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I. TABLE OF ACRONYMS 
 
  
CFR Code of Federal Regulations  
CGLS conjugate gradient least squares 
DoD Department of Defense 
FFT   fast Fourier transform 
GFI   generalized force inversion 
GFM   generalized force mapping 
HMM  hidden Markov model 
ICRMP integrated cultural resources management plans 
ID identification 
KMP  kernel matching pursuits 
LDV  laser Doppler vibrometer 
MRE  magnetic resonance elastography 
NRL Naval Research Laboratory 
RHS    right hand side 
RVM  relevance vector machine 
SEED SERDP Exploratory Development 
SLDV scanning laser Doppler vibrometer 
SOH   state of health 
SON statement of need 
SNR signal to noise ratio 
SPL  sound pressure level 
STARS structural acoustics radiation and scattering  
UXO unexploded ordnance 
WFWI   weak flexural wave inversion 
 
 

 
 
 

II. LIST OF FIGURES 
 

Figure 1.  Depiction of the structural acoustic fault monitoring methodology applied to a variety 
of structures.   
 
Figure 2.  (Left) Experimental arrangement for plaster wall assessments at the U.S. Capitol 
Building showing the SLDV monitoring system, a shaker used to excite the art-laden walls, and 
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a lap - top computer data acquisition system in the Brumidi Corridor; (Right) a photograph of the 
President’s Room where extensive measurements were made on the walls and ceiling. 
 
Figure 3.  A comparison of the faults found by our structural acoustic technique (left) and by a 
tap test (right) in a fresco panel in the Brumidi Corridor of The U.S. Senate.   
 
Figure 4. Co-ordinate system and plate geometry used in the finite element calculations of 
normal surface displacement for point excited plates with and without an internal flaw. 
 
Figure 5.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions 
for thin plaster plates with flaw and no flaw. 
 
Figure 6.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions 
for thin concrete plates with flaw and no flaw. 
 
Figure 7.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions 
for thin steel plates with flaw and no flaw. 
 
Figure 8.  Cross section of thick plate showing flaws at three different depths 
 
Figure 9.  Numerically generated displacements at 1 kHz and flexural wave inversions for thick 
steel plates with no flaw and flaws at three different depths. 
 
Figure 10.  Numerically generated displacements at 5 kHz and flexural wave inversions for thick 
steel plates with no flaw and flaws at three different depths. 
 
Figure 11.  Numerically generated displacements at 10 kHz and flexural wave inversions for 
thick steel plates with no flaw and flaws at three different depths. 
 
Figure 12.  Numerically generated displacements at 1 kHz and flexural wave inversions for thick 
plaster plates with no flaw and flaws at three different depths. 
 
Figure 13.  Numerically generated displacements at 5 kHz and flexural wave inversions for thick 
plaster plates with no flaw and flaws at three different depths. 
 
Figure 14,  Numerically generated displacements at 10 kHz and flexural wave inversions for 
thick plaster with no flaw and flaws at three different depths. 
 
Figure 15.  Wooden plate and Cartesian axes system.   
 
Figure 16.  Calculated color-coded surface displacement at 5 kHz and 10 kHz when the shaker in 
the lower left position is excited at each frequency.   
 
Figure 17.  Result of applying weak flexural wave inversion operator (WFWI) developed for the 
isotropic case, Eq. (5), to the displacement data (lower left driver excited) at each frequency for 
both the homogeneous wooden plate and the flawed wooden plate.  
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Figure 18.  Result of applying the weak flexural wave inversion operator (WFWI) developed for 
the orthotropic case, Eq. (11), to the displacement data at each frequency for the homogeneous 
wooden plate to obtain the three stiffness parameters Dx/ρh, Dxy/ρh, and Dy/ρh.  
 
Figure 19.  Result of applying the weak flexural wave inversion operator (WFWI) developed for 
the orthotropic case, Eq. (11), to the displacement data at each frequency for the flawed wooden 
plate to obtain the three stiffness parameters Dx/ρh, Dxy/ρh, and Dy/ρh.  
 
Figure 20.  Result of applying the generalized force mapping operator (GFM) developed for the 
orthotropic case, Eq. (12), to the displacement data at each frequency for the homogeneous and  
flawed wooden plates when the driver in the lower left is excited.  
 
Figure 21.  Result of applying the generalized force mapping operator (GFM) developed for the 
orthotropic case, Eq. (12), to the displacement data at each frequency for the homogeneous and  
flawed wooden plates when the driver in the lower left is excited.  
 
Figure 22.  Adaptive algorithm chooses correct shear wave equation upon locally sampling 2-D 
slice of internal displacement map measured in Agar using magnetic resonance elastography. 
 
Figure 23.  Adaptive algorithm chooses correct isotropic plate wave equation upon locally 
sampling surface displacement map computed by finite element model.  
 
Figure 24.  Adaptive algorithm chooses correct orthotropic plate wave equation upon locally 
sampling surface displacement map computed by finite element model.  
 
Figure 25.  (a) the geometry of the elliptical ceiling and location of the acoustic source (viewed 
from beneath the ceiling); (b) the boundary conditions assumed in the finite element calculation; 
(c) the mesh used in conjunction with the hp-finite element code (viewed from above the 
ceiling). 
 
Figure 26.  (a) the geometry of the defect (plan view from above the ceiling). The insert shows a 
circular flaw having the same area as the pie-shaped flaw; (b) the boundary conditions for the 
ceiling with detached defect; (c) the boundary conditions for the ceiling with deconsolidated 
defect.  
 
Figure 27.  Normal displacement levels for the unflawed ceiling calculated with the STARS3D 
code for four frequencies (displayed on the exposed surface of the ceiling). 
 
Figure 28.  Surface pressure levels for a perfectly rigid elliptical ceiling calculated with the 
STARS3D code for four frequencies (displayed on the exposed surface of the ceiling). 
 
