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Belief Theoretic Multi-Sensory Data Fusion
for Underwater UXO Identification

Executive Summary

Enormous difficulties arise in effective detection and identification of unexploded ordnance
(UXO), generally lying within harsh clutter-filled underwater environments, mainly due to ram-
pant imperfections in the gathered data (i.e. missing, incomplete, uncertain and/or ambiguous
entries). No single sensing technology can be both accurate and cost-effective for estimating
even the density and spatial distribution of UXO objects, let alone identifying them [24]. An
effective mechanism is required to enhance the discrimination capability by making use of various
heterogeneous data from different sensing modalities and resolutions.

This report details the findings from the activities in a one-year collaborative project between
engineering research groups from the University of Miami (UM) and the Florida Atlantic
University (FAU). The goals were set to carry out an initial exploration of technical problems
and technologies for the detection and discrimination of underwater munitions based on: 1)
optical and acoustic monocular and stereo imaging; 2) a novel framework for fusing heteroge-
neous data that is suited to the UXO identification problem; and 3) potential deployment of a
commercial ROV equipped with a suite of optical and acoustic sensors for data acquisition. The
expected outcome was to identify the most promising directions of future research within the
explored topics, where investment may be made for the necessary technical and technological
developments.

This report is organized in several sections, highlighting the suitability and limitations of
individual sensing technologies. These include high-frequency two-dimensional sonar video
imaging systems for short-range high-resolution target mapping, which is expected to be a critical
component of any multi-modality detection and identification system, and the potential in the
integration of optical and sonar technologies.
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I. INTRODUCTION

Aside from numerous unknown worldwide deep sea sites, munitions are present in millions
of acres of ponds, lakes, rivers, estuaries, and coastal ocean areas adjacent to active and former
Department of Defense (DoD) military installations. Chemical warfare material and unintentional
detonations from various munitions, including the bombs, projectiles, mortars, grenades, and
rockets can have a direct impact on human health and life. These threats also impact the
marine environment, and eventually also lead to human injury or death from the exposure,
toxic concentrations of chemical material washing ashore, and contamination of the food chain.

A SERDP/ESTCP three-day workshop in July-August 2007 was targeted at identifying critical
technological needs and a strategic plan to direct investments in the area of detection and
remediation of underwater UXO within 5-10 years. The workshop report calls for basic and
applied research on phenomenology, sensor development, signal processing and other supporting
technologies to address gaps in understanding, as well as system integration and demonstration
with existing technologies to address gaps in capabilities [30]. In particular, some recommenda-
tions include establishing the appropriate combinations of fully integrated platforms, sensors,
and navigation/positioning technology for different applications. Potential platforms include
autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs), and towed arrays,
while promising sensors include magnetometers, electromagnetic induction (EMI), magnetic,
optical, sonar/acoustic, chemical sensors, and laser line scanning sensors. A combination and
the integration of these technologies are necessary in order to handle the variability in bottom
conditions, water clarity and depth, size and type of munitions of interest, whether they are buried
or proud, etc. It is recommended that the initial test bed for the characterization and assessment
of suitable technologies should be within waters shallower than 120 [ft], consistent with the
Navy criteria for the inclusion of underwater sites in its munitions response program. The site
should be located in relatively calm conditions with low potential for mobility over time, and
readily accessible for mobilization of sensor systems. The bottom environment should be simple,
flat, sand or hard mud, and with few obstructions, allowing the assessment of various mapping
and reacquisition technologies in benign conditions. It is also conjectured that integrated systems
are needed not only to determine footprints of contamination in a wide area survey, but also to
perform detailed surveys for individual detected items, during a reacquisition process.

II. PROJECT OVERVIEW

A. Background

There has been a long history in the application of sonar data processing for subsea applica-
tions, because acoustic energy can penetrate through silt, mud and various sources of turbidity.
Sonar systems undoubtedly will play a critical role for UXO detection, and fundamental studies in
the modeling of acoustic responses in the underwater environments are critical in understanding
the significant variations in signatures with type/size of munitions, whether these are fully intact,
distorted or broken into munitions-related scrap, filled/empty, buried, partially buried or proud.
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Also, variations in the signature with the acoustic beam wavelength can provide the opportu-
nity to discriminate between objects of different size and reflectance characteristics. However,
conducting an extensive theory-based study and validation through controlled experiments were
far beyond the scope of this one-year seed project. Instead, we proposed an empirical study,
mainly targeted at assessing the potential advantages of color acoustic data from new generation
of two-dimensional high-resolution forward-scan (FS) sonar video systems for the detection of
UXO-like objects.

Where visibility allows, practically no sensing modality can match the information content
from optical image systems, due to high resolution and data rate, as well as the very rich visual
cues for target localization, discrimination and identification. The detection and classification
capabilities can be further enhanced by making use of a large-area visual map by mosaicing a
large number of images each covering only a small field of view. Here, the visual characteristics
of the site (e.g., a debris field) provide information at scales larger than a single target and (or)
small local region in the immediate vicinity. Furthermore, by collecting stereo data, one can
generate 3-D topographical maps for selected objects of interest that may be identified in some
region of the mosaic. Finally, a suitable framework is necessary that would allow the fusing of
heterogeneous raw and processed data to achieve UXO identification effectively.

Our study has explored the use of visual cues in sonar imagery in two ways. In the Multiple-
Aspect Fixed-Range Template Matching (MAFR-TM) approach, we merely rely on the acoustic
signature in the neighborhood of each target, both the direct reflectance and the shadow regions,
over multiple views from 0 to 360 [deg]. The goal to assess if the object type and material
properties can be established from the neighborhood information. In our second approach, a
data fusion method based on the Dempster-Shafer (DS) belief theoretic framework is explored
for the integration with optical data for target detection and classification.

B. Objectives

This one-year collaborative seed project, carried out by a team of researchers from the
University of Miami (UM) and the Florida Atlantic University (FAU), was aimed at exploring a
number of technologies for the detection and discrimination of underwater munitions: 1) optical
and acoustic monocular and stereo imaging; 2) a novel framework for fusing heterogeneous data
that is suited to the UXO identification problem; and 3) potential deployment of a commercial
ROV equipped with a suite of optical and acoustic sensors for data acquisition.

The project was designed to address some of the critical research and demonstration needs
identified in the SERDP/ESTCP workshop report. Specifically, the research components included
the assessment of a new generation of high-frequency 2-D sonar imaging systems for UXO
detection, and a demonstration of their capabilities, as well as the exploration of a novel method
for UXO discrimination and classification by the fusion of optical and acoustic data.

The objectives were 1) to explore the performance of each sensing modality alone; 2) to assess
the impact of each sensor for the detection and discrimination within the integrated heterogeneous
data fusion framework, and 3) to study how the strength(s) of each sensing modality may
overcome the weakness(es) of the other modalities. Based on these, we can subsequently explore
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in detail the establishment of an effectiveness mapping strategy and the development of UXO
detection and classification systems that are robust against imperfections of the data collected
in variety of underwater environments.

C. Proposed Plan and Testing

A comprehensive plan was formalized in the form of 1) theoretical developments within the
multi-modal data fusion paradigm, and other specific methods to facilitate its application to
optical and sonar data, e.g., the registration of optical and sonar data; 2) collection of data to
support the testing of various theoretical developments.

In addition to the pool facility, where experiments with ground truth could be readily carried
out, the plan was to select certain test sites in relatively calm conditions in shallow water depths,
readily accessible for sensor deployment (5-40 [ft]). These would include both benign conditions
- simple flat sandy or hard mud bottoms with few obstructions - and clutter that could potentially
interfere with UXO detection. Among candidate locations, we proposed:

• The dock and marina facility at the FAU SeaTech Campus – easy to access, set up and
conduct experiments from the shore, though limited to the water depth of about 7 [ft] at
high tide.

• Key Biscayne National Park, Miami, Florida – marked sites accessible for repeat experi-
ments at depths of 40 [ft], where we have previously conducted ROV experiments.

For targets, we selected objects of various sizes, shapes and material properties. These include
various cylindrical pipes mimicking inert munition as well as clutter, e.g., a steel pipe with 4-5
to 1 length to diameter (L-to-D) ratio, and PVC pipes of 8-9 to 1 L-to-D ratio.

Our goal was to place these targets within 2-3 areas of roughly 300-400 [sqm] in size,
to be imaged over time. Each, simulating a region of interest (ROI), was assumed to have
been identified in an earlier wide area survey (WAS). By carrying the data collection several
times within the first two quarters of the project, we hoped to account for variability of the
environmental conditions in our experiments.

Finally, the sensor deployment within the ocean site(s) was planned onboard a commercial
custom-built tethered remotely operated vehicle (ROV), recently purchased by the UM team.
The standard equipment includes: 1) pair of 1 M-Pixel digital optical stereo cameras; 2) analog
video-resolution navigation camera, 3) a DIDSON sonar video camera operating at 1.1/1.8MHz1;
4) Imagenex2, a 3-D scanning sonar operating at 675kHz with a maximum range of 50m; 5)
Trackpoint-III3 acoustic tracking/positioning system to establish the ROV position. Additionally,
the ROV electronics was designed to allow for the installation of a blazed-array BlueView4

DF-900/2250 sonar, operating at 0.9/2.25MHz, in conjunction with the DIDSON data.

1Trademark of Sound Metrics Corp., Lake Forest Park, WA.
2Trademark of Imagenex Technology Corp., Port Coquitlam, BC, Canada.
3ORE Offshore, West Wareham, MA.
4BlueView Technologies Inc., Seattle, WA.
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Fig. 1. FAU’s outdoor tank facility in Boca Raton (left) and marina at Sea Tech Campus (right).

D. Revised Plan

During the course of this project, certain difficulties and obstacles were encountered, mainly
dealing with data collection. Overcoming some within the time frame could not be achieved
without compromising some of the major objectives, and therefore certain adjustments to the
original scope became necessary.

First, software had to be developed for the effective use of our imaging systems on the ROV;
namely, the “concurrent acquisition of data (on the same run)” although not necessarily in
synchronous fashion. Also, the recorded data had to be displayed live to ensure proper operation
of the entire system. Unfortunately, the personnel recruited to work on the technical aspects
of the proposed project, namely image processing and data fusion tasks, were not trained for
the specialized tasks of developing a real-time acquisition and display system. In particular,
we determined that the objectives of the proposed work could be readily met by stand-alone
deployment of our systems, without the ROV. The final plan, discussed with and approved by
the SERDP Technical Program Manager, became to limit the scope of the experiments to the
FAU outdoor pool and marina facilities; see Fig. 1. We simply built individual cables for various
imaging systems.

Next, we were faced with high turbidity and thus very poor visibility due to adverse en-
vironmental conditions during a relatively long period of several months at the FAU marina.
A visibility of about 8-10 feet was necessary in order to collect optical data for site photo-
mosaicing, 3-D target reconstruction from stereo images, as well as optical and sonar image
registration to test our data fusion methods. As a result, we proposed and were granted a plan
revision in order to carry out these tasks solely with the data collected in the FAU outdoor pool.

The small UM indoor pool was also used for the calibration of the sonar equipment, and
the collection of some optical and acoustic data to test certain registration and sonar processing
algorithms.

5



III. OVERVIEW OF TECHNICAL WORK AND ACCOMPLISHMENTS

This study was focused on exploring the potential application of several technologies for the
detection and localization of intact UXO objects on the sea floor. The major accomplishments
during the project are as follows:

• Data Collection:
– Design and construction of a sensor rig to deploy multiple optical and acoustic cameras

for pool and marina data collection;
– Collection of a large database of sonar video clips with DIDSON and BlueView systems

in the outdoor pool and marina at the FAU facilities;
– Collection of some optical data in the outdoor pool for mosaicing, optical and sonar

image registration, and data fusion testing.
• Application of existing optical technologies and performance assessment

– Photo-mosaicing for scene interpretation (e.g., a debris field);
– stereovision for 3-D target shape reconstruction

• Theoretical and algorithmic developments:
– Optical and acoustic registration;
– 3-D object contour reconstruction by acoustic shadow analysis;
– MAFR-TM sonar processing technique for target detection and classification;
– DS-based data fusion

• Ground truth experiments and technology assessment;
• Performance of MAFR-TM algorithm;
• Integration of optical and sonar data with DS-based data fusion algorithm
One conclusive outcome of this investigation is that high-frequency 2-D FS sonar video

systems have high potential for UXO detection and classification. Having come to commercial
market mainly as a visualization tool for environments with limited and/or poor visibility,
these systems are undergoing continuous improvement that should enhance target discrimination
capability based on material properties. Imagery with higher resolution and target details is
expected with the emergence of more advanced hardware technologies and signal processing
techniques, as well as the implementation of design improvements.

Acquiring data under identical imaging conditions has allowed us to preform a direct com-
parison between two existing technologies, DIDSON and BlueView systems. Not surprising,
DIDSON provides better target details due to the higher spatial resolution associated with
narrower horizontal beam widths. Because of our time limitations, we focused our investigation
primarily on the application of our methodologies to the data acquired with a DIDSON system.

We have developed the Multiple-Aspect Fixed-Range Template Matching (MAFR-TM) tech-
nique mainly to assess the information content of the FS sonar image in the neighborhood of each
target, and how this would vary with the viewing direction. In this method, we make use of both
the direct reflectance and shadow regions in determining the object type and material properties.
Additionally, preprocessing the data for cross-talk reduction has suggested higher discrimination
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(a) (b)
Fig. 2. Camera assemblies for (a) pool and (b) marina deployment.

capability between metallic and non-metallic targets, even though our experiments were based
on matching these preprocessed images with target templates constructed from unprocessed data.

Our novel method for constructing a target’s 3-D occluding contour from overlapping optical
and sonar images was aimed to address the adverse impact of visibility limitations on contrast
and target details in optical images. First, the optical and sonar image positions of a minimum
of three features on the sea floor – potentially small markers with distinct acoustic and optical
reflectance properties – allow us to determine the orientation of the bottom surface relative to the
imaging platform. The balance of the computations rely solely on the visual information in the
sonar image, namely, the object’s cast shadow region and boundary. The immediate application
is to label occluding contours as straight or curved, in discriminating between manmade UXO
and clutter/natural objects, respectively. Although the shadow shape can change due to imperfect
boundary detection, clutter and various sources of occlusion, including sediment coverage, the
ambiguity may be partially resolved by imaging the target from various viewing angles. More
importantly, the DS theoretic framework is just the right paradigm to handle such ambiguities
that arise from imperfect data.

