ice still
exist within this well.  AOC 9 is approximately 30 m (100 ft) west of AOC 1.
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CRREL characteristics.  The CRREL is located in the upper Connecticut River Valley on terraced
unconsolidated glacial deposits.  Despite modification of the topography by development, CRREL
has three main terraces at elevations ranging from 158 to 140 m (520 to 460 ft) above mean sea level
(msl).  The eastern third of CRREL, including AOC 9, is located on the upper terrace.  The upper
terrace slopes gently down to the west.  The middle terrace is very narrow, generally less than 30 m
(100 ft), and is covered by asphalt.  It contains AOC 13.  The geology of CRREL consists of two
main geological units: overburden sequence and bedrock.  The overburden consists entirely of
glaciofluvial and glaciolacustrine sediments.  These soils are deep and well drained with silty and
sandy textures.  From east to west across the CRREL site, the soils consist primarily of Hitchcock
silt loam and Windsor loamy fine sand.  Silt imbedded with layers of fine sandy silt is commonly
found during completion of soil borings.  The sandy silt layers can range from less than 3 cm (1 in.)
to several meters.  Beneath the silt is a layer of fine silty sand, which forms the basal lacustrine unit
for the eastern two-thirds of CRREL.  Moisture content determined from soil samples collected
during the SCAPS TDS VOC sampler demonstration indicated a general trend of decreasing
moisture with depth in the vadose zone.  Soil moisture varied from 20 percent near the surface to 5
percent at 37 m (120 ft) below ground surface (BGS) at AOC 9.  The bedrock consisted of
poly-deformed metasedimentary rock.  Water table depth ranges from 24 to 46 m (80 to 150 ft) BGS.
The maximum depth pushed during the TDS demonstration was 18 m (60 ft) BGS.

Previous investigations between 1990 and 1996 (Little 1994; McKay 1997) identified soil and
groundwat er contamination at AOC 9 and 13.  These investigations have included hand auger
borings, drilling and sampling shallow borings, and drilling and sampling deep soil borings to
bedrock.  In 1996, TCE was detected in soil samples taken in AOC 9 near the Ice Well.
Concentrations were highest at 5.5 m (18 ft) BGS.  In 1996, the CRREL site was used to validate
the SCAPS chlorinated solvent sensor.  Concentrations of TCE detected at AOC 13 ranged from
0.05 mg/kg to 24 mg/kg, with the highest concentrations found at 17 m (56 ft) bgs.  In addition to
TCE, traces of DCE and vinyl chloride were detected during the 1996 investigation.

3.4.2 Lake City Army Ammunition Plant S ite

The Lake City Army Ammunition Plant (LCAAP) is located on approximately 1,600 ha (3,955
acres) in Jackson County, MO, mostly within the eastern corporate boundary of Independence, MO,
and 37 km (23 mi) east of Kansas City, MO.

LCAAP history.  The LCAAP is an U.S. Army Armament, Munitions, and Chemical Command
ins t allation which manufactures small arms ammunition.  Operations at LCAAP include
manufacturing, storage, test firing, waste treatment, and waste disposal.  

T he LCAAP consists of 33 “areas” that contain approximately 131 suspected or confirmed
contaminated sites or solid waste management units (SWMUs).  The TDS investigations took place
in the Northeast Corner Operable Unit, Area 17. 

LCAAP characteristics.  The LCAAP lies within the Central Lowlands Physiographic Province
near t he boundary between the Osage Plains and the Dissected Till Plains.  This section is
characterized as a plain of low relief with gently rolling topography comprised of broad, shallow
valleys and low-gradient meandering streams.  The surface topography in the vicinity of LCAAP
consists of rolling uplands traversed by broad stream valleys and flood plains of the Missouri River
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Figure 7.  Lake City Army Ammunition Plant, Independence,
MO.

and the Little Blue River.  The former flood plain averages about 3 miles in width in this area, with
a surface elevation of approximately 224 m (735 ft) above sea level.  Elevations on the upland
surface average between 244 and 274 m (800 and 900 ft). 