Figure 29.  The ratio of detached flaw displacement to that of the healthy ceiling versus the 
circular flaw radius computed from the static expression of Eq. (25) for three plaster thicknesses. 
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Figure 30.  The resonance frequency versus circular flaw radius computed using Eq. (27) based 
on a lumped parameter model for two plaster thicknesses. 
 
Figure 31.  Normal displacement levels for the flawed ceiling (detached segment) calculated with 
the STARS3D code for four frequencies (displayed on the exposed surface of the ceiling).  
 
Figure 32.  Normal displacement levels for the flawed ceiling in an area around the flaw 
calculated with the STARS3D code for four frequencies (displayed on the exposed surface of the 
ceiling): (a) detached flaw; (b) deconsolidated flaw. 

 
Figure 33.  New spatial transform applied to the detached ceiling flaw. 
 
Figure 34.  New spatial transform applied to the deconsolidated ceiling flaw. 
 
Figure 35.  Drawing of beam with faults, shaker, and scan area locations. This view is from 
SLDV side. Shakers actually mounted on backside of beam.  
 
Figure 36.  Laboratory study of flawed wooden support beam. Scanning laser Doppler 
vibrometer shown in background. Dynamic shaker mounted on upper right corner of beam.  
Larger interior flaw depicted by rectangle drawn on beam.  
 
Figure 37.  Polytec Inc. PSV-400 laser Doppler vibrometer scanning head. 
 
Figure 38.  Normal surface velocity ((m/s)/N) magnitude displays at 431.25 Hz, 1260.94 Hz, and 
7162.50 Hz.  The horizontal dimension is along the length of the flawed beam and the vertical 
dimension is across the width of flawed beam 
 
Figure 39.  Band averaged displacements. Lower display is average over complete band; Upper 
display is average over resonance band. The defect centered at about scan point 80 is clearly 
evident in both maps.   
 
Figure 40.  Direct displacement at 7900 Hz showing flaw. 
 
Figure 41.  Displacement (left) and filtered displacement (middle) for the three shaker positions. 
Orthotropic inversion of displacement data for (right) for Dx/ρh, Dxy/ρh, and Dy/ρh on top,  
center, and bottom, respectively. 
 
 

 
III. LIST OF TABLES 

 
 
Table 1:  Plate Material Parameters 
 
Table 2: Nine independent stiffness matrix elements for Douglas fir (10 8 Pa). 
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Table 3.  Dynamic Displacements, Total Force Acting on Flaw, and Wavelengths 
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V. EXECUTIVE SUMMARY 
 

This SEED Project was focused on extending the applicability of the NRL-developed 
structural fault monitoring technique using laser measured surface vibration to the materials and 
fabrics associated with historic buildings. The DoD controls an estimated 90,000 buildings and 
structures that were built over 60 years ago. In accordance with federal statutes, federal agencies 
make every effort to rehabilitate historically significant buildings and structures, whenever 
possible. Prior to initiating a rehabilitation project, project managers may undertake a study to 
determine the conditions of the various buildings, features, and finishes, including heating, 
plumbing, and structural elements. Developing a toolkit of nondestructive methods to “look 
behind the walls” of historic and under-documented structures would provide necessary data to 
make real-time decisions for cost effective management options.  
 

In this vibration monitoring, structural acoustics- based approach, the dynamic surface 
displacements of a structure caused by very weak externally produced forces (acoustic speakers 
or shakers) are spatially and spectrally mapped with a scanning laser Doppler vibrometer 
(SLDV). A number of inversion algorithms developed at NRL are then used to invert these 
spatial vibration scans into various material parameter maps which then serve to locate 
subsurface faults.  
 

In this SEED program we carried out a one year program of research aimed at providing 
proof of concept related to extension of this approach to more general structures and faults. 
Demonstrating proof of concept of the applicability of this structural acoustic/SLDV/inversion 
algorithm technology beyond that already demonstrated for plaster walls would address directly 
the Statement of Need (SON) for the Sustainable Infrastructure (SI) Seed New Start.  It would 
provide new techniques for effectively and efficiently assessing the structural integrity of the 
fabric of historic buildings and structures in non-invasive, non-destructive manners.  
 

Our objectives were to:   
1.  Extend our structural acoustic/SLDV/inversion technique by developing advanced inversion 
algorithms. This would allow monitoring of faults at various depths and determination of depth 
dependences, more accurate physical description of the flawed region, and application to non-
planar geometries and general materials.  Such advanced algorithms would include adaptive 
inversion algorithms which do not require a-priori information regarding the equations of motion 
of the structure being probed and identification algorithms which utilize new spatial transforms 
and modern day classifiers. 
2.  Assess the efficacy of applying these new techniques to various parts of a building fabric or 
structure including those fabricated from concrete, brick, masonry, iron, steel, wood, etc.  
3.  Demonstrate proof of concept in the laboratory. 
 

In determining the feasibility for extending our SLDV/inversion approach augmented 
with new developments to various parts of a building fabric and structure including those 
fabricated from concrete, steel, wood, etc., a study was carried out using a numerically generated 
vibration data base using advanced h-p adaptive, finite element–based structural acoustic codes 
developed in our group in other programs. The isotropic structures for which numerical data was 
generated included: (1) thin plates of plaster, steel, and concrete; (2) thick plates of plaster and 
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steel wherein flaws at three depths could be studied; and (3) a slab of wood with internal flaws. 
The first two cases were successfully handled using the isotropic flexural wave inversion 
algorithms. The last case is much more complex than the previous materials in that the wood is 
orthotropic.  
 