A distinct technical contribution of our work is a data fusion method based on the Dempster-
Shafer (DS) belief theoretic framework for the integration of data from multi-modal imaging
systems, as well as information from heterogeneous sources and other sensors. In our work, the
scope was restricted to evidence obtained from optical and sonar image data and the fusion of
this data via the widely used DCR and a recent DS theoretic evidence updating technique. In
light of the study we have undertaken and the lessons learned from it, we have identified several
promising avenues of research and exploration that are described in the last section.
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Fig. 3. Various targets with different shapes and reflectance properties; cinder block, dumbbell, as well as steel, Aluminum
and PVC pipes

IV. PROJECT TASKS

A. Data Acquisition

A significant part of the project was dedicated to data acquisition activities, resulting in a rather
large volume of recorded data, organized by time, sensor and location. Part of our effort was
expended to improvise and implement the new plan in place of the original proposed strategy. As
stated, ocean data were to be obtained by deploying the UM commercial ROV in depths of 40
[ft] or less within selected sites in the Miami Beach and Key Biscayne areas. While the platform
is designed to carry sonar and optical cameras, software for concurrent data acquisition with
various systems had to be developed. This could not be accomplished based on the expertise of
the personnel recruited for the image processing tasks, and thus suitable deployment strategies
for outdoor pool and marina sites had to be adopted.

For collecting the data in the 5 [m] deep FAU outdoor pool, two camera mounting assemblies
were designed and built; see Fig. 2. These were to support optical cameras, a single DIDSON
video camera and up to two BlueView sonar cameras, for both the pool and marina deployment.

The various sonar data were acquired with two different video camera types, namely, the
BlueView Technologies DF900/2250 and the Sound Metrics Didson US300. The salient features
of these sensors are:

• BlueView DF900/2250 operating at 900kHz and 2.25MHz: maximum range of 60m; 256
beams, each with horizontal and vertical widths of 1 [deg] and 20 [deg], respectively, spaced
at 0.18 [deg]; range resolution of 2.54 [cm]; and an update rate of up to 10Hz.

• Sound Metrics DIDSON US300, a dual-frequency sector-scan sonar operating at 1.1 and
1.8MHz: maximum range of 40 [m] (at 1.1MHz); either 48 (at 1.1MHz) or 96 (at 1.8MHz)
beams of 0.3 [deg] in horizontal and 14 [deg] in vertical widths. These are acoustically
focused with a field-of-view of roughly 28.8 [deg], and update rate of up to 21Hz.

Fig. 3 depicts a number of metallic and non-metallic targets; namely, a 15 [lb] dumbbell, a
cinder block, and cylindrical tubes made of steel, aluminum, and PVC. The acoustic signatures
of these objects were obtained in the pool from multiple viewing directions at 3-4 frequencies in
the 0.9-3.0MHz range. The main purpose of imaging was to test the functionality of the sonar
camera under controlled conditions. Specifically, these objects were used to assess the sonar
image quality for objects with different shape and reflectance properties, and to determine if
these objects were visually identifiable from their images.

Sonar views of each of these targets at three orientations, acquired by a DIDSON camera are
given in Fig. 26 in Appendix B. Based on this initial assessment, the UXO-like objects (steel,
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steel pipe aluminum pipe PVC pipe
Diameter & Length Diameter & Length Diameter & Length

4 [in]×18 [in] 2.5 [in]×22.25 [in] L 2.75 [in] × 21.5 [in]

(a) (b) (c)
Fig. 4. Three cylindrical targets used in the construction of the source image data base for the testing of the MAFR-TM
technique

aluminum and PVC cylinders) were used in the detection and classification tests in the pool and
in the marina. Furthermore, although numerous sonar data sets have been collected in both the
pool and the marina, the processing for target detection and classification has been limited to the
data with the highest resolution; namely, the images from a DIDSON with 0.3 [deg] horizontal
beam width, operating at 1.9 [MHz].

To explain, we have noted from our data that the BlueView images with lower azimuth
resolution do not provide sufficient target details for the application of our methods. However,
it is also fair to say, based on the BlueView data we have collected, that this sonar can be
an effective tool to discriminate between metal and non-metal targets. To be precise, blob-like
appearance of small objects is insufficient to obtain detailed structural information about a target
shape, from either intensity profile or cast shadow geometry that our two methods exploit.
However, metal objects have a significantly stronger return compared to non-metal targets for
most viewing angles. As we present some of our data, this can be assessed qualitatively from
side-by-side DIDSON and BlueView images, acquired under similar viewing geometry.

We had allocated two Mpix analog progressive JAI CV-M77 cameras, with 100 [ft] cable,
exclusively for pool and marina deployment during the entire project. Unfortunately, these
cameras malfunctioned during one of the initial marina data acquisition operations. In their
place, we had to make use of two 1 [Mpix] pointgray digital color cameras, that are part of the
UM ROV imaging cameras. Thus the 600 [ft] ROV tether had to be hauled with the cameras
between the FAU outdoor pool (Boca Raton campus), the FAU marina at the Sea Tech Campus
(Dania Beach, FL), and the UM indoor pool (Coral Gables, FL).

1) Tank Data: We have recorded a large amount of data in both the UM indoor and FAU
outdoor tanks; Appendix B depicts samples from this extensive data base. Some of the data sets
have been utilized to test and demonstrate the various aspects of our technical work. Due to
the limited size of the UM indoor pool, the use of recorded data was primarily to calibrate the
optical and sonar cameras, and to carry out the initial tests for specific algorithms; e.g., optical
and sonar image registration. In addition to these, various sonar and optical images of certain
targets were recorded in the FAU outdoor pool.
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Fig. 5. Tank (top) and marina (bottom) setups.

Optical images were recorded in the FAU outdoor pool to build a site mosaic, to generate 3D
topographical maps from stereo data, and to use with the sonar data in the application of our
DS-based data fusion algorithm.

Additionally, optical and sonar images of targets with different material properties were
recorded at different orientations relative to the sonar. The sonar component, namely the DIDSON
frames, form the data base of source images for the application of MAFR-TM technique, which
is described in section IV-B4. Our sonar data sets were acquired under similar settings over
a period of approximately 9 months. All together, they comprise an extensive record of sonar
imagery for cylindrical targets with different material properties and broad spatial and temporal
resolutions.

Fig. 4 depicts three cylindrical targets, made up of heavy gage steel, aluminum and polyvinyl
chloride (PVC) with a minimum length to diameter ratio of 4:1. The sonar and optical images in
this data set were recorded at a fixed target distance of 3 [m] at 36 different orientations, from
0 [deg] - 350 [deg] in 10 [deg] increments with respect to the camera. This comprise a total of
108 sector-scan sonar as well as optical images per target, with no obstructions, occlusions, and
very limited bottom roughness.

To collect these images, the imaging system was mounted on the assembly shown in Fig. 2.
Secured at one end of a 5 [m] cantilever beam, approximately 3 [m] from the center of rotation,
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(a) (b) (c)
Fig. 6. Sample data of steel cylinder acquired in outdoor pool with (a) DIDSON and (b) BlueView, and (c) with an optical
camera.

Fig. 7. Setup for target imaging with clutter in both outdoor tank and marina.

the target is imaged at a 15 [deg] viewing angle; see Fig. 5 (top). Fig.6 depicts a sample set of
DIDSON, BlueView and optical images.

For testing the MAFR-TM technique, other images were recorded after sparse false targets
(clutter) were added to the scene, for a more realistic aspect to the data; see Fig. 7. To maintain
the same geometry for pool and marina testing, a 2.5 [m] × 2.5 [m] compact portable fixture
was designed. It consists of a square PVC border attached to a plywood base. By running mono-
filament lines across in both directions, we constructed a grid to which the target and clutter
can be attached. Figs. 8(a-d) are sample BlueView and DIDSON images recorded in the outdoor
tank.

2) SERDP/ESTCP Data: We had originally proposed to obtain two data sets from ESTCP
under projects SERDP UX-1322 and ESTCP-200324 [1], [19], for the initial testing of our data
fusion algorithm. These are 1) magnetometer from DUCK data set collected during MTA survey
in parts of the Currituck Sound, adjacent to the former Duck Naval Bombing Range North of
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(a) (b)

(c) (d)

(e) (f)
Fig. 8. Sample images acquired in FAU marina, with (a,b) BlueView at 120 and 160 [deg] and (c,d) DIDSON at 0 and 120
[deg] relative to the target. (e,f) optical stereo pair at about 2 [ft] distance.

Duck, NC [19]; 2) Pueblo data set [1]. We acquired both sets, and after some initial efforts, we
were able to decode the first, but faced with problems in decoding and file formats of the latter.

12



Additionally, having no ground truth, we assessed this task as NO-GO. Instead, we used some
data from the UM tank for our initial tests.

3) Marina Data: A large part of our data set was obtained at the dock facility of the FAU
SeaTech campus. The portable fixture supporting the target and clutter objects was moved to
the shallow waters of the FAU marina, a maximum depth of 2.2 [m] at high tide. A soft muddy
bottom, turbid waters, and some target aging with biological growth provided a realistic testing
environment, where detecting the target would often become difficult even by human eye. In par-
ticular, we encountered more serious variation from the sediments than from aging. Specifically,
mud slowly would deposit on the portable target frames in the marina. The partial coverage of
the target would affect its detection based on shape characteristics at high frequencies. Also,
the temporal variations in environmental conditions – currents, waves, etc. – was responsible
for changes in the sediment amount and distribution, thus resulting in variations in the target
acoustic signature recorded at different times.

In order to acquire the data in the marina, the cantilever beam was secured to a floating barge
that was fixed in place next to the FAU research vessel R/V Lee; see bottom row in Fig.5. Also,
a more compact sensor mount was built to deploy the sonar and optical cameras, as shown in
Fig.2(b). As in the pool data, the target alone serves as the template (reference). The source
images of the target with clutter (for testing) were acquired at a fixed range of 3 [m] at 36
different orientations of 0 [deg]- 350 [deg] in 10 [deg] increments. Fig. 8(a,b) depict two sample
images acquired with a BlueView sonar at 120 and 160 [deg], and with the DIDSON system at
0 and 120 [deg] angles relative to the target, respectively.

While we were able to record a large set of acoustic data in the marina during a 9 month
period, we have little success with optical video/stereo imagery, facing turbid conditions due to
adverse weather through most of late Fall’09 and Spring’10 seasons. Fig. 8(e,f) depict a sample
stereo data at only a couple feet target distance. In comparison, we had planned for a reasonable
visibility at about 6 [ft] to record useful data for our photo-mosaicing and stereo reconstruction
algorithms. Due to these adverse conditions, we moved our optical data acquisition set up to the
outdoor pool at the FAU Boca Raton campus, at roughly the half way point of our project.

B. Data Processing

As described, we have collected some limited data in the UM indoor water tank for the initial
testing of our algorithms, an extensive set of pool and marina acoustic data, as well as optical
data in the FAU outdoor pool.

1) Test Site Mosaic Generation: We were involved in the development of the initial automated
system for the generation of high-resolution mosaics from thousands of images, originally
targeted for the monitoring and health assessment of coral reef communities over 100’s [sqm] in
area [27]. Such a large area map can play a significant role in UXO localization and identification,
since decision making can be made based on large-scale visual characteristics of the site; e.g., a
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debris field, rather than just a single target and (or) a very small local region in the immediate
vicinity.

As we demonstrate, the quality and accuracy of a mosaic is directly tied to the visual
information content of the scene surfaces. Ideal characteristics include strong surface markings
and texture, reasonably uniform illumination over the region being imaged in each frame, and
small topographical variations relative to average distance to the scene.

2) 3-D Reconstruction: Binocular stereo imaging has been established as a popular approach
in reconstructing 3-D terrestrial maps of terrains and objects, from pairs of overlapping 2-D
optical images. It has also been employed in underwater environments with good visibility,
however, it becomes constrained or practically ineffective with increasing turbidity. In particular,
while the matching of certain distinct features in two views gives their 3-D positions, this falls
far short of constructing a dense 3-D map as a target structural descriptor.

In addition to the generation of a mosaic, our goal was to explore if 3-D structural information
can potentially enhance object characterization and classification, and (or) resolve potential
ambiguities. Rather than building a 3-D topographical map of the entire site from stereo images,
which is possible but computationally demanding, one can effectively construct a high-resolution
3-D map over regions of the mosaic where potential targets may exist with higher probability.

3) Optical and Acoustic Image Registration and 3-D Reconstruction: A potential UXO target
is not always detectable in every view and/or imaging modality, however, locating it in some
view(s) and one of the two image modalities can significantly enhance the detection in other
views and (or) modality. In our application, we are interested in the registration of 1) images
within the same modality, namely optical or sonar images, e.g., to build a composite mosaic,
acquired as the sensor platform navigates over the a potential debris field; 2) multi-modal data,
i.e., optical with sonar, in order to fuse “opti-acoustic visual cues” for target detection and
classification.

Image Registration: Optical and sonar cameras each have different field of view and operating
range. Thus, it is likely that the sonar and optical images to be registered are not recorded
simultaneously at the same sensor platform position, but rather at different times and platform
positions, as we navigate over the site. This suggested that knowing the platform position at image
acquisition times can be useful to address the registration problem. In particular, for optimal
data fusion through space and time, the estimated vehicle motion and/or position must be highly
precise. In addition, the accurate estimation of the platform trajectory is important for the effective
execution of a local search, revisiting the same site and other navigation related capabilities.
However, fundamental problems in vehicle navigation are too complex to be addressed adequately
within the scope of this one-year seed project.