The north and west portions of LCAAP are flat, characteristic of an alluvial plain.  The south and
east portions of LCAAP are uplands created by headward erosion that exhibit moderate relief with
narrow-crested ridges and 46 to 49 m (150 to 60 ft) of relief from valley floor to ridge crest.  Area
17, within the Northeast Corner Operable Unit, is typical of a ridged area underlaid by uplands
sedimentary rocks.  Depth to bedrock at the oil and solvent pit area was approximately 12 m (40 ft).

Area 17 consists of four specific areas: the current sanitary landfill; the waste, glass, paint and
solvents area; the current pistol range; and the oil and solvent pits area.  The oil and solvent pits area
consists of three closed disposal pits located immediately adjacent to the current sanitary landfill.
Two of the three pits were used for disposal of grease and oil, waste solvents, and waste oils.  The
easternmost pit was used for disposal of demolition waste and domestic refuse.  The western and
central pits were opened in the 1960s and closed in 1979.  The pits occupied an estimated surface
area of 0.23 ha (25,000 sq ft) and reportedly received approximately 283 cu m (10,000 cu ft) of
waste.  The easternmost pit was opened in 1977 and closed in 1979.  Fill thickness of up to 3 m (10
ft) was indicated by a soil boring drilled during the 1990 remedial investigation work.  Closure of
the three pits did not involve the use of an engineered cover system.  Currently, the pits are heavily
vegetated with a soil cover typically less than 0.3 m (1 ft) thick.  Stressed vegetation and small
barren areas at the ground surface have been noted at this site.  The TDS demonstration took place
at the oil and solvent pits area along the gravel road running beside the central pit (Figure 7).

3.4.3 Longhorn Army Ammunition Plant S ite

T he Longhorn Army Ammunition Plant (LHAAP) is located on 3,450 ha (8,523) acres in the
northeast corner of Harrison County near Karnack, TX, approximately 23 km (14 miles) northeast
of Marshall, Texas, and approximately 64 km (40 miles) west of Shreveport, LA.  The LHAAP is
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a government-owned, contractor-operated industrial facility operated under the jurisdiction of the
U.S. Army Industrial Operations Command.

LHAAP history.  Operations at the LHAAP began in 1942 for the production of TNT flake by
M onsanto Chemical Company and continued through August 1945.  From 1952 until 1956,
Universal Match Corporation produced pyrotechnic ammunition such as photoflash bombs,
simulators, hand signals, and 40-mm tracers.  In 1955, Thiokol Corporation began operation of the
Plant 3 area rocket motor facility.  In 1965, production of pyrotechnic and illuminating ammunition
was  re-established.  These operations consisted of compounding pyrotechnic and propellant
mixtures, load, assemble, and pack (LAP) activities that accommodated receipt and shipment of
containerized cargo.  The LHAAP also maintained standby facilities and equipment for mobilization
planning.  The installation has also been responsible for the static firing and elimination of Pershing
I and II rocket motors in compliance with the Intermediate Range Nuclear Force Treaty between the
United States and the former Union of Soviet Socialist Republics. Currently the LHAAP has no
permanent operating contractor.  The plant is now closed and is scheduled to be returned to state
and/or private ownership.

T he LHAAP was placed on the national priority list in 1990.  Fifty sites are included in the
restoration effort: 4 open burning areas; 13 industrial areas; 5 burial pits; 5 sumps/tanks; 4 treatment
plants; 16 storage areas; and 3 landfills.  The current status of the areas ranges from site investigation
to interim remedial action.  Contaminants consist of explosives and VOCs in soil, groundwater, and
surface water.

LHAAP characteristics.  The LHAAP site is characterized by mixed pine-hardwood forests that
cover gently rolling to hilly terrain with an average slope of 3 percent towards the northeast.  Most
of the terrain at LHAAP slopes 3 percent or less, but slopes as steep as 12 percent are common in
the western and northwestern portion of the installation and also along the Harrison Bayou flood
p lain.  Caddo Lake and Goose Prairie Bayou form the northeastern border.  Ground surface
elevations on LHAAP vary from 52 to 102 m (170 to 335 ft) above sea level.  All surface water from
LHAAP drains northeastward into Caddo Lake via four drainage systems: Saunder's Branch,
Harrison Bayou, Central Creek, and Goose Prairie Creek.

