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Abstract 
a. Objectives: The overarching goal of this research is to develop and demonstrate a 
comprehensive approach for field characterization of DNAPL source zones which quantifies the 
key features that control plume response. Here the intent is to integrate targeted (local-scale) in 
situ tests with transect-based observations of downstream contaminant flux or concentration and 
information on subsurface geologic variability. To address its primary goal, the research 
encompasses the following specific objectives: (1) identification of the most information rich 
metrics for linking NAPL architecture to plume response; (2) development and refinement of in 
situ test methods and modeling tools that can be used to quantify identified metrics in targeted 
regions of the source zone; (3) integration of these metrics and tools with current machine 
learning characterization methods for an overall source zone assessment protocol; and (4) 
development of simplified models for prediction of plume response. 

b. Technical approach: The research approach integrates batch, column and aquifer cell 
experiments with mathematical modeling and data processing tools to identify and quantify 
features of the DNAPL architecture controlling down gradient plume response. 

c. Results: A comprehensive set of experiments and numerical simulations was undertaken to 
quantify important source zone metrics that control down gradient plume response and to create 
observation data for subsequent characterization modeling tool development.  A large library of 
three dimensional (3D) field-scale DNAPL source zone scenarios was created to encompass a 
realistic range of release conditions and permeability distributions.  Stochastic permeability 
fields were generated using two distinct models: sequential Gaussian simulation and Markov-
chain transitional probability.  Simulations confirmed the strong influence of source zone 
architecture (SZA) (e.g., pool fraction) on long-term dissolution behavior. Modeling results 
indicated that the DNAPL release rate, capillary pressure parameters, and the distribution of 
persistent low permeability layers were the most significant factors influencing DNAPL source 
zone metrics and down-gradient plume response. For highly heterogeneous permeability fields, 
results suggest that analyses must be conducted in 3D to provide reliable predictions. 
Heterogeneous source zone aquifer cell experiments confirmed the mathematical model results, 
demonstrating the strong influence of SZA on dissolution behavior. Experiments with discrete 
lenses, as well as with more realistic stochastic permeability fields modeled using Markov-Chain 
transitional probability theory, were observed to give rise to two-stage mass flux behavior, 
attributed to persistent pools. Comparisons between mathematical model predictions and 
laboratory measurements revealed the importance of considering measurement scale in defining 
local saturations and average source zone metrics.  A consistent methodology was recommended 
and demonstrated to determine saturation distributions from aquifer cell light transmission data.  

The second task of the project dealt with the estimation of local saturation and SZA metrics 
using partitioning tracer tests. This task was completed through the coupling of mathematical 
modeling with batch, column and aquifer cell experiments.  Analytical models for push-pull 
tracer tests analysis typically assume linear equilibrium partitioning, a uniform NAPL saturation, 
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and a homogenous medium. The reasonableness of each of these assumptions was investigated.  
Application of equilibrium partitioning behavior failed to reproduce column experimental 
observations.  A linear driving force model, however, was shown to provide excellent predictions. 
Diffusion limitations within the NAPL and surface accumulation at the NAPL interface were 
found negligible for realistic source zone conditions.  Tracer test interpretation was also shown 
to be highly sensitive to the tracer water/NAPL partitioning coefficient, with application of 
common group contribution methods for partitioning coefficient estimation potentially leading to 
underestimation of NAPL saturations. Batch measurements for representative tracers 
demonstrated that partitioning behavior is nonlinear but may be approximated with a linear 
function below specified concentrations.  Application of kinetic partitioning with the assumption 
of a uniform NAPL saturation was shown to provide a reasonable match to recovery curves 
obtained in heterogeneous 2-D aquifer cell experiments.  An empirical approach was developed 
to interpret recovery curves, offering potential for identifying the distance to and the fraction of 
the vertical domain occupied by NAPL.  Development and application of a coupled adjoint 
sensitivity method to the transport equations suggests the promise of this method for estimation 
of total DNAPL mass, average saturation, and distance of DNAPL from the push-pull well from 
concentration breakthrough observations. 

In the third project task, machine learning methods were developed and used to successfully 
estimate SZA metrics (mass of pools, mass of ganglia, and pool fraction) from observations of 
plume concentrations in a down gradient transect. The library of source zone realizations created 
in task I was used to train and test the models.  A fundamentally new machine learning 
processing method was developed employing ideas from manifold learning and embedding for 
estimating each metric individually. This approach was also extended using ideas from multi-
task learning to determine the three metrics jointly based on enforcing a physical relationship 
among the three. Strong performance can be obtained both with densely sampled data as well as 
when a more limited sampling of transect concentration data are available, as is the case with 
typical laboratory experimental field applications. 

In task four, an improved upscaled model was developed to predict flux averaged concentration 
evolution down gradient of DNAPL source zones.  Inputs to the model include the initial pool 
fraction; the initial flux-averaged concentration; and the initial fraction of that flux eluting from 
pool zones. This enhanced model improved on the upscaled model developed under previous 
SERDP sponsorship by enabling the prediction of two-stage mass recovery behavior that may be 
observed in the field, especially at “aged” sites.  An upscaled model was also developed and 
validated for application for the interpretation of two-well and push pull partitioning tracer tests. 
The model incorporates rate-limited partitioning though an effective mass transfer coefficient 
correlation that depends on four SZA parameters: the vertical spread of the DNAPL; the 
injection/extraction rate; pool fraction; and average DNAPL saturation. The application of the 
upscaled model was demonstrated for simulations of interwell and push pull tracer tests, 
producing accurate estimates of average NAPL saturation (DNAPL mass).   
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d. Benefits: The research described herein provides an improved understanding of the coupling 
of down gradient plume response to DNAPL architecture and highlights the importance of 
measurement scale and mass transfer limitations to source zone characterization.  The suite of 
data processing techniques and upscaled models developed in this research offers site managers 
specific tools that can be employed for source zone characterization and remedy screening.  
These tools include methods for the design and evaluation of localized push pull partitioning 
tracer tests; machine learning techniques for the estimation of DNAPL source zone metrics from 
plume transect concentration observations; and simplified screening models that incorporate 
these metrics to predict plume evolution and persistence. 

 

Objective 
The overarching goal of this research is to develop and demonstrate a comprehensive approach 
for field characterization of DNAPL source zones which quantifies the key features that control 
plume response. Here the intent is to integrate targeted (local-scale) in situ tests with transect-
based observations of downstream contaminant flux or concentration and information on 
subsurface geologic variability. To address its primary goal, the research encompasses the 
following specific objectives: (1) identification of the most information rich metrics for linking 
NAPL architecture to plume response; (2) development and refinement of in situ test methods 
and modeling tools that can be used to quantify identified metrics in targeted regions of the 
source zone; (3) integration of these metrics and tools with current machine learning 
characterization methods for an overall source zone assessment protocol; and (4) development of 
simplified models for prediction of plume response. 
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I. Background 
Widespread use of chlorinated ethenes, such as trichloroethene (TCE) and tetrachloroethene 
(PCE), in dry cleaning and degreasing operations has led to groundwater contamination at 
thousands of industrial facilities and governmental installations. The majority of contaminant 
plumes at such sites emanate from aquifer regions containing dense nonaqueous phase liquid 
(DNAPL). DNAPL source zones, comprised of immobile ganglia and/or pools of free-product, 
can persist in the subsurface for decades or centuries, due to a combination of low aqueous-phase 
solubility and rate-limited dissolution. Although significant effort has been directed toward 
improving methods for recovering DNAPL from the subsurface, it is now generally accepted that 
no single technology will result in complete mass removal. Thus, recent research has focused on 
quantifying the benefits and limitations of partial mass removal.  

Further advancement in the management of DNAPL source zones will require a fundamental and 
comprehensive understanding of the relationship between source zone mass distribution, mass 
depletion, and dissolved-phase plume response.  A number of source zone features are thought to 
play an important role in the efficacy of source zone remediation and long-term plume behavior.  
In a recent National Research Council (NRC) study, these features were classified into four 
broad categories: (i) composition and presence of the NAPL, (ii) hydrogeology, (iii) source zone 
geometry and dissolution, and (iv) source zone biogeochemistry (NRC 2005).  Multi-component 
NAPLs are common at field sites and can lead to preferential dissolution, resulting in both 
temporal and spatial changes of the dissolved-phase concentration signals evaluated during 
source zone characterization and assessment. Physical-chemical properties of the NAPL and 
subsurface heterogeneity have been shown to strongly impact the infiltration and final 
distribution of NAPLs within the subsurface (Mayer and Hassanizadeh 2005; Rathfelder et al. 
2003; Totten et al. 2007). Experimental (e.g., Suchomel and Pennell (2006)) and numerical 
modeling studies have confirmed that even minor changes in subsurface characteristics (e.g., 
hydraulic conductivity distribution) can result in substantial changes to commonly employed 
metrics, such as the maximum organic saturation or the organic saturation spatial moments.  
Thus, NAPL properties, release characteristics and subsurface hydrogeology largely govern the 
resulting SZA (i.e., local scale DNAPL distribution) observed at field sites (Lemke et al. 2004a; 
Lemke et al. 2004b).   

Previous studies have revealed that there is a strong link between SZA and down gradient plume 
response to partial mass removal. In a prior SERDP project (Abriola et al. 2008), we developed 
the ganglia-to-pool (GTP) ratio to describe the NAPL distribution within the source zone (Christ 
et al. 2005; Lemke and Abriola 2006), and later linked the GTP ratio to plume responses using 
upscaling methods (Christ et al. 2006).  Experimental studies conducted in laboratory-scale 
aquifer cells containing a PCE-NAPL source zone demonstrated the strong relationship between 
reductions in mass discharge and the initial GTP ratio (Suchomel and Pennell 2006).  For 
example, in ganglia-dominated source zones (GTP ratio > 1) greater than 70% NAPL mass 
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removal was required before reductions in plume concentrations were observed, while in pool-
dominated systems (GTP ratio <1) the correlation between mass removal and mass discharge 
reduction approached a 1:1 relationship.  While this metric has been demonstrated useful in the 
assessment and prediction of system behavior in simulated and laboratory experiments, no 
general guidance exists for its quantification in practice, nor is it clear that the GTP ratio is the 
most appropriate parameter for prediction of long term plume response to mass removal in the 
field. Thus, there is a clear need for systematic development and assessment of alternative 
metrics to quantify DNAPL architecture based upon field-observable parameters.  

While a number of source zone characterization technologies are currently available, most 
require extensive sampling and produce data that are meaningful only on the scale of the 
measurement. For example, partitioning interwell tracer tests (PITTs) provide estimates of 
NAPL saturations which are average values over the flow path. Thus, a high spatial sampling 
density (both horizontal and vertical) is required to delineate the distribution of DNAPL within a 
source zone.  Previous PITT studies have explored stochastic-based (James et al., 1997, 2000; 
Zhang and Graham, 2001) and streamline-based (Datta-Gupta et al., 2002, Jawitz et al., 2003) 
inverse modeling techniques to infer the SZA. However, applicability of these methods may 
ultimately be limited by the high cost of conducting high-resolution PITTs over the entire source 
zone. Furthermore, it is not clear that a distribution of volume averaged NAPL saturations will 
be meaningful in predicting long term plume response. Thus, the most critical knowledge gap 
that currently limits the advancement of source zone characterization is the need to develop 
detailed knowledge of DNAPL architecture.  

Over the course of previous SERDP research (Project ER-1293), it became clear that features of 
a DNAPL distribution, such as GTP ratio, may be of greater importance for source zone remedy 
selection and analysis of technical feasibility and more easily estimated in practice than the 
precise spatial distribution of the DNAPL saturations. Thus, this research was designed to 
develop a comprehensive approach to field characterization of the key features of DNAPL 
source zones that control plume response. The research undertaken was designed to identify the 
most information rich metrics for characterizing DNAPL architecture and to develop test 
methods for metric quantification. The developed characterization protocol will integrate 
targeted (local-scale) in situ tests with transect-based observations of downstream contaminant 
flux or concentration and information on subsurface geologic variability. The research approach 
couples a matrix of batch, column, and aquifer cell experiments with mathematical modeling and 
processing tools to develop and quantify key architectural metrics. Results of the proposed 
research are also intended to advance understanding of plume response to SZA and alterations to 
architecture resulting from mass depletion. 
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II. Materials and Methods 
The research plan is organized around four tasks: (I) Data generation for metric identification 
and protocol evaluation; (II) Refinement of in-source push-pull tests; (III) Processing methods 
for identification of source zone features; and (IV) Development of simplified modeling tools; 
Methods and materials employed for each task are described below. 

II.1. Data Generation for Metric Identification and Protocol Evaluation 

II.1.1. Introduction  
While the ganglia-to-pool ratio (GTP) has been shown to be useful for estimating plume 
responses to source zone mass removal, it is not necessarily the most appropriate metric for 
source zone characterization. Therefore, one goal of this task was to develop additional 
quantifiable metrics, and to evaluate their utility and limitations through a combination of 
experimental and mathematical modeling studies. Research activities focused on the first three 
categories of source zone features described in the NRC (2005) study; (a) NAPL composition, (b) 
subsurface lithology (heterogeneity), and (c) source zone geometry and dissolution. Laboratory-
scale aquifer cell experiments were coupled with multi-dimensional, multi-phase numerical 
modeling to identify and evaluate source zone attributes and corresponding metrics that govern 
down-gradient plume evolution.  Also as part of this work, aquifer cell studies were conducted to 
develop a data base of realizations to demonstrate the effects of DNAPL SZA, specifically 
saturation distribution and NAPL composition, on down-gradient plume concentrations as a 
function of source depletion.  Mass depletion was achieved through NAPL dissolution under 
natural gradient conditions and active source zone treatment using surfactant flushing, in which 
surfactants were selected to minimize changes in the source zone DNAPL architecture. Single-
component (TCE or PCE) and mixed DNAPLs (TCE+PCE) were utilized in batch and aquifer 
cell experiments. The experimental data obtained from the aquifer cell studies were used to 
validate and refine numerical simulators, and results obtained from the aquifer cell studies and 
model simulations were used to provide data for the identification and evaluation of existing 
(e.g., GTP ratio) and other source zone metrics and modeling tools in Tasks III and IV. 

II.1.2. Batch and Aquifer Cell Experiments 

II.1.2.1. Introduction to Dissolution and Micellar Solubilization of Mixed NAPLs 
When utilizing enhanced dissolution to achieve aquifer remediation, either as a standalone 
treatment technique or as a part of a treatment train, an understanding of the relationship between 
NAPL composition and dissolution is required to maximize the efficiency of remediation efforts. 
While most research related to surfactant enhanced source zone remediation has focused on the 
solubilization behavior of pure organic liquids (Diallo et al. 1994, Jafvert et al. 1994, 
Dwarakanath et al. 1999, Taylor et al. 2001), the NAPL present at contaminated sites often 
consists of a number of different components, including grease, stabilizing agents, fuels and 
various different solvents (Jackson and Dwarakanath 1999, McCray et al. 2000, Moran et al. 
2007).  Therefore, a detailed understanding of the contribution of each component in these 
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mixtures to solubilization behavior is required to accurately predict mass removal and plume 
response. Traditionally, estimates of mass removal resulting from enhanced solubility have 
assumed that micellar solubilization behaves in a manner similar to aqueous NAPL dissolution, 
where structurally similar compounds follow a Raoult’s Law convention.  This ideal behavior is 
based on the assumption that the equilibrium solubility (Cw,sol) of a NAPL constituent in water is 
equal to the product of mole fraction (xi) of the constituent in the organic phase and the aqueous 
solubility (Cw,aq. sol) of the pure NAPL constituent; which can be written as Cw,sol = Cw, aq. sol × xi.  

Although Raoult’s law convention has been successfully used to describe the solubility of 
hydrophobic organic compounds in solutions of cyclic oligosaccharides, cyclodextrin (Carroll 
and Brusseau 2009), this may not be the case in micellar solutions. For example, Nagarajan et al. 
(1984) examined the solubility of benzene in aqueous solutions of sodium dodecyl sulfate (SDS) 
and cetyltrimethylammonium chloride (CTAC) in mixtures of benzene and hexane. The authors 
observed a synergistic effect on the solubility of hexane, where the molar solubilization ratio of 
hexane initially increased when small amounts of benzene were present in the organic phase.  
These results were verified by Chaiko et al. (1984), who measured the solubilization from 
mixtures of various aliphatic and aromatic hydrocarbons in a number of different surfactants. 
The selective solubilization behavior observed in both studies was attributed to the different 
locus of solubilization of the two components. The more polar benzene was hypothesized to 
partition within both the inner core and outer palisade layer of the micelle, increasing the 
hydrophobic region within the micelle, subsequently creating a larger microenvironment for the 
more non-polar compound, in this case the aliphatic hydrocarbons. Only a limited number of 
studies have investigated the micellar enhanced solubility of organic compounds relevant from 
an environmental restoration perspective, and these have mainly been limited to polyaromatic 
hydrocarbons, including naphthalene, phenanthrene, fluoranthene and pyrene (Prak and Pritchard 
2002, Bernardez and Ghoshal 2004). The results from these studies were not as conclusive as 
those previously mentioned, and the solubilization behavior was found to be linear for certain 
combinations of PAHs, and not for others. More recent studies using 1H nuclear magnetic 
resonance (NMR) spectroscopy suggest that the locus of solubilization is not restricted to the 
core of the micelle alone (Bernardez 2008). To investigate the solubility enhancement from 
mixtures of aromatic compounds, McCray et al. (2001) measured the micellar solubilization of 
toluene, ethylbenzene and butylbenzene in a biosurfactant (dirhamnolipid). The authors found 
that the more hydrophobic compounds were solubilized to a greater extent than predicted using a 
Raoult’s Law convention, while the solubilities of more polar compounds were under-predicted. 
These results suggest that the more hydrophobic compounds have a greater affinity for uptake in 
the micelle core. 

II.1.2.2.  Batch Experiments 
Due to the prevalence of multicomponent DNAPLs at contaminated sites, the objective of this 
study was to determine the solubilization behavior of TCE/PCE and decane/dodecane mixtures 
in surfactants that are commonly used for subsurface remediation. A series of batch experiments 
was completed to evaluate both the equilibrium aqueous dissolution and micellar solubilization 
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of mixed NAPLs over a range of mole fractions. The purpose of these experiments was to 
determine if micellar solubilization followed the Raoult’s Law convention, where the solubility 
of individual NAPL constituents is equal to the mole fraction each constituent in the NAPL times 
the aqueous solubility of the pure constituent (Schwarzenbach et al. 2003). A summary of the 
organic liquid mixtures and surfactants evaluated in these experiments is provided in Table 
M.1.1.  

Table M.1.1. Range of organic liquid phase compositions and surfactant concentrations used to 
evaluate the applicability of Raoult’s law to describe micellar solubilization of multicomponent 
NAPLs 

NAPL 

Mole 
Fraction 
Range 

Tween 80 
Conc.     

(% wt.) 
Aerosol MA®-80I 

Formulation 

TCE + PCE 0-1.0 0-5 3% AMA-80I + 8% (wt.) 2-
proponal + 6% (wt.) NaCl 

Decane + 
Dodecane 0-1.0 0.5-5 NA 

Decane + PCE 0.5 0-5 NA 

 

All organic solvents and reagents (minimum ACS grade) were used as received. Trichloroethene 
(TCE), 2-proponal, decane, dodecane, calcium chloride (CaCl2) dehydrate and sodium chloride 
(NaCl) were obtained from Fisher Scientific (Fairlawn, NJ).  Tetrachloroethene (PCE) was 
purchased from Sigma Aldrich (St. Louis, MO). Polyoxyethylene (POE) (20) sorbitan 
monooleate (Tween 80) was purchased from Uniqema (Paterson NJ; Lot # 2398A). Tween 80 
has an average molecular weight, critical micelle concentration (CMC) and hydrophile-lipophile 
balance (HLB) of 1310 g/mol, 35 mg/L and 15.0, respectively (Shiau et al. 1994). Sodium 
dihexyl sulfosuccinate (Aerosol MA-80I), which has an average molecular weight of 388 g/mol 
and a CMC 1200 mg/L (Dwarakanath et al. 1999), was used as received from Ctyec Inc. 
(Woodland Park, NJ; Lot # SU3121103).  All aqueous solutions were prepared in deionized 
water purified via a Milli-Q Gradient A10, (Millipore Billerica, MA) with a resistivity of 18.0 
MΩ·cm at 25°C. 

Multi-component organic liquid mixtures were prepared gravimetrically at room temperature, 
and then used immediately to minimize changes in the organic phase mole fraction due to losses 
from volatilization. Aqueous solutions of Tween 80, containing 500 mg/L CaCl2 as a background 
electrolyte, were prepared gravimetrically and mixed vigorously with a magnetic stir bar and 
plate until all surfactant was completely dissolved.  An Aerosol MA®80I (AMA-80) solution 
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containing 6% (wt.) NaCl, 2.7% (wt.) AMA-80I and 8% (wt.) 2-proponal was prepared 
gravimetrically by combining 3.0 g AMA-80, 6 g NaCl and 8 g 2-proponal, after which the 
mixture was diluted to 1 L with DI water. The solution was then mixed vigorously until the 
surfactant was completely dissolved.  All surfactant solutions were prepared immediately prior to 
use. 

The specific methods used to prepare the batch reactors varied depending on whether the NAPL 
was more or less dense than water. For organic phases that were more dense than water 
(TCE+PCE, PCE+decane), batch reactors consisted of 35 mL borosilicate glass vials. To each 
vial, 20 mL of aqueous surfactant solution or 500 mg/L CaCl2 solution was added, followed by 4 
mL of either single- or multi-component organic liquid using a gas-tight syringe.  The vials were 
then capped immediately and shaken gently on an oscillating shaker tray (Labquake Shaker; 
Barnstead Thermolyne, Dubuque, IA) for 48-72 hours in a constant temperature chamber 
maintained at 22 ± 1°C.  After equilibration, the contents of each batch reactor were separated 
into two distinct phases by centrifugation at 760 x g for 30 minutes.  To determine the dissolved 
concentration of the organic solutes, which included the amount dissolved in the aqueous 
solution plus the amount contained in micelles, triplicate aqueous phase samples (0.35 mL) were 
removed from each reactor and transferred to a 2-mL glass vial containing 1.45 mL of 2-
proponal.  The resulting solution was homogenous and could be directly analyzed using gas 
chromatographic (GC) methods (Pennell et al. 1997).  For organic liquid phases that were less 
dense than the aqueous phase (i.e., decane, dodecane and their respective mixtures), batch 
reactors were prepared in 8 mL glass vials that were sealed with open top screw caps equipped 
with Teflon®-backed septa.  To maintain the same organic liquid to aqueous solution ratio as the 
denser than water batch experiments, 1 mL of organic liquid and 4 mL of surfactant solution or 
DI water containing 500 mg/L CaCl2 were added to each reactor vial.  The vials were then mixed 
gently via end-over-end oscillation for a period of 72 hours on a Labquake shaker. The vials 
were then inverted for 24-48 hours to separate the organic liquid and aqueous phases. Triplicate 
aqueous phase samples (0.35 mL) were removed from the inverted vials using a gas-tight syringe 
and transferred to 2 mL glass vials containing 1.45 mL of 2-proponal.  Additional aqueous phase 
samples (1 mL) were obtained from the batch reactors for subsequent quantification of micelle 
size. 

Organic solute concentrations in both aqueous and micellar solutions were measured using a gas 
chromatograph equipped with an autosampler and flame ionization detector (GC-FID; Agilent 
7890A, Santa Clara, CA).  Sample aliquots (1 uL) were injected at an inlet split ratio of 20:1 and 
a temperature of 210 °C.  Chromatographic separation was accomplished using a DB-5 capillary 
column (30 m length × 0.25µm film thickness × 250 µm inside diameter; Agilent Technologies, 
Santa Barbara, CA) that was maintained at a constant pressure of 14.5 psi with helium as the 
carrier gas.  In order to avoid fouling of the column from the non-volatile surfactant components, 
a packed inlet trap was utilized, which consisted of 80-100 mesh Poropac Type P (Supelco; 
Bellefonte, PA).  Analysis of the chlorinated hydrocarbons was completed isothermally at an 
oven temperature of 35°C.  For the batch experiments measuring the solubility of hydrocarbon 
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mixtures and decane/PCE mixtures, separation was accomplished using the following oven 
temperature sequence; 55 °C for 4 min, increased to 210 °C at 20 °C/min, held for 1 min, and 
finally increased to 275°C at 50°C/min, resulting in a total run time of 15.0 min.  Method 
detection limits, determined using the EPA Method (USEPA 2003), were 1.25, 0.9, 0.84 and 
0.72 mg/L for PCE, TCE, decane and dodecane, respectively. 

Further characterization of micellar solubilization was accomplished by measuring changes in 
surfactant micelle size before and after uptake of organic species in 10 g/L Tween 80 solutions.  
Micelle size was determined by dynamic light scattering (DLS) using a ZetaSizer Nano ZS 
analyzer (Malvern Instruments Ltd., Southborough, MA).  The DLS was operated in non-
invasive back scattering (NIBS®) mode at an angle of 173°.  Prior to use, the DLS instrument 
was calibrated using a monodisperse suspension of polystyrene spheres (Nanosphere Size 
Standards, Duke Scientific, Palo Alto, CA) with a mean diameter of 97 ± 3 nm.  Aqueous 
surfactant solutions were first contacted with the appropriate organic liquid for 48 hours, at 
which time a 1 mL aliquot was removed for DLS analysis at a wavelength of 532 nm and 
temperature of 22°C.  Micelle size distribution measurements were also completed following 
equilibration with the multicomponent organic liquids.  Prior to and after the equilibration 
period, triplicate samples (1 mL) obtained from each aqueous surfactant solution were analyzed 
by DLS. 

II.1.2.3. Aquifer Cell Experiments 
Previous studies of source zone mass removal and mass discharge behavior have focused on 
single component DNAPLs, even though a majority of contaminated field sites contain 
chlorinated solvent mixtures, additives and residual components from cleaning operations. In 
order to interpret plume response following subsurface remediation at mixed-DNAPL 
contaminated sites, it is necessary to understand the relationship between changes in aqueous 
phase contaminant discharge with transitioning SZA and NAPL composition. The first three 
aquifer cells (AC 1, 2, and 3) completed under this subtask aimed to examine the downgradient 
plume response from binary TCE- and PCE-DNAPL source zones as a function of NAPL 
composition, SZA and mass removal. 

To address knowledge gaps related to the development of upscaled models and further explore 
the effects subsurface heterogeneity, the fourth (AC4) and fifth (AC5) aquifer cells completed 
under this subtask investigated mass removal and plume response from single component 
DNAPL (TCE) source zones. The main goal of these two aquifer cell studies was to provide 
more realistic heterogeneous DNAPL source zones which incorporated more complex 
permeability distributions, which improved model verification and calibration efforts. 

Aquifer cell media were selected to create a range of source zone NAPL saturation distributions, 
which were expressed as ganglia-to-pool ratios (GTPs) and pool fractions (PFs): 
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Definitions: 

• Ganglia is the presence of NAPL below or at the porous media specific residual 
saturation, 

• Pools are the presence of NAPL in excess of the porous media specific residual 
saturation, 

• Ganglia-to-pool ratio, GTP is the ratio of the source zone ganglia volume to pool volume, 
• Pool-fraction, PF, is the ratio of pool volume to total DNAPL volume in the source zone. 

These definitions will be used throughout this report. 

Results of the aquifer cell experiments provided dissolution data that were used to (a) verify the 
machine learning algorithms developed under Task III and (b) evaluate the effect of scale and the 
predictive ability of simplified screening models to estimate the evolution of mass discharge 
from DNAPL source zones.  A summary of the aquifer cell (AC) studies and the corresponding 
experimental conditions is provided in Table M.1.2.  

 

Table M.1.2. Summary of aquifer cells and experimental conditions. 

Experiment 
Source 
Zone 

DNAPL 
Flushing Scheme Permeability Field Initial SZA 

AC1 
1:1 

TCE/PCE 
(mol/mol) 

500 mg/L CaCl2 +  
two 1 PV surfactant 

40/50 with F-70 
lenses Low PF 

AC2 
1:1 

TCE/PCE 
(mol/mol) 

500 mg/L CaCl2 +  
two 1 PV surfactant 

20/30 with F-70 
lenses High PF 

AC3 
1:1 

TCE/PCE 
(mol/mol) 

500 mg/L CaCl2 +  
two 1 PV surfactant 

40/50 with F-70 
lenses Low PF 

AC4 neat TCE 500 mg/L CaCl2 
40/50 with F-70 

lenses Low PF 

AC5 neat TCE 500 mg/L CaCl2 + 
one 1 PV surfactant 

Markov-Chain 
12/20, 20/30, 40/50, 

F-95 
High PF 
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All organic solvents and reagents used in the aquifer cell experiments were ACS grade or better, 
and were used as received. TCE, 2-proponal, sodium bromide and calcium chloride dehydrate 
were obtained from Fisher Scientific (Fairlawn, NJ).  PCE, pentafluorobenzoic acid (PFBA) and 
sodium fluorescein were obtained from Sigma Aldrich (St. Louis, MO).  Oil Red-O dye and 
erioglaucine were obtained from Alfa Aesar (Ward Hill, MA).  Polyoxyethylene (POE) (20) 
sorbitan monooleate (Tween 80) was purchased from Uniqema (Paterson NJ; Lot # 2398A).  All 
aqueous solutions were prepared in deionized water purified using a Milli-Q Gradient A10 
(EMD Millipore Corp.; Billerica, MA) with a resistivity of 18.0 MΩ·cm at 25°C.  The water was 
degassed under constant vacuum pressure for a minimum of 12 hours to minimize the 
entrapment of air in the porous media. Multicomponent DNAPL solutions and surfactant 
solutions were prepared as described in Section II.1.2.2. 

Aquifer cells 1 and 2 (AC1, AC2) were packed with two size fractions of Accusand (20-30 and 
40-50 mesh) obtained from the Unimin Corp. (New Canaan, CT).  These Accusands were 
selected as the background porous media for the aquifer cells based on their well characterized 
properties (Schroth et. al 1996), translucence, and demonstrated effectiveness in prior light 
transmission studies (Suchomel and Pennell, 2006; Bob et al. 2008).  F-70 Ottawa sand (40-270 
mesh) obtained from U.S. Silica Co. (Berkeley Springs, WV) was emplaced as low-permeability 
lenses throughout the higher permeability background matrix within the aquifer flow cells.  The 
intrinsic permeability of F-70 Ottawa sand is approximately 8.2 x 10-12 m2, while 20-30 mesh 
Accusand and 40-50 mesh Accusand have intrinsic permeabilities of approximately 2.5 x 10-10 
m2 and 7.3 x 10-11 m2, respectively (Schroth et al. 1996).  AC 3- 5 were packed with Ottawa 
sands obtained from U.S. Silica as described in detail below (Table M.1.3). 

Controlled release of DNAPL was performed in aquifer cells that were similar in design to those 
originally developed by Dr. Pennell’s research group as part of SERDP project ER-1293.  
Briefly, the aquifer cells consisted of two one-half inch thick glass panels held in place by an 
aluminum frame with overall dimensions of 1.0 m length by 48 cm height with a 1.4 cm internal 
thickness (Figure M.1.1), and fully screened influent and effluent end chambers. Each aquifer 
cell was configured to contain a source zone region that was approximately 50 cm in length and 
a down-gradient plume region that was approximately 50 cm in length. The plume region 
contained twenty-five low volume glass sampling ports that were located within the front glass 
panel to monitor dissolved-phase plume concentrations over the course of each experiment. 
Following assembly, the aquifer cells were packed under water-saturated conditions in 3 cm lifts 
with moderate agitation and mixing to minimize stratification. In each aquifer cell a 3-cm thick 
layer of F-70 Ottawa sand was emplaced along the bottom of the aquifer to to prevent DNAPL 
migration between the aluminum frame and glass.  In addition, a layer of F-70 sand was placed 
above the needle injection point (12 cm long × 6 cm height) to minimize backflow of the 
DNAPL during injection. 
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Figure M.1.1: Picture of aquifer cell 4 (AC 4) prior to TCE-DNAPL injection. 

Aquifer cells 1-4 were packed with 40-50 mesh Ottawa sand as the background medium, with 
randomly located low-permeability lenses (F70 Ottawa sand) placed throughout the aquifer cell.  
The position and size of F-70 lens were determined using a stochastic based model that 
generated permeability distributions with 35 to 40 lenses, occupying approximately 6.5 % of the 
total aquifer cell volume (Figure M.1.1).  

To evaluate the effects of subsurface heterogeneity on aqueous phase mass discharge, a fifth 
aquifer cell (AC 5) was packed based on a random permeability field generated by a transitional 
probability-Markov chain code using statistical parameters from the Tubingen Site (Maji 2005). 
This permeabilitydistribution was intended to more closely mimic subsurface conditions at a 
well-characterized field site, and was also utilized to evaluate the efficacy of the machine 
learning algorithms to predict down-gradient mass discharge from SZA metrics (Task 4). Four 
different size fractions of silica sand (12-20; 20-30; 40-50 and 40-270 mesh) were utilized to 
create a two order-of-magnitude range in permeability (10-10 to 10-12 m2) throughout the source 
zone and down-gradient plume regions.  Properties of the sands utilized in the aquifer cells are 
summarized in Table M.1.3. The permeability field for AC5 was generated using TPROGS 
(Carle 1999) using a grid spacing of 0.5 cm (H) by 2.5 cm (L), and selected based on the 
locations of the low permeability zones which are shown in Figure M.1.2.  Due to clogging of 
the influent and effluent wells by the fines present in the F-95 sand, a 1-cm wide vertical layer of 
40-50 mesh Ottawa sand was packed adjacent to both fully-screened influent and effluent well 
chambers.  
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Figure M.1.2: Schematic diagram of aquifer cell (AC 5) permeability distribution. 

 

Table M.1.3. Porous media characteristics of aquifer cell 5 (AC5) 

 

 

Following the construction and packing of each aquifer cell, a constant head flow system was 
utilized to establish a hydraulic gradient of less than 2 cm across the length of the aquifer cell. 
Teflon tubing was used to deliver the background influent solution (500 mg/L CaCl2 prepared in 
de-aired Milli-Q water) from a 5 or 12 L mariotte bottle equipped with an aspirator to the 
influent end chamber located on the left hand side of the cell.  The insertion of 0.635 cm outside 
diameter glass tubing in the upper opening of the reservoir through a tight fitting rubber stopper 
provided a constant hydraulic head independent of the water volume in the vessel.  The aqueous 
flow rate was controlled by adjusting the heights of the constant head influent reservoir and the 
effluent tubing discharge point. This experimental set-up allowed for the establishment of 
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constant flow rates of approximately 1 to 4 mL per minute for the duration of the aquifer cell 
experiment.  In this configuration, the upper boundary of the aquifer cell was unconfined and the 
water table could rise and lower based on the height of water in the influent and effluent 
chambers. 

After establishing steady flow in the aquifer cell, a non-reactive tracer test was completed by 
injecting a one-third pore volume (PV) pulse of 13.5 mM NaBr and 5 mg/L of a fluorescent dye 
(sodium fluorescein) through the fully screened influent chamber at a seepage velocity of either 
0.6 (AC 4, to mimic natural gradient conditions) or 2.4 m/day (AC 1-3 and 5, to mimic surfactant 
flooding conditions). Flux-averaged effluent concentrations, localized port concentration 
measurements and digital images of the fluorescent dye illuminated with 450 nm Kino-Flo Blue 
bulbs were taken approximately every 30 minutes to quantify non-reactive tracer breakthrough 
and to visualize migration of the tracer front through the aquifer cell.  Due to the high degree of 
heterogeneity present in AC5, additional tracer tests were completed to evaluate the influence of 
mobile and immobile zones of water on non-reactive tracer transport behavior. For these 
experiments, a suite of non-reactive tracers were employed, including a fluorescent dye 
(fluorescein), bromide and pentafluorobenzoic acid (PFBA). This enabled the evaluation of the 
overall flow properties of the aquifer cell and the influence of low permeability lenses on the 
storage and release of non-reactive solutes.  The three tracers were selected to investigate the 
effects of (a) molecular size on diffusive mass transport within the lower permeability zones and 
(b) mass transfer between zones of mobile and immobile water (physical non-equilibrium) on 
solute transport behavior. Due to differences in molecular weight and structure, the aqueous 
diffusion coefficients for Br-, PFBA and fluorescein are 0.075, 0.03 and 0.02 cm2/hr, respectively 
(Nelson et al. 2003). Previous studies have shown that Br-, PFBA and fluorescein act 
conservatively at or above neutral pH and in the presence of low organic carbon silica sands (Hu 
and Brusseau 1995, Nelson et al. 2003). A separate set of one dimensional (1-D) column 
experiments was completed to confirm conservative behavior of the three tracers.  Prior to 
addition of the tracer solution, the influent solution pH was monitored and adjusted to ca. 7.2 
with 0.1 M NaOH. The tracer test was then completed by injecting 2.3 pore volumes (PV) of the 
mixed tracer solution, which contained ca. 550 mg/L Br, 100 mg/L PFBA and 5 mg/L 
fluorescein. A vertical transect of side-ports (63 cm from the injection well) was sampled to 
obtain local tracer concentrations in conjunction with visualization of the dye front and flux 
averaged effluent concentrations.  Flow interruptions of 22 hours and 17.6 hours were conducted 
at 2.1 PV (i.e., during the tracer pulse injection) and 4.96 PV (i.e., during elution flushing), 
respectively, to investigate the influence of rate limited mass transfer of the tracers between the 
low permeability zones and more transmissive regions of AC5.  

Following completion of flow characterization experiments, DNAPL was injected into each 
aquifer cell to simulate a subsurface spill. The DNAPL, which was dyed red with Oil-Red-O 
(4x10-4 M), was released into the source zone region through a 16 cm long, 18 gauge needle 
packed to a depth of approximately 10 cm below the sand surface.  Approximately 40 mL of 
DNAPL was injected into each cell at a constant flow rate of 0.5 mL/min to 2.0 mL/min using a 
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Harvard Apparatus model 22 syringe pump to create both ganglia- and pool-dominated source 
zones, respectively. Following DNAPL injection, flow within the cell was interrupted and the 
DNAPL was allowed to redistribute for a 24 hour period before restarting flow. The initial 
DNAPL saturation distributions within the source zone region of the cells were quantified using 
a light transmission system (see below).   

Following DNAPL release and characterization, a 500 mg/L CaCl2 background solution was 
flushed continuously through the aquifer cell at a rate of 1 mL/minute, which yielded a residence 
time of approximately 1.5 days.  To quantify spatial and temporal changes in flux-averaged and 
local dissolved-phase TCE concentrations, effluent and side-port were collected every 0.67 PVs 
(1 PV = 2200 mL). Light transmission analysis was performed every 5 PVs to monitor changes 
in SZA. These data were then utilized to evaluate the upscaled models developed in Task IV and 
the machine learning algorithms from Task III. 

Following DNAPL release and an initial water flushing period, the aquifer cells were flushed 
with 1 to 1.5 PVs of an aqueous solution containing 4% Tween 80 to accelerate mass removal.  
Surfactant solutions were introduced at a seepage velocity of 2.4 m/day into the aquifer cells 
after steady-state concentrations were measured in the effluent. Flushing intervals varied in each 
aquifer cells as follows: after approximately 24 and 35 PVs in AC-1, after approximately 5 and 
25 PV in AC-2, after approximately 15 and 45 PV in AC-3 and following 20 PV in AC-5. AC-4 
did not utilize any micellar enhanced dissolution, and thus, mass removal was due to aqueous 
dissolution alone.  Light transmission analysis was performed before and after each surfactant 
flush to evaluate the effect of aggressive mass removal on SZA, while effluent samples were 
collected continuously during the surfactant floods to determine total mass removed due to 
micellar enhanced solubilization.  Following the introduction of the surfactant pulse, flow 
through the box was interrupted for 12 hours to maximize solubilization since dissolution during 
surfactant flooding has been observed to be a rate limited process (Pennell et al. 1994, Taylor et 
al. 2001). Side-port samples were also collected to evaluate plume development during the 
surfactant flushing.  This surfactant flood was followed by an additional water flooding period, 
and then a final surfactant flood. 

Aqueous TCE and PCE concentrations were analyzed by GC-FID as described in Section II.1.2.2 
above. Bromide, chloride and PFBA were analyzed via ion chromatography on a Dionex ICS-
2100 (Waltham, MA).  Analyte separation was accomplished on an AS18 fast hydroxide ion 
selective column, with a mobile phase ionic strength of 23 mM. Due to the high organic content 
of the effluent samples during the surfactant pulses, bromide breakthrough in the aquifer cells 
was measured using a bromide ion-selective probe (Cole Parmer, Vernon Hills, IL) connected to 
an Accumet Model 50 pH/ion/conductivity meter (Fisher Scientific). To measure the spatial 
saturation of the DNAPL source zone, a light transmission system developed by Dr. Pennell’s 
Lab for SERDP project ER-1293 was employed. The light transmission (LT) system was based 
on the original design of by Tidwell and Glass (1994), as adapted by Suchomel and Pennell 
(2006). A Sony α550 digital camera was used to image the aquifer cell, which was illuminated 
with a Flathead 80 light bank (Kino Flo Inc., Burbank, CA). Local DNAPL saturations were 
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estimated by comparison of the digital image to previously generated hue-NAPL saturation 
calibration curves, which were developed using the experimental method of Darnault et al. 
(2001). Thickness-averaged saturation distributions were calculated on a per pixel basis (~0.3 
mm × 0.3 mm) using MATLAB 2009B software (MathWorks, Inc. Waltham, MA), and summed 
over the entire source zone region to estimate the total volume of DNAPL present in the source 
zone. The DNAPL volumes obtained by LT analysis were within 5 % of values calculated from 
the DNAPL injection flow rate and duration. DNAPL saturations of less than or equal to 0.18 
(40-50 mesh) or 0.11 (20-30 and 12-20 mesh) were considered to represent discrete ganglia, 
while DNAPL saturations that were greater than these value represented “pools”. Residual 
saturation values were obtained from Pennell et al. (1996) for the same size fractions of Ottawa 
sand, and confirmed using the intrinsic permeability-residual DNAPL saturation correlation 
developed by Powers et al. (1992) for various sand size fractions. The resulting DNAPL 
saturation distributions were expressed in terms of GTP ratio or PF. 