Various methods can be applied to register data from the same sensing modality that may
have been obtained at different times and (or) sensor positions [23], however, it is not always
easy to do the same for images from different modalities due to dissimilar nature of the image
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formation physics.
The multi-modal image registration problem can be simplified by placing and making use

of distinct markers on the sea floor. By locating them and establishing the so-called “opti-
acoustic correspondences” – i.e., the association between the optical and sonar image positions
of corresponding pairs – we can attempt to estimate the transformation between a pair of
overlapping sonar and optical images. In practice, employing markers with distinct optical and
acoustic reflectance characteristics can be adopted as an effective strategy to simplify both the
intermodal and intramodal registration problems in difficult environments, where the identification
and matching of natural features in two views is a formidable task.

The underlying mathematical model of the transformation between overlapping sonar and
optical images is relatively complex, and depends on both the relative pose of the two cameras
and the scene geometry. For a planar scene (e.g., the sea floor), it simplifies somewhat and can
be approximated by a fixed up-to-scale linear transformation:

λpo = Hps, (1)

where po = (xo, yo, 1) and ps = (xs, ys, 1) are the homogenous coordinates of corresponding
optical and sonar image points, H is a 3×3 transformation matrix, and λ is a feature-dependent
scale factor. The sonar image is defines by (xs, ys) = (ℜ sin γ,ℜ cos γ). Once H is estimated
from the data, it can be applied to any sonar image point ps to determine the corresponding
optical position up to the scale λ. The absolute position (xo, yo) is determined by dividing the
result Hps by the third component λ. Conversely, the sonar image match of an optical point is
similarly determining by applying the inverse transformation H−1. We can fix H with a minimum
of 4 opti-acoustic correspondences of features on the sea floor, giving us 8 linear equations in
8 up-to-scale unknowns of the transformation. The registration is accurate over the sea bed, and
sufficient for smaller targets; it is somewhat approximate for larger objects.

As a selected example, consider Figs. 9(a-c) depicting the sonar and optical data collected in
the UM indoor water tank, and the superposition of the same two images after registration in the
red and blue channels of a color image. Suppose the goal is to locate the metallic cylinder and
two coral rocks between the two long PVC pipes. In this example, the images can be registered
on the plane defined by points on the top surface of the two PVC pipes, about 2 inches above
the tank floor. The rough registration of these other 3 objects can often be sufficient to establish
the association between their sonar and optical views, track them over multiple views, and fuse
the multi-modal visual information for target classification.

As we note in (c), the registration of optical and acoustic images based on the above linear
model leads to a good alignment over the flat floor. Although somewhat rough, the alignment
of 3-D objects is adequate to restrict the search for each object, missed in one modality, to a
small region around the position where it can be detected more readily in other modalities. We
elaborate on the process next.

Object Segmentation: Many segmentation and clustering algorithms can be applied to locate
potential targets of interest in an image, depending on a priori knowledge about the number
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(a) (b) (c)

(d) (e) (f) (g)
Fig. 9. (a,b) Overlapping optical and sonar views; (c) registered over the plane defined by the two PVC pipes. (column d)
selected 3-D targets with different visual characteristics in the optical image and (column e) registered views. In absence of
a priori information about number and visual properties of these targets, segmentation results is rather poor by applying an
optimum global threshold over the entire image based on simplistic bimodal distribution model (column f)). Despite coarse
image alignment of these 3-D targets, locating each in either/sonar image modality enhances ability to locate it in other/optical
view, by adjusting detection parameter(s) optimally based on intensity distribution within region around each target (column g).
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and each object’s visual characteristics. The segmentation based on the simplistic bimodal
distribution model applies well with one or more targets of similar mean intensity within a
distinct background. It requires the selection of an optimum threshold for the entire image. The
results in column (f) shows the deficiency of the model, where the objects of interest each can
have a different mean intensity. The metal pipe and the brighter coral are partially segmented,
while the darker coral is lost in the background. However, the model can produce good results
when applied to a a local region around each object in one imaging modality, based on the
knowledge of its position in the other modality, and only a rough alignment between the two
views over the target of interest, as demonstrated in column (g).

The k-means clustering, an effective unsupervised learning algorithm, is a generalization for
segmenting an image into k clusters, each corresponding to the background and one of several
targets with a unique mean intensity. This can also apply to UXO targets, where the visual
appearance can vary significantly in both the optical and sonar images due to environmental
conditions, occlusion and sediment coverage, variations in reflectance with viewing geometry,
shading and cast shadow, etc. The goal is to segment the image into regions corresponding to
all instances of varying UXO appearances, other natural objects, as well as the sea floor. The
main complexity in applying the k-means method is that the performance can be sensitive to
the number of clusters, and the distribution of each object intensity.

Figs. 10(a,b) depict a another sample pair from our water tank data sets, with overlapping
sonar and optical images of targets with different shapes. In addition to the original optical
image (b), we have enhanced the same view in (c) after enhancement for better visualization. In
the sonar image, we have numbered various objects. Applying the k-means algorithm to object
7 with 2-4 clusters, we obtain different results. As noted in (e), a bimodal distribution model
assuming 2 clusters can produce very good results when applied to a small region around the
potential target. While suitable when applied to a larger or the entire image region, assuming a
larger number of clusters can lead to over segmentation, over the confined search window; see
(f) and (g).

Reconstructions of 3-D Occluding Contour: Binocular stereo imaging is a popular approach for
reconstructing 3-D terrestrial terrains and objects, from pairs of overlapping 2-D optical images.
It has also been employed in underwater environments with good visibility, however, it becomes
constrained or practically ineffective with increasing turbidity. In particular, while the matching of
certain distinct features in two views gives their 3-D positions, this falls far short of constructing
a dense 3-D map as a target structural descriptor.

Next, consider an overlapping pair of optical and sonar images, which can be treated as multi-
modal stereo views, as in Figs. 9(a,b) and 10(a,b). In [21], we have proposed opti-acoustic stereo
imaging as a novel paradigm for 3-D object reconstruction. However, this method also requires
sufficient visibility to image targets of interest with reasonable details in the optical image, but
more importantly, we have to address the very complex opti-acoustic correspondence problem,
namely, establishing the match of each sonar feature in the optical view, and vice versa.

In this work, we have developed a new approach that exploits the information is sonar images,
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(a) (b) (c)

(d) (e) 2 (f) 3 (g) 4 (h)

Fig. 10. (a-b) One sample sonar and optical images from a data set acquired in UM indoor tank with clear water. (c) enhanced
optical image for better visualization. (d-g) A particular object (labeled 7), and segmentation results by apply k-means with 2-4
clusters. Bimodal distribution for 2 clusters can produce very good results when applied to a small region around the potential
target. Region can be over segmented when a larger number of clusters is assumed.

while minimally relying on optical views to reduce sensitivity to visibility limitations. We make
use of the same feature correspondences employed in the registration of optical and sonar views,
as well as the shadow region for each object in the sonar image; see Fig. 10(h). Utilizing these,
we construct the object’s 3-D occluding contour. Fig. 11 depicts different objects from the scene
in Fig. 10, each taken from one of several sonar views in the set. As one can note, the object’s
cast shadow on the background sea floor surface can encode valuable information about an
object’s shape and its occluding contour in high-frequency 2-D sonar images.

Recall that we discussed employing a minimum of 4 seabed feature correspondences to register
the sonar and optical views. We can apply the opti-acoustic stereo solution to a minimum of 3
such matches, denoted {ps, po}, to determine their 3-D positions P [21]. Now, these allow us
to determine the plane n of the sea floor. Knowing the plane, and given any sea floor feature
in the sonar image, we can determine its 3-D position: {ps;n} → P. More precisely, the sonar
position gives the range ℜ and azimuth γ measurements, and we can calculate the elevation
angle ϕ from n [22]. Referring to Fig. 12, the cast shadow contour C for a potential target in the
sonar image can be identified by either edge detection or computing the boundary of the shadow
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(a) 1 (b) 2 (c) 3 (d) 4

(e) 5 (f) 6 (g) 7 (h) 8
Fig. 11. Regions around each object taken from different sonar images in the data set, showing that an object’s shadow provides
cues about object’s shape and its occluding contour.

region. Taking each sea floor point P with spherical coordinates {ℜ, γ, ϕ} on the cast shadow,
the corresponding iso-azimuth frontal acoustic beam a can be traced to the occluding contour
point P′ with the spherical coordinates {ℜ′, γ, ϕ}; this lies on the object/shadow boundary, and
has a smaller range value ℜ′ < ℜ than the shadow/background boundary point P. Repeating
for each cast shadow boundary point, this procedure allows us to reconstruct the entire 3-D
occluding contour O of the object.

To summarize, we need only the positions of a minimum of 3 seabed features from the optical
image, and their correspondences in the sonar images. Either distinct natural sea floor features
or markers dropped on the seabed may be employed. The balance of information to construct
each target’s occluding contour in 3-D comes from the sonar image, by identifying the boundary
of the shadow that is cast on the sea floor,

4) MAFR-TM Technique: The Multiple-Aspect Fixed-Range Template Matching (MAFR-TM)
is a sonar-specific methodology to detect and classify the UXOs using the low resolution sonar
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Fig. 12. Reconstruction of occluding contour from shadow boundary of sonar image C, by tracing from boundary points P
along iso-azimuth frontal acoustic beams a to points P ′ on the occlusion boundary O.

data captured by the DIDSON US300. (It can be easily extended to the BlueView sonar data.)
This technique is designed to detect and classify a target of high characteristic impedance in an
environment that contains similar shaped objects of low characteristic impedance. The MAFR-
TM algorithm is based on the proven concept of the template matching technique, which is a
two-dimensional correlation between a reference image (template) and an image collected during
field operations (source image). In the MAFR-TM algorithm, the template matching method
is efficiently implemented in the wave number domain using two-dimensional Fast Fourier
Transforms (2D-FFT) and wave number leakage is reduced with an optimized separable two-
dimensional Kaiser window. MAFR-TM relies on the fact that UXO detection and classification
is a re-acquisition process: the sonar is expected to scan a suspicious area, where UXO is
likely to be present. Hovering vehicles (remotely piloted or autonomous) equipped with sector
scan-sonar can follow a circular trajectory and create a 360 [deg] view of a small area (on the
order of 20 [sqm]). MAFR-TM relies on a known vehicle trajectory to generate the templates
under ideal conditions: in a tank with no clutter, limited bottom roughness and in the presence
of a single target at a known aspect angle and range. The templates are grouped into classes,
each class representing a specific object (in this case, a cylinder) observed at various aspect
angles. Therefore, MAFR-TM does not need the two-tiered training-and-classification process
of traditional computer-aided-detection-and-classification software. Instead, it can use a known
database and perform the detection and classification “on the fly,” so long as the vehicle keeps the
potential target within a certain distance window. The platform does not have to follow exactly
the same trajectory for MAFR-TM to work, as this technique defines areas where the target is
likely to be present. The MAFR-TM implementation is covered in detail in Appendix A.
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C. Multi-Modal DS-Based Data Fusion

The enormous difficulties associated with effective detection of the UXO, generally in harsh
clutter-filled underwater environments, are related to several factors:

1) The rampant imperfections in the gathered data (missing, incomplete, uncertain and/or
ambiguous entries).

2) The need for heterogeneous data of different modalities and resolutions to enhance discrim-
ination capability. In fact, no single sensing technology has been both accurate and cost-
effective for estimating even the density and spatial distribution of UXO objects, let alone
identifying them. So, at any instant, all available data have to be exploited to the fullest
extent possible. This may include the need to account for auxiliary evidence sources (e.g.,
domain experts) that often play critical roles despite their significant qualitative component
(e.g., subjectivity of, and conflicts in, expert opinions).

3) Data sources may possess questionable reliability and integrity.
4) The need to utilize both stored (e.g., historical databases, domain expertise) and streaming

(e.g., sensor) data.
Thus, the need of a framework capable of modeling and reasoning with data imperfections

is obvious. Conventional approaches for effective detection of signatures encoded in the data
typically utilize methods and tools from signal processing, Bayesian inference/learning, and of
late, data mining and machine learning that are mainly posited on the Bayesian framework.
To realize high detection accuracy in underwater environments, these methods must effectively
deal with the various types of imperfections in both gathered evidence/data and signatures, viz.,
missing, incomplete, uncertain and/or ambiguous data, data plagued by severe clutter, multi-
modal and heterogeneous data streams and stored data, qualitative aspects of domain expert
information, UXO object signatures developed from imperfect evidence, etc.

When full probabilistic information is available, these Bayesian-based methods provide per-
haps the best possible results. But, in the environment of concern here where data imperfections
are rampant, it is unrealistic to assume the availability of prior information regarding the under-
lying probability distributions. Ignoring these imperfections and making unrealistic assumptions
regarding the underlying probabilistic information can lead to inferences that are untrustworthy
and detection performance that is unacceptable.

What we need is a framework that is capable of properly modeling, and not neglecting,
the various data imperfections throughout the process from raw data to fused information to
decision-making. The Bayesian framework is not well suited for this task. Its effectiveness is
muted by the requirement of numerous a-priori assumptions about priors (e.g., equi-probability
allocation when a value is missing assumes that it is missing-at-random (MAR)) and models
that are difficult to justify and ill-suited for environments rife with data imperfections. The main
theoretical theme of this project was the assessment of a novel data fusion paradigm to enable
decision making based on imperfect heterogeneous data.

This data fusion paradigm is based on the Dempster-Shafer (DS) belief theoretic framework
[32] which appears to possess certain advantages over other alternatives for representing and
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working with data imperfections [2]–[4], [37]. During the last few decades, DS theory has
emerged as one of the most dominant frameworks in uncertainty processing. This recent interest
in DS theory is evident from the wide spectrum of problem domains it has already been applied
to. These applications range from, but not limited to, basic signal processing techniques, such as,
detection [6], [8], [9] and identification [5], [10], [17], to general information filtering techniques,
such as, rule mining [14], collaborative filtering [34], and others [7], [11], [13]. The recent
interest in fusing the more qualitative ‘soft’ information [36] into the decision making process
has resulted in more flexible DS theoretic evidence updating and combination strategies [33].