The LHAAP is situated on an outcrop of the Wilcox Group, which crops out over a large part of the
eas t ern half of Harrison County.  The Wilcox Group lies beneath more than 99 percent of the
LHAAP site and consists of interbedded sandstones, siltstones, and shales that are variously light
gray, red, brown and/or tan.  Regionally, the Wilcox Group has a maximum thickness of 213 m (700
ft).

Surficial soils consist of medium sandy clays exhibiting plasticity with some zones of higher
plasticity clays to a depth of 1.2 to 3 m (4 to 10 ft) BGS.  Beneath this surficial layer, the soils
typically consist of low plasticity clays and silty and clayey-sands to a depth of at least 18 m (59 ft)
BGS.  These deposits are typical of the Wilcox Group.  Alluvial deposits also occur at LHAAP along
the drainage systems featured across the facility.  Typical deposits include interbedded fine-grained
clays, silts, and sands.

Groundwater generally occurs under unconfined conditions, whether in the alluvial or Wilcox Group
deposits.  Perched and local confining conditions frequently occur within the Wilcox Group deposits
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Figure 8.  Longhorn Army Ammunition Plant, Marshall,
TX.

due t o t he high clay content and highly variable stratigraphy.  The base of the Wilcox Group
water-bearing zone beneath LHAAP is defined by contact of the Wilcox Group with the underlying
Midway Group.  The Midway Group consists predominantly of low permeability clay that yields
little or no water.  The Wilcox Group is considered as the base of fresh water in the area.  The depth
to groundwater across the facility ranges from 0.3 to 21 m (1 to 70 ft) BGS, with depth to
groundwater typically being 3.6 to 5 m (12 to 16 ft).  The regional groundwater flow direction
beneat h the facility is generally towards Caddo Lake but varies by site location.  At the TDS
demonstration location site, ground water was found in thin seams of sand and gravel above zones
of clay.

The TDS demonstration took place in the Plant 3 area rocket motor facility sumps project area
(Figure 8).  The sumps project area consists of 125 underground sumps and 20 waste rack sumps
located throughout the LHAAP production area.  Manufacturing areas at LHAAP were washed down
with water to reduce propellant, explosive, and pyrotechnic (PEP) dusts which would otherwise
collect and pose a safety hazard.  Water deactivates ignition-sensitive compositions.  To dissolve
difficult chemical binders, chlorinated solvents were also utilized in the clean manufacturing areas.
These solvents and PEP compositions were washed into sumps with large volumes of water.  Based
up on previous investigations (Target Environmental Services 1994; USACE Tulsa 1996), VOC
contaminants in the groundwater include TCE (0.010 to 5.0 mg/L), total DCE (0.020 to 2.0 mg/L)
and, tetrachloroethane (around 0.050 mg/L).
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4.0 PERFORMANCE ASSESSMENT

This section provides the results for each demonstration along with an evaluation of the TDS system
with respect to each of the performance objectives listed in Chapter 3.

4.1 CO MPARISON OF TDS SAMPLER TECHNOLOGY WITH CONVENTIONAL
TECHNOLOGY

The TDS production at each of the five demonstration sites is shown in Table 2. 

Table 2.  Summary of Field Sampling at TDS Demonstrations S ites.

Site Stratigraphy TDS in situ ex situ Verification Depth Total Depth, m
Name Penetrations Penetrations Samples Samples Samples m            (ft) m         (ft)

TDS TDS Maximum TDS 
TDS

BRSA 18 18 64 NA 68 10.4 (34) 8.7 (278)

DGCS 5 11 28 24 39 15.8 (52) 122 (400)

CRREL 4 8 37 37 254 18.3 (60) 111 (365)

LCAAP 3 5 16 16 98 4.0 (13) 15.8 (52)

LHAAP 5 8 26 26 173 5.5 (18) 37.5 (123)

The TDS system was designed to provide near real-time screening of VOC contamination at
hazardous waste sites.  During the five ESTCP demonstrations, the TDS system was used to detect
chlorinated solvent and BTEX contamination at depths up to 18.3 m (60 ft) BGS in a wide range of
soil types and soil moisture conditions.  There were 171 in situ TDS samples analyzed in 50 separate
TDS penetrations.  More than 600 verification samples were collected for conventional analysis by
Method 8260B to evaluate the TDS results.  Graphics of the comparisons made for these data are
given in Figures 9 through 12. 

