
 

 

TECHNICAL REPORT 
Advanced Technologies for Acoustic 

Monitoring of Bird Populations 

SERDP Project RC-1461 
 

 

APRIL 2009
 

Christopher W. Clark, PhD 
Kurt M. Fristrup, PhD 
Cornell University 

 
 



This report was prepared under contract to the Department of Defense Strategic 
Environmental Research and Development Program (SERDP).  The publication of this 
report does not indicate endorsement by the Department of Defense, nor should the 
contents be construed as reflecting the official policy or position of the Department of 
Defense.  Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the Department of Defense. 
 



Background 

DoD lands are critically important to migratory bird species as breeding sites, wintering sites, and as 

migratory stopover sites. The Endangered Species Act (ESA) requires that US military installations 

monitor the status of federally listed threatened and endangered species (TES) on their grounds.  

The standard approach to monitoring populations of breeding songbirds relies on point counts in 

which a skilled observer notes the species, and in some cases the numbers, of all birds heard or seen at 

a sampling point during a short (typically 3 – 10 minute) count interval. Often the majority of 

individual bird detections in point counts are acoustic; many of the birds noted during a typical count 

are never seen. In suburban landscapes, closed-canopy deciduous habitats, and tropical forested 

habitats, acoustic detections can comprise 70 – 94% of all detections (Alldredge et al. 2006, and 

references therein).  

In monitoring some groups such as nocturnal birds (notably owls and nightjars) and some secretive 

marsh birds, virtually all detections are acoustic. In some of these species, monitoring efforts are 

further hampered by the birds‘ infrequent and unpredictable vocal activity, which may require 

impractically long observer times at each point in order to have reasonable confidence about the 

absence of a species at the site. 

Because acoustic detection plays such a prominent role in avian population monitoring, the use of 

automated acoustical recording instruments and signal detection and classification software has the 

potential to lead to improved monitoring of bird populations on DoD lands and elsewhere. 

Specifically, such techniques may enable more extensive sampling, improved estimates of the birds 

counted and missed, and improved estimates of the area surveyed.  

These hardware and software tools can also enable passive acoustic monitoring of nocturnally 

migrating birds across large geographic scales. Such migration monitoring may be especially useful in 

assessing the use of DoD lands as migratory stopover sites. 

In April 2005 a contract (SI-1461) was awarded by SERDP to Cornell University to promote the 

development of  ―Advanced Technologies for Acoustic Monitoring of Bird Populations.‖ The 

objectives of this project are to: 

 Improve automated acoustic processing software to enable widespread use of digital autonomous 

recording units (ARUs) for: 

(a) ground-based acoustic censusing of species that vocalize infrequently,  

(b) documenting variation in calling activity to improve the accuracy of all acoustic censuses and 

the value of historical data sets; 

 Improve and extend technology for conducting line transect surveys using free-drifting balloons, 

first developed under a previous SERDP contract, SI-1185; 

 Develop the critical hardware and software components for a network of acoustic detectors to 

monitor flight calls of nocturnally migrating bird species, to document species-specific stopover use 

on and around DoD installations. 
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This document summarizes all work conducted under SI-1461 and is submitted as a final, contract 

closeout report.1 

Activities and accomplishments 

Acquisition of training/test data for detector development  

The original proposal called for deployment of ARUs at multiple DoD bases to record audio data that 

would be used for training and testing of automated detectors for selected bird species of interest. 

Shortly after the award of SI-1461, the DoD Legacy Resource Management Program approved 

funding for a related proposal submitted by Dr. Kenneth Rosenberg (Cornell Lab of Ornithology) 

titled ―Migratory Bird Monitoring Using Automated Acoustic and Internet Technologies‖ (Legacy 

Project 5-245). The Legacy-funded project included extensive deployments of ARUs at multiple 

bases. The decision was therefore made to use recordings collected by the Legacy project as the 

source of training and testing data for SI-1461, rather than expend SERDP resources to collect 

equivalent data independently. 

Table 1 lists bases where the Legacy project collected audio data that were available to SI-1461. 

Additional data available for use in this project were collected by BRP projects funded by other 

Federal agencies including USDA Forest Service, US Fish and Wildlife Service, and US Geological 

Survey. 

                                                      

1 The original proposal for this project, which described a four-year effort, was conceived and submitted by Dr. 

Kurt Fristrup, then Assistant Director of the Bioacoustics Research Program (BRP) at the Cornell Laboratory of 

Ornithology. At the time that SI-1461 was awarded to Cornell University (April 2005), Fristrup was named as 

Principal Investigator. In November 2005, mid-way through Year 1 of the project, Fristrup left Cornell to 

accept a position with the National Park Service Natural Sounds Program Office. At that time Dr. Christopher 

Clark (Director of BRP) was named as the new PI on SI-1461 for the remainder of Year 1 of the project. 
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Table 1.  DoD sites where ARUs were deployed since September 2005 as part of the DoD Legacy 
migratory bird monitoring project. 

