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Abstract 
 
The extent of buried munitions and explosives of concern (MEC), or unexploded ordnance 
(UXO), creates a serious environmental hazard in the U.S., especially where military bases and 
ranges are being converted to civilian use (millions of acres).  The cleanup of these sites presents 
a formidable challenge to DoD, most prominently in terms of accurate and reliable detection and 
classification.  Discrimination between MEC and relatively safe background clutter (scrap metal) 
is a monumental problem that depends on the instrument technology, as well as on the 
processing methodology that inverts the detection data to infer MEC.  Reducing the number of 
false alarms in the detection process can save billions of dollars in the cleanup effort.  That 
process and the consequent savings rely in large part on precise three-dimensional positioning 
(geolocation) of the detection sensors both to aid in the inversion of the data in post-survey data 
processing and in the mapping and recovery of locations with positive identification.  Although 
the detection instrument technology has advanced significantly in the last decade, it is often still 
the geolocation technology that defines or limits the accuracy of MEC detection. 
 The objective of this project was to develop and test novel geolocation algorithms applied to 
scenarios typical of MEC detection and recovery, where the precision goals are 1 cm and 10 cm 
for three-dimensional positioning of magnetic and electro-magnetic detection devices.  The 
principal geolocation system was assumed to be based on inertial measurement units (IMUs) 
integrated with differential GPS.  The GPS receiver presumably is of geodetic quality 
commensurate with the precision goals and serves as the reference system.  The IMUs are 
tactical-grade, three-dimensional accelerometers and gyroscopes that supplement GPS 
positioning by a) improving the temporal (hence spatial) resolution; and b) bridging temporary 
GPS outages or degradations caused by obstructions of the satellite lines-of-sight or caused by 
other electronic interferences, as well as multi-path effects.  A major component is also the 
calibration of systematic sensor errors using external measurements and information.  The 
resulting techniques and software were tested on ground vehicle and man-portable systems. 
 Alternatives to the standard extended Kalman filter were developed and tested.  Using 
simulated data, as well as data obtained from actual instrumented systems in the laboratory and 
in the field, we tested various optimal non-linear filters and smoothers in order to demonstrate 
the interpolation capabilities of medium-grade IMUs.  The unscented Kalman filter performed 
significantly better than the standard version, particularly over highly dynamic curved segments 
of the simulated and actual trajectories, yielding up to 50% improvement in the position 
accuracy.  Similar improvement was obtained for the unscented particle filter, and its adaptive 
variant, over the unscented Kalman filter when the statistical distribution of the IMU noise was 
non-symmetric (i.e., essentially non-Gaussian).  While the few-centimeter geolocation accuracy 
goal for highly dynamic UXO characterization applications remains a challenge if tactical grade 
IMUs are integrated with a significantly degraded ranging system, using filters appropriate to the 
inherent nonlinear dynamics and potential non-Gaussian nature of the sensor noise tend to reduce 
overall errors compared to the traditional filter. 
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1. Introduction 
 
1.1 Background 
In North America, especially in the US, the problem of unexploded ordnance (UXO) extends 
beyond military training sites, fields of battle, and military bases. According to the Defense 
Science Board Task Force on UXO, 15 million acres or more are potentially contaminated at 
over 1500 different sites (Defense Science Board, 2003). The typical method to find UXO 
employs time domain electromagnetic induction (EMI) devices that transmit pulsed magnetic 
fields and then sense the fields produced by induced currents in buried highly conducting objects 
such as UXO. However, the false alarm rate is often very high and the detection and remediation 
of UXO in contaminated sites using such detect-and-dig methods is extremely inefficient since it 
is difficult to distinguish the buried UXO from the noise of geologic magnetic sources or 
anthropic clutter items such as exploded ordnance fragments and agriculture or industrial 
artifacts (Bell, 2001). The cost can be as high as $1.4 million/acre (Collins et al., 2001; Zhang et 
al., 2003). Thus, new aiding technologies that can improve discrimination performance for UXO 
detection are urgently needed. 
 Digital Geophysical Mapping (DGM) integrates multiple sensors to detect and characterize 
potential UXO. However, without highly precise position data DGM is ineffective because the 
position uncertainty can degrade the inversion of EMI data and the subsequent classification 
(Tarokh et al., 2004; U.S. Army Corps of Engineers 2006). The requirements of position 
accuracy for UXO detection fall into three levels; initial screening that needs tens of centimeters 
accuracy as standard deviation, area mapping that needs less than 5cm, and characterization and 
discrimination that need less than 2cm accuracy.  
 The Global Positioning System (GPS) has been used as a precise positioning system 
specifically for geolocation of UXO detectors. Laser-based ranging, radio, and acoustic ranging 
have also been considered as alternative positioning methods. All ranging systems perform 
geolocation by trilateration, which requires unobstructed lines-of-sight and uninterrupted 
transmission of signals that connect the detector and at least three reference points.  From this 
standpoint, GPS is representative of all ranging systems.  However, the temporal resolution of 
GPS kinematic positioning (1 Hz, typically) is less than for some other systems, such as laser 
ranging, which diminishes the efficiency of UXO detection system that pass over target sites at 
high speed (Bell, 2005). 
 The problem of bridging gaps in the ranging solution due to obstructed or otherwise 
interrupted signals is solved by integrating GPS (or any other ranging system) with an inertial 
measurement unit (IMU), which is an autonomous relative positioning device.  Indeed, a recently 
conducted comprehensive program to assess the geolocation technology for UXO detection and 
remediation (U.S. Army Corps of Engineers, 2006) concluded that all geolocation systems could 
benefit from augmentation with an IMU.  Since IMU’s generally also provide very high temporal 
resolution (50 Hz – 250 Hz), and since GPS is the most efficient and cost-effective ranging tool, 
the integrated IMU/GPS ranging system is the target of this study for uninterrupted, high-
resolution, high-accuracy geolocation in support of UXO detection and characterization. 
 
 
1.2 Technical Objectives 
The three main data processing steps of an integrated IMU/ranging system are data 
preprocessing, data integration, and post-processing with smoothing.  This project focuses on all 
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three steps, where the first includes de-noising algorithms and self calibration of IMU systematic 
errors in the field, and the remaining steps are investigated from the viewpoint of optimal 
filtering and smoothing.  The latter include the (extended) Kalman filter, and various nonlinear 
filters, such as the unscented Kalman filter and particle filter, as well as investigations of the 
adaptive Kalman filter and the introduction of neural networks to improve the calibration of 
errors and the overall geolocation solution. 
 Developing optimal algorithms to integrate the data from ranging systems and inertial 
measurement units has occupied the navigation community for many years; and, the (Extended) 
Kalman Filter (EKF) has been the workhorse for IMU/GPS integration for several decades.  
However, new filters recently introduced and tested have the potential for significant 
improvements (Aggarwal et al., 2006) over conventional methods that must contend with linear 
approximations of intrinsically nonlinear dynamics.  These new filters, particularly the unscented 
Kalman filter, are the subject of the present investigation, applied to the precise geolocation of 
ground-based MEC detector platforms.  Since the trajectories of MEC detectors can be highly 
dynamic with rapid changes in orientation and acceleration, filters that obviate any assumption of 
linearity should perform better.  In addition, particle filters have recently been implemented that 
avoid the usual assumption of Gaussianity in the sensor errors (Haykin, 2001; Gustafsson et al., 
2001; Arulampalam et al., 2001; Simon, 2006).  We consider also adaptations of these filters that 
allow for unknown variations in the sensor and observation noise statistics. 
 Other studies that have addressed the potential improvement of the unscented Kalman filter 
over the traditional extended Kalman filter in navigation applications include Van der Merwe 
and Wan (2004) who predicted up to 30% improvement on an unmanned airborne vehicle 
(UAV).  St. Pierre and Gingras (2004) and Shin (2005) showed only slightly better or mixed 
results based on simulations for a land vehicle IMU analysis.  Yi and Grejner-Brzezinska (2006) 
also obtained improvement when GPS is blocked (free-inertial navigation), but there was no 
improvement during periods of GPS coverage. 
 However, any of these filters cannot overcome the natural accumulation of process errors as 
the temporal gap in ranging solutions increases, especially in dynamic environments.  One 
method to reduce the divergence between IMU-determined and true trajectories is to apply a 
post-processing smoothing between GPS updates, such as the Rauch-Tung-Striebel (RTS) 
backward smoother, which is based on the extended Kalman filter (EKF).  We have tailored this 
type of smoothing to the nonlinear filters (Lee et al. 2008), and for this project the resulting 
adaptive EKF-RTS smoothing (AEKS) and adaptive UKF-RTS smoothing (AUKS) methods 
were tested and analyzed using data from an inertial geolocation system.  In addition, we tested a 
simple end-matching algorithm in place of the smoothing, which portends further studies in 
modeling position errors under in real time that approaches the post-processing precision with 
known constraints on the dynamics of the vehicle. 
 We also developed and tested a neural network as an aid to both the adaptive extended 
Kalman filter/smoother (NN-AEKS) and the adaptive unscented Kalman filter/smoother (NN-
AUKS) to bridge outages in the ranging solution for UXO detectors in quiescent and moderately 
dynamic environments.  Finally, we considered the use of dual IMUs in the integrated system 
with the aim of self-calibrating non-common IMU errors in the post-processing mode using a 
wave correlation filter (WCF). 
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2. Technology Description 
 
2.1 The Kalman Filter 
The Kalman filter is an optimal (minimum mean square error), linear, recursive estimation 
method and is amply treated in the literature, as is its extension to deal with non-linear models 
(Haykin, 2001; Kalman, 1960; Brown and Hwang 1992; Grewal and Andrews 1993).  Its 
application to the IMU/GPS integration problem is also well documented (Greenspan, 1996; 
Farrell and Barth, 1998; Rogers, 2000; Jekeli, 2000; Titterton and Weston, 2004).  The extended 
Kalman filter (EKF) is founded on two main assumptions: linearity in (or linearization of) the 
system dynamics and observation models and Gaussian noise excitation (Gordon et al., 1993; 
Gelb, 1974; Grewal and Andrews 2001).  These two factors bring several limitations and 
implementation difficulties to the integration problem, such as the derivation of the Jacobian 
matrices for complicated non-linear systems and potentially unrealistic statistical models of the 
errors (Julier et al., 1995).  Also, only relatively small error states are allowed in the EKF, 
otherwise the first-order approximations can lead to instabilities in the form of biased solutions 
and inconsistency in the covariance updates. 
 The basic linear model of a system of error states, kx , at epoch, kt , is 
 
 ( )1 1,k k k k k kx t t x G wΦ − −= + , (1) 
 
 k k k ky H x v= + , (2) 
 
where Φ  is the state transition matrix; kG  is an appropriate scaling factor for the driving zero-
mean Gaussian white noise, kw ; and ky  is an observation linearly related through kH  to the 
states and also includes zero-mean Gaussian white noise, kv .  The error states typically include 
position errors, velocity errors, and orientation errors associated with the navigation solution 
derived from IMU data, and are augmented by various systematic errors assigned to the IMU 
sensors.  The observation (errors) are associated with external navigation aids, such as GPS, 
which provide information that allows for the estimation of the error states of the system. 
 The Kalman filter has two steps: first, a prediction of the states at epoch, kt , given their 
values at epoch, 1kt − ; and, second, an update at kt  based on the observation at that epoch.  In the 
prediction, the state estimate and its covariance propagate according to: 
 
 ( )1 1ˆ ˆ,k k k kx t t xΦ−

− −= , (3) 
 
 ( ) ( )1 1 1, ,T T

k k k k k k k k kP t t P t t G Q GΦ Φ−
− − −= + , (4) 

 
where kQ  is the covariance of kw , 1kP −  is the covariance matrix of the states at the epoch, 1kt − .  
Updating the states on account of the observations yields 
 
 ( )ˆ ˆ ˆk k k k k kx x K y H x− −= + − , (5) 
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 ( ) ( )T T
k k k k k k k k kP I K H P I K H K R K−= − − +   (6) 

 
where kR  is the covariance of the observation noise and the Kalman gain is given by 
 

 ( ) 1T T
k k k k k k kK P H H P H R

−− −= +  (7) 

 
For later use, we also define the innovation and its estimate, as in equation (5), 
 
 k k k ky H xυ −= −  (8) 
 
 ˆ ˆk k k ky H xυ −= − . (9) 
 
 
2.2. Sampling-Based Filters 
The sampling-based filtering methods differ from the standard Kalman filter in that they 
propagate sample states rather than their statistics through the system model.  As such, no 
linearization is required, nor is it required to formulate and compute the attendant derivatives of 
the system model.  Depending on the statistical assumptions for the states, the propagated 
samples are analyzed to infer the propagated statistics.  We consider two sampling-based filters, 
the unscented Kalman filter (UKF, also called sigma-point Kalman filter) and the particle filter 
(PF).  The UKF avoids the linearization associated with the EKF, but still assumes Gaussian 
state variables, and the estimation of the propagated statistics is achieved on the basis of the 
unscented transformation (Wan and Van Der Merwe, 2001).  The PF obviates both the 
linearization and the Gaussianity assumption by propagating a sufficient number of samples 
based on the Monte Carlo approach to statistics estimation. 
 