Results from the first two demonstrations at the Bush River Study Area (BRSA) and the Davis
Global Communications Site (DGCS) revealed flaws in both the validation sample collection and
TDS system operation procedures.  Subsequent demonstrations were completed with re-evaluated
TDS system operation and verification test procedures.  For this reason, the data obtained from the
BRSA and the DGCS should not be considered representative of the TDS system's true capabilities.

As stated in Chapter 3, if the correlation coefficient of the linear regression (r ) is in the range of 0.82

to 1.0 and the slope of the regression line is 1.0 ± 0.3, the data is said to strongly agree.  Based upon
the combined statistical comparisons for LCAAP and LHAAP, these data sets can be said to strongly
agree.  The CRREL data set, even with its varied concentrations, had a correlation coefficient of 0.7
and a regression slope of 1.0.  Identification of vinyl chloride soil gas at levels greater than 1 µg/g
is a significant accomplishment.  Because there were so few samples containing BTEX, the TDS was
not adequately tested for those compounds.
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Figure 9.  CRREL Data Comparison.

Closer inspection of the analytical results shows that the predominating VOC at each demonstration
had the strongest agreement between TDS system results and validation results.  At CRREL the
primary VOC contaminant was TCE (r  = 0.7, slope = 1.0) the secondary contaminant was DCE (r2 2

= 0.2, slope = 1.6).  At LCAAP, total DCE (r  = 0.8, slope = 0.8) and vinyl chloride (r  = 0.5, slope2 2

= 1.1) were the major contaminants.  At LHAAP, TCE was the primary VOC (r  = 1.0, slope = 1.1)2

and total DCE  (r  = 0.6, slope = 0.5) was secondary.  In each case the predominant contaminant had2

a higher mass quantitation ion than the secondary contaminant (i.e., TCE 132 m/z, DCE 96 m/z,
vinyl chloride 62 m/z).  The difficulties analyzing total DCE in the presence of TCE are primarily
due to the lack of chromatographic separation.  Without separation the contaminants reach the ion
trap at the same time.  The ion trap breaks the higher mass compound into fragments.  These smaller
fragments can contribute to the signature of the lower mass compounds thereby potentially creating
false positives.  This phenomenon was experienced at LHAAP.

4.1.1 Cold Regions Research and Engineering Laboratory
 
Soil samples were collected from the vadose zone at CRREL. 

Figure 9 shows a comparison between the analysis results of the TDS system in the ex situ model
and the validation analysis results.  There were no false positives or false negatives.  The poor total
DCE correlation is possibly the result of the extreme heterogeneity of the VOC distribution
discovered through high-density verification sample collection (Figure 10). 

Excessive push rod side wall friction prevented the TDS probe from advancing deeper than 18.3 m
(60 ft) BGS.  These types of limitations are not unique to the TDS system.  In instances when the
sample chamber did not seem to fill with soil, the sampler was closed and pushed another 0.2 to 0.3
m (6 to 12 in.) and the sampling process continued.
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Figure 10.  Changes in TCE Concentrations at CRREL Relative
to Soil Type and Depth. 

Figure 11.  LCAAP Data Comparison.

4.1.2 Lake City Army Ammunition Plant

In situ analysis was performed in the vadose zone adjacent to an oil and solvent pit.  VOC gases were
the most probable source of contamination.  Figure 11 shows a comparison between the analysis
results of the TDS system in the ex situ mode and the validation analysis results.
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Figure 12.  LHAAP Data Comparison.

The TDS system detected total DCE in 12 of the 16 samples and no false positives or false negatives
were found based on a comparison with the validation analysis results.  Toluene was detected in
three in situ TDS analysis from a single penetration and was confirmed in both the ex situ TDS and
validation sample analysis.  Tetrachloroethene (PCE) was detected in verification samples from four
of the penetrations, but was not detected by the TDS system in either the in situ or the ex situ
analysis modes.