II.1.3. Field-Scale Numerical Simulations  

In addition to the experimental work, this task focused on the development of a 3-D field-scale 
simulation library. This library was designed to provide a variety of SZAs resulting from various 
spill and permeability scenarios and was used to identify source zone features controlling plume 
evolution evaluated in Task III. PCE-NAPL infiltration and entrapment was simulated with 
UTCHEM 9.0 using 16 realizations of a baseline permeability field representative of a relatively 
homogeneous glacial outwash deposit.  Permeability field realizations were developed using 
Sequential Gaussian Simulation geostatistical methods (Lemke et al. 2004) conditioned to the 
Bachman, Michigan site (Abriola et al. 2005). Three spill scenarios were examined in each 
permeability realization (Table M.1.4), namely: a release consistent with a slow, persistent leak 
(400 day release); a release corresponding to a catastrophic release (4 day release); and a spill 
configuration with a 400-day release at two separate locations in the domain (see Christ et al. 
2010).  To explore the influence of hydraulic property heterogeneity, additional 400-day release 
scenarios were simulated using modified realizations of the baseline permeability field. 
Modifications to the permeability field included a smaller correlation length and higher variance 
(Table M.1.5). Taken together, these simulations provide a large library comprised of scenarios 
with different spill release history, spill configuration and heterogeneity of hydraulic properties.  
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Table M.1.4. Simulations with different spill scenarios  

a Lemke et al. [2004]; b Dekker and Abriola [2000b]; c Horvath [1982]; d EPA (1986) 

Parameter     

Fluid Properties Water PCE   

   Density ρα (g/cm3)a 0.999  1.625    
   Dynamic Viscosity (cP)a 1.121  0.89    
   Compressibility (Pa-1)a 4.4 x 10-10  0.0    
   Aqueous Diffusivity (cm2/s)b - 8.6 x 10-6   
   Aqueous Solubility (g/L)c - 0.150   
   Initial Saturation 1.0 0.0   
     
Pc-sα−krα Model Parametersa     
   (Ref) Air Entry Pressure (kPa) 2.809    
   Pore Size Index 2.0773    
   Interfacial Tension     
      Air/Water (dyn/cm) 72.75    
      PCE/Water (dyn/cm) 47.8    
   Irreducible Water Saturation   0.080    
   Max Residual Organic Saturation (snr

max)  0.151    
   Reference Permeability (µm2) 19.7    
     
Matrix Propertiesa     
   Variogram Parameters Horizontal Vertical   
       Nugget 0.333 0.333   
       Range (m) 7.0 1.07   
       Integral Scale (m) 2.33 0.36   
   Lognormal Transformed K variance (σ2ln(K))a 0.29    

   Mean Hydraulic Conductivity, K  (m/d)a 16.8    
   Anisotropy Ratio kv/kh 0.5    
     
   Applied Hydraulic Gradient, (m/m) 0.01    
   Longitudinal Dispersivity, ωm (m)a 0.30    
   Horizontal Transverse Dispersivity, ωp (m)d 0.10    
   Vertical Transverse Dispersivity, ωp (m)d 0.0075    
   Median Grain Size, d50 (µm)a 295    
   Uniformity Index, Ui a 1.86    
   Uniform Porosity, φa 0.36    
   ∆x (m) (Nx = 26) 0.3048    
   ∆y (m) (Ny = 26) 0.3048    
   ∆z (m) (Nz = 128) 0.0726    
     
 Different Spill Scenarios Case 1 Case 2 Case 3 Case 4 
   Spill Volume (L) 128 128 128 192 
   Spill Duration (d) 400 400 4 600 
   Release Rate (L/m2-d) 0.32 0.32 32 0.32 
   Spill Location  Block 

center 
2 blocks  

off-center 
Block 
center 

Block 
center 
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Table M.1.5. Simulations with different permeability realizations 

 
a Lemke et al. [2004]; b Dekker and Abriola [2000b]; c Horvath [1982]; d EPA (1986) 

Parameter   

Fluid Properties Water PCE 

   Density ρα (g/cm3)a 0.999  1.625  
   Dynamic Viscosity (cP)a 1.121  0.89  
   Compressibility (Pa-1)a 4.4 x 10-10  0.0  
   Aqueous Diffusivity (cm2/s)b - 8.6 x 10-6 
   Aqueous Solubility (g/L)c - 0.150 
   Initial Saturation 1.0 0.0 
   
Pc-sα−krα Model Parametersa   
   (Ref) Air Entry Pressure (kPa) 2.809  
   Pore Size Index 2.0773  
   Interfacial Tension   
      Air/Water (dyn/cm) 72.75  
      PCE/Water (dyn/cm) 47.8  
   Irreducible Water Saturation   0.080  
   Max Residual Organic Saturation (snr

max)  0.151  
   Reference Permeability (µm2) 19.7  
   
Different Matrix Propertiesa Case 5  Case 6 
   Variogram Parameters Horizontal Vertical Horizontal Vertical 
       Nugget 0.333 0.333 0.333 0.333 
       Range (m) 4.66 0.72 4.66 0.72 
       Integral Scale (m) 1.55 0.24 1.55 0.24 
   Lognormal Transformed K variance (σ2ln(K))a 1.0 1.5 
   
   Mean Hydraulic Conductivity, K  (m/d)a 16.8  
   Anisotropy Ratio kv/kh 0.5  
   Applied Hydraulic Gradient, (m/m) 0.01  
   Longitudinal Dispersivity, ωm (m)a 0.30  
   Horizontal Transverse Dispersivity, ωp (m)d 0.10  
   Vertical Transverse Dispersivity, ωp (m)d 0.0075  
   Median Grain Size, d50 (µm)a 295  
   Uniformity Index, Ui a 1.86  
   Uniform Porosity, φa 0.36  
   ∆x (m) (Nx = 26) 0.3048  
   ∆y (m) (Ny = 26) 0.3048  
   ∆z (m) (Nz = 128) 0.0726  
   
 Spill Scenario   
   Spill Volume (L) 128  
   Spill Duration (d) 400  
   Release Rate (L/m2-d) 0.32  
   Spill Location  Block center  
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For each infiltration and entrapment simulation, DNAPL depletion (dissolution) and plume 
development was simulated using the modular three-dimensional transport simulator (MT3DMS) 
modified to simulate NAPL dissolution. In each simulation the concentration profile at down-
gradient transects (middle or end section of the domain) was recorded at every 5 or 20 simulation 
time steps. Thus each dissolution simulation produced from 100 to 1000 time-dependent SZA-
plume response signals for examination and interpretation in Task III.  

In addition to the 6 cases outlined in tables M.1.4 and M.1.5, simulations with permeability fields 
based upon a highly heterogeneous glaciofluvial deposit (Herten site; Maji 2005) were 
performed to investigate the influence of: (i) the capillary pressure-saturation parameters; (ii) 
residual organic saturation; (iii) spill rate; (iv) hypothetical field structure; and (v) dimensionality 
on the DNAPL migration and entrapment architecture. Three-dimensional (3-D) permeability 
realizations were generated using a transition-probability-based Markov chain (TP/MC) 
approach. The glaciofluvial deposit permeability realizations were characterized by four 
dominant lithofacies with a high degree of continuity in the horizontal versus the vertical 
direction (Figure M.1.3). Further details on the permeability realizations can be found in Wang 
(2013).  

 

Figure M.1.3 Field Reconstruction—Conceptualization for Obtaining the 2-D Permeability 
Field. 

Hypothetical tetrachloroethylene (PCE) spills were simulated in these scenarios using the 
Michigan-Vertical and Lateral Organic Redistribution (M-VALOR) simulator (see Table M.1.4 
for numerical simulation input parameters) in two-dimensional (2-D) profiles extracted from the 
3-D realizations (Figure M.1.3). Ten ensembles of different simulation cases were generated 
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based on variations of the base case (Table M.1.4), namely: two different sets of capillary 
pressure-saturation parameters, two sets of residual organic saturations, two hypothetical field 
structures, and three different spill rates. Each ensemble contained 20 permeability field 
realizations for a total of 200 SZA scenarios. The capillary pressure-saturation (Pc-sat) 
simulations investigated scenarios where Pc-sat parameters were assumed independent of 
(Haverkamp and Parlange (1986) Method) and dependent on soil permeability (Leverett (1941) 
scaling Method).   In the first method, the entry pressure is assigned as a categorical variable 
based on the permeability, while in the later method the entry pressure scales with the 
permeability following the method of Leverett (1941).  Organic residual saturations were 
assumed to be either uncorrelated or correlated to permeability values. Three different 
hypothetical spill scenarios were simulated for the ensembles, namely fast, medium, and slow 
DNAPL release rates. All simulations were quantified using commonly employed DNAPL 
distribution metrics (center of mass and spread along vertical and lateral directions; GTP and PF; 
and maximum organic saturation).  

To investigate the influence of dimensionality on DNAPL migration, selected scenarios were 
simulated in 2D and 3D using UTCHEM 9.0. SZA metrics for the two scenarios (2D v. 3D) were 
compared to quantify the influence of dimensionality in these medium- and high heterogeneity 
scenarios.  Further details on the simulation input parameters can be found in Wang (2013). 

Finally, the experimental aquifer cell data were complemented by numerical simulations of these 
aquifer cell experiments.  In these scenarios, M-VALOR was used to simulate the infiltration, 
entrapment, and dissolution of TCE in two-dimensional aquifer cells.  Capillary pressure-
saturation (Pc-sat) properties were obtained from Schroth et al. (1996).  In both the experimental 
and simulated scenarios, the soil matrix properties were generated according to the transition 
probability-based Markov Chain permeability distribution, representative of highly 
heterogeneous glaciofluvial deposits (see previous description). To generate an ensemble of 
permeability field realizations for these numerical simulations, the base case permeability field 
(aquifer cell) was discretized into 41x91 grid nodes with grid dimensions of 0.025x0.005m.  This 
unconditional categorical simulation was then sampled using a set of 22 randomly located points. 
These points, representing ~0.5% of the discretized area, were then sampled to generate new 
realizations.  This level of categorical sampling has previously been shown to be sufficient for 
successful aquifer reconstruction (Maji 2005).  Simulated TCE saturation distributions were 
compared visually to the experimentally obtained saturation distribution and quantified using the 
upscaling approaches developed by Christ et al. (2012) as part of this research. 

To evaluate factors controlling plume evolution of DNAPL source zones in the statistically 
homogeneous, heterogeneous, and highly heterogeneous permeability fields, numerical 
simulation results were quantified using traditional statistics (NAPL saturation mean and 
variance), spatial architecture metrics (first and second moment in x, y-, and z-directions), and 
novel SZA metrics (GTP ratio and PF).  Statistical analyses were performed to obtain the mean 
and variance of various source zone configuration metrics for each simulation ensemble in the 
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library. These ensemble statistics were then used for application and refinement of the machine 
learning algorithms in Task III. 

 

II.2. Refinement of In-Source Push-Pull Tests 

II.2.1. Introduction 
Although soil coring and direct push sampling techniques are the most common methods for 
DNAPL mass delineation (Costanza and Davis, 2000; Guilbeault et al., 2005; Kram et al., 2001; 
Meinardus et  l., 2002; NRC, 2005), partitioning tracer tests offer an alternative approach to 
characterization. Partitioning interwell tracer tests (PITT) can be employed to characterize large 
volumes of the subsurface by estimating spatially averaged saturations (Annable et al., 1998a,b; 
Brooks et al., 2002; Jin et al., 1995). The spatial resolution of a DNAPL saturation estimate from 
a PITT is directly related to the distance (i.e., the volume swept) between the two observation 
points. Such overall NAPL saturations are essentially estimates of total NAPL mass, and do not 
quantify NAPL architecture.  To employ the PITT technology to estimate the spatial distribution 
of NAPL saturation would require acquisition of high-density temporal tracer concentration data 
at numerous locations within the source zone (James et al., 1997).  The combination of additional 
wells and chemical analyses may make PITTs cost prohibitive at many sites.  The single well or 
Push-Pull Tracer Test (PPTT) is an alternative to the Interwell test. This test is conducted in a 
much smaller domain and so provides averaged data over a local zone around the test well 
(Huang et al., 2010; Istok et al., 2002). Tomoch et al. (1973) used PPTTs in the oil industry to 
estimate the residual oil saturation in the field. Since then PPTTs have been used in 
environmental engineering to estimate a variety of different properties including: longitudinal 
dispersivity (Gelhar and Collins, 1971), effective porosity (Hall et al., 1991), solute sorption (e.g, 
Cassiani et al., 2005), the rate of solute degradation (e.g., Haggerty et al. 2004, Schroth and Istok, 
2006), NAPL saturation (e.g., Davis et al., 2005; Istok et al., 2002), and the rate of mass transfer 
into zones of immobile water (Haggerty et al., 2001). 

PITT data analysis typically relies upon the assumption of linear equilibrium partitioning of the 
solutes serving as the tracer, despite evidence suggesting the partitioning may be nonlinear (Wise 
1999, Wise et al. 1999) and kinetic (Willson et al., 2000; Imhoff and Pirestani, 2004; Moreno-
Barbero and Illangasekare, 2006).  Jawitz et al. (2003) suggest that problems relating to 
nonlinearity may be overcome by careful selection of solutes and solute concentrations, since in 
the dilute range, many tracers display near linear partitioning behavior (Rao et al., 2000)  
Although such selection can justify the use of particular solutes, the partition coefficients 
employed in the analysis of PITT breakthrough curves are frequently based upon insufficient 
data, i.e. on measurements at a single aqueous phase concentration or on estimation routines 
(Dwarakanath and Pope, 1998).  Rigorous determination of the partitioning behavior over a 
range of dilute concentrations are few; a fact which may help explain discrepancies between 
PITT estimates and actual NAPL saturations in the SERDP-sponsored, blind test conducted at 
the Dover National Test Site (Brooks et al., 2002).   
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Mass transfer limitations, due to diffusion controlled partitioning with high NAPL saturation 
zones (Willson et al., 2000), may also help explain the discrepancies in the blind PTTT test 
conducted by Brooks et al. (2002).  PITT interpretation approaches commonly assume local 
equilibrium and complete hydraulic accessibility of the DNAPL (Annable et al., 1998a; Willson 
et al., 2000).  It is recognized, however, that spatial variability of aquifer properties or DNAPL 
distributions, will promote non-uniform flow fields that can lead to nonequilibrium conditions 
(see, for example, Brooks et al., 2002; Imhoff and Pirestani, 2004; Jalbert et al., 2003; Meinardus 
et al., 2002; Moreno-Barbero and Illangasekare, 2005; Willson  et al., 2000). Flow field 
heterogeneity can also result in hydraulic isolation of DNAPL and underestimation of 
contaminant mass during tracer tests (Moreno-Barbero and Illangasekare, 2006; Rao et al., 2000). 
In addition, diffusive transport (within immobile aqueous phase and DNAPL zones) and 
adsorption at the DNAPL–aqueous interface could influence tracer transport, and consequently 
decrease the accuracy of DNAPL saturation estimates (e.g.,  Zhu et al., 2009).   

The above discussion points to the need for a comprehensive investigation of mass transfer 
processes at both the local and upscaled levels.  It is the hypothesis of this research that an 
improved understanding of mass transfer limitations may be employed to develop improved 
models for the design and interpretation of PITTs.  Thus, the ojective of this task is to develop a 
PPTT that yields quantitative information about NAPL saturation and architecture at discrete 
depth intervals. While the information gained from these PPTTs is localized, we anticipate that a 
limited number of these tests will provide sufficient data to refine the SZA metric estimates 
derived from transect data processing methods (see Task III).   

The research plan for this task consists of a series of batch and column experiments and coupled 
modeling investigations designed to assess the equilibrium phase behavior and mass transfer 
characteristics of a suite of candidate tracers.  Subsequent aquifer cell experiments are then used 
to develop a modified PPTT methodology and to evaluate its performance for the 
characterization of features of nonuniform distributions of DNAPL.   

II.2.2. Batch, Column, and Aquifer Cell Experiments 

II.2.2.1. Materials and Analytical Methods 
Three representative alcohol tracers, 1-pentanol (99%), 1-hexanol (98%), and 2-octanol (97%), 
were selected based upon use in previous tracer tests (e.g. Brooks et al., 2002; Hartog et al., 2010; 
Jalbert et al., 2003; Jin et al., 1997; Moreno-Barbero et al., 2007; Ramsburg et al., 2005; Willson 
et al., 2000).  Trichloroethene (TCE) (ACS grade) was employed as a representative DNAPL, 
and 2-propanol (IPA) (HPLC grade), which is miscible with water, was used as a solvent in 
preparing samples for analysis.   All chemicals were obtained from Sigma Aldrich and used as 
received.  Relevant properties of 1-pentanol, 1-hexanol, 2-octanol and TCE are presented in 
Table M.2.1.  All aqueous solutions were made using water purified to have resistivity > 18.1 
MΏ*cm and TOC < 10 ppb using a MilliQ A-10 system (Millipore).   
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Table M.2.1. Physical properties of alcohol tracers and TCE 

Alcohol 

iC
pK  

 (Laq/LTCE-

DNAPL) 
Density 
(g/mL) 

Solubility, in 
aq. (mg/L) 

Solubility, aq. 
in (mg/L) 

Purity 

 % 

1-pentanol 3.8a,f 0.815b,d 2.19%wb,d 7.46%wb,d 99 

1-hexanol 18.6a,f 0.820a,d 0.706%wa,d 7.42%wa,d 98 

2-octanol 317a,f 0.82 a,d 0.127a,d 3.40%wa,d 97 

trichloroethene  - 1.45b,c 0.098 a,e 0.032b,d ACS grade 
a20 °C; b25 °C; ctemperature was not reported; dRiddick and Bunger (1970); eHorvath et al. (1999); fDwarakanath 
and Pope, 1998 

For transport experiments (1-D column and 2-D box), TCE-DNAPL was dyed with 10-4 M Oil-
Red-O (Alfa Aesar) for the purpose of visualization.  Previous research has shown that the 
addition of Oil-Red-O at this concentration does not significantly affect the relevant physical 
properties of the DNAPL (Taylor et al., 2001), nor the partitioning behavior of the tracers 
(Willson et al., 2000).  

Federal Fine Ottawa sand (30-140 mesh) was obtained from U.S. Silica and used as the 
background packing media for all column and aquifer cell experiments.  Federal fine is quartz 
sand comprised of 99.7% Silicon Dioxide (U.S. Silica) and has an intrinsic permeability of 4.2 x 
10-11 m2 (Suchomel et al., 2007).  Federal Fine Ottawa sand was either used as received or sieved 
to obtain specific size fractions (e.g., 40-50, 45-50).  F-70 sand (intrinsic permeability of 8.2 x 
10-12 m2, Suchomel et al., 2007) was obtained from U.S.Silica and used as the low permeability 
material in aquifer cell experiments. 

Alcohol and TCE concentrations were quantified using a Hewlett-Packard 6890 Gas 
Chromatograph (GC) equipped with a DB-5 (0.32 mm diameter, 30 m long) column and flame 
ionization detector. A five-point calibration curve was obtained each day of use and checked 
using a calibration standard every 20 samples. The detection limit for each 1-pentanol, 1-hexanol, 
and 2-octanol is 1 mg/L. The detection limit for TCE is 5 mg/L.  Bromide and chloride 
concentrations were quantified using a Dionex ICS-2000 Ion Chromatograph (IC) equipped with 
an AS-18 column (4 x 250 mm) and operated isocraticly at 23.0 nM potassium hydroxide.  Water 
contents were quantified using a Mettler Toledo DL38 Karl Fischer Titrator.  Prior to each day of 
use the titrator was calibrated with an AquaStar 1% water standard.  Calibration was checked 
with the water standard every ten samples.  Phase densities were quantified using 2 mL glass 
pycnometers calibrated with water prior to each day of use.  Equilibrium interfacial tensions (IFT) 
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between the aqueous and organic phases were quantified via drop shape analysis (IT Concept 
Tracker). 

II.2.2.2. Experimental Set Up 
Liquid-liquid equilibrium (LLE) experiments permit accurate quantification of the partitioning 
over all possible alcohol concentrations while also allowing assessment of interfacial tension 
between the aqueous phase and the DNAPL. Initial overall compositions (comprising various 
amounts of water, tracer and TCE) were created in triplicate within 35 mL borosilicated glass 
centrifuge tubes (Corning, part number: 8422-35) with PFTE lined screw-cap closures (Kimble 
Chase part number 45066C). Tubes were subsequently equilibrated for 72 hr on oscillating 
shakers (LabQuake, model T415110) located within a controlled temperature room (Harris 
Environmental) operating at 22.0±0.1°C. Previous experiments suggest 72 hr is sufficient for 
these types of systems to reach equilibrium (Gossett, 1987; Ramsburg and Pennell, 2002).  After 
equilibration, the tubes were centrifuged at 1500 rpm and 22°C for 10 min (Beckman Coulter 
Avanti J-25) prior to careful separation and sampling (see analytical methods below) of the 
aqueous phase and DNAPL. 

1-D transport experiments were conducted in Kontes borosilicate glass columns (4.8 cm i.d.) 
following methods described in Ervin et al. (2011). The 45-50 mesh Ottawa Sand (see Section 
II.2.2.1) was selected to generate TCE-DNAPL ganglia (dyed with Oil-Red-O) that exist 
primarily as singlets (Schnaar and Brusseau, 2005; Ramsburg et al., 2011). Conservative, 
nonreactive tracer tests were conducted pre and post TCE-DNAPL emplacement to estimate 
dispersivity and confirm the uniformity of the emplaced DNAPL distribution (Ervin et al. 2011). 
Partitioning tracer tests were conducted using 2 PV pulses introduced at the same flow rate. For 
non-equilibrium column studies, a fast flow rate (2.2 mL/min) and a packed length (5.0 cm) were 
selected to promote the observation of non-equilibrium conditions so that partitioning kinetics 
could be quantified.  In columns where multiple tracer pulses were introduced to the system, they 
were conducted successively, ensuring that no concentration from the previous pulse was 
detected in the effluent before the next pulse began. Effluent samples were collected over short 
intervals through the peak of the BTC and over increasingly longer intervals as the test continued 
using a fraction collector (Retriever II, ISCO). Dissolution of the TCE-DNAPL was prevented 
by using Milli-Q water saturated with TCE for all aqueous solutions introduced to the column.  
This experimental procedure ensured that each BTC was associated with the same saturation of 
TCE-DNAPL. 

2-D transport experiments were performed employing two sizes of aquifer cells (60 cm length x 
40 height x 1.5 cm thickness & 100 cm length x 50 cm height x 1.5 cm thickness). Sampling 
ports were installed in the front to permit measurement of local tracer concentrations. Different 
experiments employed different arrays of these port sampling locations (see Section III.2). Both 
ends of the aquifer cell have fully screened end chambers through which flow was established. 
Ottawa Federal Fine (30-140 mesh) sand is used as the background porous media and F-70 is 
used to create all low permeability layers.  Aquifer cells were packed and TCE-DNAPL released, 
as described in Suchomel et al. (2007). The DNAPL saturation distribution in each box was 
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assessed using a light transmission (LT) system based upon the methods described in Suchomel 
and Pennell (2006). Quantification of DNAPL saturation is based upon image hues that are 
correlated to saturation with calibration curves developed using the method of Darnault et al. 
(1998). This method produces a pixel-by-pixel estimation of thickness-averaged saturation. 
Saturation, however, is an REV based property of the phase.  Recent work by Christ et al. (2012) 
has demonstrated that the pixel-by-pixel estimates of saturation must be upscaled to better 
represent the physical definition of saturation. Following the guidance of Christ et al. (2012) 
thickness averaged saturation distributions were estimated over a 0.98 cm x 0.98 cm averaging 
window using Matlab 10.0 (Mathworks, Inc.). (This is compared to a pixel size of 0.02 cm x 
0.02 cm). Two types of averaging were applied: i) discrete block averaging, which uses 
averaging windows that do not overlap; ii) continuous averaging, which uses overlapping 
averaging windows. For these experiments, a unit volume of porous media was defined as pooled 
if the TCE-DNAPL saturation is greater than 17%, which was selected based upon residual 
saturations observed in our column experiments. 

The phase behavior of each alcohol in the water-alcohol-TCE ternary was predicted using an 
isothermal flash calculation performed in Matlab version R2009b. UNIFAC (Fredenslund et al., 
1975) was employed to estimate activity coefficients using available structural parameters 
(Hansen et al., 1991). Greater detail on this model can be found in Ervin et al. (2011).  
Interaction parameters used for each group are shown in Table M.2.2. Iteration convergence was 
established when successive changes to molar phase fractions and component mole fractions 
were less than 1×10-10. 
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Table M.2.2. UNIFAC group interaction parameters (αij) 

αij 
group 1 

C-C 

group 2 

C=C 

group 5 

-OH 

group 7 

H2O 

group 37 

Cl-C=C 

group 1 

C-C 
0a 74.54b 644.6b 1300b -0.505c 

group 2 

C=C 
292.3b 0a 724.4b 785.6d 237.3c 

group 5 

-OH 
328.2b 470.7b 0a 353.5c 253.9c 

group 7 

H2O 
342.4b -26.52d -229.1c 0a 651.9d 

group 37 

Cl-C=C 
41.90c -3.167c 640.9c 1100d 0a 

a by definition; b Magnussen et al. (1981); c Gmehling et al. (1982); d Cooling et 
al.  (1992) 

II.2.3. Push-Pull Tracer Test Model Development 

II.2.3.1. Partitioning Tracer Model 
A number of conceptual approaches for interphase partitioning behavior, including equilibrium, 
linear driving force, dual diffusion and surface resistance, were implemented in a numerical 
simulator to explore the mechanisms controlling tracer transport in systems of entrapped ganglia 
(i.e., in our column experiments). All of these models assume that transport occurs only in the 
aqueous phase, with an immobile TCE-DNAPL, distributed uniformly as spherical singlets.  This 
assumption is supported by visualization of DNAPL distributions within similar size fractions of 
sandy media (e.g., Schnaar and Brusseau, 2005). Within the model, TCE-DNAPL dissolution is 
assumed negligible and the flow is uniform, consistent with the experimental methods employed.  
Based upon the above assumptions, flow and mass balance equations for the two fluid phases 
(aqueous and DNAPL) need not be explicitly written. 
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The governing equation for 1-D tracer mass transport is a simplified version of the multiphase 
advective-dispersive-reactive transport equation, where tracer interaction occurs only with the 
DNAPL:    
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Here aqC  is the bulk phase aqueous concentration [M∙L-3], NC  is average concentration of the 
tracer contained within the DNAPL [M∙L-3], and v is the pore water velocity [L∙T-1].  α, Daq, aqS ,

nS , and n are the dispersivity [L], solute diffusivity in the aqueous phase [L2∙T-1], aqueous 
saturation [-], DNAPL saturation [-], and porosity [-], respectively, which are assumed to be 
temporally and spatially invariant.  

The alternative conceptual modeling approaches employed here for tracer partitioning vary in the 

way the source/sink term 
t

C
nS n

n ∂
∂

 is represented.  These models differ in their assumptions 

pertaining to transport within the DNAPL (completely mixed versus diffusive transport) and 
descriptions of solute exchange between the DNAPL and aqueous phase (equilibrium, linear 
driving force kinetics, and surface resistance). Detailed presentations of these models are 
available elsewhere (e.g., Brusseau and Rao, 1989; Liggieri et al., 1997). What follows below are 
brief descriptions of how each approach was implemented for one dimensional alcohol transport 
in a medium containing entrapped TCE-DNAPL. Irrespective of the alternative approaches 
adopted to represent the sink/source term, all models employed third and second type boundary 
conditions for the column inlet and outlet, respectively. Equations were discretized using a 
Crank-Nicholson finite difference approach and solved numerically. 
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(a) 

 

(b)          
 

(c)       
 

(d)     
 

 
 

Figure  M.2.1. Spatial variation of concentration at NAPL-aqueous interface for (a) local 
equilibrium assumption, (b) linear driving force model based on a film boundary layer (c) dual 
diffusion model, and (d) dual diffusion plus surface partitioning model; figure adapted and 
modified from Abriola and Bradford (1998). 
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Equilibrium  
Here it is assumed that the flow rate is sufficiently slow such that the DNAPL and aqueous 
concentrations reach equilibrium at the grid resolution scale of the model. Defining iC

pK as the 
concentration-based equilibrium partitioning coefficient (Ramsburg et al., 2010) of the tracer 
between the DNAPL and aqueous phases, yields:    
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Linear Driving Force  
The linear driving force approach assumes that diffusion across an immobile aqueous phase 
boundary layer can be represented by a first order mass transfer expression. Intra-DNAPL 
diffusional resistance is ignored, and distribution of components inside the DNAPL is assumed 
uniform. Component concentrations at the interface of the boundary layer and the DNAPL are 
assumed to be in equilibrium, while a linear concentration gradient exists within the stagnant 
aqueous film surrounding each DNAPL droplet. The source/sink term becomes: 
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Here k̂  is a lumped mass transfer coefficient [T-1].  For the model results presented herein, the 
lumped mass transfer coefficient was evaluated using an empirical correlation developed for 
NAPL dissolution (Powers et al., 1992). Ramsburg et al. (2011) have recently shown that the 
Powers et al. (1992) and Imhoff et al. (1994) correlations are capable of, and offer similar 
performance when, describing the mass transfer of chlorinated solvent degradation products 
within columns containing uniform saturations of DNAPL.   

Dual Diffusion  
In this approach, as with the linear driving force model, interphase mass transfer occurs through 
an immobile aqueous boundary layer surrounding DNAPL ganglia. Thus, Equation 3.3 remains 
valid for the source/sink term. The assumption that the DNAPL is well mixed is, however, 
relaxed. Diffusion within the NAPL is assumed to be Fickian and the radial distribution of tracer 
concentration within the NAPL droplets satisfies (Rasmuson and Neretnieks, 1980):     
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subject to the following boundary conditions: 
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Here Cn,r is the component concentration within the DNAPL [M∙L-3] at radial position, r [L], Dn 
is solute diffusion coefficient in the DNAPL [L2∙T-1], b is radius of the DNAPL droplet [L], and 
kf is the mass transfer coefficient [L∙T-1]. Equation M.2.5 (continuity of fluxes) assumes no 
surface accumulation at the DNAPL-aqueous interface.   

Previous studies have measured the average singlet radius of entrapped NAPL for various sand 
fractions (Powers et al., 1992; Schnaar and Brusseau, 2005). Schnaar and Brusseau (2005) and 
Ramsburg et al. (2011) developed regressions that relate an effective DNAPL drop radius to the 
saturation and textural characteristics of the granular medium. The correlation of Ramsburg et al. 
(2011) is employed herein to estimate ganglia size. To convert from fk to k̂ , the model assumes 
that all of the DNAPL surface area is accessible to the tracer, and that this surface area can be 
calculated assuming a uniform distribution of spherical droplets: 
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An existing numerical model (Mendoza-Sanchez and Cunningham, 2007) was adapted to 
simultaneously solve the system of Equations. Equation M.2.5 serves to couple the aqueous 
phase and DNAPL transport equations at the interface. The solution was validated against an 
existing semi-analytical solution (Rasmuson and Neretnieks, 1980). Accuracy of the dual 
diffusion algorithm was verified through comparisons with linear driving force solutions for an 
extreme (high) DNAPL diffusion coefficient. 

Dual Diffusion and Surface Partitioning  
A key assumption in both the linear driving force and dual diffusion conceptual models is that 
mass fluxes toward and away from the DNAPL/aqueous interface are equal, such that no surface 
accumulation occurs. In a surface partitioning model, tracer accumulation at the interface is 
permitted, adding a third resistance to tracer mass transport. The approach employed herein is 
based largely on the work of Liggieri et al. (1997), who studied adsorption kinetics of 
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alkylphosphines oxides at a water/hexane interface. A mass balance equation within the interface 
is expressed as: 
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where Γ is the accumulation of mass at the interface [M∙L-2].  In this formulation, Equation 

M.2.8 replaces Equation M.2.5. The left hand side of Equation M.2.8 is rewritten as 
t

C
Cint ∂

∂
∂

Γ∂ int   

and a local equilibrium assumption is invoked at the interface, with Γ  represented by a 
Langmuir isotherm expression. Using this approach, the maximum capacity at the interface 
between the aqueous phase and DNAPL is not reached until Cn becomes equal to the effective 
solubility of tracer in the DNAPL ( aq

C
p CK i ). The system of equations is solved iteratively. At the 

start of each time step, the known isotherm parameters and the intC from the previous time step 

are used to estimate the accumulation term coefficient 







∂

Γ∂

intC
. The system of equations is then 

solved for new interface concentrations, which are compared with the original values (Ervin et 
al., 2011).  Iterations are preformed until the convergence criterion (0.001 mg/m2) is reached and 
all equations are satisfied. 

II.2.3.2. Fine-Scale 3D Simulator 
Based upon the partitioning tracer formulation presented above, a three dimensional, fine-scale 
simulator was developed to model PPTTs at in heterogeneous media. The simulator was used for 
2D and 3D simulations for the interpretation of laboratory experiments and for the development 
of an upscaled field model (see task IV). 

The simulator consists of two modules for solving flow and mass transport equations, 
respectively. The flow module is a slightly modified version of MODFLOW (Harbaugh 2005), 
which solves the equation:  
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− 𝐺  (M.2.9) 

where 𝜑 [𝐿] is the hydraulic head, 𝐾𝑥,𝐾𝑦, and 𝐾𝑧 [𝐿.𝑇−1] are the hydraulic conductivities in the 
three principal coordinate directions, 𝑆𝑠 is the specific storage of the aquifer, and 𝐺 [𝑇−1] is the 
injection/extraction term. During a PPTT, the tracer solution is injected after the flow reaches a 
steady state condition. Therefore the flow is transient only for a short  period of time between the 
push and pull phases. Given that this transient period is short in comparison to the duration of the 
other test phases, in the model applications a steady flow condition was assumed for each phase. 
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A relative permeability function 𝑘𝑟𝑤 (Kaluarachchi and Parker, 1992) was incorporated in the 
model to account for the reduction in permeability due to the presence of the organic phase: 

𝐾𝑥𝑖 =
𝑘𝑟𝑤 𝑘𝑥𝑖𝜌

𝜇
 (M.2.10) 

where 

𝑘𝑟𝑤 = 𝑆𝑎𝑞0.5 �1 − �1 − 𝑆𝑎𝑞
1 𝑚⁄ �

𝑚
�
2
 

(M.2.11) 

and 

𝑚 = 1 −
1
𝑛𝑣𝑔

 

(M.2.12) 

Here 𝑆𝑎𝑞  is the aqueous phase saturation,𝑛𝑣𝑔 is the Van Genuchten parameter parameter that 
represents the uniformity of the pore size distribution, and 𝑘𝑥𝑖 is the intrinsic permeability in 𝑥𝑖 
direction.  

The permeability and NAPL saturation distributions used in the simulations of the PPTTs were 
adopted from the NAPL realizations produced under Task I. These permeability fields are 
heterogeneous and anisotropic. 

Tracer transport was simulated with the linear driving force model formulation presented in 
Section II.2.3.1. The complete 3D discretization of governing equations and the developed finite-
difference solution may be found in Bouromand (2013). 

 

II.2.3.3. Tracer Push-Pull Sensitivty and Inverse Modeling 
Using the three dimensional, fine-scale simulator as a foundation, additional modeling work was 
undertaken to explore the sensitivity of PPTT observations to SZA.  To this end a numerical 
algorithm was developed which implements a coupled adjoint sensitivity method to explore the 
sensitivity of well observations of tracer concentration breakthrough to perturbations of the 
DNAPL saturation within the interrogated zone.  The developed adjoint method introduces a 
vector of adjoint variables to formulate the coupled adjoint state equations for tracer 
concentrations in both the aqueous and DNAPL phases. This approach differs from previous 
studies in the environmental literature that have primarily focused on one control equation for 
flow or transport in saturated regimes (e.g.Michalak and Kitanidis, 2004).  The results of this 
investigation have utility for local source zone characterization and can provide a quantitative 
understanding of the sensitivity of tracer concentration to the spatial variation in saturation. The 
developed adjoint state method also facilitates the analysis of sensitivity to other system states 
and parameters.  After obtaining the sensitivity matrix of tracer concentrations to DNAPL 
saturation, coupled with the observed tracer concentrations at different time steps during the pull 
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phase, we can back estimate the characteristics of DNAPL saturation.  In this estimation process, 
three specific metrics were considered: distance of DNAPL from the well, estimated total mass 
of DNAPL, and estimated average DNAPL saturation. 

For the PPTT, the general control equations for contaminant transport are given as: 

ˆ( ) [ ( )] ( )aq n
aq aq aq hij aq aq aq s I

eq

C CnS k C nS D C nS vC q C
t K

∂
+ − = ∇ ⋅ ∇ − ∇ ⋅ +

∂
                              (M.2.13) 
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C Ck C
t nS K

∂
= −

∂                                                                             
(M.2.14) 

Subject to boundary: [ ( )] 0aq hij aqnS D C n− ∇ ⋅ =


                                                                  (M.2.15) 

and initial conditions: ( , , ,0) 0aqC x y z =   ( , , ,0) 0nC x y z =                                                 (M.2.16) 

The first equation accounts for mass transport in the aqueous phase, and the second equation 
describes the mass balance in the DNAPL phase, assuming a linear driving force mass transfer 
model. Here we adopt a second type boundary condition, which indicates that there is no 
diffusive flux at the boundaries. 

The goal of the adjoint sensitivity methodology is to investigate the sensitivity of a performance 
measure to the local perturbations in the DNAPL saturation. Here the performance measure P is 
defined as: 

                   
,

( , )aq aqV t
P h S C dVdt= ∫∫                                                                            

(M.2.17) 

where ( , )aq aqh S C is a functional of the state of the system, V is the spatial domain, and the 
integration is over the entire time and space domain. The marginal sensitivity of this 
performance measure with respect to the parameter Saq is obtained by differentiating equation 
(M.2.17):  

     
1, ,

( ) ( )aq

V t V t
aq aq aq aq aq aq

CdP h h h hdVdt dVdt
dS S C S S C

∂∂ ∂ ∂ ∂
= + = + Φ

∂ ∂ ∂ ∂ ∂∫∫ ∫∫
                                 

(M.2.18)
 

where dP/dSaq is the marginal sensitivity of interest. 1Φ  is one of the two state sensitivities, 

1 aq aqC SΦ = ∂ ∂ , it is a measure of the change in system state Caq due to a small change in the 
parameter Saq. We also define 2 n aqC SΦ = ∂ ∂  as the other state sensitivity, which represents the 
change in system state Cn due to a small change in the parameter Saq. Since these two state 
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sensitivities are unknown, adjoint theory can be used to eliminate them from the previous 
equation.  Thus, the marginal sensitivity can be calculated in terms of the adjoint states. 

Differentiating the governing equations for the PPTT (including initial and boundary conditions) 
with respect to the parameter Saq (Neupauer and Wilson, 1999, 2001), we can obtain the 
governing equations in terms of the state sensitivities: 
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1 1
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                1[( ) ] 0hij aq aq hijnD C nS D n∇ + ∇Φ ⋅ =


                                                           (M.2.21) 

                1( , , ,0) 0x y zΦ =   2 ( , , ,0) 0x y zΦ =                                                           (M.2.22) 

To simplify the problem, here we assume that the dispersion tensor, seepage velocity, and source 
and sink flow rates do not depend on the aqueous phase saturation at the time of interest. We 
take the inner product of each term in equations (M.2.19) and (M.2.20) with the adjoint states 1Ψ  
and 2Ψ  respectively, which, at this stage, are just arbitrary functions. Integrating over time and 
space, we then add these equations to the right-hand side of equation (M.2.18). Since the right-
hand sides of (M.2.19) and (M.2.20) are equal to zero, the addition of their products to (M.2.18) 
does not change the value of it. The resulting equation is given by: 
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         ( M.2.23) 

Because the adjoint states are not defined at this stage, we can prescribe their properties in a 
mannerthat achieves our goal of eliminating 1Φ  and 2Φ  from equation (M.2.23). We integrate 
equation (M.2.23) by parts twice, apply Gauss’s divergence theorem to the spatial divergence 
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terms and temporal divergence over the time period, substitute the initial and boundary 
conditions on state sensitivities of 1Φ  and 2Φ , and obtain the governing equations for the adjoint 
states as: 

1
1 2 1 1
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                1( , , , ) 0fx y z tΨ =   2 ( , , , ) 0fx y z tΨ =                                                             (M.2.27) 

Here ft tτ = −  is defined as backward time, and ft  is the final time of simulation. Comparison 
with the governing equations, reveals that the adjoint state equations have a similar form, but the 
signs of the first-derivative terms are reversed. In addition, the adjoints of the Dirichlet boundary 
condition remains unchanged; however, the Neumann boundary condition becomes a Cauchy 
boundary condition. After simplification, the marginal sensitivity of the performance measure 
becomes: 

      1 2 1 2,
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∫∫                                (M.2.28) 

In this problem scenario, the performance measure is the aqueous phase tracer concentration at 
observed at a particular time in the push-pull well: 

                ( , ) ( , ) ( ') ( ')aq aqh S C C τ δ δ τ τ= − −x x x                                                          (M.2.29) 

where ( )δ ⋅  denotes the Dirac delta function, x is defined in three spatial directions, 'x  is the 
location of push-pull well, and 'τ is the certain time of interest.  

The application of the adjoint method was then explored using three-dimensional hypothetical 
source zones containing heterogeneous DNAPL distributions.  Two-dimensional uniform planar 
flow was assumed within a horizontal layer around the well, and non-equilibrium interphase 
mass transfer was described by an empirical correlation (Nambi and Powers, 2003) within each 
grid block, based upon its broader range of validity for organic phase saturations: 



34 
 
 

 

 

 Sh∗ = 𝑘�  𝑑502

𝐷𝑎
= 37.2 𝑅𝑒′ 0.61 𝑆𝑛1.24         (M.2.30) 

Here 𝑅𝑒′ is the modified Reynolds number; in which the mean grain size, 𝑑50, describes the 
length scale and the seepage velocity, 𝑣, represents the velocity component.  

We first calculated tracer concentrations in the push-pull well at different time steps using the 
previous developed three-dimensional fine scale push-pull model. After that, the derived control 
equations of adjoint states were solved corresponding to the time steps. Coupled with the tracer 
concentrations and adjoint states, the marginal sensitivity can be solved using equation M.2.28 to 
obtain sensitivity matrix of tracer concentration with respect to perturbation of DNAPL 
saturation. 

2.7.2.2 Geostatistical Inverse Method 
Model calibration involves adjustment of the model structure and model parameters of a 
simulation model so as to make the input-output relation of the model fit any observed 
excitation-response relation of the real system. In contrast to the forward problem, the inverse 
problem seeks to find the unknown parameters when continuous or discrete observations are 
given. After obtaining the sensitivity matrix of tracer concentration to DNAPL saturation, 
coupled with the observed tracer concentrations at different time steps during the pull phase, we 
can back estimate the characteristics of DNAPL saturation. In this project, three specific metrics 
are considered: distance of DNAPL from the well location, estimated total mass of DNAPL, and 
estimated average DNAPL saturation.  

Consider a physical system, with the corresponding observation system, the true system state 
will be smeared by observation error. When the physical system is simulated by a model M, 
model error or model structure error is introduced. Furthermore, if a model parameter is 
parameterized by a finite-dimensional parameter vector, a parameterization error is generated. 
Therefore, there is always a total error of the observed system state based on the real physical 
system.  

In our case, the goal of the inverse problem is to estimate the DNAPL saturation from 
observations of tracer concentrations in the push-pull well at different time steps. The best 
estimation of the unknown parameters is the solution of the optimization problem, which is to 
find a local minimizer to minimize the L2 norm of the total error, in other words, to minimize the 
least squares cost function: 

            2 2

1 1

1 1( ) ( ( )) ( ( ') ( '))
2 2

m m
obs

i aqi aqi
i i

F x f x C C
= =

= = −∑ ∑ x x                                           (M.2.31) 

where  denotes the observations of tracer aqueous phase concentration in the push-pull 

well, and  is implicitly a function of aqC  through equations (M.2.13) to (M.2.16), 
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( ') ( ')obs
aqi aqif C C= −x x , which represents the difference between the observed tracer 

concentration and the calculated tracer concentration through the push-pull model. This 
optimization problem is also called the generalized output least squares problems. 

Least squares problems can be solved by various numerical methods. Methods based on gradient 
information, such as the steepest descent method, requires the functional derivative of the cost 
function with respect to the parameter Saq. For non-linear least squares problems, the Gauss-
Newton method and Levenberg-Marquardt method are two efficient methods, which are based 
on implemented first derivatives of the components of the vector function. We focused on these 
two approaches for solving non-linear least squares problems, and subsequently, we indicate how 
the adjoint sensitivity method can be used, coupled with the least squares methods, to obtain 
sensitivity information and then back estimate the DNAPL saturation.  