 
2.2.1 Unscented Kalman Filter (UKF) 
The development of the unscented Kalman Filter was initiated by Julier and Uhlmann (1996) and 
Julier et al. (1995; 2000).  The UKF is a recursive application of the unscented transformation 
(UT) of state variables through the nonlinear state dynamic model.  The UT propagates a suitably 
chosen set of sample points (called sigma points) in the state space through the (nonlinear) 
system dynamics such that they accurately capture the transformed mean and covariance of the 
states.  We use the more general scaled version of the UT given by Wan and Van der Merwe 
(2001).  For the random variable x (dimension, xn ) with mean, x , and covariance, xP , the 
2 1xn +  sigma points are generated as follows 
 

 ( )( )
( )( )

0

, 1, ,

, 1, , 2

i x x x
i

i x x x x
i

x

x n P i n

x n P i n n

χ

χ α κ

χ α κ

=

= + + =

= − + = +

…

…

 (10) 
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where α  and κ  are scaling parameters and ( )( )x x
i

n Pκ+  is the ith row or column of the matrix 

square root of ( )x xn Pκ+ .  Given a nonlinear function, ( )g x , it can be shown that the following 

weighted combinations of ( )i iy g χ=  estimate the first two statistical moments (mean and 
covariance) of g at least up to second order in the non-linearities: 
 

 ( ) ( ) ( ) ( )
2 2

0 0

,
x xn n

Tm c
i i y i i i

i i

y W y P W y y y y
= =

= = − −∑ ∑ , (11) 

 
where the corresponding weights are given by 
 

 

( )

( )
( )

( ) ( )

( ) ( )

( )

2
0 02 2

2

1 , 1 1

1
, 1, , 2

2

m cx x

x x

m c
i i x

x

n n
W W

n n

W W i n
n

α β
α κ α κ

α κ

= − = − + − +
+ +

= = =
+

…
 (12) 

 
The sum of the weights for the mean is unity, while for the covariance they sum to ( )21 α β− + .  

The scaling parameter, α  ( 410 1α− ≤ ≤ ), controls the spread of the sigma points around x  and 
serves to maintain the positive semi-definiteness of the covariance (Wan and Van Der Merwe, 
2001).  For Gaussian states, x, the estimation of the mean and covariance of g is accurate up to 
third order.  The scaling parameter, β , in addition to α , is used to increase the accuracy of 
higher-order moments (for Gaussian variables, 2β =  is optimal).  The scaling parameter, κ , 
was set to xnκ =  in our simulations, and we varied α . 
 The linear propagation and observation of states defined by equations (1) and (2) are replaced 
by the more general non-linear forms; however, we still assume additive noise: 
 
 ( )1k k k kx f x G w−= + , (13) 
 
 ( )k k ky h x v= + . (14) 
 
The Kalman filter using the unscented transformation, i.e., the UKF, then proceeds with the 
usual two-step, prediction and filter formalism, but the mean and covariance are determined from 
the sigma points. 
 
 
2.2.2 Unscented Particle Filter (UPF) 
The particle filter was introduced already in the 1950s, but was forgotten due to the lack of 
computing power (Godsill et al., 2000).  However, with modern computational capabilities, the 
particle filter has also been applied to INS/ranging-system integration (Angermann et al., 2006) 
and to the problem of transfer alignment (Hao et al., 2006).  The performance of the PF generally 
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improves as the number of sample states (particles) used to capture their probability density 
function (pdf) increases, which, however, also increases the computational burden.  There are 
three types of particle filter, the generic (or traditional) particle filter, the unscented particle filter 
(UPF, also called sigma-point particle filter), and the extended particle filter.  We considered 
only the UPF. 
 Particle filters, also known as bootstrap filtering, the condensation algorithm, Monte Carlo 
filtering, and survival of the fittest methods, implement Bayesian estimation, which under the 
special case of Gaussian noise and linear models yields the familiar Kalman filter (Gordon et al., 
1993).  The object is to determine the probability density of the state at time, kt , conditioned on 
the measurements up to that time, according to Bayes’ Rule (Simon, 2006, p.464) 
 

 ( ) ( ) ( )
( )

1 2
1 2

1 2

| | , ,
| , , ,

| , ,
k k k k k

k k k k
k k k

p y x p x y y
p x y y y

p y y y
− −

− −
− −

=
…… … , (15) 

 
where the conditional density, ( )|k kp y x , is presumed known (for example, but not necessarily 
Gaussian), and the other conditional densities on the right side, in principle, can be determined 
from the previous steps in the recursive algorithm. 
 In practice, the particle filter starts with the randomly generated particles, 0, , 1,...,ix i N= , 
using their a priori mean and covariance and propagates them through equation (13): 
 
 ( ), 1, ,k i k i k k ix f x G w−= + , (16) 

 
where ,k iw  is the noise realized according to its known pdf.  From the measurement, ky , and its 

known pdf, the likelihood, 1,( / )i k k iq p y x −= , can be computed for each particle.  These relative 
likelihood values, normalized to sum to unity, are then used to obtain a re-sampling of the 
particles, whose pdf (now conditioned on the observations) tends to the desired Bayesian density 
(equation (15)).  From this the mean and covariance can be computed in the usual ways.  There 
are several re-sampling techniques and particle modifications available to improve the 
performance of the filter.  We used the sequential importance sampling (SIS)) method (Haykin, 
2001; Wan and Van Der Merwe 2001).  
 Van der Merwe et al. (2000) combined the PF with other filters such as UKF in order to 
refine the initially generated particles, and called it the unscented particle filter (UPF).  Each 
randomly generated initial particle is propagated and updated by using the UKF (where the 
sigma points are computed using the particle).  Then, the likelihood values are determined using 
these a posteriori particles and the measurement pdf, as before, followed by the re-sampling 
procedure (Haykin, 2001; Simon, 2006).  This approach can yield a better approximation for the 
conditional pdf of the states and has yielded improved accuracy for various positioning-related 
applications (Arulampalam et al., 2001; Grewal and Andrews, 2001; Van der Merwe et al., 
2000). 
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2.2.3 Rao-Blackwellized Unscented Particle Filter (RBUPF)  
To overcome the computational inefficiency of the PF, the states can be divided into two subsets 
(linear and non-linear) and this type of filter is called the Rao-Blackwellized particle filter 
(RBPF) (Nordlund and Gustafsson, 2001).  The RBPF applies the Kalman Filter to the linear and 
Gaussian states of the system model.  The remaining state variables, which suffer from severe 
non-linear and/or non-Gaussian structure, are solved using the unscented particle filter. 
 Partitioning the state vector kx  into non-linear, 1

kx , and linear, 2
kx , parts the system and 

measurement models become (compare equations (1) and (2) for the linear case and equations 
(13) and (14) for the general non-linear case): 
 

( )
( )

( )

1 1 1 1 2 1
1 1

2 2 1 2 2 2
1 1

1 2

k k k k k

k k k k k

k k k k k

x f x F x w

x f x F x w

y h x H x v

+ +

+ +

= + +

= + +

= + ⋅ +

 (17) 

 
The system noise vector is divided into two noise vectors, 1

kw  and 2
kw  that are uncorrelated, and 

have known covariance matrices, ( )( )1 1 1 T

k k kQ E w w=  and ( )( )2 2 2 T

k k kQ E w w= , respectively.  To 

compute the a posteriori pdf of the filter, we estimate ( ) ( )1 2| , |k k k k kp x y p x x y=  by factoring it 

into two parts according to Doucet et al. (2001) and Nordlund (2002), 
 
 ( ) ( ) ( )1 2 2 1 1, | | , |k k k k k k k kp x x y p x x y p x y= , (18) 

 
and by first computing each pdf on the right side according to the appropriate filter methods.  
 
 
2.3 Adaptive Filtering 
The drawback of the navigation filters discussed so far is that they are adversely affected by 
potentially inaccurate system and measurement noise statistics.  Particularly for highly dynamic 
trajectories (such as may be encountered by UXO detection equipment) the error statistics may 
vary in time, thus invalidating the initially defined models.  To improve the filters under such 
circumstances and mitigate such effects, adaptive methods are often employed. 
 Among the various parameters that require a priori specification in the UKF, including the 
initial states and their covariance, the unscented transformation parameters, and the covariances 
of the process noise (Q) and measurement noise (R), the latter influence most significantly the 
filter’s performance and stability.  The initial states and covariance have negligible influence as 
the filter processes more and more data.  The UT parameters only affect the higher order terms of 
the nonlinear model and have little impact on the accuracy of the estimated position (Lee and 
Jekeli, 2009).  Therefore, usually an innovation based covariance matching algorithm is 
employed in order to tune the Q and R matrices of the Kalman filter. 
 This technique is based on the supposition that the actual filter residuals should be consistent 
with their theoretical covariance (Jwo and Huang, 2004). In this paper, since a loosely-coupled 
INS/GPS system was employed, we considered only the system (IMU) noise. According to 
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Salychev (1999), the a priori information of the system (as represented by the covariance 
matrices, Q) can be adjusted according to the accuracy of estimation. 
 If covariance matrix, kR , is unknown or inaccurate, it can be estimated from the covariance 
matrix of the innovation sequence ( ˆkυ , equation (9)).  From equation (8), with 

( )( )T

k k kP E x x− − −= , let 

 
 ( )T T

k k k k kC E HP H Rυ υ −= = + , (19) 

 
Then, let an estimate of this covariance be 
 

 
1

1ˆ ˆ ˆ
k

T
k j j

j k m

C
m

υ υ
= − +

= ∑ , (20) 

 
where m is the estimation window size, which satisfies the recursion: 
 

 1
1 1ˆ ˆ ˆ ˆT

k k k k
k

C C
k k

υ υ−
−

= + . (21) 

 
Substituted into equation (19), it yields an estimate of the measurement covariance matrix: 
 
 ˆˆ T

k k kR C HP H−= − . (22) 
 
In case the covariance of the system noise, kQ , is unknown, it can be shown similarly that 
 
 ( )T T T

k k k k kGQ G K E Kυ υ= , (23) 

 
from which we approximate 
 
 ˆ ˆT T

k k k k k kG Q G K C K= . (24) 
 
 Originally developed for the KF (and EKF) this technique has also been employed for the 
UKF (Song and Han 2008).  We have also applied this technique to the particle filter and call it 
the Adaptive Unscented Particle Filter (AUPF).  It is implemented and validated by the tests of 
the simulations described in Section 3. 
 