In the case of wood, we had to take into account the orthotropic nature of the material.  In 
particular, we explored the extension of these inversion algorithms to the orthotropic thin plate 
case by developing a variational form of the differential equation for transverse bending and 
solving for the orthotropic flexural rigidities.  As expected, operation of the original isotropic 
algorithms on the wooden plate surface displacements was shown to fail in recovering the 
uniform elastic parameters or in detecting and locating the fault. The new algorithms based on 
the wave equation for a thin, orthotropic plate successfully converted the surface displacements 
on the uniform wooden plate to the correct elastic parameter maps which then served to detect 
and localize the inclusion in the flawed plates. The results at the higher frequency indicate that 
the onset of failure in the thin plate approximation is impacting both the inversion and the 
generalized force mapping accuracy. However, in this case use of the inversion algorithm to 
obtain modified wave equation coefficients followed by operation of the force mapping 
algorithm with these new parameters inserted is shown to successfully mitigate this effect.   
 

Current algorithms which invert measured vibration maps into internal elastic parameters 
require knowledge of the equations of motion appropriate for the structure under study which 
restricts their areas of application.  Using our extensive experience in the development of 
inversion algorithms, we addressed the development of novel training algorithms for fault 
detection which do not depend on a-priori knowledge of the structural equations of motion or the 
related parameters. 
 

In one such adaptive approach, we explored the idea of cascading various algorithms. 
One promising approach applied to thick plate structures used the flexural inversion operator 
appropriate to thin plates. The “effective” stiffness parameters so obtained were then inserted 
into the generalized force equation method which locates regions with non-zero forces and 
identifies those as faults.  This “adaptive” approach was shown to be very successful. 
 

In a second approach, we defined a set of differential equations which have arbitrary 
coefficients that multiply sets of spatial and temporal derivatives of the measured displacements. 
In this formulation, the equations appear as homogeneous sets of partial differential equations 
whose coefficients are generally unknown, yet which can be “trained”" for any particular 
structure. Therefore, given a sufficient number of measurements on a control section, the 
coefficients can be determined, thereby “training” the algorithm to detect fluctuations due to 
material parameter or structural differences. As with our previous inversion techniques, the 
trained algorithm would also provide local properties thus providing locations of any faults.  
Further, we explored validation criteria for this adaptive coefficient approach based on the fact 
that the coefficients associated with the most appropriate solution should have a minimum 
variance normalized by the mean square value. Initial studies utilizing earlier data demonstrate 
that this algorithm is robust in the presence of noise and should be adaptable to many situations 
in fault detection and material parameter variation.  In particular, we used three existing data sets 
for proof of concept: interior displacements maps on agar tissue phantoms taken with magnetic 
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resonance elastography and surface displacement maps on steel plates and on wooden slabs 
generated numerically. 
 

A fourth area we explored albeit briefly involved exploiting modern identification (ID) 
algorithms that use the unique feature spaces derived from the previously described algorithms.  
The Physical Acoustics Branch has extensive experience in applying such ID algorithms in our 
on-going work on underwater mine and UXO identification.  These algorithms include hidden 
Markov models (HMM), relevance vector machines (RVM), and kernel matching pursuits 
(KMP).  We expected that application of these algorithms as well as fusion of their modalities 
might provide both improved performance for fault detection and material parameter 
determination as well as determination of depth profiles of faults or material parameter 
fluctuations. Due to time constraints, this effort was not completed. 
 

A fifth area we explored involved plaster domed ceilings. In a number of the truly 
historic buildings whose finish layers often consist of plaster, walls and/or ceilings often bear 
precious artwork such as mosaic or frescoed images. In the case of the latter, where the paintings 
were created on wet plaster, the current physical and mechanical condition of the plaster layer(s) 
determines for the most part the near to mid term viability of the artwork.  Particularly for the 
case of a ceiling, the development of defects can eventually lead to catastrophic failure of the 
plaster ceiling and the unrecoverable loss of priceless artwork.  In the SEED study, we used a 
simulated data base of surface vibration generated using an advanced structural acoustic finite 
element-based code.  In particular, we explored application of the speaker-based technique to 
what we consider to be a generic domed ceiling – a common structure found in historic buildings 
and residences - in which a plaster layer is attached to, and takes the shape of, a backing structure 
considered to be relatively rigid such as brick or mortar. Aided by static analysis, we addressed 
the effectiveness of using the “measured” surface displacements resulting from acoustic speaker 
excitation to detect and localize two different defect types: (A) detachment of the plaster layer 
from the supporting brick or mortar, and (B) an internal region in the plaster which has become 
deconsolidated. Specific questions we wished to resolve include: (1) Is acoustic excitation 
effective at producing readily measured surface displacements which could be used in detecting 
these flaws?  (2) In general, what issues and/or benefits are introduced by using acoustic speaker 
versus force actuator excitation?  (3) Are typical defects of the type mentioned above detectable 
by straightforward observation of the acoustically excited spatial displacement maps and how 
does this depend on flaw size and ceiling thickness?  (4) What is the minimum detectable defect 
size?  And (5) if a defect is detected, might one be able to differentiate between detachment and 
deconsolidation? 
 

The plaster dome ceiling study was very productive. We have provided the first (to our 
knowledge) models allowing one to predict flaw size detectability or to generalize to different 
conditions for our general surface vibration approach. We have demonstrated that even relatively 
small defects result in large displacement levels which stand out against those of the healthy 
plaster and that even away from defect resonances, practical levels of speaker excitation produce 
easily measured defect surface vibration. Defects as small as 0.07 m (2a for the circular defect) 
should have displacement levels which are detectable with commercially available laser 
vibrometers.  Unlike the use of locally applied shaker excitation, when using speakers the 
architectural acoustics of the room (walls and ceilings) must be taken into account.  In the 
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frequency range studied here, we found that the spatial (wave-number) structure in the 
displacement maps beneath the defect may provide a wavenumber-based feature which could 
separate plaster detachment from the other types of defects such as deconsolidation.   
 