4.1.3 Longhorn Army Ammunition Plant

In situ analysis was performed in the saturated and unsaturated bedded layers of silty sands and clay.
Volatile organic compounds found at LHAAP included TCE and total DCE.  Figure 12 shows a
comparison between the analysis results of the TDS system in the ex situ mode and the validation
analy s is  results.  The analysis of verification samples revealed a false positive for total DCE.
However, the high concentration of TCE was isolated as the cause of the total DCE response.

4.2 SAMPLE MATRIX EFFECTS ON THE TDS SYSTEM

The TDS system was deployed successfully in five geographic locations, in a variety of soil types
ranging from sands to silts and clays.  However, it was found that clay soil and soils with high
moisture content impeded desorption of the contaminant from the in situ sample.  This impediment
was quantified by completing an in situ analysis of a soil sample by the TDS system.  After the in
situ analysis was complete, the TDS probe was then brought to the surface, the desorbed soil sample
was ejected from the TDS probe, and collected in methanol for laboratory analysis.  The analysis
results are presented in Table 3.
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Table 3.  Desorption Efficiencies by Matrix and Contaminant.

Soil Type
DVTD10-52 CRTD01-40-2

Clay Silt
Moisture Content (%) 21 24
TCE (µg/g) in situ 0.079 31.4

offsite laboratory 0.029 0.003
desorption efficiency 73.1% 99.9%

PCE (µg/g) in situ 0.283 NA
offsite laboratory 0.150 NA
desorption efficiency 65.4%

DCE (µg/g) in situ NA 1.16
offsite laboratory NA 0.341
desorption efficiency 77.3%

Since this sample was collected in situ and subjected to extreme temperature, it should not contain
VOCs.  The fact that the soil samples from the clay soil have some residual VOCs indicates a less
than ideal desorption efficiency.  The largest difference is noted in the TCE analysis results, the clay
sample having significantly less recovery, particularly given the large difference in initial
concentrations (0.079 µg/g for clay versus 31.4 µg/g for silt).

These field data support laboratory studies that were done to evaluate the effects of soil moisture
content on VOC desportion efficiencies (Myers et al. 1995).  These controlled studies resulted in the
same conclusion that clay soils and saturated soils had the lowest desorption efficiencies.

To improve analyte recovery and compensate for the reduced desorption efficiencies, temperatures
and desorption times were increased as the demonstration progressed. 

Soil type can also affect the mechanical functioning of the TDS probe.  Gritty residue from sands
can prevent the TDS probe actuator rod from closing, increase the wear and tear on o-rings, and
increase the frequency of system maintenance.  Densely packed clays can swell after entering the
sample chamber, drying into a hardened plug that can be difficult to eject.  During the course of the
five demonstrations 20 percent of the 175 TDS samples either failed to eject below ground or the
TDS failed to close.  Most of these samples were taken in densely packed clays or coarse sand.  A
resizing of the stainless steel sleeve surrounding the sample chamber is expected for most of these
occurrences.

4.3 CONTAMINANT CARRYOVER

In general, purging the TDS system for 5 to 10 minutes after sample ejection eliminated carryover.
This was confirmed by analyzing the purge gas.  However, during the CRREL demonstration, a TDS
in situ analysis was performed to evaluate the effects of a highly contaminated sample.
Concentrations in the sample selected were measured at 406 µg/g of TCE and 30.5 µg/g of total
DCE.  Figure 13 is a graphic representation of the system recovery rates that can be expected.  After
purging the TDS system for 50 minutes, residual concentrations inside the system were 0.90 µg/g
for TCE and 0.06 µg/g for total DCE.  While this represents a 99.8 percent decrease in contaminant
carry -over, the TDS sampler would have to be purged overnight or removed from service and
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Figure 13.  TDS System Recovery after Analysis of a Highly
Contaminated Sample.

cleaned t o achieve the 0.05 µg/g detection limit typically used.  However, these carry-over
contaminant concentrations would not prohibit using the TDS system for screening purposes at sites
with high levels of VOC contamination. 

4.4 QUALITY ASSURANCE ASSESSMENT

Each analysis, whether performed on-site by the TDS system or off-site in an analytical laboratory,
is checked by the analysis of quality control (QC) check samples.