 
2.3.1 Neural Network Aided Adaptive Filtering 
The adaptive estimation of the covariance using equation (20) depends on the proper choice of 
the window size, which for optimal results may be variable and difficult to determine (Jwo and 
Huang, 2004).  Because of this potential shortcoming, we considered modifying these adaptive 
filters using methods applied in artificial intelligence (AI).  AI provides a successful and 
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effective solution to certain engineering and science problems which cannot be solved by using 
conventional methods (Cawsey, 1998). Various approaches such as neural networks, fuzzy logic, 
evolutionary computing, probabilistic computing, expert program, and genetic programming can 
provide an “artificial intelligence” (defined as the ability to learn, understand and adapt) to 
complex and uncertain systems (Honavar and Uhr, 1994). Among these techniques, we selected 
the neural network to aid adaptive filters because it can learn input-output relationships without a 
priori knowledge of the dynamic models and noise statistics of the measurements.  Employing 
the neural network for similar applications has already been demonstrated with success by Jwo 
and Huang (2004), Wang et al. (2006, 2007), Korniyenko et al. (2005), and Chiang and El-
Sheimy (2004).  Specifically, Wang et al. (2006) proposed a neural network and Kalman filter 
hybrid approach to reduce KF drift during GPS outages.  Also, Wang et al. (2007) used the 
neural-network-aided adaptive KF to reduce vehicle dynamic variations and to improve the 
navigation solution.  And, Zhan and Wan (2006) derived a multi-layer, neural-network-based 
unscented Kalman filter for nonlinear estimation, and their simulation results showed overall 
improvement of the filter performance.  
 A neural network consists of neurons that process an input to generate an output (Figure 1).  
The neuron includes a synaptic weight (or weight), an adder, and a transfer (activation) function 
(Haykin, 1999). An input signal, ix  ( ni ,,2,1 …= ), is multiplied by a synaptic weight, jiw , and 

connected to neuron, j . An adder sums up the weighted input signals (simply, ∑ =
=

n

i ijij xwv
1

). 

The neuron model also has a bias, jb  (also called the external threshold) that is used to increase 
or decrease the input to the transfer function. Therefore, the simple model of a neuron is 
 

 







−= ∑

=

n

i
jijij bxwfy

1

, (25) 

 
where f  is a transfer function and jy represent the output. 
 A transfer function modifies and limits the amplitude range of the output signal, typically 
normalizing it in the range of [0,1] or [-1,1].  Common transfer functions, selected according to 
the application, include the hard limiter (a binary or bipolar output), a linear (or piecewise linear) 
function, and the sigmoid (s-shaped) nonlinear function (Haykin, 1999). We use the sigmoid 

function, ( ) ( ) 1
1 vf v e α −−= + , with slope parameter, α , because the relationship between input 

and output in our case is essentially non-linear (see also Ham and Kostanic, 2001). 
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Figure 1: The neuron with three basic elements. 

 
 
 The neurons are used to form layers that build a neural network. The architecture of the 
network can be classified as single-layer feed-forward (one hidden layer and an output layer; 
SFN), as multi-layer feed-forward (multiple hidden layers and an output layer; MFN), and as 
recurrent (at least one feedback loop based on a SFN or a MFN; RN) (Haykin, 1999).  Demuth 
and Beale (2004) showed that the two-layer feed-forward network (first layer is sigmoid and 
second is linear) can be trained to approximate any arbitrary nonlinear function. Golden (1996) 
also showed that an MFN can be designed to provide the best approximation accuracy to the 
unknown model. We applied the multi-layered feed-forward neural network (three layers) to aid 
the various adaptive filtering techniques for the INS/GPS system.  
 The usual way to decide on the appropriate number of hidden neurons is empirical (however, 
see also Bishop, 1995; and Haykin, 1999).  That is, many candidate networks having different 
numbers of hidden neurons should be tested to determine the one with the best performance.  
Our laboratory tests indicate that optimal geolocation results are obtained with 16, 24, and 15 
neurons, respectively, in the three layers, where sigmoid transfer functions are used in the first 
and second layers and the third layer is linear. 
 The principal idea for this project is the hybrid method of traditional adaptive covariance 
estimation aided by a neural network trained on given platform dynamics.  The Kalman filter 
estimates the navigation errors in position, velocity and attitude using external control. At the 
same time, the neural network is trained to map a relationship between the platform dynamics 
(the input) and the Kalman filter estimations (the desired output).  The input comprises changes 
in velocity ( DEN vvv ∆∆∆ ,, ) in a local north-east-down coordinate frame, and Euler angles, 

ψθφ ,, , for the platform attitude, and their changes, ψθφ ∆∆∆ ,, .  The Euler angles are 
determined from the gyro data and the changes in these and in the velocity are calculated from 
the last measurement update to the current measurement update: 
 
 kNkNN vvv ,1, −=∆ + ,  kEkEE vvv ,1, −=∆ + ,  kDkDN vvv ,1, −=∆ +  

 kk φφφ −=∆ +1 ,  kk θθθ −=∆ +1 ,  kk ψψψ −=∆ +1  (26) 
 
where k is the measurement update index. 
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 Wang et al. (2006, 2007) suggested that rapid changes in the heading angle can disturb the 
training of the neural network.  However, in our laboratory tests, training with the heading angle 
produced better results because this angle clearly identifies the dynamic maneuvering of the 
platform.  For the neural network’s desired outputs ( d ), we selected the innovations of the 
Kalman filter, given by equation (9).  For the unscented Kalman filter the desired output of the 
neural network is kk yy −  ( ky is from equation (11)). 
 If measurements (external control points) are available, the neural network is trained at the 
control update rate using all available input and desired output values until it reaches a certain 
pre-defined error (threshold). The weights and biases of the network were adjusted iteratively 
using the Levenberg-Marquardt algorithm to minimize the differences between the computed 
output, y, and the desired output, d (Chiang and El-Sheimy, 2004; Wang et al., 2006).  When 
measurements are not available (during a GPS outage), the computed output of the neural 
network is used to determine the process noise covariance ( TGQG ) according to equations (24) 
and (20).  In our Laboratory tests, since the neural network does not have enough training data 
from the first few control points, the process noise (Q) is estimated by the traditional adaptive 
filtering method (equation (24)) until the neural network is successfully trained. 
 
 
2.4 Smoothing 
The filters described above are recursive algorithms based on the conditional expectation of the 
state given all observations and states up to the current time step k.  In contrast, smoothing 
estimates the states by using also available observations in the future. 
 
 
2.4.1 Kalman Smoother (KS) 
From given observations over the interval Nk ≤<0  for fixed N, if the forward and backward 
estimate ( f

kx̂  and b
kx̂ ) and their error covariances ( f

kP  and b
kP ) are available, the smoothed 

estimate, s
kx̂ , and its covariance, s

kP , are obtained.  Since it is assumed that the process noise 

kw and measurement noise kv  are independent, we may formulate the smoothed estimate and its 
a posteriori error covariance matrix as  
 

 
( )1 1

11 1

ˆ ˆ ˆs s f f b b
k k k k k k

s f b
k k k

x P P x P x

P P P

− −

−− −

   = +   

    = +     

 (27) 

 
This smoother (three-part smoother) has three components; a forward filter, a backward filter, 
and a separate smoother which combines results embodied in the forward and backward filters 
(Haykin, 2001).  However, The Rauch-Tung-Striebel (RTS) smoother differs from this smoother 
in that the measurements are processed by the forward filter and then a separate backward 
smoothing pass is used to obtain the smoothing solution (Sarkka, 2008).  Also, the Rauch-Tung-
Striebel smoother is more efficient than the three-part smoother in that a single entity can 
perform smoothing by incorporating the backward filter and separate smoother (Rauch et al., 
1965).   
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2.4.2 Particle Filter Smoothing 
In a literature review on particle smoothing or Monte Carlo Smoothing, it is (interestingly) 
noticed that although particle filter theory and applications are frequently treated, there are only 
few published papers on particle filter smoothing because the smoothing algorithms such as the 
two-filter smoother (TFS), the forward-backward smoother (FBS), and a maximum a posteriori 
(MAP) smoother typically incur high computational costs, namely of the order of ( )2NO , 

compared to the PF which has costs of the order of ( )NO  (Klass et al., 2006). 
 The basic idea of particle smoothing is that the particle filter can provide a smoothed result 
automatically if the whole history of each particle of states is stored (Kitagawa, 1996).  That is, 
from the filtered particles of the UPF, each particle is smoothed by using the unscented RTS 

(Sarkka, 2006).  Each smoothed particle can be defined as 
)(ˆ is

kx , Ni ,,1 …=  (N is the number of 
particles) and then the mean value of the smoothed estimate can be found from a simple average 
(Kitagawa, 1996; Sarkka, 2008): 
 

 ( )

1

1ˆ ˆ
N

s s i
kmean k

i

x x
N

=

≈ ∑ . (28) 

 
 
2.4.3 Rao-Blackwellized Particle Smoother (RBPS) 
For the smoothing version of the RBPF we can employ the same method as for the UPS, which 
employed the unscented RTS algorithm to smooth each particle.  The RTS smoother was applied 
to each of the mean and covariance histories of the particles, )(

:1ˆ
i
Nx , )(

:1
i
NP , Ni ,,1 …=  to produce the 

smoothed mean and covariance S
Nx :1ˆ , S

NP:1 .   
 
 
2.5 Wave Correlation Filter 
The Wave Correlation filter (WCF) ideally extracts common spectral components from two 
signals, while rejecting disparate ones, thus removing errors if the two signals are supposed to 
refer to the same source.  Of course, common errors are not removed.  With this filter we 
anticipate obtaining a more accurate positioning solution from the dual IMU measurements, 
where random errors left in the two final solutions should be uncorrelated and amenable to 
elimination or reduction by the WCF (a similar approach was used, e.g., by Serpas (2003) and by 
Li (2009) to improve solutions derived from independent data sets). Let the two EKF solutions 
along the trajectory be denoted ( )1̂x k  and ( )2x̂ k ,  respectively. The corresponding Fourier 

transforms are ( )lG1  and ( )lG2 , where l  is the wave number. The correlation coefficient, lr , per 
wave number is obtained by  
 

 
( )( ) ( )( ) ( )( ) ( )( )

( ) ( )
1 2 1 2

1 2

Re Re Im Im
l

G l G l G l G l
r

G l G l

+
=  (29) 
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Each solution is filtered according to a pre-defined threshold: 
 

 ( ) ( )1,2
1,2 0

l

l

if r thresholdG l
G l

if r threshold
≥

=  <
 (30) 

 
The final position estimates are obtained by transforming the average of the retained frequency 
components back into the time domain: 
 

( ) ( ) ( ){ }1
1 2

1ˆ
2

p k F G l G l−= + , (31) 

 
where is F  the Fourier transform. 
 
 
2.6 End-Matching 
The remaining trend and bias errors of both the EKF and UKF solutions after WCF processing 
could be corrected in an ad hoc manner by the end-matching method with respect to the GPS 
positions.  In terms of latitude, longitude and height coordinates, the end-matching algorithm is a 
simple linear fit to given data at the ends of a free-inertial trajectory: 
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where rrr h

~
,

~
,

~
λφ  are GPS points, www ĥ,ˆ,ˆ λφ  are the position after filtering with wave correlation 

filter. 0b  is a bias and m  is the trend as a function of epoch.  The values of bias and trend 
(matrix X) can be found by  
 

 ( ) YAAAX TT ⋅=
−1ˆ . (33) 
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3. Filter Simulations 
 
The initial investigations were based on simulations to ascertain the general performance of the 
different filters and smoothers under typical MEC survey geometries and dynamics.  Without 
loss in generality, we selected the loosely coupled INS/GPS integration scheme based on the 
decentralized filter architecture (Jekeli, 2000).  A tightly integrated system typically would be 
used in GPS embedded inertial navigation systems, where both the IMUs and the GPS aid each 
other to obtain an optimal blended solution.  Looking toward our eventual applications where an 
isolated IMU would be added to an existing geolocation system, the loosely coupled integration 
seemed more appropriate. 
 
 
3.1 Simulation Setup 
Aside from the different filtering methods, a number of system and environmental factors were 
considered, including the IMU sensor quality, the dynamics of the detector platform (typical for 
either hand-held or cart-mounted deployment), and the ranging solution quality (concerning both 
precision and environmental degradation, as well as longer outages).  The IMU sensor may be 
categorized as commercial grade (e.g., Crossbow IMU400C), tactical or medium grade (e.g., 
Honeywell HG1700), and navigation grade (e.g., Litton/Northrop-Grumman LN100).  Table 1 
offers representative specifications, as published by the corresponding vendors, for the most 
important errors associated with the accelerometers and gyroscopes for each grade of inertial 
unit. 
 
 
Table 1. IMU levels of accuracy. 