A sixth area we explored is based on our new ideas in novel transform methods in 
structural and physical acoustics.  Presently, Fourier decompositions of spatial vibrations are in 
practice restricted to surfaces defined by separable geometry systems for a meaningful 
interpretation of their spectra.  In our new technique, we define and develop a purely local 
spectral analysis approach which uses spatially conformal Fourier decompositions.  This allows 
us to analyze dispersion behavior on any surface or structure irrespective of its shape.  This leads 
to an important augmentation of our ω  - k mapping5 technique in which local differences in the 
dispersion curves from those observed or expected in unflawed structures indicate variations in 
wave types or in their speeds which are directly related to material parameter variations 
associated with the development of flaws.  We also anticipate that this new transform approach 
will lead to heretofore unexploited spectral features for classification and vibration analysis. In 
particular, we applied this new technique to fault identification on an elliptical plaster dome 
ceiling in order to differentiate defect types. 
 

Finally, we carried out a successful laboratory-based SLDV demonstration on a generic 
structure as an additional demonstration of proof of concept and efficacy of this overall 
approach. The structure chosen was a long 2” × 10” ceiling support beam in which was created a 
2” × 2.5” × 5/8” thick internal defect at its mid-plane which approximated decay or termite-like 
damage to the wood. Broadband SLDV scans were obtained across the available surface of the 
structure providing dynamic displacement fields in the usual manner. These data bases were 
analyzed in two ways. First, the displacement maps were examined without any inversion to 
determine if the defect was observable by direct observation of the contrast in the spatially 
mapped displacements. This was indeed found to be the case in that the internal defect 
displacements were more than 15 dB above the normal wood displacements. Secondly, the 
displacement measurements were operated on by the various processing algorithms developed in 
the program. These inversion operators indicated that the wooden beam had considerable 
variations in its spatial properties, and this is under further investigation.  
 

Overall, we met our program objectives and in some areas went beyond what we had 
originally intended. The results of this effort clearly demonstrate the viability and utility of 
applying the laser-based structural acoustic health monitoring technique to structural integrity 
assessment work in historic buildings.  
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VI. OBJECTIVE 
 

The Physical Acoustics Branch at the Naval Research Laboratory (NRL) has made 
significant progress in what we call “Fault Detection and Localization Using Laser-Measured 
Surface Vibration.”  In this structural acoustics- based approach1,2, the dynamic surface 
displacements of a structure caused by very weak externally produced forces (acoustic speakers 
or shakers) are spatially and spectrally mapped with a scanning laser Doppler vibrometer 
(SLDV). A number of inversion algorithms developed at NRL are then used to invert these 
spatial vibration scans into various material parameter maps which then serve to locate 
subsurface faults.  In one particularly exciting and relevant application of this approach, we 
carried out exploratory studies in the U.S. Capitol Building to evaluate the ability of our 
techniques for assessing the integrity of fresco-bearing plaster walls and ceilings in various 
rooms of the Senate and the House.  Each of these regions contains expansive areas of precious 
frescoes painted on the plaster walls and ceilings by the artist Constantino Brumidi during the 
middle decades of the 19th century. The frescoes were painted on wet plaster typically three 
layers thick.  In this pilot program, we were able to locate many fault areas of various sizes 
related to plaster deconsolidation, layer delamination, and loss of attachment to the supporting 
mortar structure. Some of these results were recently described in an award winning publication3 
in the Association for Preservation Technology's scientific journal.  
 

In this SEED program we carried out a one year program of research aimed at providing 
proof of concept related to extension of this approach to more general structures and faults. 
Demonstrating proof of concept of the applicability of this structural acoustic/SLDV/inversion 
algorithm technology beyond that already demonstrated for plaster walls would address directly 
the Statement of Need (SON) for the Sustainable Infrastructure (SI) Seed New Start.  It would 
provide new techniques for effectively and efficiently assessing the structural integrity of the 
fabric of historic buildings and structures in non-invasive, non-destructive manners.  
 

Our objectives were to:   
1.  Extend our structural acoustic/SLDV/inversion technique by developing advanced inversion 
algorithms. This would allow monitoring of faults at various depths and determination of depth 
dependences, more accurate physical description of the flawed region, and application to non-
planar geometries and general materials.  Such advanced algorithms would include adaptive 
inversion algorithms which do not require a-priori information regarding the equations of motion 
of the structure being probed and identification algorithms which utilize new spatial transforms 
and modern day classifiers. 
2.  Assess the efficacy of applying these new techniques to various parts of a building fabric or 
structure including those fabricated from concrete, brick, masonry, iron, steel, wood, etc.  
3.  Demonstrate proof of concept in the laboratory. 
 
 

VII. BACKGROUND 
 

The DoD controls an estimated 90,000 buildings and structures that were built over 60 
years ago. In accordance with federal statutes, federal agencies make every effort to rehabilitate 
historically significant buildings and structures, whenever possible. Prior to initiating a 
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rehabilitation project, project managers may undertake a study to determine the conditions of the 
various buildings, features, and finishes, including heating, plumbing, and structural elements. 
These condition assessments are necessary to develop cost effective and timely management 
plans for heritage assets. Unless a building is so severely deteriorated that structural elements are 
visible, it may be necessary to remove part of the building’s interior or exterior envelope to 
determine structural integrity. This method, though sometimes necessary, is expensive and 
damages intact historic materials. Furthermore, results are not always guaranteed. Developing a 
toolkit of nondestructive methods to “look behind the walls” of historic and under-documented 
structures would provide necessary data to make real-time decisions for cost effective 
management options.  
 

Federal buildings and structures must be evaluated for eligibility for the National register 
of Historic Places as they approach the age , usually 50 years, when eligibility is possible under 
the terms of 36 CFR Part 60. Evaluation includes a determination of whether the structure has 
enough historic integrity to convey its significance. Following a determination of eligibility, an 
evaluation of whether a building can be renovated in an economically and operationally 
appropriate manner relies heavily on structural assessments. These assessments are part of the 
preservation requirements of several federal laws and state statutes that are incorporated into 
Integrated Cultural Resources Management Plans (ICRMP) that are developed and followed for 
the assessment and preservation of numerous historic buildings and other structures found on 
most DoD installations. The DoD installation personnel require assessment tools which would 
allow them to rapidly and effectively assess the conditions of historic structures without 
damaging them or otherwise affecting the historic nature of the structure.  