DoD Legacy ARU deployment sites 

Fort Drum (NY) 

West Point (NY) 

Picatinny Arsenal (NJ) 

Lakehurst NAS (NJ) 

Dover AFB (DE) 

Patuxent River NAS (MD) 

Camp Pendleton (CA) 

Whidbey Island (WA) 

Yakima Training Center (WA) 

Fallon NAS (NV) 

Vandenberg AFB (CA) 

 

Table 2 lists species identified by DoD Partners In Flight (PIF) representatives as potential targets for 

ARU studies for which ARU recordings are known or likely to be available, either from deployments 

on DoD lands or elsewhere. 
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Table 2.  Availability of ARU recordings for bird species of interest to DoD resource managers. ‘Available’ 
indicates species presence in recordings has been confirmed. ‘Likely’ and ‘Possible’ designations are 
based on dates and locations of recordings in relation to known distributions and habitat preferences of 
these species. 

Availability of ARU recordings Species 

Available Chuck-will's-widow 

Whip-poor-will 

Black-capped Vireo 

Wood Thrush 

Golden-cheeked Warbler 

Prothonotary Warbler 

Cerulean Warbler 
 

Likely Upland Sandpiper 

Long-billed Curlew 

Least Bell's Vireo 

Gray Vireo 

Louisiana Waterthrush 
 

Possible Mountain Plover 

Prairie Warbler 

Kentucky Warbler 

Grasshopper Sparrow 

Henslow's Sparrow 
 

 

Detection and classification software for songs/calls of target species 

The Bioacoustics Research Program has developed two interactive sound analysis software packages: 

XBAT and Raven. Both programs incorporate interactive sound visualization, measurement, and 

annotation tools. Enhancements were made to both programs under SI-1461 to improve their utility 

for tasks such as detecting and classifying sounds from species of interest on DoD lands. 

XBAT (eXtensible Biaocoustics Tool, www.xbat.org) is an open-source program that operates within 

MATLAB (The MathWorks, Inc.). It is designed to be both an easily extensible platform for rapid 

implementation of automated tools for detecting and measuring sounds of interest, and a production 

environment for automated analysis of arbitrarily large acoustic data sets. Detection and 

measurement algorithms can be developed in MATLAB (a leading development environment for 

scientific and engineering software) and easily ―plugged in‖ to the XBAT framework. The output of 

these automated tools can then be rapidly viewed, verified, and if necessary edited, by a human 

analyst working within XBAT‘s flexible, user-friendly visualization environment. Under SI-1461, 

enhancements were made to two of XBAT‘s sound detectors, a new database data log storage format 
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was implemented, and algorithms needed for efficient nearest-neighbor classification of sounds were 

implemented.  

Raven Pro is a standalone program (it does not require MATLAB or other software) that has been 

licensed by over 1000 research and education professionals worldwide. Raven Pro is widely 

recognized for its flexible displays and analytical power, combined with an exceptionally elegant user 

interface. Under SI-1461, major architectural changes were implemented in Raven to make the 

program more easily extensible, and two automatic sound detectors were added. 

These development efforts are described in more detail below. 

Data template detector extension for XBAT 

XBAT‘s data template detector scans a recorded sound stream and finds sounds that are similar to a 

detection template known to be from the target species. The data template detector quantifies 

acoustic similarity by spectrogram cross-correlation, and logs all events for which the correlation 

value exceeds a specified threshold. 

Enhancements to data template detector 

Under SI-1461, the following enhancements of XBAT‘s data template detector were implemented:  

 Multiple templates:  At the start of this project, the data template detector could only compare the 

sound stream to one template at a time. Because the sounds of most bird species are variable, this 

approach meant that multiple detection runs, each with a different template, were needed in order 

to have a high probability of finding the target sounds. Under SI-1461, the ability to run multiple 

templates simultaneously was added, vastly improving processing speed.  

 Rejection templates:  In some cases, templates for a particular target sound fortuitously match other 

sounds in a recording that are not from the intended target. If the unwanted sound recurs 

frequently (for example calls of a frog that happen to resemble parts of a target bird sound), the 

detector may generate extremely high rates of false detections. In order to mitigate this problem, a 

rejection template feature was implemented. When one or more rejection templates are specified, 

the detector compares all potential event detections to both the target and rejection templates. If an 

event is more similar to a rejection template than it is to any of the target templates, the event is 

rejected and not logged. Experience has shown that the use of rejection templates can reduce false 

detection rates by an order of magnitude. 

