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EXECUTIVE SUMMARY

This is the final report for the SERDP project MM-1640 and it covers the research

results accomplished since the inception of the project in 2007. The basic premise of

this project is the theoretical understanding and algorithm development of principal

component analysis (PCA) as a de-noising and signal-separation tool for transient

electromagnetic (TEM) data in unexploded ordnance (UXO) applications. There is

an express need for techniques to reduce the presence of random noise in TEM data

as well as reduce the influence of correlated noise due to a wide variety of sources

on automatic anomaly-picking routines for more accurate detection with fewer false

anomalies. We have developed an algorithm and workflow for the processing and

inversion of TEM data that attenuates signal from undesired sources and accurately

inverts TEM data for diagnostic UXO parameters.

The research performed over the life-span of this project has progressed satis-

factorily with the major research tasks completed approximately to project plan. In

addition, we have identified an additional area of research critical to the application

of PCA to TEM data and added these aspects to the research plan.

First, we developed a principal component analysis algorithm tailored to un-

exploded ordnance applications. Decay characteristics of TEM data preclude the

standard Karhunen-Loéve transform; we have addressed these issues with algorithm

modifications and incorporated these into the workflow.

Secondly, we identified the optimum choice of principal components for the at-

tenuation of both random noise and correlated noise, leaving the signal due to UXO

intact. We show that the processed data is optimally prepared for automatic anomaly

picking routines with a highly reduced number of false anomalies. We demonstrate

this on both synthetic examples of UXO surveys, as well as on TEM data from

Kaho’olawe, Hawaii, USA.

iii



Finally, we have identified a critical issue with inversion of processed data that

results in extremely inaccurate recovered models without the incorporation of the

PCA process into the forward model. We developed an inversion algorithm which

takes the processing steps into account during construction of the inverse kernels.

This leads to more accurate recovered models of inverted anomalies.
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CHAPTER 1

INTRODUCTION

1.1 SERDP relevance

This project addresses the need for improved signal processing outlined in the

Statement of Needs MMSEED-08-01, and has developed new technologies for enhanc-

ing time-domain electromagnetic data (TEM) by estimating and removing undesirable

components such as random noise and other responses unrelated to metallic objects.

The goal is to increase the signal-to-noise ratio of the TEM data as well as to gen-

erate an estimate of data noise characteristics (statistical distribution and associated

parameters) for use in subsequent inversion-based discrimination.

One of the most effective geophysical techniques for UXO application is the tran-

sient electromagnetic method. Using a loop as a source, a time-varying magnetic field

is generated at the surface which in turn induces electrical currents in the ground, and

more importantly in buried metallic objects. Once induced, these currents dissipate

over time due to ohmic losses, leading to a measured transient decay in magnetic

field flux density at the surface by geophysical sensors. The currents induced in the

surrounding medium and in the buried metallic objects decay at different rates and

can be separated. For metallic objects, the decay rates are directly related to the

size, shape, depth, and electrical conductivity of the target body. Unfortunately, real

TEM data for UXO detection and discrimination are contaminated with outside noise

sources. These sources of noise can be spatially correlated, such as near-surface geol-

ogy, micro-topography, coil orientation, sensor motion, and positioning errors; or they

can be uncorrelated, such as random RF interference, telluric sources, and instrument

interference. Each of these sources of noise, in addition to buried UXO, contributes

to the total response measured by the sensors. The effect of noise is especially strong

at late-times in the TEM data. Noise from such numerous and varying sources often
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limits the ability of the TEM method to adequately discriminate hazardous muni-

tions from non-hazardous items. Thus, there is a need for developing methods to

enhance TEM data in UXO discrimination, and the key to the solution under such

conditions is to develop a practical algorithm that can reliably identify and remove

these individual sources of noise component by component.

Of the two types of noise, correlated noise is more difficult to isolate and remove

from the data than uncorrelated noise. Current methods of noise analysis in UXO

surveys include simply thresholding a noise level and ignoring any signal below the

chosen value (Pasion and Oldenburg, 2001b), stacking, and median filters to de-trend

the data (Pasion and Oldenburg, 2001a). To date, there has not been a concentrated

research effort focused on separating the various sources of noise, and identifying the

effects that these individual sources have on the data.

Principal component analysis, or PCA, is a technique for simplifying a data

set by reducing multidimensional data sets to lower dimensions for analysis. PCA

is basically an orthogonal linear transformation that transforms the data to a new

coordinate system such that the greatest variance by any projection of the data

comes to lie on the first coordinate (called the first principal component), the second

greatest variance on the second coordinate, and so on. By properly analyzing the

various components, one can isolate the individual correlated signals not associated

with the UXO, and remove those components from the TEM data. In an ideal case,

this leaves only the signal from UXO and UXO-like anomalies, eliminating completely

any error in the signal caused by external noise.

We have developed a set of processing techniques based on the PCA algorithm for

TEM data in UXO applications as well as the parametric inversion of such processed

data for recovering both extrinsic and intrinsic parameters for use in discrimination.

These techniques can be combined with existing workflows to rapidly identify poten-

tial UXO targets for further processing with minimal required user input.
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1.2 Technical objectives

The purpose of this study was to develop a practical algorithm that enhances the

signal in transient electromagnetic data for UXO applications. We have developed

a de-noising algorithm that not only removes random, uncorrelated noise, but also

separates the signals due to various sources through principal component analysis.

We separated the research into aspects of PCA that address uncorrelated signals and

aspects that address correlated but undesired signals. Specifically, this study had six

objectives in three categories:

• Method development for uncorrelated noise

– Develop a PCA algorithm tailored to TEM data from UXO surveys, and

– Produce a stable and automated algorithm for removal of uncorrelated

noise.