 
In response to the need for effective unobtrusive structural health monitoring techniques, 

we have been exploring the feasibility of structural acoustic techniques for monitoring the 
mechanical condition of structures.  The focus of our structural acoustic development efforts thus 
far can be summarized by the following question:  Given sufficient but readily accessible 
displacement information over the surface of a vibrating structure, can we develop and 
implement corresponding local inversion algorithms for mapping material parameter variations, 
detecting and localizing flaws (cracks, voids, delaminations, etc.), and uncovering the depth 
profiles of such.  Mechanical fault monitoring using the dynamic response of a structure excited 
by externally applied forces is not new.  For the most part, traditional methods involve some 
application of modal analysis techniques which typically extract changes in resonance 
frequencies and/or associated mode shapes.  One drawback of such modal approaches results 
from the fact that local changes in a structure caused by a fault often produce only very small 
changes in these global modal parameters whereas unavoidable environmental changes can have 
a large impact on these measured characteristics.  In addition, even when modal analysis is used 
successfully to indicate a structural problem, localization of the detected flaw is in general 
difficult.  

Our focus has been to develop techniques which also use the mechanical dynamic 
response but that, however, are able to detect and characterize local changes in the structural 
dynamics caused by the presence of a fault.  The methodology is illustrated in Fig. 1.  Our new 
methods use measurements of surface displacement associated with vibration of the structure 
caused by weak externally applied forces.  These forces can be created simply by a local actuator 
in direct contact with the structure or by an incident airborne acoustic wave generated by a 
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speaker.  The measured normal 
surface displacements, uz(x,y), are 
then inverted locally using various 
mathematically optimized algorithms 
in order to obtain a desired material 
parameter - for example,  the elastic 
modulus - whose spatial variation 
then serves to detect and localize the 
fault.  We choose to rely on surface 
displacements because these are 
readily accessible for all materials 
and most structures using existing 
scanned sensor technologies such as 
scanned laser Doppler vibrometry 
(SLDV).   
 

To a large extent, the power 
of the fault detection techniques 
pursued here depends on the 
successful development of a 
compatible set of inversion 
algorithms which can operate 
efficiently and in the presence of 
noise on the scanned surface displacements of the vibrating structure to produce a meaningful 
map of some fault-sensitive mechanical parameter.  Below we discuss four such approaches with 
which we have had various degrees of success. 
 
 
Direct Observation of High Contrast Motion 
 

We have demonstrated that in some cases even relatively small defects result in large 
displacement levels which stand out against those of the healthy areas of the structure and that 
typically LDV scans of the surface vibration can serve to detect and localize the defect. This was 
generally the situation in our work at the Capitol Building to detect and locate defects such as 
mortar detachment in the plaster walls1,3. 
 
 
Local Inversion 
 

In the local inversion approach4, we seek to invert the equations of motion for the 
structure.  For the vibration of general elastic media at frequency ω, the fundamental equation is 
given as: 
 [ ] iijij fuu =+ 2

, ρωσ r  (1) 

where σij is the stress, the subscript j denotes the partial derivative with respect to co-ordinates xj, 
ur is the displacement, ρ the density, and f

r
 the applied force used to vibrate the structure.  

 
Figure 1.  Depiction of the structural acoustic fault monitoring 
methodology applied to a variety of structures.  Surface 
displacements are monitored over the area of interest due to 
structural vibrations induced either by an applied shaker or an 
acoustic source. The displacements measured over the surface  
with a commercially available laser Doppler vibrometer are 
algorithmically inverted to produce a map of a desired material 
parameter which serves to detect and locate the flaw. 
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Without detailing the mathematics here, in locations away from the applied force, a variational 
form of the above equation is constructed through multiplication by a smoothly varying “virtual” 
function having specifically designed boundary conditions and insertion of the relevant 
relationship between stress and strain.  The resulting equation is then inverted to obtain an 
effective elastic modulus in terms of the measurable displacements, ur .  For the case of a plate 
structure of thickness h, Young’s modulus E, and Poisson ratio υ, the inversion results in the 
relatively simple relationship  

 ( ) ( )zuGhvEM 2,,, ωρ =  (2) 

where M is the local plate stiffness/(ρh) and G is an integral function over the surface whose 
integrand depends upon the measured uz (x,y) and which by design contains no spatial derivatives 
of u beyond the first.  This latter property, which results from introduction of the virtual 
functions, is extremely important because of its ability to greatly reduce the effects of spatially 
dependent noise on the inversion result.  The simple application of Eq. (2) upon the measured 
displacements can thus provide local mechanical information involving E, v, ρ, and h.  
 
 
Generalized Force Mapping 
 

In contrast to direct inversion, the generalized force mapping technique4 uses the known 
values of the elastic moduli, density, and thickness together with the measured displacement uz 
(x,y) across the surface to compute the left hand side of Eq. (1).  Away from the applied force, a 
non-zero result here as a function of position identifies a generalized force which now exists in 
the structure as a consequence of the presence of the flaw.  The appearance of these forces 
together with their position then serve to detect and locate the fault.  In principal, the details of 
the derived force could be used to further characterize the fault although we have not yet 
exploited this possibility. 
 