In the case of DNAPL saturation estimation, the numerical method of optimization generally 
consists of three steps: 

(1) Choose an initial guess of DNAPL saturation distribution; 
(2) Design a way to generate a search sequence: 

1aqS ,
2aqS , …,

naqS , … such that 

1
( ) ( )

n naq aqF S F S
+

<  for all n. 
(3) Stipulate a convergence criterion. If it is satisfied, then end the search procedure, and a local 

minimum is approximately achieved. Such sequence has the following general form: 
                       

1n naq aq n nS S dλ
+

= +                                                                              (M.2.32) 
where vector dn is called displacement direction, λn is a step size along this direction. 

Stopping Criteria 

There are several stopping criteria used to test the convergence of an iteration sequence. 

(1) The norm of displacement becomes very small after n iterations: 
                         

1 1n naq aqS S ε
−

− <                                                                                  (M.2.33) 

(2) The norm of gradient ( )
naqF S∇  becomes very small after n iterations: 

                          2( )
naqF S ε∇ <                                                                                     (M.2.34) 

(3) The value of the objective function ( )aqF S  has no significant change after n iterations: 

                       
1 3( ) ( )

n naq aqF S F S ε
−

− <                                                                         (M.2.35) 

(4) As in all iterative processes, we need a safeguard against an infinite loop: maxn n≥ . 

Here,   is the L2 norm defined in the observation space, and 1ε , 2ε  and 3ε  are given small 
positive numbers. Once one of the stopping criteria is met, the iteration progress will be ended. 
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Gauss-Newton Method 

The Gauss-Newton method is based on a linear approximation to the components of function f in 
the neighborhood of parameter x. In the case of the push-pull tracer test, with small perturbation 
of aqueous phase saturation, we have: 

            ( ) ( ) ( )aq aq aq aq aqC S h C S J S h+ = +   1*( ) n
aqJ S ∈                                               (M.2.36) 

where ( ( )) ( ( ( ') ( '))) /
j

obs
aq ij aqi aqi aqJ S C C S= ∂ − ∂x x  is the Jacobian.  

We also define ( ) ( )aq aqJ S WH S= , where W is a diagonal matrix with elements of weighting 
coefficients. In theory, the optimal weighting coefficients are related to the standard deviations 
of errors. In addition, 

                                                                                                   (M.2.37) 

The matrix of H is called the sensitivity matrix, which represents the sensitivity of model output 
of tracer aqueous phase concentration with respect model parameters of aqueous phase saturation. 
Considering the first order derivative and second order derivative of F(x) with respect to aqueous 
phase concentration, we can get the Gauss-Newton direction: 

1( )
n

T T
aq n n nS J J J f−∆ = −                                                         (M.2.38) 

Then the estimated aqueous phase saturation can be iterated by the Gauss-Newton step:  

                     
1

1( )
n n

T T
aq aq n n nS S J J J f

+

−= −                                                                        (M.2.39) 

The iteration sequence generated is also known as the Gauss-Newton sequence. 

Levenberg-Marquardt Method 

Levenberg and Marquardt suggested a damped Gauss-Newton method. In this case, the Gauss-
Newton direction is replaced by: 

                    1( )
n

T T
aq n n nS J J I J fλ −∆ = − +                                                                      (M.2.40) 
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where I is the unit matrix, andλ is a coefficient called damping parameter. Whenλ=0, 
naqS∆  

reduces to the Gauss-Newton direction. On the other hand, whenλ tends to infinity, 
naqS∆  turns 
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to the steepest descent direction and the size of 
naqS∆  tends to zero. Therefore, 

1
( ) ( )

n naq aqF S F S
+

<  can always be expected by increasing the value ofλ. Thus, the damping 
parameter influences both the direction and the size of the step, and this leads us to make a 
method without a specific line search.  

 

II.3. Processing Methods for Identification of Source Zone Features 

II.3.1. Introduction 
The problem of concern for Task III is the determination of a number of source zone DNAPL 
mass distribution metrics from observations of down-gradient DNAPL concentration data.  In 
this project, we have focused on three specific metrics:  

1. Pool fraction ( pf ), defined as the fraction of source zone mass incorporated in pools.  

Previously we have demonstrated the utility of ganglia to pool ratio (GTP) as a metric for 
predicting plume behavior in up-scaled model.  Unfortunately, because GTP can assume 
values from zero to infinity, we have found it difficult to stably estimate from down-
gradient concentration data.  Pool fraction on the other hand is bounded between zero and 
one and has proven easier to estimate.  Moreover, pf is easily related to GTP as

. 

2. The mass of DNAPL in the source zone occupied by pools ( pM ), and  

3. The mass of DNAPL in the source zone occupied by ganglia ( gM ).  

Determination of these metrics is complicated by the fact that our uncertainty regarding the 
subsurface encompasses more than merely the distribution of contaminant. Most notably, the 
hydraulic conductivity is also typically not known with high precision. In practice, one possesses 
only soft information concerning the statistics of this important quantity. Given the availability 
of high quality computational models for flow and transport in the subsurface pioneered by our 
team, we are motivated to consider the use of machine learning methods for metric determination 
(Mitchell, 1997, Ma et al., 2010). In more detail, given a statistical model of the conductivity 
along with numerical models for both DNAPL entrapment and subsequent flow and transport, 
the idea here is to simulate a large number of conductivity fields, spill scenarios, and 
observations of down-gradient concentration from which one can then infer (or “learn”) a 
mapping from concentration to the metrics of interest.  At this point it is important to make a 
distinction between the data that are used to learn this mapping, also known as training data, and 
test data that not associated with the learning process but are used to determine the accuracy of 
the algorithm.  In our work, both the training and test data are drawn from simulations. In 
practice, however, the test data would come from observations taken in the field.  Additionally, 
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we note that while the training process can be quite computationally intensive, it is performed 
entirely off-line.  The test procedure, that is, the processing of real data, is quite efficient (Bishop 
2006). 

As illustrated in Figure M.3.1, the work is based on the use of observations of contaminant 
concentration collected down-gradient from the source zone at a single point in time. While in 
practice, such transects are constructed from a small number of wells, we initially assume here 
that a dense collection of data are acquired resulting in the availability of a concentration “image” 
for processing. Though admittedly an idealization, this assumption allows us to more readily 
develop and demonstrate the utility of an initial set of machine learning tools to address the 
rather challenging problem of source zone characterization from a single temporal snapshot of 
data. In Section II.3.5 of this report, we present an extension of our initial work designed to 
process sparse concentration data sampled at wells. 

  

 

Figure M.3.1: The source zone plotted in 3D is modeled as being comprised of two parts: 
“pools” for which the saturation exceeds 0.15 and “ganglia” for which the saturation is 
lower than 0.15. Flow through the source zone gives the down-gradient concentration data 
in 2D. 
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Motivated by the ideas in (Guo, 2008), our work in this task has focused on the use of state-of-
the-art ideas in machine learning to construct a regression function for estimating one or all of 
the metrics from the down-gradient observations.  This process is comprised of a number of 
component steps that are illustrated in Figure M.3.2 and described in detail in the following 
pages. While the computational models of entrapment and dissolution are certainly of use in 
generating data for building this regression function, it is still the case that the computational 
burden of running these models limits the size of the data sets available to us for this task.  More 
precisely, rather than having millions of data sets as is the case in typical “big data” problems 
(e.g., the Netflix prize competition) as we discuss below, here we have hundreds of examples. As 
one typically requires at least an order of magnitude more training data than observations per 
data (Bishop, 2006), we must first reduce the dimensionality of the data after which a suitable 
regression function can be constructed. Within the machine learning literature, it is common 
practice to extract from data a reduced set of features. In Section II.3.2.2 we describe a new set 
of features based on morphological image processing operations (Gonzalez, 2010) applied to the 
down-gradient concentration transect data, the structure of which is driven by the underlying 
physics of the problem. As the dimension of the resulting feature vectors fN is still well over 
100, we employ manifold learning methods to obtain a low dimensional manifold coordinate 
vector (the dimension will be four) for training a regression function under a Bayesian approach. 
For testing, after we learn the embedding function (a mapping from morphological feature space 
to manifold space) using training data, we embed the test data in the same space and estimate the 
desired metrics and confidence intervals. 

It is important to note that the use of manifold methods is motivated by more than just 
computational considerations. These techniques are required to address the identifiability 
problem in the data. As we discuss in greater depth in Section II.3.2.1, it is the case here that 

 

Figure M.3.2: The framework of our regression-based machine learning approach. The 
morphological feature extraction is shared by both training and test stage, because it is an 
image processing method which is to be applied to both the training and test data. 
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“similar” pairs of both raw concentration data and even morphological feature vectors can 
correspond to very different source zone metrics, and likewise similar metrics may give rise to 
data and feature vectors that are “different” in an appropriate mathematics sense, thereby 
severely reducing the utility of any type of straightforward regression approach.  The use of 
manifold techniques is required to obtain a representation of the data that addresses this 
limitation, thereby allowing for the metrics to be inferred with good accuracy from the 
observations. 

II.3.2. Standard Manifold Regression  

II.3.2.1. Overview  
Given a collection of data (in our case down-gradient concentration information) and metrics 
describing a system we seek to estimate (in this case pf , pM or gM ), machine-learning 
algorithms determine a mapping from data to metric such that when new data are made available 
we are able to estimate the associated metric.  The procedure of machine learning can be 
separated into two stages, training and test, which are illustrated in Figure M.3.2. In the training 
stage, we use known data/metric pairs to construct this mapping, while in the test stage we use 
data independent from training data set (in practice data from a field site) to evaluate the 
accuracy of the approach. 

As shown in Figure M.3.2, the training and testing processes require a number of steps which we 
outline here before moving on to provide the details for each stage. The inputs to the training 
phase are observations of downstream concentration data ( ),i x yc and an associated metric it , for 
the known source zone associated with these concentration signals with . The 
variables x and y represent the coordinates in a down-gradient transect where the concentration 
data are collected.  Thus we may regard ( ),i x yc as an image where x and y index the coordinates 
of the pixels.  It is also convenient to think of these data as a vector, ic , obtained by 
lexicographically ordering the pixels in the image.  Thus cN , the dimensionality of ic  is equal to 

the product of the number of rows and columns in ( ),i x yc .  As explained in Section II.1 these 
training data are generated via Monte Carlo simulation where a number of hydraulic conductivity 
fields are generated using a statistical model. DNAPL infiltration is then simulated along with 
dissolution to generate the concentration data. 

Referring again to Figure M.3.2, from the concentration data, the first three steps in training are 
feature extraction, manifold dimensionality reduction and embedding function learning. As we 
discuss shortly, these processing stages are employed to obtain quantities derived from the 
concentration observations that are, in some sense, more predictive of the metrics than the raw 
data. As mentioned previously, learning a good regression function requires that the size of the 
training set, N, be at least an order of magnitude larger than the dimensionality of the variables 
we use for estimation (Bishop, 2006). For our problem, N is about 500 while the dimensionality 
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of ic is over 3000.  To ameliorate this situation we first consider a collection of features derived 
directly from the data.  In general, the features used for machine learning are application 
dependent.  In many cases, one looks at statistics of the data such as mean, variance, and entropy 
of the data histogram (Hanchuan et al., 2005). Additionally, domain-specific intuition can be 
used to develop new features which can be more helpful for estimation. For our problem, we 
discuss in Section II.3.2.2 a set of quantities that are of use for estimating metrics from 
concentration signals. This is based on morphological signal processing methods. 

Ultimately, the number of features we compute is still on the order of a few hundred.  
Dimensionality reduction is used to further extract from the data those degrees of freedom that 
are most relevant for solving the regression problem. More precisely, we seek to transform the 
feature vectors into a space such that the distance between vectors in this new space is reflective 
of the distance between the corresponding source zone metrics we seek to determine.  If this 
condition is satisfied, then when the feature vector from a test data set is transformed into this 
space, the use of regression for the metric based on the training data points close to the test data 
point in manifold space is expected to be accurate. As this closeness requirement involves a 
highly nonlinear mapping of the feature vectors (Lui, 2012), standard linear dimensionality 
reduction methods such as Principal Component Analysis (PCA) (Bishop, 2006), are not 
appropriate. In our work, we employ a nonlinear dimension reduction method, specifically 
Laplacian Eigenmaps (LE), (Mikhail Belki, 2003) to construct a low dimensional manifold space 
such that the data with similar metrics are located near to one another.   

To develop a sense for the difficulty of the problem, it is important to note that the closeness 
condition discussed in the last paragraph (known more formally as a locality preserving property) 
does not hold when the embedding manifold is taken to be the cN  dimensional Euclidean space 
of the raw concentration image data or even the fN  dimensional Euclidean space of the 
morphological feature vectors the details of which are developed in Section II.3.2.2.  As an 
example, consider the three data and corresponding pool mass metrics illustrated in Figure M.3.3. 
In Table M.3.1, the squared Euclidean distances1 between all three pairs of concentration image 
data and feature vectors are provided along with the distances computed using the manifold ideas 
developed in Section II.3.2.3. While cases (a) and (c) have the most similar pool masses 
(differing only by 0.7 kg), the raw concentration images and the raw feature vectors would 
predict that (a) and (b) were most similar.  Indeed, in manifold space are (a) and (c) placed 
closest together.  Moreover, pairs (a)/(b) and (b)/(c) which have about the same mass difference 
are also places about the same distance apart in manifold space.    

Now, a known shortcoming of these manifold methods is that lack of an explicit embedding 
function for the processing of test data where the source zone metric is not known (Vincent 
2003).  Indeed, manifold techniques were initially designed for constructing low dimensional 
                                                 
1 Given a pair of column vectors v  and w , each of dimension d  this distance is nothing more than  
with T indicating the vector (or matrix) transpose operation. 
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representation of known data and not for regression. Thus, to embed the test data (which 
obviously will not include the associated metric value) in the same space as the training data, we 
need to learn an embedding function; that is, a mapping from morphological feature space to the 
manifold space, shown in Figure M.3.2. Here we apply spectral regression (SR) method (Deng 
Cai 2007) to learn this embedding function, after which we can embed the test data in the 
manifold where regression can then be performed.  

 

The final step of training process is Bayesian regression (Bishop, 2006) for estimating the 
metrics from the manifold coordinates of the test data. Of most relevance here is that a Bayesian 
approach provides not only an estimate of the metric but also a confidence interval, allowing for 
the quantification of the uncertainty in this estimate. 

In summary, the four-step training process just outlined results in (a) a collection of 
morphological feature vectors d

i R∈x ,  , (b) an associated set of manifold 

coordinate vectors m
i R∈r  with  , (c) an embedding mapping for transforming 

concentration data, ( ),x yc , into a manifold coordinate vector, r and (d) a Bayesian regression 
function that converts a manifold coordinate vector into an estimate of the source zone metric 
and an associated confidence measure. 

  

 

Figure M.3.3. The identifiability issue of regression function. Due to the difference of 
initial spill, the metrics corresponding to the similar concentration image is quite different, 
for example, the concentration data in (a) and (b) look most similar, but the metrics, mass 
in pool, are quite different. 
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II.3.2.2. Morphological Feature Extraction 
As discussed in the Section II.3.1, here we consider a reasonably common scenario in which we 
are provided observations of contaminant concentrations within a transect located away from the 
source zone and oriented orthogonally to the nominal direction of groundwater flow. The feature 
vector we develop is motivated by our intuition concerning how the morphology, defined below, 
of the observed concentration data is related to that of the unknown DNAPL saturation in the 
source zone.  As an example, consider the concentration data and associated pool fractions, pf  
shown in Figure M.3.4.  Roughly speaking we observe that as the pool fraction increases, the 
geometry of the concentration data changes accordingly.  Specifically, the number of “blobs” in 
the images increases and their sizes decrease. Motivated by this observation, here we seek 
features that capture the size and number of blobs in the concentration data believing that they 
are related to the metrics in a way that can be learned given sufficient examples. Note that the 
behavior just described is observed not only for these three cases but more generally for the 
many different data sets considered in the experiments in Section III.3.  Additionally, similar 
intuition can also be established for the other two metrics considered in our work, the mass of 
DNAPL in pool regions, and the mass of DNAPL in ganglia. 

 

 

Table M.3.1 The distance between the data corresponding to Figure M.3.2.1 in image 
space, morphological feature space and manifold space, bold figures indicate pairings with 
smallest distances when measured using pixels, raw features, and manifold coordinates 

 

Magnitude of Mass 
Difference (kg)

Pixel-Distance Raw Feature 
Vector Distance

Manifold Distance

Comparing (a) to (c) 0.7 2900 20.1 1.2

Comparing (a) to (b) 64.5 918 7.3 30.9

Comparing (b) to (c) 65.2 2552 19.8 30.8
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Within the image processing literature, the study of quantities such as the number and sizes of 
blobs in an image is known as mathematical morphology (Refael C. Gonzalez 2010).  To 
motivate the mathematical definitions for the feature vector we develop, in Figure M.3.5 we 
display samples of the concentration data as height maps along with the corresponding 
morphological feature vectors for the same data displayed as images in Figure M.3.3.   

 
Figure M.3.4: The observation of concentration image according to their pool fraction value.  
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Mathematically, the key issues here are quantifying the notion of a “blob” and determining what 
characteristics of these blobs are useful.  The first issue is addressed by a simple thresholding 
operation in which we specify the blobs at some level τ to be those pixels in the image whose 
concentrations exceed τ : 

 
( )1, , y

( , ; )
0, else

x
b x y

τ
τ

>
= 



c
  (M.3.1) 

 

Figure M.3.5. Morphological feature vectors corresponding to concentration data from 
Figure M.3.4.  
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From ( , ; )b x y τ  we have found it useful to compute two quantities: the fraction of the area in
( ), yxc for which ( ), ; 1b x y τ =  denoted as ( )π τ , and the number of connected components at 

that level, ( )v τ .  The fraction of area is computed via: 

 ( )
( )
( )

,y

,y

, y; τ
π τ

, y;0
x

x

b x

b x
=

∑
∑

  (M.3.2) 

where the denominator is nothing more than the number of pixels in the concentration image that 
are nonzero.  A connected component is a group of pixels in the image such that one can move 
from any pixel in the set to any other through a series of North, South, East, and West moves 
(Gonzalez, 2010). Referring to the data in Figure M.3.4 again, for subfigure (a) with 20τ = , the 
number of connected components is one.  For (b) at 10τ =  there are two connected components 
while in (c) with 5τ =  there is only a single connected component.   

The morphological feature vector we create, denoted as x , is comprised of ( )π τ  and ν(τ)  for

 where maxτ is the largest value of concentration in the training data set. We 

define  as the morphological feature matrix constructed using all data in 
our training set. In Figure M.3.5 (d)-(i), we plot ν(τ) and π(τ)  corresponding to concentration 
data in Figure M.3.4 (a)-(c). We see that for each of the different values of pool fraction, the 
behavior of these quantities as a function of threshold is quite distinct. The number of connected 
component is almost always one in Figure M.3.5 (d) for the low pool fraction case, indicating 
that there is only one large diffuse area in concentration image.2 In Figure M.3.5 (f), the pattern 
is more variable, reflecting that the structures in the concentration image are themselves more 
complex.  Finally, in Figure M.3.5 (h) the number of connected components drops to zero quite 
quickly reflecting the presence of only a single blob in the concentration data due to the high 
pool fraction (i.e., a lack of diffuse ganglia in the saturation profile). Similarly, the decay of π(τ)  
as a function of τ illustrated in Figures M.3.5 (e), (g) and (i) show a strong dependence on the 
underlying pool fraction. 

II.3.2.3. Manifold Dimension Reduction using Laplacian Eigenmaps 
As explained in the discussion surrounding Figure M.3.3, our use of manifold method is 
motivated by a desire to embed the training data comprised of the morphological feature vectors 
along with the known metrics into a low dimensional space where regression can be performed 
accurately.  Here we use the Laplacian Eigenmaps (LE) approach (Belkin et al., 2003) to 
construct a manifold with the locality preserving property we desire. Mathematically, for each 
length 1d +  vector , ( ,  )i itx  obtained by concatenating the metric value to the feature vector we 

                                                 
2 Although there is some variability in the feature vector (e.g. the number of connected component is two for a couple of larger 
values of the threshold) such inconsistencies have little impact in the ultimate utility of these features. 
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seek a low dimensional embedding, m
i R∈r with  . Here ir  is best thought of as an m -

dimensional set of coordinates for the thi  datum in the manifold.  The LE manifold is 
constructed by choosing the embedding coordinates to minimize the following objective function, 

  (M.3.3) 

The weight ijω  is constructed as a measure of the similarity between ( ,  )i itx  and ( ,  )j jtx , and is 
chosen to be largest when these quantities are closest. Here we propose a variant of the Gaussian 
weight function for which ijω  is 

 
2

1 2

exp exp .i j i j
ij

t t
ω

σ σ

   − −   = − −
     

x x
  (M.3.4) 

Thus the objective function (M.3.3) will incur a heavy penalty in the event that  and 
 are similar (for which the corresponding weight will be close to one) but are embedded 

far from one another. Thus, by choosing the embedding coordinates to minimize (M.3.3) we 
guarantee that if ( ,  )i itx  and  are close, the ir  and  are close as well. The quantities 1σ  

and 2σ  are used to scale the size of the weight associated with the feature vector and the metrics 
values respectively.  Their selection is discussed in Section III.3. 

To illustrate these ideas, consider again the three cases illustrated in Figures M.3.3 and M.3.5.  
With 1 30σ =  and 2 1σ =  (the values used in our experiments discussed below), when 
constructing the weight for comparing (a) and (b), the morphological feature vectors for these 
data sets are clearly similar, so that the first factor in (M.3.4) will be large, but the difference 
between the metrics, 64.57 kg, is huge so that the second factor in (M.3.4) will be very small, 
resulting in 0.27abω = . When we calculate the weight for (a) and (c), the first factor measuring 
the similarity between morphological features will be small, but the second factor will be large, 
yielding the weight 0.51acω = . Thus, using this approach we see that (a) and (c) are, in a sense, 
almost twice as similar as (a) and (b) which is exactly what we desire given that pool masses for 
(a) and (c) are much closer than those of (a) and (b). 

In Figure M.3.6 we display a two-dimensional pool fraction manifold constructed using this 
approach. Thus, each r vector has two components, 1r  and 2r . Each circle in this space corresponds 
to one data set used in the experiments in Section III.3 with the color of the circle indicating the 
pool fraction for that data set. We also plot a few of the corresponding concentration images. 
From Figure M.3.6, we see that the value of pf changes monotonically from zero to one when 
moving along the manifold.  Thus, data sets whose metric values are similar will in fact be 
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mapped close to one another in r space so that the locality preserving property discussed in 
Section II.3.1 is in fact evident at least with respect to the training data. 

Two remarks are in order concerning the LE method. First, the process of solving the 
optimization problem in (M.3.3) is well known (Mikhail Belki, 2003). Second, full specification 
of the problem requires that the parameters 1σ  and 2σ be provided.  As described Section III.3, 
here we use a cross validation (Bishop, 2006) approach to determine these quantities adaptively 
from the data. 

 

II.3.2.4. Spectral Regression Method for Embedding Function Learning 
As is evident from the discussion in Section II.3.2.3, LE requires that both the feature vector and 
the metric be known to determine the manifold coordinates.  This is clearly a problem for 
regression where we do not possess the metric but rather would like to embed a test data set into 
the manifold and estimate its associated metric by looking at the metrics of the neighboring test 
data. Thus, to perform regression in manifold space it is necessary to extend the manifold 
embedding to test data comprised only of observed morphological feature vectors.  We need then 
to learn the embedding function, which is a mapping from morphological feature space to 
manifold space. After LE embeds the training data in manifold space, the input of embedding 
function  and the output  are known. Using this vector pair, we 

 
Figure M.3.6: Two dimensional embedding of concentration image data and associated pool 
fraction (left) and mass in pools (right).  The color of each dot indicates the pool fraction or 
pool mass respectively. The manifolds we find demonstrate that the data with similar metrics 
are located nearby one another. The unit of mass in pool is kilogram. 
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can learn the embedding function ( )f=r x  , which can then be used to embed the morphological 
feature derived from test data into manifold space. 

Spectral Regression (SR) casts embedding function learning into a regression framework. Since 
LE is a nonlinear dimension reduction method, the mapping function from feature space to 
manifold space should also be nonlinear. We assume that the nonlinear function lives in a Hilbert 
space specified by kernel ( , )K ⋅ ⋅ (Shawe-Taylor, 2004). The model of this nonlinear function is

( ) ( )Tf =x A k x  , specified by the parameter matrix N mR ×∈A and kernel function vector

. The optimization problem to learn A is  (Deng Cai 
2007): 

  (M.3.5) 

whereγ  is a regularization hyper-parameter and 2

F
⋅  is the Frobenius norm (sum of the squares of 

the elements of the matrix). The solution of problem (M.3.5) is  , where 

matrix K  is the N N× Gram matrix with ( , )ij i jK k= x x , and . In the 
experiments in Section III.3, we use the Gaussian kernel (Cai, 2007),  

 ( )
2

, exp i
i

SR

k
σ

 −
=  − 

 
 

x x
x x    

where the hyper-parameter SRσ is determined by cross-validation. 

II.3.2.5. Linear Bayesian Regression Method and Confidence Interval Estimation 
The final step of our machine learning framework is training the regression function in manifold 
space to estimate the metric of test data. One of the advantages of Bayesian regression is that it 
can provide both the estimated metric itself along with a confidence interval allowing for the 
quantification of uncertainty in the estimate.  The summary of standard linear Bayesian 
regression is provided with additional details in (Bishop, 2006). Here we discuss two 
implementation issues specific to our problem. As discussed in (Bishop, 2006), a linear 
regression function is used which takes the form , where the weight vector w
and the bias constant, b , are to be determined from the training data and  is modeled as zero 
mean, additive Gaussian noise with variance β .  The first issue is how to best choose β .  Here, 
we employ an iterative approach which empirically appears to function well, but for which we do 
not yet have a theoretical justification. Specifically for all experiments, we initially set 0.01β = . 
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After determining  and , the optimal values for w  and b  using the methods of (Bishop 
2006), the random variable  is estimated as  , and β is updated as the sample 

variance of  . With this new value of β , the regression function can again be computed and the 
process is repeated until convergence. The rate of convergence is quite fast; generally one 
iteration is enough. 

For the fully Bayesian approach to regression construction discussed in (Bishop, 2006), we also 
require a prior probability distribution for the unknown metric being estimated for a given set of 
test data.  Again a zero mean Gaussian model is used for which the variance needs to be 
determined.  Unlike the specification of β , here we only possess one test data set so that sample 
variance methods cannot so easily be employed. To address this issue we assume that the 
embedding process is sufficiently accurate so that the training data in the neighborhood of the 
embedded test data will have associated metrics that are close to that of the test data. Under such 
an assumption, the variance of the metric for the test datum is taken as the sample variance of the 
metrics for these 10 neighboring training data. 

II.3.3. Integrated Manifold Regression 
In standard machine learning procedure, each of the processing methods discussed in Section 
II.3.2.3-II.3.2.5 is implemented in isolation of the other. Under such an approach, the manifold is 
constructed only with the goal of embedding the training data, and does not reflect the ultimate 
processing objective of estimating the metric from new test data. Thus, we are motivated to 
consider an integrated approach, which determines both the manifold embedding function and 
the regression function as the solution to a single, unified variational problem. Interestingly, the 
approach bypasses the need to explicitly construct the manifold coordinates of the training data, 
although given the embedding function, these quantities certainly could be computed to e.g. 
visualize the embedding. To the best of our knowledge, the idea of integrating manifold 
construction and spectral regression has not been considered even within the machine learning 
community and thus represents a unique contribution of our work beyond the specific application 
of environmental restoration. 

Formally we integrate manifold dimension reduction, spectral regression and Bayesian 
regression using the following cost function, 

( ) ( )
2

22 2
1 2 32, , j 1

1min ( , , ) ( ) ( ) γ γ , γ ,1
d m m
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 (M.3.6) 

where (( ) )Tf =x A xk is the embedding function for both the training and test data and 1T NR ×∈1  
is the vector of all ones.  The first term in (M.3.6) is motivated by the LE cost function and seeks 

an embedding of the training data that preserves locality. The second term 
2

F
A  is the 

regularization term coming from SR, with the regularization hyper-parameter 1γ  playing the 
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same role as γ in (M.3.5).  The third term in (M.3.6) arises from the mathematical details of the 
Bayesian regression problem provided in (Bishop, 2006). The hyper-parameter 2γ  is used to 
balance the desire for a good embedding with the needs of obtaining accurate regression results. 

To find the optimal solution for problem (M.3.6), an alternating decent method is employed in 
which we use gradient descent to update A  with ( ),T bϖ = w  

 fixed and then update  given

A . The update equations are derived as follows.  Taking the derivative of (M.3.6) with respect 
to A yields 

 ( )1 2 22

2 γ 2γ 2γ1 1 TT T T T T T T

N
L b

N N
∂
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∂

A XLX A ww A XX w 1 t X
A

  (M.3.7) 

Using gradient descent algorithm we update the embedding matrix A , 

 ( ) ( 1)
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∂
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A
  (M.3.8) 

whereξ  is the step size. Taking the derivative of (M.3.6) with respect to ( ),T bϖ = w , 
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Setting the partial derivative (M.3.8) to 0, we see that ϖ  can be easily solved by 
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Now, (M.3.8) specifies the gradient of TA in terms of w  and the optimal solution of ( ),bw  
depends on A in (M.3.10).  This situation immediately suggests an alternative optimization 
approach. In this approach w and TA are first initialized randomly, and then TA is updated via 
gradient descent using the current estimate of w . We then use (M.3.10) to update w . The 
algorithm is summarized in Algorithm-1. The convergence threshold is set to 0.01η =  and the 
maximum number of iterations is fixed at 50, the step sizeξ is chosen by the diminishing rule 
(Bertsekas, 1999). Most of the experiments in Section III.3 end within 50 iterations. 
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II.3.4. Multi-task Manifold Regression 
Thus far, we have considered the estimation of the three quantities , ,p p gf M M individually. That 
is, one “learner” is used to estimate pool fraction, another for the mass of DNAPL in pools and a 
third for the mass of DNAPL in ganglia.  These three metrics however are not independent of 
one another.  Thus, we hypothesize that an approach which incorporates the mathematical 
relationships among these quantities to determine all three at once should outperform the case 
where we ignore the coupling. More specifically, we exploit the fact that pool fraction is 
equivalent to the ratio of the mass in pools to the mass in pools plus the mass in ganglia. 

The analytical method we have developed proceeds as follows. In order to simplify the 
computation, we first use LE to determine the manifold coordinates of the training data R . To 
remove the need to compute the bias terms, i.e., the ib  in each of the regression functions, we 
centralize both R  and t by removing the sample mean value from each.  That is, we compute

1

1 N

i
iN =

= ∑r r  , and then define a centralized R as 1 2[ , , , ]N− − −r r r r r r , and centralize t  as

 where
1

1 N

i
i

t t
N =

= ∑  . In this way, the regression function for a given metric, 

which was Tt b= ⋅ +w r , becomes  and we no longer need to determine the bias 
termb , thereby simplifying the mathematics a bit in the following. 

Algorithm-1 : Integrated Manifold Regression Algorithm 
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Outputs: Embedding function A and weight vector of regression function ( ),T bw  . 

Initialization: (0)A  and ( )(0)
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Given these centralized manifold variables, we seek to simultaneously determine three regression 
functions, one each for the three metrics of interest, subject to the constraint that the estimated 
pool fraction is equal to the ratio of pM  to p gM M+ .  The optimization problem to solve then is 

 

  (M.3.11) 

where the estimation of pool fraction, mass of DNAPL in pool and ganglia are generated using 
the following linear regression functions. 
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  (M.3.12) 

In the objective function of (M.3.11), we sum the three objective functions (one for each metric) 
employed in our integrated approach to metric learning. The constraint in (M.3.11) enforces the 
physical relationship among the three quantities to be estimated. The hyper-parameters 1 3~k kγ γ
play the same roles as in (M.3.6). Using Lagrange multiplier, we can convert (M.3.11) into an 
unconstraint optimization problem as the following 
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where ) (( )T
k kf =x A xk . While (M.3.13) provides for the joint determination of all three regression 

functions in a manner that reflects the physical relationship among the metrics, the approach 
comes at the cost of having to determine a rather large number of hyper-parameters; i.e., 

1 2 1 3{ , , , ~ , }k k kSR k k Pσ σ σ γ γ γ . We use standard manifold regression to determine the hyper-
parameters 1kσ , 2kσ and kSRσ for manifold embedding, use integrated manifold learning algorithm 
to determine the regularization hyper-parameters 1 3~k kγ γ , and then use these hyper-parameters 
which have been selected for multi-task manifold regression. Finally 10 cross-validation is 
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employed to determine the last hyper-parameter pγ . In order to solve problem (M.3.13), we use 
Algorithm-2 summarized below. 

 

II.3.5. Sparse Data Manifold Regression 
In addition to the work described in Section II.1.3 we also consider the application of our 
methods to cases where down-gradient data may be sparse in the sense that a full image of the 
transect concentration is not available. This is intended to more closely mimic information 
available at field sites, where one is provided with contaminant plume concentrations from a 
number of discrete monitoring wells located throughout the contaminated area.  To model this 
situation, we are initially considering a two-dimensional problem and modeling the experiments 
being performed under Task I. In more detail, we have developed a simulation library of roughly 
7000 training data sets (down-gradient concentration measurements and associated DNAPL 
metrics) whose hydraulic permeability statistics and data acquisition geometries are the same as 
those used to determine the transition probability/Markov Chain (TP/MC) permeability field 
which was packed in the aquifer cell completed for Task I, and generated regression functions 
for pool fraction, pool mass, and ganglia mass. Unlike our previous approach which assumed 
data were collected over a complete, continuous transect, we have developed a new processing 
method for embedding sparsely collected data into the manifold. This approach bypasses the 

Algorithm-2 : Multi-task Manifold Regression Algorithm 

Inputs: { } 1
( , ) ( , ) N

k k ki ki i
t

=
=R t r  ∶  , 0η >  , 1 2, ,k k kSRσ σ σ ,  1 3~ , 0Pk kγ γ γ > , 1 0ξ > , 1, 2,3k =   

Outputs: Embedding function 1 2 3, ,A A A and weight vector of regression function 1 2 3, ,w w w  . 

Initialization: (0) (0) (0)
1 2 3, ,A A A  and (0) (0) (0)

1 2 3, ,w w w  random. 
Repeat 

- Gradient Descent Update ( )p
kA and 1q = , 1, 2,3k =    

 Compute ( 1) ( )
, 1 , ( )

,

p p
k q q qk p

k q

Lξ+
+

∂
= −

∂
A A

A . 

 11,  / .qq q qξ ξ= + =  

 Until 
2( 1) ( 1)

, 1 ,  p p
k q k q η+ +

+ − <A A  

- Gradient Descent Update ( )p
kw and 1q = , 1, 2,3k =   

 Compute ( 1) ( )
, 1 , ( )

,

p p
k q q qk p

k q

Lξ+
+

∂
= −

∂
w w

w . 

 11,  / .qq q qξ ξ= + =  

 Until 
2( 1) ( 1)

, 1 ,  p p
k q k q η+ +

+ − <w w  

Until 
2( 1) ( )   ,   1, 2,3p p

k k kη+ − < =w w   
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need for interpolating the data and is capable of dealing with arbitrary sampling strategies. The 
framework is shown in Figure M.3.7. 

 

Because we assume the availability of a full transect of training data, manifold construction 
proceeds in the same way as before via the extraction and processing of the mophological feature. 
Now however the test data set is comprised of only the sparse samples corresponding to the 
sampling ports used in the experiments. As these data do not naturally support the extraction of 
the morphological features, a new embedding method must be devised.  With the manifold fixed 
and determined from the full set of training data, our approach is to learn an embedding function 
(that is an A matrix) directly from the sparsely sampled training set without the intervening 
mophological feature calculation. That is, we use ( ) ( )T

S Sf =x A k x  in (M.3.5), where Sx  denotes 
the sparse concentration data to embed the sparse, test data into the manifold constructed using 
the fully observed downgradient concentration images. The training of the Bayesian regression 
function used to estimate the metrics from test data does not change from the approach discussed 
previously. For the integrated manifold regression, we use morphological features to calculate ijω  
and substitute x  with Sx in (M.3.6). For multi-task learning, we use full concentration data to get 
the manifold coordinates R . After centralizing it, we substitute x  with Sx in (M.3.11). 

 

 

 

Figure M.3.7: The framework of manifold regression for sparse concentration data. The 
morphological feature extraction is used for the full training data which gives the manifold 
coordinate. The embedding function is learned from sparse data which is sampled from the 
full concentration data according to the location of wells. 
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II.4. Development of Simplified Modeling Tools 
 

II.4.1. Introduction 
In the field, the migration and entrapment of organic liquids in the subsurface is strongly 
influenced by fluid properties and release characteristics and by small and large scale 
heterogeneities in subsurface textural properties. In particular, spatial variations in permeability 
and capillary properties lead to the formation of complex and non-uniform distributions of 
DNAPL mass (Bradford et al., 2003; Dekker and Abriola, 2000; Essaid and Hess, 1993; Farthing 
et al., 2012; Kueper and Gerhard, 1995; Lemke et al., 2004).  The application of local scale mass 
transfer coefficients for simulation of DNAPL dissolution or tracer partitioning in heterogeneous 
source zones is valid only when (a) heterogeneous properties are characterized at the same level 
(scale) as was used for development of the local scale model and (b) computational grid blocks 
are small enough to capture the spatial variability of the properties at this scale.  Neither 
condition can feasibly be met in a field scale simulation.  An alternative approach then for the 
simulation of multiphase transport behavior in heterogeneous systems is the use of simplied 
modeling tools.  Such models are typically based upon average mass balance relationships or 
governing equations with reduced dimensionality and upscaled coefficients; they customarily 
incorporate spatially averaged parameters and SZA metrics to predict system response.   

Several approaches have been used to link SZA metrics to mass discharge behavior. These 
approaches have involved application of Lagrangian modeling techniques (e.g., Jawitz et al., 
2003, 2005; Enfield et al., 2005; Fure et al., 2006; Basu et al., 2008a); upscaled mass transfer 
relationships (e.g., Parker and Park, 2004; Park and Parker, 2005; Christ et al., 2006; Saenton 
and Illangasekare, 2007; Parker et al., 2008; Zhu and Sykes, 2004), and traditional analytical and 
numerical models (e.g., Kaye et al., 2008; Marble et al., 2008; Zhang et al., 2008).  Motivated by 
the attractive simplicity of the GTP ratio, Christ et.al.(2006), developed a simplified screening 
model based upon this metric that successfully captured the relationship between source zone 
mass removal and down-gradient contaminant flux reduction for a variety of field-scale 
numerical simulation scenarios.  Although this and similar upscaled models may reproduce the 
general decline in flux-averaged concentrations with mass removal (e.g., Parker and Park, 2004; 
Christ et al., 2006; Fure et al., 2006; Zhang et al., 2008), they fail to capture the distinct ‘multi-
stage’ concentration behavior observed as the SZA transforms from ganglia- to pool dominance 
(see, for example, Lemke et al., 2004b; Parker and Park, 2004; Brusseau et al., 2007, 2008; 
Suchomel and Pennell, 2006; Zhang et al., 2008). 

The first goal of this task is to refine an existing upscaled mass transfer model to more accurately 
predict two-stage reductions in mass discharge as a function of mass removal and to investigate 
the relationship between SZA and mass recovery in pool-dominated source zones by employing 
the upscaled model.  Pool-dominated source zones are anticipated at aged field sites that have 
been subject to dissolution under natural gradient conditions. Numerical simulations are 
employed in this research to investigate SZA characteristics that lead to two-stage mass 
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discharge and subsequently combined with experimental results to guide and test upscaled mass 
transfer model modifications.  

When tracer partitioning in a source-zone region is explored, the large difference between 
partitioning and dissolution time scales greatly reduces the impact of mass removal on the 
partitioning rate.  This difference renders most existing upscaled models, which were developed 
for upscaling mass transfer rate within a time domain, inappropriate for application to 
partitioning processes. Furthermore, experimental studies have shown that the effective mass 
transfer rates in a heterogeneous domain are significantly smaller than those estimated by local 
scale models when effective properties are used (Nambi, 1999; Parker and Park, 2004).  Thus, 
the second goal of this task is to develop upscaled models to be used in the design and 
interpretation of partitioning tracer tests.  Here local scale mass transfer coefficients are 
incorporated in a fine-grid two-dimensional model to simulate a series of partitioning tracer tests 
in heterogeneous DNAPL realizations. The output of these simulations is then adopted as 
observation data. For each test, a one-dimensional (upscaled) model is then fitted to the results of 
the 2D simulations and an effective mass transfer coefficient is estimated. A regression model is 
developed for the prediction of the effective mass transfer coefficient based on the characteristics 
of these realizations. 

II.4.2. Upscaled Models for Mass Depletion 
Under previous SERDP sponsorship, Christ et al. (2006) developed an upscaled model that uses 
two site specific parameters: initial average concentration (Co) and GTP ratio, to quantify the 
approximate evolution of the contaminant plume as DNAPL dissolves. The DNAPL source zone 
simulations employed in their study were generated using the SGS-based simulations 
conditioned to the Bachman Road site (Lemke and Abriola, 2003; 2006; Lemke et al., 2004). 
The upscaled model was demonstrated to successfully predict single stage dissolution behavior 
commonly found in source zones that respond quickly in terms of mass removal per remediation 
effort (high GTP). 

This simplified screening model build upon observations from Lemke and Abriola (2003, 2006) 
and Lemke et al. (2004) that GTP ratio metrics may be useful for distinguishing between 
DNAPL source zones with different dissolution signatures. High GTP signatures are dominated 
by ganglia zones that respond quickly to mass removal remediation efforts and generally exhibit 
single stage dissolution behavior. On the other hand, low GTP signatures are dominated by pools 
and yield “two-stage” dissolution behavior as DNAPL mass is removed.  

For this task, the wide range of source zone architectures obtained from the simulations in Task I 
were supplemented by the generation of additional low GTP SZAs by changing the correlation 
length of the ensemble of the 16 3D permeability fields based.  

To simulate these scenarios, the Christ et al. (2006) model was revisited to develop a new mass 
depletion parameter. The original model of Christ et al. (2006) takes the form: 
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𝐶̅(𝐿)
𝐶𝑒𝑞

= 1 − �1 − 𝐶0̅
𝐶𝑒𝑞
�
� 𝑀𝑀0

�
𝛽

                                (M.4.1) 

where 𝐶̅(𝐿) is the flux-weight aqueous phase concentration at the down gradient boundary, 𝐶𝑒𝑞 
is the equilibrium aqueous solubility, 𝐶0̅ is the initial flux-weight concentration, 𝑀 and 𝑀0 is the 
DNAPL mass at the given time and at time t=0, respectively, and 𝛽  is a mass depletion 
parameter obtained from the correlation between GTP and β.  Christ et al. (2006) found 𝛽 =
1.5𝐺𝑇𝑃−0.26 for the simulations used in Christ et al (2006), where 1.5 < 𝐺𝑇𝑃 < 24. 

II.4.3. Upscaled Models for Push-Pull Tracer Tests 

II.4.3.1. Generation of Heterogeneous Source-Zone Realizations 
The first step in the development of the upscaled models for partitioning tracer test is to develop 
a suite of heterogeneous SZA realizations, spanning a realistic range of conditions.  The 
simulations conducted under Task I were used as the basis for this effort.  A total of 33 
realizations were employed, encompassing both high and low lnK variance permeability fields.  
To maximize the number of realizations that could be handled, upscaled modeling was 
undertaken in two dimensional domains abstracted from these realizations. To obtain two-
dimensional source zone realizations representative of a range of heterogeneity metrics, a 
vertical plane was passed through the DNAPL release point and one or two two-dimensional 
rectangular (40 cm high x 120 cm long) subsections were manually selected from each transect 
plane. The size of these 2D subsections was selected as representative of the scale of the zone 
interrogated in a PPTT (Davis et al. 2002, Istok et al. 2002, Davis et al. 2005, Pitterle et al. 
2005). 