In the work described below, we explore how these latest DS theoretic evidence updating
schemes can be used to improve the underwater UXO detection and characterization tasks. The
use of these updating schemes enables one to:

1) work with heterogeneous data possessing non-identical ‘scopes of expertise’,
2) conveniently account for source reliability, and
3) make use of ‘qualitative’ domain-expert evidence.
As stated, we had scheduled for the application to existing magnetometer and electromagnetic

array data from ESTCP, as well as to 2-D optical and sonar data collected in an outdoor tank and
in the ocean. Unfortunately, this data lacked ground truth to establish quantitative assessment,
and so the recorded optical and sonar imagery were the basis for illustrating these techniques
via an experiment to characterize underwater objects using optical and acoustic cameras. The
detection ‘signatures’ of objects are chosen to be the acoustic shadow characteristics.

V. DEMPSTER-SHAFER (DS) THEORY RELATED WORK

A. Basic Notions

In DS theory, the total set of mutually exclusive and exhaustive propositions of interest (i.e.,
the ‘scope of expertise’) is referred to as the frame of discernment (FoD) Θ = {θ1, . . . , θn} [32].
A singleton proposition θi represents the lowest level of discernible information. Elements in the
power set of Θ, 2Θ, form all the propositions of interest. We use A \B to denote all singletons
in A that are not in B; A denotes Θ \ A.

Definition 1. Consider the FoD Θ and A ⊆ Θ.
1) The mapping mΘ(•) : 2Θ 7→[0, 1] is a basic belief assignment (BBA) or mass assignment if

mΘ(∅) = 0 and
∑

A⊆Θ mΘ(A) = 1. The BBA is said to be vacuous if the only proposition
receiving a non-zero mass is Θ.

2) The belief of A is BlΘ(A) =
∑

B⊆A mΘ(B).
3) The plausibility of A is PlΘ(A) = 1−BlΘ(A).

The DS theory models the notion of ignorance by allowing the mass to composite propositions
(i.e., a non-singleton proposition). A proposition that possesses non-zero mass is a focal element.
The set of focal elements is the core FΘ; the triple {Θ,FΘ,mΘ(•)} is the corresponding body of
evidence (BoE). While mΘ(A) measures the support assigned to proposition A only, the belief
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represents the total support that can move into A without any ambiguity; PlΘ(A) represents the
extent to which one finds A plausible. When focal elements are constituted of singletons only,
the BBA, belief and plausibility all reduce to a probability assignment.

B. Evidence Combination

Definition 2 (Dempster’s Combination Rule (DCR)). The DCR-fused BoE E ≡ E1⊕E2 =
{Θ,FΘ,mΘ(•)} generated from the BoEs Ei = {Θi,FΘi

,mΘi
(•)}, i = 1, 2, when Θ ≡ Θ1 = Θ2,

is
mΘ(A) =

∑
C∩D=A

mΘ1(C)mΘ2(D)/(1−K), ∀A ⊆ Θ,

whenever K =
∑

C∩D=∅ mΘ1(C)mΘ2(D) ̸= 1.

Note that K ∈ [0, 1] is an indication of the conflict between the evidence provided by the BoEs.
Hence, K is referred to as the conflict between the BoEs being fused. The DCR’s difficulties in
fusing conflicting BoEs are well documented. The requirement that the two FoDs being fused
be identical constitutes another drawback associated with the DCR.

To fuse evidence generated from non-identical FoDs Θ1 and Θ2 (so that Θ1 ̸= Θ2 and Θ1 ∩
Θ2 ̸= ∅), one can simply ignore the differences in the FoDs by having each source allocate
zero mass to propositions that are not within its own FoD and continue applying DCR. So,
this approach assumes that each source can discern Θ1 ∪ Θ2 and ignores the fact that some
propositions are not within its scope of expertise. The counter-intuitive conclusions this approach
may generate are well documented [15]. In the deconditioning approaches, each source would
artificially introduce ambiguities into its evidence so that its own FoD is ‘expanded’ to Θ1∪Θ2.

C. Conditional Update Equation (CUE)

The conditional approach to fusing evidence ‘conditions’ or ‘updates’ the already available
evidence with respect to what both FoDs can discern [16]. Once the conditioning operation is
performed, each source invokes a strategy to incorporate its originally cast evidence that does
not belong to Θ1 ∩Θ2. This approach enables a source to update its own knowledge base, and
exchange information with other sources for the express purpose of refining its own knowledge,
without having to continually ‘expand’ its FoD.

The conditional update equation (CUE) in [33] embraces this conditional approach. The
identical FoDs case of CUE in [26] is applicable when FoDs of all evidence sources to be fused
are identical. To explain, consider the two BoEs Ei[k] with Θ ≡ Θ1 = Θ2. The CUE in [26]
then yields the update E1[k + 1] ≡ E1[k]▹E2[k], ∀k ≥ 0, of E1[k] as

BlΘ1(B)[k + 1] = α[k]BlΘ1(B)[k] +
∑
A⊆Θ2

β(A)[k]BlΘ2(B|A)[k],

where BlΘ2(A) > 0 and the parameters {α[•], β(A)[•]} are non-negative and satisfy

α[k] +
∑
A⊆Θ2

β(A)[k] = 1,∀k ≥ 0, (2)
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with β(A)[•] = 0, ∀A ̸∈ FΘ2 [•].
The equivalent mass update equation has the same form and is given by

mΘ1(B)[k + 1] = α[k]mΘ1(B)[k] +
∑
A⊆Θ2

β(A)[k]mΘ2(B|A)[k].

The conditional operation in the CUE is implemented using the Fagin-Halpern (FH) DS
theoretic conditionals [12], as described below:

Definition 3. For E = {Θ,FΘ,mΘ(•)}, A,B ⊆ Θ with BlΘ(A) > 0, the conditional belief of
B given A is

BlΘ(B|A) = BlΘ(A ∩B)

BlΘ(A ∩B) + PlΘ(A \B)
.

The conditional plausibility PlΘ(B|A) is given by a counterpart equation.

A result that can be used to efficiently implement the CUE has recently appeared in [35]:

Theorem 1 (Conditional Core Theorem (CCT)). Consider the BoE E = {Θ,F,m(•)}. Then,
m(B|A) > 0, A ∈ F̂, iff B can be expressed as B = X∪Y , for some X ∈ in(A), Y ∈ OUT(A)∪
{∅}, where in(A) = {B ⊆ A | B ∈ F} and out(A) = {B ⊆ A | B∪C ∈ F, ∅ ̸= B, ∅ ̸= C ⊆ A}.

Remark: The conditional computations may take significant amount of time and computational
resources, especially when the FoDs are large. The CCT can be used to efficiently implement
the CUE and other conditional based algorithms.

D. DS Theoretic Characterization of Optical and Acoustic Data and Problem Formation

Optical cameras are very useful for identifying the objects in relatively clear water, especially
when the objects have sufficient texture or surface markings. However, they can quickly become
ineffective is turbid waters. However, sonar cameras are robust under these conditions since
acoustic energy can penetrate through silt, although identifying objects from sonar images is not
so trivial. In addition, there can be significant variations in acoustic signatures with type/size
of munitions, whether these are fully intact, distorted or broken into munitions-related scrap,
filled/empty, buried, partially buried or proud. We next explore how the DS theoretic framework
may be applied to fuse the visual cues in optical and sonar images, overcoming their shortcomings
and exploiting their advantages.

If the positioning of the acoustic camera with respect to the target is known, and if the shape
and dimensions of the sought after target is known, the shadow of the target can be characterized
under certain conditions. For instance, spherical and cylindrical targets cast different shadows.
The discrimination may be difficult when the targets are laid on the ground. However, this can
be overcome by analyzing the shadow from different perspectives or viewing angles. One can
also make use of the evidence from optical cameras to improve the characterization task if/when
such information is available. To reduce the uncertainty and for robust decision making, evidence
from both optical and acoustic cameras over different views can be combined.
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Let Θ = {θ1, . . . , θn} be the set of targets of interest. Once an object is observed, optical
sensor provides the BoE EO = {Θ,FO,mO(•)} which models the optical evidence. Similarly,
sonar sensor provides the BoE ES = {Θ,FS,mS(•)}. The objective is to obtain the fused BoE
E = {Θ,F,m(•)} to characterize the object observed. We seek for a method to obtain the fused
BoE E for the task at hand by exploring different possible ways of fusing the available evidence.

Suppose an object, say θ, is viewed. We want to determine if this object θ is the same as
one of the target types θ1, . . . , θn. For the viewed object, we come up with two models for
optical and sonar camera views. For instance, take the DS theoretic model EO for the evidence
obtained from the optical camera. This model represents how likely θ belongs to one of the target
types mentioned above based on the evidence obtained from the optical camera. Say we have
m(θ1) = 0.9, m(θ2) = 0.1, for a certain view. This can be interpreted as evidence in support of
the viewed object being θ1 with 90% confidence, and θ2 with 10% confidence. Now, we form
models (i.e., BoEs) for both optical (BoE is EO) and sonar (BoE is ES) for each view, i.e.,
for viewing angles α = 0, 30, . . . , 150. The objective is to explore different ways of fusing this
evidence (i.e. combining available BoEs) to characterize θ into one of the target types θ1, . . . , θn.

VI. RESULTS

A. Test Site Mosaic Generation

As stated, optical images were not acquired in the marina due to the high turbidity during
our scheduled data acquisition timetable. As a result, the construction of the site photo-mosaic
was limited to the data collected in the FAU outdoor pool data. Collecting stereo data, we have
employed the images from the left and right cameras, allowing us to minimize the number of
adjacent swaths for data collection.

Fig. 13 depicts the camera platform trajectory, positions where images were recorded, the
mosaic, as well as samples of the raw data prior to pre-processing for the application of the
algorithm. The trajectory and the mosaic was generated from a total of 390 out of roughly 1500
original frames, chosen automatically by our photo-mosaicing system over 6 horizontal and 6
vertical swaths (3 for each of left and right cameras) covering a 4.5 [m] ×4.5 [m] area.

As one can readily verify, the bottom surface has relatively weak texture and the visual cues
for frame-to-frame registration is limited to regions with prominent features, e.g., the edges at the
object boundaries. The dynamic range and color adjustment, which is readily noted by comparing
the mosaic with the raw frames, is offset by the impact of background noise enhancement.
Despite misalignment in some local regions, the mosaic quality is sufficient to obtain a relatively
accurate estimate of the spatial arrangement of various targets within the scene. Where necessary
to improve the quality for the same terrain texture content, image density and overlap can be
increased by reducing the distance between adjacent swaths.

When operating near the sea floor, the the natural terrain objects typically have stronger
texture, so the alignment can be further improved. To appreciate the improvement in alignment
for a scene with strong texture, the mosaic for a short segment of data collected in the Bahamas
in an earlier SERDP project is depicted in Fig. 14 [27]. As noted from the camera trajectory,
the coverage is an area of 1 [m] × 8 [m], with spatial resolution of roughly 1 [mm].
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Fig. 13. Sample raw images used for construction of site mosaic and computer camera trajectory.
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Fig. 14. Camera trajectory for sample mosaic of natural terrain constructed from data in Andros Island, Bahamas.
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(a) (b)
Fig. 15. Stereo pairs and 3-D reconstruction of (a) steel target, and (b) PVC pipes. Distance from scene shown by color coding.

B. 3-D Reconstruction from Stereo Data

As explained earlier, it is sufficient to detect an object in any view of sensing modality in
order track it in other overlapping views and modalities. When the visibility allows to acquire
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(a) (b)

Fig. 16. Application of two different stereo techniques for 3-D scene reconstruction.

data with sufficient details, the stereo data corresponding to a sensor platform position where
the target of interest is viewed can be processed for the construction of a 3-D topographical
map. Using the pool data, we demonstrate this for two particular stereo pairs, one for the steel
cylinder and the other for two PVC pipes; see left and right views in the top two rows of Fig. 15.

For the two cases, we have shown the color-coded depth maps – distance from the cameras to
the scene and its objects – for the region highlighted by the red boxes in the left views. We have
applied a dense multi-resolution optical flow-based algorithm [20]. Some observations are in
order: 1) both the steel and PVC pipes are sized correctly at 10 [cm]; 2) there is a slight bottom
surface tilt from top-right to bottom-left; 3) the reconstruction is more noisy in (b), which is
directly tied to the weaker texture as evident in the stereo pairs; e.g., note the noisy blue blob
roughly in the center of the 3-D map.

In Fig. 16, we have compared the results in Fig. 15(a) with the estimate from the application
of another algorithm. In this other method, we start with certain matched prominent features as
seeds, and then a dense reconstruction is obtained by a fast efficient local match propagation
strategy [18]. While the results are consistent over the target region, this second method gives a
noisier estimate over the pool bottom surface, mainly because the propagation is somewhat
ambiguous over these regions with weaker texture. In fact, the algorithm is not unable to
propagate many of the seed matches for the PVC pipes scene, thus, the reconstruction is very
sparse; not given here.

C. Registration and 3-D Reconstruction of Occluding Contours

As we explained we can applying the opti-acoustic stereo solution to determine the 3-D
positions P of a minimum of 3 seabed matching features {ps,po}. These allow us to fix the
plane n of the sea floor. With the Knowledge of the plane, we can determine the 3-D position
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(a) (b) (c)

(d) (e) (f)
Fig. 17. (a,d) Two coral objects, (b,e) occluding boundaries in sonar image, and (c,f) 3-D reconstruction of these boundaries,
relative to the flat bottom surface, represented by red lines. Object size can be deduced from the contour reconstruction.

of any sea floor feature in the sonar image, particularly the boundary points on the object’s cast
shadow. Tracing the iso-azimuth frontal acoustic beam to the occlusion contour allows us to
determine the countour in 3-D.

Referring back to the data in Figs. 9(a), shown again in Fig.17, consider the two corals with
non-uniform contour. As demonstrated in (b) and (e), the tracing of shadow contours to the
occluding contours leads to the reconstruction depicted in (c) and (f), where the bottom surface
of the flat background surface has been represented by the red lines. While the accuracy of
the reconstruction depends on the ability to detect the shadow and occluding contours, it can
often suffice to discriminate between natural objects with arbitrary contour shapes and manmade
objects. Also, the height relative to the bottom surface provides an estimate of object size.
While not utilized here, it is noted that the object’s lower boundary in the sonar view does
not represent a visibility rim, but rather points P′′ with smallest range for different azimuth
directions, as depicted in Fig. 12.