• Method development for correlated noise

– Study the physical connection between signals due to different sources and

the components recovered from PCA

– Determine the feasibility of using PCA to reduce TEM data in UXO appli-

cations to the signal exclusively produced by UXO and UXO-like anoma-

lies, and

– Apply the developed algorithm to data examples and assess the effective-

ness through discrimination/classification tests.

• Method development for inversion of processed data

– Develop a method for parametric inversion of processed data for recovery

of diagnostic parameters in UXO applications.
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1.3 Project summary

In this report, we summarize the major research accomplishments of the SERDP

MM-1640 project. In short, we have accomplished the main objectives of this project,

leading to a workflow ready to be inserted into industry-standard practices for the

improved detection of UXO in noisy environments.

In Chapter 2 we begin by presenting background material on principal compo-

nent analysis which will be used throughout this report. We first develop necessary

modifications to the basic PCA routines in Chapter 3 before presenting de-noising

algorithms for both uncorrelated and correlated sources of noise. We continue in

Chapter 3 by discussing requirements and procedures for large-scale PCA decompo-

sitions. We conclude the chapter by showing difficulties in inverting PCA-processed

data and develop an algorithm for both parametric and non-parametric inversion of

this processed data.

In Chapter 4, we provide a series of examples demonstrating the efficacy of PCA

in transient electromagnetic survey processing. We begin by showing how PCA can

remove uncorrelated noise in a field dataset from Kaho’olawe, HI. We then present a

parametric inversion result showing that PCA can improve the recovery of diagnostic

parameters for UXO/scrap metal discrimination. We conclude the examples by taking

a dataset contaminated by correlated noise through a complete workflow in UXOLab

both with and without processing by PCA. We show a marked reduction in the

number of false anomalies without compromising the detection of actual UXO.

We conclude this report in Chapters 5 and 6 with a discussion of the project

results, recommendations, and publications/presentations generated throughout the

lifespan of SERDP Project MM-1640.
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CHAPTER 2

BACKGROUND

2.1 Principal component analysis

Principal component analysis (PCA) is a statistical method for analyzing ob-

servations in multiple channels through an orthonormal projection. Not only does

principal component analysis have the ability to separate and remove uncorrelated

noise, but also to decompose a signal into constituent components from its sources

in many cases. Consequently, PCA has been used for many different applications

including digital image enhancement, facial recognition, data transmission and com-

pression (Jones and Levy, 1987), de-noising radiometric data (Minty and Hovgaard,

2002), and seismic de-noising (Jones and Levy, 1987; Jackson et al., 1991), to name

a few. Recently, PCA has been applied to airborne EM (AEM) surveys to construct

intuitive RGB maps based on the principal components (Green, 1998). In other

electromagnetic applications, Asten (2009) has used PCA in unexploded ordnance

TEM surveys to classify targets, while Hu and Collins (2004), Hu et al. (2004), and

Throckmorton et al. (2007) have used similar techniques using higher-order moments

(Independent Component Analysis) to recover diagnostic parameters of differing ord-

nance items. The most common use of Principal Component Analysis in EM is to

combine magnetic and electromagnetic datasets (e.g. Rose-Pehrsson et al., 1998).

Although PCA methods vary greatly in their application, all linear PCA al-

gorithms are similar in that they deconstruct a multi-channel signal into a set of

orthonormal bases of decreasing energy. These sets can be reconstructed into the

original signal exactly, or a truncated set can be used in reconstruction that tends

to eliminate noise. Correlated signals are typically reconstructed by added the bases

(from highest to lowest energy) until the desired energy level is reached–generally

chosen through a statistical analysis of error.
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In most surveys with multiple stations that record traces (decay curves) of data,

there are two organizations over which a signal can be said to be “correlated.” One

can analyze the correlation between time-slices or between traces. In essence, we

are either analyzing similarities in anomaly geometry or similarities in decay. Which

correlation we analyze will have important implications on computation cost of the

calculations.

Geometrically, the data set from a TEM survey can be envisioned as a cloud of

’m × n’ measurements in an n-dimensional data space (where m is the number of

channels and n the number of stations, for purposes of this derivation). The data

coordinate system is rotated until the first axis is along the direction where the data

have the greatest variance. The second coordinate axis is chosen to have the next

highest data variance subject to the constraint that it must be orthogonal to the

first, and so on (Green, 1998). This is accomplished by using the eigenvectors of the

covariance matrix as the new bases, as they will align with these directions of variance

and will be mutually orthogonal.

To define these principal components, we introduce the Karhunen-Loéve Trans-

form as a linear PCA tool as in Jones and Levy (1987). However, any eigenvector

or singular value decomposition will produce an equivalent result to the accuracy of

that decomposition (Minty and McFadden, 1998).

Assume a set of data consisting of multiple traces each with multiple data values

xi(tj), i = 1, ..., n; j = 1, ...m

where the i’th trace is associated with a particular location and the index j corre-

sponds to a particular channel of observation at that given location. For example,

one may have an EM63 instrument occupying n locations along a line or within a

grid during a UXO survey, which would yield n traces of decaying voltage, each con-

taining 25 channels of data (m = 25). As stated earlier, principal component analysis

first generates a rotation matrix that rotates the data traces onto a set of orthogonal
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directions called principal component directions. In such a rotation, the resulting

components are ordered by decreasing energy. The earlier components with most

energy tend to capture the coherent data signal whereas the later components tend

to represent incoherent noise in the entire data set.