Numerically generated dissolution mass removal data (Christ et al., 2010) were used to generate 
three or four DNAPL distribution scenarios from each 2D subsection. The selected location of 
the 2D domains was fixed in 3D space. Four snapshots at equal time intervals were taken from 
each domain and as independent realizations. The use of the same location at different mass 
removal stages provided variations of NAPL saturations and distribution architectures within the 
same permeability fields. In some cases, the third and fourth snapshots were not obtained 
because the entire mass within the marked 2D frame dissolved out during the first two stages. 
Using this technique, a total of 180 saturation realizations were generated from 65 two-
dimensional permeability fields.  This process was repeated for all 33 three-dimensional 
realizations.  The process of fixing 2D frames within the 3D domains and selecting four temporal 
snapshots during the dissolution process is illustrated in Figure M.4.1. 
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Table M.4.1 Characteristics of the realizations and input parameters in numerical simulations. 
Additional and changed input compared to Table M.1.4 is presented here 

Permeability Field Set 1 Set 2 

 Number of realizations 16 17 

 ln(𝑘)�������  (k in 𝑚/𝑠) 26.0 26.0 

 σln (k)
2  0.29 1.0 

 Vertical correlation length: 𝜆𝑧 (𝑚) 0.36 0.10 

Tracer Tests Tracer 1 Tracer 2 Tracer 3 

 Tracer Bromide 1-hexanol 2-octanol 

 Partition coefficient (𝐿𝑎𝑞/𝐿𝑁𝐴𝑃𝐿) - 17.4 149 

 Injection concentration (𝑚𝑔/𝐿) 840 380 140 

 Molecular diffusivity in water ,𝐷𝑎 (𝑐𝑚2/𝑠) 
1.6

× 10−5 
0.76 × 10−5 0.65 × 10−5 

 

 

II.4.3.2. Source-Zone Metrics 
In this research, the properties of source zones that may influence the effective mass transfer 
coefficient were explored to identify the factors controlling the upscaled mass transfer 
coefficient.  The migration and entrapment of organic liquids in the subsurface is strongly 
influenced by both small and large scale heterogeneities in subsurface textural properties.  The 
permeability fields are generally characterized by porosity, mean and variance of 𝑙𝑛𝐾 , and 
correlation lengths in the horizontal and vertical directions. The correlation lengths are obtained 
by constructing the semivariogram of the fields and fitting an exponential variogram model 
(Lemke et al. 2004). 

The NAPL content in a domain is described by the overall mean saturation (𝑆𝑛���). Apart from the 
total NAPL content, distribution of mass within the domain is a critical factor controlling the 
effective mass transfer coefficient. The shape of the distribution of the entrapped mass is another 
physical factor that could affect the effective mass transfer rate. The first and second spatial 
moments of the saturation matrix are used to quantify the NAPL distribution within the domain. 
The horizontal and vertical centers of mass are given by normalized first moments: 
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𝑥̅ = 𝑀10
𝑀00

     and     𝑧̅ = 𝑀01
𝑀00

      (M.4.2) 

The second spatial moment is a measure of mass spread about the center of mass, and is 
estimated in the horizontal and vertical directions by: 

𝜎𝑥𝑥2 = 𝑀20
𝑀00

− 𝑥̅2     and    𝜎𝑧𝑧2 = 𝑀02
𝑀00

− 𝑧̅2      (M.4.3) 

Here:  

 

𝑀𝑖𝑗 = � � 𝑛 ∙ 𝜌 ∙ 𝑆𝑛(𝑥, 𝑧)𝑥𝑖𝑧𝑗𝑑𝑥𝑑𝑧
∞

−∞

∞

−∞

 
     (M.4.4) 

where 𝜌 is the density of DNAPL, and  𝑥, 𝑧 are horizontal and vertical distances of each node 
from the origin of the coordinate system.  

II.4.3.3. Model Development 
The two-dimensional simulator described in Section II.2.3.2 was implemented to model 
partitioning tracer tests in the generated heterogeneous fields.  The effluent breakthrough curve 
obtained by the fine scale model was then taken as observation data for upscaled parameter 
fitting.  For these simulations, a widely-used groundwater flow model, MODFLOW (Harbaugh, 
2005), was coupled with the implementation of the linear driving force model (described in 
Section II.2.3.1) in a MATLAB (MATLAB 2008) script.  Confined flow was simulated under 
constant flux boundary conditions. An empirical correlation (Nambi and Powers, 2003) was 
selected to estimate the local lumped mass transfer rate coefficient within each grid block, based 
upon its broader range of validity for organic phase saturations: 

 Sh∗ = 𝑘�  𝑑502

𝐷𝑎
= 37.2 𝑅𝑒′ 0.61 𝑆𝑛1.24     (M.2.30-

duplicate) 

Here 𝑅𝑒′ is the modified Reynolds number; in which the mean grain size, 𝑑50, describes the 
length scale and the seepage velocity, 𝑣, represents the velocity component. 

Tracer test simulations were performed under conditions representative of field tracer tests. A 
pulse of a group of tracers, including one non-partitioning (conservative), i.e., bromide, and two 
partitioning alcohol tracers, i.e., 1-hexanol, and 2-octanol, was introduced to the domain. These 
selected tracers differ in their partitioning capacities, leading to chromatographic separation of 
tracers during the test. Tracers were uniformly injected across the left-hand boundary of each 
two dimensional sub-domain and a flux-averaged concentration at the right-hand boundary was 
quantified. One pore volume (1PV) of the tracer solution was injected, and followed by 
background solution flushing until either more than 99 percent of the injected mass was 
recovered or 40 PV of background solution was flushed through the domain. Tracer 
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characteristics and simulation conditions are according to Table M.1.4 with some modifications 
listed in Table 5.4.1. For each 2D domain (from a total of 180 domains) four tracer tests were 
simulated with flow rates ranging from 1 to 40 (𝑚𝐿/𝑚𝑖𝑛). 

All simulations were performed using a finely discretized (5 × 5𝑚𝑚) two-dimensional grid. 
This level of discretization was chosen to permit resolution of the local flow field within the 
heterogeneous blocks at a scale consistent with the use of the local mass transfer coefficients. 
These simulations produced 480 sets of tracer breakthrough curves for further analysis 
(observation tracer data). 

Following the development of the observation tracer data, a one-dimensional upscaled model 
was used to model the same tracer tests. The effective mass transfer coefficient in this upscaled 
model was fit to all 480 analyzed tracer tests. The non-partitioning tracer data were first used to 
fit the effective porosity and dispersivity. The fitted values for the dispersivity and effective 
porosity were then embedded in the model, and the upscaled model was fit to the breakthrough 
curves of 1-hexanol and 2-octanol tracers. A single effective mass transfer coefficient was used 
to simultaneously fit both tracer breakthrough curves. In this fitting, the 2-octanol data were 
weighted 5 times more than the 1-hexanol data in optimization algorithm. These weights were 
chosen based upon the higher potential of 2-octanol to partition (partition coefficient of 149 
𝐿𝑎𝑞/𝐿𝑁𝐴𝑃𝐿  for 2-octanol versus 17.4 𝐿𝑎𝑞/𝐿𝑁𝐴𝑃𝐿 for 1-hexanol). The fit was performed using the 
lsqcurvefit function from MATLAB optimization tool. The mean squared error (MSE) between 
the observed and predicted breakthrough curves was calculated separately for all tests. 

Once effective mass transfer rate coefficients were obtained for a wide range of source-zone 
configurations, a statistical analysis was performed to develop a constitutive equation descriptive 
of the mass transfer rate as a function of source-zone metrics. A multivariable power function 
was selected for the form of the constitutive model: 

𝑆ℎ
𝑆𝑐
����

= 𝛽0 ∙ 𝑥1𝛽1 ∙ 𝑥2𝛽2 ∙. . .∙ 𝑥𝑁𝛽𝑁       (M.4.5) 

here 𝑥1,2,…,𝑁 are the predictor variables. Here the effective mass transfer coefficient (𝑘� , [𝑇−1]) is 
expressed as the ratio of an upscaled Sherwood number (𝑆ℎ��� = 𝑘�𝐿2/Daq) and the Schmidt 
number (𝑆𝑐 = 𝜈 Daq⁄ ). Multiple models were developed, sequentially incorporating increasing 
numbers of predictors. Models were evaluated based on three main statistics: adjusted r-squared; 
standard error of the model: S; and predicted residual sums of squares, PRESS (Helsel and 
Hirsch, 2002). The normal distribution of residuals, variance inflation factor (an index for the 
severity of multicollinearity between variables), and statistical significance of the coefficients 
were examined for all models.  
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Following the development of the upscaled mass transfer coefficient correlation, this expression 
can be incorporated into the upscaled model and used to estimate source zone metrics (selected 
predictor variables) and their associated confidence intervals.    
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(a)                                                                (b) 

 

 

 

 

 

 

(c) 

 

 

 

Figure M.4.1. Two-dimensional domains cropped out of three-dimensional numerically generated 
realizations; (a) 3D PCE-NAPL realizations generated by UTCHEM; (b) 2D vertical plane selected at the 
center of SZ, the marked rectangular region at the center marks the location and dimensions of the 
selected 2D regions for developing the upscaled model; (c) NAPL saturation in the selected region at four 
different time snapshots during the dissolution. 
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III. Results and Discussion 

III.1 Data Generation for Metric Identification and Protocol Development 

III.1.1. Batch and Aquifer Cell Experiments 

III.1.1.1. Batch Experiments 
A matrix of batch experiments was conducted to examine the equilibrium aqueous and micellar 
solubilization of PCE and TCE from DNAPL mixtures. Traditionally these systems have been 
described using a Raoult’s law convention, where the aqueous solubility of the individual 
constituent (PCE or TCE) is multiplied by the mole fraction of each constituent in the NAPL. 
However, preliminary measurements performed during the initial stage of the project indicated 
that this assumption was not valid in the presence of certain surfactants. For these experiments, 
equilibrium aqueous solubilities were measured over a range of mole fractions to determine if 
deviations from Raoult’s law convention were reproducible. The measured equilibrium aqueous 
solubilities of pure TCE and PCE were determined to be 1319 mg/L and 212 mg/L, respectively.  
The solubility of both TCE and PCE in water contacted with TCE/PCE NAPL mixtures over the 
mole fraction range of 0.2 to 1.0 was shown to follow the Raoult’s law convention (Figure 
R.1.1), where the effective solubility was proportional to the solubility of the single component 
DNAPL and mole fraction of TCE or PCE in the mixed DNAPL. Therefore, the aqueous 
solubility of TCE or PCE from binary DNAPL mixtures is considered to be ideal under these 
experimental conditions. 

 

 

Figure R.1.1. Equilibrium aqueous solubility of TCE and PCE as a function of mole fraction. 
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Figure R.1.2. Equilibrium solubility of TCE and PCE in 4% Tween 80 from binary DNAPL 
mixtures.  Raoult’s law predictions of ideal solubilization behavior are shown as dashed lines. 

The equilibrium solubility of PCE and TCE was also measured in aqueous solutions of Tween® 
80 (polyoxyethylene (20) sorbitan monooleate) to determine if the Raoult’s law convention could 
be used to describe the micellar solubilization of each DNAPL constituent.  Figure R.1.2 shows 
the measured equilibrium solubility of TCE and PCE versus the mole fraction of each constituent 
in binary DNAPL mixtures in a 4% (wt./wt.) Tween 80 solution.  Based on the measured 
solubility of TCE and PCE in the Tween 80 solution, PCE was preferentially solubilized from 
the mixed NAPLs relative to TCE. Here, the measured solubility behavior of PCE could not be 
described using a Raoult’s law convention, which under- and over- predicted the observed 
solubility of PCE and TCE, respectively. In a 4% Tween 80 solution, PCE solubilization was 
found to increase by 100, 67 and 32 percent at PCE mole fractions 0.25, 0.5 and 0.75, 
respectively.  These data indicate that non-ideal behavior observed for PCE increased with 
decreasing PCE mole fraction in the NAPL.  In contrast, TCE solubility was under-predicted by 
43, 27 and 17.5 % at mole fractions of 0.25, 0.5 and 0.75 TCE, respectively. Similar behavior 
was observed for a range of Tween 80 solution concentrations (e.g., 1, 2, 3, and 5 % wt., data not 
shown). At all mole fractions and Tween 80 concentrations, preferential solubilization resulted in 
greater PCE solubility than would be predicted by the Raoult’s law convention. 

A second set of equilibrium solubility experiments was conducted with an anionic surfactant, 
Aerosol MA-80I to determine if the observed preferential solubilization of PCE was unique to 
Tween 80 or would occur with other surfactants.  For a surfactant formulation consisting of 3.3% 
(wt.) Aerosol MA80I + 6g/L NaCl + 8% (wt.) 2-proponal, PCE solubility was 215, 102 and 41% 
greater than would be predicted based on Raoult’s law convention at PCE mole fractions of 0.25, 
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0.5 and 0.75, respectively. The observed enhancements in PCE solubility resulted in a 
corresponding reductions in TCE solubility, which deviated from Raoult’s law convention by 65, 
55 and 36 percent for the 0.25, 0.5 and 0.75 mole fractions. These results clearly indicate that 
this behavior is not due to the surfactant formulation alone. 

In order to determine if the observed deviations from Raoult’s law were limited to chlorinated 
solvents such as PCE and TCE, a third set solubilization experiments was completed for two 
aliphatic hydrocarbons, decane and dodecane.  It has been suggested that more polar compounds, 
including TCE and PCE, may be distributed in both the hydrophobic core and hydrophilic shell 
of surfactant micelles. In contrast, strongly hydrophobic compounds, such as decane and 
dodecane, are considered to partition primarily within the hydrophobic core of the micelles. 
Therefore, it was hypothesized that the solubility behavior of decane and dodecane would 
conform to the Raoult’s law convention in micellar solutions of Tween 80. 

The equilibrium solubility of decane and dodecane in 4 % (wt.) Tween 80 over the range of mole 
fractions tested is shown in Figure R.1.3. Although the solubility deviated slightly from 
predictions based on a Raoult’s Law convention, the behavior was more predictable and 
decreased approximately linearly with the mole fraction in the NAPL phase. Since these 
hydrophobic compounds would predominantly solubilize into the hydrophobic core of the 
micelle, a number of other physiochemical properties pertaining to the NAPL mixture were used 
to evaluate other predictive models. Based on this analysis, it was found that the molar volume 
fraction of each component in the organic phase, which is similar to a Raoult’s law convention, 
provided the best estimate of decane and dodecane solubility at a given surfactant concentration. 
This is similar to previous findings which suggested that solubility of hydrophobic compounds 
within the micelle core is inversely proportional to their molar volume (Nagarajan et al. 1985, 
Diallo et al. 1994). 

To further evaluate the effect of DNAPL constituents on preferential dissolution, additional 
batch solubility experiments were completed with a 1:1 (molar) mixture of PCE and decane in 
micellar solutions of Tween 80 (Figure R.1.4). In all Tween 80 micellar solutions, decane was 
preferentially solubilized relative PCE, and the solubility of decane was under predicted based on 
a Raoult’s law convention. PCE solubility was approximately 40% less than predicted assuming 
ideal behavior over the range of surfactant concentrations considered, whereas, decane 
solubilities were more than 100 percent greater than those predicted by the Raoult’s law 
convention for all Tween 80 concentrations considered.  These findings indicate that preferential 
solubilization is strongly influenced by the physiochemical properties of the NAPL constituents. 
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Figure R.1.3. Equilibrium solubility of decane and dodecane in 4% Tween 80 from a binary 
multicomponent organic liquid at various mole fractions. 

 

 

Figure R.1.4. Measured decane solubilities from a pure decane liquid and an a NAPL consisting 
of 1:1 (molar) PCE:decane at five concentrations of Tween 80. 
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The size of surfactant micelle prior to and after solubilization was characterized to provide 
insight into the solubilization behavior of the different organic constituents (Table R.1.1). The 
micelle diameter was found to increase with increasing solubility of the NAPL in the surfactant 
solution. For example, the percent increase in micelle size following solubilization of TCE and 
PCE was the greatest, which was attributed to the tendency for more polar organic compounds to 
partition into both the hydrophobic micelle core and the outer hydrophilic shell or palisade layer 
(Pennell et al. 1997). Considerably smaller increases in micelle diameter were observed when 
decane and dodecane were solubilized in 1% Tween 80 solutions. These straight chain 
hydrocarbons are very hydrophobic, and are therefore expected to partition primarily into the 
micelle core. Thus, the location or “locus” of solubilization in the micelle impacts the 
solubilization capacity for mixed NAPL systems. For example, the equilibrium micellar 
solubility of decane from a 1:1 mixture of PCE and decane was greater than that from the neat 
decane (Figure R1.4). This behavior was attributed to partitioning of PCE into the outer shell of 
the micelle, which acted to increase the size or “swell” the micelles. This behavior serves to 
increase the size of micelle core, creating a greater volume for strongly hydrophobic compounds, 
such as decane, to partition into within the micelle. 

Table R.1.1. Measured changes in micelle size following NAPL solubilization in 1.0 % (wt.) 
Tween 80 solutions 

 
Average Micelle Diameter, 
Saturated Solution (nm) 

Percent 
Increase 

 1% Tween 80 8.309 ± 0.25 - 

TCE 27.44 ± 0.67 230.0% 

PCE 14.72 ± 0.23 77.0% 

Decane 10.00 ± 0.12 20.0% 

Dodecane 10.20 ± 0.04 23.0% 

 
Conclusions 
Batch experiments conducted to examine the equilibrium micellar solubilization of PCE and 
TCE from a multi-component DNAPL in the absence, and in the presence of surfactant revealed 
the following key findings:  

• Binary mixtures of TCE and PCE exhibited ideal dissolution behavior in water, which 
could be described using Raoult’s Law convention. 

• Neat TCE and PCE exhibited classic Winsor Type I microemulsion formation in 1-5% 
Tween 80 solutions.  
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• PCE was preferentially solubilized relative to TCE from binary TCE- and PCE- DNAPL 
mixtures in both Tween 80 and Aerosol MA-80I micelles (i.e., anionic surfactant) over a 
range of mole fractions, indicating that Raoult’s law convention could not be used to 
predict these aqueous concentrations. 

• The location or “locus” of solubilization in the micelle impacts the solubilization capacity 
for mixed NAPL systems, where strongly hydrophobic compounds are expected to 
partition primarily into the micelle core while less hydropobic compounds partition into 
both the core and palisade layer. 

 
Furthermore, solute-micelle interactions are strongly dependent on the relative physio-chemical 
properties of the compounds. For example, PCE solubility was under predicted in the presence of 
strongly hydrophobic compounds such as decane, which act to swell the micelle core upon 
solubilization, increasing the overall micelle size. This behavior could directly influence the 
recovery of multicomponent DNAPLs when surfactant-enhanced aquifer remediation is 
employed for in situ treatment of DNAPL source zones. The results of these batch studies were 
also used to assist in the interpretation of mass removal and plume response in aquifer cell 
studies containing mixed DNAPL described in the following subsection. 

III.1.1.2. Aquifer Cell Experiments 

Results of source zone mass removal from multicomponent heterogeneous source zones: 
Ganglia-dominated source zones (AC 1 and AC 3) 
To evaluate the dissolution of multicomponent source zones due to both water and surfactant 
flushing, a total of three aquifer cell experiments were completed with a source zone DNAPL 
consisting of a 1:1 molar mixture of TCE and PCE. The three aquifer cells (1.0 m length by 48 
cm height with a 1.4 cm internal thickness) were packed to provide a variation in the initial SZA; 
AC1 and AC3 were designed to have a ganglia-dominated source zone, while AC2 contained a 
pool-dominated source zone (see below). This enabled the ability to evaluate the both the effect 
of surfactant enhanced flushing on mass removal from multicomponent source zones and the 
temporal evolution in mass discharge due to aqueous dissolution following preferential 
solubilization of one DNAPL over another from the multicomponent source zones. 

Following establishment of steady flow in the aquifer cells and emplacement of the DNAPL 
source zones, the initial PF values, characterized using the light transmission system, were 0.38 
and 0.36 for AC1 and AC3, respectively. These values indicate that the ganglia-dominated 
systems (AC1 and AC3) contained approximately 62 and 64 % ganglia over the course of each 
aquifer cell experiment and 38 and 36 % pools, respectively. The temporal evolution of the 
source zone and the associated down-gradient dissolved phase TCE and PCE concentrations are 
shown in Figure R.1.5 for AC1. Before introducing the surfactant, the source zone was ganglia-
dominated, and the mass flux of both TCE and PCE was relatively uniform throughout the entire 
vertical height of the down-gradient plume area. The maximum flux-averaged effluent 
concentrations during this water flushing period were 440 and 100 mg/L for TCE and PCE, 
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respectively. Localized plume concentrations measured from the side-ports approaching the 
aqueous solubility, 550 mg/L TCE and 100 mg/L PCE, of both chlorinated solvents based on a 
Raoult’s Law convention. During the first surfactant flood, flux-averaged TCE and PCE effluent 
concentrations increased to 1210 and 5240 mg/L, respectively, which represented an increase of 
3- and 40-fold over the maximum observed concentrations during water flushing. Due to the 
greater aqueous solubility of TCE, TCE mass removal from the source zone was greater than 
PCE during water flushing, with 58 percent of the TCE mass removed from the DNAPL source 
zone, compared to only 12 percent for PCE prior to the first surfactant flood. This resulted in an 
overall source zone DNAPL mole fraction of 0.3 and 0.7 for TCE and PCE. Consistent with the 
equilibrium solubilization studies discussed above in Section III.1.1.1, PCE was preferentially 
solubilized relative to TCE during flushing with 40 g/L Tween 80 (Figure R.1.5 and R.1.6). After 
the first surfactant flushing period, only approximately 5 g of TCE mass was removed from the 
source zone, compared to 17 g of PCE. The significantly greater amount of PCE mass removal 
can be attributed to the increased mole fraction of PCE in the source zone and the preferential 
solubilization of PCE relative to TCE. 
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Figure R.1.5. Temporal evolution in DNAPL source zone and corresponding down-gradient 
dissolved phase mass flux for AC1 initial ganglia dominated source zone containing 1:1 (m/m) 
TCE:PCE-DNAPL source zone) prior to and following surfactant floods. Source zone DNAPL 
saturations are in volumetric fractions; downgradient TCE and PCE aqueous concentrations are 
mg/L. 

 
Similar behavior was observed following the second surfactant flush; however, the mass removal 
efficiency was less than observed during the first surfactant flush. This observation was 
attributed to the decreased mass present in the source zone (with only 15 and 16 % of the total 
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mass remaining), which resulted in a decreased surface area available for dissolution. Similar 
behavior has been observed in a number of studies, where mass removal efficiency has decreased 
with extended aggressive mass removal approaches (MacDonald and Kavanaugh 1994, 
Londergan et al. 2001, Childs et al. 2006, Stroo et al. 2012). 

Although surfactant flushing removed a significant portion of the source zone mass, the source 
zone remained ganglia-dominated both before and following the surfactant flushing periods 
(Figure R.1.5. This finding is contrary to the behavior typically observed both in numerical 
simulations and lab scale aquifer cell experiments that have quantified the DNAPL source zone 
saturation (Christ et al., 2006; Phelan and Abriola, 2006; Brusseau et al., 2008; DiFilippo et al., 
2010; DiFilippo and Brusseau, 2011). Although the preferential depletion of ganglia has been 
observed, leaving only high saturation pools in the source zone, solubilization studies using high 
resolution magnetic resonance imaging (MRI) techniques have found that the gradual dissolution 
of pooled regions from heterogeneous source zones can result in the formation of ganglia once a 
certain volume of the DNAPL pool has dissolved (Zhang et al., 2007; Zhang et al., 2008; Werth 
et al., 2010). In effect, regions containing high-saturation DNAPL pools are converted to 
ganglia-dominated zones as the source zone mass is depleted, rather than remaining as high-
saturation pools until complete DNAPL mass removal occurs. Due to the large volume of PCE 
mass removed during surfactant flooding, this could explain why the AC 1 source zone remained 
ganglia-dominated.  Upon completion of the AC1 experiment and measurement of the DNAPL 
mass remaining in the system, it was determined that 72% of the TCE mass removed can be 
attributed to dissolution during water flooding, and the remaining 28% occurred during the 
surfactant flooding period (Figure R.1.6). Conversely, 80 % of the PCE mass removed during 
this aquifer cell experiment was due to surfactant enhanced dissolution, while the remaining 20% 
was due to aqueous dissolution (Figure R.1.6). 
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Figure R.1.6. TCE and PCE flux-averaged effluent concentrations and normalized mass 
removed as a function of pore volume for AC1.  Flux averaged effluent concentrations during 
surfactant flood 1 (23 PV) and 2 (35 PV) are shown by the grey boxes. 

 
Similar to AC1, AC3 was designed to contain a ganglia-dominated source zone consisting of a 
1:1 (molar) TCE:PCE DNPL source zone. The experimental conditions in AC3 were similar to 
those in AC1, and additional aquifer cell further evaluated the influence of extended water 
flushing after surfactant flooding to evaluate the effect on downgradient mass discharge and 
overall DNAPL source zone mole fraction. Evolution of the DNAPL source zone saturation 
distribution profiles and corresponding down-gradient dissolved-phase plumes for AC3 are 
shown in Figure R.1.7. The GTP decreased following each surfactant flood, indicating that a 
significant portion of the mass removed can be attributed to dissolution of ganglia located in 
residual saturated zones throughout the source. 
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Figure R.1.7. Temporal evolution in DNAPL source zone (column 1) and corresponding down-
gradient dissolved phase TCE (column2) and PCE (column 3) mass flux for AC3 (initial ganglia 
dominated source zone containing 1:1 (m/m) TCE:PCE-DNAPL source zone) prior to and 
following surfactant floods. Source zone DNAPL saturations are in volumetric fractions; 
downgradient TCE and PCE aqueous concentrations are mg/L. 

Figure R.1.8 depicts the flux-averaged effluent concentrations of TCE and PCE (left-y-axis) and 
the percent of TCE and PCE mass removed from the mixed DNAPL AC3 experiment as a 
function of volume eluted from aquifer cell (i.e., PVs). Prior to the first surfactant flood (15.5 
PVs), flux-averaged effluent concentrations of TCE and PCE were approximately 163.2 and 91.6 
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mg/L, respectively, while the percent mass removal for TCE and PCE were 52.2 and 12.5 
percent, respectively. These data clearly demonstrate that TCE was preferentially depleted from 
the mixed DNAPL due to aqueous dissolution, which was similar to the behavior observed in 
AC1, and has been observed in a number of other studies of dissolution from mixed organic 
liquids in non-equilibrium, porous media systems (Lesage and Brown, 1994; Brusseau, 1996; 
Roy et al., 2004).  Following the first surfactant flood, which removed an additional 20 and 49 
percent of the TCE and PCE mass, respectively, from the aquifer cell, flux-averaged effluent 
concentrations of TCE and PCE were reduced to approximately 26.2 mg/L and 39.1 mg/L, 
respectively.  Following the second surfactant flood (45.0 PVs), an additional 2.7 percent of the 
TCE mass and 4.9 percent of the PCE mass were removed, with flux-averaged TCE effluent 
concentrations of 12.5 mg/L and PCE concentrations of approximately 10.3 mg/L. These results 
are consistent with experimental observations noted in AC1. 

 

Figure R.1.8. TCE and PCE flux-averaged effluent concentrations (left axis) and fractional mass 
recovered (right axis) as a function of pore volume flushed through the aquifer cell for AC3. 
Flux averaged effluent concentrations during surfactant floods 1 (15.5 PV) and surfactant flood 2 
(45 PV) are shown by the grey boxes. 

 
Temporal changes in TCE and PCE flux averaged concentrations (left axis) due to aqueous 
dissolution and the average TCE and PCE mole fraction (right axis) with PV for the DNAPL 
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source zone are shown in Figure R.1.9. The direct comparison illustrates that flux averaged 
aqueous concentrations were strongly dependent on the source zone average TCE- and PCE-
DNAPL mole fraction. Reduction in TCE mass due to preferential aqueous dissolution from the 
source and increasing overall PCE mole fraction resulted in an increased PCE mass discharge. 
During surfactant flushing, increased mass removal of PCE from the source zone relative to 
TCE, due to preferential solubilization, decreased the PCE mole fraction. After the first 
surfactant flood, the PCE mole fraction increased due to greater aqueous TCE dissolution, which 
affected the reduction in mass discharge of PCE from the mixed source. These findings indicate 
that the competitive solubilization during surfactant enhanced aquifer remediation can influence 
the molar composition of the NAPL source zone and alter the mass discharge characteristics of 
the source zone during active remediation. 

 

 

Figure R.1.9. TCE and PCE flux-averaged effluent concentrations (left axis) and source zone 
averaged DNAPL mole fraction (right axis) as a function of pore volumes flushed through AC3. 
Note that elevated effluent concentrations due to surfactant flooding were omitted (represented 
by gray boxes). 
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Figure R.1.10. Relative reduction in mass discharge for TCE and PCE in AC3 as a function of 
the relative mass removed for each component. A relative reduction <0 indicates an increase in 
mass discharge, while a relative reduction > 0 indicates a decrease in mass discharge. 

 

To further explore the preferential depletion of TCE and the effect of molar composition on mass 
discharge from the TCE and PCE 1:1 molar source, flux-averaged effluent concentration data 
during water flushing were expressed as relative reduction in mass discharge versus relative 
mass removal for TCE and PCE (Figure R.1.10). Each data point represents the arithmetic mean 
of 5 measurements (7.5 PVs) and the error bars represent one standard deviation from the mean.  
The relative reduction in TCE mass discharge increased significantly during the water flushing 
portion of the experiment due to the greater water solubility of TCE relative to PCE. This level 
of TCE removal resulted in negative reductions in mass discharge of PCE from the mixed source 
due to the changing molar composition (increasing PCE mole fraction; decreasing TCE mole 
fraction) within the DNAPL. An increase in the PCE mole fraction resulted in a greater PCE 
effective solubility and increased mass discharge. These findings are consistent with the down-
gradient dissolved phase effluent concentrations and temporal change in mole fraction shown in 
Figure R.1.9, which indicates that PCE effluent concentrations increased as TCE was depleted 
from the source zone.  Following surfactant flood 1, PCE mass discharge decreased significantly 
due to preferential solubilization of PCE-DNAPL mass removal. This behavior is unique to 
source zones that contain multicomponent DNAPL, and is driven by the preferential 
solubilization of the different components in the organic phase mixture. In contrast, changes in 
mass discharge from single component source zones tend to either remain constant or decrease as 
mass is removed (Stroo et al., 2003; Jawitz et al., 2005; Fure et al., 2006).   
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Results of source zone mass removal from multicomponent heterogeneous source zones: Pool-
Dominated Source Zone (AC 2) 
While A1 and AC3 were designed to contain ganglia-dominated source zones, AC2 was intended 
to yield a pool-dominated source zone, where the DNAPL was present predominantly at values 
greater than the residual value for the 20/30 mesh Accusand sand (saturation >0.11). Following 
addition of the 1:1 (molar) TCE:PCE and a 24 hour equilibration period, the source zone in AC2 
was significantly pool-dominated, with an initial PF of 0.88 (Figure R.1.11).  These values 
indicate that the pool-dominated aquifer cell (AC2) contained 12 % ganglia and 88 % pools. The 
presence of these pools that were located throughout the source zone resulted in temporal 
changes in mass discharge that differed from those observed in the ganglia-dominated aquifer 
cells (AC1 and AC3), both with respect to mass removal efficacy during surfactant and water 
flushing. 
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Figure R.1.11. Temporal evolution in source zone architecture (column 1), down gradient 
dissolved phase TCE (column 2) and PCE (column 3) mass flux from the pooled source zone 
consisting of 1:1 (m/m) TCE:PCE-DNAPL source zone in AC2.  Source zone DNAPL 
saturations are in volumetric fractions; downgradient TCE and PCE aqueous concentrations are 
mg/L. 

The pool-dominated source zone configuration (AC2) yielded initial maximum flux averaged 
effluent concentrations during the water flushing period of 292.3 mg/L and 65.3 mg/L, 
respectively, for TCE and PCE (Figure R.1.12). These values were lower than those observed in 
AC1 and AC3, and can be attributed to the poorly assessable areas of high saturation DNAPL 
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present as pools. This resulted in only approximately 11.1% and 1.8 % of the TCE and PCE mass 
removed from the DNAPL during the initial water flushing period. Furthermore, prior to the first 
surfactant flood, dissolved phase TCE and PCE concentrations reached a maximum value and 
were then declining rapidly after 8 PVs of water flushing. This sharp decline in concentrations 
was attributed to the rapid dissolution of the small volume of DNAPL present in the source zone 
as ganglia, which left behind DNAPL that was predominately located in high-saturation pools.  
This explanation was consistent with the observed increase PF values over time, based on light 
transmission measurements of the source zone (Figure R.1.11).  

Following an initial water flushing period of 11 PVS, a 40 g/L (4% wt.) pulse of 4% Tween 80 
solution was introduced in to the aquifer cell. This first surfactant flood removed an additional 28 
and 32 percent of the TCE and PCE mass, respectively, present in the source zone. During 
surfactant flooding, TCE and PCE concentrations rose to 2,080 and 3,000 mg/L, respectively. 
The elevated concentrations of PCE during the first surfactant flush were attributed to the 
preferential solubilization behavior of PCE in Tween 80, as was observed in aquifer cells with 
ganglia-dominated source zones (AC1 and AC3). The concentrations of TCE and PCE observed 
in the effluent represented a 7- and 46- fold enhancement in solubility over the concentrations 
observed during the initial water flushing period, which was greater than that from the ganglia-
dominated source zones. This trend was attributed to the lower mass flux values initially 
observed, and the greater amount of mass present at the beginning of this surfactant flushing 
period as compared to AC1 and AC3. Flux-averaged effluent concentrations of TCE were 
reduced to approximately 57.0 mg/L, whereas, flux-averaged effluent concentrations of PCE 
increased to approximately 123.3 mg/L during water flushing after the first surfactant flood. The 
second phase of surfactant flushing removed an additional 3 % of the TCE mass and 6 % of the 
PCE mass from AC3, and flux-averaged effluent concentrations of TCE and PCE were reduced 
to approximately 35.7 mg/L and 30.2 mg/L, respectively. The two surfactant floods removed a 
total of 55 % and 60 % of the initial TCE and PCE mass from the aquifer cell. Based on the light 
transmission analysis, the NAPL removed was predominately depleted from the upper regions of 
the source zone. This upper region contained smaller pools than those located on the lower 
confining layer (Figure R.1.11), which would be more accessible to flow in the aquifer cell 
during both water and surfactant flushing. Following completion of the second surfactant flood, 
approximately 70 additional PVs of water were flushed through the aquifer cell to estimate the 
time scale for reduction of the flux averaged concentration below detectable levels. This 
prolonged dissolution period resulted in relatively constant mass discharge from the aquifer cell, 
accounting for an additional 30 and 20 percent removal of TCE and PCE mass, respectively. 
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Figure R.1.12. TCE and PCE flux-averaged effluent concentrations (left axis) and fractional 
mass removed (right axis) from the pool dominated aquifer cell experiment (AC2). Flux 
averaged effluent concentrations during surfactant flood 1 (11 PV) and surfactant flood 2 (25 
PV) are marked by the grey boxes. 

 
Due to the high percentage of pools initially present in the source zone for AC2, the reduction in 
mass discharge and changes in DNAPL source zone mole fraction were different from the results 
obtained in AC1 and AC3. Figure R.1.13 depicts the source zone DNAPL mole fraction and 
flux-averaged effluent concentrations as a function of pore volumes flushed through the aquifer 
cell. Elevated TCE and PCE effluent concentrations measured during surfactant flushing were 
not included. As can be seen in Figure R.1.13, the lower TCE and PCE flux-averaged effluent 
concentrations during both water flushing and surfactant flushing resulted in a relatively constant 
DNAPL source zone mole fraction composition for both TCE and PCE, which continued 
throughout the entire experiment. This resulted in comparable dissolution behavior for both 
contaminants, which was not observed in either of the ganglia-dominated cells (AC 1 and AC3). 
This trend was also evident from the fractional mass removed curves shown in Figure R.1.12.  
For both TCE and PCE, the mass removed as a function of pore volume introduced exhibits a 
slight upward trend during all water flushing periods. This finding suggests that the SZA itself 
can control the long term dissolution behavior from heterogeneous, multicomponent source 
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zones. This is an important consideration when attempting to design remediation approaches for 
subsurface restoration of aquifers contaminated with mixtures of organic liquids in 
heterogeneous permeability fields. 

 

 
Figure R.1.13. TCE and PCE flux-averaged effluent concentrations during aqueous flushing 
alone and source zone averaged mole fraction as a function of pore volume for AC2.  Flux 
averaged effluent concentrations during surfactant floods 1 and 2 were removed and are 
represented by grey boxes. 

 

Results of Single component DNAPL source zone aquifer cells 
While the purpose of AC1, AC2 and AC3 was to evaluate the mass flux behavior from 
multicomponent source zones before and after aggressive mass removal, AC4 was designed to 
study the dissolution of a single component source zone (TCE) due to aqueous dissolution alone. 
This resulting data set was later used for training of mathematical models. Light transmission 
analysis of the initial SZA yielded a PF of 0.47, indicating that the DNAPL source zone 
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consisted of approximately 53 % ganglia and 47 % pools.  Evolution of the DNAPL source zone 
saturation distribution and corresponding down-gradient dissolved-phase plumes are shown in 
Figure R.1.14. The resulting DNAPL source zone distribution consisted of high-saturation pools 
located at the interface between low and higher permeability media, while ganglia-dominated 
regions were distributed throughout the vertical height of the source region. Mass removal from 
AC4 was the result of dissolution alone, as no surfactant was used to enhance mass removal. 
Initial aqueous flushing of the TCE-DNAPL resulted in preferential dissolution of higher surface 
area ganglia regions, which in turn, increased the source zone PF (Figure R.1.15). Following an 
initial monotonic increase in PF, the proportion of DNAPL mass remaining in pooled regions 
stabilized at 65% due to the slow dissolution from pooled regions and transition of higher 
saturation DNAPL zones to lower saturation, ganglia-dominated regions. Following removal of 
80% of the DNAPL mass, the PF varied significantly as a large portion of the pools were 
reduced to saturations below the residual saturation threshold (18 %) , and rapidly dissolved, 
until all DNAPL mass was removed from the source zone. 

 
Figure R.1.14 Temporal evolution in source zone architecture and dowgradient, dissolved phase 
TCE plume development in the neat TCE aquifer cell experiment (AC4). Source zone DNAPL 
saturations are in volumetric fractions; downgradient TCE aqueous concentrations are mg/L. 
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Figure R.1.15. Temporal changes in source zone PF as a function of TCE-DNAPL fractional 
mass removed. 

 
Dissolved phase plume concentrations measured in down-gradient sampling ports indicated that 
TCE plume concentrations were initially detectable throughout the vertical height of the aquifer 
cell (Figure R.1.14, top), primarily due to dissolution from high surface area ganglia which 
resulted in TCE flux-averaged effluent concentrations and mass discharge rate of 820.5 mg/L 
and 1030 mg/day, respectively. As high surface area ganglia became depleted from the source 
zone, mass discharge decreased, and sustained dissolution from higher saturation pooled regions 
dominated.  This resulted in a reduction in down-gradient TCE aqueous concentrations and 
multi-step flux averaged effluent behavior as mass removed from the source zone increased 
(Figure R.1.16). Similar behavior has been observed in previous studies of dissolution from 
heterogeneous DNAPL architectures (Zhang et al., 2008; Christ et al., 2010; DiFilippo and 
Brusseau, 2011). This effect resulted primarily from differences in dissolution kinetics between 
DNAPL pools and ganglia, which is primarily influenced by interfacial area available to flowing 
water and the DNAPL present in the source zone as either pools or ganglia. Upon transitioning to 
a pool dominated source zone, sustained mass loading resulted in a relatively constant flux-
averaged effluent concentration until greater than 95% of the initial TCE-DNAPL mass had been 
removed. 

To evaluate the full range of mass flux-mass removal due to aqueous dissolution for the TCE-
DNAPL source zone, down-gradient dissolved phase concentrations and flux-averaged effluent 
concentrations were measured until no visible DNAPL was present in the source zone. Upon 
removal of all TCE-DNAPL detectable by light transmission, the final TCE flux averaged 
effluent concentration and mass discharge values were reduced to 0.36 mg/L and 0.632 mg/day, 
respectively. Post-experiment dissection and extraction of the source zone region suggest that the 
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volume of TCE-DNAPL present in the source zone had been reduced to less than 0.005 uL, and 
that TCE mass discharge was primarily attributed to the release of dissolved phase TCE from 
lower permeability lens located throughout the aquifer cell. This finding highlights the 
importance of understanding the capacity of low permeability zones to store dissolved 
contaminants due to diffusive mass transfer to and from low permeability zones, in this case the 
low permeability lenses that were suspended within the more transmissive background porous 
sand. 

 
Figure R.1.16. TCE flux-averaged effluent concentration as a function of mass removed from 
the source zone for AC4.  

To evaluate the influence of image scaling on SZA metrics, different DNAPL averaging 
technique were utilized to quantify the PF of AC4. This analysis was performed to investigate 
the effects of averaging window size and approach on source zone metrics obtained from the 
aquifer cells. The averaging approach used for source zone metrics is particularly important 
when developing simplified mass discharge models at the aquifer cell scale. These correlations 
are often developed using field scale simulations or applied to large scale systems, and thus, 
should account for differences in scale. Using the averaging methods presented by Christ et al. 
(2012), Figure R.1.17 shows the influence on the SZA and PF obtained for AC4 when different 
averaging windows are used. 
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Figure R.1.17. Source zone morphology and PF at 10, 100 and 250 times the median sand grain 
size (d50) for the initial SZA in AC4. 

 
As the averaging window is increased for the discrete block averaging (DBA) and continuum 
block averaging (CBA) approaches, the PF value suggest that the source zone became more 
dominated by ganglia than pools. When the averaging window is further increased in size, the 
fraction of source zone DNAPL existing as high-saturation pools approaches zero. The trend of 
NAPL saturation becoming more ganglia dominated with increasing averaging window size is 
due to the fact that pool volume is determined based on volumetric saturation. Therefore, as the 
averaging window is increased, the saturation decreases since the total volume of DNAPL 
present is constant and the volume over which it is averaged increases to the entire domain. The 
effective saturation is then reduced below that of the residual saturation cutoff (e.g., 13%), 
resulting in all windows being considered as regions occupied by ganglia. Furthermore, while the 
averaging technique used significantly affected the boundaries and general shape of the DNAPL 
source zone saturation distribution (Figure R.1.17), the source zone metric (PF) was not strongly 
dependent, indicating that both averaging approaches could be used as an upscaling technique for 
aquifer cell experiments. Based on the results of Christ et al. (2010) detailed analysis, a 30 times 
the median grain size diameter (30 × d50) was determined to be optimum averaging window size, 
and this methodology was used to assess the evolution in mass flux from AC-4 (Figure R.1.18).  
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Figure R.1.18. Experimental flux averaged effluent concentrations and prediction based on the 
Christ 2010 upscaled model using a per-pixel averaging window, DBA and CBA. 