4.4.1 TDS System

Quality control check samples used on site for the TDS system include: 

a. Initial calibration standards to generate the calibration curve for each target VOC. 

b. Calibration checks at midday and at the end of the day. 

c. Performance evaluation (PE) spikes for the target VOCs each morning.

d. System blanks analyzed each morning and following each TDS system analysis.  

Correlation coefficients for the TDS system daily calibration curves used to quantitate the TDS
analysis results were 0.97 or better.  If the midday calibration check fell above 20 percent, the
calibration was repeated before sample analysis resumed.  Samples with VOC concentrations outside
the range of the standard curve were diluted and reanalyzed.  Method blanks were within acceptable
limits and PE spikes for the target VOCs fell within a range of 70 to 130 percent.  Based on the QC
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checks and the quality of the data produced, the TDS system was judged to be acceptable for
continued field analysis.  

The results of system blank analysis between each TDS analysis event were significantly less than
the reporting limit.  Time constraints did not allow field operators to wait to ensure every blank was
clean before proceeding to the next sample depth.  However, if the calculated VOC concentration
was less than 10 µg/g in the previous sample, the system was assumed to be clean.

Recovery from daily QC spikes was found to be dependent upon the ambient temperature during the
field demonstration and upon the vapor pressure of the target VOC.  The spikes were made daily in
a gasbag from pure VOC standards.  Recoveries exceeding 30 percent for DCE were rare at LCAAP
and LHAAP where morning temperatures were near 27 �C.  However, the average recoveries at
LCAAP and LHAAP were 57 and 65 percent, respectively.  Spike recoveries averaged 80 percent
at CRREL where morning temperatures were near 18 �C.  Initial TDS performance was verified in
laboratory studies using spike recoveries (Myers et al. 1995).  Hence, it is unlikely that the
field-prepared daily spike recoveries reflect actual TDS performance.  The performance of the TDS
system can be controlled more accurately by adequate system maintenance, daily leak checks, and
monitoring gas flow rates during sampling. 

4.4.2 EPA Method 8260B

Quality Control check samples associated with the EPA Method 8260B verification samples include:

a. Initial calibration standards to generate the calibration curve for each target VOC. 

b. Daily checks of the ITMS calibration.

c. Method blanks, method spikes, method duplicates

d. PE checks, and surrogate spikes.  

In addit ion, 5 percent of the verification samples sent offsite were split and sent to a second
laboratory for confirmation analysis.  Field duplicates were taken, but due to soil and VOC
heterogeneity, they could not always be considered true duplicates.  Trip blanks were sent with each
shipment of samples for off site laboratory analysis. 

Quality Control sample analysis results associated with EPA Method 8260B were within laboratory
prescribed limits.  The GC/MS separates three VOCs that share the same mass quantitation ion:
1,1-DCE; cis-DCE; and trans-DCE.  Results from EPA Method 8260B for these three VOCs were
summed into a total DCE value for comparison to the TDS system results. 

4.5 TDS METHOD DETECTION LIMITS

Detection limits for the TDS system were established in the laboratory prior to the demonstration.
Method detection limits (MDL) were determined according to 40 CFR Part 136.  Reporting limits
are approximately 0.025 to 0.050 µg/g, depending on the number and concentrations of VOCs in the
sample.  When a TDS sample analysis identified two or more VOCs at concentrations greater than
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an order of magnitude apart, the sample was diluted and reanalyzed to bring the major contaminant
into calibration range.  This meant that the VOC of lesser concentration was diluted out of analysis
detection range.  Loss of analytical information due to elevated detection limits is not unique to the
TDS system.  This was a continuing problem with the offsite laboratory analysis as well.  For
comp arison purposes, analytical results with elevated detection limits were considered to be
inconclusive and were omitted from the statistical comparison. 
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5.0 COST ASSESSMENT

Determining cost performance for site characterization technologies is difficult, primarily because
the point at which characterization is complete is not easily defined.  The general approach is to
compare relative cost on a per sample basis (for example see the Federal remedial round table's Field
Samp ling and Analysis Technologies Matrix at www.frtr.gov).  However, this per sample
comparison often means that characterization techniques, which complete analysis onsite are more
expensive because of the economy of scale enjoyed by offsite laboratories.  Time is the commodity
saved by using in situ or onsite characterization tools.  If properly used, not only are sample analysis
results immediately available, but decisions that allow complete site characterization in one field
deployment can be made.