Such a rotation matrix can be defined by decomposing the covariance matrix Γ

of the data traces. The elements of the covariance matrix are given by

γkl =
m∑
j=1

xk(tj)xl(tj), k, l = 1, ..., n. (2.1)

The covariance matrix Γ can be decomposed into its corresponding eigenvalues

and eigenvectors:

Γ = RΛRT , (2.2)

where Λ is a diagonal matrix consisting of the eigenvalues of Γ and R is the eigenvector

matrix whose columns are the corresponding eigenvectors. Kramer and Mathews

(1956) showed that the eigenvectors define the principal component directions and

matrix RT is exactly a rotation matrix that decomposes (or rotates) the original

signal into such components:

ψk(t) =
n∑
i=1

rkixi(t) k = 1, ..., n, (2.3)

and the original signal can be reconstructed by:

x̃i(t) =
n∑
k=1

rikψk(t), i = 1, ..., n. (2.4)

Using a compact notation with a data matrix X whose rows are the data traces, the
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decomposition (Ψ) and reconstruction can be written as

Ψ = RTX (2.5)

X̃ = RΨ. (2.6)

We note that the eigenvector matrix R is a unitary matrix and satisfies:

RRT = RTR = I,

where I is an identity matrix. Thus the reconstruction is exact and unique, and the

data matrix X is equal to:

X = X̃ = RRTX. (2.7)

Mathematically, the reconstructed signal is exactly equal to the original signal when

all principal components are included. Reconstructing with a selected subset of prin-

cipal components ψk(t) would yield a truncated reconstruction that is devoid of the

energy captured in the discarded components. For example, incoherent noise often

populates the last few principal components and discarding them during reconstruc-

tion would yield a cleaner signal that is minimally affected by the noise. Thus to

perform simple de-noising of signals, the reconstruction series is truncated as:

x̃i(t) =
c∑

k=1

rikψk(t) c ≤ n, (2.8)

although other reconstruction schemes are also possible. In matrix notation:

X̃ = RBRTX

X̃ = YX, (2.9)

where B is a diagonal matrix, with ones at the rows corresponding to the components
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used for reconstruction, and zeros everywhere else. This result is derived from the

fact that PCA measures correlated energy. If a signal is random from trace to trace

then there is very little correlated energy between the signals, so the reconstruction of

those signals falls to the later components. For this reason, truncation of the rotated

matrix is an extremely fast process to remove uncorrelated noise from the data.

9



10



CHAPTER 3

ALGORITHM DEVELOPMENT

3.1 Introduction

The PCA algorithm for UXO surveys follows the same general pattern as de-

scribed in Chapter 2. However, significant changes need to be made depending on

whether temporal or spatial correlation of the data is chosen. Temporal correlation

requires significant data regularization before calculation of the covariance matrix,

while spatial correlation may require a distance function applied to the correlation.

In addition, with spatial correlation the covariance matrix can become extremely

large, precluding a complete eigenvector decomposition. Thus more efficient eigen-

vector decomposition techniques are required.

Once decomposition into principal components is complete, proper choice of

which principal components used in reconstruction is critical. This choice is dependent

on the types of signal that need to be attenuated. Since the orthogonal bases are data-

dependent instead of user-chosen, the principal components used in reconstruction are

entirely a function of the signal to be removed, and are common throughout all types

of surveys.

The reconstructed data no longer has the same decay characteristics as before,

so the same inversion kernels can not be used to invert PCA-processed data. We

therefore developed an inversion algorithm for both parametric and generalized inverse

cases.

This chapter describes the algorithm we developed, from data normalization to

inversion. In general, PCA follows the workflow as described in figure 3.1.

11



Figure 3.1. General workflow for processing TEM data with principal component
analysis

3.2 Principal component analysis for transient electromagnetic surveys

In order to appropriately apply principal component analysis to TEM surveys,

we must first define how we correlate our data. We may either correlate TEM data

in terms of space or in terms of time. Spatial correlation relates variances between

decay curves, while temporal correlation relates variances in time-intersects. For

time domain surveys, construction of the covariance matrix must be modified from

the standard definition as described in equation 2.1. The subsequent processing steps

described earlier may be directly applied to this normalized data.

3.2.1 Temporal correlation

Temporal correlation relates variances in time-intersects. This method of orga-

nization is extremely useful for separating signals which have different decay charac-

teristics, such as UXO and magnetic soils.

While most multi-channel data can be decomposed using the simple covariance

matrix formulation shown in equation 2.1, the particular characteristics of TEM data
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sorted by time preclude this construction. Since the signal decays exponentially with

time, the data change in magnitude over several orders with a non-linear correspond-

ing change in error level. This results in a poorly scaled covariance matrix, which

results in inaccurate eigenvector decomposition. Most of the covariance is contained

in the first few time gates, overwhelming the later gates. In addition, for certain sur-

veys where magnetic soil is present such as at Kaho’olawe, a large signal (t−1 decay)

dominates the data. Figure 3.2 shows an example covariance matrix for an EM-63

survey before and after the scaling is applied. This scaling is critical for accurate

processing.

In order to properly scale the covariance matrix, we apply normalization to the

data before processing. Let X be defined as a data matrix with an individual row

corresponding to an individual decay curve or trace.

Let b be defined as

bj = xj −
(
∑n

i=1 xij)

m
(3.1)

where m is the number of time gates, xj is a row vector containing an individual

trace, and n is the number of observation locations. We then define the standard

deviation for the jth time gate as

σj =

(
n∑
i=1

b2ij

)1/2

. (3.2)

We then normalize the data by the first time gate of each curve as

xi ←
xi
xi,1

. (3.3)

(Please note we use an assignment statement rather than an equality simply because

we have run out of letters.) The final step is to normalize the data by the standard

13



(a)

(b)

Figure 3.2. Covariance calculations (a) before and (b) after normalization of the data.