 
 
Flux-averaged effluent curves developed using the upscaled model and the experimental effluent 
concentrations are shown in Figure R.1.18 along with the corresponding initial source zone PF. 
For the pixel based, discrete based and continuum based averaging the corresponding root mean 
square errors were 63, 50 and 68 mg/L, respectively.  As shown in Figure R.1.18, the DBA 
approach resulted in the most accurate model prediction (middle graph in Figure R.1.18). While 
DBA resulted in the best match to the experimental results, both the per-pixel scale and CBA 
averaging approach results provided order-of-magnitude estimates of the mass removal-
discharge mass removal behavior observed in AC4. Furthermore, the models were generally able 
to account for the changes in mass flux when the source zone transitioned from ganglia- to pool-
dominated, as indicated by the drop in predicted curves at a relative mass removal (M/M0) value 
of approximately 0.5. Previous simplified models have not been able to adequately account for 
this transition, which can result in over-estimation of the time scale needed to achieve significant 
reductions in mass flux. 

Results of Markov-chain transitional probability aquifer cell experiment (AC5) 
While the previous aquifer cell experiments focused on the dissolution of DNAPLs in source 
zones containing a combination of pools and ganglia, the permeability fields were relatively 
simple compared to most aquifer formations. Thus, the purpose of AC5 was to incorporate a 
permeability distribution that was based on geostatistical parameters obtained from a well-
characterized field site. The simulated and actual permeability distributions are shown in Figure 
R.1.19, which was generated using a Markov Chain-Transitional probability scheme based on 
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the Herten site (Maji 2005). Following packing and establishment of steady flow within the 
aquifer cell, a series of tracer tests were conducted using fluorescent dyes and bromide to 
evaluate the overall flow properties of the aquifer cell and the influence of permeability contrasts 
on the transport behavior of non-reactive solutes. Non-reactive tracer tests are important for 
determining solute flow paths and residence times in this subsurface system since preferential 
flow and short-circuiting were expected to occur in the higher permeability media. The initial 
hydrodynamic characterization was completed by injecting a 1/3 PV pulse of tracer solution 
containing sodium bromide and sodium fluorescein at a seepage velocity of 2.4 m/d. Effluent 
tracer concentrations coupled with digital images of the tracer front (Figure R.1.20) showed that 
subsurface heterogeneity significantly influenced solute transport within the aquifer cell. The 
tracer exhibited preferential flow through zones of higher permeability and early breakthrough in 
the effluent (less than 1 PV), followed by prolonged tailing of the bromide breakthrough curves 
(Figures R.1.20 and R.1.21). The observed tracer behavior was attributed to heterogenous flow 
field and physical non-equilibrium (i.e., back diffusion) between zones of high and low 
permeability located throughout the aquifer cell. 
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Figure R.1.19. Simulated (top) and actual (bottom) permeability distribution of aquifer cell 5 
(AC5). 
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Figure R.1.20. Conservative tracer dye (sodium fluorescein) movement through AC5 
(illuminated with 450 nm Kino-Flo Blue bulbs) at 0.5 PVs. 

To improve our understanding of the overall flow properties of the aquifer cell and the influence 
of low permeability media on the storage and release of non-reactive solutes prior to DNAPL 
release in AC5, a second extended tracer test was completed using multiple tracers of varying 
molecular weight. Tracer transport through interconnected layers of the 12-20 and 20-30 mesh 
size fractions led to early tracer breakthrough (i.e. less than 1 pore volume) in the effluent and 
side-port samples. Flow interruptions resulted in small decreases (flow interruption 1) and 
increases (flow interruption 2) in effluent tracer concentrations. The observed changes in effluent 
concentrations following periods of flow interruption are indicative of rate-limited mass transfer 
between the lower and higher permeability layers. The relatively small magnitude of measured 
effluent concentration change immediately following a flow interruption was attributed to the 
duration of the interruption, and the averaging effect of the flux-averaged concentrations in the 
effluent chamber. A small degree of separation was observed between the PFBA and Br tailing 
portion of the effluent breakthrough curve (Figure R.1.22). This behavior was attributed to the 
different diffusion coefficient of the two tracers, suggesting that rate-limited diffusive mass 
transfer occurred between the high and low permeability lenses. 
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Figure R.1.21. Bromide tracer breakthrough (left axis) and fractional bromide mass recovered 
(right axis) during a 1/3 pulse conservative tracer test in AC5. 

Based on the results of the extended conservative tracer test, it was assumed that diffusion 
contributed to tracer mass transfer into the low permeability lenses. This hypothesis was based 
on solute behavior following flow interruptions and difference in the tailing behavior for two 
different molecular weight solutes.  Although this permeability distribution provided a two order 
of magnitude (1 × 10-10 to 1 × 10-12 m2) contrast between the coarsest background media and 
zones of low permeability lenses, it was important to assess the relative contributions of diffusive 
mass transfer between the low and high permeability zones and advective flow through the layers 
to the observed solute tailing. Therefore, a series of numerical simulations and sensitivity 
analyses were conducted using the aquifer cell permeability distribution to gain insight into the 
influence of permeability field heterogeneity on tracer transport and to investigate the times 
required for solute entry and release in the lower permeability zones (see Task III). 
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Figure R.1.22. Bromide and PFBA tracer breakthrough during the extended conservative tracer 
test in AC5. 

Measured effluent and side port tracer concentrations were utilized to calibrate the model 
permeability field and to obtain dispersivity values. The modeling results verified experimental 
observations demonstrating that the flow interruption on the plateau of the breakthrough curve 
(BTC) resulted in a decrease in the effluent concentration, while on the interruption on the distal 
portion of the BTC resulted in an increase or spike in effluent concentration. This change was 
attributed to the redistribution of the tracer mass during the flow interruption due to molecular 
diffusion and rate-limited mass transfer between the high and low permeability media. The 
sensitivity analysis was then completed by varying the three main experimental parameters, 
which included the flow rate (decrease and increase during both loading and flushing, flow 
interruption durations (increase length), and the contrast between permeability of the background 
and the low permeability zones (increase). 

The simulation results (next sub-section) indicate that when the permeability contrast between 
the background and low permeability media is approximately one order of magnitude, tracer 
mass storage and release from the low-permeability zones is relatively fast, resulting in only a 
limited concentration gradient between high and low permeability zones. Therefore, changing 
other parameters such as flow rate or duration of the flow interruption did not substantially 
enhance the effect of contaminant mass transfer. In contrast, when the simulated permeability 
contrast is increased by three orders-of-magnitude or more, advective flux within the low 
permeability zones is negligible and a sufficiently high concentration gradient exists at the 
beginning of the flow interruption to drive diffusion into lower permeability zones. 
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Following characterization of the hydrodynamic flow field in the aquifer cell, neat TCE-DNAPL 
was injected into AC5 and initial light transmission analysis measured a PF of 0.4 in the source 
zone. The presence of higher permeability zones located throughout the source zone region 
resulted in localized, high DNAPL saturations at the interface of the lenses containing either 12-
20 mesh or 20-30 mesh Ottawa sands and 40-50 mesh or F-95 Ottawa sands. Due to the presence 
of these high saturation pools, TCE-DNAPL did not fully penetrate the entire vertical profile of 
the source zone region, resulting in the formation of high saturation pools in the two most 
transmissive lenses (12-20 and 20-30 mesh sands). Regions with lower DNAPL saturations (i.e., 
ganglia regions with residual saturations less than 18 %) predominately formed in the 
background 40-50 mesh Ottawa sand, and higher-saturation pools were only observed when 
TCE-DNAPL migrated through a 40-50 mesh region and encountered a lower permeability lens 
of F-95 sand. Down-gradient port measurements of dissolved-phase TCE concentrations 
indicated that the TCE plume developed throughout the height of the aquifer cell. The highest 
TCE concentrations (approximately 1,000 mg/L) were initially observed in regions located 
down-gradient from the source zone containing 40-50 mesh sands, where TCE-DNAPL 
predominantly was present as ganglia (Figure R.1.21). These higher concentrations were 
attributed to the faster dissolution rates of ganglia with greater interfacial area compared to the 
high-saturation pools.  

Following the initial plume development period, when high concentration TCE measurements 
were relatively uniform within the transmissive regions of the aquifer, a significant decrease in 
concentration was observed in locations immediately down-gradient from the source zone 
regions containing ganglia (Figure R.1.23). This observation corresponded with the transition to 
a source zone regions composed predominantly of high saturation pools located in the 12-20 and 
20-30 mesh regions. Effluent TCE concentrations reached an initial maximum of 511 mg/L at 
1.9 PVs, and then decreased monotonically over the next 14 PVs, until a pseudo steady-state flux 
averaged concentration of approximately 314 mg/L was reached. The resulting decrease in mass 
discharge was approximately 37%, with localized high concentrations of TCE observed in down-
gradient port samples. This multi-stage dissolution behavior has been observed in a number of 2-
D laboratory scale dissolution studies with heterogeneous SZAs (Christ et al. 2010, DiFilippo 
and Brusseau 2011), and is attributed to the initial, rapid dissolution of ganglia from the source 
zone and followed by the sustained dissolution from pooled TCE-DNAPL. 



94 
 
 

 

 

 
Figure R.1.23. Temporal evolution in SZA and down-gradient plume concentrations for AC5. 
The side-port concentration measurements were obtained from the first and second transect, 
while ports A4 and B3 were located within the low permeability zones and therefore were not 
sampled. 

During the surfactant flushing phase of the AC5 experiment, TCE flux-averaged effluent 
concentrations reached a maximum of 6,100 mg/L, which is significantly lower than 
concentrations measured during surfactant flooding in aquifer cells containing more uniform 
permeability distributions (Suchomel et al. 2007). This most likely occurred due to the greater 
pore-water velocity through the higher permeability sands, resulting in rate-limited dissolution, 
and the non-uniform distribution of DNAPL throughout the vertical height of the source zone. 
Side port measurements obtained during the flow interruption at the conclusion of the surfactant 
flushing period revealed localized TCE concentrations as high as 12,000 mg/L immediately 
down-gradient of regions containing TCE-NAPL. A total of 16.3 g (11 mL), or 28 % of the 
initial TCE, mass was recovered during surfactant flushing.  
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Figure R.1.24. TCE flux-averaged effluent concentrations as a function of pore volume from 
AC5.  Flux averaged effluent concentrations during surfactant flooding (at 22 PV) are indicated 
by the grey box. 

 
Side-port (Figure R.1.23) and flux-averaged effluent (Figure R.1.24) measurements revealed 
reductions in TCE concentrations following surfactant flushing, with a flux-averaged effluent 
concentration and percent reduction in mass discharge of 119 mg/L and 80%, respectively.  Side 
port measurements and LT analysis indicated that the TCE mass discharge was predominantly 
due to dissolution of high saturation pools located in zones of 12-20 and 20-30 mesh sands that 
contained the remaining 25% of the DNAPL mass, resulting in a pool-dominated source zone 
with a PF that approached 1.0 (Figure R.1.23). TCE concentrations measured in side ports 
located down-gradient from the pooled regions provided additional evidence of the location of 
the remaining NAPL, with the highest TCE concentrations approaching 100 mg/L emanating 
from these higher permeability zones. Conversely, TCE concentrations measured down-gradient 
from source zone areas in lower permeability media (40-50 mesh and F-95 Ottawa sand) were 
below detectable levels (< 0.012 mg/L). Following complete dissolution of the observable 
DNAPL pools after 81 PV, effluent TCE concentrations rapidly decreased to below 0.3 mg/L, 
with no measurable concentrations of TCE in any of the sideport samples. Results from 
dissolution monitoring highlight the influence of subsurface heterogeneity on DNAPL SZA and 
plume evolution. TCE concentrations were directly correlated to the presence of upgradient 
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TCE-DNAPL mass, which in turn, varied by the presence of low and high permeability regions 
in the source zone. 

 
Numerical Simulation of the tracer transport in Markov-Chain Permeability field 

The conservative tracer transport in the aquifer cell packed with the Markov Chain permeability 
distribution was numerically simulated and a series of sensitivity analyses was conducted to gain 
insight into the influence of permeability field heterogeneity on tracer transport and to 
investigate the time periods required for solute entry and release in the lower permeability zones. 
The aquifer cell flow field was modeled using MODFLOW 2005 with a no-flow boundary 
condition assigned to all four boundaries of the two-dimensional 5x5 mm grid domain. Constant 
flow within the cell was simulated using two well-cells on the right and left sides of the domain. 
These well-cells were located at the vertical midpoint of a 2 cm wide vertical strip containing 
highly permeable material, and were modeled to represent the fully screened influent and 
effluent wells. A 2.3 pore volume (PV) pulse was used to simulate the conservative tracer test 
that was followed by flushing with clean water to mimic the pulse conditions in the 2-D aquifer 
cell experiment. A Crank-Nicolson finite difference method was utilized to simulate the tracer 
mass transport within the domain (the mass transport simulator is discussed in Section II.2.3.2.). 

In order to investigate the effect of diffusion into and out of the low permeability zones, the 
experimental flow interruption periods were simulated during both the injection and flushing 
phases. These flow interruptions were modeled to occur at the same dimensionless time as those 
completed in the experimental aquifer cell. During these flow interruptions molecular diffusion 
was the only transport mechanism. Observations from both the model and the experimental data 
illustrate that the flow interruption on the plateau of the breakthrough curve (BTC) resulted in a 
decrease in the effluent concentration, while that on the distal portion of the BTC resulted in an 
increase or spike in effluent concentration. This change can be attributed to the redistribution of 
the tracer mass during the flow interruption due to molecular diffusion and rate-limited (rather 
than instantaneous) mass transfer between the high and low permeability media. The effect of the 
interruption on the effluent breakthrough curve is shown in Figure R.1.25. Both the experimental 
effluent data and the simulated breakthrough curves are illustrated in this figure. Measured 
effluent and side port tracer concentrations were utilized to calibrate the permeability field and to 
obtain dispersivity values. This numerical simulation revealed that the contrast between the 
permeability of the low permeability material and the background sand in the packed aquifer box 
must be adjusted to about one order of magnitude. Using the adjusted permeability field, the 
simulator was able to match the height of the change in effluent concentration after the flow 
interruptions (see Figure R.1.25).  

A sensitivity analysis was then completed by varying the three main experimental parameters, 
which included the flow rate (decrease and increase during both loading and flushing, flow 
interruption durations (increase length), and the contrast between permeability of the background  
and the low permeability zones (increase). The simulation results indicate that when the 
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permeability contrast between the background and low permeability media is approximately one 
order of magnitude, tracer mass storage and release from the low-permeability zones was 
relatively fast, resulting in only a limited concentration gradient between high and low 
permeability zones. Therefore, changing other parameters such as flow rate or duration of the 
flow interruption did not substantially enhance the effect of contaminant mass transfer. In 
contrast, when the simulated permeability contrast was increased to three orders of magnitude or 
more, a sufficiently high concentration gradient exists at the beginning of the flow interruption to 
drive diffusion into lower permeability zones. Figures R.1.26 and R.1.27 illustrate the 
redistribution of the tracer in the domain during the flow interruption periods when the contrast 
between the permeability of the materials is increased to three orders of magnitude. Both figures 
reveal that during the flow interruption the sharp concentration contrasts begin to ‘soften’, 
resulting in a sudden change in effluent concentration when the flow resumes.  

 

 

  

 

 

Figure R.1.25. Simulated and experimental effluent breakthrough concentration of the 
conservative tracer; (a) entire test duration; (b) and (c) magnified around the flow interruption 
periods at approximate pore volumes 2.0 and 4.7, respectively. 
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Figure R.1.26. Simulated distribution of normalized tracer concentration in the aquifer cell 
before (left) and after (right) a flow interruption during injection phase of a conservative tracer 
test. 

 

 

Figure R.1.27. Simulated distribution of normalized tracer concentration before (left) and after 
(right) a flow interruption during the flushing of the tracer out of the aquifer cell. 

 

Conclusions of Plume Development and Response Aquifer Cell Studies 
Results from the five aquifer cell studies completed under Task I advanced our understanding of 
the inter-relationships between the initial SZA, mass removal, mass flux reductions, plume 
evolution, and effluent concentrations emanating from mixed PCE/TCE- and neat TCE-DNAPL 
source zones. The resulting experimental data have provided insight into source plume evolution 
and supported the modeling work described in Sections III.1.2 and III.3. Below is a summary of 
the main findings of Task I. 
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Multi-component 1:1 (mole/mole) PCE- and TCE- NAPL aquifer cells 

• Aggressive surfactant NAPL mass removal reduced PCE and TCE discharge from 
heterogeneous DNAPL source zones. 

• Changes in NAPL source zone composition (i.e., molar ratios) differed during water 
flushing (i.e., aqueous dissolution) and surfactant flushing due to effects of preferential 
DNAPL solubilization (i.e., did not follow Raoult’s law convention). 

• Aqueous dissolution resulted in decreased mole fraction of the more soluble compound 
(TCE); whereas, micellar solubilization reduced the mole fraction of the less soluble 
compound (PCE). 

• Mass discharge-mass removal relationships were directly related to DNAPL molar 
composition, with decreased reductions in mass discharge with increasing mole fraction. 

• The initial DNAPL saturation distribution (e.g., ganglia vs. pools) controlled the long-
term dissolution behavior of heterogeneous, multicomponent source zones. 
 

Single-component TCE- NAPL aquifer cell 
• Evaluation of image processing scaling methods using light transmission data obtained 

from AC4 indicate that an averaging window of 30 × d50 provides the most reliable 
estimates of PF and the GTP ratio.   

• Following substantial removal (80%) of the initial DNAPL mass, the PF decreased 
sharply as a large portion of the pools were reduced to saturations below the residual 
saturation threshold (18 %), and rapidly dissolved, until all DNAPL mass was removed 
from the source zone. 

 
Markov-Chain permeability distribution aquifer cell 

• Comparisons between experimental data and numerical simulation results indicate that 
when the permeability contrast between the background and low permeability media is 
approximately one order of magnitude, tracer mass storage and release from the low-
permeability zones is relatively rapid, resulting in only a limited concentration gradient 
between high and low permeability zones. 

• Multi-stage DNAPL dissolution behavior was attributed to the initial, rapid dissolution of 
ganglia from the heterogeneous source zone, followed by sustained dissolution from 
regions containing high-saturation pools located in high permeability lenses.  

 

III.1.2. Numerical Simulations 

III.1.2.1. Field-scale Numerical Simulations 
 

This task resulted in the large library of 3-D field-scale numerical simulations used as training 
data in Task III.  Figure R.1.28 shows a schematic representation of the different scenarios 
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included in the database for the SGS based simulation ensembles. Three representative examples 
for the different permeability field cases taken from these ensembles are displayed in Figure 
R.1.29. As demonstrated in Figure R.1.30, these ensembles alone resulted in a wide variety of 
source zone architectures with PF’s ranging from near zero to greater than 0.8.  This wide variety 
in PF and source zone spreading metrics provided a robust data set for training the models 
employed in Task III. 

 

Figure R.1.28. Schematic representation of cases included in the database of 3-D simulations of 
DNAPL source zone architecture-plume response in a relatively homogeneous glacial outwash 
deposit. 
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Figure R.1.29. Three examples of the DNAPL SZA for the cases where the permeability field 
was modified in a relatively homogeneous glacial outwash deposit. 
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Figure R.1.30. Range of SZA metrics obtained from the database of 3D simulations in a 
relatively homogeneous glacial outwash deposit. 

 

 Simulations in permeability fields based upon the highly heterogeneous glaciofluvial deposit 
(Herten site; Maji, 2005) were also used as training data for Task III.  Recall these ensembles 
investigated the influence of capillary pressure-saturation parameters; residual organic saturation; 
spill rate; hypothetical field structure; and dimensionality on the DNAPL migration and 
entrapment. Table R.1.2 summarizes the ensemble maximum, minimum, mean and standard 
deviation values for the source zone configuration metrics, including maximum PCE saturation 
(𝑠𝑜𝑚𝑎𝑥), horizontal and vertical center of mass (𝑥𝑐𝑚 and 𝑧𝑐𝑚), horizontal and vertical spread (𝜎𝑥𝑥2  
and 𝜎𝑧𝑧2 ), GTP, and PF, for all simulation cases (see Tables M.1.4 and M.1.5 in the Section II.1.3 
for descriptions of the cases). 

Small λ
and 

high  σ2

Small λ
and 

higher  σ2

Small λ
and 

high  σ2

Small λ
and 

higher  σ2

Small λ
and 

high  σ2

Small λ
and 

higher  σ2
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GTP PF
min 0.781 6.430 1.080 1.190 0.248 0.314 0.278
max 0.917 10.400 3.820 6.160 6.580 2.590 0.761

mean 0.898 8.924 2.126 3.841 1.623 0.992 0.531
stdev 0.041 0.964 0.652 1.358 1.488 0.554 0.117

min 0.911 6.310 1.470 0.264 0.664 0.433 0.149

max 0.919 8.530 3.650 3.460 4.520 5.720 0.698

mean 0.918 7.522 2.629 1.213 2.148 1.646 0.451

stdev 0.002 0.630 0.535 0.737 1.184 1.396 0.160

min 0.780 6.390 1.080 1.190 0.248 0.318 0.279

max 0.917 10.400 3.830 6.190 6.640 2.590 0.759

mean 0.897 8.924 2.139 3.876 1.685 1.005 0.530

stdev 0.041 0.967 0.652 1.356 1.485 0.587 0.119

min 0.911 6.440 1.470 0.262 0.691 0.439 0.148

max 0.919 8.530 3.630 3.480 4.560 5.760 0.695

mean 0.918 7.556 2.590 1.212 2.118 1.608 0.458

stdev 0.002 0.575 0.517 0.756 1.185 1.409 0.158

min 0.776 5.790 1.200 1.550 0.344 0.271 0.365

max 0.918 10.700 4.420 8.650 6.850 1.740 0.787

mean 0.902 8.994 2.590 4.867 2.415 0.872 0.557

stdev 0.042 1.319 0.755 1.908 1.796 0.395 0.117

min 0.913 6.210 1.760 0.559 0.787 0.248 0.343

max 0.919 8.580 4.600 3.430 6.010 1.920 0.802

mean 0.918 7.428 3.173 1.638 2.947 1.005 0.532

stdev 0.001 0.708 0.728 0.804 1.605 0.525 0.137

min 0.787 6.730 1.600 0.633 0.607 0.403 0.150

max 0.917 9.800 3.890 9.500 3.600 5.670 0.713

mean 0.896 8.205 2.926 2.968 2.056 1.563 0.437

stdev 0.040 0.940 0.618 2.261 0.775 1.129 0.130

min 0.825 6.230 1.760 0.230 1.220 0.325 0.092

max 0.919 8.840 4.250 4.820 4.480 9.880 0.755

mean 0.912 7.707 3.398 0.980 3.105 2.268 0.365

stdev 0.021 0.625 0.700 1.077 0.937 1.967 0.135

min 0.676 6.620 0.793 0.976 0.209 0.636 0.232

max 0.916 9.250 2.110 3.350 2.980 3.310 0.611

mean 0.889 8.297 1.498 2.100 0.792 1.364 0.444

stdev 0.056 0.707 0.356 0.749 0.599 0.617 0.091

min 0.506 6.630 1.070 0.245 0.381 0.920 0.147

max 0.918 8.140 2.090 3.460 1.650 5.800 0.521

mean 0.893 7.676 1.769 0.866 1.058 2.532 0.313
stdev 0.092 0.428 0.252 0.710 0.350 1.192 0.100

HPM-1Sor-S-1

case 1

LS-1Sor-M-1

case 2

HPM-1Sor-M-1

case 3

LS-4Sor-M-1

case 4

HPM-4Sor-M-1

case 5

LS-1Sor-S-1

case 6

case 10

HPM-1Sor-F-1

case 7

LS-1Sor-M-2

case 8

HPM-1Sor-M-2

case 9

LS-1Sor-F-1

 
Table R.1.2. Summary of ensemble statistics for PCE distribution metrics for highly 
heterogeneous glaciofluvial deposit 
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In these highly heterogeneous permeability fields, capillary pressure-saturation parameters 
significantly influenced the DNAPL migration pathways, while the residual organic saturation 
had almost no influence on DNAPL distributions. Figure R.1.31 depicts three representative PCE 
saturation distributions (min, mean and max horizontal spread). With Leverett scaling, there is a 
larger entry pressure contrast between the extensive layers of lithofacies when compared to the 
HPM (Haverkamp and Parlange (1986)) Method, and this contrast decreases the likelihood that 
PCE will penetrate through the low permeability layers. As a result, with Leverett scaling, the 
PCE has a higher tendency to migrate horizontally. With HPM, the entry pressure contrast 
between continuous layers is smaller, thus less horizontal migration is observed. 

Figure R.1.31. Representative PCE saturation distributions in a highly heterogeneous 
glaciofluvial deposit – 2D simulations case 1 to case 4.  

 

Table R.1.3 shows the result of a nonparametric two-sample Kolmogorov–Smirnov test (K–S test) 
(Fasano and Franceschini, 1987) that was performed to quantify the difference between HPM 
and Leverett scaling. In the two-sample K–S test, the null hypothesis is that the samples are 
drawn from the same distribution. The null hypothesis is rejected at a confidence level α if the K-
S test statistic is larger than the critical value for the test (Fasano and Franceschini, 1987). In this 
study, the two-sample K–S test was performed with Minitab (Minitab, Inc., 2011). The 
highlighted values in Table R.1.3 suggest that for case 1 and case 2 (or case 3 and case 4), the 
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different sets of capillary pressure-saturation parameters (Leverett for cases 1 and 3 and HPM for 
cases 2 and 4) resulted in different distributions of  𝑠𝑜𝑚𝑎𝑥 , 𝑥𝑐𝑚 , 𝑧𝑐𝑚 , and 𝜎𝑥𝑥2   and therefore 
strongly influenced the resulting SZA quantified by these metrics. The test between case 1 and 
case 3 (or case 2 and case 4) does not show a statistical difference, which demonstrates that the 
residual organic saturation does not strongly influence the simulation of DNAPL infiltration and 
entrapment. 

 

Table R.1.3. K-S Test Statistic for Cases 1 to 4 (Critical Value = 0.441, α = 0.05).  Values 
higher than the critical value at the given confidence level are highlighted 

 

 

 

 

 

 

 

Likewise, the spill rate strongly affects the DNAPL spread, especially along the vertical direction 
(Table R.1.4). Figure R.1.32 shows representative PCE saturation distributions for different spill 
rates in a highly heterogeneous glaciofluvial deposit; case 1 and 2 were simulated assuming a 
medium spill rate (2 L/day), case 5 and case 6 were simulated assuming a slow spill rate (0.5 
L/day), and case 9 and case 10 were simulated assuming a fast spill rate (20 L/day). Note that 
cases 1, 5, and 9 had the same permeability field, and likewise for cases 2, 6, and 10. In this way, 
the pathways for PCE are similar within the same realizations and the results are comparable. 
From Figure R.1.32, a clear decrease in the depth of penetration is observed with increasing spill 
rate. For the same realization and capillary pressure model, high saturation pools occur at similar 
locations. With increasing spill rate, both the horizontal and vertical spread are reduced; the PCE 
tends to be trapped in a smaller region with higher average saturation values in each cell. Table 
R1.3.3 quantifies these results using the K-S test and demonstrates that when Leverett scaling is 
used, statistical differences in the underlying distribution of metrics are observed in the high spill 
rate scenarios.  The statistical analysis gives similar conclusions when HPM is used. In this case 
however, it appears that 𝑥𝑐𝑚 is  not influenced by a change in spill rate. 

 
𝑠𝑜𝑚𝑎𝑥 𝑥𝑐𝑚  𝑧𝑐𝑚 𝜎𝑥𝑥2  𝜎𝑧𝑧2  GTP PF 

Case 1 vs. Case 2 0.947 0.736 0.526 0.842 0.315 0.368 0.368 
Case 3 vs. Case 4 0.947 0.736 0.473 0.842 0.315 0.368 0.368 
Case 1 vs. Case 3 0.052 0.052 0.052 0.105 0.157 0.105 0.105 
Case 2 vs. Case 4 0.105 0.105 0.105 0.105 0.052 0.105 0.105 



106 
 
 

 

 

 

Figure R.1.32 Representative PCE saturation distributions for different spill rates in a highly 
heterogeneous glaciofluvial deposit - simulation case 1, case 2, case 5, case 6, case 9 and case 
10. 

 

Table R.1.4. K-S Test Statistic for Cases 1, 2, 5, 6, 9, and 10 (Critical Value = 0.435, α = 0.05) 

 
𝑠𝑜𝑚𝑎𝑥 𝑠𝑜�  𝑥𝑐𝑚  𝑧𝑐𝑚 𝜎𝑥𝑥2  𝜎𝑧𝑧2  GTP PF 

Case 1 vs. Case 5 0.331 0.281 0.184 0.431 0.289 0.434 0.194 0.194 
Case 1 vs. Case 9 0.481 0.584 0.426 0.536 0.634 0.492 0.484 0.484 
Case 5 vs. Case 9 0.7 0.65 0.5 0.8 0.8 0.75 0.5 0.5 
Case 2 vs. Case 6 0.423 0.431 0.142 0.486 0.321 0.294 0.315 0.315 

Case 2 vs. Case 10 0.894 0.634 0.271 0.842 0.428 0.581 0.534 0.534 
Case 6 vs. Case 10 0.95 0.85 0.3 0.9 0.6 0.75 0.65 0.65 
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The location of low permeability layers that make up the field structure has a critical influence 
on the predicted center of mass and spreading in the vertical direction. Simulation results for 
cases 1, 2, 7 and 8 are compared to explore the infiltration and entrapment behavior in different 
field formations (Figure R.1.33). Cases 1 and 2 are simulated in hypothetical permeability field 1, 
and cases 7 and 8 are simulated in hypothetical permeability field 2. Other simulation conditions, 
like the release rate (2 L/day), and the total volume released into the subsurface are exactly the 
same. The volumetric portions for each lithofacies are consistent in field 1 and 2, but the location 
of low permeability layers is different. In field 1, a large low permeability layer was present on 
the top boundary near where the PCE was released, while in field 2, no such low permeability 
layer was present around the release location. Figure R.1.33 shows the representative source 
zones for field 1 and field 2.  As might be expected, these two modified permeability fields result 
in entirely different pathways, which greatly influenced the PCE pool locations. Results from the 
two-sample K-S test (Table R1.3.4) show that with Leverett scaling, the metrics quantifying 
permeability fields 1 and 2,  𝑧𝑐𝑚 , 𝜎𝑧𝑧2 , GTP, and PF, tend to have different underlying 
distributions. When using HPM, these same metrics in addition to 𝜎𝑥𝑥2 , reveal obvious, 
quantifiable differences between field 1 and field 2. Five out of the seven studied metrics in this 
work are sensitive to the location of low permeability layers, namely 𝜎𝑥𝑥2 , 𝑧𝑐𝑚, 𝜎𝑧𝑧2 , GTP, and PF. 
The clear difference in metrics between field 1 and field 2 strongly suggests that the location of 
the low permeability layer with extensive horizontal correlation length is of great importance in 
simulating DNAPL entrapment and infiltration behavior. Therefore, the TP/MC approach has to 
be carefully designed when generating field realizations. 
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Figure R.1.33. Representative PCE saturation distributions for simulation in a highly 
heterogeneous glaciofluvial deposit -case 1, case 2, case7, and case 8. 

 

 

Table R.1.5. K-S Test Statistic for Cases 1, 2, 7, and 8 (Critical Value = 0.435, α = 0.05) 

 
𝑠𝑜𝑚𝑎𝑥 𝑥𝑐𝑚  𝑧𝑐𝑚 𝜎𝑥𝑥2  𝜎𝑧𝑧2  GTP PF 

Case 1 vs. Case 7 0.178 0.347 0.744 0.394 0.486 0.534 0.534 
Case 2 vs. Case 8 0.397 0.244 0.594 0.436 0.484 0.531 0.531 
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This study (Herten site)
(80L 0.5 L/day)

0.9018 0.562 0.370 0.019 0.049

This study (Herten site)
(80L 20 L/day)

0.8885 0.519 0.214 0.008 0.016

Dekker and Abriola (2000) (Borden site)
(75L 15 L/day )

0.0743 _ 0.188 _ 0.006

Christ et al. (2005) (Oscoda site)
(32L 0.16 L/day)

0.354 0.472 0.331 0.014 0.026

Lemke et al. (2004) (Bachman Road site)
(96L 0.24 L/day)

0.37 _ 0.353 0.001 0.045

The results also suggest that there is a significant increase in maximum organic saturation (𝑠𝑜𝑚𝑎𝑥) 
and PF in highly heterogeneous aquifers in comparison to those in mildly heterogeneous aquifers. 
The influence of spill rates on the prediction of 𝑠𝑜𝑚𝑎𝑥 and GTP for highly heterogeneous aquifers 
tends to be different from that for mildly heterogeneous aquifers. To compare the values 
of 𝑥𝑐𝑚 ,𝑧𝑐𝑚, 𝜎𝑧𝑧2 , and 𝜎𝑥𝑥2  for highly heterogeneous aquifers to those for mildly heterogeneous 
aquifers, these metrics were normalized according to the  corresponding scale for the respective 
domain and converted into dimensionless quantities. The dimensionless quantities are listed in 
Table R1.3.5. All the values present in Table R1.3.5 are adjusted from the mean values of the 
simulations with Leverett scaling (e.g. case 5 and 9 for this study). Table R1.3.5 shows that the 
𝑠𝑜𝑚𝑎𝑥  obtained in highly heterogeneous aquifers is dramatically higher than that in mildly 
heterogeneous aquifers. In addition, the values for horizontal and vertical spread in highly 
heterogeneous aquifers are generally greater than those in mildly heterogeneous aquifers. The 
center of mass in the horizontal direction is similar for mildly and highly heterogeneous aquifers 
since the release areas are located at the center of the simulated region for all studies. For highly 
heterogeneous aquifers, 𝑧𝑐𝑚 tends to be 10% to 30% higher than it is for mildly heterogeneous 
aquifers. Note that neither the same volume nor the same PCE release rate was used for all the 
studies quantified in Table R1.3.5. 

Table R.1.6. Dimensionless mean source zone metrics for highly and mildly heterogeneous 
aquifers 

 

The influence of dimensionality was briefly investigated in this subtask. To obtain insight into 
PCE entrapment and infiltration behavior in 3-D, only 1 of the 20 realizations obtained for the 
2D study was chosen as a representative domain and simulated under the 1, 2, 5, 6, 9, and 10 
simulation cases. These six cases include Leverett scaling and HPM under slow, medium, and 
fast release rates, thus the influence of capillary pressure-saturation parameters and the spill rates 
on 3-D simulation of PCE migration can be examined. To facilitate the comparison of 2-D and 3-
D simulation results, the 3-D DNAPL infiltration results were sliced along the center x-z cross 
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sections corresponding to the permeability field used in the 2-D simulation, as shown in Figure 
R.1.34.  Metrics obtained from this slice are labeled “2-D in 3-D.” From Figure R.1.35, it is 
observed that the PCE migration pathways for 2-D and 3-D simulations under slow, medium, 
and fast spill rates are quite different.  Although the same amount of PCE is released at the same 
rates in identical permeability fields, the different DNAPL architectures resulting from the 3-D 
and 2-D simulations may be explained by the migration of PCE in the 3rd dimension when 
encountering horizontal capillary barriers in 3-D, whereas in the 2-D domain the adjacent cross 
sections does not exist. The PCE pathways for the 2-D cross sections of the 3-D simulations are 
not continuous, but the 3-D simulations have pathways in other planes for the PCE to continue 
its vertical migration. Figure R.1.36 depicts the PCE pathways for 2-D and 3-D simulations with 
HPM. Clearly, the capillary pressure-saturation parameters strongly influence the PCE migration 
for both 2-D and 3-D simulations, since the PCE migration pathways are different between 
Leverett scaling and HPM. With HPM the pathway for PCE tends to be more continuous in the 
3-D simulation than when Leverett scaling is used. However, there are still discontinuous 
pathways, which indicate PCE movement to adjacent planes. In general, the results suggest that 
dimensionality effects are mildly dependent on the capillary pressure-saturation methodology 
employed and that these results seem to lack a regular pattern that would allow one to assume the 
2D simulation is an accurate reflection of the 3D simulation as originally reported by Christ et al. 
(2006). Thus, based on the aquifer realizations employed in this study, the results for 2-D 
simulations should not be extended to 3-D simulations in highly heterogeneous aquifers.  Future 
work is needed for a more systematic study of 3-D behavior in highly heterogeneous 
permeability fields.  
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Figure R.1.34. 2-D simulation results extracted from 3-D simulation. 

Figure R.1.35. 2-D and 3-D PCE saturation distribution with Leverett scaling. 
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Figure R.1.36. 2-D and 3-D PCE saturation distribution with HP Method.  
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III.2. Refinement of In-Source Push-Pull Tests 

III.2.1. Batch, Column, and Aquifer Cell Experiments 

III.2.1.1. Liquid-Liquid Equilibrium Studies 

Evaluation of equilibrium partitioning 
The ternary phase diagram for each alcohol with TCE and water is shown in Figure R.2.1.  Also 
shown in Figure R.2.1 is the UNIFAC prediction (dashed line) of the binodal curves that separate 
the two phase region from the DNAPL phase region (upper left curve) and the aqueous region (a 
small region, not visible in Figure R.2.1, located in the lower right corner of the phase diagram).   
Tie lines (solid lines) connect the two points corresponding to the measured, equilibrium 
compositions of the two phases.  Any initial composition located between the binodal curves will 
separate into two phases each having a composition lying on the binodal curves that is connected 
by a tie line.    

The nonlinear partitioning of each tracer between the TCE-DNAPL and aqueous phase is shown 
in Figure R.2.2. The nonlinearity in the partitioning behavior means that iC

pK is a function of 
phase composition. (Herein partition coefficients refer to concentration based partition 
coefficients ( iC

pK ) with units of [L3/L3] as opposed to mol fraction based partition coefficients 

( iX
pK ) which are dimensionless) (Ervin et al., 2011).  
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Figure R.2.1. Ternary phase diagrams at 22.0±0.1°C for 1-pentanol (a), 1-hexanol (b), and 2-octanol (c) developed from liquid-liquid 
equilibrium batch experiments.  Experimental data are shown as tie lines.  UNIFAC predictions of the binodal curves defining each 
two phase region are shown as dotted lines.  The binodal curve defining the aqueous phase is not visible but exists in the lower right 
corner of each phase diagram. 
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Figure R.2.2.  The distribution of 1-pentanol (a), 1-hexanol (b), and 2-octanol (c) between the 
NAPL and aqueous phase at 22.0±0.1°C as established by liquid-liquid equilibrium data (circles) 
and UNIFAC predictions (dashed line).  Note that data span the range of possible aqueous 
concentrations but that differences in solubility necessitate change in the horizontal range for 
each panel.  Insets show dilute range with the regressed, linear partitioning model (solid line). 
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Evident in Figure R.2.2 is a region at lower concentration where the partitioning data can be 
approximated as linear, above which the partition coefficient increases with increasing 
concentration.  The assumption of linear partitioning appears to be applicable below 
approximately 3,000 mg/L, 600 mg/L and 200 mg/L for 1-pentanol, 1-hexanol and 2-octanol, 
respectively (Figure R.2.2). A linear, weighted, least squares regression was employed in the 
dilute region of each alcohol tracer to determine the linear partition model (Ramachandran et al., 
1996).  The resulting partition coefficients (at 22.0±0.1°C) for 1-pentanol, 1-hexanol and 2-
octanol in a TCE-DNAPL/water system are 4.20±0.10, 17.4±0.2, and 149±8 Laq/LDNAPL, 
respectively (Ervin et al. 2011).   

It is noted that all three of these measured values represent a different amount of partitioning 
than has been previously reported (Table R.2.1).  The discrepancy between measured and 
literature values for the partitioning of 2-octanol (in a TCE/water system) is approximately 113%.  
This large discrepancy for 2-octanol is consistent with the fact that 2-octanol exhibited the 
greatest nonlinearity (Figure R.2.2).  In addition, both Kp values for 2-octanol appearing in Table 
R.2.1 (317 and 332) were estimated based upon equivalent alkane carbon number (Dwarakanath 
and Pope, 1998; Thal et al., 2007).  While these estimates may hold value when screening 
alcohols, the data shown in Figure R.2.2 demonstrate the need for careful measurement of 
partition coefficients prior to application. 

Table R.2.1.  Reported partition coefficients for 1-pentanol, 1-hexanol and 2-
octanol 

Tracer 
iC

pK  
(Laq/LDNAPL) 

Initial Aqueous 
Concentration 

for Measurement of
iC

pK  

Reference 

1-pentanol 

3.80 a,c 1000 mg/L Dwarakanath and Pope, 1998 
3.8 b,c 1000 mg/L Wang et al., 1998 
3.73 a,d range not reported d Willson et al., 2000 
3.39 a,c 500 mg/L Thal et al., 2007 

1-hexanol 

18.6 a,e not reported e Jin et al., 1997 
18.6 a,c 1000 mg/L Dwarakanath and Pope, 1998 
18.6 b,c 1000 mg/L Wang et al., 1998 
18.0 a,d range not reported d Willson et al., 2000 
18.2 a,f not applicable f Istok et al., 2002 
12.4 a,c 500 mg/L Thal et al., 2007 

2-octanol 317 a,g not applicable g Dwarakanath and Pope, 1998 
332 a,g not applicable g Thal et al., 2007 

a temperature was not reported, b 25°C, c single-point measurement, d regression of 
measurements at multiple concentrations though concentration range was not reported, e 

measurement method was not reported, f value estimated using method in Lyman et al. (1990), 
g estimated using an equivalent alkane carbon number for 2-octanol that was produced by 
employing the known 2-octanol partition coefficient between water and PCE-DNAPL 
(Ramsburg et al. 2005). 
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UNIFAC Modeling  
The UNIFAC predictions of alcohol partitioning between the DNAPL and aqueous phases are 
also shown in Figure R.2.2 (dashed line).  The group contribution parameters used in the 
UNIFAC prediction (Ervin et al., 2011) are able to predict the general shape over the entire 
partitioning range for each alcohol.  The model performance is especially good for 1-pentanol 
and 2-octanol.  The relatively poorer performance of UNIFAC when describing the partitioning 
of 1-hexanol results from an inability to accurately capture the 1-hexanol/water mutual solubility 
which shifts the curve to the right in Figure R.2.2.  Note, however, that the shape of the UNIFAC 
prediction is similar to that of the data.  In the dilute region, the UNIFAC model over predicts the 
amount of alcohol partitioning.  The UNIFAC predictions of linear partition coefficients within 
the dilute regions are 5.8 Laq/LDNAPL, 18.4 Laq/LDNAPL and 232.6 Laq/LDNAPL for 1-pentanol, 1-
hexanol and 2-octanol, respectively (Ervin et al. 2011).  The superior UNIFAC predictions for 
the 1-hexanol within the dilute region are suspected to be spurious and related to the previously 
described inaccuracy in the 1-hexanol/water mutual solubilities.   

The inability of UNIFAC to capture the 1-hexanol data was further examined by adjusting group 
interaction parameters in an attempt to visually fit the model to the 1-hexanol data (Ervin 2012).  
It was found that adjusting the H2O/–OH interaction parameters enables the model to better 
predict the 1-hexanol data, but it must be recognized that the same adjustment leads to poorer 
UNIFAC model predictions for both 1-pentanol and 2-octanol.  UNIFAC parameters are 
estimated from thousands of data points stored in the Dortmund Data Bank (Gmehling et al., 
1977) and both H2O and –OH groups are well characterized interaction parameters.  Therefore, 
even though adjustment of these parameters allows for better prediction of the hexanol data set, it 
is not recommended that these adjusted interaction parameters be employed when making 
predictions of LLE. 