5.1 TDS SAMPLER COST PERFORMANCE

The costs associated with TDS system operation include equipment costs for the SCAPS vehicle,
expendable supplies, crew travel expenses, and labor.  The cost for SCAPS field operations are well
documented from previous work performed by the ERDC SCAPS and from work performed over
the past four years by the three USACE District SCAPS vehicles.  The average cost of operating a
SCAPS truck and four-person crew in the field during production work, regardless of sensor type,
is approximately $4,500 per day. 

The cost per TDS analysis (unit cost) depends on the number of TDS samples taken in a single day.
The number of samples achievable in a single day depends upon several factors.  The major factor
is the depth of penetration and frequency of sampling along the decent as prescribed in the sampling
plan.  Secondarily, normal CPT limitations such as on-site mobility and subsurface geology impact
the amount of work achieved in one day.  The majority of the time associated with a TDS unit
operation is the time required to push the TDS to sampling depth, desorb the sample, purge the
system (approximately 40 minutes per sample during the demonstration), and retract the push pipe
after the TDS analysis is complete.  The deeper the penetration depth required at a particular site,
the lower the production rate and the higher the unit cost.  However, it should be noted the same unit
cost relationship exists for conventional drilling and soil sampling techniques.  The TDS also has
t he capability to conduct multiple in situ sample analyses at discrete depths during a single
penetration event.

Production rates obtained during this demonstration were lower than rates expected during actual
production work, due in part, to the 100 percent verification of each TDS analysis location.  The time
required for verification sampling approximately doubled the time required at each TDS analysis
location.

5.2 COST COMPARISON OF THE TDS SYSTEM TO CONVENTIONAL AND OTHER
TECHNOLOGIES

Costs associated with conventional drill rig/soil sampling are site dependent.   The costs for
conventional technologies were obtained from managers at each demonstration site.  These costs
were not  always broken out in ways that could be directly comparable to the TDS sampling
technology.  For comparison purposes, costs associated with three technologies (SCAPS TDS onsite
analysis, conventional drilling with offsite analysis, and direct push with offsite analysis) were
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itemized for a similar site characterization project consisting of ten 30-ft pushes and the analysis of
60 samples for VOCs.  A comparison of each technology is summarized in Table 4.

When compared on a unit cost basis, the SCAPS TDS system costs fall midway between direct push
technologies with offsite analysis and conventional drilling with offsite analysis.  The TDS system
does have the advantage of near real-time turnaround, however.  During several demonstrations,
immediate sample turnaround enabled the SCAPS crew to take additional samples to fill in gaps in
the data set.  Using conventional technology, the drill rig and sampling crew would have had to be
re-mobilized.  This alone is a great cost savings that cannot be factored into costs on a per unit basis.

Table 4.  Comparison of Unit Costs for the TDS Sampler and Conventional Technologies.

SCAPS TDS In Situ stem auger, split spoon, and Direct Push and 
Measurement offsite  analysis) O ffsite  Analysis

Conventional Drilling (hollow

10 Pushes to 30 ft Cost 10 Borings to 30 ft Cost 10 Borings to 30 ft Cost
(60 soil samples for (60 soil samples
TPH analysis) for TPH analysis)

6 Field Days @ $27,000 Drilling for 300 ft $15,000 Drilling for 300 ft $3,000
$4,500/day @ $50/ft @ $10/ft
Analysis for 60 Included in TVOC Analysis for $12,000 TVOC Analysis $12,000
samples Cost 60 samples @ for 60 samples @

$200/sample $200/sample
Geotechnical Included in Geotechnical $500 Geotechnical $500
Data for 1 Cost Analysis for 5 Analysis for 5
sample/in. samples @ samples @

$100/sample $100/sample
1 Waste Drum @ $40 28 Waste Drums @ $1,120 1 Waste Drum @ $40
$40/drum $40/drum $40/drum
Decon Water $1,000 Decon Water $1,000 Decon Water $1,000
Testing Testing Testing
Waste Soil $0 Waste Soil Testing $3,000 Waste Soil Testing $0
Testing
Waste Soil $0 (none Waste Soil Disposal $2,000 Waste Soil $0 (none
Disposal produced) for 20 Drums @ Disposal produced)