 Batch detection:  At the start of the project, users could only initiate a detection run on one 

recording at a time within the XBAT interface. Detection processing of long recordings (hundreds 

of hours) may take several hours, so such tasks typically run unattended. If the user needed to 

process multiple recordings, s/he would have to manually start each processing run after the 

completion of the previous run. Under SI-1461, batch detection capability within XBAT was 

implemented. Using batch detection, the user can specify an arbitrary number of recordings to 

process sequentially. This ability makes it possible for example to use computing time efficiently to 

run multiple detections sequentially overnight or over a weekend without any operator 

intervention.  
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Test applications of data template detector 

Cerulean Warbler 

In work partially funded by the USDA Forest Service, the data template detector (incorporating 

improvements made under SI-1461) was evaluated for its ability to find songs of Cerulean Warbler in 

ARU recordings. Cerulean Warbler (Dendroica cerulea, CERW) is a forest songbird of conservation 

concern to DoD. ARUs were deployed at eleven sites in the Allegheny National Forest in 

Pennsylvania. Cerulean Warblers were known to be present at four of these sites; the remaining 

seven sites were appropriate Cerulean Warbler habitat, but the actual presence or absence of the 

species at these sites was unknown. In a first-pass analysis six archived songs from the Lab of 

Ornithology‘s Macaulay Library were used as templates. The detector successfully found CERW songs 

on all recordings where they were known to be present (Figure 1). 66% of all detections were verified 

as CERW (a positive predictive value of 66%). Positive predictive value at individual recording sites 

varied between 39% and 77% in this first-pass analysis.  

 

Figure 1.  Sound spectrogram of 20 seconds of an ARU recording as displayed by XBAT, showing 
three songs of a Cerulean Warbler that were detected by the data template detector (green boxes). 
Other bird sounds that were ignored by the detector are visible between the marked songs. 

We estimated the sensitivity (the percent of sounds detected out of the number of actual sounds 

present) of the detector by examining one five-minute sample from each morning to determine what 

percentage of Cerulean sounds found by a human were also found by the detector. In the first-pass 

analysis, the detector found 23% of songs found by a human analyst.  

In a subsequent second pass, we refined the detector by eliminating templates from the first pass that 

did not perform well, lengthening the templates to include the entire song, adding deployment-

specific templates of local song variants, and adding deployment-specific rejection templates based on 

what was being falsely detected on each deployment. In this second pass, positive predictive value 
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improved to 100% (no false detections), and estimated sensitivity improved to 54%. These 

improvements in performance were directly dependent on software features (multiple templates and 

rejection templates) implemented under SI-1461. 

Whip-poor-will 

In work partially funded by DoD Legacy, we investigated the utility of the data template detector for 

detecting sounds of Whip-poor-will (Caprimulgus vociferus), a nocturnal forest bird identified by 

DoD personnel as a species of conservation concern. We used six archived whip-poor-will song 

phrases from the Macaulay Library as templates. Table 3 summarizes the performance of the data 

template detector at various correlation threshold values. The detector successfully found WPWI 

phrases even when the signal-to-noise ratio (SNR) was poor because of the bird‘s distance from the 

recorder (Figure 2).  

Table 3.  Performance of data template detector at detecting songs of Whip-poor-will in ARU recordings 
from two sites at Fort Drum, NY over a 15-day period centered on the June 2007 full moon. PPV = 
estimated positive predictive value, based a sample of 1000 detections from each deployment. 
Sensitivity = estimated sensitivity based on 1000 1-minute samples from each deployment. 

 Correlation threshold 

 0.30 0.20 0.15 

Events detected 125,891 427,901 482,409 

PPV 99.7% 98.5% 96.2% 

Sensitivity 47.2% 70.3% 80.3% 
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Figure 2.  Detection of whip-poor-will song phrases by XBAT data template detector. Upper: 
Screenshot of XBAT sound spectrogram window illustrating consistent detection of high signal-to-
noise ratio (SNR) sounds of nearby vocalizing bird. Lower: Detection of very faint (low SNR) sound 
from distant bird. 

Whip-poor-wills are known to be more vocally active on nights with high levels of lunar 

illumination (Mills 1986; Wilson and Watts 2006). Standard protocols for monitoring whip-poor-will 

populations call for an observer to listen for a six-minute sample period at each survey site. Because of 

the low probability of detecting a whip-poor-will that is present at a site during the darker portions 

of the lunar cycle, standard protocols limit surveys to only two two-week periods during each 

spring/summer, centered around the full moons. However, the data template detector successfully 

identified whip-poor-will songs in ARU recordings even during the three darkest nights of the lunar 

cycle centered on the new moon. These results suggest that use of ARUs and automated detectors 

may enable monitoring of more sites on more dates than is possible using established field protocols. 

Band-limited energy detector diagnostic displays for XBAT  

A band-limited energy detector had been implemented as an extension to XBAT before the start of 

this project. Under SI-1461, the detector was enhanced with a diagnostic display that visualizes 



SERDP SI-1461 Final Report 9 

results of the several intermediate steps in the detector algorithm, enabling the user to rapidly and 

efficiently configure the detector for improved performance.  

The band-limited energy detector is a four-stage process: 

1. The background noise in a target frequency band is estimated by computing the median Fourier 

spectrum for successive segments of time series data. The in-band noise power is then obtained 

by summing the power values in the median spectrum over the appropriate frequency bins. The 

block of data used to compute the median spectrum is typically many times longer than the 

longest sound of interest. 

2. The signal power in a target frequency band is estimated for the same segments of time series 

data by subtracting the estimated in-band noise power (from step 1) from the overall in-band 

power. The in-band signal and noise estimates are used to compute a series of signal-to-noise 

ratio (SNR) estimates for the data. 