Adsorption of the Selected Tracers at the TCE-DNAPL/Water Interface 
LLE experiments were also used to study interactions of the alcohol tracers and the 
aqueous/organic interface.  Surface accumulation for 1-pentanol, 1-hexanol and 2-octanol at the 
DNAPL-aqueous interface was quantified by measuring equilibrium IFTs over a range of solute 
concentrations (200-1300 mg/L for 1-pentanol, 35-4600 mg/L for 1-hexanol, and 170-900 mg/L 
for 2-octanol).  The two Langmuir parameters Γ∞ (maximum surface accumulation, M∙L-2) and 
aL (half saturation concentration, M∙L-3) were obtained by fitting Equation R.2.1 to the IFT data 
using a nonlinear, least squares approach (see Ervin et al. 2011 for more detail). 
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In Equation R.2.1, Caq  is the bulk tracer concentration (M∙L-3), and γ0 and γ are the interfacial 
tensions (M∙T-2) measured in the absence of the alcohol and at alcohol concentration C, 
respectively.  Fitted isotherm parameters (shown in Table R.2.2) suggest that 2-octanol has a half 
saturation concentration (aL) that is two orders of magnitude lower than that of 1-pentanol.  The 
low aL of 2-octanol implies that the interface becomes saturated at relatively low concentrations.  
The capacity of the interface (Γ∞) was found to decrease with increasing alcohol carbon chain 
length, though all values are on the same order of magnitude.  The interfacial capacities shown in 
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Table R.2.2 suggest that surface accumulation (at any given time during the column experiment) 
will represent a small fraction of the overall mass in the system.   

 

Table R.2.2. Isotherm parameters for tracers at a TCE-DNAPL-water 
interface  

Tracer Γ∞            
(μmol/m2) 

aL 
(μmol/m3) 

aL 
(mg/L) R2 

1-pentanol 6.6±1.5 (2.6±1.1)x107 2330±1000 0.960 

1-hexanol 4.8±0.5 (3.2±0.6)x106 330±60 0.989 

2-octanol 3.6±0.4 (2.7±0.8) x105 35±11 0.936 

Values determined by a nonlinear least squares fit of Equation R.2.1 to equilibrium 
interfacial tensions measured at 22±2°C.  Uncertainties represent standard error in 
parameter estimates.  

Liquid-Liquid Equilibrium Conclusions 
The partitioning of three, straight-chain alcohols was found to be nonlinear functions (i.e., 
dependent upon phase composition).   These findings, together with those in Wise et al. (1999), 
suggest a need for more thorough characterization of alcohol partition coefficients prior to 
application for source zone assessment.  When nonlinearity is neglected, interpretation of 
partitioning tracer data leads to a systematic over estimations of NAPL saturation (Wise, 1999).  
The partitioning of many tracers, however, may be approximately linear at low concentration.  
Care must be taken when designing and interpreting the results from tests employing partitioning 
tracers as analysis may prove difficult due to the convoluted effects of poor characterization of 

iC
pK  (over estimation of Sn) and the hydraulic accessibility of the NAPL (under estimation of Sn).  

Few studies report the concentrations at which partition coefficients were measured, and those 
that do report the data employed to evaluate iC

pK often evaluate the partition coefficient at 
concentrations that are much lower than those introduced to the subsurface (Jawitz et al., 1998; 
Brooks et al., 2002; Meinardus et al., 2002; Jalbert et al., 2003; Ramsburg et al., 2005; Moreno-
Barbero et al., 2007; Hartog et al., 2010).  The injection concentrations employed in these field 
tests may be within the linear partitioning range, but without thorough characterization of the 
tracer/NAPL interactions, the range over which the linear assumption is valid remains unknown.  
While the use of low injection concentrations minimizes the potential implications relating to 
nonlinear partitioning, concentrations must be high enough to avoid the influence of tracer-soil 
interactions and analytical detection limits.  Our thermodynamically rigorous characterization of 
1-pentanol, 1-hexanol and 2-octanol interactions with TCE suggests that concentrations should 
not exceed 3,000 mg/L, 500 mg/L and 200 mg/L, respectively, if the data analysis is to be 
simplified by assuming linear partitioning.   
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Transport models, and consequently, saturation estimates are very sensitive to the partition 
coefficient.  Though UNIFAC offers an effective tool for predicting alcohol/chlorinated 
ethene/water phase behavior, the group contribution method tends to over predict the partition 
coefficients in the dilute range (where data appear linear).  This over prediction of the partition 
coefficient may lead to underestimation of NAPL saturation.   Therefore, measurement of the 
partition coefficient over the range of concentrations to be employed provides the best 
foundation for accurate estimates of NAPL saturation from partition tracer test data. 

The equilibrium sorption isotherms developed in this work show that 1-pentanol, 1-hexanol and 
2-octanol do accumulate at the aqueous/DNAPL interface.  This surface accumulation may 
regulate tracer mass flux across this interface (Ferrari et al., 1997; Liggieri et al., 1997; Ravera et 
al., 1997; Ravera et al., 2000).  However, the maximum accumulation of the three tracers is small 
(on the order of micrometers per square meter).  To understand the implications of surface 
accumulation, the equilibrium sorption isotherms need to be incorporated into a transport model 
that can quantify the effect surface accumulation has on overall transport. 

III.2.1.2. Non-equilibrium Tracer Transport  

Column Experiments 
Column experiments were conducted to explore the relative importance of the processes that 
may control the extent and rate of interphase alcohol tracer partitioning in domains containing 
uniformly entrapped TCE-DNAPL (Ervin et al. 2011).  In contrast to previous investigations, 
independent measurement and/or estimation of system physical and chemical properties leads to 
unambiguous data interpretation and eliminates the need for curve fitting. Focus is placed on 
conditions which promote non-equilibrium mass exchange to elucidate the processes controlling 
the temporal distribution of the solute within the multiphase environment. We specifically 
examine the importance of aqueous and NAPL resistances to tracer mass transfer. This is done 
through a series of column experiments and model simulations, using the representative alcohol 
tracers. 

Breakthrough curves from the column tracer experiments are presented in Figure R.2.3, with 
experimental parameters listed in Table R.2.3.  Comparison of the curve for the non-partitioning 
tracer (Figure R.2.3a) with that for each alcohol tracer (Figures R.2.3b-d) reveals the influence of 
partitioning – retardation during transport.  Note that predications of the tracer transport were 
made using known values of the TCE-DNAPL saturation and tracer partition coefficients.     
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Figure R.2.3. Breakthrough curves for bromide (a), 1-pentanol (b), 1-hexanol (c), and 2-octanol 
(d) tracer tests conducted at 22±2°C. Dispersivity was fit (dash-dot) to bromide data.  Predictive 
simulations using measured values for the partition coefficients are also shown using equilibrium 
(dotted), linear driving force (solid), and dual diffusion (dashed) models.  Values of the partition 
coefficient employed in these simulations were 4.20, 17.4, and 149 Laq/LNAPL for 1-pentanol, 1-
hexanol, and 2-octanol, respectively, at 22.0±0.1°C. Note that linear driving force and dual 
diffusion models produce nearly identical results, the pore volume scale changes for each panel, 
and the normalized concentration scale changes for panel d.



121 
 

Table R.2.3. Parameters related to column experiments and simulations 

sand (Ottawa, IL) 45-50 mesh 45-50 mesh 
uniformity index (Ui) 1.09 1.09 
median grain diameter (d50) 0.326 mm 0.326 mm 
column length (L) 5.0 cm 4.9 cm 
pore volume (PV) 36 mL 35 mL 
porosity (n) 0.39 0.39 
TCE-NAPL saturation (Sn) 16.8% 13.1% 
ganglia diameter a (dNAPL) 0.297 mm 0.297 mm 
flow rate (Q) 2.2 mL·min-1 0.56 mL·min-1 
pore water velocity (v) 0.32 cm·min-1 0.091 cm·min-1 

dispersivity (α) 3.2 mm 1.5 mm 
molecular diffusivity in water (Daq) b 
   1-pentanol 
   1-hexanol 
   2-octanol 

 
0.80×10-5 cm2·s-1 
0.76×10-5 cm2·s-1 
0.65×10-5 cm2·s-1 

molecular diffusivity in TCE (Dn) c 
   1-pentanol 
   1-hexanol 
   2-octanol 

 
2.4×10-5 cm2·s-1 
2.2×10-5 cm2·s-1 
1.9×10-5 cm2·s-1 

lumped mass transfer coefficient ( k̂ ) d 
   1-pentanol 
   1-hexanol 
   2-octanol 

 
2.34×10-3  s-1 
2.19×10-3  s-1 
1.98×10-3  s-1 

 
- 
- 

8.45×10-4  s-1 
pulse width – all pulses (PW) 2.3 PV 10.3 PV 
influent concentration (C0)  
   1-pentanol 
   1-hexanol 
   2-octanol 

 
1070 mg·L-1 
380 mg·L-1 
180 mg·L-1 

 
- 
- 

195 mg·L-1 

effluent recovery 
   1-pentanol 
   1-hexanol 
   2-octanol e 

 
98.8% 
94.6% 
70.4% 

 
- 
- 

89.6% 

a Calculated using correlation of Ramsburg et al. (2011).  b Calculated using the 
correlation of  Hayduk and Laudie (1974) at 22°C.  c Calculated with 
correlation of Wilke-Chang at 22°C.  d Calculated using the correlation of 
Powers et al. (1992) at 22°C. e Effluent recovery lower due to incomplete 
quantification of BTC tail. 
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The influence of mass transfer is apparent in the breakthrough curves.  All of the 
equilibrium transport predictions offer the poorest description of the BTCs, with 
deviations most noticeable for the strongest partitioning tracer (2-octanol).  The 
influence of diffusion within the DNAPL on the partitioning kinetics was 
explored by comparing the dual diffusion model to the linear driving force model 
(see Ervin et al. 2011 for details).  Dual diffusion and linear driving force (i.e., 
completely mixed DNAPL) scenarios produce predictions that are coincident, 
suggesting that diffusion within the NAPL singlets occurs rapidly relative to 
transport to the NAPL-water interface.  Sensitivity analyses (not shown) 
determined that diffusional resistance in the NAPL phase does not become 
important until the radius of the ganglia droplet is doubled.  From this analysis, it 
appears that diffusional resistance within the NAPL may be important for tracer 
mass transport through regions containing pools, but is not controlling mass 
transfer for the entrapped ganglia systems examined herein. Additional sensitivity 
analyses (not shown) were conducted to determine whether or not the laboratory 
data could be reproduced by fitting the value of the mass transfer coefficient in 
either the linear driving force or dual diffusion models. Results suggest that 
adjustment of the mass transfer coefficient does not improve the ability of either 
model to fit the 1-hexanol or 2-octanol effluent data.   

To more broadly explore the effects of uniform DNAPL saturation on the 
equilibrium assumption, the linear driving force model was employed to identify a 
velocity at which the local equilibrium assumption (LEA) is a reasonable 
approximation of the partitioning process (taken here to be 5% difference between 
the simulated BTCs). The 18 simulation results shown in Figure R.2.4 are for the 
partitioning alcohols and porous medium examined here, with transport lengths of 
5, 10 and 100 cm.   

These illustrative results, presented in terms of the hydraulic residence time 
within the zone 
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suggest that strong non-equilibrium conditions may be present when using tracers 
with high partition coefficients, or where local saturations may be high.  It is 
interesting that the tracers with the higher partition coefficients are frequently 
used to assess DNAPL saturation in the field due to the need for tracer separation 
when interrogating large volumes. Local exchange for these tracers, however, 
may be occurring under conditions of non-equilibrium.   

Actual source zones, characterized by low overall saturations, typically comprise 
heterogeneous saturation distributions. Here, the local equilibrium assumption 
may be less appropriate due to flow bypassing and less accessibility to the 
DNAPL surface area (Moreno-Barbero and Illangasekare, 2005, 2006). Where 
DNAPL is accessible, the local length scale (characteristic length of contact 
between the tracer solution and DNAPL) will govern the applicability of the LEA.  
Unfortunately, confirmation of the LEA applicability or selection of an 
appropriate non-equilibrium model formulation requires that contact times (or 
lengths) are known a priori across the unknown DNAPL architecture.   
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Figure R.2.4. Limitation of the local equilibrium assumption for partitioning 
alcohols in zones of uniformly entrapped DNAPL.  The hydraulic residence time 

within the zone is
vnS

L

aq

, and the partitioning index is defined to be iC
pn KS .  The 

line is shown as a visual guide for the simulation results shown as open circles.   

Conclusions from Column Experiments 
Laboratory experiments and mathematical modeling were coupled to examine the 
partitioning of the three representative tracers under non-equilibrium conditions in 
systems comprised of TCE-DNAPL ganglia. Results suggest that a linear driving 
force model employing a mass transfer coefficient correlation developed from 
NAPL dissolution experiments is able to reproduce BTCs generated in the 1-D 
column systems (Ervin et al. 2011). Results also demonstrate that non-equilibrium 
effects increase with increasing partition coefficient and increasing NAPL 
saturation, suggesting that the validity of the LEA should be checked for the 
solute having the highest partition coefficient.  While the column experiments 
were designed to be in non-equilibrium, the flow rate of the 2-octanol experiment 
would have had to be reduced to 0.01 mL/min (i.e., 0.5% of the initial rate) before 
the linear driving force model predictions were within 5% of those produced by 
an equilibrium simulation. 

Tracer Partitioning In DNAPL Pools 
The longer diffusional path length in a DNAPL pool (relative to ganglia), may 
mean that diffusion within the DNAPL is more relevant to tracer transport in 
regions having pooled DNAPL. To study kinetic processes controlling tracer 
transport in regions of pooled DNAPL, partitioning tracer tests were conducted in 
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a 2-D aquifer cell with a source zone comprised of a large TCE-DNAPL pool.  
Concentration data were modeled to examine the feasibility of employing mass 
transfer correlations developed to describe dissolution from a NAPL pool when 
describing the kinetic mass transfer for partitioning tracers. The aquifer cell 
experiments described in this section used Ottawa Federal Fine (30-140 mesh) for 
the background sand and F-70 Ottawa Sand was used to create low permeability 
lenses and layers.  The lens structure (Figure R.2.5) was comprised of a 1 cm 
thick F-70 lens (28.2 cm long) at the up-gradient end of the box. Triangular 
mounds (3.6 cm tall) were placed on each end of the lens in an effort to direct the 
TCE-DNAPL to fill the area above the lens, creating a large pool. This structure 
was not meant to mimic an observed structure within the subsurface. Rather, it 
was an alternative to previous use of similarly contrived, course lenses placed 
within a lower permeability matrix (e.g. Nambi and Powers, 2003; Moreno-
Barbero and Illangasekare, 2006).  Parameters pertaining to the packing structure 
are shown in Table R.2.4.  Details related to the experimental procedure can be 
found in the Section II.2.2.2, as well as in Ervin (2012). 

The TCE-DNAPL distribution and corresponding light transmission results are 
shown in Figure R.2.6.  Light transmission results determine the PF as 0.96, 0.94 
and 0.93 on a pixel by pixel basis, a discrete block averaging basis and a 
continuum averaging basis, respectively (Christ et al., 2012).   

 

 

Figure R.2.5. Packing structure used to create the pooled source zone.     
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Table R.2.4. Relevant 2-D box parameters 

Parameter Value 
Mass Ottawa Federal Fine  4868 g 
Mass F-70  521 g 
Packed Height  34 cm 
Average Bulk Density  1.54 g/cm3 

Average Porosity  0.42 
Total Pore Volume  1303 mL 
TCE-DNAPL Volume  13.5 mL 
Overall TCE-DNAPL Saturation  1.04% 
Initial Pool Fraction  
     Pixel x Pixel 
     Discrete Block Averaging 
     Continuum Averaging 

0.96 
0.94 
0.93 
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Figure R.2.6. 2-D aquifer cell used to examine partitioning tracer transport in a 
pooled TCE-DNAPL source zone.  The photograph (a) sampling port labels 
(columns 1- 4 and rows A-F).  Light transmission results are shown as a pixel by 
pixel saturation estimation (b), discrete averaging saturation estimation (c), and 
continuum averaging saturation estimation (d).  

The tracer pulse (0.31 PV) containing bromide (10 mM), 1-pentanol (980 mg/L), 
1-hexanol (380 mg/L), and 2-octanol (135 mg/L) in a background solution of 
Milli-Q water saturated with TCE was delivered to the aquifer cell at a rate of 4.9 
mL/min with flow moving from left to right (in Figure R.2.6). Effluent samples 
were continuously collected over 4-5 minute intervals throughout the test using a 
fraction collector (Retriever II, ISCO). Additionally, 250 μL samples were 
collected from the array of sampling ports (immediately downstream of the pool) 
approximately every pore volume using a 1 mL gas tight Hamilton syringe.   

In contrast to column experiments conducted using uniform residual TCE-
DNAPL saturations, the breakthrough of each tracer in the 2-D box occurred at 
approximately the same time (Figure R.2.7).  The lack of tracer separation in the 
effluent was attributed to the larger volume of the 2-D system, relative to that of 
the pool (TCE-DNAPL pool comprises 1% of the total volume); therefore, most 
of the tracer flowing through the system did not contact the pool (i.e., flow 
bypass). Although the overall (effective) saturation employed for the pool 



127 
 

experiments (1%) is lower than that employed for the ganglia column experiments 
(16.8%), local saturations in the pool experiments were much greater (~70%).   

  

 

Figure R.2.7. Effluent data and model simulations for the aquifer cell experiment 
containing the isolated pool.  Bromide (circles and solid line), pentanol (diamonds 
and dashed line), hexanol (squares and dash-dot line) and 2-octanol (triangles and 
dotted line) are included.  The model was fit to the bromide data by adjusting 
dispersivity.  All partitioning tracer breakthrough curves were subsequently 
predicted using this fitted dispersivity.   

Five mass transfer correlations developed from NAPL pool dissolution studies as 
well as two correlations developed from ganglia dissolution studies were 
evaluated for use with the linear driving force model.  It was determined (see 
Ervin 2012 for details) that the Nambi and Powers (2003) correlation (developed 
from a DNAPL pool dissolution study) and the Powers et al. (1992, 1994) 
correlations (developed from ganglia dissolution studies) are all able of providing 
good predictions of partitioning tracer transport.  By comparison of the sum of 
squared errors, it was determined that the Nambi and Powers (2003) correlation 
performs slightly better than the other two correlations.  Additionally, the Nambi 
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and Powers correlation includes a saturation term which may be useful for 
predicting transport in source zones with heterogeneous DNAPL saturations.  The 
only adjustable parameter in the model is longitudinal dispersivity (0.13 cm) 
which was fit to bromide data. Note here that transverse dispersivity is assumed to 
be 10% of the longitudinal value. Overall, the model appears to capture the 
general shape of the effluent breakthrough curve produced in the experiment 
(Figure R.2.7).  When viewed on the log-scale, it becomes apparent that the 
model is able to capture the slight dip and recovery in concentrations seen 
between approximately 1.8 and 3 pore volumes, but that it over predicts the 
subsequent increase in concentrations.  The remainder of the tail concentrations (> 
4 PV) is well captured by the model. 

Tracer concentrations in the samples collected from the ports were used to 
construct local BTCs in an effort to examine the influence of the pool on the 
spatial distribution of tracer concentrations within the box. These local BTCs 
were subsequently examined by interrogating local concentration predictions 
produced during each of the aforementioned model simulations. Simulations for 
each partitioning tracer match the data well for most ports. The dispersivity value 
fit to the bromide effluent curve was used to predict tracer BTCs at each sampling 
port. Illustrative results are shown for Columns 1 and 2 of the sampling ports 
(Figure R.2.8). Note that because of the geometry of the sampling port array 
(Figure R.2.6), results for column 3 are similar to column 1 and those for column 
4 are similar to column 2.  In column 1, predictions for port 1E slightly under 
predict maximum C/C0 values, but still capture the general shape of the data.  For 
port 1D, the port most affected by the combination of the low permeability berm 
and the TCE-DNAPL pool, the simulations accurately capture the data. In column 
2, the data for all of the ports, except 2D are well reproduced. However, even the 
predictions at port 2D are able to capture the overall shape and low C/C0 values 
seen in the data. 
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Figure R.2.8. Comparison of tracer concentrations in the sampling ports 
(columns 1 and 2) to those predicted by the model.  1-pentanol (diamonds, dashed 
line), 1-hexanol (squares, dash-dot line) and 2-octanol (triangles, dotted line) are 
included. Panel labels correspond to specific ports show in Figure R.2.6. 
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Comparison between columns 1 and 2 suggests a fine-scale local variation in 
concentration. Though these two sets of ports (column 1 versus column 2) are 
only vertically offset by 1 cm, the differences in the breakthrough curves are 
distinct (e.g. ports C, D, and E for columns 1 and 2).  This shows that the scale of 
vertical heterogeneity around the low permeability berm and TCE pool is on the 
order of 1 cm, highlighting the importance of precise alignment of the local ports 
in the model domain.  Nevertheless, results of this experiment suggest that the 
Nambi and Powers (2003) correlation in concert with the linear driving force 
model is capable of describing tracer partitioning (absorption and dissolution) 
within DNAPL pools.   

Conclusions for lone pool exeriment 
Results demonstrated that a 2-D linear driving force model employing the Nambi 
and Powers (2003) correlation for the mass transfer coefficient, a correlation 
developed from DNAPL dissolution experiments, is able to predict partitioning 
tracer transport for the experiment. Model predictions were able to capture the 
behavior of both the effluent data and local port BTCs downgradient of the TCE-
DNAPL pool. When coupled with the results from our column experiment, the 
results from the pooled aquifer cell experiment allow for quantitative 
understanding of partitioning tracer transport at both end members of PF. 

III.2.1.3. Push-Pull Test Design 
Three push-pull tests, each employing a different combination of injection and 
extraction rates, were conducted in 2D aquifer cell experiments.  A description of 
the aquifer cell is provided in the Section II.2.2.2. Greater detail on the 
experiments is available in Ervin 2012. In brief, three different packing structures 
were used to create a low, mid and high PF source zone.  Combinations of fast 
(8.5 mL/min) and slow (0.05 mL/min) flow rates were selected in an attempt to 
highlight the difference in transport time scales between ganglia and pools. Target 
flow rates for each experiment are shown below in Table R.2.5. A fast flow rate 
of 8.5 mL/min was chosen because it provides a similar pore water velocity to 
that employed in the non-equilibrium column experiments. The slow flow rate 
was 0.5 mL/min. This slow flow rate represents a compromise between a desire to 
achieve 2-octanol equilibrium partitioning and the practicability of using slow 
flow (i.e., long test durations in the field).  

Table R.2.5. Tracer test flow rates for mixed source zone experiments 

 Push Pull 

Condition 
Q 

(mL/min) 
ν 

(m/hr) 
Q 

(mL/min) 
ν 

(m/hr) 
1 8.5 0.25 8.5 0.25 
2 0.5 0.02 8.5 0.25 
3 8.5 0.25 0.5 0.02 
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Using a fast flow rate for both phases of a test (condition 1) is most favorable for 
field implementation because of the cost and organizational issues associated with 
running long field tests. The increased residence time due to the slow push in 
condition 2 should allow more tracer mass to partition into the DNAPL. The fast 
“pull” phase would then force the system into non-equilibrium, possibly 
visualizing any diffusional resistance to mass transport in the DNAPL pools as 
long tailing signals. Condition 3 switches the order of flow rates used in condition 
2 to force the tracers all the way through the source zone and then allow for 
partitioning during the pull phase to be close to equilibrium.  By changing the 
injection and extraction flow rates of each push-pull test, the three experiments 
should show if differences in transport time scales between ganglia dominated 
and pool dominated systems can be manipulated to estimate PF.   

In each of these nine push-pull experiments, approximately 1800 mL of an 
aqueous tracer solution containing bromide, 1-pentanol, 1-hexanol and 2-octanol 
was flowed through the source zone from the left end-chamber (Figure R.2.8).  To 
ensure that the tracer solution flowed completely through the source zone, the 
presence of each partitioning tracer was verified in aqueous samples taken from 
the first two columns of ports immediately downgradient of the source.  Flow was 
then reversed and background solution was flowed through the box from the right 
end-chamber. Effluent samples were collected from the left end chamber with a 
fraction collector (Retriever II, ISCO) in 20 mL increments during this “pull” 
phase until the tracer tails began to flatten out. Then, samples were collected 
approximately every 900 mL until tracer concentrations fell below the detection 
limit. All background solutions used after DNAPL was released into the box were 
saturated with TCE to minimize TCE-DNAPL dissolution from the source zone.  
All tracer concentrations were below their detection limit (see Section II.2.1) 
before the experiment was terminated and the next experiment initiated.  It should 
be noted that though TCE saturated water was used in attempt to minimize TCE-
DNAPL dissolution from the source zone, DNAPL mass was lost from each 
source zone due to both dissolution and volatilization.   
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Figure R.2.9.  Initial TCE-DNAPL saturation distributions in the 2D aquifer cell 
for the low, mid and high PF experiments.  Shown on the left are photographs of 
each aquifer cell (100 cm in length, 44 cm in packed height and 1.5 cm in 
thickness). Shown on the right are light transmission images of saturation 
distribution. All color bars range from no saturation (blue) to a saturation of 0.4 
(red). 

A detailed description of the results from each of the nine experiments is available 
in Ervin (2012). Discussed here are the comparisons across experiments to assess 
the influence of flow rate and PF on the tracer recover curves. Push-pull recovery 
curves for the three partitioning tracers employed with the fast-slow flow 
condition showed little differentiation between the three PFs used here. Even the 
tails of the 2-octanol recovery curves were similar, and do not distinguish 
between pool dominated and ganglia dominated source zones. The slow-fast flow 
scenario developed slight differences at relatively early time among the three PFs 
with 2-octanol signals separated in order, low, mid, high PF. However, the shapes 
are too similar to conclusively differentiate between PFs, especially when 

low pool fraction (pf = 0.26)

mid pool fraction (pf = 0.55)

high pool fraction (pf = 0.68)
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considering the loss in fidelity expected with field data. Data from the tails of 
these 2-octanol recovery curves, showed no separation, indicating that tailing is 
not as dependent on PF as was hypothesized before conducting these tests. The 
amount of TCE-DNAPL used to create these source zones (~30 mL) is relatively 
small; it may be that the approximately 10 additional milliliters of pooled TCE in 
the high PF box (compared to the low PF box) does not appreciably increase 
tailing. Interestingly, the fast-fast 2-octanol data sets are the only recovery curves 
that show a difference between all three PFs, though the recovery curve in the 
high PF experiment lies between those obtained in the low and mid PF boxes.  
This, along with the fact that the other flow rate combinations are unable to 
distinguish between pool fractions, suggests that PF may not be an appropriate 
metric to be quantified using these push-pull tests. 

Equilibrium Push-Pull Model 
The most common method for analyzing push-pull tracer tests is to fit an 
analytical solution to the recovery curve data (Istok et al., 2002).  It is important 
to note that the geometry in many push-pull studies (e.g. Schroth et al., 2001; 
Istok et al., 2002) has a radial flow field. Therefore, the analytical solutions found 
in these works were developed for radial or cylindrical coordinate systems. The 
experiments conducted for this work were completed in rectangular 2-D aquifer 
cells so that light transmission could be used to more accurately estimate PF. 
Therefore an analytical push-pull model developed by Gelhar and Collins (1971) 
was employed to model the BTCs in this rectangular geometry.  The analytical 
solution is as follows: 
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where α is the dispersivity [L] and xmax is the maximum travel distance of each 
tracer [L].  For bromide, the xmax is taken to be Vinj divided by the aquifer cell 
cross sectional area and the porosity (Istok et al., 2002). For each of the 
partitioning tracers, xmax is the maximum travel distance of bromide, divided by 
the partitioning tracer retardation coefficient. Assumptions implicit in this 
analytical solution include equilibrium partitioning, uniform flow field, and a 
uniform distribution of DNAPL saturation. 

The analytical solution is fit to the bromide data to determine dispersivity (α).  
This dispersivity is used in all subsequent fits of the partitioning tracer data to 
obtain the value of xmax that corresponds to each tracer.  All fits are carried out by 
minimizing the sum of squared error between the data and the BTC produced by 
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the analytical model.  Essentially, this model determines the apparent dispersion 
of each partitioning tracer compared to the dispersion observed in the 
breakthrough of the non-partitioning tracer (bromide).  All of the excess spreading 
in the partitioning tracers is assumed to result from equilibrium interactions 
between the partitioning tracer and DNAPL. Under this assumption, the 
retardation coefficient for each tracer can be calculated as: 
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=         (R.2.3) 

where 
−Brxmax  is the bromide xmax and partxmax  is the xmax of the partitioning tracer. The 

overall average saturation can be estimated: 
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Best fit estimates of the saturations obtained using the analytical solution were 
compared to the known saturation for each of the three tracers in the nine 
experiments. Representative good performance of the analytical solution is shown 
in Figure R.2.10. Generally, predictions of 1-pentanol BTCs using the fit 
dispersivity and measured source zone saturation capture the data.  However, the 
model is unable to capture the degree of excess spreading present in the 1-hexanol 
BTCs using the measured saturation. Fitting the analytical solution to the 1-
hexanol data provides gross over estimates of saturation, even though the model is 
capable of capturing the shape of the 1-hexanol data sets.  Model performance is 
worse for the 2-octanol recover curves.  Here, the analytical solution is unable to 
capture the shape of the asymmetric 2-octanol curves, no matter how high a 
saturation value is used. The analytical solution always produces symmetric 
curves that breakthrough at Vext/Vinj = 1. Increasing saturation only increases the 
apparent dispersion in the recovery curve.   

To facilitate a quantitative comparison across all 27 partitioning tracer curves, we 
employ the ratio of the saturation obtained from the analytical solution to the 
known saturation (Table R.2.6).  It is interesting to note that in the best cases the 
saturation estimates obtained from the analytical solution are an order of 
magnitude greater than the actual saturation in the interrogated source zone. Over 
estimation of NAPL saturations when using the analytical solution to interpret 
data from push-pull partitioning tracer tests has also been noted in other studies.  
Davis et al. (2002) found that the analytical solution resulted in average saturation 
estimates that were 3-4 times higher than the actual overall saturation, but did not 
offer an explanation of the overestimation. Istok et al. (2002) also found that 
applying the analytical solution to push-pull BTC resulted in an overestimation of 
average saturation, but did not report the magnitude of the overestimates. They 



135 
 

did, however, suggest that the overestimation is due to kinetic processes that are 
not accounted for in the analytical solution. 

The asymmetry in the recovery curve was further explored as a potential source of 
the gross overestimation of the TCE-DNAPL saturations. Here the experiment 
shown in Figure R.2.10 were refit using only early (Vext/Vinj ≤ 1) or late (1 ≤ 
Vext/Vinj ≤ 3) time data in the recovery curves.  Estimated saturations for these fits 
are shown in Table R.2.7 along with the saturation estimated when the analytical 
solution is fit using the entire recovery curve. Notice that fitting the early time 
data decreases the accuracy of the saturation estimate, but fitting late time data 
increases accuracy. This illustrates the asymmetry in the curve produced by 
phenomena occurring related to the early time data, but the high concentrations 
control the fit when all the data are used.   

Figure R.2.10.  Representative experiment (Mid PF, Fast-Fast Flow) for which 
the analytical solution has relatively good performance.  Shown here are data 
(symbols) for each tracer and two simulations, a fit of the analytical solution to 
the data by adjusting only TCE-DNAPL saturation, and a prediction using the 
actual TCE-DNAPL saturation determined via light transmission (0.8%).   
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Table R.2.6.  Ratios of saturation estimates obtained with the analytical solution 
to those measured via light transmission.  Bold values represent the experiment 
shown in Figure R.2.10  

 

 

 

 

 

1-pentanol
estim : meas

pool fraction

low mid high
flo

w

fast-
fast 25.7 12.9 14.2

slow-
fast 16.3 14.2 6.7

fast-
slow 8.2 36.9 10.4

1-hexanol
estim : meas

pool fraction

low mid high

flo
w

fast-
fast 25.7 12.8 21.2

slow-
fast 11.4 13.9 9.6

fast-
slow 9.6 33.6 13.2

2-octanol
estim : meas

pool fraction

low mid high

flo
w

fast-
fast 7.8 9.3 20.8

slow-
fast 9.8 12.3 6.5

fast-
slow 7.9 17.1 12.3
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Table R.2.7. Comparison of saturation values obtained by fitting different 
sections of the recovery curves shown in Figure R.2.10 

  

 

Model Choices for 2D Laboratory-Scale Simulations 
For the simulation of laboratory experiments, Equation M.2.9 was solved in two 
spatial dimensions. The hydraulic conductivity was assumed isotropic. A value of 
0.7 for the Van Genuchten parameter nvg [-] was employed because it has been 
previously used to model similar sands (Rathfelder and Abriola, 1996). 

Because the model was confined, there was no advective or dispersive flux 
through the top or bottom boundaries. The flow rate was controlled by prescribing 
the head (from experimental piezometric head readings) in the fully screened inlet 
and outlet wells. These wells were modeled as very high permeability columns 
added to the sides of the domain. The exact locations of the tubing used for 
experimental injection and extraction were modeled inside the screened wells. 
Also, no dispersive flux was allowed on either side of the domain. Tracer 
transport was simulated with the linear driving force model formulation presented 
in Section II.2.3.1. The longitudinal dispersivity was determined by fitting to the 
bromide data and the vertical dispersivity is assumed to be 0.1*longitudinal 
dispersivity. The lumped mass transfer coefficient was evaluated using a modified 
Nambi and Powers (2003) correlation. Light transmission images of the 
experimental system before TCE-DNAPL injection allowed for the exact 
geometry of the 2-D box (i.e. the location of low and high permeability layers) to 
be input into the model domain. The exact TCE-DNAPL saturation distribution 
was added to the domain using light transmission results after TCE-DNAPL 
injection. Hydraulic conductivity values for each sand type were estimated from 
intrinsic permeability and then refined using known experimental velocities and 
piezometric head readings. 

The domain was discretized into 5 mm x 5 mm grid blocks, which is similar to the 
averaging window used to estimate PF from the light transmission pictures. A 
time step of 20 seconds was used for all simulations, upon determining that a 
smaller time step produced the same BTCs. The flux-averaged tracer 
concentrations were recorded at the effluent well (right-hand side of the aquifer 
cell). 

TCE-DNAPL  saturation (%)
pentanol hexanol octanol

measured 0.8 0.8 0.8
fit

w
ith

 all data 10.3 10.2 7.4
0 ≤ Vext/Vinj ≤ 1 18.8 17.4 8.9
1 ≤ Vext/Vinj ≤ 3 0.7 3.9 0.2
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The Role of Mass Transfer 
The numerical linear driving force model employed to examine the pooled box 
source zone was used to examine the push-pull recovery curves. For all nine push-
pull tests, the model domain was constructed from light transmission results that 
measured the exact packing structure and TCE-DNAPL distribution.  Dispersivity 
was fit to each bromide data set.  Alcohol tracer recovery curves were predicted 
based on these fitted dispersivity values and the measured partition 
coefficients. For full details about the modeling of each experiment, please see 
Ervin (2012). Presented here is a summary of the results obtained for the 2-
octanol recovery curve for the high PF, fast-fast experiment (Figure R.2.11). 
Notice that the 2-octanol data represent a recovery curve with a large amount of 
asymmetry and several inflection points. When uniform permeability, uniform 
saturation and equilibrium partitioning is assumed, neither the analytical nor the 
numerical model can capture the data (both are smooth, symmetric curves).  Note 
that the minor differences between the analytical and numerical models are 
related to the numerical model being solved in 2-D (i.e., longitudinal and 
transverse dispersivities). When exact knowledge of the permeability field and 
saturation distribution is employed with mass transfer kinetics established by the 
Nambi and Powers (2003) correlation, the model can well capture all features of 
the observed recovery curve. These represent end members in the knowledge and 
assumptions that can be made (homogenous versus complete knowledge of 
heterogeneity). Relaxing the idea of having perfect knowledge of permeability 
yields a simulation that also captures the data well. This however, presumes 
perfect knowledge of the saturation distribution which is unlikely for any real 
application of this push pull tracer technique.  Thus, we also relax the amount of 
knowledge presumed about the saturation distribution and assumed a known 
average saturation (i.e., uniform permeability and saturation distributions). Under 
these assumptions, the kinetic simulation still represents a good approximation of 
the data; far better than what is capable with the analytical solution. This 
demonstrates that mass transfer kinetics is the most important aspect (in 
comparison to permeability, saturation distribution and mass transfer kinetics) 
when attempting to describe asymmetric recovery curves. This observation 
suggests techniques which upscale the mass transfer coefficient based upon 
features of the source zone may hold promise for in source assessment of DNAPL 
architecture (see Section III.4.2).   
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Figure R.2.11.  2-octanol recovery curve for the high PF, fast-fast flow 
experiment used here to illustrate the influence of the major simplifying 
assumptions associated with the analytical solution.    

Conclusions from 2-D box experiments 
Push-pull tests were conducted in three source zones of low, mid and high PF. 
Three combinations of fast and slow flow rates were employed to determine if the 
difference in transport time scales between ganglia and pools can be manipulated 
to differentiate pool dominated source zones from ganglia dominated source 
zones. Results indicate that all three flow rate combinations (fast injection, fast 
extraction; slow injection, fast extraction; fast injection, slow extraction) provide 
similar recovery curves.  Also, the push-pull tracer tests do not appear to be 
sensitive to PF.  As slow flow rates are costly (in both time and money) to run in 
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the field, it is beneficial that the fast push, fast pull test provides the same results 
as the other two flow rate combinations.    

Cell data comparisons with model simulations also reveal that the inclusion of 
kinetic exchange is necessary to interpret asymmetric recovery curves. A 2-D 
numerical model including a linear driving force expression parameterized by the 
correlation of Nambi and Powers (2003) is able to accurately reproduce 
partitioning tracer recovery curves.  This model was used to show that the 
assumptions of equilibrium partitioning and uniform saturation distribution are 
the two assumptions that prevent the analytical solution from being able to 
capture the behavior of the higher partitioning tracers.  It was also shown that a 
model assuming kinetic partitioning, but prescribing only average uniform 
saturation and permeability values can produce a reasonable approximation of the 
2-octanol recovery curves.   

III.2.1.4. Interpreting Asymmetric Recovery Curves in Push Pull Tracer 
Tests 
Our interest in push-pull partitioning tracer tests was based upon the idea that 
these tests may provide localized information about SZA.  Results presented in 
the previous sections suggest that these recovery curves may not be particularly 
sensitive to PF, per se. The average saturation within the interrogated volume 
appears to be a more readily attainable output of this type of in source testing. 
Interestingly, though, the assumption of equilibrium partitioning when 
interpreting recovery curve data was found to lead to gross overestimates of the 
DNAPL saturation. Kinetic descriptions of the mass exchange must be included to 
obtain reasonable approximations of the saturation.  However, even with the 
inclusion of kinetic mass transfer, there are instances where recovery curves for 
strongly partitioning solutes (e.g., 2-octanol) are highly asymmetric, leading to 
poorer estimates of saturation.  In practice, asymmetric recovery curves are often 
set aside due to the difficulties in interpreting the curves with an analytical 
solution(s). Thus interest here is placed on coupling simple metrics of SZA with 
the kinetic limitations to elucidate an empirical method for interpreting 
asymmetric recovery curves. To better elucidate the causes of asymmetry we 
examined a series of 40, highly simplified, synthetic, SZAs.  Push-pull 
partitioning tracer tests employing 2-octanol were then simulated with each 
simple source zone using a numerical model that includes the influence of the 
kinetics and precise SZAs.  Interrogation of the simulation results identified 
common points of inflection in the recovery curves which were correlated to 
features of the DNAPL distribution.   

Highly Simplified SZAs 
Forty simple source zones (Figure R.2.12) were created to produce domains with 
TCE-DNAPL source zones that vary in vertical and horizontal distribution, 
distance of DNAPL to the injection/extraction well, total DNAPL mass, and local 
TCE-DNAPL saturation. The highly simplified SZAs were then used within the 
previously described 2D push pull numerical model to generate recovery curves 
for 2-octanol under the fast-fast flow condition. The model domain for the these 
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simulations is the same as the aquifer cells used for the experiments described in 
the previous section (100 cm length x 44 cm height).  A dispersivity of 0.5 cm 
was selected for use in all simulations as this value is representative of the 
dispersivities fit to conservative tracer data in our 2D box experiments. The 
permeability was based upon that of the 40-50 mesh sand.  Also shown in Figure 
R.2.12 are realization numbers (1 through 40) and the saturation values of all grid 
cells that contain TCE-DNAPL. In each realization (except for realization 12) all 
cells in the domain containing DNAPL have the same saturation value. This 
saturation value varies from realization to realization, but is consistent within each 
realization. Realization 12 has an area of high saturation within a region of low 
saturation, and therefore has two saturation values as depicted in Figure R.2.12. 
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Figure R.2.12. Representations of the forty highly simplified source zones 
employed in the development of the empirical approach to interpreting 
asymmetric recovery curves in push-push partitioning tracer tests. 
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Interpretation 
Detailed analysis of each simulation is available in Ervin (2012). What is 
presented here are results which highlight the empirical interpretation.  The source 
zones presented in Figure R.2.12 were first examined to determine if push-pull 
tests are capable of distinguishing vertical differences in DNAPL SZA. 
Simulations employed here include those where DNAPL occupied 100% of 
vertical (simulation #24), 80% of vertical (simulation #29), 60% of vertical 
(simulation #30), 40% of vertical (simulation #31), and 20% of vertical 
(simulation #32). These five source zones produce five distinct curves (Figure 
R.2.13), suggesting that the shape of the recovery curve depends on the vertical 
distribution of DNAPL. There are a few important characteristics of these curves.  
First, there is in an inflection point early in each recovery curve where the slope 
of the concentration signal levels out.  The C/C0 value of this inflection point 
appears to decrease as more of the vertical domain is occupied with DNAPL. Also, 
on some of the curves, there is a second inflection point (around Vext/Vinj = 1.5) 
where concentrations level out and start to tail. 

 

Figure R.2.13. 2-octanol recovery curves resulting from push-pull tests 
conducted in realizations 24 (solid), 29 (short dash), 30 (dot dash), 31 (short dash) 
and 32 (dotted).  Also included are the diagrams of the corresponding source 
zones. 
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This inflection point is most obvious in domains where less of the vertical 
dimension contains DNAPL, and is not present in domains where the vertical 
dimension is completely filled with DNAPL. The recovery curves shown in 
Figure R.2.13 suggest that for the same horizontal distribution and distance from 
the injection/extraction well, these push-pull tests respond to variations in the 
percent of the vertical domain containing DNAPL saturation (%Z).   

The influence of horizontal distribution is best visualized by considering a series 
of simulations conducted using realizations 7, 8, and 21 (Figure R.2.14).   These 
realizations all cover the entire vertical domain (%Z =100), have the same TCE-
DNAPL mass, have the same distance from the injection/extraction well to the 
back edge of the DNAPL mass, but differ in distance between the 
injection/extraction well and the front edge of the DNAPL mass. These three 
realizations result in separated curves in the early portion of the recovery curve, 
that all recovery curves become coincident at Vext/Vinj = 0.6.  These results 
demonstrate that the closer the DNAPL front is to the injection/extraction well, 
the earlier C/C0 concentrations drop from a value of 1.0.  2-octanol should behave 
like a conservative tracer in the area between the well and the DNAPL front 
(assuming no tracer/porous media interaction). The reason for the C/C0 value to 
drop below 1.0 is either because enough tracer mass has been pumped out of the 
system or because tracer interactions with the DNAPL are causing retardation.  
The bromide signals of each of these curves (not shown) drop from 1.0 much later 
than the 2-octanol curves; therefore, the early drop in the 2-octanol must be 
related to tracer partitioning.   
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Figure R.2.14. 2-octanol recovery curves resulting from push-pull tests 
conducted in realizations 7 (dashed), 8 (dotted), and 21 (solid).  Also included are 
the diagrams of the corresponding source zones. 