Accelerometer Gyroscope IMU 
Bias Scale Random walk Bias Scale Random walk 

IMU400C 8.5 mg 104 ppm 5 mg/ hr  3600 °/hr 104 ppm 0.85 °/ hr  

HG1700 1.0 mg 300 ppm 0.25 mg / hr  1 °/hr 150 ppm 0.125 °/ hr  
LN-100 20 µg 40 ppm 5.0 µg/ hr  0.01 °/h 1 ppm 0.001 °/ hr  

 
 
 The two levels of ranging precision are associated with either radar or laser ranging, 
exemplified by real-time kinematic (RTK), geodetic quality, differential GPS (e.g., Trimble 4700 
receiver) and the geodetic total station (e.g., Leica TPS1100 total station).  Each level of 
precision is affected by the distance, respectively, to the fixed GPS base station and to the total 
station (Clynch, 2001; Grejner-Brzezinska, 2001; Kim, 2004).  Table 2 lists typical precision 
levels considered in our analysis.  Further degradation in the ranging solution will occur 
primarily because of signal occlusions (although other factors, such as tropospheric and 
ionospheric delays, and the geometric configuration of the transmitters, also affect the signal and 
solution quality).  Signal outages may occur because of intervening manmade structures or 
natural objects (usually a foliage canopy in the case of GPS; also rugged terrain in case of the 
total station).  We assume relatively short-lived outages on the order of several to tens of 
seconds.  It should be emphasized that while our analyses address primarily the inertial sensor 
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capability to aid the ranging solution in an operational setting, for this investigation the ranging 
solution is also viewed as the means to estimate inertial sensor errors. 
 
 
Table 2. The assumed precision of ranging solutions. 
 Performance (s r) 

RTK-DGPS Horizontal: 10mm + 1ppm 
Vertical: 20mm + 1ppm 

Total Station Horizontal & Vertical: 
2mm + 2ppm 

 
 
 Four different filtering algorithms were implemented and compared in our simulations: the 
extended Kalman filter (EKF), the unscented Kalman filter (UKF), the unscented particle filter 
(UPF), and the adaptive unscented particle filter (AUPF).  In order to assess these filters in 
typical dynamic environments for MEC detection and characterization, the accuracy of the 
integrated positioning system was determined separately for curved and straight sections of the 
trajectory.  We also considered tuning the parameters of the unscented transformation, and 
evaluated the benefits of using the particle filters when the input noise is non-Gaussian. 
 The state vector for the IMU/ranging integrated solution comprises 21 states: three position 
(latitude, longitude, height) errors, ( , , hδφ δλ δ ); three velocity errors, ( , , hδφ δλ δ && & ); three 
orientation errors in a local north-east-down frame, ( , ,N E Dψ ψ ψ ); and a bias and scale factor 
error for each of the three accelerometers and three gyros.  For the UKF and UPF, instead of the 
three orientation angle errors, the four corresponding quaternions were employed because the UT 
operates best in a Euclidean space (i.e., this avoids the transcendental functions) (Shin, 2005; 
Kraft, 2003). 
 For a given trajectory, error-free IMU data were generated using the Matlab INSToolkit®.  
The input and output specifications of INSToolkit are described in (Jekeli and Lee, 2007).  The 
trajectory was defined for a platform following a planar path with 0.5 m/s velocity and 
meandering sweeps across a given area.  The generated accelerometer data are velocity 
increments, v∆ , and the gyro data are angle increments, ∆θ .  The temporal resolution of this 
control trajectory was 0.02 s . 
 The actual error-corrupted IMU data were then simulated using errors specified in Table 1 
according to the models 
 

 
( ) ( )

( ) ( )

1

1

G G

A A

k d w t

v k v b w t

∆θ ∆θ ∆

∆ ∆ ∆

= + + +

= + + +

%

%
 (34) 

 
where d , Gk , and Gw  are the bias, scale factor error, and random noise for the gyro; and b , Ak , 
and Aw , are corresponding quantities for the accelerometer.  The time interval between the 
generated data is 1k kt t t∆ += −  (0.02 s in our simulations).  Corresponding navigation equations 
for the IMUs were integrated using these corrupted data to generate the trajectory coordinates as 
indicated by an inertial navigation system. 
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 In addition, the ranging solution for the trajectory was determined by simply adding random 
noise to the true coordinates.  That is, we assumed the ranging system to be free of all systematic 
errors and the final solution corrupted only by white noise: 
 

 
r r r

r r r

r r rh h

φ φ ν σ

λ λ ν σ

ν σ

= + ⋅

= + ⋅

= + ⋅

%
%
%

 (35) 

 
where ν  is a random variable following the zero-mean, unit-variance Gaussian distribution, and 

rσ  is given in Table 2.  The ranging solution coordinates are used in the filter to update the IMU 
position errors and to estimate the systematic errors in the inertial sensors.  The Figure 2 shows 
the simulated trajectory, designed for typical MEC mapping and detection, with 18 180° turns 
and 19 straight segments.  The turns represent highly non-linear dynamics as modeled by the 
navigation equations and generally pose a challenge to linearized filters such as the EKF.  The 
ranging updates in the filter can be introduced at longer intervals to simulate prolonged 
interruptions.  Figure 3 shows the general simulation and analysis process. 
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Figure. 2. The generated control path. 
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Figure 3. Flow chart of loosely coupled, decentralized ranging/IMU integration and simulation 
analysis. 
 
 
3.2 Results and Analysis 
The free-inertial navigation solutions obtained just prior to incorporation of the external updates 
using the EKF, UKF, and UPF, at intervals of 1 s, 10 s, and 30 s were compared with the control 
trajectory.  The ranging solution updates are either GPS or total station observations and all three 
categories of inertial sensors were tested.  Within each set of sensor/update tests, the position 
errors are a function of how well the filter estimates the systematic errors of the inertial sensor in 
the particular non-linear environment. 
 The comparison against the control was based on the total-distance errors, computed from the 
three coordinate errors; and, their standard deviations for each of the curved and straight sections 
of the test trajectory (Figure 2) were averaged.  Figure 4 (for 1 s updates only) shows that, as 
expected, the more precise updates (total station vs. GPS) yield more accurate free-inertial 
solutions simply because the integration of the inertial sensor outputs begins with a smaller error.  
Interestingly, for this particular simulation, there is little difference between the high-end and the 
medium quality inertial sensors showing that either one will offer similar interpolation capability 
within 1 second.  Clearly, the EKF does not perform as well as the UT-based filters, particularly 
along the curved segments of the trajectory.  The UPF offers only slightly better performance 
than the UKF in these tests because the simulated noise processes for the inertial sensors and the 
observation updates are Gaussian.  As the interval before the next update increases, the inertial 
sensor errors accumulate in the position solution, but the UKF and UPF still out-perform the 
EKF, as shown in Figure 5 for just GPS and the medium-grade IMU.  We note that the position 
accuracy of the filters (no additional smoothing) is useful only for screening of MEC if the GPS 
outage reaches 10 s. 
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 Besides outright interruptions in the ranging solution, it may also be degraded during several 
seconds of the survey.  We consider only differential GPS solutions and assume that such 
degradation is a function of baseline length between the rover and the fixed base station.  Using 
the corresponding increased observation noise, as shown in Table 2, Figure 6 compares the EKF 
and UKF performances with respect to the medium-grade IMU, free-inertial, positioning 
accuracy at the end of 1 s and 5 s prior to degraded GPS updates.  Again, we find improved 
results for the UKF over the EKF, especially, when both the degradation and the update interval 
increase. 
 The superiority of the UKF may be realized only with appropriate tuning of the scaling 
parameter, α  (since the error states are excited by Gaussian noise, the optimal value 2β =  was 
used for these tests).  The results of Figure 4 and 5 were obtained with 0.15α = , corresponding 
to sigma points within a range of σ1± .  Expanding this range did not improve the estimation, 
but significantly smaller values of α  degrade the performance of the UKF, as also shown in 
Figure 6, which includes results for 0.0005α = , 0.001α = , and 0.01α = . 
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Figure 4: Standard deviation of errors of different IMU grades with 1 s ranging system updates 
using different filters (first row: curve segments, second row: straight segments, first column: 
GPS, second column: total station) (units: cm). 
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Figure 5: Standard deviation of errors for different filtering methods (first row: curve segments, 
second row: straight segments, first column: 10 s, second column: 30 s GPS updates of the 
medium-grade IMU) (units: cm).  
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Figure 6: Standard deviation of errors with medium-grade IMU and degraded GPS updates and 
with different scales in the unscented transformation (first row: curve segments, second row: 
straight segments, first column: GPS 1 s updates, second column: GPS 5 s updates). 
 
 
 The foregoing tests assumed a system driven by Gaussian noise.  We may expect similar 
results with other symmetrically distributed processes, and the UKF could also be tuned to deal 
with non-Gaussian, symmetric distributions using the parameter, β .  On the other hand, 
dynamic systems, besides being generally non-linear, may also be excited by non-symmetric 
processes (Kushner, 1967).  Indeed, Reddy and Herr (2006) investigated the skewness of IMU 
sensor errors.  Julier (1998) and Naveau (2005) also proposed modeling the process noise with 
asymmetric probability densities.  We considered both symmetric non-Gaussian as well as 
asymmetric distributions to determine the performance of the particle filter.  In one test, sensor 
errors were generated from a uniform distribution with the same variance as in the Gaussian 
case.  As seen in Table 3, the latitude and longitude standard deviations are slightly lower in 
value with the particle filter.  There is very little or no difference with respect to the Gaussian 
case (not shown). 
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Table 3. Statistics of errors (all segments) using nonlinear filters on data from a medium-grade 
IMU with uniformly distributed errors and with 1 Hz GPS updates (units: cm). 

UKF UPF coordinates 
avg. std. 

dev. 
avg. std. 

dev. 
φ  0.1 1.9 0.1 1.7 
λ  -0.02 2.0 -0.1 1.9 
h 0.6 2.0 0.5 2.0 

 
 
 To test the efficacy of the particle filter (PF), we considered the following asymmetric 
probability density (APD) (Komunjer, 2007). 
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−
=
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.  If 0.5α = , then the density is symmetric.  If, 

in addition, 2λ = , the APD is the Gaussian density.  For our tests, we chose 2λ =  and two 
values 0.25,0.75α =  (Figure 7), one for the gyro noise, the other for the accelerometer noise.  
Figure 8 compares the statistics of the position error for the update rates and GPS degradation 
used in Figure 6, with and without the asymmetry in the IMU sensor noises.  We find that both 
the UKF and EKF performances are significantly degraded in the presence of IMU noise 
asymmetry; and, moreover, the UKF is not consistently superior to the EKF, especially in the 
straight sections of the trajectory.  Even in the curved sections, the advantage of the UKF seen 
earlier has been compromised in the case of longer ranging gaps and a degraded GPS solution. 
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Figure 7: Asymmetric pdf’s used for gyro noise ( 2λ = , 0.25α = ) and accelerometer noise 
( 2λ = , 0.75α = ). 
 
 
 On the other hand, the unscented particle filter (UPF) applied to the IMU data corrupted by 
the asymmetric noise exhibited (Figure 9) consistently superior performance, both for the curved 
and the straight segments of the trajectory.  This is an interesting result because the UPF still 
uses the unscented Kalman filter before the re-sampling of the particles; yet, the results are better 
than for the UKF, alone. 
 Figure 9 also shows that increasing the number of particles does not yield significant 
improvements in the UPF.  However, by incorporating the adaptive algorithms we further 
enhance the filter, at least for the longer GPS outage, because the AUPF compensates for the 
unfulfilled assumptions of the unscented transformation, specifically, that it assumes a Gaussian 
(at least symmetric) error distribution.  The overall positioning accuracy deteriorates as the GPS 
update interval increases (e.g., 5 s).  For example, the standard deviation in position using the 
UPF with asymmetric error distribution is worse than that of the UKF with symmetrically 
distributed errors.  However, the UPF still performs better than the other filters when the sensor 
noise is asymmetric. 
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Figure 8: Standard deviation of medium-grade IMU position errors with asymmetric sensor error 
distributions, for baseline-degraded GPS updates (first row: curve segments, second row: straight 
segments, first column: 1 s updates, second column: 5 s updates). 
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Figure 9: Standard deviations of medium-grade IMU position errors (first row: curved segments, 
second row: straight segments) for EKF, UKF and UPF with 1 s GPS updates (first column) and 
for EKF, UKF, UPF1(200), UPF2(400), UPF3(600), AUPF(200) with 5 s updates (second 
column).  The number in parenthesis is the number of particles.  GPS update accuracy is for the 1 
km baseline (Table 2) and the IMU sensor noise is assumed to be asymmetric as in Figure 7 
(units: cm). 
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4. Performance Using IMU Data 
 
As part of this project we purchased two medium grade IMUs, the HG1900 and the HG1700, 
from Honeywell, Inc.  The HG1700 (Figure 10a) is a light-weight and low-cost ring-laser-based 
strapdown IMU designed for navigation purposes especially for missile guidance and unmanned 
vehicles (UAV).  The HG1700 includes three miniature GG1308 Ring Laser Gyroscopes (RLGs) 
and three RBA-500 Resonating Beam Accelerometers.  The Honeywell HG1900 (Figure 10b) is 
a MEMS (micro-electro-mechanical system) based IMU used for the same purposes as the 
HG1700, but slightly less accurate.  It contains MEMS gyros and also RBA500 accelerometers.  
A comparison of the technical specifications of these two units is provided by the manufacturer 
in Figure 11. 
 