D. MAFR-TM Technique

Tables 1-11 summarize the results from the application of the MAFR-TM algorithm to detect,
establish the orientation and location of, and classify the target in the low-resolution sonar images
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Fig. 18. Templates of steel (left), aluminum (middle), and PVC (right) cylindrical targets at 6 orientations (for 0, 30, 60, 90,
120, and 150 [deg]) relative to the sonar.

captured by the DIDSON US300. The data sets used for this study are referred to as ‘Single
Target Tank Data,” ‘Cluttered Tank Data,” and ‘Cluttered Marina Data.”

The algorithm has performed fairly well with the tank and cluttered tank data, particularly
for the target detection, and the discrimination between metals and plastics. There is room for
improvement in determining the orientation and location of the detected target.

The steel target has been detected 100% of the time in singular tank data, 94% of the time
in a cluttered tank data set, and 61% in cluttered marina data. The majority of the undetected
targets occurred at 90 [deg] and 270 [deg] orientations due to the very small echo the sonar
perceives.

Fig. 18 depicts examples of the templates (for 0, 30, 60, 90, 120, and 150 [deg]) for each
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       Tank Data                                             Marina Data 

Source Image  
Angle 

Detected? 
 (Before) 

Detected? 
(After) 

Source Image 
Angle 

Detected? 
(Before) 

Detected? 
(After) 

0˚ Yes Yes 0˚ Yes Yes 
10˚ Yes Yes 10˚ Yes Yes 
20˚ Yes Yes 20˚ Yes Yes 
30˚ Yes Yes 30˚ Yes Yes 
40˚ Yes Yes 40˚ Yes Yes 
50˚ Yes Yes 50˚ No Yes 
60˚ Yes Yes 60˚ No Yes 
70˚ Yes Yes 70˚ Yes Yes 
80˚ Yes Yes 80˚ Yes Yes 
90˚ Yes Yes 90˚ Yes Yes 
100˚ Yes Yes 100˚ Yes Yes 
110˚ Yes Yes 110˚ Yes Yes 
120˚ Yes Yes 120˚ Yes Yes 
130˚ Yes Yes 130˚ No Yes 
140˚ Yes Yes 140˚ No Yes 
150˚ Yes Yes 150˚ No Yes 
160˚ Yes Yes 160˚ Yes Yes 
170˚ Yes Yes 170˚ No Yes 
180˚ Yes Yes 180˚ No Yes 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

TABLE I
TARGET DETECTION RESULTS WITH STEEL OBJECT BEFORE AND AFTER CTR PREPROCESSING.

of the three targets, used in the classification part of the methodology, as well as determining
the orientation and location of the labeled target. The algorithm has classified a steel target
67% of the time in singular tank data. This relatively poor performance is because the algorithm
sometimes cannot discriminate metal from plastic in images of singular targets with weak echos.
The MAFR-TM approach in the wave number domain is a pixel multiplication process. Steel
generates the strongest echo of the three template classes, and when this template class is matched
(or multiplied) with a weak echo or background intensity, the algorithm may compute a higher
correlation and in turn a larger SNR than other template classes. Therefore the algorithm may
confuse a singular PVC target with that of a singular steel target in singular object scenes. In the
case of multiple object scenes, such as in the cluttered tank and marina data, the classification
success rate is no less than 75%. Here, the algorithm would not distinguish well between metal
classes, but could discriminate between metal and plastic classes. The confusion between the
two metal classes is caused by their rather similar returns or intensities to the sonar.
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Data Type Detected Total Images Detection Rate 

Tank (Before) 
Tank (After) 
Marina (Before) 

19 
19 
12 

19 
19 
19 

100.0% 
100.0% 
63.2% 

Marina (After) 19 19 100.0% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II
SUMMARY OF DETECTION RESULTS FOR STEEL TARGET, BEFORE AND AFTER CTR PREPROCESSING.

In addition, the orientation of a detected object could often be determined with reasonable
accuracy. As Table VII illustrates, the algorithm achieved a minimum success rate of 57.9% over
all four cases. It also yielded the position of a detected object within roughly 90% of its true
location, when the target type and orientation is established correctly (i.e., within 60 [pix] in
images with lowest resolution of 575 [pix] × 568 [pix]). The majority of errors in the singular
object tank and cluttered tank data occur at (or close to) aspect angles of 90 [deg] and 270 [deg].
Again, spurious errors in between may have been caused by wall reflections present within the
source image.

The performance decreased by approximately 30% when applied to the marina data set. In
this case, many factors influence the outcome of the technique, including the partial/complete
burial in soft mud, in addition to clutter. When the target is partially buried or obstructed by
clutter, the template cannot completely overlap the true target in the source image. The partial
alignment can lead a lower correlation with the template, relative to an unobstructed false target
or a bright reflection from the seafloor. Also, the targets return can be very weak (sometimes
resembling the intensity of a shadow) at certain aspect angles, due to cast shadow of a fish,
clutter, or other obstructions on the seafloor. As the sonar is rotated around the target to perform
the 360 [deg] survey, the targets response alternates from very strong (bright) to very weak
(dark). This is why it is important to capture as many views of the suspected UXO area from
different angles, to overcome the ambiguities of “degenerate views.”

Finally, the MAFR-TM technique has also been applied to pre-processed data, comprising
the steel cylinder as the true target. The first set is the same singular object scene collected
in tank, and the second is the same cluttered scene acquired in the marina. The preprocessing
stage consisted of applying a crosstalk reduction (CTR) algorithm to each source image in the
database. The CTR technique generally sharpens the image by eliminating the averaging effect
due to the crosstalk between adjacent beams. Thus, strong returns become brighter and weaker
returns darker, as depicted in Figs.19.

The CTR processing was carried out at the very end of our project (early October’10), based
on an ongoing product development work at Sound Metrics Corp.5. This was arranged through

5Manufacturer of DIDSON systems.
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       Tank Data                                             Marina Data 

Source Image 
Angle 

Class? 
(Before) 

Class? 
(After) 

Source Image 
Angle 

Class? 
(Before) 

Class? 
(After) 

0˚ Steel Aluminum 0˚ PVC Aluminum 
10˚ Steel Aluminum 10˚ PVC PVC 
20˚ Steel Aluminum 20˚ Aluminum Aluminum 
30˚ Steel Aluminum 30˚ Aluminum Aluminum 
40˚ Aluminum Aluminum 40˚ Aluminum Aluminum 
50˚ Aluminum Aluminum 50˚ - Aluminum 
60˚ Steel Aluminum 60˚ - Aluminum 
70˚ Aluminum Aluminum 70˚ Aluminum Aluminum 
80˚ Steel Aluminum 80˚ Aluminum Aluminum 
90˚ Steel Aluminum 90˚ PVC Aluminum 
100˚ Steel Aluminum 100˚ Aluminum Aluminum 
110˚ Steel Aluminum 110˚ Aluminum Aluminum 
120˚ Steel Aluminum 120˚ - Aluminum 
130˚ Aluminum PVC 130˚ - Aluminum 
140˚ Steel Aluminum 140˚ - Aluminum 
150˚ Aluminum Aluminum 150˚ Aluminum Aluminum 
160˚ Steel PVC 160˚ - Aluminum 
170˚ Steel Aluminum 170˚ - Aluminum 
180˚ Steel Aluminum 180˚   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III
CLASSIFICATION RESULTS FOR A STEEL TARGET BEFORE AND AFTER CTR PREPROCESSING.

some discussions about our SERDP project during the IEEE/MTS Oceans’10 Conference (held
in Seattle, WA, September 21-23, 2010) with the company’s technical staff. Subsequently, our
results based on limited experiments are only preliminary, and the advantage of CTR prepro-
cessing stage at this stage is only circumstantial. Further research and extensive experiments are
warranted to establish a true performance assessment.

Since the targets are cylindrical, and thus symmetrical about all axes, only the data for 0 [deg]
- 180 [deg] were used to explore the impact of CTR processing on the MAFR-TM Algorithm
in the detection, classification, orientation, and location of a steel target. The results have been
obtained for four data sets, both the single target tank data and the cluttered marina data sets. For
the tank data, there is no improvement in classification performance, and often degradation, with
the CTR data. This can be readily explained by noting that our templates of the three objects
were constructed from unprocessed images acquired under perfect tank conditions. Thus, it is
expected that when testing with same data type, they correlate better with object returns in the
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Data Type Classified Percentage 
Classification 
Success Rate 

Tank (Before) 
        Steel 
        Aluminum 
        PVC 
        Total Detected 

14 
5 
0 
19  

73.7% 
26.3% 
0.0% 

- 

Metal 
Plastic 
MP Ratio 
 

 100% 
  0.0% 
  1:0 
 

Tank (After) 
        Steel 
        Aluminum 
        PVC 
        Total Detected 

0 
17 
2 
19 

0% 
89.5% 
10.5% 

- 

Metal 
Plastic 
MP Ratio 
 

 
100% 
 0.0% 
 1:0 
 

Marina (Before)     
        Steel 0 0.0% Metal 75.0% 
        Aluminum 9 75.0% Plastic 25.0% 
        PVC 3 25.0% MP Ratio 3:1 
        Total Detected 12 -   
Marina (After)     
        Steel 0 0.0% Metal 89.5% 
        Aluminum 17 89.5% Plastic 10.5% 
        PVC 2 10.5% MP Ratio 8.5:1 
        Total Detected 19 -   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV
SUMMARY OF CLASSIFICATION RESULTS FOR STEEL TARGET, BEFORE AND AFTER CTR PREPROCESSING.

unprocessed data, compared to CTR processed data.
For marina data, the CTR algorithm enhances the MAFR-TM’s detection somewhat, mainly

because the improved dynamic range enhances the detection of cast shadow regions as well as
target returns. The same reason for the pool data results applies in explaining the classification
performance, particularly in discriminating between metal classes. However, the algorithm can
classify between metals and plastics. Unfortunately, the inability to differentiate between steel
and aluminum directly and adversely affects the estimating of the target orientation and location.

1) Target Detection: The detection results for data with targets at various orientations are
illustrated in Table I, and a summary of the detection performance in TableII. We note that the
MAFR-TM algorithm performs rather well when applied to the tank data. Before pre-processing,
the performance decreases by about 30% for the marina data, mainly due to significant intensity
variations in target and shadow zones, because the scene contains not only the true target, but
significant clutter and false targets; see Figs. 19(b,b’), which is enhanced in the CTR processed
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Tank Data 

Source Image 
Angle 

Orientation? 
(Before) 

Orientation? 
(After) 

Angle Error 
(Before) 

Angle Error 
(After) 

0˚ 0˚ 20˚ 0˚ 20˚ 
10˚ 10˚ 50˚ 0˚ 40˚ 
20˚ 20˚ 60˚ 0˚ 40˚ 
30˚ 30˚ 90˚ 0˚ 60˚ 
40˚ 40˚ 180˚ 0˚ 140˚ 
50˚ 40˚ 20˚ 10˚ 30˚ 
60˚ 50˚ 10˚ 10˚ 50˚ 
70˚ 0˚ 50˚ 70˚ 20˚ 
80˚ 30˚ 50˚ 50˚ 30˚ 
90˚ 120˚ 60˚ 30˚ 30˚ 
100˚ 110˚ 50˚ 10˚ 50˚ 
110˚ 120˚ 10˚ 10˚ 100˚ 
120˚ 130˚ 150˚ 10˚ 30˚ 
130˚ 130˚ 160˚ 0˚ 30˚ 
140˚ 140˚ 170˚ 0˚ 30˚ 
150˚ 140˚ 170˚ 10˚ 20˚ 
160˚ 160˚ 160˚ 0˚ 0˚ 
170˚ 170˚ 10˚ 0˚ 20˚ 
180˚ 180˚ 10˚ 0˚ 10˚ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE V
ESTIMATING TARGET ORIENTATION, BEFORE AND AFTER CTR PREPROCESSING, FOR TANK DATA.

data. Noting that the shadow region is a strong visual cue for the presence of a 3-D object,
the algorithm sometimes favors a shadow zone from clutter or a false target instead of the cast
shadow of the true target, thus estimating a large distance between each target and its shadow
zone. This leaves the target undetected in certain orientations. After data preprocessing, both the
target and its shadow are enhanced, leading to correct detection.

2) Classification: Using the SNR, the proper target class (steel, aluminum, and PVC) can be
identified by comparing the maximum correlation between the template classes over all template
scans. A target is identified if the peak SNR corresponds to the same class across all (or a high
percentage of) aspect angles. Tables III and IV depict the classification results of the tank and
marina data sets, before and after preprocessing.

Before preprocessing, the best template class matching to the tank source images of the steel
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(a) Single-target pool images (180, 240, 300 [deg])

(b) Cluttered marina scene with steel target at 0, 60 and 120 [deg]

(a’) image in (a) after CTR processing

(b’) image in (b) after CTR processing

Fig. 19. Sample DIDSON images (a,b) before and (a’,b’) after application of CTR algorithm, from (a,a’) pool and (b,b’)
marina data sets.
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Marina Data 

Source Image 
Angle 

Orientation? 
(Before) 

Orientation? 
(After) 

Angle Error 
(Before) 

Angle Error 
(After) 

0˚ 20˚ 20˚ 20˚ 20˚ 
10˚ 40˚ 20˚ 30˚ 20˚ 
20˚ 30˚ 20˚ 10˚ 0˚ 
30˚ 80˚ 10˚ 50˚ 20˚ 
40˚ 10˚ 10˚ 30˚ 30˚ 
50˚ - 140˚ - 90˚ 
60˚ - 150˚ - 90˚ 
70˚ 150˚ 50˚ 80˚ 20˚ 
80˚ 140˚ 50˚ 60˚ 30˚ 
90˚ 130˚ 120˚ 40˚ 30˚ 
100˚ 110˚ 160˚ 10˚ 60˚ 
110˚ 110˚ 120˚ 0˚ 10˚ 
120˚ 120˚ 20˚ 0˚ 100˚ 
130  ̊ - 20˚ - 110˚ 
140˚ - 50˚ - 90˚ 
150˚ - 50˚ - 100˚ 
160˚ 140˚ 110˚ 20˚ 50˚ 
170˚ - 150˚ - 20˚ 
180˚ - 190˚ - 10˚ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE VI
ESTIMATING TARGET ORIENTATION, BEFORE AND AFTER CTR PREPROCESSING, FOR MARINA DATA.