14



deviations calculated in equation 3.2:

xj ←
xj
σj
. (3.4)

The correlation matrix is then calculated from this normalized data. As described

in detail in Chapter 2, the data undergo an orthogonal transformation to a basis

spanned by the eigenvectors of this new covariance matrix. Principal components

are chosen to be removed (the choice of which are described in sections 3.3 and 3.4),

and the data are rotated back, leaving a dataset with unwanted features removed or

attenuated. It is important to note that at the end of PCA processing, the data must

be un-normalized by applying the above procedure in reverse order to the processed

data.

3.3 Removal of uncorrelated noise

The removal of uncorrelated noise generally involves the removal of the last few

principal components–those corresponding to the smallest eigenvalues. The choice

of how many principal components to remove can be made by following a general

guideline based on the estimated noise threshold. The principal components are

removed until the sum of their associated eigenvalues relative to the total is equal to

the estimated noise level. For example, if we estimate 5% random noise in our survey

data, then we remove principal components starting with the last one until the sum

of the associated eigenvalues divided by the total sum of the eigenvalues equals 0.05.

These principal components are removed by applying a truncation matrix to the

rotated data, as described in equation 2.9. The truncation matrix starts as an identity

matrix, where elements on the diagonal are replaced with zeros corresponding to the

principal components to be removed.
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3.4 Removal of correlated noise

The process of removal of correlated noise is dependent on the type of noise to

be removed. This type of noise can be classified into two types, each having a distinct

and well-defined method for removal: static and variable.

Static noise includes sources such as magnetic soils, which exhibit decay pro-

portional to t−1, and sensor orientation, which behaves like a static shift for small

perturbations of the orientation of receiver/transmitter coils. These sources of noise

tend to effect large areas of the survey grid and have a temporally-invariant signa-

ture. These noise sources map into the first principal component, thus removal of the

first principal component will attenuate these signals. Removal of the first principal

component will also remove a portion of the signal due to UXO, but will leave the

diagnostic decay characteristics intact (Figures 4.8 and 4.10). Section 3.8 describes

how to interpret the data after processing while incorporating this effect.

Variable noise includes signals from telluric currents, RF interference, and similar

signals. These are more temporally and spatially variable, and will thus map into

principal components smaller than those containing the UXO. Therefore, in surveys

where noise sources such as these are known to be present, only the first two principal

components can generally reconstruct the signal due to UXO, while the signal due to

this noise is attenuated.

3.5 Spatial correlation

Spatial covariances relate changes in anomaly geometry across a survey rather

than changes in decay characteristics. While this method of organization is less

useful for UXO applications than temporal correlation, the method can still be useful

in applications for removal of large geologic features.

Initial construction of the covariance matrix requires no special normalization

of the data as the variation in measured magnitude across a single time-intersect is

much smaller than across a decay curve. However, choice of principal components to
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remove is no longer clear and requires significant user input. How a particular UXO

item maps into the principal component space is highly dependent on the spatial

characteristics of the geology–much more so than in a temporal correlation. Thus

trial and experience are critical for proper choice of principal components for recon-

struction. As a consequence of this dependence, UXO can map into a much wider

variety of principal components. Therefore calculating the first few eigenvectors to

save computation time is not an appropriate approach to the problem. Since the co-

variance matrix in this construction has n2 elements, where n is the number of data

traces, the matrices can be extremely large.

For these reasons, we do not recommend the use of spatially-correlated covari-

ances as a component of a standard UXO workflow. However, cases may exist where

strong spatially-variant features have the same decay characteristics as UXO, and

the spatial correlation must be taken advantage of. Section 3.6 discusses numerical

techniques to address these issues.

3.6 Large-scale decompositions

When correlating data spatially, the covariance matrices can become extremely

large. Thus efficient methods of eigenvector decomposition must be used. Two basic

approaches can be taken: decimating the covariance matrix to make it sparse, or

utilizing efficient eigenvector decomposition algorithms.

Decimating the covariance matrix involves assuming that certain data locations

must have zero correlation, usually due to distance. Applying a distance weighting

function to the covariance calculation, whether smooth or binary, can result in a

sparse matrix. As an example of a smooth weighting function, we apply a distance

weight to the covariance calculation:

γkl =
m∑
j=1

xkjxlj

(
1−

α
√

(yk − yl)2 + (zk − zl)2√
max(yi − y0)2 + max(zi − z0)2

)
, i, k, l = 1, ..., n (3.5)
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where y, z are Cartesian coordinates of each data location, and α is some constant

that controls the radius of inclusion. By choosing an appropriate algorithm that

utilizes this sparsity, the computation time and memory requirements can be greatly

reduced.

Because of the size and potentially sparse nature of the spatial covariance matri-

ces, iterative methods for eigenvector decompositions are most appropriate for PCA.

There are many to choose from, each with advantages and disadvantages, and no one

decomposition is perfect in all cases. However, we briefly review the most applicable

iterative methods to UXO here. For further details on each of these algorithms, we

refer the reader to Blackford (2000).

3.6.1 Iterative eigenvalue decompositions

Lanczos method

The Lanczos method is one of the most widely used algorithms for large-scale

eigenvector decomposition. By building up Ritz approximations to the eigenvalues

of the matrix, the Lanczos method produces several eigenvalues from once sequence

of vectors that converge quickly. Unfortunately, even mildly ill-conditioned matrices

produce a system which destroys orthogonality quickly, requiring a reorthogonaliza-

tion process (i.e. Gram-Schmidt).

Power method

The power method is the most simple of the methods to implement. However,

the process, like many of the other methods, begins at one extreme eigenvalue and

calculates each subsequent eigenvalue–finding a subset of interior eigenvalues requires

a shift-and-invert modification.
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Subspace iteration method

This method is extremely common in engineering applications, and may be the

most readily applied process to PCA due to its prevalence in the community. Much

like the power method, however, the subspace iteration method directly produces

only leading eigenvalues and eigenvectors.