 

Analysis of the results presented above, as well as recovery curves produced by 
the other realizations (see Ervin (2012) for details), indicate that three key aspects 
of an asymmetric recovery curve (Figure R.2.15) may provide information on 
SZA: i) the point at which C/C0 concentrations fall from a nominal value of 1.0; ii) 
the C/C0 value corresponding to the first inflection point; iii) the C/C0 value 
corresponding to the second inflection point. The goal then was to correlate these 
features of the recovery curve to features of the DNAPL distribution.  The 
horizontal distance from the well to the DNAPL front (Dfront) can be 
approximated using the average DNAPL saturation in the contaminated region (Sn) 
and (Vext/Vinj)*, which is defined to be the value of Vext/Vinj at which C/C0 falls 
below 0.980, by using Equation R.2.5. Note that Dfront in Equation R.2.5 is 
supplied in terms of the fraction of the horizontal distance interrogated by the 
tracers (i.e., xmax, as previously defined, and taken to be Vinj divided by the aquifer 
cell cross sectional area and the porosity). Equation R.2.5 represents a correlation 
(R2=0.94) developed using recovery curves from the 40 simplified source zones. 
Exponents of regressed parameters are shown as (value ± standard deviation).  
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Figure R.2.15. Example of inflections in asymmetric recovery curves.   

Analysis of each recovery curve suggested a linear relationship between %Z and 
the value of C/C0 corresponding to the first inflection point (Equation R.2.6, R2 = 
0.95). The second inflection was best correlated to saturation and %Z (Equation 
R.2.7, R2=0.93). It should be noted here that realizations with DNAPL in the 
entire vertical domain do not have a second inflection point, so Equation R.2.7 is 
based upon the 24 realizations for which %Z<100. Regressed parameters are 
shown with the (value ± standard deviation).   
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Equations R.2.5-R.2.7 create a system of equations related to specific, identifiable 
features of an asymmetric recovery curve that can be employed to produce 
features of the DNAPL saturation distribution within the volume interrogated 
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during a push-pull partitioning tracer test.  There are caveats to this analysis, the 
most important of which is that these results are only strictly valid for the system 
in which they were developed.  A field push-pull test will be complicated by 
radial flow and the potential for DNAPL to be localized within one sector of the 
well circumference.  Heterogeneous geology may necessitate the use of the 
bromide curve to determine which features of the recovery curves are due to the 
flow field and which are due to interactions with the DNAPL. Moreover, the field 
data will not be as complete or smooth as these simulations.  Thus, without high 
quality data sets, inflection points may be miscalculated or missed completely. 
These caveats notwithstanding, the empirical approach was tested against 
independent data sets obtained from 2D aquifer cell experiments (Ervin, 2012).  
Shown here is an illustrative application related to the 2-octanol recovery curve in 
the mid PF, fast-fast experiment (Figure R.2.16).  The features of this curve 
produce the following estimates of the SZA using Equations R.2.5-R.2.7:  Dfront = 
17% of xmax, which with an xmax of 68 cm means the DNAPL is 12 cm from 
well; %Z = 59; and Sn within the contaminated domain = 0.18.  These estimates 
were found to compare favorably with the actual DNAPL distribution.  As can be 
seen in Figure R.2.17, the estimated Dfront is a reasonable uniform approximation 
of the heterogeneous DNAPL front. The actual %Z in the experiment was 50 
compared to the estimated 59. Comparison of the estimated saturation requires the 
actual saturations be weighted by the %Z of each contaminated region (see Figure 
R.2.17) as shown in Equation R.2.8. 

100
%%%%% 5544332211

,
ZSZSZSZSZSS nnnnn

weightedn
++++

=    (R.2.8) 

Where, Sn1, Sn2, Sn3, Sn4 and Sn5 are the average saturation calculated for each of 
the five TCE-DNAPL regions boxed in Figure R.2.17. The weighted average 
saturation in the aquifer cell experiment is then 0.14, which compares reasonably 
well to the value 0.18 obtained using the empirical approach.   
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Figure R.2.16. Interpretation of an asymmetric recovery curve using the 
empirical approach developed in this research.  The data shown here are those 
from the 2-octanol recovery curve produced from the mid PF, fast-fast 
experiment.   
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Figure R.2.17.  Light transmission image of DNAPL architecture in the mid PF, 
fast-fast experiment used to illustrate the empirical approach to interpreting 
asymmetric recovery curves obtained during push-pull partitioning tracer tests.  
The boxed regions correspond to those used in Equation R.2.8. 

The above illustration using 2-octanol as a partitioning tracer in a push pull test, 
demonstrate how asymmetric recovery curves may be used to produce estimates 
of DNAPL source zone features. If a recovery curve has both inflection points 
discussed in this analysis, it may be able to provide three pieces of information: i) 
the distance between the injection/extraction well and the DNAPL front; ii) the 
percent of the vertical domain that contains DNAPL; iii) the average local 
saturation of the DNAPL.  This analysis cannot determine the vertical location of 
the DNAPL.  For example, if it is determined that %Z=60, this analysis cannot 
indicate whether the DNAPL is in the bottom 60% percent of the domain, the top 
60% of the domain or spaced throughout the vertical domain. Additionally, the 
analysis does not give information on the horizontal extent of the domain.  
However, it appears that these curves can be used to estimate more than just the 
overall average saturation of a source zone. 

Conclusions for the Interpretation of Recovery Curves 
The ability of the selected features of the recovery curve to describe DNAPL SZA 
needs to be examined in much greater depth for more realistic source zones. 
However, the preliminary analysis conducted herein indicates that because of 
these features, push-pull tests may be useful for estimating more than just overall 
DNAPL saturation.  It may be that the strength of this analysis lies in better 
differentiating between source zones characterized by greater vertical spreading 
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(characteristic of younger source zones) from source zones with more localized 
hot spots (characteristic of aged source zones).   

 

III.2.2. Push-Pull Tracer Test Model Development 

III.2.2.1. Fine-Scale 3D Simulator 
In the previous sections, experimental results were presented for examining the 
behavior of DNAPL releases in highly heterogeneous (Markov Chain model) 
formations as well as for tracer partitioning at the laboratory scale. Due to their 
strong link to experimental results, the simulation results describing these 
experiments were also presented in the previous sections. The reader is referred to 
Section III.1.1.2, subsection Batch and Aquifer Cell Experiments/Results of 
Markov-chain transitional probability aquifer cell experiment, respectively 
Section III.2.1.3, subsection The Role of Mass Transfer. 

Field-scale 2D and 3D results obtained with the fine-scale simulator for the 
purpose of developing and applying an upscaled push-pull model are presented 
together with the presentation of the upscaled model, see Section III.4.2. 

III.2.2.2. Tracer Push-Pull Sensitivity and Inverse Modeling 
Implementation of Adjoint Sensitivity Method 

In this section, we present an implementation of the adjoint sensitivity method 
(M.2.24-M.2.28) for the problem of investigating the sensitivity of tracer aqueous 
phase concentration to DNAPL saturation in a push-pull test. With the calculated 
sensitivity matrix, we are able to back estimate the distribution of DNAPL 
saturation through observed tracer concentrations. The flow field, boundary 
conditions, and load terms in the transport model need to be set up in a manner 
that reflects the adjoint model described in Section II.2.3.3. The flow field is 
calculated in the same manner as when forward simulations are run, and then the 
flow field is reversed because we use backward time τ in the derivation of the 
adjoint states equations. The second-type boundary condition, which is adopted in 
the forward push-pull tracer transport model, becomes a third-type condition in 
the adjoint states equations. The transport model is run once for each observation, 
coupled with each adjoint run, the sensitivity matrix of tracer concentration to 
DNAPL saturation can then be obtained. 

We demonstrate the efficiency of the adjoint sensitivity method to investigate the 
sensitivity of tracer concentration to DNAPL saturation when the number of 
concentration observations is much smaller than the number of parameters. After 
that, we compare two tracers with differing partitioning coefficients to examine 
their performance. We also investigate the influence of tracer injection 
concentration and load term on the sensitivity matrix.  

We first explore the utility of this adjoint sensitivity approach using a three-
dimensional hypothetical source zone containing a heterogeneous DNAPL (TCE) 
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distribution (figure R.2.18), which is a 3.5m long, 3.5m wide, and 2m high 
domain. The single push-pull well is located at the center of this domain. Two-
dimensional uniform planar flow is assumed around the push-pull well, and non-
equilibrium interphase mass transfer is described by a linear approximation to the 
diffusion flux across a stagnant film separating two phases. Here we adopt the 
heterogeneous TCE saturation distribution depicted in figure R.2.19. We 
specifically investigate how the tracer concentration breakthrough curves in the 
well will change with the perturbation of saturation distributed within the 
interrogated zone. The flow and media properties in addition to some of the model 
input parameters are listed in table R.2.8. 

 

Table R.2.8. Important input parameters for modeling 

  Flow and media properties 

Diffusion coef. (m2/s)  7.75E-10 

Longitudinal dispersivity (m) 0.03 

Transverse dispersivity (m)  0.003 

Keq of Hexanol 17 

Keq of Octanol 149 

D50 (mm)  0.328 

Unity Index  1.09 

Porous media density (g/cm3)  1.67 

Porous media porosity  0.35 

Distribution coef. (cm3/g)  0.00001 

Qinj, Qext  (m3/s)  1.5E-4 

Push Duration (h) 1 

Pull Duration (h) 4 

Model parameters 

Domain dimensions (m) 3.5*3.5*2 

Grid size (m) 0.05*0.05*0.4 
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The assumptions of this push-pull model are (1) homogeneous two-dimensional 
Cartesian flow field (planar), (2) heterogeneous three-dimensional Cartesian 
transport model, (3) heterogeneous DNAPL distribution, (4) non-equilibrium 
interphase mass transfer, (5) no effect of mass injection on flow field, (6) no 
effect of porosity, dispersion tensor, fluid velocity, source or sink flow rates on 
DNAPL saturation.  

For scenario 1, we first demonstrate the efficiency of the adjoint sensitivity 
method to obtain the sensitivity matrix of tracer concentration to DNAPL 
saturation when the number of observations is much smaller than the number of 
parameters. We push a pulse of octanol tracer solution into the well with a flow 
rate of 1.5e-4 m3/s for our hour. After that, the tracer is extracted from the well 
with the same flow rate, for four hours. Here octanol is chosen for its high 
partition coefficient to investigate how the sensitivities of tracer concentration 
with respect to DNAPL saturation change at different time steps during the pull 
phase. In addition, the mass transfer correlation presented by Powers et al. (1994) 
is adopted here as the expression of mass transfer coefficient in the control 
equation for the push-pull tracer test. 

To verify the performance of the adjoint sensitivity method, we first compared the 
sensitivity matrix at the end of the pull phase that was obtained using the adjoint 
sensitivity method to that observed by running the forward model according to the 
change of saturation value in each grid (figure R.2.20). Examination of the figure 
reveals that the detailed values and patterns of these two sensitivity matrices are 
similar, confirming the reliability of the adjoint approach for calculating 
sensitivities.  

At early stages during the pull phase, the tracer concentration in the push-pull 
well decreases rapidly, leading to a high positive sensitivity of the tracer 
concentration to DNAPL saturation around the push-pull well. However, at later 

Figure R.2.18. Skeleton diagram of 
study area. 

Figure R.2.19. DNAPL 
saturation distribution. 
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times, the mass of tracer that was captured in the DNAPL phase will continue to 
partition to the aqueous phase. Thus more significant sensitivities occur where 
DNAPL exists. Furthermore, an increase in DNAPL saturation causes a reduction 
in tracer concentration (negative sensitivity). Sensitivities of tracer concentration 
to DNAPL saturation at 1h, 2h, 3h and 4h during the pull phase are shown in 
figure R.2.21.  
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t=1h t=2h 

t=3h t=4h 

Figure R.2.21. Sensitivity of tracer concentration in aqueous phase to DNAPL 
saturation at different time steps during the pull phase. 

Figure R.2.20 Sensitivity of tracer concentration in aqueous phase with respect 
to DNAPL saturation at the end of pull phase. The left figure is obtained using 
the adjoint sensitivity method, the right figure is obtained by running the forward 
model many times. 
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Next two partitioning tracers (hexanol and octanol) with different partitioning 
coefficients are injected into the push-pull well to explore the differences in 
predicted sensitivity matrices.. Two DNAPL saturation distributions are 
considered. The first (figure R.2.22) is normally distributed with a mean value of 
0.5 and variance of 0.05. The other DNAPL saturation distribution is the same as 
the previous case. In addition, for the following simulations, we adopt the 
expression of mass transfer coefficient obtained by [Nambi and Powers in 2003]. 
All the other simulation parameters are the same as the previous case.  

The sensitivity matrices at four different time steps during the pull phase are 
shown in figures R.2.23 and R.2.24. As expected, the higher partitioning tracer 
has the higher sensitivity to DNAPL saturation, consistent with the fact that the 
DNAPL can capture more tracer mass. For example, the largest absolute value of 
the sensitivity at the end of the pull phase for octanol at the location where 
DNAPL exists is almost 1.9 and 2 with these two scenarios; this same metric has 
an absolute value of 0.035 and 0.02 for hexanol. These differences between 
sensitivity values for the two tracers are more significant at the later time stages 
during the pull phase. 

 

 

 

Figure R.2.22. DNAPL saturation distribution. 
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t=1h 

t=2h 

t=3h 

t=4h 

Figure R.2.23. Sensitivity of tracer concentration to DNAPL saturation at four time 
steps during the pull phase. Left four figures are the sensitivity matrices of Hexanol, 
and the right four figures are the sensitivity matrices of Octanol. 
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Figure R.2.24 Sensitivity of tracer concentration to DNAPL saturation at four time 
steps during the pull phase. Left four figures are the sensitivity matrices of Hexanol, 
and the right four figures are the sensitivity matrices of Octanol. 

t=1h 

t=2h 

t=3h 

t=4h 
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The influence of different tracer injection concentrations and different injection 
and extraction flow rates is also studied here to further explore the behavior of the 
sensitivity matrix. Scenario 2 is the “baseline” that was used for the previous 
simulation. Scenarios 1 and 3 are variations of the baseline scenario, where the 
injection concentration decreases from 370mg/L to 100mg/L, and then increases 
from 370mg/L to 600mg/L. Figure R.2.25 shows three plots of sensitivity values 
forhexanol concentration with respect to DNAPL saturation at 4h into the pull 
phase for the three injection concentrations. As expected, the higher the injection 
concentration, the higher the sensitivity. 

 

We also explore the influence of different injection and extraction rates on the 
sensitivity matrices. Values are listed in Table R.2.9 and computed sensitivies are 
presented in Figure R.2.26. As can be seen, if injection flow rate is reduced, the 
values of the sensitivities decrease. On the other hand, when the extraction flow 
rate decreases, with the same injection flow rate, the sensitivity matrix also has 
smaller values. Furthermore, with the fast-fast injection-extraction rates, the 
differences between the sensitivity values are more significant, which means that 

Cinj=100mg/L Cinj=370mg/L 

Cinj=600mg/L 

Figure R.2.25. Sensitivity of tracer concentration to DNAPL saturation with 
different tracer injection concentrations at 4h of the pull phase.  
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the DNAPL location and the location of high DNAPL saturations can be easier 
obtained using fast-fast flow rates. This is consistent with the experiment 
presented in Section III.2.1.3 that the fast-fast flow rates can get better ratios of 
saturation estimates obtained with the analytical solution to those measured via 
light transmission. 

 

 

 Scenario 1 Scenario 2 Scenario 3 
Injection flow rate (m3/s) 8e-5 1.5e-4 1.5e-4 

Extraction flow rate 
(m3/s) 

1.5e-4 1.5e-4 8e-5 

 

 

 

Qinj=8e-5m3/s, Qext=1.5e-4m3/s 

Figure R.2.26. Sensitivity of tracer concentration to DNAPL saturation with different 
injection and extraction flow rates at 4h of the pull phase. 

Qinj=1.5e-4m3/s, Qext=1.5e-4m3/s 

Qinj=1.5e-4m3/s, Qext=8e-5m3/s 

Table R.2.9. Three different scenarios for injection and extraction flow rates 
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Application to the estimation of DNAPL saturation 

Two different sample applications are presented. These involve the identification 
of DNAPL saturation in the aquifer described previously, in which DNAPL is 
located at one layer of the domain. Measurements of tracer concentration are 
taken at different time steps during the pull phase. For the first example, the 
heterogeneously distributed DNAPL saturation is located at one corner of the 
domain. For the second example, the DNAPL locations changes and we increase 
the size of the domain and also the injection and extraction flow rates. Although 
the method is directly applicable to a system with a three-dimensional DNAPL 
saturation distribution, two-dimensional DNAPL saturation distributions were 
selected for the applications for ease of illustration. 

The overall simulation steps to back estimate the DNAPL saturation distribution 
are: (1) provide an initial guess of the DNAPL saturation distribution, (2) 
calculate the tracer concentration in the push-pull well at different time steps 
during the pull phase, (3) use the adjoint sensitivity method to obtain the 
sensitivity matrix, (4) apply the Gauss-Newton method to back estimate the 
DNAPL saturation distribution, i.e., find the distributions that minimizes the 
difference between calculated and observed tracer concentration, (5) update the 
DNAPL saturation with the calculated Gauss-Newton descent step, (6) repeat the 
steps (2) to (5) until some stopping criterion is met.  

The “real” DNAPL saturation distributions used for obtaining the tracer 
concentration measurements are presented in figure R.2.27. The tracer 
concentration is sampled every two minutes (4900 observations) , The problem of 
parameter estimation is, thus, strongly underdetermined. The specified DNAPL 
saturation distributions both follow a normal distribution with mean value of 0.5 
and variance of 0.05.  Each is located a different distance from the push-pull well 
(0.35m and 0.71m), with the total mass of 5475g in each location. 

The initial guess for DNAPL saturation is that we assume a little DNAPL 
everywhere in the domain. Here we use the octanol as the partitioning tracer to 
test the method’s ability to recover the metrics of DNAPL saturation. We focus on 
three metrics of DNAPL saturation: mean saturation value, total mass, and closest 
distance from the push-pull well.  

  

Figure R.2.27. “Real” DNAPL saturation distributions for first example. 
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Estimated DNAPL saturation distributions are presented in figure R.2.28. Here 
the estimated saturation pattern is a circular ‘ring’ surrounding the well; given 
uniform radial flow, the concentration signal yields no information on directional 
angle. As can be seen, the estimated distances from the well location are very 
similar to the real values, with the estimated values of 0.39m and 0.78m, 
respectively. In addition, the estimated total masses are 5700.57g and 5818.02g, 
with the relative mass error of 4.12% and 6.26%. Here we take the difference 
between the estimated and real value of total mass divided by DNAPL total mass 
as the measure of relative mass error. However, the estimated mean saturation 
values are 0.32 and 0.31, both smaller than the real value of 0.5. The estimated 
DNAPL saturation distribution spreads the DNAPL out around the push-pull well, 
such that a lower mean value of DNAPL saturation yields the same tracer 
concentration in the well compared to the case with DNAPL located in just one 
area.  

 

The second example involves an increased domain size of 5m*5m*2m, and 
increased injection and extraction flow rates of 2.5e-4m3/s. The “real” DNAPL 
saturation distribution is also changed to more be more spread out, distributed in a 
rectangular pattern. The two DNAPL saturation distributions are shown in figure 
R.2.29, with different distances from the well. The push-pull well is still located 

Figure R.2.28. estimated DNAPL saturation distributions for first example. 

Figure R.2.29. “Real” DNAPL saturation distributions for second 
example. 
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at the center of the domain. For the first DNAPL saturation (left), the shortest 
distance from the well to DNAPL location is 0.5m, and the longest distance is 
0.71m. The shortest and longest distances from the push-pull well to the DNAPL 
location are 1m and 1.12m in the second example. The total mass of TCE is 
13797g, with the average saturation of 0.5. All the other simulation parameters 
are the same as before. 

The estimated DNAPL saturation distributions are presented in figure R.2.30. 
Here the estimated total masses are 14082g and 14281g, respectively, with 
relative mass errors of 2.07% and 3.51%. The estimated distances of DNAPL 
from the well location are 0.7m and 1.1m, which are values between the values of 
the shortest and longest distances of the “real” DNAPL. Comparing the estimated 
mean saturation values with the real ones, the results suggest that the estimated 
values (0.38 and 0.33) are still smaller than the real ones.  

 

When we compare the first example with the second one, since the “real” DNAPL 
saturation distributions of the second example are more spread near the well, the 
estimated total mass and mean saturation value are both more accurate than the 
first example. In addition, comparing the two cases in the same example, when 
the DNAPL location is nearer to the push-pull well, the metrics of estimation of 
total mass, average DNAPL saturation, and distance of DNAPL from the well are 
better than the case with the DNAPL location further from the well. This suggests 
that we can get a better estimate of source metrics with the DNAPL location near 
the push-pull well and for distribution that spread more around the well.  

Conclusions 
Comparing different partitioning tracers, as expected, the higher partitioning 
tracers yield higher sensitivities. Ongoing efforts are being directed towards 
coupling the developed adjoint sensitivity model with tracer concentration 
observations to back estimate features of the saturation distribution with more 
realistic DNAPL saturation distributions and flow field. The non-linear least 

Figure R.2.30. Estimated DNAPL saturation distributions for second example. 
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squares estimation approach being implemented using Gauss-Newton method 
demonstrated the method’s efficiency to back estimate the DNAPL characteristics. 
Here an initial guess of the saturation distribution is updated iteratively until a 
selected stopping criterion is met. 

Results to date suggest that the adjoint sensitivity method can be used to provide 
good estimates of local DNAPL mass and distance from the push-pull well.  
Estimates of average DNAPL saturation are more difficult to obtain without some 
directional information (angle from the well). The estimation of source zone 
characteristics was shown to be more accurate with a more spread saturation 
distribution and at smaller distances from the well.  

 

III.3. Processing Methods for Identification of Source Zone 
Features 

III.3.1. Machine Learning Results 
Here we demonstrate the performance of our proposed standard machine learning 
regression algorithm, as well as the integrated manifold regression algorithm and 
multi-task manifold learning algorithms, using the hydrological data which were 
gathered from Sequential Gaussian Simulation (SGS). Three data sets are 
considered: In data set-1, we combined three different spill scenarios (DNAPL 
infiltration, entrapment and dissolution). Scenario 1 of data set 1 (Table R.3.1) is 
the “baseline” and was reported in Christ et al. (2010) (see Case 1 in Table M.1.4). 
Briefly, an ensemble of 16 equally probable realizations of a 3D permeability 
field was obtained from (Lemke et al., 2004). These realizations were generated 
by means of sequential Gaussian simulation geo-statistical methods and were 
based upon an aquifer located in Oscoda, Michigan, USA. For the whole 
ensemble, simulation of different hypothetical spill scenarios was conducted by 
means of UTCHEM as outlined in Section II.1.3 of this report. The baseline 
scenario consisted of a release of 128 liters of PCE for a period of 400 days 
located in a 4x5 grid area centered in the top layer of the domain (see Table R.3.1).   
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Following infiltration and entrapment, MT3DMS was used to simulate dissolution 
under natural gradient conditions and the source zones with their corresponding 
down-gradient transect concentration data were obtained at every 20 time steps. 
Scenarios 2 and 3 of data set 1 are variations of the baseline scenario. Scenario 2 
(Case 3, Table M.1.4) consists of a catastrophic release, with the same release 
volume and location as the baseline scenario but a release period of 4 days. 
Scenario 3 (Case 2 of Table M.1.4) of data set 1 consists of the same volume and 
release period as the baseline but a different release location. In this scenario the 
release was located in the top layer of the 3D domain in 2 off-center block areas 
(as shown in Table R.3.1). We used this combined data set 1 as the input to our 
algorithm to explore the extent to which strong performance can be maintained as 
we increase the complexity and variability of the underlying scenarios. The spill 
scenario used in scenario 1 of data set 1 is used for data sets 2 and 3 (Cases 5 and 
6 in Table M.1.5). The difference in these sets rested on the statistical properties 
used for obtaining the permeability realizations. As shown in Table R.3.1, 
modifications to the statistics include smaller correlation length values (integral 
scale) for data sets 2 and 3, and higher lognormal transformed permeability 
variance (σ2ln(K)) of 1.00 and 1.5 for data set 2 and 3 respectively. Additionally, 
in order to test the performance of the regression function under a wide range of 
conditions, we combine these three data sets (data set-4) as the input of our 
algorithms. 

 Table R.3.1. Conditions of the 3 different data sets generated for the machine algorithm 
implementation 

 

Matrix Properties
Variogram Parameters Horizontal Vertical Horizontal Vertical Horizontal Vertical

Nugget 0.333 0.333 0.333 0.333 0.333 0.333
Range (m) 7 1.07 4.66 0.72 4.66 0.72

Integral Scale (m) 2.33 0.36 1.55 0.24 1.55 0.24
σ2ln(K)

Mean Hydraulic 
Conductivity,   (m/d)

Anisotropy Ratio 
kv/kh

Spill conditions Scenario 1 Scenario 2 Scenario 3
Spill Volume (L) 128 128 128
Spill Duration (d) 400 4 400

128
400

128
400

Data set 1 Data set 2 Data set 3

0.29

16.8

0.5

16.8

0.5

1.5

16.8

0.5

1
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In addition to the SGS data, we also considered processing 2D data arising from a 
transition-probability-based Markov Chain model (TP/MC) for the permeability. 
The details of this model are discussed in Section II.1.2.3. Referring to Figure 
R.3.1, the concentration data at the right side of the sand box are sparsely sampled 
at 25 ports. 
 
In the standard regression framework, the choice of hyper-parameters 1σ and 2σ for 
LE embedding and SRσ for kernel function in SR controls the embedding of data 
in manifold space. For the integrated algorithm, the choice of regularization 
parameters 1 2γ , γ and 3γ will affect the performance of the regression function. For 
the multi-task learning penalized hyper-parameter, Pγ  controls the importance of 
enforcing the physical relationship among the three metrics. In practice, we need 
to determine the value of these hyper-parameters before we run our algorithm.  
Here we use cross-validation (Bishop, 2006) to accomplish this task. The n-fold 
cross-validation process takes the available data and partitions it into n equal size 
groups. Then n-1 of the groups are used for training while keeping the remaining 
group for testing. This procedure is then repeated n times, and the performances 
from the n runs are then averaged.   

 
Figure R.3.1:  The interpretation of sand box and the location of wells. The size of sand 
box is 45.5 cm x 102.5 cm. The concentration data is 91 x 41 pixels. According to the 
measurement in this plot, we can determine the coordinates of each wells in the 
concentration data, for example, well A1 is (11,21), thus we use the pixel value of (11,21) 
in concentration data as the sparse sample data.  
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As an example of the results of this process, the hyper-parameter settings of the 
SGS data set-1 for both the standard regression framework and the integrated 
algorithm are provided in Table R.3.2 (a). In the case of standard regression, for 
each of a number of combinations of 1 2,σ σ  and SRσ , 10-fold cross validation is 
used to evaluate the empirical performance of the regression procedure.  The final 
values of 1 2,σ σ  and SRσ are chosen as those with the smallest error.  For the 
integrated approach, we use these same values for 1 2,σ σ , SRσ  and employ 10-fold 
cross validation to determine 1 2,γ γ  and 3γ . For the multi-task learning, the hyper-
parameters selected previously are used, and we only need to select Pγ . In our 
experiment, 0.5Pγ = . The hyper-parameter selection for the TP/MC data set is 
shown in Table R.3.2 (b), where for this data set 2Pγ = . For the Bayesian 
regression, the noise in the original data set is small, so we set the initial variance 
of metrics β  as 0.01 and for the prior distribution for w , we setα  = 1.  

 
In our experiment, the sizes of data sets 1 to 3 are 500, 600 and 900 respectively. 
For these three data sets, we apply 10-cross validation which means that we use 
90% of the data for training and the remaining 10% of data for test. However, 
data set-4 combines all SGS data such that its size is 2000.  When training data 
are plentiful, there is little to be gained by employing the more complex 

Table R.3.2 (a). The hyper-parameters setting of standard procedure and integrated 
algorithm for data set-1 

 

Table R.3.2 (b). The hyper-parameters setting of standard procedure and integrated 
algorithm for TP\MC model 

 

      
 30 1 15 x x x
 40 5 10 x x x
 20 5 10 x x x
 30 1 15 0.5 1000 400
 40 5 10 0.5 500 50
 20 5 10 0.5 20 0.5

Standard 
Regression 
Procedure
Integrated 

Regression 
Procedure

1σ 2σ SRσ 1γ 2γ 3γ
pf
pM
gM

pf
pM
gM

      
 200 0.5 300 x x x
 100 10 500 x x x
 100 5 300 x x x
 200 0.5 300 0.1 20 40
 100 10 500 0.1 1 20
 100 5 300 2 10 2

Standard 
Regression 
Procedure
Integrated 

Regression 
Procedure

1σ 2σ SRσ 1γ 2γ 3γ
pf
pM
gM

pf
pM
gM
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processing method in which the physical constraints among the three parameters 
are explicitly enforced. Therefore, we decided to randomly select half of the data 
from the data set for training and use the balance for testing, repeating this 
procedure 10 times. When the training data size is small, enforcing the physical 
relationship among the three quantities allows for the same (or close to the same) 
level of performance as in the data-rich case. This is important since it means we 
have a method for doing as well with less training data (which may be expensive 
to collect or time consuming to simulate) as with large collections of training data. 
Also, it reduces the time and space complexity for running the training algorithm. 
For the TP/MC model, there are 7000 samples for the training data set.  Thus as 
we did for data set 4, we used half of the data set (e.g. 3500 data) for training and 
the other half for testing.  
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Table R.3.3 (a):  The Statistical Result of standard procedure, integrated algorithm and 
multi-task learning using data set-1 

 
Table R.3.3 (b):  The Statistical Result of standard procedure, integrated algorithm and 
multi-task learning using data set-2 

 
Table R.3.3 (c):  The Statistical Result of standard procedure, integrated algorithm and 
multi-task learning using data set-3 

 
Table R.3.3 (d):  The Statistical Result of standard procedure, integrated algorithm and 
multi-task learning using data set-4 

 
Table R.3.3 (e):   The Statistical Result of the standard procedure, integrated algorithm and 
multi-task learning using sparse data generated by the TP\MC model 

 
         aMass in pools and ganglia is measured in kilograms. 
              bMass in pools and ganglia is measured in grams. 

 

median error EPcte median error EPcte median error EPcte
 0 ~ 1 0.0522 91.60% 0.0508 90.60% 0.0491 80.80%

       a 0.59 ~ 44.62 2.3073 75.20% 2.1551 85.80% 2.1125 83.40%

       a 0 ~ 201.4 6.3012 84.00% 5.6241 92.80% 5.1427 89.60%

Standard Manifold Regression Integrated Manifold Regression Multi-task Manifold RegressionRange of 
Metric

pf

pM

gM

median error EPcte median error EPcte median error EPcte
 0 ~ 1 0.0433 94.60% 0.042 91.50% 0.0406 85.80%

       a 0.61 ~ 139.5 2.6745 89.10% 2.4659 89.10% 2.3318 86.80%

       a 0 ~ 114.4 1.0397 92.00% 1.0071 91.60% 0.9205 90.60%

Range of 
Metric

Standard Manifold Regression Integrated Manifold Regression Multi-task Manifold Regression

pf

pM

gM

median error EPcte median error EPcte median error EPcte
 0 ~ 1 0.0359 94.60% 0.0343 93.20% 0.0338 86.10%

       a 0.60 ~ 159.7 5.4644 85.00% 4.0768 87.80% 3.8294 87.60%

       a 0 ~ 91.6 2.5878 97.50% 1.0144 94.70% 0.991 93.60%

Range of 
Metric

Standard Manifold Regression Integrated Manifold Regression Multi-task Manifold Regression

pf

pM

gM

median error EPcte median error EPcte median error EPcte
 0 ~ 1 0.0644 87.30% 0.06 87.20% 0.0565 82.80%

       a 0.59 ~ 159.7 5.6545 86.90% 5.3627 89.90% 4.6909 86.20%

       a 0 ~ 201.4 2.148 93.80% 1.8739 92.50% 1.761 93.00%

Range of 
Metric

Standard Manifold Regression Integrated Manifold Regression Multi-task Manifold Regression

pf

pM

gM

median error EPcte median error EPcte median error EPcte
 0 ~ 1 0.019 89.50% 0.0181 93.00% 0.0169 90.00%

             b 0 ~ 57.3 3.0246 84.60% 2.4502 89.80% 2.1464 88.40%
              b 0 ~ 23.8 0.3242 94.00% 0.235 91.30% 0.2011 89.30%

Range of 
Metric

Standard Manifold Regression Integrated Manifold Regression Multi-task Manifold Regression

pf
pM
gM
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The range of metrics for the experiment and the statistical results of the standard 
regression framework the integrated algorithm, and multi-task learning are 
provided in Tables R.3.3 (a)-(d) for the SGS data set. The error is the absolute 
value of the difference between the estimation metric and the true metric value. 
Tables R.3.3 (a)-(d) present the median error which gives the upper error bound 
of half of the test data set. In the tables, the superior performance of multi-task 
manifold regression is clearly evident compared to standard manifold regression 
and integrated manifold regression.  Thus, enforcing the physical relationship 
among these three metrics facilitates the accuracy of the regression procedure.  

Comparing the median error of multi-task manifold regression for data sets 1-4, 
indicates that the error for pf  in data sets 1 to 3 is less than 0.05, but the error for 

pf  is a bit higher in data set-4 due to the added variability from combining all 

three SGS data sets.  Referring again to data set-4 the median error of pM is less 

than 5 kg and that of gM is less than 2 kg. Indeed, ganglia mass here is relatively 
easy to determine because the morphology of the concentration images changes 
significantly when ganglia vanish. The result in Table R.3.3 (d) shows that even 
with a small training data set, the performance of multi-task manifold learning is 
still promising. 

For the TP/MC data set in Table R.3.3 (e), the median error of pf  is less than 

0.017, the median error of pM is less than 3 grams and the median error of gM is 
around 0.2 grams. Comparing these results to those of the SGS data, we see that 
even with the sparsely sampled data set, performance does not significantly 
degrade. Moreover, the accuracy is actually better than SGS data, since the 
TP/MC data were generated under one condition. This demonstration has 
validated the generalization ability of our proposed manifold regression 
framework.  

We also calculated the Empirical Percentage of times for which the true metrics 
fell within the confidence intervals, denoted as EPcte in Table R.3.3. The 85% 
confident interval is defined as ˆ ˆˆ ˆ[ 1.44 , 1.44 ]i i i it s t s− +  where the output of 
Bayesian regression is 2ˆ ˆ( , )i iN t s for each test data. The EPcte of all the metrics 
using multi-task manifold regression is around 85% for both the SGS and TP/MC 
data sets. This indicates that the confidence interval estimates are in fact quite 
accurate. 



170 
 

 
To gain a better understanding of the performance of the multi-task approach, in 
Table R.3.4, we provide the 50% (i.e., median) and 90% statistics both for 
absolute as well as relative error.  Here, the absolute error is defined as ˆt t−

where t  is the true metric, t̂  is the estimation from our regression function, while 

the relative error
ˆ

100%
t t

t
−

×  compares the absolute error to the true metric.  For 

PF observations generated using the SGS model, the 50% absolute error level is 
0.06 meaning half the time we are within 0.06 of the true PF.  When measured 
relative to the true PF, the 50% level is a bit over 9%. At the 90% level, the 
absolute PF error is about 0.19 while the relative error reaches 59%.  In the case 
of the TP/MC, despite the sparsity of the data, the PF performance at both the 50% 
and 90% levels is substantially improved. We hypothesize that this is due to the 
homogeneity of the spill conditions used in the TP/MC simulation.  The SGS data 
set-4 contains relatively few examples from spills where we varied the statistical 
permeability model as well as the release rate and release configuration. In the 
TP/MC case only the permeability fields were stochastically generated and then 
with a common transition probability matrix.  No variation in the spill 
configuration was considered. Moreover, the number of data in the TP/MC case 
was far higher than in the SGS data set-4. Both of these conditions then resulted 
in improved performance of our approach in the case of the TP/MC data. 

For the estimation of pM and gM , Table R.3.4 indicates what we achieve 
reasonable performance at the 50% level but clearly see some deterioration at 
90%.  To understand this better, scatter plots of absolute error versus relative error 
for both mass in pools and mass in ganglia are shown in Figure R.3.2 for the SGS 
data set and Figure R.3.3 for the TP/MC data set, respectively. The asterisk 
indicates each test data, the red dashed lines are 50% error for both absolute error 
and relative error and the blue dashed lines are 90% error. The dashed line of each 
color divides the absolute error versus relative error plots into four parts. Most of 
the asterisks are located in the quadrant close to the origin where both the relative 
and absolute errors are small. We also see that few of the test data are located in 
the “upper-right” meaning that there are few cases where both the absolute error 
and relative error are large. Therefore we are led to conclude that the majority of 
the cases contributing to the large error results in Table R.3.4 correspond to a 
situation where either the absolute error is large but the relative error is smaller or 
vice versa. 

Table R.3.4. The statistical result of multi-task manifold regression using SGS data set-4 and 
TP/MC sparse data 

 

50% Error 90% Error 50% Error 90% Error 50% Error 90% Error
SGS Data Set 4 4.7 kg 28 kg 1.8 kg 17 kg 0.056 0.19

TP/MC 2.1 g 8.7 g 0.20 g 1.8 g 0.017 0.083
SGS Data Set 4 40% 245% 31% 148% 9.10% 59%

TP/MC 19% 122% 57% 100% 1.80% 9.90%

Mass in pools Mass in Ganglia Pool fraction

Absolute error

Relative error



171 
 

To gain a better understanding of this phenomenon we need to consider in a bit 
more detail the relationship of relative error, absolute error, and the true metric 
value.  We calculate the relative error as 

   

 
where rε denotes relative error and aε  denotes absolute error. Here the true 

metric is  . Thus, in those cases where rε is high and aε is low, 
the true metric is typically small and we are overestimating the quantity of interest.  
Alternatively, in the case where aε is large and rε small, t is large, this low 
relative error may be less of a problem. 
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Figure R.3.2. The absolute error vs relative error scatter plots of pM and gM  
from SGS data set-4 using multi-task manifold regression. 
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Figure R.3.3. The absolute error vs relative error scatter plots of pM and gM  
from TP/MC data set using multi- task manifold regression. 
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III.3.2. Machine Learning Conclusions 
We have proposed three approaches based on the use of machine learning 
regression techniques to estimate a number of metrics characterizing the structure 
of a subsurface contaminant source zone given observations of down-gradient 
concentration. In the standard machine learning approach, first, we presented a 
collection of morphology-based features which relate structure in the observed 
data to that of the unobserved contaminant distribution. Second, we have 
employed a manifold embedding method, Laplacian Eigenmaps, to reduce the 
dimension of the training data set. After that, the spectral regression method was 
applied to embed the test data in the same space as the training data set. Third, 
linear Bayesian regression techniques were used to estimate the metrics from the 
low dimensional representation of the test data. In the integrated algorithm, we 
found the global optimal solution of the dimension reduction function and 
regression function. In the multi-task manifold learning framework, we used the 
physics relating the three metrics as constraint to improve the performance of the 
regression function. Finally, we extended our proposed manifold regression 
methods to sparse concentration data. These experiments validate the performance 
of the overall approach for the determination of important source zone metrics. 

All of the release scenarios examined herein are for pure DNAPL spills.  Under 
real field conditions, however, the presence of multi-component DNAPLs, and/or 
the formation of reaction daughter products, will complicate efforts to identify 
source zone metrics. Thus, an understanding of the dissolution behavior of 
DNAPL mixtures in representative heterogeneous systems will be essential to 
proper data interpretation.  During the initial spill and redistribution period that 
occurs following a DNAPL release or infiltration below the water table, the 
organic liquid composition will be relatively uniform.  As a DNAPL source zone 
ages, however, dissolution will vary spatially and temporally based upon the 
aqueous solubility and mole fraction of each constituent present in the organic 
liquid phase.  Components with the largest aqueous solubilities will preferentially 
dissolve from the DNAPL.  This process will occur most rapidly in transmissive 
zones of the aquifer formation that contain entrapped ganglia (i.e., high specific 
surface area). Although the concentrations of each constituent may persist over 
different time scales and at different magnitudes, the mass removal behavior (i.e., 
change in the relative concentration versus mass removed or time) is unlikely to 
differ substantially from that which would be observed for a single-component 
DNAPL (e.g., TCE-DNAPL) under the same conditions.  This consistency is 
attributed to the fact that dissolution behavior is largely dominated by the initial 
source zone metrics (e.g., pool fraction).  Thus, provided that the initial 
concentration of a mixed DNAPL (e.g., TCE + PCE, or TCE in oil) is known or 
can be estimated, it is anticipated that the metric identification algorithms 
presented above, as well as the upscaled models derived for pure DNAPLs (see 
Section III.4.1), may be adapted to estimate mass distribution metrics and to 
predict plume evolution.   

Accounting for potential changes in dissolution behavior arising from abiotic or 
biotic transformations, such as when a mixed DNAPL evolves due to the back-
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partitioning of a transformation (daughter) product into the parent DNAPL, is 
challenging and was beyond the scope of this project.  However, if one assumes 
that the mass of daughter product (e.g., cis-DCE) that back partitions into the 
DNAPL is relatively small compared to the parent compound (e.g., TCE) or the 
dominant constituent (e.g., oil), changes in the mole fraction would be minimal.  
As a consequence, the general shape of the dissolved-phase signal would not be 
expected to change substantially under most conditions.   

III.4. Development of Simplified Modeling Tools 

III.4.1. Upscaled Model for Mass Depletion 

III.4.1.1. Model Refinement and Validation   
Using the expanded set of source zone dissolution behavior realizations produced 
in this research (Tables M.1.5 and M.1.6 in Section II.1.3), a revised correlation 
for the parameter 𝛽 in the Christ et al. (2006) upscaled screening model (equation 
M.4.1 in Section II.4.2) was developed: 

 𝛽 = 0.972𝐺𝑇𝑃0.2152     for 0.41 < 𝐺𝑇𝑃 < 1.82.   

Figure R.4.1 shows the successful application of this new correlation to source 
zones with GTP outside the range of the original correlation developed in Christ 
et al. (2006). This correlation can be substituted in the screening models 
developed in Christ et al. (2006, 2010) to better predict source zone dissolution 
behavior across a wider range of source zone scenarios. 