3. Candidate detections are generated, which begin when the SNR exceeds a user-specified 

threshold, and which end when the SNR remains below threshold longer than a user-specified 

duration. 

4. A candidate is marked as a valid detection if (1) the fraction of short-time SNR values above 

threshold is greater than a user-specified minimum ―occupancy,‖ and (2) its duration falls 

between a user-specified minimum and maximum. 

Enhancements to band-limited energy detector 

The first attempts to use the band-limited energy detector for large-scale data processing were made 

as part of the DoD funded Legacy nocturnal flight call project. These efforts demonstrated that it was 

often difficult and time-consuming to configure the detector‘s various parameters for acceptable 

performance. When the detector missed target events, or falsely detected non-targets, it was often 

unclear which parameter(s) (e.g., SNR threshold or minimum occupancy) to change to improve 

performance. In addition, changes to a single parameter could produce results in the final output of 

the detector that were unexpected because the results of each intermediate stage in the detection 

process were not observable. 

Under SI-1461, a set of diagnostic displays were implemented that show the results of each 

intermediate stage in the detection process (Figure 3). These diagnostics take the guesswork out of 

detector configuration and enable the user to make targeted improvements to detector performance 

in a few minutes that previously could have taken hours of trial and error.  
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Figure 3.  Band limited energy detector diagnostic display in XBAT. Upper window: Sound 
spectrogram of five seconds of a night-time recording made by an ARU, showing six nocturnal flight 
calls of savannah sparrow (Passerculus sandwichensis). Green rectangles mark five calls that were 
detected by the energy detector. The red ellipse marks a call that was missed by the detector. Lower 
window: Energy detector diagnostic display. The turquoise highlighting of the third candidate 
transient (bottom panel) indicates that this candidate, which corresponds to the missed detection in 
the upper window, was rejected because it did not satisfy the minimum duration criterion specified 
in the detector configuration.  

Database logs in XBAT 

Each sound recording that is analyzed in XBAT may have one or more logs associated with it. A log 

stores information about events. Each event has associated with it a time (where it is in the 

recording), a duration, and a minimum and maximum frequency. Events may also have 

measurements and annotations (e.g., species tags) associated with them. Events can be created 
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manually by a user (by drawing time-frequency boxes on a spectrogram) or automatically by a 

detector.  

At the outset of this project, logs were saved in the form of MATLAB data (.mat) files, which was the 

most natural and convenient way to store the data structures representing events. However, as 

experience accumulated using a variety of detectors on very large datasets, limitations of this storage 

format became apparent. In order to work with a log (e.g., for a user to review events logged by a 

detector), XBAT had to read the entire log file into memory. As log size increased beyond 

approximately 10,000 events the performance of the system for even simple tasks (e.g., paging from 

one event to the next) became unacceptably slow. In projects involving very long recordings, 

detection runs sometimes generated logs with many tens of thousands of events that were effectively 

unusable. Although workarounds were possible (e.g., running detections on tiled subsets of the data, 

creating a series of smaller logs) the ―large log problem‖ became the overall limiting factor on the rate 

at which data could be processed.  

To address the problems created by large event logs, work was undertaken under SI-1461 to 

implement a new storage format for XBAT event logs as SQLite databases. Using a database 

representation would enable fast access to arbitrarily large logs, independent of log size, thus 

overcoming the bottleneck posed by large MATLAB-format logs. A database representation also has 

the added advantage that XBAT logs would become readily accessible from outside the XBAT or 

MATLAB environments, as they could be searched via SQL queries, either directly by a human user 

or by programs written in a wide variety of other programming languages. The original MATLAB-

format logs were inaccessible from outside of MATLAB without major programming efforts.  

Implementation of database XBAT logs occurred in two phases. In the first (infrastructure) phase, 

MATLAB was extended via the MEX interface to support read-write access to SQLite database files. 

In the second phase, a database schema for storage of event log information was developed and 

implemented as part of XBAT. As a result of this work, database logs are now fully functional in the 

development version of XBAT. Tests have verified that database logs containing hundreds of 

thousands of events can now be used with rapid access to all data, at speeds indistinguishable from 

logs containing hundreds of events. Logs of this size stored in the older MATLAB format would have 

been impossible to use. This development marks a major improvement in the usability of XBAT for 

processing the amounts of data typically acquired by large-scale passive acoustic monitoring of bird 

habitats. 

Nearest-neighbor classifier in XBAT 

Nearest‐neighbor (NN) classification is an established instance‐based machine learning method 

(Cover and Hart 1967). To classify unknown instances, it relies on an existing library of labeled 

training examples and a distance-based notion of object similarity. A distance function is used to 

determine which labeled examples are closest, and therefore assumed most similar, to the unlabeled 

object. The object‘s label is then predicted by the label of either the single nearest neighbor, or a 

through a voting rule on the collection of k nearest neighbors (k‐NN). Object distances are calculated 

from measured object features using a choice of distance functions. For sound data, it is common to 

generate distances via spectrogram cross‐correlation (e.g., Clark et al. 1987, Cortopassi and Bradbury 
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2000), essentially using the entire spectrogram as a feature vector. Distances can also be computed 

through a variety of extracted measurements (features).  