Data Type Detected 
Min Angle 

Error 
Max Angle 

Error 
No. of Errors 
< or = 30 

Success 
Rate 

Tank (Before) 
Tank (After) 
Marina (Before) 

19 
19 
12 

0˚ 
0˚ 
0˚ 

70˚ 
140˚ 
80˚ 

17 
12 
8 

89.5% 
63.1% 
66.7% 

Marina (After) 19 0˚ 110˚ 11 57.9% 
 

 
TABLE VII

SUMMARY OF RESULTS IN ESTIMATING TARGET ORIENTATION, BEFORE AND AFTER CTR PREPROCESSING.

target at 19 orientations in 0 [deg] - 180 [deg] results in 14 correct classification as steel, 5
as aluminum, and none as PVC. This leads to the conclusion that the target is in fact a steel
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Tank Data  
Red: x-error > 60 pix, Blue: y-error > 60 pix,  Green: x-error and y-error > 60 pix 

Source Image 
Angle 

Actual (x,y) 
Position 

Calculated  
(x,y) (Before) 

Calculated  
(x,y) (After) 

Error in (x,y) 
(Before) 

Error in (x,y) 
(After) 

0˚ 252, 197 249, 203 360, 82 3, 6 108, 115 
10˚ 249, 200 245, 195 335, 75 4, 5 86, 125 
20˚ 251, 193 255, 187 328, 67 4, 6 77, 129 
30˚ 252, 178 256, 178 336, 62 4, 0 84, 116 
40˚ 257, 167 260, 178 326, 106 3, 11 69, 61 
50˚ 268, 163 264, 175 403, 68 4, 12 135, 95 
60˚ 270, 156 256, 169 370, 62 14, 13 100, 94 
70˚ 268, 171 224, 444 352, 54 44, 273 84, 117 
80˚ 274, 173 220, 414 324, 58 54, 241 50, 115 
90˚ 279, 177 241, 194 317, 52 38, 17 38, 125 
100˚ 270, 177 257, 172 417, 53 13, 5 147, 124 
110˚ 265, 181 254, 195 403, 75 11, 14 138, 106 
120˚ 257, 176 242, 184 404, 84 15, 8 147, 92 
130˚ 254, 174 227, 175 391, 64 27, 1 137, 110 
140˚ 243, 176 240, 193 383, 86 3, 17 140, 90 
150˚ 242, 200 229, 195 360, 82 13, 5 118, 118 
160˚ 239, 210 240, 216 347, 65 1, 6 108, 145 
170˚ 244, 208 243, 223 320, 85 1, 15 76, 123 
180˚ 243, 217 243, 230 318, 90 0, 13 75, 127 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE VIII
ESTIMATING TARGET POSITION, BEFORE AND AFTER CTR PREPROCESSING, FOR TANK DATA.

cylinder. After preprocessing, the target echo becomes weaker, resembling the signal strength
of an aluminum target. The majority of the views, all but two orientations with the highest
correlation with a PVC target, classify the object as aluminum cylinder; see Table IV. For the
marina source images, the target is detected in only 12 orientations, 9 classified as aluminum
and 3 as PVC. For the preprocessed data, the classification is consistent with the pool data.

3) Target Orientation: Before analyzing the results, it is noted that the ground truth data accu-
racy is restricted by the stability of the imaging system’s platform. In the controlled environment
for collecting the tank data, the platform could be rigidly secured. In contrast, the marina (field)
is exposed to currents, changing tides, and boat traffic, all affecting camera platform positioning.
We estimated errors as large as ±30 [deg].

In a real survey potentially carried out by an ROV, this platform has to have the ability to
remain in a constant position for a period of time, and to change the sonar’s angle of attack
based on its depth. In deeper waters, the ROV is a more stable platform that the cantilever beam
secured on a floating barge near the sea surface, for our experiments.
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Marina Data 
Red: x-error > 60 pix, Blue: y-error > 60 pix,  Green: x-error and y-error > 60 pix 

Source Image 
Angle 

Actual (x,y) 
Position 

Calculated  
(x,y) (Before) 

Calculated  
(x,y) (After) 

Error in (x,y) 
(Before) 

Error in (x,y) 
(After) 

0˚ 337, 281 344, 296 389, 385 7, 15 52, 104 
10˚ 321, 291 356, 301 339, 295 35, 10 18, 94 
20˚ 354, 284 341, 357 329, 385 13, 73 25, 101 
30˚ 367, 280 376, 363 341, 385 9, 83 26, 105 
40˚ 390, 278 367, 364 351, 449 23, 86 39, 171 
50˚ 390, 218 - 387, 439 - 3, 221 
60˚ 417, 220 - 354, 405 - 63, 185 
70˚ 442, 231 382, 402 356, 452 60, 171 86, 221 
80˚ 452, 240 331, 364 373, 453 121, 124 79, 133 
90˚ 470, 244 356, 354 415, 450 114, 110 55, 206 
100˚ 468, 234 397, 320 313, 386 71, 86 155, 152 
110˚ 465, 231 377, 403 436, 317 88, 172 29, 86 
120˚ 460, 211 344, 376 361, 403 116, 165 99, 192 
130˚ 440, 185 - 328, 75 - 112, 110 
140˚ 429, 180 - 359, 108 - 70, 72 
150˚ 417, 167 - 329, 46 - 88, 121 
160˚ 404, 159 400, 344 378, 117 4, 185 26, 42 
170˚ 385, 163 - 374, 151 - 11, 12 
180˚ 378, 168 - 365, 168 - 13, 0 

 
 

 

 

 

 

 

 

 

 

 

 

TABLE IX
ESTIMATING TARGET POSITION, BEFORE AND AFTER CTR PREPROCESSING, FOR MARINA DATA.

Data Type Detected Total Images Detection Rate 

Tank (Before) 
Tank (After) 
Marina (Before) 

19 
19 
12 

19 
19 
19 

100.0% 
100.0% 
63.2% 

Marina (After) 19 19 100.0% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE X
SUMMARY OF RESULTS IN ESTIMATING TARGET LOCATION, BEFORE AND AFTER CTR PREPROCESSING.

The complete results are presented in Tables V and VI, with a summary given in Table VII. We
note that the maximum error for the tank and marina data is 140 [deg] and 110 [deg], respectively;
but the true maximum error is modulo θT = 90 [deg]. This holds true because the targets
are symmetrical about their horizontal and vertical axes. The MARF-TM algorithm depends
mainly on the matched template class to determine its orientation. Because the classification
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Data Set: 
 Tank  

(Before) 
Tank  

(After) 
Marina 
(Before) 

Marina 
(After) 

Max Error in x 273 147 121 155 
Max Error in y 54 145 185 221 

 
 
 

TABLE XI
ERROR ANALYSIS IN LOCATING THE STEEL TARGET (IN UNITS OF [PIX]), BEFORE AND AFTER CTR PREPROCESSING.

and orientation estimation are coupled, an incorrect match between the source image material
and template class can lead to a large error in orientation. For the tank source images after
preprocessing, the target’s return strength becomes weaker. This decrease in pixel intensity may
cause the algorithm to establish a better match with the pool wall reflection. Not surprisingly,
this leads to an erroneous estimate of the target orientation. From the summary in Table VII,
it is noted that the algorithm determines the orientation of a detected object with a minimum
success rate of 57.9% for both data sets.

4) Target Location: Once the MAFR-TM algorithm has determined the class and orientation
of the detected object, the location within the source image can be computed. The algorithm
searches through the maximum correlation array to identify the peak location CSTmax that
corresponds to the specific class and orientation, determined in the previous steps. The results
for the tank and marina data are presented in Tables VIII through XI.

The tank and marina images have a resolution of 575 [pix] × 568 [pix] and 800 [pix] ×
568 [pix], respectively. An error within 60 [pix] means that the known location of the target is
within approximately 90% in both x and y directions, providing a reasonable estimate of target
position. In Tables VIII and IX, we have highlighted with red, blue and green font colors the
location errors greater than 60 [pix] in the x, y and both directions, respectively.

For the tank source images after preprocessing, the large variations in the location of the true
target is because the MAFR-TM algorithm matches the templates to the wall reflections, as is the
case for the orientation estimation; see Fig. 19(a,a’). This is verified by the computed location.
The true target is in the general area of 240-280 [pix] in the x-direction, and 155-220 [pix] in the
y-direction, and the wall reflection covers a much larger area of 300-450 [pix] × 50-350 [pix],
respectively. A summary of the overall performance in determining the proper target location
has been summarized in Tables X and XI.

The algorithm performs well with the tank data before preprocessing, but the performance
deteriorates significantly for the tank data after preprocessing and the marina data, both before
and after preprocessing. Since the algorithm depends on the information from the previous steps,
a large variance in the location can occur if the incorrect class and orientation are determined.
That is, if the algorithm classifies the detected object incorrectly and/or specified an incorrect
aspect angle, then the results for the actual location of the target would be skewed. Since the
detection and classification performance of the algorithm decreased by 30% when applied to the
marina data sets, the algorithm’s localization performance is expected to decline as well.
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TABLE XII
TARGET CHARACTERISTICS

Target Description
θ1 Cylindrical target with length l and radius h/2
θ2 Cylindrical target with length l and radius h
θ3 Cylindrical target with length l/2 and radius h/2
θ4 Spherical target with radius h/2
θ5 Spherical target with radius h

TABLE XIII
MASS ASSIGNMENT MODELS OF THE EVIDENCE GENERATED BY OPTICAL AND SONAR SENSORS. NOTE THAT,

A1 = {θ1, θ2, θ3, θ6}, A2 = {θ4, θ5, θ6}, A3 = {θ1, θ2, θ3}.

α EO(α) ES(α)
{A1, A2, A3,Θ} {θ1, θ2, θ3, θ4, θ5,Θ}

0 {0.75, 0.0, 0.0, 0.25} {.180, .139, .110, .039, .073, .459}
30 {0.75, 0.0, 0.0, 0.25} {.189, .128, .099, .033, .067, .484}
60 {0.75, 0.0, 0.0, 0.25} {.175, .132, .091, .042, .070, .490}
90 {0.0, 0.75, 0.0, 0.25} {.099, .173, .098, .092, .165, .373}
120 {0.0, 0.0, 0.0, 1.0} {.178, .126, .106, .041, .066, .483}
150 {0.0, 0.0, 0.75, 0.25} {.185, .133, .114, .059, .090, .419}

For the marina data set, other elements can influence the results, including the target aging
(biological growth, partial/complete burial, etc.), and the incorporation of clutter around the
target. If the target appears partially buried or occluded from particular angle in some source
images, these may not match the template of the true target, instead producing a better match
between the template and a false target. Given acceptable results in many of the cases, fine
tuning of the algorithm offers the potential for determining the detected target’s position within
90% of the true location.

E. DS-based Fusion Technique

We employ the data acquired in the FAU outdoor pool, with the target OΘ being imaged by the
1-Mpix digital optical camera and a DIDSON system operating at 1.8MHz, as these rotate around
the target. The height of the equipment setup from the ground plane and the distance to OΘ are
recorded. we assume 5 possible target types, identified as θi, i = 1, 5, with θ6 ̸= θi, i = 1, 5,
representing any other object.

Note how the target dimensions are chosen: 1) the cylindrical targets θ1 and θ2 are both l
in length, and therefore cannot be differentiated in a perpendicular view. Similarly, θ1 and θ3
have the same radius, and so cannot be discriminated from views that are nearly orthogonal to
their circular surfaces. In fact, if either object θ1 or θ3 is viewed with its circular side facing the
camera, it cannot be differentiated from θ3 and θ4. This represents a scenario where different
targets have the same 2-D visual appearance in one or more views depending on the orientation
relative to the target. We explore how fusing (i.e., combining) evidence from different angles
may lead to a more accurate classification of the target type.
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(a) (b) (c)
Fig. 20. (a) Sample color image from a 1M-pixel optical camera. (b) Processed gray-scale image. While the processing removes
a significant amount of clutter thus making it easier to identify the object under given conditions, optical images may not reveal
much information under more turbid conditions. (c) Sonar image taken from DIDSON camera with α = 30.

Let α denote the incident angle of sensors with respect to the target. Given α, target dimensions
and distance to target from cameras and ground level, the acoustic shadow image Shθi(α)
corresponding to each target type θi is computed. To characterize the object OΘ, both optical
and acoustic images of the object at incident angles of 0, 30, 60, 90, 120, 150 degrees are utilized;
see Figs. 21 and 22.

1) Image Preprocessing and Shadow Marking: Visual identification can become very difficult,
if not impossible, in poor visibility; e.g., see the optical view of target in Fig. 20(a). Often, some
image enhancement may be necessary to improve the image quality; see Fig. 20(b). In sonar
images, the shadow boundaries serves as the visual cue for target classification; see section IV-B3;
see Figs. 20(c) and 21. Here, the demarcation of the shadow from the object can sometimes
become a challenging task due to factors that may affect both the intensity and geometry of the
shadow and object regions. For the purposes of this demonstration, it suffices to identify the
shadow region manually in acoustic images at different object orientations; see Fig. 21.

Figure 23(b) shows an acoustic image registered on the corresponding optical image. These
registered images are useful in aiding the task of shadow selection.

2) Evidence Modeling: We generate EO for each α by manually assigning the weights de-
pending on the ability to visually identify targets. Note that, when it comes to simulating a
human observer, only the object shapes can be identified. Inability to identify objects precisely
in a given view is modeled by assigning a mass to the complete ambiguity Θ.