 

 
 

 
 

Figure 10: a) HG1700 IMU, b) HG1900 IMU. 
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Figure 11:  Manufacturer specifications for HG1700 and HG1900. 

 
 
Prior to deploying these IMUs in a geolocation system in the field, we tested them in the 
laboratory in the static mode for noise characteristics and on a cart for controlled navigation.  
The geolocation filters were tested both in the laboratory using the moving cart on a predefined 
trajectory and in the field at a UXO detection test site in collaboration with NRL (Naval 
Research Laboratory).  In addition, we tested a new self-calibration procedure for the IMUs 
locally in a parking lot using a cart-based system with GPS.  The following sections provide the 
details of these tests. 
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4.1 Static Laboratory Tests 
 
4.1.1 Test Description 
Data from the HG1700 and HG1900 units were collected in the stationary mode (with 
presumably constant room temperature) for the maximum time allowed by the data acquisition 
software, 1000 seconds at 100 Hz (this produces 100,000 data records).  The units were placed 
on an isolated pillar in the basement of Mendenhall Laboratory at Ohio State University, which 
is meant for seismic and gravity instrumentation.  Therefore, the units are unaffected by external 
vibrations during these tests.  The data were collected using a run-box and software purchased 
from Honeywell. 
 
4.1.2 Results and Analysis 
The raw data were analyzed by subjecting them (unsmoothed) to a Fourier transform to compute 
their power spectral density (periodogram).  Figure 12 compares the psd’s for the HG1700 and 
HG1900 accelerometers.  The oscillations evident in the IMU output (not shown) are clearly 
indicated by peaks in the psd at 0.02 Hz and possibly 0.04 Hz, corresponding to 50 s and 25 s 
periods.  No such resonances are apparent in the psd’s of the HG1900 accelerometer data.  
Moreover, the HG1900 psd’s generally have much lower amplitude at the lower frequencies (less 
than 1 Hz) 
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Figure 12: PSD’s of the HG1700 (top) and HG1900 (bottom) accelerometers in the static mode. 

 
Similarly, psd’s were generated for the gyro data and are plotted in Figure 13.  The psd’s are 
similar, although those for the HG1700 have slightly larger amplitude in the frequency band (0.1 
Hz – 1 Hz) and significantly greater amplitude for higher frequencies. 
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Figure 13: PSD’s of the HG1700 (top) and HG1900 (bottom) gyros in the static mode. 

 
 
Table 4 shows that while both the HG1700 and HG1900 accelerometers fall within specification 
(Figure 11), the HG1700 accelerometers clearly are noisier.  Similarly, for the gyros we find that 
the HG1700 gyros are slightly noisier (Table 5).  However, the gyro biases of the HG1700 (as 
determined by comparison to Earth’s known angular rate) are somewhat lower (also shown in 
Table 5).  Both the biases and angular random walks are within the specifications noted in Figure 
11. 
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Table 4: Noise levels for the IMU accelerometers (static mode). 
 white noise velocity random walk 
HG1700 accel 4 24.8 10  m/s / Hz−×  22.9 10  (m/s)/ hr−×  
HG1900 accel 5 28.6 10  m/s / Hz−×  35.2 10  (m/s)/ hr−×  

 
 
Table 5: Noise levels for the IMU gyros (static mode). 
 bias angular random walk 
HG1700 gyro 0.32 /hr°  0.061 / hr°  
HG1900 gyro 0.76 /hr− °  0.039 / hr°  

 
 
We conclude that, overall, the HG1700 IMU does not perform as well in the static mode as the 
HG1900.  Nevertheless, when using these units to navigate a cart in laboratory tests (and in 
subsequent field tests), we consistently obtained slightly better positioning results with the 
HG1700.  The resonances of the HG1700 accelerometers at 0.02 Hz and 0.04 Hz have an 
unknown origin (the dither of the gyros required to prevent the lock-in phenomenon is likely not 
the cause since the dither frequency is much higher).  Working briefly with the technical staff at 
Honeywell, we were not able to ascertain the reason for the degraded noise levels of the 
HG1700. 
 
 
4.2 Cart-Based Laboratory Tests 
We tested the filter/smoothers (AEKF and AUKF), and neural-network aided adaptive 
filter/smoothers (NN-AEKS and NN-UKS) in the laboratory using the IMUs mounted on a cart.  
The state vector included three position errors, three velocity errors and three orientation errors 
associated with the navigation, and a bias and a scale factor error for each of the three 
accelerometers and the three gyros. For the UKF, four quaternions were employed instead of 
three angles for the orientation error.  
 In addition to the two medium-grade IMUs, this cart-based geolocation system (CBGS) also 
contained the H764G navigation-grade IMU (similar to the LN100 discussed in Section 3.1).  In 
addition, the cart contains the IMU data collection computer hardware and a physical pointer 
used to identify the cart’s passing or occupation of a control point (Figure 14).  The pointer 
served a function similar to an external position observation (such as from GPS).  The error 
specifications of the three IMUs as provided by the manufacturer are described in Table 6.  
These specified error parameter values are used to generate the initial covariance matrix of the 
system noise ( Q , see equation (4)).  The accelerometer bias of the H764G is about 50 times 
smaller than for the medium-grade units and its gyro biases are similarly much smaller.  
Although the static tests indicated somewhat poorer noise characteristics for the HG1700, we 
assigned the manufacturer-specified variances to the Q-matrix and initial P-matrix (for the 
biases) (see equation (4)). 
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Table 6: The error specification of three IMUs  
 H764G HG1700 HG1900 

Bias 20 µg 1 mg 1 mg 
Scale Factor 40 ppm 300 ppm 300 ppm Accel 

Error 
Random Walk 0.003 ( ) hrm/s  0.09 ( ) hrm/s  0.09 ( ) hrm/s  
Bias 0.01 deg/hr 1 deg/hr <7 deg/hr 
Scale Factor 1 ppm 150 ppm 150 ppm Gyro 

Error 
Random Walk 0.001 deg/ hr  0.125 deg/ hr  0.09 deg/ hr  

 
 

 
Figure 14: Cart Based Geolocation System, Front (A: HG1700 and HG1900 with run-box, B 
H764G, C: Pin Point Indicator with Mark) 
 
 
4.2.1 Test Description 
In our laboratory tests, we used simulated position updates (a manual coordinate registration 
system) instead of integrating the IMU with a ranging system such as GPS.  The cart was pushed 
along a trajectory with pre-defined waypoints that have known coordinates.  Whenever the cart 
passed a particular waypoint, the event was recorded with a timing mark from the computer 
clock that also time-tagged the collection of data from the IMU.  The imperfect recording of the 
passage of the cart pointer (Figure 14C) over the ground marker could be considered an error in 
the control point coordinates, although it is a personal error and not as large in magnitude as a 
kinematic GPS position error.  The magnitude of this error is estimated to be less than 1 cm per 
control point; however, the variance of the measurement error (diagonal matrix, R , see equation 
(6)) was conservatively set to ( )21cm .  The test trajectory had four straight lines and four curved 
sections (Figure 15).  Twenty-eight (28) ground marks were used as “measured” control points 
for the filtering/smoothing.  The distance between points is 12 inches and the CBGS needed 
about 4 seconds to move from one control point to another. Therefore, the speed of the cart is 
about 0.076 m/s.  
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Figure 15: Laboratory test trajectory. 

 
 
We tested the integrated system by comparing positioning solutions at control points not used in 
the integration.  In the first case, every other point was used to update the system and the 
filtered/smoothed position estimate was compared to the skipped control.  The total duration of 
inertial positioning between control updates is about 8 seconds in this situation.  In the second 
case, every third point served as update and the estimated positions were compared to the 
coordinates of the two skipped points.  The total simulated GPS outage in this case is about 12 
seconds.  The (neural-network aided) filtered/smoothed position errors were analyzed along the 
straight and curved sections, respectively, in terms of the standard deviation of the total 3-D 
position error computed from 5 separate tests along the same trajectory.  In the first case, there 
are 8 (6) comparison points in the straight (curved) segments, hence 40 (30) comparisons 
contribute to the standard deviation of the error.  In the second case, the corresponding number 
of comparisons is 45 for both straight and curved segments. 
 
 
4.2.2 Results and Analysis 
Figures 16 and 17 show the standard deviations of position errors of the CBGS according to the 
different IMUs, the various filtering/smoothing methods, and the interval between control 
updates.  Figures 18 and 19 show the corresponding standard deviations when the neural-
network (NN) aided adaptive filter/smoothers were applied.  As anticipated, the navigation-grade 
IMU (HG764G) performs best.  Also, the non-linear based smoothing method (AUKS) yields 
better results than the EKF-based smoothing method, especially in the turning segments.  The 
HG1900 performs only slightly worse than the HG1700.  The relative difference in performance 
between the tactical or medium grade IMUs (HG1700 and HG1900) and the navigation-grade 
IMU in these tests decreased significantly using the non-linear filtering techniques.  
 
 



33 
 

 
Figure 16: Position Errors of CBGS according to different IMUs and filtering/smoothing 
methods (control updates every 2 points). 
 
 

 
Figure 17: Position errors of CBGS according to different IMUs and filtering/smoothing methods 
(control updates every third point). 
 
 
 Similar to the two-point update case, in every three-point update case the H764G achieved 
the best position accuracy; and, the nonlinear, adaptive filter/smoothing techniques demonstrated 
better performance than the AEKS. However, compared to the first case, there was less 
difference with both method (AEKS and AUKS) between the straight and turning segments 
because the accumulation of IMU errors overwhelmed the superiority of the nonlinear filter in a 
dynamic environment.  On the other hand, the non-linear filter still achieves better estimates of 
states in an essentially non-linear system. 
 The overall position accuracy was improved by including the neural network aiding, and the 
disparity in performance between straight and turning sections was reduced. It is noted that the 
position error of the NN-AEKS decreased dramatically compared to the AEKS in both straight 
and curved section. The H764G with NN-aided, adaptive filtering/smoothing can achieve the 
area-mapping position requirement (5 cm) along straight sections with 8 seconds between 
updates.  Similar results were obtained with the longer interval between updates (every third 



34 
 

control point). The position error (st. dev.) of the H764G is less than 10 cm in this case, but in 
particular, the HG1700 and HG1900 yielded only slightly worse results (1~3cm more in standard 
deviation). With the increased interval between control points the NN-aided, adaptive 
filter/smoother was able to maintain the position accuracy better than the unaided adaptive 
filter/smoother. 
 
 

 
Figure 18: Position Error of CBGS according to different IMUs and NN aided 
filtering/smoothing method (control updates every 2 points). 
 
 

 
Figure 19: Position Error of CBGS according to different IMUs and NN aided 
filtering/smoothing method (control updates every 3 points). 
 