NN classification is straightforward and theoretically effective as training sets become larger (Cover 

and Hart 1967). However, searching through the library of examples to find neighbors becomes time 

consuming, as the training set grows in size and many features are considered to determine distance. 

For bioacoustic data, large example sets are often required to span the natural variation in acoustic 

signals. Furthermore, typical distance metrics like spectrogram correlation present an enormous 

number of feature dimensions.  

Under SI-1461, work was done on two fronts to support implementation of practical NN classification 

tools.  

Implementation of condensed nearest-neighbor domain description (CNNDD)  

Ideally a set of sound examples for a NN classifier should be large enough to span the range of 

biological variability, but no larger, because increasing the number of examples to be searched 

increases processing time. Typically, an arbitrarily compiled set of examples—e.g., all known 

examples of a particular sound type from an archive such as the Macaulay Library—is highly 

redundant and much larger than necessary. In order to speed processing, it would be desirable to use 

only a subset of all available examples, chosen so that the subset is as small as possible while still 

spanning the natural range of variation. The condensed nearest-neighbor domain description 

(CNNDD ) algorithm (Angiulli 2007) is a method for finding a subset of a large, redundant example 

set such that, when the subset is used with a particular NN classifier, it will provide classification 

performance equivalent to that of the complete example set.  

Under SI-1461, the CNNDD algorithm was implemented in MATLAB in a form that can be readily 

integrated to support NN classification in XBAT. Table 4 illustrates the performance of the CNNDD 

algorithm as implemented with data on nocturnal flight calls from four species of warbler. These data 

were collected as part of DoD Legacy Project 5-245. 

Table 4.  Condensation of exemplar sets for nearest-neighbor classification of migratory nocturnal flight 
calls of four species of warblers. ‘Total exemplars’ is the number of exemplars available in the complete 
unreduced set of known sounds. The last two columns show numbers of exemplars in the condensed 
sets for equivalent nearest-neighbor classification performance with 1 or 5 nearest neighbors. AMRE = 
American redstart (Setophaga ruticilla), COYE = common yellowthroat (Geothlypis trichas), OVEN = 
ovenbird (Seiurus aurocapilla), MAWA = magnolia warbler (Dendroica magnolia).  

  Condensed exemplars 

Species Total exemplars 1 nearest neighbor 5 nearest neighbors 

AMRE 379 25 46 

COYE 89 8 16 

OVEN 459 14 24 

MAWA 1872 17 30 
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Implementation of metric trees for fast nearest neighbor classification 

Metric trees are data structures that are used to organize and search large sets of data in a 

multidimensional ―metric space‖ by recursively partitioning that space into successively smaller 

volumes by a series of hyperplanes. Metric trees can be used to rapidly find the nearest neighbor to an 

object of unknown identity in a set of labeled example objects.  

Figure 4 illustrates this process with a set of 64 example objects in a simple hypothetical two-

dimensional feature space (Figure 4a; real acoustic data would be represented with a much larger 

number of dimensions than can easily be shown in a two-dimensional illustration). In Figure 4b, the 

algorithm has created a metric tree spanning the feature space, with nodes indicated by small white 

circles. The root of the tree (the starting point for traversing the tree to classify an unknown object) is 

in the center, marked by a bold black border. Each terminal node, or leaf of the tree corresponds to a 

neighborhood of eight example objects; the actual number of examples associated with each leaf is a 

configurable parameter of tree construction. Also shown in Figure 4b is an object of unknown type to 

be classified (indicated by red ‗X‘ in the small yellow circle). To classify the unknown, the object is 

compared to individual nodes in the tree, beginning with the root. Each comparison determines 

whether the unknown is to the left or the right of a line (not shown) through the node perpendicular 

to the tree. (In an n-dimensional space, the comparison determines which side of an n-1-dimensional 

hyperplane the unknown is on.) The comparison then moves to the next node down the tree in the 

chosen direction (Figure 4c, red arrow). In this way the tree is traversed until the leaf nearest to the 

unknown is reached (Figure 4d). The distance between the unknown and each of the examples 

associated with the chosen leaf is then computed to find the nearest example. The class (species) label 

of that example is then assigned to the unknown. In this approach, the number of comparisons that 

need to be made increases as the logarithm (base 2) of the number of examples. So, for example a 

million examples could be searched with approximately 20 comparisons.  