Jacobi-Davidson method

The Jacobi-Davidson method can directly produce a cluster of interior eigenval-

ues without calculating the entire set by using preconditioners, making it extremely

useful in spatially-correlated matrices.

3.7 Anomaly selection

Once PCA has been performed on a dataset, the data are ready for processing

with automated anomaly picking routines such as with UXOLab, or manual interpre-

tation. Each of the chosen anomalies can then be further processed with numerical

inversion techniques or other discrimination algorithms.

3.8 Inversion of processed data

While inversion of electromagnetic data is a nonlinear process, insight into the

requirements for inversion of PCA-processed data can be gleaned from studying a

linear as well as nonlinear case. Linear inversion of geophysical data seeks to invert

the forward mapping operator (or sensitivity matrix), G that operates on the model

to produce measured data. This inverted matrix may then be applied to the data

to map them back into the model space. In general, noise must be accounted for

and the problem is ill-posed. Thus further information, such as constraints on the

size or structure of the model, reference models, data weighting, and many others is

required for a stable inversion (Oldenburg and Li, 2005). Allowing a trade off between

19



the model norm (φm) and the data misfit (φd), leads to the global objective function

which is minimised to arrive at the Tikhonov solution:

φ = φd + βφm. (3.6)

Inverting for the smallest model with an L2 data misfit measure, the minimization of

this solution expands to:

(GTG + βI)m = GTd (3.7)

and m can be solved for either directly or iteratively using the conjugate gradient or

similar solution. The Tikhonov or regularization parameter, β, is either chosen such

that an optimal data misfit is reached, by using the L-curve criterion (Hansen, 1992),

or a generalized cross validation (GCV) approach.

The forward mapping operator described here encompasses the physics and ge-

ometry of the geophysical problem. Once data has been processed with PCA for

signal isolation or de-noising, this forward mapping operator no longer accurately

maps the model to this new rotated data as the data have been rotated to a new

basis in Rn. In order to accomplish this mapping (and thus inversion), the forward

mapping operator must also be rotated such that it maps from the model space to

this new data space.

We apply the rotation matrix to each column of the sensitivity matrix, G, in-

dividually to match the processed data, drot. This is equivalent to multiplying a

new matrix Yg to the sensitivity matrix, where Yg is a block-sparse matrix with the

original rotation matrix Y on the diagonal as:

Yg =


Y 0 . . . 0

0 Y

...
. . .

...

0 . . . Y


(3.8)
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Thus Equation 3.7 becomes

((YgG)T (YgG) + βI)m = (YgG)Tdrot (3.9)

and can be solved with the same numerical methods as before. It is important to

note that Y and Yg are both positive-semidefinite since they are calculated from the

eigenvectors of the covariance matrix.

The general solution to a non-linear inverse problem is solved by developing a

locally linear system and minimising the objective function described in Equation 3.6.

We then update our sensitivity matrix and continue in an iterative process until the

global objective function is minimised via a Gauss-Newton or similar method. In the

case where no rotation on the data has been performed, we may develop our global

objective function with a data misfit and model norm to be minimised which expands

to:

φ(m) = ‖Wd(dobs − F [m])‖2 + β‖Wm(m−mref )‖2 (3.10)

where m is the vector of parameters, dobs is the recorded data with a corresponding

weighting matrix Wd, F is the forward mapping operator (that depends on m), β

is a Tikhonov or regularization parameter, mref is a reference model, and Wm a

corresponding weighting matrix.

In general, the local linear system can be obtained through a perturbation ap-

proach using the Gauss-Newton method with the following form:

(
JTWT

d WdJ + βWT
mWm

)
δm =

JTWT
d Wd

(
dobs − F

[
m(n)

])
− βWT

mWm

(
m(n) −mref

)
(3.11)

where J is a Jacobian matrix. In order to generalize the forward mapping such that

the rotation and possible truncation of the data is included, we apply the same rota-

tion operator to the data predicted by the forward operator F , just as in the linear

case. This leads to an altered equation 3.11:
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(
JTrotW

T
d WdJrot + βWT

mWm

)
δm =

JTrotW
T
d Wd

(
drot −YgF

[
m(n)

])
− βWT

mWm

(
m(n) −mref

)
(3.12)

where drot is the rotated data and Yg is the same matrix defined in Equation 3.8.

The inversion can be computed in the same way as before. Since the Jacobian matrix

is calculated from the predicted data, the rotation matrix will be combined into the

Jacobian, Jrot, with each subsequent step, so explicit rotation of the Jacobian is

unnecessary.

Alteration of the original data by a transform also modifies the statistical dis-

tribution of the noise. After PCA, ideally there is no random noise and all signal

is a result of coherent sources (whether geologic or otherwise). This would imply

that in an ideal separation case, the Tikhonov parameter β would approach zero to

maximally weight a data misfit of zero. Clearly this case is not achieved for several

reasons: data errors are not always zero bias with a Gaussian distribution (or any

other uncorrelated distribution), PCA has intrinsic numerical error in the calculation

of eigenvectors, there is strongly correlated noise associated with most surveys, and

original statistical estimates for error removal may have been incorrect in the first

place (i.e. which principal components to use). Therefore the data misfit is guaran-

teed to not have a χ2 distribution. So while the value of the data misfit is defined,

the appropriate value of data misfit for an optimal solution is not. However, this

altered data misfit can be treated while choosing β with the L-curve criterion or with

a generalized cross validation approach–both work regardless of the rotation applied.