$100/drum
Decon Water $100 Decon Water $800 Decon Water $100
Disposal for 1 Disposal for 8 Disposal for 1
Drums @ Drums @ Drum @
$100/drum $100/drum $100/drum

Geologist for 40 hr $2,400
@ $60/hr

4 Man Crew Included in Technician for 40 hr $1,600 Geologist for 24 $1,440
Cost @ $40/hr hr @ $60/hr

TOTAL TOTAL TOTAL
Per Sample Cost $28,140 Per Sample Cost for $39,420 Per Sample Cost $18,080
for 60 Samples 60 Samples for 60 Samples
Note: To obtain meters, multiply feet by 0.3048.
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6.0 IMPLEMENTATION ISSUES

Based on the results of the last three TDS technology demonstrations, the TDS system has been
t rans it ioned for onsite screening.  In 1998, the technology was made available to the USACE
Dis t rict s  operating SCAPS vehicles. Two TDS probes are available to Tri-Service and U.S.
government agency use.

While there has been limited use of TDS technology by the user community for onsite screening, the
TDS technology's ability to take discrete snapshots of vadose zone VOC contamination may be an
advantage for use at sites utilizing monitored natural attenuation (MNA) for remediation.   Under
the right scenario, this technology could be used to provide cost-effective, less-intrusive analytical
snapshots of subsurface VOC natural attenuation.  

6.1 REGULATORY ISSUES

One of the objectives of this demonstration was to gather data of a quality to be used in pursuing
regulatory acceptance of the TDS system at State and Federal levels.  Previous experience in the
Tri-Service SCAPS Program with regulatory acceptance of the Laser induced Fluorescence (LIF)
sensor demonstrated that there is no clear path to regulatory acceptance of innovative environmental
technologies (Lieberman 1996).  Therefore, a multi-pathed approach to State and Federal regulatory
acceptance was initiated early in the demonstration.

In cooperation with Dr. Marc Wise, U.S. Department of Energy Oak Ridge National Laboratory, and
Dr. William M. Davis, U.S. Army Engineer Research and Development Center, ERDC, the TDS
system was included with other sample inlet devices in a draft DSITMS method (Wise et al. 1997)
submitted to U.S. EPA Office of Solid and Hazardous Waste (OSHW).  The OSHW designated this
document Draft Method 8265.  It is currently under review for inclusion in the next revision of “Test
Methods for Evaluating Solid and Hazardous Waste, SW 846" (U.S. EPA 1995).  Drs. Wise and
Davis defended the method before the Organic Methods Working Group at the annual methods
review meeting in July 1997. 

The TDS system is under review by the California Environmental Protection Agency, Department
of Toxic Substance Control (Cal EPA-DTSC) under the state Hazardous Waste Environmental
Technology Certification Program.  The evaluation process includes high-level data validation of
both the TDS data sets and laboratory validation data sets.  In addition, representatives of the Cal
EPA-DTSC reviewed the DGCS Demonstration Plan and provided comments before the
demonstration took place.  Cal EPA-DTSC personnel observed the field operation of the TDS system
at the DGCS and at LHAAP.  The agreement for evaluation was initiated in 1998 and TDS data sets
are currently under review by that office.

6.2 LESSONS LEARNED

The most significant lessons learned in these demonstrations relate to an increased understanding
of subsurface heterogeneity and its relationship to VOC distribution within the vadose and capillary
zones and the complexity of attempting to statistically validate a technology associated with so many
variables.  The SCAPS TDS system, along with the more traditional technology utilized for
validation, is only capable of taking a snapshot of the subsurface at localized points.  Attempts to
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es t ablish linear correlation between two samples taken 12 in. apart horizontally is not always
possible. Researchers should collect as much data as possible at each demonstration site to obtain
a good subsurface profile of both the geology and the extent of contamination.  Sufficient
verification data, collected from multiple sites, must be obtained before true statistical patterns can
be recognized. 
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