Under SI-1461, a metric tree construction algorithm (Liu et al. 2004) was implemented in MATLAB 

in a form that can be readily integrated to support NN classification in XBAT. 
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Figure 4.  Conceptual illustration of fast nearest-neighbor searching using metric trees in a 2-
dimensional space. In the case of real acoustic data, the space to be searched would have many 
dimensions, with each dimension corresponding to an acoustic feature. (a)  A set of 64 known 
examples of the types of objects to be classified. Each object is labeled with a class (“species”), 
not shown. (b) A metric tree constructed to represent the example set. Nodes of the tree are 
indicated by white dots; the root of the tree is in the center, indicated by the node with a bold 
black border. Each terminal node or leaf is associated with a set of eight examples. Large 
colored circles indicate the range between each terminal node and its most distant example. 
The circled red ‘X’ represents an unknown object to be classified. (c) First step in classification 
of the unknown object by traversing the tree. Examples associated with the left side of the tree 
have been eliminated from consideration. (d) Final step in traversal of the tree. The domain of 
examples to which the unknown needs to be compared has been reduced to the eight examples 
associated with one leaf. Final classification is done by evaluating the distance between the 
unknown and each of the eight remaining examples, then assigning the class label of the 
nearest one.  



SERDP SI-1461 Final Report 15 

NFC detector infrastructure and plug-ins for nocturnal flight call monitoring in Raven  

Raven plug-in architecture and detector infrastructure 

Under SI-1461, the architecture used in Raven 1.2.1 was enhanced to achieve a high level of 

modularity and extensibility. This redesign was motivated in large part by the goal of enabling 

developers to easily add new detection algorithms (such as those envisioned as part of SI-1461) to 

Raven without needing to be familiar with other parts of the application code. The resulting new 

version, Raven Pro 1.3, employs the Eclipse 3.1.2 plugin framework provided by the Eclipse 

Foundation (www.eclipse.org).2 A plugin is a self-contained unit of code and/or data which may be 

independently added to a software application. Using this architecture, new features (such as new 

types of signal detectors) can be added to an existing installation of Raven Pro by simply placing a set 

of program files into the appropriate subdirectory within the Raven Pro directory; no recompiling or 

complex installation procedure is required. The Eclipse plugin framework serves a dual purpose: it 

assembles an application‘s constituent plugins into a working product and allows the plugins to be 

automatically updated from remote network locations. 

Raven Pro now defines six classes of plugins, such as audio input devices, automatic detectors, and 

Fourier Transform algorithms. In total, Raven Pro is composed of 21 plugins, including four audio 

input devices and three automatic detectors. Users may install new plugins as they become available, 

installing only what is needed. This helps keep the user interface simple and easy to use.   

Maintenance is easy using the Eclipse automatic update facility.  

In addition to modularity, Raven Pro‘s plugin framework allows software developers outside the 

Cornell Lab of Ornithology to extend the capabilities of Raven Pro by contributing plugins to the 

project. Developers may write extensions in Java. The automatic detector plugin class also has a 

facility for writing detectors in Python. 

Band-limited energy detector plug-in for Raven Pro 

Under SI-1461, a band-limited energy detector (BLED) plug-in was implemented using Raven Pro‘s 

new plugin architecture. The algorithm used in this detector is similar to that described above for the 

XAT energy detector. To use the detector, the user specifies minimum and maximum frequency and 

duration, and minimum separation in time for events of interest, as well as parameters for 

background noise estimation (Figure 5). The detector identifies events for which the estimated in-

band energy exceeds the background noise estimate by the specified SNR for a duration within the 

specified limits. Figure 6 shows an example of bird calls identified by the BLED. 

                                                      

2 Eclipse is an open source project managed by a consortium of corporations which includes Hewlett-Packard, 

IBM, and Intel. 

http://www.eclipse.org/
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Figure 5.  The configuration dialog box for Raven’s band-limited energy detector. 

 

Figure 6.  Calls of a Northern Flicker (Colaptes auratus) detected and highlighted by Raven’s band-
limited energy detector. 

The BLED is now being used by the DoD Legacy migratory bird monitoring project to detect 

nocturnal flight calls of migrant birds passing over the bases listed in Table 1. The BLED typically 

processes these recordings at over 200 times real-time speed, so that an eight-hour recording is 

completely processed in slightly more than two minutes. Raven Pro allows the user to run multiple 

detectors at once on the same or different data sets. In addition, Raven Pro can run the same detectors 

in real-time on live data streamed from a microphone. This capability is crucial to the use of Raven as 

a real-time monitoring tool as envisioned in the SI-1461 proposal. 

These advances in Raven‘s architecture and detection capabilities are already being exploited by the 

companion DoD-funded Legacy project applying acoustic technologies to studies of migrating birds. 

This project has made extensive use of software to automate processing of tens of thousands of hours 

of recordings, focusing on band-limited energy detectors as a means to extract flight calls and other 

vocalizations of interest as rapidly as possible. Raven Pro has been used (1) to detect signals of interest 

(primarily flight calls), (2) to extract (export) these signals as clips for later viewing and analysis 
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(classification), and (3) to view these signals of interest. Raven Pro‘s high processing rate (> 200x real-

time), combined with its ability to handle very large selection tables (on the order of 100,000-300,000 

events or more) have enabled the Legacy researchers to proceed with verifying these data for valid 

flight calls much more efficiently than ever before. These advances have enabled the Legacy team to 

begin to develop data analysis procedures operable on a scale commensurate with our ability to 

collect massive amounts of data at low cost using ARU technology. 