 
4.3 Hand-Held System Tests 
The Handheld Geolocation System (HGS) developed for our tests had a tactical-grade IMU 
(HG1900) and was integrated with an automatic target tracking system that updates its position 
(Figure 20) at a specified rate.  The manufacturer error specifications of the HG1900 are 
described in Figure 11 and Table 6.  A red circle marked on the front head of the HGS was used 
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as a target that could be tracked for accurate positioning by using real-time color imaging.  This 
external tracked position served the same purpose as would GPS in the field. 
 In addition, we developed improved software to collect the data from the IMU, thus replacing 
the Honeywell software (that was an MS-DOS based data acquisition tool) that limited the 
number of collected data to 100000 records.  This also enabled us to collect data using a laptop 
(replacing the desktop computer used with the cart-based system).  The run box obtained from 
Honeywell still serves as a power and data cable terminal, but otherwise has no function in the 
data collection. 
 
 

 
Figure 20. The hardware system for locating geolocation tests (A: Handheld Geolocation 
System, B: Laptop, C: IMU Run-box, D: Web Cam, E: Target (red dot) with black box, F: 
HG1900, G: Target tracking software, and H: PCMCIA converter). 
 
 
 In order to obtain accurate positions of the HGS, an automatic target position extraction 
system was implemented using real-time color imaging with a webcam (at 5Hz update rate).  
First, the color image is converted to a binary image which has only two values, 0 or 255, for 
each R, G, and B band (only the R band was employed in this test).  Second, the target object in 
the binary image is extracted from the boundary noise using geometric circularity and knowledge 
of its size.  Finally, the screen coordinates of (the center of the circle) are converted to real world 
coordinates. 
 Using our developed target position tracking software the transformed binary image is 
captured and displayed in the right-top section of the laptop display (Figure 21) with a pre-
defined but adjustable threshold value determined with a slide bar.  The minimum size of the 
target and the circularity to differentiate the target from other objects are defined as 100 and 5, 
respectively.  Since the actual map size (128cm*960cm) will be used to convert the target 
position in the window coordinate system (640×480 [pixel]) to the position in the real-world 
system, the actual dimension of one pixel is 0.2cm by 0.2cm. The position of image plane of the 
camera (leveled using bubble levels) and the test area (laboratory floor) are assumed parallel, 
with the camera located 1 m above the center of the test area.  An error of less than 0.5 degree 
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due to the misalignment between the camera and the test area implies a final position error that is 
less than 0.87cm ( m15.0 ×= o , or bout 4 pixels). 
 
 

 
Figure 21. Target position tracking software. 

 
 
4.3.1 Test Description 
The HGS was tested over a small area with its position tracked by the web cam and tracking 
software, as described in the previous section.  The RBPF and the previously developed 
filters/smoothers (KF/KS and UPF/UPS) were evaluated for typical local trajectories of a hand-
held UXO detection system.  Without loss in generality, the loosely coupled INS/GPS 
integration scheme based on the decentralized filter architecture was employed.  The state vector 
for the IMU/imaging system comprised 19 states: two horizontal position errors ( EN xx δδ , ) in the 
navigation frame; two velocity errors ( EN vv δδ , ), three orientation errors in a local north-east-
down frame ( DEN ψψψ ,, ); and, biases ( Ab  and Gb ) and scale factor errors ( Aκ  and Gκ ) for the 
accelerometers and gyros. 
 The state vector can be divided using the Rao-Blackwellization described in Section 2.2.3 
into two parts according to Nordlund (2002) and Hektor (2007).  They argued, based on 
simulations and airborne test data, that only the position states are highly-nonlinear and all other 
states can be assumed as linear without significant loss in position accuracy.  However, this state 
division is incorrect in our case because not only the position error states but also the orientation 
and velocity error states experience high nonlinear dynamics in a ground-based UXO detection 
system such as the Hand-held Geolocation system.  Therefore, the division of states should be 
separated into the navigation related states (position errors, velocity errors and orientation errors) 
and all other states (bias and scale factor error of the gyros and accelerometers):  
 

( ) [ ]1 T T
k N E N E N E Dx x x v vδ δ δ δ ψ ψ ψ= , (37) 

 

( )2
N E D N E D N E D N E D

TT

k G G G A A A G G G A A Ax b b b b b b κ κ κ κ κ κ =   . (38) 

 
 The typical dynamics of a hand-held UXO detection platform can be classified into four 
categories; linear, curved, sweep, and swing (Bell and Collins, 2007).  However, since the linear 
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and curved sections are included in the sweep and swing dynamics, only two test trajectories 
(sweep and swing) were considered.  The position accuracy of the HGS system was tested along 
five sweep and five swing trajectories.  The sweep trajectory had six straight lines and five 
curved sections.  The swing trajectory had five straight lines and four curved sections.  The total 
distance of sweep (swing) of the trajectory is about 7.2 (5.6) m and the HGS took about 22 (14) 
seconds to complete total trajectory.  Therefore, the speed of the HGS was about 0.33 (0.4) m/s, 
respectively.  Figure 22 shows the trajectories of the first sweep and swing of five separate tests.  
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Figure 22. The first sweep and swing trajectory from five tests of the designed handheld UXO 
Geolocation platform.  
 
 
4.3.2 Test Results and Analysis 
Various update intervals of the imaged target positions were implemented to analyze the 
filtered/smoothed position estimates with respect to the requirements of position accuracy for 
MEC geolocation and characterization.  In each test case, 5Hz, 2.5Hz, 1Hz, 0.5Hz, and 0.25Hz 
update rates were employed in the integration.  The accuracy of the HGS was tested by 
comparing the estimated position to the target positions (available at 5Hz) which were not used 
as updates in the filtering process.  For example, if the update rate of the filter is 1Hz, every fifth 
point of the automatically tracked target position is used as external control (the accuracy of 
measurement is assumed as 2~4 pixel (0.4cm)2~(0.8cm)2 in north or east direction) in the filter 
and the other four points are compared to the estimated points of the filter/smoother.  The 
standard deviations of the total 2-D errors (from the EKS, UPS, and RBPS) were computed for 
the straight and curved sections.  The curved section is defined by a pre-defined threshold of 
absolute value of heading change angle ( ≥ 20°).  
 Sweep Test: Figure 23 shows the average standard deviations of the error for each of the 
filters implemented and for each update rate of the control points.  The averages represent the 
results of the five separate sweep tests.  In the straight section, the UPS and RBPS can achieve 
the discrimination level of position accuracy (better than 2cm standard deviation) for update 
rates ranging from 5Hz to a 0.5Hz, and they can achieve the area mapping level of accuracy 
(better than 5cm for standard deviations) at the 0.25Hz update rate.  The EKS yields comparable 
(slightly worse) results at 0.5Hz update rate and significantly worse results when the update rate 
is 0.25Hz.  In the curved section, every filter approached the discrimination level of accuracy 
(less than 2cm std. dev.) up to 1Hz update rate and achieved 5cm (std. dev.) accuracy at 0.5Hz.  
The position errors of the RBPF are comparable with the UPS up to 0.5Hz but slightly lower 
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than all other smoothers at 0.25Hz.  Therefore, the RBPS is expected to provide superior 
performance when the external imaging solution is blocked or degraded for longer than 4 
seconds.   
 
 

 
Figure 23. The average standard deviations of position errors according to various smoothing 
methods (unit: cm) for the sweep tests. 
 
 
 Swing Test: Overall, the results of the swing test were worse than those from the sweep test, 
especially when the update rate is less than 1Hz.  Similar to the sweep test, the non-linear 
filter/smoothing techniques demonstrated better performance than the EKS.  However, compared 
to the sweep test, there was less of a difference between straight and curved sections in all 
estimation methods.  Figure 24 shows the average standard deviations of position errors 
according to the various smoothing methods and the update interval between control points.  The 
position accuracy of the swing test was degraded compared to the sweep test, especially when 
the update rate is less than 1Hz in both straight and curved sections.  However, it is noted that the 
position error of the UPS and RBPS is significantly smaller at 0.25Hz when compared to the 
EKS in the straight and curved sections. 
 In the straight section, the UPS and RBPS attained the discrimination level of position 
accuracy up to the 1Hz update rate and achieved the area mapping level of accuracy at 0.5Hz 
update rate (compared to the sweep test where the update rates for the discrimination and area 
mapping level of accuracy were 0.5Hz and 0.25Hz, respectively).  In the curved section, similar 
to the straight section, the UPS and RBPS achieved the discrimination level up to 1Hz and the 
area mapping level up to 0.5Hz. 
 In this swing test, the RBPS performs best at all update rates.  Therefore, although the swing 
operation can obtain position data for the UXO detection in shorter time duration and therefore 
with fewer control points, the sweep operation is preferred because the position errors of the 
sweep test were smaller than that of the swing test due to the linear dynamics of the sweep 
motion. 
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Figure 24. The average standard deviations of position errors according to various smoothing 
methods (unit: cm) for the swing tests. 
 
 
 The UPS needs at least 200 particles to yield optimal position accuracy in this test.  However, 
the RBPS utilized only 20 samples (particles) for the nonlinear (particle) filter part.  Although 
there is still room for some position accuracy improvement by increasing the number of 
particles, it will not yield significant improvements (Lee and Jekeli, 2009).  Therefore, the RBPS 
can produce (slightly) better or comparable results compared to the UPS with only 10% of the 
number of particles used by the UPS. 
 
 
4.4 Field Tests at NRL Test Facility 
The filtering methods described in Section 2 were evaluated using IMU/GPS data from field tests 
conducted at NRL’s UXO test site located at the Army Research Laboratory Blossom Point 
Facility in Maryland with the Multi-sensor Towed Array Detection System (MTADS, Figure 
25a) and a cart-based system (Figure 26).  At the center of MTADS we mounted OSU’s dual-
IMU/GPS system (Figure 25c): two tactical-grade IMUs (HG1700 and HG1900) in the IMU box 
(Figure 25b), one Topcon geodetic GPS receiver (GB-1000), and a laptop computer for data 
collection and communication with the sensors.  The cart-based system has only OSU’s 
IMU/GPS system and one large 12V battery for power (Figure 26). 
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Figure 25. (a) The NRL Multi-sensor Towed Array Detection System (MTADS), (b) IMU box, 
(c) OSU’s dual-IMU/GPS system. 
 
 

 
Figure 26. The NRL cart-based system with OSU’s dual-IMU/GPS geolocation system. 
 
 
4.4.1 Test Description 
Eight field tests were performed using the two platforms and various GPS satellite 
configurations.  Among these tests, GPS malfunctioned for one complete test, and three tests 
were designed for deliberate GPS degradation (near a wooded area).  Thus, we considered only 
the four Tests 2, 5, 6, and 7 in this analysis.  They were divided into two test scenarios (Scenario 
1: Tests 2 and 5, Scenario 2: Tests 6 and 7) according to the number of visible GPS satellites. 
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The GPS PDOP (Position Dilution of Precision) for Scenario 1 was lower than that for Scenario 
2. 
 The test range is roughly 84m long by 24m wide. The vehicle-towed trailer and cart-based 
system were moved along trajectories that are typical of a UXO survey. At the end of each 
trajectory segment there are large turns to align the platform to the next straight segment of the 
trajectory. 
 Figure 27 shows the GPS trajectories of the vehicle-towed trailer and the cart-based system 
for Scenario 1 (Test 2, MTADS; and Test 5, Cart) and Scenario 2 (Tests 6, Cart, and 7, 
MTADS).  The total distance of Test 2 (Test 5) is about 2,016m (398m) and the speed of the 
MTADS (Cart) is about 1.85 m/s (0.95m/s).  The total distance of Test 6 (Test 7) is about 352m 
(514m) and the speed of the Cart (MTDAS) is about 1.0 m/s (1.9 m/s).  
 
 

 
Figure 27. The GPS trajectory of the vehicle-towed trailer and cart-based System (Tests 2 and 5 
are Scenario 1 and Tests 6 and 7 are Scenario 2). 
 