The same approach to inverting rotated data in a generalized inversion applies

equally to a parametric inversion. In the parametric case, the global objective function

does not contain a model objective (as the model is defined explicitly already), and
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1 Perform any initial filtering (such as median filter-
ing), if necessary

2 Normalize data (3.2.1)
3 Data decomposition (2.1)
4 Principal component truncation (2.1, 3.3, and 3.4)
5 Reconstruction (2.1)
6 Remove data normalization (3.2.1)
7 Application of anomaly automatic picking rou-

tines, such as in UXOLab (3.7)
8 Numerical inversion of individual anomalies (3.8)

Table 3.1. Recommended PCA algorithm. Numbers in parentheses correspond to
sections with detailed descriptions.

so a Gauss-Newton solution to a parametric case with rotated data becomes

(
JTWT

d WdJ
)
δm = JTWT

d Wd

(
dobs −YgF

[
m(n)

])
.

As in the full generalized inversion, the rotation matrix should not be explicitly

applied to the Jacobian.

3.9 Algorithm summary

In this chapter we have introduced a PCA algorithm for processing TEM data to

attenuate both uncorrelated and correlated noise, as well as developed an inversion

algorithm for interpretation of individual UXO anomalies. Table 3.1 shows a skeleton

algorithm for the processing and interpretation of TEM data with PCA. In the next

chapter, we show examples of the successful application of PCA to TEM data.
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CHAPTER 4

RESULTS

In this chapter we present three examples of the successful application of PCA to

unexploded ordnance detection and discrimination. These examples show the varied

applications and contributions of PCA to detection and discrimination of UXO, as

well as the ease of insertion into a standard workflow.

4.1 Uncorrelated noise removal

To show the de-noising capability of PCA, we present an example dataset from

Kaho’olawe, Hawaii, USA. The TEM data (collected with a Geonics EM63) come

from a 30 metre by 60 metre grid set on extremely magnetic soils (magnetite, titano-

magnetite, and ilmenite) due to volcanism. Weathering of the volcanics in the tropical

climate led to soils exhibiting a high degree of frequency dependence in magnetic sus-

ceptibility. The spatially variable, frequency-dependent susceptibility produces strong

1/t decay that masks the UXO response in EM63 data. The soil response is over 400

mV in the first gate across the survey area (Figure 4.1). In addition, the instrument

movement, ambient interferences, and other sources lead to the ubiquitous noise in

late time gates.

To assist with the separation of the magnetic soil response from unexploded

ordnance, we must first attenuate the noise in the late time gates. The strong soil

response masks much of the signal due to UXO before the last few time gates, so

improvement in signal-to-noise is paramount in interpretation.

The data (consisting of 23000 decay curves of 25 gates each) were decomposed

into constituent principal components and re-composed using a subset of those com-

ponents. Figure 4.2(a) shows a set of the original data that include only geologic

response as well as data that have signal from UXO imprinted on the decay curves.
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Figure 4.1. First time gate of EM63 data collected over the Kaho’olawe Navy QA
grid. Note the large geologic response due to viscous remnant magnetization (VRM).
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(a) (b)

(c)

Figure 4.2. (a) 65 example decay curves from Kaho’olawe. Some traces include
responses from unexploded ordnance; these traces deviate from the expected t−1

decay. (b) Geologic response constructed with only the first principal component. The
curve exhibits the expected inverse power law decay due to horizontal layering and
magnetic soils. (c) TEM decay curves constructed with the first and second principal
components. The (approximate) superposition of UXO signal on the geologic signal
is clear, with significant reduction of random noise in later channels. (Negative values
not displayed)
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Magnetic soil at Kaho’olawe (and in general) exhibits a t−1 decay in TEM surveys

(Pasion et al., 2002). This signal is clearly present in the raw data (Figure 4.2(a)).

Reconstruction with only the first principal component reveals this decay due to the

magnetic soil (Figure 4.2(b)). Traces with UXO and those without UXO are indistin-

guishable. However, when the second principal component is added (Figure 4.2(c)),

the signal from the UXO (deviation from t−1 decay in later time gates) is clear.

The random, uncorrelated noise that contaminated these later time gates is severely

reduced without attacking the amplitudes of the decay curves, preparing them for

numerical discrimination analysis with other methods.

4.2 Inversion of processed data

4.2.1 Linear inversion

As an example of the need to include the rotation matrix in inversion, we present

the following linear example. The model, m, consisting of one-thousand elements, is

represented by a sine function of the form

m(x) = 1− .5[cos(2πx) + sin(2πx)]

with 10 channels of data calculated at each of 11 data locations simulated (110 total

data). The channels all utilize exponentials as kernels with different decay parame-

ters and are functions of current and adjacent observation locations with 5% Gaussian

noise. Thus we have a linear, underdetermined system to invert for the model pa-

rameters.

For the first case where no principal component analysis was applied, we in-

verted the data for the smallest model. The Tikhonov parameter, β, was chosen

through the L-curve criterion. Because our chosen kernels are sensitive to noise, the

smallest-model solution yields a poor recovered model (Figure 4.3(a)). Even though

the optimal data misfit is reached, the structure of the recovered model is poorly con-
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strained at depth. The imprinted noise on the underdetermined problem is preventing

a good result, despite an excellent L-curve (Figure 4.4(a)).

As a de-noising tool, principal component analysis is a logical choice to reduce

the uncorrelated noise present in the data. Therefore, we applied a blind PCA to the

data, where the amount of energy contained in the noise was estimated and latter

principal components were removed to reach 5% noise, nulling all but the first two

principal components. The data were then rotated back and inverted again with the

same sensitivity matrix as before to yield the model in Figure 4.3(b). Though the

shallow structure has improved, it still does not accurately represent the true model.

In addition, choice of regularization parameter was more ambiguous than the previous

case, as the L-curve contained two areas of high curvature (Figure 4.4(b)).