Remarks:
• We model a human observer with EO. Under low visibility conditions, we assume that the

human observer can only identify the object shape, i.e., he/she can determine it is cylindrical
or spherical with a certain level of confidence. If he/she cannot determine the shape, the
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(a) 0-deg (b) 30-deg (c) 60-deg

(d) 90-deg (e) 120-deg (f) 150-deg
Fig. 21. Acoustic images of the object OΘ at angles 0− 150 in steps of 30 degrees. Note the variation in shadow geometry
with α.

object is identified as ‘other’ which is represented by θ6.
• Take, for instance, the α = 0 case. The object under observation appears to have a cylindrical

object. So, this can be any of the target types θ1, θ2, θ3 with specified dimensions, or any
‘other’ object (θ6) that has a similar appearance to a cylinder in the current view. So, the
observer assigns 75% confidence to (θ1, θ2, θ3, θ6); the remainder is often assigned to Θ.
This latter mass assigned to Θ can move into any θ ∈ Θ.
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(a) 0-deg (b) 30-deg (c) 60-deg

(d) 90-deg (e) 120-deg (f) 150-deg
Fig. 22. Preprocessed optical images of the object OΘ at angles 0− 150 at steps of 30 degrees. In views (b,c), it is clear that
object is cylindrical. However, view (a) could well be some rectangular object. This uncertainty is even more pronounced in
view (d).

Shadow analysis on acoustic images allows one to quantify evidence and generate confidence
values to represent whether an observed object is of type θi ∈ Θ. This is done via a measure
µθi(•) : Shθi(•)×ShOΘ

(•) 7→ [0, 1], which captures the ‘similarity’ of Shθi(•) to ShOΘ
(•), i.e.,

the shadow image of the object under investigation. We assign the ‘singleton’ mass mS(θi) =
0.2× µθi(α), for each θi ∈ Θ; the remaining mass is allocated to Θ, for each α. See Table XIII
for an example mass assignment for object OΘ.

Remarks:
• In case of sonar views, we compute the similarity of the shadow of the imaged object (θ)

to shadows of five target types.
• The shadow shape of θ (ShOΘ

represents the shadow of θ) is compared to shadows of the
five known target types θ1, . . . , θ5 (Shθi , i = 1, 5, represent the target shadows).

• In DS theory, mass assignment is highly subjective and application dependent. However,
DS is very robust against mass assignment and modeling errors.
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Fig. 23. (a) optical image on acoustic image, and (b) vice-versa. (α = 30 image set.)

• The measure µθi(α) simply compares the shape of the shadow of target θi at angle α to
the shape of the shadow of object under consideration. if the shadows are equivalent it
will assign a value between 0 and 1 depending on whether shadow shape is being total
disagreement or agreement.

3) Combining Evidence Sources: In the current setup, evidence fusion is not trivial. One can
choose to combine/update evidence from individual sources over different α, or one can combine
two different sources for a fixed α. We take a more intuitive approach to this with the help of
the Dempster’s Combination Rule (DCR) and Conditional Update Equation (CUE).

Optical Source Alone: Here we study the use of the optical source alone. One can rotate around
a target to obtain as much information as possible to characterize the object. As one rotates
around the object, one can update the existing belief about the object. This is illustrated under
the column EO(θ − 1)▹ EO(θ) in Table XIV.

Observe the BoEs corresponding to α = 0, 30, 60 (column #3). In all three cases, a significantly
higher mass is assigned to (θ1, θ2, θ3, θ6). This represents that the object seen is cylindrical
(θ1, θ2, θ3) or ‘other’. So, initially, more evidence appears to support a target which is not
spherical.

As more views are considered, the support moves more towards a cylindrical target as can be
seen by the increased mass for (θ1, θ2, θ3) at α = 150; also see Fig. 22.

However, it appears that one cannot decide on one particular target type. Also, notice the fact
that there is a significant amount of mass being assigned to Θ, representing the ambiguity in the
available evidence. Thus, even after fusing 6 views together, it appears that one cannot make a
crisp decision based on this evidence alone.

Acoustic Source Alone: Individual evidence corresponding to each α from the acoustic sensor

46



is very uncertain (Table XIII). For instance, ES(60) (the BoE corresponding to the sonar evidence
at α = 60) leans more towards target type θ1, whereas ES(90) leans more towards target type
θ2. However, the uncertainty in both of these BoEs is quite high as indicated by the high mass
for complete ambiguity.

Let us again explore the pattern of belief change as one updates the belief over different
passes. One clear observation is that the mass assigned to the total ambiguity decreases over the
iterations. This indicates that the uncertainty of the available evidence reduces as more views
are combined.

The support towards target type θ1 also appears to increase. However, the support towards θ2
and θ3 are not negligible given the mass assigned to total ambiguity.

Fused Optical and Acoustic Sources: The obvious fusion strategy is to combine evidence from
each source for each α separately. The results obtained in this way are tabulated in column #1
of Table XIV. We have used DCR for combining ES and EO. An alternate, more intuitive, fusion
strategy is the following: at each observation, update the belief by first fusing evidence from
both optical and acoustic sources together and then using this combined evidence to update the
existing belief. See the column (E(θ− 1)▹ EO(θ))▹ ES(θ) in Table XIV for the BoEs obtained
at each α.

Table XIV tabulates the fusion results for different fusion methods described earlier. Column #1
shows fused results obtained by combining evidence from each source for each α separately.
This can be thought of as using only the information available at present. Columns #2 and
#3 represent the updated masses of optical and sonar sources respectively. This is similar to
updating one’s belief using only one source of information. The last column shows a full update
of information using both sonar and optical.

As one may notice, the observations are very similar to the previous cases in terms of the
decreasing overall uncertainty. As more evidence is gathered, the support moves towards target
type θ1 and the overall uncertainty represented by the support for Θ decreases. Fig. 24 shows
the change of belief of target type θ1 as more views are fused together. The lower limit is the
Bl(θ1) and the upper limit is the Pl(θ1); these correspond, respectively, to the lower and upper
envelopes of any probability assignment compatible with the available evidence. The difference
Pl(θ1)−Bl(θ1) represents the associated uncertainty.

In summary, in the underwater environment which is rife with various types of data and
evidence imperfections, the DS theoretic framework appears to be well suited to make deci-
sions without making unrealistic and unjustifiable assumptions regarding these imperfections. In
exploring the applicability of existing DS belief theoretic data fusion techniques to address the
challenges involved in UXO characterization, we have illustrated the use of a recent DS theoretic
evidence updating technique and the de facto DCR for the fusion of evidence obtained from
optical and sonar image data. As the results demonstrate, in the absence of sufficient evidence,
the DS theoretic framework does not make a firm commitment to any one object type, instead
being receptive to further evidence that may enable for better discrimination. Moreover, the DS
theoretic decisions incorporate confidence measures (in terms of belief and plausibility values)
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TABLE XIV
FUSED EVIDENCE BOES. NOTE THAT, A1 = {θ1, θ2, θ3, θ6}, A2 = {θ4, θ5, θ6}, A3 = {θ1, θ2, θ3}. HIGHEST AND SECOND
HIGHEST MASSES IN EACH BOE, REPRESENTING THOSE PROPOSITIONS WITH THE HIGHEST ‘SUPPORT’, ARE MARKED IN

BOLD AND UNDERLINED, RESPECTIVELY.

Fused Evidence BoE E(θ)
EO(θ)⊕ ES(θ) E(θ − 1)▹ EO(θ) E(θ − 1)▹ ES(θ) (E(θ − 1)▹ EO(θ))▹ ES(θ)
{θ1, θ2, θ3, θ4, θ5, {θ1, θ2, θ3, θ4, θ5, {θ1, θ2, θ3, θ4, θ5,

A1, A2, A3, {A1, A2, A3, A1, A2, A3,
α ↓ Θ} Θ} Θ} Θ}
0 {.196, .152, .120, .011, .020, {.179, .139, .110, .039, .073, {.131, .102, .080, .029, .054,

.376, .000, .000, {.750, .000, .000, .375, .000, .000,
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Fig. 24. Change in belief of target type θ1 as more and more views are combined together.

that provide invaluable information for a domain expert to make an informed decision.
The evidence modeling and shadow analysis could be further improved to enhance the perfor-

mance. Incorporation of additional sensor modalities and complementary classification techniques
into the fusion framework is expected to improve the overall performance. In particular, we
conjecture that a mosaic—a global view of the site (say, a debris field) that is constructed from
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a large set of registered views—can offer a richer visual cue about the scene content than single
isolated views. As we have described, optical and multi-modal overlapping images, when treated
as stereo views, enable the 3-D reconstruction of objects. In particular, with as little information
as three correspondences in optical and sonar views, we can construct the contours of various
targets in 3-D from their shadows in the sonar image.

This one-year project did not afford us sufficient time to explore a detailed investigation
of how to incorporate global site information from mosaics, as well as to develop and test a
theory-based formulation for exploiting the 3-D structure and (or) occluding contours.

VII. RECOMMENDATIONS AND FUTURE WORK

A. Optical Imaging

Undoubtedly, optical imaging is the most mature and natural imaging modality for target
classification and identification. We believe that optical imaging must be an integral component
of UXO identification systems. However, the serious bottleneck is the visibility limitation due to
high turbidity within “harsh environments.” To be deployed as a reliable sensing and mapping
modality, improved imaging strategies have to be explored, tested and implemented. Among
potential technologies are intelligent active lighting and sensing including scanning laser, as
well as scene radiance restoration methods. Any of these solutions attempt to overcome the
backscatter, which is the most significant source of image degradation.

This has motivated recent activities to devise new stereo techniques for 3-D target recon-
struction within scattering media, including underwater. One approach we have undertaken in
achieving robust 3-D reconstruction is to make use of both the polarization and stereo depth
cues [28]. While quiet effective, this particular method relies on the calibration of the sources
in active artificial lighting, as well as the medium optical properties. Very recently, we have
devised another technique that requires little calibration. Here, all needed is the backscatter field
at infinity; namely, an image with no target in the field of view [29]. We have obtained promising
results in controlled water tank experiments, with ocean tests underway. Our method’s novelty,
unlike earlier methods for underwater stereo that aim to remove the backscatter, is that we
actually exploit the depth cue in the backscatter field (structured noise component), in addition
to the traditional binocular disparity as the signal component. An advantage of our method is
that we simultaneously achieve dense scene reconstruction and enhanced de-scattered views;
that is, images where the scatter field has been removed. Fig. 25(a) depicts a sample stereo pair
acquired in our water tank. In (b), we have given the left view, overlaying a diagonal section
with the enhanced section to facilitate the comparison over all three objects.

As stated, the laser line scan (LLS) serial imaging technique is another effective technology
to combat backscattering. This is accomplished by reducing the common volume between the
sensor’s instantaneous viewing angle cone and the illumination volume of the artificial source
which are scanned in a synchronous fashion, intersecting at the target plane. In this way, the
LLS system utilizes narrow spatial and angular filtering to reject undesirable scattering, while
providing wide total field of view imagery. Here, a narrow blue-green laser beam is swept in
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(a) (b)

Fig. 25. (a) Stereo views in scattering media with magnified view of section over a cylindrical target before and after
enhancement. (b) Overlaying a diagonal section covering all three objects to facilitate the comparison.

one direction across the scene over the region that is being imaged (e.g., ocean bottom) and the
reflected light generates a gray-scale image. The LLS system is towed across the target in the
perpendicular direction (to the scanning direction) at some fixed distance by some submersible
platform (e.g., an AUV or ROV) to produce the 2-D image. Generally, LLS systems have an
operational range of up to five times the range of conventional photography cameras (CCDs and
recent digital cameras). The main drawbacks is their bulky size and narrow operational envelope
(performance is sensitive to small variations in turbidity, narrow depth of field), but making the
packaging more and more compact while improving the robustness of existing bulky systems
will increase their deployment potential significantly.

B. FS Sonar Imaging

We have concluded from this study that high-frequency 2-D FS sonar systems can provide and
effective technology for UXO detection, and significantly enhance the classification capability.
Having said this, fundamental research is necessary to develop robust algorithms to experiment
with a larger database of targets and environmental conditions. For example, it is well-known and
our study has verified that acoustic signature of sought after targets can vary with pose relative
to the sonar, and particularly in the presence of clutter, e.g., other objects with similar reflectance
properties. Given the diverse characteristics of existing FS sonar systems, the development of an
effective detection and classification system requires a theoretical physics-based approach that
accounts for target characterization, environmental conditions, as well as sonar properties.

It is important to note that the FS sonar imaging technology is only steps past the infancy
stage. In particular, while originally developed as a tool primarily for human visualization in
highly turbid environments with minimal/no visibility, hardware and design improvements to
reduce noise and distortion will facilitate the application of scene reconstruction methods to
make more accurate position and target measurements.
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C. DS Theoretic Evidence Fusion

The underwater environment is rife with various types of data and evidence imperfections
that makes it enormously difficult, or sometimes even impossible, to apply more ‘traditional’
techniques for UXO identification and classification purposes. The preliminary work conducted
during this one-year seed project appears to indicate that the ambiguity and imperfection handling
mechanisms intrinsic to the DS theoretic framework are better suited in such an environment.
This is mainly because the DS theoretic framework requires little or no recourse to the types of
unrealistic and unjustifiable assumptions that encumber the traditional approaches.

As the results demonstrate, our DS theoretic strategy refrains from making a firm commitment
towards any one object type when sufficient evidence is lacking. Instead, by having non-zero
support allocated to the completely ambiguous proposition Θ, the strategy remains receptive to
further evidence that may enable for better discrimination. Perhaps more importantly, the DS
theoretic decisions incorporate confidence measures (in terms of belief and plausibility values)
that provide invaluable information for a domain expert to make an informed decision while
having full knowledge of the underlying uncertainties.

The scope of our work was restricted to evidence obtained from optical and sonar image data
and the fusion of this data via the widely used DCR and a recent DS theoretic evidence updating
technique. In light of the study we have undertaken and the lessons learned from it, we make
several promising avenues of research and exploration.

1) Shadow Analysis: Our preliminary study shows great potential for using object shadows as
“signatures” for the purpose of identification and classification of underwater UXOs. To obtain
improved classification performance, sophisticated and more effective shadow models need to
be investigated.