 
 The kinematic GPS analysis package "KinTOOLS" was used to process 1Hz GPS data 
collected by the Topcon GB-1000 receiver. Each trajectory using the individual inertial sensors 
was estimated by the EKF or the UKF and then the wave correlation filter was applied to the 
common solutions with the threshold value of 0.5 (equation (30)).  The remaining bias and trend 
errors are further removed by the end-matching method.  Figure 28 illustrates the general 
IMU/GPS data processing and analysis procedure. 
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Figure 28. IMU/GPS Data Processing Flowchart 

 
 
4.4.2 Results and Analysis 
Scenario 1: The filtered free-inertial (IMU-only) positions of the vehicle-towed trailer and cart-
based system were computed along the straight sections within 2, 4, and 6 second intervals 
representing artificial periods of GPS unavailability. Figure 29 illustrates parts of the estimated 
positions from the trajectory of Test 2.  
 As the interval between GPS updates increases from 2 to 6 seconds, the IMU-estimated 
position (HG1700) using the EKF with wave correlation filter and end-matching is demonstrably 
better than the position using just the EKF and the EKF with WCF.  Similar improvement was 
obtained with the WCF applied to the UKF solutions. 
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Figure 29. The estimated vehicle trajectory using GPS, the HG1700 w/ UKF the WCF, and end-
matching, for different update rates. 
 
 
 Figure 30 shows the standard deviations of position errors of the three coordinates  based on 
all straight sections of the trajectory) of Tests 2 and 5 according to the UKF, the WCF estimates 
based on the UKF solutions, and the estimates obtained by applying the UKF, the WCF, and 
end-matching. We show only the UKF-only estimates for the HG1700 because it yields better 
position accuracy than the HG1900.  
 Test 5 (cart-based system) yielded overall slightly better performances than Test 2 (vehicle-
towed trailer) because the cart-based system experienced lower dynamics and slower speed than 
the vehicle-towed trailer. The WCF with end-matching improved the UKF solutions (control 
updates every 2 points) of Test 2 by about 46%, compared to an 11% decrease in the standard 
deviation of errors without the end-matching.  
 In the 4 and 6 second GPS outage cases, the position errors (standard deviations) decreased 
64% and 76% with respect to the UKF-only errors, and 55% and 70% relative to the UKF with 
WCF. In Test 5, the position errors with the WCF and end-matching decreased about 52 % ~ 69 
% with respect to the UKF-only solutions and 46 % ~ 64 % with respect to the UKF plus WCF 
solutions, considering all 2, 4, and 6 second GPS outages. 
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Figure 30.  The standard deviation of position error in the straight section according to the UKF, 
the UKF with WCF, and the UKF with WCF and end-matching based on the UKF solutions 
(left: Test 2, right: Test 5). 
 
 
 Scenario 2: In Scenario 2 (Tests 6 and 7), the number of GPS satellite increased from 4~5 to 
7~8, and the PDOP correspondingly decreased from 4.3 (Test 6) to 2.6 (Test 7).  Similar to 
Scenario 1, the WCF and end-matching improved the performances of the UKF in all straight 
sections (Figure 31).  In Test 6 (Test 7), the position errors with the WCF decreased about 52 % 
~ 69 % (50 % ~ 73 %) with respect to the UKF-only solutions, and 44 % ~ 63 % (43 % ~ 67 %) 
with respect to the UKF with WCF solutions, again considering all GPS outages.  
 
 

 
Figure 31. The standard deviation of position error in the straight section according to the UKF, 
the UKF with the wave correlation filter, and the UKF with the wave correlation filter and end-
matching based on the UKF solutions (left: Test 6, right: Test 7). 
 
 
4.5 Self-Calibration Tests 
IMU Calibration is the process of determining the errors in the outputs of the gyros and 
accelerometers and is essential in order to increase the accuracy of the navigation solution.  In the 
calibration process, the deterministic errors (biases, scale factor errors and sensor non-orthogonality 
errors) are estimated by comparing the instrument outputs with known data, and the random errors 
(noise) are minimized by filtering methods.  Various kinds of calibration methods for determining the 
IMU errors have been developed.  The most common methods use precise laboratory instruments, 
but method based on field data can also lead to reasonably accurate calibration, particularly methods 
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that compare the outputs in the static mode to natural signals generated by the Earth: its gravitational 
attraction and rotation rate. 
 We tested the multi-position calibration method developed by Shin (2001) on the two 
medium level IMUs: HG1700 and HG1900.  Because the Earth’s rotation rate is relatively weak, 
some of the systematic errors in the gyros could not be estimated; nevertheless, we assumed a 
full model of bias, scale factor error, and non-orthogonality for all six sensors of the IMU. The 
equations for the accelerometer and gyroscope measurements, ay  and ωy , respectively, are 
therefore given by 
 
 a a a a aS Ψ= + + + +y a b a a w , (39) 
 
 Sω ω ω ω ωΨ= + + + +y ? b ? ? w , (40) 
 
where a  and ?  are the true acceleration and angular rate vectors; ab , ωb , are the respective bias 
vectors; aS , Sω , are the scale factor error matrices; aΨ , ωΨ  are the non-orthogonality error 
matrices; and aw , ωw  are the noise vectors. 
 For field operations, where the IMU is assumed capable of being oriented in arbitrary 
directions, we tested the multi-position calibration method developed by Shin and El-Sheimy 
(2002); see also Syed et al. (2007).  By recording the IMU data with different attitudes in the 
static mode, the deterministic sensor errors are estimated to the extent possible by the natural 
signals.  For a given attitude, the calibration model in the sensor frame for the accelerometers is 
given by 
 
 22 2 2 0a x y zf a a a g= + + − = , (41) 
 
where g is the gravity; and, the true accelerations are, from equation (39), 
 

 ,

, ,

1

1

1

ax ax
x ax

ax

ay ay
y x a yz ay

ay

az az
z x a zy y a zx az

az

y b
a w

s

y b
a a w

s

y b
a a a w

s

ψ

ψ ψ

−
= −

+

−
= + −

+

−
= − + + −

+

 (42) 

 
where the notation is self-evident.  Similarly, for the gyroscopes the model in the sensor frame is 
 
 22 2 2 0x y z Efω ω ω ω ω= + + − = , (43) 
 
where Eω  is Earth’s rotation rate.  From equation (40), we find analogously 
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These models were applied to the outputs for different orientations of the sensor and the error 
parameters (biases, scale factor errors, non-orthogonality errors) were solved by non-linear least-
squares adjustment.  For details, see Hayal (2010). 
 
 
4.5.1 Simulation Tests 
The model described in the previous section was tested using simulated measurements of an 
IMU such as the HG1700 with noise simulated according to parameters given in Table 6.  The 
data were generated by mathematically orienting the sensors relative to the Earth signals with 26 
different attitudes, where, imaging the IMU as a cube, each of the 6 faces, 8 corners, and 12 
edges in turn was pointed down.  Referring to Hayal (2010) for the detailed analyses, these 
simulations showed that with these measurements, all 9 accelerometer errors (biases, scale factor 
errors, and non-orthogonality errors) can be estimated accurately (limited only by noise).  Also, 
the gyro biases could be estimated, but it is possible to estimate accurate gyroscope scale factor 
errors and non-orthogonality errors only if we increase the reference signal strength (e.g., several 
orders of magnitude greater than Earth rotation) or correspondingly decrease the noise in the 
data.  In this case the bias-only model may be more appropriate.  However, our field tests (see 
the following section) indicated that this may not necessarily lead to better results. 
 
 
4.5.2 Field Tests 
To analyze the multi-position calibration method in the field and how it affects the positioning 
performance of an integrated IMU/GPS geolocation system, we instrumented a cart with the 
Honeywell HG1700 and HG1900 IMUs, as well as a GPS receiver (Figure 32), and conducted 
the appropriate tests in a campus parking lot of the Ohio State University.  Initially 20 minutes of 
warming up time preceded the measurements.  As done in the simulations, 26 different 5-minute 
long static IMU attitude measurements were collected for estimation of the IMU bias, scale 
factor error and non-orthogonality errors.  Then, the IMU box was installed on the cart together 
with the GPS receiver and the remaining instruments.  The GPS measurement and positioning 
intervals were set equal to 0.1 second.  Moreover, another GPS receiver, the base station, was 
installed at a local control point and its measurement interval was set to 0.1 second.  After that, 
the INS cart was pulled by hand about 25 minutes with a walking speed, and a sweep like 
trajectory (see Figure 33) was followed among the parking space lines.  The trajectory included 
25 straight sections and 25 very short and sharp curved sections. 
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Figure 32: Cart-Based Geolocation System with 1) IMU box containing the HG1900 and 
HG1700; 2) 120 VAC inverter; 3) 12 VDC battery; 4) hand-pulled cart; 5) Trimble NERTS GPS 
receiver; 6) Trimble Zephyr Geodetic II GPS antenna; 7) laptop computer, including PCMCI 
card connecting the IMUs and the decoding software. 
 
 

 
Figure 33: GPS trajectory of field IMU calibration tests. 

 
 
 Various combinations of attitudes (of the 26 available) and parameters (of the 9 for each 
accelerometer or gyro triad) were tested to determine which scenario would yield the best 
estimates in the least-squares adjustment.  Using just the first 10 attitudes gave the smallest 
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internal standard deviation in the adjustment for the gyro biases and accelerometer biases, scale 
factor errors and non-orthogonality errors.  This was designated Scenario 3 in the Thesis by A. 
Hayal (2010).  It was the basis for most of the subsequent analysis of the impact of the self-
calibration on inertial positioning. 
 
 
4.5.3 Results and Analysis 
The effect on positioning accuracy due to the IMU self-calibration was analyzed using simulated 
GPS outages along the trajectory of the cart as shown in Figure 33.  The estimated gyroscope and 
accelerometer errors were used as initial estimates in a 27-state Extended Kalman Filter (EKF).  
Moreover, standard deviations of the initial IMU states were taken from the least-squares 
solution.  Positioning errors and their accuracies were determined by comparing the estimated 
trajectory during GPS outages to the true GPS trajectory.  Aside from the original case which 
used manufacturer specified initial values for the IMU errors, three field calibration cases were 
considered, called Scenarios 3.0, 3.3, and 3.9.  Scenario 3.0 aimed to test the position accuracy 
with all 9 self calibrated accelerometer errors, only.  Therefore, the chosen gyroscope error 
parameters were equal to the original case error parameters.  Scenario 3.3 included the 3-
parameter solution for the gyroscope bias error only, while the use of the 9-parameter solution 
for all gyroscope errors was designated as Scenario 3.9.  The latter was considered even though 
the scale factor errors and non-orthogonality errors were not well estimated during the self-
calibration procedure. 
 Figures 34 and 35 show the results for the HG1700 and the HG1900, respectively, and for 
different lengths of GPS outage.  We found that it is possible to obtain improved position 
estimates using all 9 self-calibrated accelerometer errors.  Although unrealistic values were 
obtained for the gyroscope scale factor errors and non-orthogonality errors, the positioning 
accuracy calculations showed that the full 9-parameter gyro error estimates yielded more 
accurate results than the 3-parameter solutions for both of the IMUs.  The reason for this has not 
been fully explained, but it also occurs only for the shorter duration of GPS outage (2s).  In 
general, the improvement with self-calibrated errors was most noticeable for the HG1700, while 
no improvement was realized (in fact, the opposite was the case) for longer GPS outages being 
supported by the HG1900.  This may be due to less stability in the systematic errors for the 
HG1900.  In any case, for longer outages, the use of just the calibrated gyro biases offers 
generally the best improvement. 
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Figure 34: HG1700 inertial positioning errors with self-calibrated IMU errors according to 
different scenarios (see text) compared to the case without any prior self-calibration prior in the 
field. 
 