To improve the recovered model, we applied the rotation matrix to the sensitivity

matrix as described in this paper. With the sensitivity matrix consistent with the

data space, the inversion produced a much better result (Figure 4.3(c)). Moreover,

the optimal β term was easy to choose from the L-curve (Figure 4.4(c)).

4.2.2 Non-linear inversion

We present synthetic data from an unexploded ordnance survey. We simulate

data from a 25 channel transient electromagnetic survey (such as with a Geonics EM-

63, for example) over a half-space with a 75mm mortar round buried at 1 m depth.

We use the Pasion-Oldenburg parametric model that uses two dipolar responses to

simulate the signal from the mortar round. Each dipole decays as:

k(t+ α)−βe−t/γ (4.1)

where the parameters k, α, β, and γ depend on the conductivity, permeability, size,

and shape of the object. The ratios of certain values can then be used as diagnostic

indicators for unexploded ordnance (UXO) candidates.

We parametrically invert the synthetic dataset for the UXO parameters with
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Figure 4.3. Original and recovered model (a) through smallest model solution, (b)
after PCA on data only, and (c) after PCA on data and kernels.
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Figure 4.4. L-curve for (a) original inversion, (b) inversion with rotated data, and (c)
inversion with rotated data and rotated sensitivity matrix.
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Table 4.1. Nonlinear inversion results. Only by applying PCA to both the data and
the kernels were we able to properly recover diagnostic parameters.

the intention of recovering the proper diagnostic ratios. The objective function is

constructed in the same manner as before, save that there is no model weighting

(since this is a parametric inversion). Thus the linearized system to solve becomes:

(
JTWT

d WdJ)δm = JTWT
d Wd(dobs − F

[
m(n)

])
. (4.2)

We solve this system for noisy data, PCA-processed data, and PCA-processed

data with the rotation matrix incorporated into the inversion. Table 1 shows the

results. Inverting the data with no processing fails to recover the k ratio, which

contains shape information. Processing the data with PCA but not incorporating the

rotation matrix into the inversion results in incorrect recovery of all shape information.

Only by incorporating the rotation matrix do we successfully identify a potential UXO

target.

4.3 Correlated noise removal

Variations in the orientation of the TEM transmitter and receiver cart due to

microtopography can produce significant signal in the data. Figure 4.5 shows the first

time gate recorded in a synthetic EM-63 survey. This survey used real orientation

vectors from a UXO survey and simulated the TEM response of the orientation errors

and 40 mm mortar shells. Large, linear trends can be seen in the data where an

approximate static shift in amplitude across all time gates has been introduced.

This type of correlated noise often has a large effect on autopicking routines.
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Figure 4.5. Effect of cart orientation error in a UXO survey. Orientation error
produces an approximate 50 mV response in this example, visible in the approximate
east/west lineations.

The characteristics of correlated noise sources are often similar enough to those of

UXO that autopicking routines cannot differentiate them. Moreover, the frequency

contents of the signals overlap such that frequency filtering is difficult or impossible.

Figure 4.6 shows the radially-averaged power spectra of the constituent components in

the dataset shown in Figure 4.5. The power spectra of signal due to cart orientation

error concentrates power in the same bands as the signal due to UXO. Therefore

separation using simple frequency filtering is impossible (Figure 4.7). Processing the

dataset in Figure 4.5 with UXOLab’s (UXOLab, 2009) autopicking routines leads to

60 targets (after clustering the picks). Figure 4.8 shows the picked anomalies using

the routines provided in UXOLab. The effect of the cart orientation on the picking

routine is clear–large numbers of false positives result.

Effects due to cart motion effectively result in an approximate static shift in the

data. Therefore the orientation error effects each time gate equally. Thus to remove

this effect, the first principal component was removed. Figure 4.10 shows the dataset

33



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

ωr

lo
g(

P
( ω

r))

 

 

Dataset
Orientation Error
UXO
Orientation - UXO

Figure 4.6. Radially averaged power spectrum of the original data set, orientation
error, and UXO signal. The difference between the power spectra of the orientation
error and the UXO signal indicates that they are inseparable in the frequency domain.

with the cart orientation error removed. Though the amplitude of the UXO anomalies

have been reduced, the shape has been preserved.

This dataset was then processed in UXOLab for automatic UXO anomaly pick-

ing. Figure 4.9 shows two example lines from one time gate in this dataset. Fig-

ure 4.9(a) shows a line that passes through signals due to both UXO and cart orien-

tation error. For autopicking purposes, a threshold of 50 mV was chosen based on the

signals present in this line. This resulted in the picks previously shown in Figure 4.8.

After principal component analysis, a threshold of 8 mV was chosen (Figure 4.9(b)).

Though visually this line does not appear to be improved, the new threshold dramati-

cally improved the autopicking ability. Figures 4.9(c) and 4.9(d) show a line that does

not pass through a UXO target, but does pass through signal due to cart orientation

error. The signal due to orientation error is completely eliminated.

While the original dataset had 62 picks after clustering (Figure 4.8), the pro-
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Figure 4.7. Three different examples of Butterworth filtering. The filtering is unable
to separate the cart orientation error and UXO for a variety of cutoff wavenumbers.
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Figure 4.8. UXOLab target picks in a dataset contaminated with orientation error.
Note the large number of picks corresponding to the cart orientation error (linear
bands of picks). The dashed line corresponds to transects shown in Figure 4.9.
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(d)

Figure 4.9. Example lines from one time gate before and after PCA. Units in mV.
(a) Line including both UXO anomalies as well as cart orientation error. (b) Same
line after PCA. Choosing a threshold from this line (8 mV) produced better anomaly
picking results than from the non-PCA line. The numbers assigned to each peak
are assigned by the autopicking routine, and thus change before and after PCA.
(c) Example line that contains no UXO anomalies. Note the large anomaly due to
orientation error. (d) Same line after PCA. No appreciable structure is present, and
the magnitude is well below that of the UXO anomalies.
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Figure 4.10. UXOLab anomaly picks after processing with PCA. After clustering,
there was one false anomaly and no missed targets.