 
ω- k Mapping 
 

In ω  - k mapping5, a two dimensional temporal and spatial FFT is performed on the 
measured displacement data thus providing a frequency (ω) - wavenumber (k) representation of 
the elastic vibration.  These transforms are spatially windowed to provide local information.  For 
elastic wave propagation, this format displays characteristic “dispersion” curves indicating the 
elastic wave types present (e.g. compressive, shear, flexural, etc.) and the frequency dependent 
velocities.  Local differences in these curves from those observed or expected in unflawed 
structures indicate variations in wave types or in their speeds which are directly related to 
material parameter variations associated with the development of flaws.  This Fourier acoustic 
technique has been particularly successful when applied to delamination effects in layered 
structures.  In such cases, slow flexural waves excited in the detached layer present their 
unmistakable ω  dispersion curves in distinct contrast to the nearly vertical lines of the faster 
waves traveling in the uncompromised, adhered structure.  
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Previous Success: Assessing Wall Paintings and Underlying Structure at the U.S. Capitol 
Building 
  

The authors were invited to 
demonstrate and evaluate their new fault 
detection and localization techniques for 
assessing the integrity of art-bearing walls and 
ceilings in various rooms in the US Capitol. 
The United States Capitol Building (both 
House and Senate) has large expanses of 
important fine art and decorative paintings6 
executed directly on the original lime plaster.  
In support of a comprehensive infrastructure 
modernization program in the building, the 
integrity of the supporting structures are being 
evaluated so that degradations underlying the 
artwork can first be located and repaired.  The 
frescoes were painted in the nineteenth 
century by the Italian artist Constantino 
Brumidi6 on a roughly two-centimeter thick 
structure consisting of three layers of plaster 
of varying composition supported by a thick 
masonry foundation.  A successful non-
destructive evaluation technique must be able 
to detect throughout the structure defects 
including loss of cohesion within a plaster 
layer and delaminations between the layers or 
at the attachment of the mortar to the 
supporting wall structure.  The left insert in 
Fig. 2 shows the typical set-up we used to 
carry out preliminary diagnostic studies, in 

this particular case for the Brumidi Corridor of the Senate Wing.  Panels on the wall or ceiling 
were excited over a band of frequencies by the use of either a broadband shaker applied directly 
at a point on the structure or an acoustic speaker which exposed the walls and ceiling to acoustic 
energy.   
 

As depicted, a scanning laser Doppler vibrometer was used to map the fine scale 
vibratory motion of the wall or ceiling over the area of interest using a serpentine grid pattern 
with a spacing of several centimeters. In addition to the Brumidi Corridor, measurements were 
also carried out in the Senate Reception Room, The President’s Room (see Fig. 2), The House 
Appropriations Committee Room, The Parliamentarian’s Office, and the Office of The Speaker 
of The House.   
 

 
 
Figure 2.   (Left) Experimental arrangement for plaster 
wall assessments at the U.S. Capitol Building showing 
the SLDV monitoring system, a shaker used to excite 
the art-laden walls, and a lap - top computer data 
acquisition system in the Brumidi Corridor; (Right) a 
photograph of the President’s Room where extensive 
measurements were made on the walls and ceiling. 
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In general, our techniques were 
very successful at detecting and 
locating faults when they existed in 
the structure underlying the art.  We 
were able to identify a variety of 
problems including areas of 
unconsolidated plaster, various size 
regions having delaminations between 
plaster layers, and places where there 
is complete detachment of the plaster 
from its typically brick foundation.  
Overall, our SLDV-based structural 
acoustic approach compared favorably 
to other techniques used at the Capitol 
including those employing radar and 
thermal imaging.  
 

Fig. 3 shows a result we 
obtained on a panel in the Brumidi 
Corridor.  On the left is shown a 
quantitative color map representing 
our measured displacement data after 
processing with the |VV*| algorithm1,3 
which sums the absolute magnitude of the measured normal velocity at each spatial point and 
over each frequency bin.  This clearly indicates six or so localized faults.  They are attributed to 
simple, small areas of delamination between the innermost plaster layer and its attachment to the 
brick supporting structure. In this particular case, the results can be compared to the available 
findings from what is called a “tap” test.  In this age-old technique, a skilled conservator literally 
taps with a small hammer-like tool sequentially on a large number of points on the surface while 
carefully listening with his unaided ear to the audible response of the wall from which a 
qualitative fault map is generated.  Although an experienced, skilled practitioner can often 
identify the existence (and sometimes type) of inhomogeneity, using this method it is impractical 
to gather - much less record - such information, especially over large expanses.  None-the-less, 
Fig. 3 shows satisfying agreement between our laser-automated, quantitative, rapid method and 
the time consuming, human-discerned result. 
 

We have also studied and successfully demonstrated our structural acoustic fault 
detection methods on a number of relatively simple laboratory structures.  These include metal 
plates with flaws, lap joints with varying degrees of attachment, and thin, stiffened panels with 
segments of frame detachment7.  
 
 

VIII.  MATERIALS AND METHODS 
  

In this SEED program, we extended our SLDV/inversion structural health monitoring 
technique by: developing advanced inversion algorithms; combining several inversion 

 
 
Figure 3.  A comparison of the faults found by our structural 
acoustic technique (left) and by a tap test (right) in a fresco 
panel in the Brumidi Corridor of The U.S. Senate.  Displayed on 
the left is the result of the VV* algorithm and the color scale 
shows velocity in m/sec for a one newton force applied to the 
wall. The tap test is a labor intensive, time-consuming process 
wherein a skilled practitioner taps with a small hammer-like tool 
sequentially on a large number of points on the surface while 
listening with his unaided ear to the audible response of the wall 
from which he locates underlying faults. 
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algorithms for improved fault detection; applying the these techniques to various parts of a 
building fabric including simple structures fabricated from concrete, brick, plaster, steel, wood, 
etc.; and demonstrating proof of concept in the laboratory.  In particular, the following 
investigations were carried out.  
 