In addition to the refinement of the 𝛽  correlation, the upscaled model was also 
enhanced to more accurately reflect the variety of source zone behaviors that may 
be observed in the field, with special attention directed towards two stage mass 
flux behavior, indicative of a transition from ganglia to pool dominated behavior. 
The refined model quantifies DNAPL mass discharge by partitioning the source 
zone into ganglia dominated and pool dominated regions. As described in the 
publication Christ et al. (2010), the simplified upscaled model (Christ et al., 2006) 
was modified to predict flux averaged, down-gradient concentration (or mass 
discharge) as a function of mass removal in 2-stage mass recovery scenarios by 
incorporating the pool fraction (PF), initial flux-averaged concentration (Co), and 
fraction of flux-averaged concentration eluting from pool regions (fx

p): 
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          (R.4.1) 

By incorporating a parameter representing the fraction of down-gradient 
contaminant flux emanating from DNAPL pool zones, we were able to predict 2-
stage mass recovery behavior with reasonable accuracy (see Figure R.4.2). 
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Conceptually, this model partitions the source zone into two simultaneously 
dissolving zones, each assumed to represent either pools or ganglia. The 
contribution to down-gradient flux from each of these zones is assumed to be 
additive.  This upscaled model provides a new screening tool that can be 
employed to obtain order-of-magnitude estimates for new or aged sites exhibiting 
single or two-stage mass recovery behavior. 

Figure R.4.1 Prediction of dissolution behavior using Christ et al. (2006) model 
for low GTP SZAs generated by changing the correlation length of the original 
permeability fields. 
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Figure R.4.2. Two-domain upscaled model comparison to numerical simulation 
results for (a) 200-, 400-, and 600-day spill simulations with no emplaced NAPL,  
(b) – (e) 400-day simulations with various volumes of NAPL emplaced at pools 
(See Christ et al., 2010 for a full description), and (f) comparison to 2-D aquifer 
cell experiment results of Suchomel and Pennell (2006). Equation 8 refers to 
equation R.4.1. 
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III.4.2. Upscaled Models for Push-Pull Tracer Tests 
The goal of this research subtask was to develop a simplified upscaled model for 
application to the analysis of partitioning tracer tests.  Results described in 
Section III.2, point to the importance that rate limited interphase partitioning and 
variations in the spatial distribution of DNAPL play in the determination of 
extraction well breakthrough curve behavior.   

III.4.2.1. Model Development 

2D Fine Scale Simulation of Partitioning Tracer Tests 
To generate representative breakthrough (observation) data for upscaled model 
development, a series of tracer test simulations was performed with the fine scale 
simulator (described in section II.2.3) extracted two dimensional subdomains (see 
Section II.4.3.3). Tracer test simulations were performed under conditions 
representative of field tracer tests. A pulse of a group of tracers, including one 
non-partitioning (conservative), i.e., bromide, and two partitioning alcohol tracers, 
i.e., 1-hexanol, and 2-octanol, was introduced to the domain. Tracers were 
uniformly injected across the left-hand boundary of each two dimensional sub-
domain and a flux-averaged concentration at the right-hand boundary was 
observed. One pore volume (1PV) of the tracer solution was injected, and 
followed by background solution flushing until either more than 99 percent of the 
injected mass was recovered or 40 PV of background solution was flushed 
through the domain. Tracer characteristics and simulation conditions are 
summarized in Tables M.1.4 and M.1.5 (Section II.1.3). For each 2D domain 
(from a total of 180 domains) four tracer tests were simulated with flow rates 
ranging from 1 to 40 (𝑚𝐿/𝑚𝑖𝑛). 

All simulations were performed in a finely discretized (5x5 mm) two-dimensional 
domain of dimensions 120 x 40 cm. This level of discretization was chosen to 
permit resolution of the local flow field within the heterogeneous blocks at a scale 
consistent with the use of local (laboratory scale) mass transfer coefficients. These 
simulations produced 480 sets of tracer breakthrough curves for further analysis 
(observation tracer data). 

Effective Mass Transfer Rate Coefficient Estimation 
The purpose of this step is to lump the influence of all heterogeneities, i.e., 
heterogeneities in the permeability field and in the organic mass distribution, into 
an effective mass transfer coefficient. A one-dimensional form of the upscaled 
model developed in Section II.4.3.3 was used to model the simulated data.  

An effective mass transfer coefficient was fit individually for all 480 analyzed 
tracer tests. The non-partitioning tracer data first were used to fit the effective 
porosity and dispersivity. These fitted values were then embedded in the model, 
and the upscaled model was fit to the breakthrough curves of the 1-hexanol and 2-
octanol tracers. A single effective mass transfer coefficient was used to 
simultaneously fit both tracer breakthrough curves. However, the 2-octanol data 
were weighted 5 times more than the 1-hexanol in the optimization algorithm. 
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These weights were chosen based upon the higher potential of 2-octanol to 
partition into the DNAPL (partition coefficient of 149 𝐿𝑎𝑞/𝐿𝑁𝐴𝑃𝐿  for 2-octanol 
versus 17.4 𝐿𝑎𝑞/𝐿𝑁𝐴𝑃𝐿  for 1-hexanol). The fit was performed using the 
lsqcurvefit function from MATLAB optimization tool that solves non-linear curve 
fitting problems in the least squares sense. To obtain a quantitative understanding 
of the goodness of the fits, the mean squared error (MSE) between the observed 
and predicted breakthrough curves was calculated separately for each test. Figure 
R.4. depicts the distribution of MSE for all 480 simulations. Box plots present the 
distribution of MSEs classified according to the characteristics of the permeability 
fields. In both sets, more than 90 percent of the simulations fall within a range 2.7 
times the standard deviation around the mean. Predicted and observed tracer 
breakthrough curves are shown for four representative simulations on Figure R.4. 
(b). These examples are selected to represent different MSE value ranges. 

 

 

                                   (a)  (b) 

Figure R.4.3. Mean squared errors between the fit and observed breakthrough 
curves; (a) Distribution of mean squared errors between breakthrough curves for 
all simulations; and (b) demonstration of breakthrough curves for 4 samples 
representative of different MSE value ranges; solid lines show prediction and 
dashed lines represent observation data. 
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Mass Transfer Correlation Development 
Once effective mass transfer rate coefficients were obtained for a wide range of 
source-zone configurations, a statistical analysis was performed to develop a 
constitutive equation descriptive of the mass transfer rate as a function of source-
zone metrics. The potential predictors were divided into three groups: (1) 
permeability field characteristics, i.e., average and variance of 𝑙𝑛𝐾 and vertical 
correlation length of the permeability field (λz); (2) DNAPL mass distribution 
characteristics, i.e., overall average organic saturation (𝑆𝑛���), pool fraction ratio 
(used as 1 + PF), center of mass in x and z directions (dimensionless forms 𝑥̅ 𝐿⁄  
and 𝑧̅ 𝐻⁄ ), and variances of mass distribution around center of mass in x and z 
directions (dimensionless forms 𝜎𝑥𝑥2 𝐿2⁄  and 𝜎𝑧𝑧2 𝐻2⁄ ); and (3) the flow 
characteristics i.e., average Reynolds number (𝑅𝑒 = 𝑞𝐿 𝜈)⁄  in the domain, where 
the characeristic velocity is the Darcy velocity, the domain dimension is the 
length scale, and 𝜈 is the kinematic viscosity of aqueous phase.  

The above variables are physically independent; however, they may be 
numerically correlated. A matrix scatter plot (not shown here) was used to 
diagnose the potential interdependencies between predicators in this group. 
Results showed that the 𝑅2 values between the vertical spreading and center of 
mass in the vertical direction and the horizontal spreading values, was 0.92, and 
0.82, respectively, indicating a strong numerical correlation between these 
variables. Thereafter these variables were excluded from the analysis.  All other 
variables were considered as potential predictors. 

A multivariable power function was selected for the form of the predictive model. 
This form was selected because with a logarithmic transformation, a Multiple 
Linear Regression (MLR) model could be used to develop the model in a 
systematic way. The predictor variables were estimated in dimensionless forms, 
and a combined dimensionless group also represented the upscaled mass transfer 
coefficient: 

𝑆ℎ
𝑆𝑐
����

= 𝛽0 ∙ 𝑥1𝛽1 ∙ 𝑥2𝛽2 ∙. . .∙ 𝑥𝑁𝛽𝑁 (R.4.2) 

here 𝑥1,2,…,𝑁  are the predictor variables. The effective mass transfer coefficient 
(𝑘� , [𝑇−1] ) was described as the ratio of an upscaled Sherwood (𝑆ℎ��� = 𝑘�𝐿2/
Daq) and the Schmidt (𝑆𝑐 = 𝜈 Daq⁄ ) numbers.  

Multiple models with an increasing number of predictors were created. At each 
stage one variable was added to the best model of the previous stage, and the best 
model was evaluated based on three main statistics: adjusted r-squared; standard 
error of the model: S; and predicted residual sums of squares: PRESS (Helsel and 
Hirsch 2002). The normal distribution of residuals, variance inflation factor (an 
index for the severity of multicollinearity between variables), and statistical 
significance of the coefficients were checked for all models.  
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Table R.4.1 summarizes the coefficients, standard error of coefficients, and the 
corresponding 𝑅2 values of the best model at each step for up to five predictors. 
The 𝑅2 value increases from model 1 to 5 at the cost of adding more variables. 
The best overall model was selected by comparing the improvement in the 
statistics of the models when more variables are added. Figure R.4.4 shows how 
these statistics improve when more predictors are added. The graphs on the top 
row of this figure present the absolute values of the statistics, and the graphs on 
the bottom show the percentage of the improvement after adding additional 
predictors. The improvement percentages are calculated in comparison to the 
statistics of the first model. As Figure R.4.4 suggests, the improvement in 
prediction accuracy is insignificant for the first four models. At least one percent 
gained improvement in all three statistics was chosen as the criterion for adding 
more parameters. Based on this criterion, Model 4 was chosen as the best model:  

 𝑆ℎ
𝑆𝑐
� = 446.68 × 𝑅𝑒0.929(1 + 𝑃𝐹)−3.74(𝜎𝑧𝑧

2

𝐻2)0.523(𝑆𝑛��� )0.584 𝑅2=0.833 
(R.4.

3) 

According to this model, the Reynolds number, pool fraction ratio, spreading of 
the organic mass in vertical direction, and effective saturation are the most 
important variables that control the effective mass transfer coefficient in the 
domain. Figure R.4.5 depicts the predictive performance of Model 4 for all 
observation data points. 
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Table R.4.1. Coefficients and standard errors of the developed regression models 

Model 1 # 1 2 3 4 2 5 
Number of variables (𝑁) 1 2 3 4 5 
variable coefficient   coefficient ± 𝑆𝐸   

- log (𝛽0) 3.32 ± 0.1 1.92 ± 0.08 2.09 ± 0.07 2.65 ± 0.11 2.73 ± 0.12 
𝜎𝑧𝑧2 𝐻2⁄  𝛽1 1.05 ± 0.05 1.05 ± 0.03 0.70 ± 0.04 0.52 ± 0.05 0.52 ± 0.05 
𝑅𝑒 𝛽2  0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 
1 + PF 𝛽3   −3.41 ± 0.03 −3.70 ± 0.34 −3.70 ± 0.34 
𝑆𝑛��� 𝛽4    0.584 ± 0.09 0.603 ± 0.09 
𝑥̅ 𝐿⁄  𝛽5     0.26 ± 0.10 
𝜎𝑙𝑛𝐾2  𝛽6      
𝑅2 (pred) 0.41 0.78 0.817 0.831 0.835 
1. Equation M.4.5 describes the general form of the regression models. 
2. Selected as the best model     
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Figure R.4.4. Selecting the best model based on the statistics of the regression 
models; (a) standard error of the models; (b) adjusted R-squared value; (c) 
prediction error sum of squares: PRESS; The graphs on the top row present the 
absolute value of the statistics. The graphs on the bottom show the gained 
improvement by adding one more predictor parameter at a time to the model. The 
horizontal lines on the lower row figures mark the one-percent improvement 
criterion. 
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Figure R.4.5. Predicted versus observed effective mass transfer coefficients for 
the best model (model 4). 
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III.4.2.2. Model Verification 

New Simulation Dataset 
A dataset independent of the training data was used to evaluate the predictive 
capability of Model 4. In addition to the evaluation of the general performance of 
the model, this test was designed to explore the effect of the domain length on the 
effective mass transfer rate coefficient, since the training dataset consisted of 
source-zone realizations of uniform sizes.   

Nine new two-dimensional domains with the same size as the ones used in the 
training process were chosen ( L × H  domain size). These realizations were 
generated from 3D realizations of Set 2 following the same approach described 
for the training data (see section II.1.3). Each of the domains was then used to 
generate three elongated hypothetical realizations of lengths 2 L ,3L , and 4L , 
consisting of repetitive modules of the primary realization. Following this 
approach 36 realizations were obtained. Tracer test simulations and effective mass 
transfer rate estimates were performed for two different flow rates (10 and 
40 mL/min).  

Figure R.4.6 illustrates the predictive performance of the developed model 
(Model 4 selected as best model) for all 72 test data points (9 series, 4 lengths, 2 
flow rates). The R-squared value between the model’s predicted and observed 
values is higher than 0.9, indicating a high prediction precision. 

Experimental data comparison 
To further examine the predictive capability of the developed model, model 
predictions were compared with experimental observations from a two-
dimensional aquifer cell experiment (Ervin, 2012) (see Section III.2.1.2). 
Dimensions of the experimental aquifer cell and partitioning tracer test 
experimental conditions were similar to those of numerical simulations used to 
generate the upscaled model. This resemblance provides a unique possibility to 
test the performance of the developed model against experimental data.  
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Figure R.4.6. Predicted versus observed effective mass transfer coefficients for 
the test dataset. 

  

-7 -6 -5 -4 -3
-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

log(k) predicted

lo
g(

k)
 ob

se
rv

ed
Predicted by Model 4

 

 

R2 = 0.933



187 
 

The aquifer cell consisted of Ottawa Federal Fine sand as the background, and F-
70 Ottawa sand formed the low permeability zones within the background. 
Dimensions of the box, sand structure, and DNAPL distribution within the box 
are shown in Figure R.4.7. A one-centimeter thick F-70 lens (28.2 cm long) was 
placed at the up-gradient end of the box, and triangular low permeability zones 
(3.6 cm tall) formed on each end of the lens in an effort to direct the TCE-
DNAPL to fill the area above the lens. Aquifer cell parameters are summarized in 
Table R.4.2. The flow in the cell was driven by implying a constant head pressure 
on two fully penetrated vertical source lines on the left and right hand sides of the 
domain. A pulse of 0.31 PV tracer solution was followed by flushing with 
background solution at 4.9 𝑚𝐿/𝑚𝑖𝑛. The tracer solution consisted of bromide, 1-
hexanol, and 2-octanol tracers. The tracer and background flushing solutions were 
saturated with TCE to assure no NAPL dissolution took place during the test. 

The one-dimensional upscaled model was used to simulate this experiment. The 
overall mean TCE saturation, 1.1 %, was assigned to the entire domain. 
Conservative tracer data were used to fit the effective porosity and dispersivity of 
the model. For partitioning tracers, the interphase mass transfer rate was estimated 
by regression Model 4. Predictor variables were estimated based on a grid size-
wise consistent with the regression model requirements (30.6 × 7.6 𝑐𝑚 blocks in 
horizontal and vertical directions, respectively). Table R.4.2 summarizes the box 
experiment parameters as well as estimated values of the predictor variables. 

Figure R.4.8 demonstrates the predictive performance of Model 4 for two 
partitioning tracers. The arrival time of the peak of the curves is successfully 
predicted. To explore the significance of this observation, a sensitivity analysis 
(not shown here) proved that in this setup both the peak arrival time and the peak 
magnitude are sensitive to the effective mass transfer rate coefficient. 

Additional model validation simulations with published experimental data may be 
found in (Boroumand, 2013). 
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Table R.4.2. Parameters of the first aquifer cell experiment used for model 
verification 

Parameter Value 

Cell parameters 1 
Box Dimensions (cm) 70 × 42 × 1.5 
Packed Height (cm) 32.5  
Mass Ottawa Federal Fine (g) 4868  
Mass F-70 (g) 521  
Average Bulk Density (𝑔/𝑐𝑚3) 1.54  

Average Porosity 0.42 
Total Pore Volume (mL) 1303  
TCE-DNAPL Volume (mL) 13.5  
Overall TCE-DNAPL Saturation (%) 1.04 
Tracer test parameters 
Flow Rate (mL/min) 4.9 
Reynolds Number 0.0074 
Mass distribution measures 
PF2 0 
𝑆𝑛��� 0.011 
𝑧̅ 𝐻⁄  0.135 
𝑥̅ 𝐿⁄  0.240 
𝜎𝑧𝑧2 𝐻2⁄  0.0015 
𝜎𝑥𝑥2 𝐿2⁄  ~ 0 

1. Cell parameters from Ervin (2012) 

2. PF is computed for an averaging grid consistent with the 

resolution used in model development 
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Figure R.4.7. First two-dimensional aquifer cell test used to verify developed model, Ervin 
(2012).  

 

 

(a)                                                                    (b) 

Figure R.4.8. Breakthrough curves for the partitioning tracer test conducted by Ervin (2012); (a) 
1-hexanol tracer; (b) 2-octanol tracer; circles show the measured effluent concentration, solid 
lines are BTCs predicted by the developed upscaled model. The smaller figures on the upper 
right corner show the same BTCs on a logarithmic scale. 
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III.4.2.3. Conclusions for Upscaled PPTT Model Development 
The effective mass transfer coefficient was numerically estimated for 480 tracer tests in 180 
DNAPL realizations. Regression analysis was performed to study the correlation between the 
upscaled mass transfer coefficient and different characteristics of the realizations. The predictive 
potential of the model was explored by testing it on a second dataset. The model was verified 
against three sets of existing partitioning tracer test experiments. The results of the analysis can 
be summarized as: 

• An upscaled, one dimensional transport simulator, incorporating a linear driving force 
mass transfer relationship, is capable of capturing the major breakthrough features of 
partitioning tracer tests in heterogeneous DNAPL source zone systems 

• The most significant parameters influencing the magnitude of the upscaled mass transfer 
coefficient were vertical spreading of the NAPL, Reynolds number, PF, and average 
saturation, in that order. 

• For relatively small injection domains, the metrics of heterogeneity in the NAPL 
distribution tend to control observed tracer breakthrough (permeability field 
heterogeneity does not have a large effect on effective mass transfer) 

• In applying upscaled models, it is important to use a consistent approach to estimate 
(scale) DNAPL SZA metrics. 
 

III.4.2.4. Assessment of Source Zone Features, using Push-Pull Data 

Model Choices for 3D Field-Scale Applications 
To verify the upscaled tracer model in for a 3D push-pull tracer test, fine-scale simulations were 
performed in a 3D domain of size 8.0 × 8.0 × 0.8 (𝑚). The interrogated zone is discretized into 
a 5 × 5 × 5(𝑐𝑚) grid. The test well is positioned at the horizontal center of the domain. It is 
assumed that the screened zone of the well is 0.4 (𝑚). The sink/source terms are assigned to 8 
adjacent nodes along the well-screen, which is located at mid-depth of the domain. This 
arrangement causes the flow to be injected into a 40-cm-height zone at the center of the domain. 
No-flow boundary conditions (𝜕𝜑

𝜕𝑧
=0) are applied to both the top and bottom boundaries of the 

3D domain. Variable-head boundary conditions, consistent with the imposed flow field, are 
applied to the other four faces of the domain. 

Model Choices for Upscaled Simulations 

The same finite-difference model used for the fine scale simulations was modified to simulate 
the test under the upscaled conditions. The major differences between the upscaled and fine scale 
simulators are listed below:  

i) In the upscaled model, field parameters, i.e., NAPL saturations, permeability, and 
porosity, are constant effective values within the interrogation zone.  
ii) The flow field in the upscaled model is estimated based on the radially symmetric 
approximation: 
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𝑣(𝑟) =
Q

2 ∙ 𝜋 ∙ ℎ ∙ 𝑛 ∙ 𝑟
 (R.4.4) 

where 𝑄 is the pumping rate, 𝑟 is the distance from the well, and  ℎ and 𝑛 are the length of the 
screened zone of the well and the effective porosity, respectively. 

iii) The upscaled mass transfer correlation expression (R.4.3) is incorporated into the 
upscaled model to represent the mass transfer of tracer between the NAPL and aqueous phase. 
 
iv) The radius of influence (travel distance) of each tracer was assumed equal to the radius of 
influence of the conservative tracer. 
 

Before using the developed upscaled model in 3D space, the validity of the model for application 
to a spatially variable velocity field was investigated and shown to effectively capture the 
observed extraction well breakthrough behavior (see Boroumand (2013) for more detail.  

The three-dimensional simulator was next used to simulate PPTTs in numerically generated 
heterogeneous source zones. Two 3D DNAPL realizations were chosen from the numerically 
generated dataset discussed in Section III.1.2. Each tracer test was simulated with the fine scale 
model as well as the upscaled model. The NAPL realizations used for these simulations are 
illustrated in Figure R.4.9 (a) and Figure R.4.10 (a), A comparison of fine and upscaled 
breakthrough curves are presented in Figure (c,d) and Figure  (c,d) for linear and logarithmic 
scales. Use of the logarithmic scale allows one to see the prediction accuracy for the tailing (late 
time concentrations). Figure R.4.11 presents a comparison of upscaled model predictions with 
those obtained assuming local equilibrium for 2-octanol in one case (Example 5).  All MSEs 
between the observed and predicted BTCs with rate limited and equilibrium assumptions are 
reported in Table R.4.4. Note that MSEs are significantly (2 orders of magnitude) smaller when 
the rate limited model is used. 

Breakthrough curves in the logarithmic scale show that the prediction error increases for late 
time concentrations. The error is more pronounced for the conservative tracer, and decreases as 
the partition coefficient increases. This suggests that the source of the error is not in the 
partitioning rate. It should be noted that the fine scale results are obtained with a 3D model in 
which mass transfer into the upper and lower layers of the interrogated zone is permitted through 
the transverse dispersion and diffusion processes. This phenomenon is not captured in the 
upscaled model which assumes horizontal, radially symmetric transport. It is postulated that this 
leads to a discrepancy between the BTCs at very low concentrations.  
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Table R.4.3. Parameters of the upscaled model used for simulation of PPTTs in heterogeneous 
domains 

 
 

NAPL saturation 

𝑆𝑛��� (%) 

Vertical Spreading 

𝜎𝑧𝑧2 𝐻2⁄  

Pool Fraction 

𝑃𝐹 

Example 4 0.205 0.072 0.448 

Example 5 0.690 0.085 0.169 

 

Table R.4.4. Mean squared errors for upscaled simulations 

 MSE 
Example Type Model Bromide DMP 2-octanol 

1 Radially 
Symmetric 

2D 2.2E-3 - - 

3D 2.2E-3 - - 

2 Radially 
Symmetric 

2D - - 2.87E-4 

3D (rate-limited) 0.70E-3 
- 0.80E-3 

3D (equilibrium)  0.51E-2 

3 Radially 
Symmetric 

2D - - 1.9 E-3 

3D (rate-limited) 0.73E-3 
- 0.54E-3 

3D (equilibrium) - 0.67E-2 

4 Heterogeneous 
Rate-limited 

3.45E-4 
- 3.82E-4 

Equilibrium - 0.20E-2 

5 Heterogeneous 
Rate-limited 

9.4E-5 
7.8E-5 1.56E-4 

Equilibrium 8.4E-4 8.02E-3 
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  (a)                                      (b)  

(c)                           (d)  

Figure R.4.9. Forward simulation of a PPTT in a heterogeneous source zone (Example 4); (a) 3D heterogeneous NAPL realization 
and location of the test well, horizontal planes mark the interrogation zone; (b) a horizontal cross section at the middle of the 
interrogation zone; (c) and (d) concentration breakthrough curves of the pull phase at the well location, in linear and logarithmic 
scales, respectively. MSE values are reported in Table R.4.4.                            
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(a)                             (b)  

(c)                       (d)  

Figure R.4.10. Forward simulation of a PPTT in a heterogeneous source zone (Example 5); (a) 3D heterogeneous NAPL realization 
and location of the test well, horizontal planes mark the interrogation zone; (b) a horizontal cross section at the middle of the 
interrogation zone; (c) and (d) concentration breakthrough curves of the pull phase at the well location, in linear and logarithmic 
scales, respectively. MSE values are reported in Table R.4.4.                            
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Figure R.4.11. Equilibrium and rate-limited prediction of a PPTT in a 
heterogeneous region; dashed line shows observed BTC for 2-octanol; solid lines 
show the upscaled and equilibrium predictions (Example 5). MSEs are reported in 
Table R.4.4. 
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Sensitivity Analyses 
The major utility of the upscaled model is to implement it in a parameter 
estimation algorithm to determine the source zone characteristics. To guide this 
parameter estimation, a sensitivity analysis was first performed.  The Push-Pull 
Tracer Test performed as Example-5 was selected as the basis of the comparison.  
Details of this analysis are presented in Boroumand (2013).  Conclusions are 
briefly summarized below.  

1) Results suggest that the late time breakthrough concentration is sensitive 
to all three predictor variables (NAPL saturation, vertical spreading, and 
pool fraction ratio). However, the sensitivity is more pronounced for 
average saturation.  
 

2) An investigation of sensitivity to the ratio of injection and extraction rates 
rejects the hypothesis that changing the ratio of these flow rates can 
provide additional information for parameter estimation. 

Parameter Estimation 
To explore the utility of the upscaled model for local parameter estimation, the 
three parameters appearing in the upscaled mass transfer coefficient expression 
(effective vertical spreading, pool fraction, and NAPL saturation) were 
concurrently estimated for each tracer test by fitting model output to the observed 
data.  Here the lsqcurvefit function from the MATLAB optimization tool was 
used to minimize the mean squared errors between the breakthrough curves 
obtained from fine scale and upscaled simulations. The optimization algorithm 
used for the least squares minimization is the Trust-Region-Reflective (TRR). 
After optimization, the residuals and Jacobian were transferred to the  nlparci  
function to evaluate the 95% confidence intervals of the estimated parameters. 
The parameter estimation was performed in two steps: first, the conservative 
tracer data were used to fit the effective porosity and effective dispersivity of the 
upscaled model and then the partitioning tracer data were used to estimate the 
effective NAPL saturation, pool fraction ratio, and vertical spreading. Two 
partitioning tracers were used, and their BTCs were fit simultaneously.  

The applicability of the parameter estimation approach described above was 
demonstrated by evaluation of the upscaled variables for a series of 2D domains. 
A total of 50 2D tracer test simulations in heterogeneous source zones were 
randomly selected from the pool of 480 simulations described above. Estimation 
accuracy was quantified by the correlation coefficient between the estimated and 
actual values (𝑅2) and the root-mean-square deviation (RMSD). Figure R..4.12 
compares estimated parameters against with their actual values for all 50 domains. 
The correlation coefficients between the estimated and observed values are 0.82, 
0.79, and 0.45 for vertical spreading of NAPL, pool fraction, and NAPL 
saturation, respectively.  The RMSD values for vertical spreading of NAPL, pool 
fraction, and NAPL saturation are 0.065, 0.133, and 0.021, respectively.  These 
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values can be normalized by the range of actual values of each variable to obtain a 
comparable metric (NRMSD), yielding NRMSD values for vertical spreading of 
NAPL, pool fraction, and NAPL saturation of 0.971, 0.173, and 0.255, 
respectively. The decreasing order of R-squared values between the predicted and 
actual values is consistent with the order of variable significances in the 
developed upscaled correlation.  However, the NRMSD metric indicates that the 
relative prediction error for vertical spreading is higher than that for pool fraction 
and NAPL saturation. The scatter plot in Figure R.4.12 (a) reveals a consistent 
upward bias in vertical spreading estimates that explains the high R-squared of the 
data.  Additional analysis suggests that the difference between estimated and 
actual upscaled parameters is related to the MSE between the observed and 
upscaled breakthrough curves. These observations confirm that the suggested 
approach can be used to estimate the upscaled parameters. 
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Figure R.4.12. Comparison of estimated and actual values for: (a) vertical spreading, (b) pool fraction, and (c) NAPL saturation. Blue 
circles show values of parameters obtained for 2D simulations; red triangles and green squares show values of parameters for 3D 
simulations, in Examples 4 and 5, respectively. The middle 45-degree-line represents the perfect estimation and the other two lines 
mark root-mean-square deviation below and above perfect estimation. Vertical spreading of Example 4 is an outlier and is not shown 
on plot (a); see Table R.4.5 for its values. 

  

 

 

(a) (b) (c) 
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Table R.4.5. Estimated source zone parameters with PPTTS conducted in heterogeneous source 
zones; parameters are estimated using the upscaled model developed in this research and the 
local equilibrium model  

 Parameter 

 Method 
NAPL 

saturation 
𝑆𝑛�  (%) 

Vertical 
Spreading 
𝜎𝑧𝑧2 𝐻2⁄  

Pool 
Fraction 
𝑃𝐹 

Example 5 

Actual - 0.690  0.081 0.169 

Rate-limited 
analysis  

Fit (linear) 0.660 0.041 0.365 

Fit (Log) 0.584 0.010 0.490 

Equilibrium 
analysis 

2-octanol 8.590 N/A N/A 

DMP 10.70 N/A N/A  

Example 4 

Actual - 0.205 0.072 0.449 

Rate-limited 
analysis  

Fit (linear) 0.185 0.252 0.351 

Fit (Log) 0.260 0.488 0.010 

Equilibrium 
analysis 

2-octanol 4.31 N/A N/A 

DMP 3.85 N/A N/A  

 
 
 

Table R.4.6. Margin of error for the estimated parameters with rate-limited analysis 

  NAPL saturation 
𝑆𝑛�  (%) 

Vertical Spreading 
𝜎𝑧𝑧2 𝐻2⁄  

Pool Fraction 
𝑃𝐹 

Example 5 
Fit (linear) ± 0.004 ± >10 ± >10 

Fit (Log) ± 0.004 ± >10 ± >10 

Example 4 
Fit (linear) ± 0.005 ± >10 ± >10 

Fit (Log) ± 0.006 ± >10 ± >10 
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The 3D PPTT simulations presented above were used to explore the utility of the parameter 
estimation approach for three-dimensional heterogeneous source zones. Similar to the approach 
used for predictive simulation of PPTTs, observed tracer test data were numerically generated by 
a fine scale model that employed a local scale mass transfer coefficient. Estimated and actual 
values of the upscaled parameters are summarized in Table R.4.5. These values are shown on 
Figure R.4.12R.4.12 along with the data points corresponding to the 2D domains. Inspection of 
Figure R.4.12R.4.12 suggests that for the 3D examples considered here, the estimates of pool 
fraction and NAPL saturation parameters fall within the standard deviation zones calculated 
based on 2D simulations. This suggests that the prediction accuracy of these variables is 
consistent for 2D and 3D simulations. However, the estimates of vertical spreading fall out of the 
standard deviation zone and do not match with 2D simulations. For both 3D examples 
considered here, the predicted values of the average NAPL saturation are remarkably close to the 
perfect estimation line.  The error margins (Table R.4.6) of the estimated saturations are smaller 
than 3.0 percent of the estimated values.  In contrast, the confidence intervals for the vertical 
spreading and pool fraction are significantly larger (larger than 100% of the estimated value). 
Notice that the actual values of the effective NAPL saturation in the 3D simulations are less than 
one percent.  These values are lower than the minimum NAPL saturation in the 2D simulations. 
This difference may help explain poorer estimation of of vertical spreading in the 3D cases. 
More 3D cases will need to be evaluated to fully explore the utility and limitations of this 
estimation approach. This would require developing new NAPL release simulations under more 
diverse conditions to obtain local zones with higher effective NAPL saturation, and diverse pool 
fraction and vertical spreading parameters.  

Parameter estimation based on local equilibrium assumption: The common method for 
analyzing a push-pull tracer test is to use a local equilibrium assumption and to model 
partitioning similarly to linear equilibrium sorption. The relationship between the fit retardation 
factor, equilibrium partition coefficient, and NAPL saturation can be used to estimate the NAPL 
saturation:  

𝑆𝑛 =
𝑅 − 1

𝑅 + 𝐾𝑒𝑞 − 1
                    (R.4.5) 

To compare the performance of the developed parameter estimation algorithm with that of the 
conventional method, a 1D radial model capable of modeling equilibrium partitioning was fit to 
the results of the fine scale simulations. Equation R.4.5 was used to estimate NAPL saturations. 
Given that the model has to be fit separately for different partitioning tracers, different NAPL 
saturation estimates are obtained for each tracer. The estimated parameters based on the local 
equilibrium assumption are reported in Table R.4.5 along with the actual values and the results 
of the rate-limited interpretation. This comparison reveals that, for both examples, the local 
equilibrium assumption results in substantial estimation errors and over-prediction of the NAPL 
saturation, an observation that is consistent with the results of an experimental study of PPTTs in 
an aquifer cell (see Section III.2.2).  

Conclusions for assessment of source zone features using tracer test data 
Existing models for interpretation of partitioning tracer tests rely on a local equilibrium 
partitioning assumption. Analysis of partitioning push-pull tracer tests conducted by Istok et al. 
(2002), however, suggested that an equilibrium model is inadequate to describe the observed 
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separation between the tracers breakthrough curves.  The research presented here supports 
conclusions of this earlier work and demonstrates the potential utility of an upscaled linear 
driving force model for the analysis of tracer data.  Partitioning tracer tests, performed in 2D 
domains with injection and extraction wells on opposite sides of the domains and in 3D domains 
with a single injection and extraction well at the center of the domains, were analyzed. These 
simulations represent conditions of inter-well and push-pull partitioning tracer tests, respectively. 
The utility of the upscaled model to estimate vertical spreading, PF, and NAPL saturation was 
demonstrated in 2D simulations. The 3D simulations considered here provided estimates for 
average NAPL saturation with an absolute error of 3.0 percent or less. However, the accuracy of 
estimates for vertical spreading and PF was not consistent among the limited examples 
examined. The mathematical model and parameter estimation algorithm developed in this 
research is the first attempt to analyze PPTTs based on rate-limited partitioning and is shown to 
be useful for characterizing source zone features. 
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IV. Conclusions and Implications for Future Research / 
Implementation  
 
The previous sections in Chapter III have detailed the results of research conducted to develop 
and implement tools for DNAPL source zone metric quantification and the prediction of 
associated plume response to DNAPL mass removal.  The integration of these tools with the 
collection of appropriate site data will form the foundation for a site characterization and 
assessment protocol.  The intent of this Protocol is to provide a framework to guide site 
managers in the assessment of existing data and the efficient collection of additional data, as well 
as in the evaluation and selection of an appropriate remedial/management strategy. 

Figure C.1.1 presents a flow chart which outlines the suggested Protocol.  Here, once a DNAPL 
site has been selected, available data on the site geology/stratigraphy are collected and matched 
to a representative site subsurface permeability model.  The permeability models are then linked 
to a library of machine learning regression functions.  The research summarized in Section III.3 
demonstrated both the feasibility and methodology for the development of such functions.  In 
this research, however, applications were limited to a small number of site permeability 
distributions.  Future work will be required to develop a more comprehensive regression library 
for Protocol use.  This library would include regression functions trained on a variety of site 
conditions (permeability distributions) typical of known contaminated formations.  If a 
regression library is not available, the methodology developed and presented in this research 
could be implemented to develop a site-specific regression function.  Such an exercise, however, 
would be simulation intensive and likely require additional site data collection. 

After a site-matched regression function is obtained, site managers would employ this function, 
along with measured plume transect data, to estimate source zone metrics.  To reduce uncertainty 
in identifying transect ‘hot spots’, the location of transect measurements and collection of 
transect data would be guided by sampling methodologies developed under previous SERDP 
research (ER-1293).  Once source zone metrics have been estimated, the Protocol employs the 
upscaled screening model presented in Section III.4 to predict the likely response of the plume to 
source zone mass removal.  This information will then guide preliminary site remediation 
decisions and future in-source data collection.  In situ push-pull partitioning tracer test analysis 
techniques developed in this research (see Sections III.2 and III.4) will be useful in this latter 
phase of site characterization to estimate local average DNAPL saturation and mass distribution, 
should the screening analysis suggest that more aggressive remediation strategies are warranted. 

High level conclusions from each subtask of this research are described below. 
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Figure C.1.1. Flow chart outlining the suggested Protocol.  
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IV.1. Data Generation for Metric Identification and Protocol Evaluation 
 
Multi-component 1:1 (mole/mole) PCE- and TCE- NAPL aquifer cells 

• Binary mixtures of TCE and PCE exhibited ideal dissolution behavior in water, which 
could be described using a Raoult’s Law convention. 

• Changes in NAPL source zone composition (i.e., molar ratios) differed during water 
flushing (i.e., aqueous dissolution) and surfactant flushing due to preferential 
solubilization of DNAPL constituents. 

• Mass discharge-mass removal relationships were directly related to DNAPL molar 
composition, with decreased reductions in mass discharge with increasing mole fraction. 

• The initial DNAPL saturation distribution (e.g., ganglia vs. pools) controlled the long-
term dissolution behavior of heterogeneous, multi-component source zones. 
 

Single-component TCE- NAPL aquifer cell 
• Evaluation of image processing scaling methods using light transmission data indicated 

that an averaging window of 30 × d50 provides the most reliable estimates of pool fraction 
(PF) or the ganglia to pool (GTP) ratio.   

• Following substantial removal (> 80%) of the initial DNAPL mass,  PF decreased sharply 
as a large portion of the pools were reduced to ganglia, and rapid dissolution proceeded 
until all (> 99%) DNAPL mass was removed from the source zone.  

 
Markov-Chain permeability distribution aquifer cell 

• Comparisons between experimental data and numerical simulation results indicated that 
when the permeability contrast between the background and low permeability media is 
approximately one order-of-magnitude, mass storage and release from the low-
permeability zones is relatively rapid, resulting in only a limited concentration gradient 
between high and low permeability zones 

• Multi-stage DNAPL dissolution behavior was attributed to the initial, rapid dissolution of 
ganglia from the heterogeneous source zone, followed by sustained dissolution from 
regions containing high-saturation pools located in high permeability lenses.  

 
Field-scale numerical simulations 

• 3D modeling results supplemented extensive experimental work to create a large library 
of simulation data. The generated library spans a large range of source zone geometries 
and metrics, suitable for the development and comprehensive assessment of source zone 
characterization methods under Task III. 

• Modeling results suggested that NAPL release rate coupled with capillary pressure 
parameters and the distribution of low permeability layers significantly influenced the 
SZA, which increased variability in the down-gradient plume response. 

• Consistency between SZA metrics computed in 2D and 3D was not observed in highly 
heterogeneous permeability fields reported here, suggesting previously reported 
dimensionality similarities are restricted to relatively homogeneous domains. 
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IV.2. Refinement of In-Source Push-Pull Tests 
 

Batch, column and aquifer cell experimental tracer test results 

• Transport models, and, consequently, SZA estimates from push-pull tests, are very 
sensitive to the tracer partition coefficient between water and NAPL, highlighting the 
importance of conducting careful assessments of Kp.  

• Such assessments conducted for 1-pentanol, 1-hexanol, and 2-octanol demonstrate that 
the nonlinear partitioning of each alcohol may be approximated with a linear function 
below tracer concentrations of 3,000 mg/L, 600 mg/L and 200 mg/L, respectively. 

• UNIFAC and other group contribution methods may over predict partition coefficients 
for these alcohols leading to underestimates in NAPL saturations determined using 
partitioning tracer tests employed in any well configuration.  

• Diffusion limitations within the NAPL and surface accumulation on the NAPL do not 
appear to limit tracer partitioning in source zones. In fact, kinetics for the reversible 
absorption of alcohol tracers are well described using mass transfer correlations 
developed for pure‐component NAPL dissolution. 

• Analytical models for push-pull tracer tests typically assume equilibrium, linear 
partitioning in a homogenous medium containing a uniform saturation of NAPL. Of these 
assumptions, the most critical appears to be that of equilibrium partitioning. 
Incorporation of kinetic partitioning, even with the assumption of uniform NAPL 
saturation, provides a reasonable explanation of asymmetric recovery curves obtained in 
heterogeneous 2-D aquifer cell experiments. Further inclusion of the NAPL distribution, 
even with the assumption of homogenous media, results in highly accurate predictions of 
tracer transport. 

• An empirical approach was employed to describe the asymmetry in recovery curves 
obtained in 2-D domains. This approach suggests the potential for using push-pull data to 
identify the distance to NAPL and the fraction of the vertical domain occupied by the 
NAPL. 

 

Tracer Push-Pull Sensitivity and Inverse Modelling 

• Application of a coupled adjoint sensitivity method to the partitioning tracer test problem 
can quantify the sensitivity of well observations to perturbations in the DNAPL saturation. 

• The spatial distribution of sensitivities depends strongly on the location and shape of the 
DNAPL region surrounding the injection/extraction well, with higher sensitivities 
observed for tracers that have larger partitioning coefficients. 

• The Gauss-Newton method, coupled with the sensitivity matrix, can be used to estimate 
the DNAPL total mass, mean saturation, and distance from the push-pull well. 
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IV.3. Processing Methods for Identification of Source Zone Features 
 

• Machine learning methods can be used to successfully estimate source zone architecture 
metrics, including pool fraction, mass of DNAPL occupying pools, and mass of DNAPL 
occupying ganglia, from snapshot observations of concentrations within a down-gradient 
transect 

• A fundamentally new machine learning processing method has been developed that 
employs ideas from manifold learning and embedding for estimating each metric 
individually 

• The above approach has been extended using ideas from multi-task learning to determine 
the three metrics jointly, based on enforcing a physical relationship among the three 

• Validation simulations have demonstrated that a strong performance of the SZA metric 
identification method can be obtained both with densely sampled data and with a more 
limited sampling of concentration data, as would be representative of measurements from 
laboratory experiments and typical field characterization efforts. 

 

IV.4. Development of Simplified Modeling Tools 
 

Upscaled Model for Mass Depletion 

• An upscaled model that simplifies effective source zone behavior by conceptualizing 
NAPL dissolution from pool and ganglia zones predicted flux-averaged down gradient 
concentrations with reasonable accuracy using the initial source zone pool fraction, the 
initial flux-averaged concentration eluting from the source zone, and the initial fraction of 
that flux eluting from pool zones. 

• This revised model improved on the upscaled model developed under previous SERDP 
sponsorship by enabling the prediction of two-stage mass recovery behavior that may be 
observed in the field, especially at “aged” sites. 

• This tool provides a convenient method for obtaining screening-level predictions for 
source zone management, without the need to run extensive source zone characterization 
studies (e.g., full-size PITT or long term concentration analysis). 

Upscaled Push-Pull Tracer Test Model Development 

• An upscaled, one dimensional transport simulator, incorporating a linear driving force 
mass transfer relationship, is capable of capturing the major breakthrough features of 
partitioning tracer tests in two and three-dimensional heterogeneous DNAPL source zone 
systems. 

• The most significant parameters influencing the magnitude of the upscaled mass transfer 
coefficient are vertical spreading of the NAPL, Reynolds number, PF, and average 
saturation, in that order. 

• For relatively small injection domains, the metrics of heterogeneity in the NAPL 
distribution tend to control observed tracer breakthrough (permeability field 
heterogeneity does not have a large effect on effective mass transfer). 
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• In applying upscaled models, it is important to use a consistent approach to estimate 
(scale) DNAPL SZA metrics. 

Assessment of source zone features using tracer test data 

• Existing models for interpretation of partitioning tracer tests rely on a local equilibrium 
partitioning assumption. The research presented here demonstrates that an equilibrium 
formulation is inadequate to describe tracer test observations and demonstrates the 
potential utility of an upscaled linear driving force model for the analysis of tracer data.   

• The utility of the upscaled model to estimate vertical spreading, PF, and NAPL saturation 
was demonstrated in 2D simulations.  

• The 3D simulations considered here provided estimates for average NAPL saturation 
with an absolute error of 3.0 percent or less. However, the accuracy of estimates for 
vertical spreading and PF was not consistent among the limited examples examined. 
Future research will be required to explore the utility and refinement of this method for a 
larger sample of three dimensional source zone scenarios. 
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