2) Evidence Filtering: Real-time processing and fusion of (potentially imperfect) streaming
data generated from heterogeneous sources can be accomplished via evidence filters (EFs) that
operate directly on DS theoretic evidence while offering the power, efficiency, and convenience of
digital signal processing. EFs have known to be quite effective for fusing multi-modal evidence
to detect faint signatures that are potentially buried in clutter [9]. This appears to be exactly
what is needed in underwater UXO detection and classification.

3) Additional Sensor Modalities and Complementary Classification Techniques: While our
one-year seed study allowed us exploration of only two modalities, incorporation of other
modalities (e.g., object contours) into the fusion process is crucial for better performance. For
example, how does one incorporate the richer visual cues one gets from a mosaic or a 3-D
reconstruction of objects generated from their shadows? Recent work that has led to significant
computational improvements in the conditional approach to DS theoretic evidence updating and
fusion is expected to make this task more feasible. This an issue that requires further study.

4) Reliability Issues: Reliability of evidence sources must be taken into account when multiple
sources are fused. For example, optical sources provide more accurate measurements in shallow
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depth levels, but its usefulness decreases at increased depths. On the other hand, sonar imaging
becomes less reliable under certain environmental conditions (e.g., in areas having increased
levels of reflections). Capturing this reliability information calls for development of techniques
for modeling domain expert opinions and then incorporating these models into the fusion process
itself.

D. Other Issues

While this study has concentrated on the sensing issues, the close coupling with platform
navigation should not be ignored. A stable platform (ROV or UUV) with capability to execute
precise navigation commands for maintaining desired poses relative to potential targets plays
a critical role in acquiring data with the highest quality and information content. Now, desired
platform poses, both position and orientation, are not known ahead of time in most cases. Unless
assessed entirely by a human operator in the loop, partial or fully automated operations require
in situ processing, and therefore the implementation of data processing in real-time embedded
processors. Additionally, the processing of visual data enables target-based positioning, which
for our application, is a more critical capability than absolute positioning, including for carrying
out target reacquisition.
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Appendix A: Details of MAFR-TM Algorithm

A.1 - Overview

The Multiple-Aspect Fixed-Range Template Matching (MAFR-TM) algorithm is a sonar-
specific methodology to detect and classify UXO using the low resolution sonar data captured
by the DIDSON US300 (it can be easily extended to the BlueView sonar data as well). This
technique is designed to detect and classify a target of high characteristic impedance in an
environment that contains similar shaped objects of low characteristic impedance. The MAFR-
TM algorithm is based on the proven concept of the template matching technique, which is
a two-dimensional correlation between a reference image (template) and an image collected
during field operations (source image). In the MAFR-TM algorithm, the template matching
method is efficiently implemented in the wave number domain using two-dimensional Fast
Fourier Transforms (2D-FFT) and wave number leakage is reduced with an optimized separable
two-dimensional Kaiser window.

MAFR-TM relies on the fact that UXO detection and classification is a re-acquisition process:
the sonar is expected to scan a suspicious area, where UXO is likely to be present. Hovering
vehicles (remotely piloted or autonomous) equipped with sector scan-sonar can follow a circular
trajectory and create a 360 [deg] view of a small area (on the order of 20 [sqm]). MAFR-
TM relies on a known vehicle trajectory to generate the templates under ideal conditions: in a
tank with no clutter, limited bottom roughness and in the presence of a single target, at a known
aspect angle and range. The templates are grouped into classes, each class representing a specific
object (in this case, cylinders) observed at various aspect angles. Therefore, MAFR-TM does not
need the two-tiered training-and-classification process of traditional computer-aided-detection-
and-classification software. Instead, it can use a known database and perform the detection
and classification ”on the fly”, so long as the vehicle keeps the potential target within a certain
distance window. The platform does not have to follow exactly the same trajectory for MAFR-TM
to work, as this technique defines areas where the target is likely to be present. The MAFR-TM
algorithm is implemented in MATLAB and can be summarized as follows:

• Load a source image into workspace for orientations kS = 1, KS .
• Divide the source image by its standard deviation σS .

– Initialize the template material, mT .
∗ Initialize the template orientation kT .
∗ – Load a template into the workspace for kT = 1, KT ;
∗ – Divide the template by its standard deviation σT ;
∗ – Calculate correlation between source image and template CST ;
∗ – Normalize the correlation with respect to maximum value CSTNorm;
∗ – Define a probable target zone AH by applying a high intensity threshold TH to

the normalized correlation;
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∗ – Compute the vertical gradient of the source image ∇V ;
∗ – Acquire a probable shadow zone AS by applying a threshold TG to the vertical

gradient along the range axis;
∗ – Calculate the minimum distance between the probable target and shadow zones

dmin.
∗ – Apply the distance threshold Td to the minimum distance computed above to

determine if an object has been detected within the source image.
∗ – Determine the source image location (iT , jT ) of the peak CSTmax, and store in

memory.
∗ – Compute the signal-to-noise ratio (SNR) of the correlation and store in memory.
∗ Update the template orientation kT .

– Update the template material mT .
• Update the source image orientation kS .
• Make the solution decision (class, orientation, and location) according to the results com-

puted within the innermost loop.
These fundamental steps are repeated for the various template orientations and classes with

every source image of a 360 [deg] survey. Once every source image of a 360 [deg] survey has
been processed, the object is classified if the peak SNR corresponds to the same class across all
(or a high percentage of) the aspect angles in every source image of the survey. The detected
object’s orientation is then identified by choosing the template that produced the maximum SNR
for the current source image. Finally, the object’s true position is determined based on the prior
results of the algorithm. These essential concepts are presented in detail as follows.

A.2 - Source Image and Templates

Each source image S is an intensity plot of a target imaged at a fixed range of 3 [m] and at one of
36 different orientations (0 [deg] to 350 [deg] at 10 [deg] increments). Each pixel in the source
image has coordinate (x, y) with an intensity range [0-255], where x = 1, X and y = 1, Y ;
X and Y are the horizontal and vertical pixel dimensions of the source image, respectively.
The x coordinate increases from left to right while y increases from top to bottom. This left
hand coordinate system is used because images are stored in MATLAB as matrices, where the
x-coordinate corresponds to the column index and the y-coordinate represents the row index of
the source image. The source image is normalized with respect to its standard deviation,

σS =
X∑

x=1

Y∑
y=1

(
(s(x, y)− s̄(x, y))2

XY − 1

)1/2

where s(x, y) in the source image, and s̄(x, y) is the mean pixel value within 3 × 3 region
centered at location (x, y).

Three types of targets (steel, aluminum, and PVC) were used to create the templates. These
targets were imaged at the same fixed range of 3 [m] and 36 different aspect angles ([0-360
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[deg]] at 10 [deg] increments). One set of templates for each target class corresponds to 36
“ideal” sonar images. Each template T is also an intensity plot of the various targets with pixel
value t. The template has the (m,n) coordinate system with intensity range [0-255], m = 1,M
is the column index, n = 1, N is the row index, and M and N are the horizontal and vertical
pixel dimensions of a template, respectively. The templates are also normalized with respect to
their standard deviation,

σT =
M∑

m=1

N∑
n=1

(
(t(m,n)− t̄(m,n))2

MN − 1

)1/2

where t(m,n) and t̄(m,n) are the template, and its mean value within 3× 3 region centered at
location (m,n), respectively.

The template T is then placed on top of the source image S so that the top left corner of the
template is at the top-left corner of the source image. The template moves incrementally, pixel-
by-pixel, from the left to the right and from the top down following the left hand coordinate
system. In order to relate the source image and template coordinate systems, a new coordinate
system (x′, y′) is introduced, where x′ = i∆m and y′ = j∆n, and (i, j) denoted the position of
the template relative to the top-left corner of the image.

A.3 - Correlation

Throughout the technique, the correlation is computed between each source image over every
template, and therefore can be represented as a function of the position within the source image
(x, y), the orientation of the source image θS , the orientation of the template θT , and the template
material type mT , and is computed for each new location (i, j):

CST (i, j) = C(i, j, kS∆θs, kT∆θT ,mT )

where i = 1, I and j = 1, J are the column and row indices for the correlation measure,
kS = 1, KS and kT = 1, KT are the source and template image orientation indices, ∆θs and
∆θT are the angle increment for the source and template images (here, both are 10 [deg]), and
mT = 1,MT is the template material type index.

The correlation between one template and the portion of the source image the template overlaps
is,

CST (i, j) =
M∑

m=1

N∑
n=1

t(m,n)s(m+ i, n+ j)

If a peak CSTmax occurs in the correlation function, then an object similar to that of the template
is detected in the source image S. The maximum value is defined by

CSTmax(imax, jmax) = Max{CST (i, j)|i = 1, I, j = 1, J}

corresponding to the best match between the template and the source image, where (imax, jmax)
is the location of CSTmax in the source image. Where there is an ambiguity in establishing if a
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true target has been detected, this is resolved based on the minimum acceptable distance between
the target and shadow zones.

A.4 - Detection and Initial Localization

To reveal a probable location of an object within the field of view, one must examine the
correlation for a single template scan. This probable location, or target zone, can be found by
taking the correlation and normalizing it with respect to the highest peak:

CSTNorm(i, j) =
CST (i, j)

CSTmax

where CSTmax is the maximum correlation over all the templates at location (imax, jmax).
Furthermore, the normalized correlation is thresholded by TH to acquire the collection of points
that describe the target zone, or

AH = {(i, j)|CSTnorm(i, j) ≥ TH} (iH , jH) ∈ AH

The normalized correlation CSTNorm(i, j) is also used in finding the shadow zone. The shadow
zone is determined by calculating the vertical gradient of the correlation:

∇V (i, j) = |CSTNorm(i, j + 1)− CSTNorm(i, j)|

Another threshold TG is applied to this region to acquire an approximate location of the target’s
shadow, or the area that describes the shadow zone:

AS = {(i, j)|∇V (i, j) ≥ TG} (iS, jS) ∈ As

The distance between these two zones is then computed by

d =
√
(ih − is)2 + (jh − js)2

Due to the geometry and nature of sonar image image acquisition, the shadow is always
located behind the target in every source image. Therefore, only the positive vertical gradient
is considered to eliminate any spurious shadow zones. Furthermore, the elements of the shadow
zone must have coordinates above the target zone’s coordinates in the correlation. Using these
conditions, the minimum distance between the target and shadow zones is defined as

dmin = Minimum{d|∇V (is, js) > 0, jS < jH}

The decision whether an object has been detected in the source image is based on a distance
threshold Td, which is chosen according to the smallest template size in the entire template
database; that is

Td = Minimum{XROI,T , YROI,T}
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where (XROI,T , YROI,T ) is the length and width of a template. An object is detected if the
minimum distance is less than the threshold distance Td. The location of the detected object for
a particular template scan can is determined from

(iT , jT ) = {(i, j)|dmin < Td}

where (iT , jT ) is the correlation index along the length and width of the source image.

A.5 - Classification and Orientation

The SNR is utilized to identify the proper class of the target (mT = 1, 2, 3 for steel, aluminum,
and PVC, respectively) by comparing the maximum values of the correlation between template
classes over every source image in a 360 [deg] survey. The SNR values are sorted according to
classes and aspect angles. A target is considered valid and classified if the peak SNR corresponds
to the same class across all (or a high percentage of) the aspect angles of an entire 360 [deg]
survey. The SNR is defined here as the ratio of the peak area of the correlation to the average
correlation, excluding the peak value, or

SNR = 10 ∗ log10
(
CST,H

CST,N

)
where CST,H is the peak of the area of the correlation:

CST,H =
∑
iH ,jH

CSTNorm(iH , jH)

and CST,N is the mean correlation excluding the peak area,

CST,N =
∑
i,j

CSTNorm(i, j)− CST,H

Furthermore, the templates T are images of a target at specific orientations kT . The specific
orientation of the detected object is established based on the template kS that produces the
maximum SNR:

(kSmax, kTmax,mTmax) = argmax{SNR(kS, kT ,mT )}

A.6 - Final Localization

Once an object has been detected, classified, and its orientation defined, the algorithm uses this
information to determine the location (iT , jT ) of the object in the source image S by choosing
the peak location produced by the particular template material type and object orientation in the
source image:

(iT , jT )max = (iT (kS, kT ,mT )max, jT (kS, kT ,mT )max)
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Lastly, after the processing of each source image, the MAFR-TM algorithm stores whether an
object has been detected, the target type, the target orientation, and the target location within the
source image. The processing of the MAFR-TM algorithm is complete after each source image
in a 360 [deg] survey has been processed with every one of the templates and a decision has
been made.

A.7 - MAFR-TM Optimization

The computation cost of the correlation between a source image and any one template is high.
Thus, we employ the Fast Fourier Transform (FFT) to compute the correlation in the wave-
number domain. The source image and the templates are defined in the wave number domain
and discretized. These two discrete functions are then multiplied to obtain the correlation in the
wave number domain; correlation in the spatial domain of two real functions is represented
by multiplication of their transforms of in the wave number domain. To reduce the wave
number leakage, an optimized separable two-dimensional Kaiser window W (p, q) is applied
to the correlation

W (p, q) =
I0

(
β {1− [(2p− I)/I]2}1/2

)
Io(β)

I0

(
β {1− [(2q − J)/J ]2}1/2

)
Io(β)

where p = 1, I and q = 1, J refer to the row and column indices of the window function,
β controls the way the window function tapers at the edges in the spatial domain, and Io i
the zero-order modified Bessel function of the first kind. The correlation in the wave number
domain is transformed back to the spatial domain using a two-dimensional inverse Fast Fourier
Transform (IFFT). By using this optimized procedure, the computation count is decreased and
the processing time is significantly reduced.
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Appendix B: Sample Sonar Images of Various Targets in the Pool

Fig. 26. DIDSON images of various targets depicted in Fig. 3 – Cinder block, dumbbell, and steel, aluminum and PVC
cylinders – at 3 orientations of 320, 340 and 360 [deg] relative to the sonar.
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Appendix C: Sample Images from Our Data Set

DIDSON Optical Optical (processed)
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BlueView 1 BlueView 2 DIDSON
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