 
Differing Materials –Thin and Thick Plates 
 

We determined the feasibility for extending our SLDV/inversion approach augmented 
with new developments beyond its successful application on plaster walls to various parts of a 
building fabric and structure including those fabricated from concrete, steel, wood, etc. This 
effort was carried out using a numerically generated vibration data base using advanced h-p 
adaptive, finite element–based structural acoustic codes developed in our group in other 
programs. The structures for which numerical data was generated included: (1) thin plates of 
plaster, steel, and concrete with and without internal flaws; (2) thick plates of plaster and steel 
wherein flaws at three depths could be studied; and (3) a slab of wood with and without internal 
flaws.  The first two cases were successfully handled using the isotropic flexural wave inversion 
algorithms. The last case is much more complex than the previous materials in that the wood is 
orthotropic, and this required the development of an orthotropic inversion operator. 
 
 
Orthotropic Wooden Slabs  
 

In the case of wood, we had to take into account the orthotropic nature of the material.  In 
particular, we explored the extension of these inversion algorithms to the orthotropic thin plate 
case by developing a variational form of the differential equation for transverse bending and 
solving for the orthotropic flexural rigidities.  The extended techniques are applied to a finite-
element generated numerical data base for point excited wooden plates with and without an 
internal inclusion at 5 kHz and 10 kHz.  Operation of the original isotropic algorithms on the 
wooden plate surface displacements is shown to fail in recovering the uniform elastic parameters 
or in detecting and locating the fault. The new algorithms based on the wave equation for a thin, 
orthotropic plate successfully convert the surface displacements on the uniform wooden plate to 
elastic parameter maps which serve to detect and localize the inclusion in the flawed plate. The 
results, particularly at the higher frequency, indicate that the onset of failure in the thin plate 
approximation is impacting both the inversion and the generalized force mapping accuracy. 
However, in this case use of the inversion algorithm to obtain modified wave equation 
coefficients followed by operation of the force mapping algorithm with these new parameters 
inserted is shown to successfully mitigate this effect.   
 
 
Adaptive Inversion 
 

Current algorithms which invert measured vibration maps into internal elastic parameters 
require knowledge of the equations of motion appropriate for the structure under study which 
restricts their areas of application.  Using our extensive experience in the development of 
inversion algorithms for material parameter characterization and fault detection which use 
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dynamic surface displacement measurements obtained with SLDV1,2,3,7 or interior displacements 
obtained using Magnetic Resonance Elastography (MRE)8,9, we addressed the development of 
novel training algorithms for fault detection which do not depend on a-priori knowledge of the 
structural equations of motion. 
 

In one such adaptive approach, we explored the idea of cascading various algorithms. 
One promising approach applied to thick plate structures used the flexural inversion operator 
appropriate to thin plates. The “effective” stiffness parameters so obtained were then inserted 
into the generalized force equation method which locates regions with non-zero forces and 
identifies those as faults.   
 

In a second approach, we defined a set of equations which have arbitrary coefficients that 
multiply sets of spatial and temporal derivatives of the measured displacements. In this 
formulation, the equations appear as homogeneous sets of partial differential equations whose 
coefficients are generally unknown, yet which can be “trained” for any particular structure. 
Therefore, given a sufficient number of measurements on a control section, the coefficients can 
be determined, thereby “training” the algorithm to detect fluctuations due to material parameter 
or structural differences. As with our previous inversion techniques, the trained algorithm would 
also provide local properties thus providing locations of any faults.  Further, we explored 
validation criteria for this adaptive coefficient approach based on the fact that the coefficients 
associated with the most appropriate solution should have a minimum variance normalized by 
the mean square value.  
 
 
Modern Classifiers 
 

A fourth area we explored albeit briefly involved exploiting modern identification (ID) 
algorithms that use the unique feature spaces derived from the previously described algorithms.  
The Physical Acoustics Branch has extensive experience in applying such ID algorithms in our 
on-going work10-14 on underwater targets and UXO identification.  These algorithms include 
hidden Markov models (HMM), relevance vector machines (RVM), and kernel matching 
pursuits (KMP).  We expected that application of these algorithms as well as fusion of their 
modalities might provide both improved performance for fault detection and material parameter 
determination as well as determination of depth profiles of faults or material parameter 
fluctuations. This effort was not completed.  
 
 
Plaster Dome Ceiling: A Numerical Study 
 

A fifth area we explored involved plaster domed ceilings. In a number of the truly 
historic buildings whose finish layers often consist of plaster, walls and/or ceilings often bear 
precious artwork such as mosaic or frescoed images. In the case of the latter, where the paintings 
were created on wet plaster, the current physical and mechanical condition of the plaster layer(s) 
determines for the most part the near to mid term viability of the artwork.  Particularly for the 
case of a ceiling, the development of defects such as detachment of the plaster layer from its 
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supporting brick or mortar structure or pockets of plaster deconsolidation can eventually lead to 
catastrophic failure of the plaster ceiling and the unrecoverable loss of priceless artwork. 
 

Several years ago, Bucaro et. al.1 and Vignola et. al.3  reported the successful use of 
externally produced vibration to evaluate the state-of-health (SOH) of highly frescoed plaster 
walls in the U.S. Capitol Building. In this technique, a low level broadband force was applied 
locally to the wall using an electro-dynamic shaker, and the resulting spatially dependent surface 
vibrations were mapped over the frescoed wall using a SLDV.  Direct observation of the scanned 
displacement maps allowed those authors to detect and locate plaster defects whose presence was 
subsequently confirmed by conventional tapping tests. These studies were empirical in nature, 
and little supporting vibration analysis was reported which would allow one to generalize these 
results to other situations. 
 

In this SEED effort we considered a related approach in which a broadband acoustic 
speaker rather than a shaker is used to excite the structure. As in the shaker excitation case, the 
resulting vibrational response of the structure would be mapped over its surface using a scanning 
laser Doppler vibrometer.  Use of a speaker is an especially attractive approach for ceilings in 
that both the excitation and the scanning could be carried out remotely eliminating the 
requirement for scaffolding. Although such an acoustic speaker approach had been introduced 
and applied to frescoes by Castellini, et. al.15 and later applied by Tornari et. al.16  to mosaics, 
ceramics, inlaid wood, and easel paintings, both these and subsequent studies using speaker (or 
for that matter shaker excitation) did not provide sufficient analytical results which would allow 
one to predict the sensitivity of the technique to defect detail such as type and size and how well 
the approach might perform more generally. 
 