cessed dataset produced 32 picks, only one of which was false. There were no missed

targets (Figure 4.10). This dataset is now ready for further processing via inversion

of individual chosen anomalies or other methods. With standard techniques, these

locations can be used on the original data for further processing. However, in order

to incorporate PCA, UXOLab and other UXO toolboxes should be further developed

to add rotation into their subsequent processing and inversion.
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CHAPTER 5

SUMMARY

This is the final report for the SERDP project MM-1640 and it covers the re-

search results accomplished since the inception of the project in 2007. The basic

premise of this project is the theoretical understanding and algorithm development

of principal component analysis as a denoising and signal-separation tool for transient

electromagnetic (TEM) data in unexploded ordnance (UXO) applications. There is

an express need for techniques to reduce the presence of random noise in TEM data

as well as reduce the influence of correlated noise due to a wide variety of sources

on automatic anomaly-picking routines for more accurate detection with fewer false

anomalies. We have developed an algorithm and workflow for the processing and

inversion of TEM data that attenuates signal from undesired sources and accurately

inverts TEM data for diagnostic UXO parameters.

We separated the research in this project into aspects of PCA that address

uncorrelated signals and aspects that address correlated but undesired signals, as

well as interpretation of processed data. Specifically, these objectives included:

• Develop a PCA algorithm tailored to TEM data from UXO surveys, and

• Produce a stable and automated algorithm for removal of uncorrelated noise.

• Study the physical connection between signals due to different sources and the

components recovered from PCA

• Determine the feasibility of using PCA to reduce TEM data in UXO applications

to the signal exclusively produced by UXO and UXO-like anomalies, and

• Apply the developed algorithm to data examples and assess the effectiveness

through discrimination/classification tests.
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• Develop a method for parametric inversion of processed data for recovery of

diagnostic parameters in UXO applications.

We have successfully accomplished these research goals over the course of the

project.

Develop a PCA algorithm tailored to TEM data from UXO surveys

We developed an algorithm based on the Karhunen-Loéve transform tailored to

UXO surveys by producing a temporally-correlated covariance matrix with proper

data scaling. We have shown that this data organization and data scaling produces

an effective algorithm for processing of UXO data. Spatially-correlated covariances

investigate different characteristics of TEM data and are not immediately well-suited

for UXO processing. In addition, spatial correlations require intensive numerical

processing and significant user intervention in the process.

Produce a stable and automated algorithm for removal of uncorrelated

noise

The PCA algorithm we developed reliably and automatically removes uncorre-

lated noise. Using an estimate of the error level in the data, the PCA algorithm

automatically removes the proper principal components that contain the signal due

to this uncorrelated noise. This is accomplished with a truncation matrix applied to

the inverse rotation matrix that is defined by the number of eigenvalues required to

reach the error level estimate. The processed data contain unaltered signal due to

UXO with the random noise strongly attenuated.

Study the physical connection between signals due to different sources and

the components recovered from PCA

Undesired signals in TEM surveys map into different principal components as

a function of their decay characteristics. Both numerical simulation and field data
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confirm that sources which contain static shifts, such as sensor orientation error and

magnetic soils, map into the first principal component. These static sources tend to

overlap with some of the signal produced by UXO; however, even with truncation of

the first principal component, diagnostic decay and significant anomalies remain due

to the UXO, and do not degrade performance of automated anomaly picking routines,

such as those available in UXOLab. Sources which produce temporally-variant signals

have much more variety in how they map into principal components, but tend to be

well-separated from UXO and map into the 3rd and higher principal component.

Determine the feasibility of using PCA to reduce TEM data in UXO appli-

cations to the signal exclusively produced by UXO and UXO-like anomalies

We have determined through testing and experimentation of the algorithm on

synthetic and field data that PCA can separate signals due to correlated noise from

signals produced by UXO and UXO-like anomalies. We have also determined that the

temporally-correlated PCA algorithm developed here is not appropriate for clutter

analysis of individual anomalies when the entire dataset is processed at once. How-

ever, current research in SERDP and other projects suggests that various types of

component analysis are effective in small, windowed areas for separating signals due

to closely spaced targets.

Apply the developed algorithm to data examples and assess the effective-

ness through discrimination/classification tests

We have successfully applied PCA to several synthetic and field datasets. In

all cases, the signal-to-noise ratio was increased, the ability to detect anomalies in

the presence of correlated noise was improved, and numerical inversion of individual

anomalies of processed data was made possible.
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Develop a method for parametric inversion of processed data for recovery

of diagnostic parameters in UXO applications

Using the Pasion-Oldenburg model of the TEM response of UXO, we developed a

method for parametric inversion of potential UXO targets for the investigation of di-

agnostic parameters. During the study, we discovered that data processed with PCA

can not be inverted directly with the same forward model used to invert raw data.

The forward model operator must incorporate the rotation and truncation matrices

used in the PCA process. We have shown that by incorporating these matrices, the

accuracy of the recovered diagnostic parameters can be improved.

In summary, MM-1640 has been successful in understanding the application of PCA

in processing TEM data acquired for UXO applications. We have developed an al-

gorithm ready for incorporation into standard UXO processing workflows for the

improvement of detection of UXO and the reduction in false anomalies. We have

also developed a consistent parametric inversion algorithm for PCA-processed data.

The ability to identify and separate both random and correlated noise, and carry

out parametric inversion using the processed data is expected to help improve the

detection and discrimination ability and reduce the cost of UXO clearance.
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