Future directions 

The original proposal for this project identified three major areas of development to be undertaken 

over the course of four years: (1) detection and classification software to support long term acoustic 

monitoring using ARUs, (2) enhancements to balloon-based acoustic monitoring, and (3) nocturnal 

flight call monitoring. The developments described above represent slightly more than one year of 

effort in areas 1 and 3. 

This section describes directions that should be taken by future efforts in these areas. 

Detection and classification software 

In recent years, there has been increasing interest in developing automated, quantitative methods for 

classifying acoustic signals of animals. Multiple classification techniques have shown promising 

results including, for example, artificial neural networks (Murray et al. 1998, Deecke et al. 1999, 

Deecke et al. 2000, Parsons and Jones 2000, Dawson et al. 2006, Nickerson et al. 2006, Selin 2007), 

hidden Markov models (Kogan and Margoliash 1998, Skowronski and Harris 2006, Chen and Maher 

2006, Somervuo et al. 2006), template matching with dynamic time warping (Anderson et al. 1996; 

Kogan and Margoliash 1998, Somervuo et al. 2006), Gaussian mixed models (Skowronski and Harris 

2006, Somervuo et al. 2006, Kwan et al. 2006, Roch et al. 2007), discriminant function analysis 

(Cortopassi and Bradbury 2000; Parsons and Jones 2000, Kazial et al. 2001, Lee et al. 2006, 

Skowronski and Harris 2006), and classification and regression trees (Melendez et al. 2006). These 

approaches have been applied to signals from a variety of taxa including birds (Anderson et al. 1996, 

Kogan and Margoliash 1998, Cortopassi and Bradbury 2000, Chen and Maher 2006, Dawson et al. 

2006, Nickerson et al. 2006, Somervuo et al. 2006, Selin 2007), bats (Parsons and Jones 2000, Kazial et 

al. 2001, Melendez et al. 2006, Skowronski and Harris 2006), odontocetes (Hayward 1997; Murray et 

al. 1998; Deecke et al. 1999; Houser et al. 1999; Roch et al. 2007), terrestrial mammals (Placer and 

Slobodchikoff 2000), anurans (Lee et al. 2006), and insects (Chesmore 2001, Chesmore and Ohya 

2004, Lee et al. 2006). 

As important as the choice of classifier (or perhaps more so) is the choice of features (measurements) 

to be extracted and provided as input to the classification algorithm. Many bird sounds, particularly 

the advertising songs of passerines, are characterized by variable and complex hierarchical structures 

of simple subunits. Many of the studies cited above rely on various types of low-level spectral 

measurements that fail to capture this higher-level structure. Future work should include efforts to 

identify higher-level syntactical units (e.g., phrases of repeated or alternating subunits), patterns of 

which are often used by human experts to identify bird sounds.  
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Open-mic recordings in natural environments (such as those made with ARUs) typically include 

multiple signal sources, often overlapping in time and frequency, which increases the difficulty of 

classification and detection. Future efforts should include exploration of blind source separation 

techniques such as independent component analysis (Hyvärinen et al. 2001), which can aid in 

isolating sounds to be classified. 

Balloon-based acoustic monitoring 

The original balloon recording system developed under SI-1185 used two microphones suspended 

from the ends of a 1 m long horizontal boom. This system should be replaced with a pair of 

microphones suspended beneath the balloon, with a few meters of vertical separation, as described in 

the SI-1461 proposal. The delay in the arrival of each sound at the higher microphone, relative to the 

lower one, would be used in conjunction with the balloon‘s altitude to measure the distance from the 

singing bird to the point on the ground directly beneath the balloon. This measure of distance enables 

subsequent analyses to estimate how detection probability falls off with distance, and thus estimate 

the area surveyed for each species.  

The balloon system‘s altitude control system should be upgraded to address two issues. First, the 

current software sometimes overcompensates for rapid altitude changes caused by a combination of 

higher wind speeds and steep terrain, which can lead to loss of the system (via either premature 

landing or excessive altitude gain). These problems could be addressed by enhancing the software to 

ignore rapid altitude changes likely to be caused by terrain-following winds. Second, the current 

system begins its programmed descent (by venting helium) only once the balloon crosses the defined 

perimeter of the search area. The maximum rate at which the current valve design can vent 

sometimes leads to undesirably long descents, and landings far outside the target perimeter, which 

can hamper recovery efforts. We would address this by (a) increasing the maximum orifice of the 

valve to allow for faster venting, and (b) revising the software to initiate the descent phase before 

crossing the boundary, to target a landing closer to the boundary.   

Additional changes should be made to communication between the balloon in flight and personnel 

on the ground, in order to improve the efficiency of instrument recovery upon conclusion of a flight. 