50 
 

 
Figure 35: HG1900 inertial positioning errors with self-calibrated IMU errors according to 
different scenarios (see text) compared to the case without any prior self-calibration prior in the 
field. 
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5. Cost analysis 
 
Reliable characterization of MEC requires both high precision and high spatial resolution in the 
positioning of the detector.  For example, Bell (2005) noted that significant improvement and 
efficiencies could be realized “if a reliable, robust procedure were available for precisely 
determining the locations of the sensor readings without using the template [method].”  GPS 
generally yields 1 Hz data, which may be inadequate for detectors that pass over smaller putative 
MEC with speeds of several cm/s or more.  One solution is to build a geometrically distributed 
array of detectors that simultaneously passes over an object (Nelson and McDonald, 2001).  
Also, laser ranging can deliver up to several 10s Hz resolution (Leica Geosystem1), but a ranging 
system aided by inertial measurement units (that provide high resolution, usually up to 250 Hz) 
was deemed in a recent study (U.S. Army Corps of Engineers, 2006) as offering the most 
efficient positioning system in terms of resolution and precision.  This synergy of ranging and 
autonomous inertial sensor systems also mitigates various degrading effects caused by loss of 
line-of-sight, multipath, and electromagnetic interference. 
 Our cost analysis is restricted to the expense of determining precise positions with high 
resolution.  The analysis is limited to tangible startup and recurring costs and is based on 
manufactured product costs and estimated labor costs.  There are numerous more or less 
intangible costs that can only be ascertained with field experience for any particular system.  
These include the change in cost with a change in the rate of false alarms (which does not 
exclusively depend on geolocation precision), the differential costs associated with operating in 
different types of environment, and the various costs of remediation of different categories of 
MEC in diverse environments. 
 Another important intangible aspect of the analysis is the operational complexity associated 
with a particular type of terrain to be surveyed.  All geolocation systems depend on an external 
reference; that is, no system (of reasonable technology and cost) can operate autonomously with 
the kind of accuracy needed for initial screening, mapping, and discrimination and 
characterization of MEC.  The type of terrain and environment dictates the accessibility and, 
more importantly, the degree of sustained access to such external references.  As in many cases 
of comparative analyses of different system there are tradeoffs to which costs may or may not be 
particularly sensitive.  Ultimately, we argue that for any geolocation system the inclusion of an 
IMU is a cost-effective enhancement, if only a safeguard, for precision positioning of MEC 
detectors. 
 We compare three competing systems that offer high-resolution positioning in a variety of 
possibly GPS-degraded environments.  The system that is the basis of our analysis for this 
project is the integrated GPS/IMU geolocation system, comprising a geodetic quality GPS 
receiver (and antenna) and a medium-grade IMU (such as the Honeywell HG1700 or HG1900).  
Another external positioning system is the laser-based system whereby the roving (detection) 
system is positioned using trilateration and triangulation with respect to a number of fixed 
ground stations occupied by laser-distance measuring devices (robotic total stations).  The third 
system is an acoustic system, where distances are measured between an ultrasonic signal 
transmitter on the geophysical sensor unit and several stationary receivers in the field.  In 
essence, all external positioning systems can be thought of as a number of benchmarks with 
known positions transmitting (receiving) a signal to (from) the roving target, which either 

                                                
1 http://www.leica-geosystems.com/ 
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through active or passive participation leads to a determination of its position in a well defined 
coordinate system.  With the ground laser trilateration system, the benchmarks are stations in the 
field and the roving detection system passively reflects the transmitted laser pulses; with GPS, 
the benchmarks are the satellites that transmit their position and time continuously and the roving 
system receives and utilizes these signals to determine its position. 
 In all cases, the line of sight between the benchmark (satellite) and the roving detection 
system must be unobstructed for the particular wavelengths of the electro-magnetic radiation on 
which the positioning system is based.  Therefore, in principle, the IMU could serve as an aid to 
each ranging system in the event that the line-of-sight (or acoustic range) is temporarily 
obstructed, interrupted, or degraded because of various environmental factors.  However, for 
comparison purposes, we assume that the GPS degradation is the most common and serious, 
since the other ranging systems are ad hoc systems designed specifically for the application in a 
particular environment.  GPS, on the hand, would be considered a viable system in any 
environment that yields at least a reasonable access to the satellite signals.  In that sense an 
integrated GPS/IMU may be compared to the other stand-alone ranging/geolocation systems. 
 Table 7 summarizes the basic features of three representative geolocation systems as 
proposed or realized as described in the final report by the US Army Corps of Engineers (2006), 
and as studied by us.  All three systems rely on GPS or equivalent to perform absolute 
positioning.  The principal innovation is in precision relative position of the UXO detection 
system.  The systems differ in operational principle, where the roving unit for the GPS/IMU and 
the ultrasonic systems contain the main geolocation sensors, while for the robotic laser-tracking 
system the principal equipment is a stationary tracking device.  As such the costs are not 
comparable in a direct way.  While the GPS/IMU system is completely mobile, the laser tracking 
system is restricted to the range of the total station, until it can or must be moved (which requires 
additional manpower).  Similarly, other local ranging systems, exemplified by the ultrasonic 
system require repositioning of equipment at reference station as defined by the survey area. 
 
 
Table 7: Cost comparison of geolocation systems 
System Component equipment Cost (ROM 

estimates) 
notes 

GPS/IMU GPS receiver and antenna 
Inertial Measurement Unit 
(HG1900) 

$29000 
 
$10000 

ancillary equipment estimated 
cost of about $500 

Robotic Total 
Station (RTS) 

Laser total station, plus 
robotic tracking, 
LeicaTSP1100 

$35000 cost for single tracking station; 
excludes cost of absolute 
positioning equipment 

GPS/ultrasonic 
ranging 

GPS receiver and antenna 
Ultrasonic units 

$29000 
 
$1500 

ancillary equipment estimated 
cost of about $6000 

 
 The principal disadvantage of the IMU system for longer-term geolocation is the inherent 
drift in the navigation solution, which is absent in all ranging systems.  For short-term 
interpolation between reference points (say, less 10 s), the medium-grade IMU with appropriate 
post-processing performs at levels about an order of magnitude worse than the best ranging 
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(laser) systems.  The main advantage of the IMU is its complete autonomy; requiring no 
additional base stations and being unaffected by most, if not all environmental conditions. 
 We showed in our various laboratory and field tests that the HG1700 is the slightly more 
precise than the HG1900.  However, the cost is 60% greater and may not be warranted under 
most scenarios.  Considering the cost of the medium-grade IMU, HG1900, relative to the typical 
cost of an alternative geolocation system, one may argue that even with the alternative systems, 
the rover should include an IMU to bridge any possible outages in the ranging system (although 
most systems claim almost full-time integrity, any ranging system is always susceptible to 
obstruction or interference).  The data processing techniques developed under this project are 
applicable to the integration of IMU data with any ranging system. 
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6. Summary and Conclusions 
 
To satisfy precise positioning requirements for MEC detection and characterization, we 
considered the integrated ranging/IMU geolocation system.  Primarily, we studied the algorithms 
that optimally combine IMU data with updates provided by GPS.  Our analysis proceeded from 
simulations to field data and included various novel estimation tools developed recently for 
inertial navigation of land and airborne vehicles.  We also studied the static self-calibration of 
systematic IMU errors in the field.  The new estimation techniques focused on the non-linearity 
of the trajectory dynamics and the possible non-Gaussianity of the random instrument errors.  
Accommodating these characteristics requires more general Bayesian estimation than developed 
for the extended Kalman filter.  Based on simulated trajectories typical of MEC ground surveys, 
as well as cart-based and hand-held trajectories in the laboratory and actual MEC detection 
trajectories performed in the field, we analyzed the unscented Kalman filter, the unscented 
particle filter, a hybridization of these non-linear filters and the extended Kalman filter, known as 
the Rao-Blackwellized filter, and various modifications, including adaptive error techniques, 
neural network applications, and wave-correlation filters (for the case the dual IMUs are 
utilized).  We also considered the smoothing version of each of these filters, wherein the 
estimated IMU trajectory is controlled optimally over the entire inter-update interval by the 
updates at its endpoints. 
 Our simulations showed that the unscented Kalman filter (based on the unscented 
transformation that bypasses a linearization of the error state dynamics and of the observation 
updates) performs consistently better than the standard extended Kalman filter, particularly along 
curved trajectories.  These improvements in filter strategy were realized especially when the 
interval of the ranging solution update was several seconds (simulating an outage due to signal 
occlusions) and if the ranging solution was degraded (simulating various possible causes). 
 Using particle filters avoids the Gaussianity assumption and our tests showed that these 
filters are particularly useful if the driving noise of the system has an asymmetric distribution.  In 
this case, the UKF and EKF perform comparably, but the UPF yields significantly improved 
position accuracy.  The UPF results were generally insensitive to the number of particles, and 
improvement could be obtained (in the case of longer GPS outages) using adaptive techniques 
that compensated for the UT’s assumption of symmetric noise probability densities. 
 From the various filters tested, we find that achieving few centimeters of positioning 
accuracy in dynamic environments requires non-linear filters, such as the UKF or UPF.  These 
filters cannot overcome the natural accumulation of IMU errors as the ranging solution update 
interval increases.  However, in all cases the new non-linear filters performed better than the 
standard EKF.  The best performance among all filters tested was obtained by the AUPF which 
accommodates non-symmetric sensor errors as well as highly dynamic trajectories. 
 These results were validated using actual cart-based and hand-held IMU trajectories in the 
laboratory that simulate typical field trajectories.  Laboratory tests were conducted using IMUs 
with different capabilities and along trajectories with different dynamics.  The positioning 
performance was evaluated for linear and non-linear, as well as adaptive and neural-network-
aided adaptive Kalman filter/smoothers.  As expected, the nonlinear smoothers, developed from 
a combination of adaptive unscented Kalman filter and RTS smoother (AUKS) yielded superior 
performance over the standard adaptive extended Kalman smoother.  The neural-network aiding, 
in particular, tended to decrease the difference in performance between benign and dynamic 
components of the trajectory. 
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 A Handheld Geolocation System (HGS) using a tactical-grade IMU was designed to obtain 
precise positions of a UXO detection system applied in relatively small areas (1.0m by 1.0m). 
Since the test was operated in a closed environment where no GPS signal was available, an 
automatic position tracking system was designed and implemented.  This would be comparable 
to GPS if a GPS antenna were mounted on top of the handheld system.  As before, the UPF 
performed generally best among all other (linear and nonlinear) filters.  However since the UPF 
needs a large number of samples to represent the a posteriori statistics in high-dimensional space, 
the Rao-Blackwellized Particle Filter (RBPF) was tested as an alternative to increase the 
efficiency of the particle filter.  The corresponding nonlinear smoothers that are based on 
forward/backward filtering techniques (EKS, UPS, and RBPS) were also tested and analyzed for 
two typical local handheld detection platform trajectories (sweep and swing).  On the whole, 
position accuracy improvements were achieved by applying nonlinear filter-based smoothing 
techniques (UPS and RBPS) in both the straight and curved sections of the trajectories.  The 
handheld geolocation system with a nonlinear filter-based smoother achieved the 
characterization and discrimination level of accuracy if the update rate of control points is less 
than 0.5Hz and 1Hz for the sweep and swing modes respectively.  Although the data collection 
using the swing operation can be done in shorter time, the sweep operation is generally better 
than the swing because the dynamics of swing operation is highly dynamic. 
 The improved performance of the IMU/GPS geolocation system using the novel estimation 
methods was again verified in the field on towed-vehicle and cart-based MEC detection 
platforms.  In collaboration with NRL personnel, we conducted tests at NRL’s UXO test site 
located at the Army Research Laboratory Blossom Point Facility in Maryland.  In addition, to the 
non-linear filters and smoothers, we employed the wave-correlation filter (which, however, 
requires a dual IMU system), as well as simple endpoint matching as an alternative to the 
smoothing algorithms.  The wave-correlation filter provided only modest improvement, while 
the endpoint matching yielded similar performance to the smoothing algorithms, due to the 
relatively benign (straight-line) trajectories that were tested. 
 Finally, we tested a self-calibration method in the field using our own cart-based geolocation 
system that included a dual IMU and GPS receiver and antenna.  The systematic errors of the 
inertial sensors could be calibrated in the static mode by orienting their sensitive axes in various 
directions relative to the Earth’s gravity and rotation vectors.  In this way biases, scale factor 
errors, and non-orthogonality errors in the accelerometer outputs were estimated, as well as bias 
errors in the gyro outputs.  It was also demonstrated that these prior calibrations in the field 
improved the inertial trajectory performance, at least for short (few second) update intervals. 
 A rudimentary cost analysis of the IMU/GPS geolocation system showed that it is 
competitive in terms of cost with respect to alternative systems that attempt to improve or aid the 
standard GPS ranging system.  However, the primary function of IMU aiding is more tuned to 
short-term bridging of GPS outages and providing much higher resolution than GPS can 
typically offer, similar to or better than laser-tracking systems.  IMU aiding is also distinguished 
by the fact that it requires no external support system and thus is completely autonomous and 
totally immune to external environmental influences. 
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