Nocturnal flight call monitoring 

In addition to the implementation of detector infrastructure and a prototype detector for Raven 

(completed, as described above), the original proposal identified the following software and hardware 

development tasks associated with nocturnal flight call monitoring: 

1. an acoustic database to host nocturnal flight call audio clips uploaded from a network of 

monitoring stations; 

2. client software on monitoring computers to upload detected sounds to the database; 

3. NFC classification algorithms; 

4. prototype NFC detection network  

At the time the proposal for SI-1461 was written, no network-accessible acoustic database existed, so 

the development of this resource was a key item in the proposal. However, as a result of recent work 



SERDP SI-1461 Final Report 19 

in our laboratory funded by other sources, we now have two such databases, implemented as part of 

the Right Whale Listening Network and the Bioacoustic Resource Network, either of which could 

potentially be adapted to form the hub of a NFC monitoring network. These two systems are 

summarized below. 

The Right Whale Listening Network3 was developed to provide near-real-time acoustic detection of 

endangered North Atlantic right whales (Eubalaena glacialis) in and near the commercial shipping 

lanes approaching Boston, Massachusetts. The system, which has been online in continuous operation 

since January 2008, was developed to warn commercial shipping vessels of the presence of right 

whales in the area, in order to mitigate the hazard of ship-whale strikes, which are a major cause of 

mortality for this highly endangered whale species. The offshore portion of the network consists of a 

set of ―auto-detection buoys‖ each equipped with an underwater microphone (hydrophone), onboard 

signal detection software, and satellite communication system. At programmed intervals (currently 

every 20 minutes) each buoy communicates via a satellite link with a database server in our lab, and 

uploads clips of possible right whale sounds that it has detected. The server supports a password-

protected website through which authorized expert users can review and validate uploaded sound 

clips, and a separate outreach site (http://www.listenforwhales.org/, Figure 7) where the general 

public can view near-real-time reports on where whales have been detected by the network in the 

past 24 hours.  

                                                      

3 The Right Whale Listening Network was developed by the Cornell Bioacoustic Research Program and the 

Woods Hole Oceanographic Institution with funding from non-SERDP Federal and Massachusetts state 

agencies and industry partners, in cooperation with several NGOs. 

http://www.listenforwhales.org/
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Figure 7.  Real-time status map for the Right Whale Listening Network from the public website 
(http://www.listenforwhales.org/). Red whale icons show positions of acoustic monitoring buoys 
that have detected right whale calls within the past 24 hours; small green circles indicate 
operational buoys without detections.   

The BioAcoustic Resource Network (BARN, http://barn.xbat.org, Figure 8) consists of an Internet-

accessible acoustic database and associated software tools to support collaborative bioacoustic 

research and monitoring projects. BARN‘s database infrastructure and network communication 

protocols are now in alpha testing. Because BARN uses established HTTP requests to control data 

transfers (e.g., HTTP POST to upload a sound clip), implementing a client for uploading flight call 

clips would be a simple task in any modern programming language (e.g., Java, Python), most of which 

have built-in support for HTTP communication. BARN is being implemented in conjunction with the 

XBAT project, and among the services that BARN will provide is server-side processing of sounds 

with any of the tools that are part of the XBAT core and extensions (e.g., detectors, classifiers). Thus, 

once sound clips are uploaded to BARN by nodes in the NFC monitoring network, they could be 

classified by software running on the server, and the results could be made available over the Internet 

to authorized users anywhere via a web-browser interface. Users could view and listen to sound clips 

and see the classifications proposed by the system (Figure 8). They could validate the proposed 

classifications, or edit them based either on their own expert knowledge or on comparisons to a 

library of calls of known identity, which would be made available by the BARN system. A BARN-

based system could be used by authorized experts to validate machine classifications, or could form 

the basis of a citizen-science project that would recruit large numbers of volunteer users to bring 

human pattern-recognition skill to the task of validating classifications, similar to the Cornell Lab of 

Ornithology‘s CamClickr project (http://watch.birds.cornell.edu/nestcams/clicker/clicker/index), 

which uses citizen scientists to classify and tag millions of images of bird behavior at nests. 

http://barn.xbat.org/
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Figure 8.  Screenshot of the BioAcoustics Resource Network (BARN) website 
(http://barn.xbat.org) showing the interface for reviewing events in a log associated with a 
sound. In this example, each small spectrogram shows a single phrase from a whip-poor-will 
song, detected by the data template detector. From this page, a user can play any sound (by 
clicking on its spectrogram image), or can apply tags, ratings, and annotations. 

Either the right whale listening network or BARN could potentially provide much of the database 

and network communication infrastructure required for a nocturnal flight call monitoring network. 

If SERDP or another source were to fund further development of such a network, a first step would 

be a more in-depth evaluation of which of these would provide a more appropriate foundation, 

depending on more detailed consideration of the needs of an NFC network, and the development 

state of these two projects at the time. In either case, much of the work necessary for developing the 

NFC network has now been done with non-SERDP funding. 

Deployment of the necessary hardware (directional microphones and preamplifiers) for a 

prototype/demonstration network, as described in the proposal, remains to be done.  

Further work on classification of nocturnal flight calls is needed, and is underway presently in our lab 

(with funding from other source), building on the progress described in this report.  
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