In the SEED study, we used a simulated data base of surface vibration generated using an 
advanced structural acoustic finite element-based code.  In particular, we explored application of 
the speaker-based technique to what we consider to be a generic domed ceiling – a common 
structure found in historic buildings and residences - in which a plaster layer is attached to, and 
takes the shape of, a backing structure considered to be relatively rigid such as brick or mortar. 
Aided by static analysis, we addressed the effectiveness of using the “measured” surface 
displacements resulting from acoustic speaker excitation to detect and localize two different 
defect types: (A) detachment of the plaster layer from the supporting brick or mortar, and (B) an 
internal region in the plaster which has become deconsolidated. Specific questions we wished to 
resolve are: (1) Is acoustic excitation effective at producing readily measured surface 
displacements which could be used in detecting these flaws?  (2) In general, what issues and/or 
benefits are introduced by using acoustic speaker versus force actuator excitation?  (3) Are 
typical defects of the type mentioned above detectable by straightforward observation of the 
acoustically excited spatial displacement maps and how does this depend on flaw size and ceiling 
thickness?  (4) What is the minimum detectable defect size?  And (5) if a defect is detected, 
might one be able to differentiate between detachment and deconsolidation? 
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Novel Spatial Transform 
 

A sixth area we explored is based on our new ideas in novel transform methods17  in 
structural and physical acoustics.  Presently, Fourier decompositions of spatial vibrations are in 
practice restricted to surfaces defined by separable geometry systems for a meaningful 
interpretation of their spectra.  In our new technique, we define and develop a purely local 
spectral analysis approach which uses spatially conformal Fourier decompositions.  This allows 
us to analyze dispersion behavior on any surface or structure irrespective of its shape.  This leads 
to an important augmentation of our ω  - k mapping5 technique in which local differences in the 
dispersion curves from those observed or expected in unflawed structures indicate variations in 
wave types or in their speeds which are directly related to material parameter variations 
associated with the development of flaws.  We also anticipate that this new transform approach 
will lead to heretofore unexploited spectral features for classification and vibration analysis. In 
particular, we applied this new technique to fault identification on an elliptical plaster dome 
ceiling. 
 
 
Laboratory Demonstration 
 

Finally, we carried out a laboratory–based SLDV demonstration on a generic structure as 
an additional demonstration of proof of concept and efficacy of this overall approach. The 
structure chosen was a long 2” × 10” ceiling support beam in the interior of which was created a 
2” × 2.5” × 5/8” thick defect at its mid-plane which approximated decay or termite-like damage 
to the wood. Broadband SLDV scans were obtained across the available surface of the structure 
providing dynamic displacement fields in the usual manner. These data bases were analyzed in 
two ways. First, the displacement maps were examined without any inversion to determine if the 
defect was observable by direct observation of the contrast in the spatially mapped 
displacements. This was indeed found to be the case in a frequency band which included the 
resonance frequency of the defect. Secondly, the displacement measurements were operated on 
by the various processing algorithms developed in the program. These inversion operators 
indicated that the wooden beam had considerable variations in its spatial properties, and this 
result requires further study. 
 
 
 

IX. RESULTS AND ACCOMPLISHMENTS 
 
 
Thin and Thick Plates of Various Materials: Numerical Studies at Three Frequencies.  
 

We determined the feasibility for extending our SLDV/inversion approach augmented 
beyond its successful application on plaster walls to various parts of a building fabric and 
structure including those fabricated from concrete, steel, wood, etc. This effort was carried out 
using a numerically generated vibration data base using advanced h-p adaptive, finite element–
based structural acoustic codes developed in our group in other programs. The structures for 
which numerical data was generated included: (1) thin plates of plaster, steel, and concrete with 
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and without an internal flaw; (2) thick plates of plaster and steel wherein flaws at three depths 
could be studied; and (3) a slab of wood with and without an internal flaw. 
Isotropic Thin Plates Made of Steel, Concrete, and Plaster. 
 

In this section, we apply our inversion method to a finite element database, simulating the 
dynamic response of point-driven, solid, homogeneous plates of dimensions length = 60 cm, 
width = 30 cm, and thickness = 2.54 cm, with and without an internal flaw.  These plates were 
comprised of steel, concrete, and plaster, and the material parameters utilized in our studies are 
provided below.  The flaw was modeled as an inclusion (see Fig. 4) of length = 2 cm, width = 
1.5 cm, and thickness = 0.5cm 
(centered at x = -8.7 cm, y = 
19 cm, and z = 1.27 cm).  In 
each case, while the plates 
and the inclusions have the 
same Poisson's ratio, density, 
and attenuation, the Young's 
moduli differ.  Specifically, 
there were two variations of 
the material stiffness 
comprising the inclusion.  In 
the inversions below, Flaw1 
has a Young's modulus 1000 
times less than that of the 
surrounding plate, while 
Flaw2 has a Young's modulus 20 times less than that of the surrounding plate structure.  In the 
Table 1 below, we show these material parameters. 
 

The plates were dynamically excited at a point at 1 kHz, 5 kHz, and 10 kHz, respectively, 
and the displacements were calculated using the finite element method. The plates were modeled 
as 3D solids fixed on the all the side faces. The spatial mesh for both the thin and the thick plate 
model had a total of 9000 hexahedral volume elements. Based on a p-convergence study of the 
given mesh a cubic-degree (p = 3) approximation was utilized for the response computations. For 
the thin plate model this resulted in a total of 34038 complex-valued unknowns out of which 
3240 were constrained and the remaining were free. For the thick plate model this resulted in a 
total of 223608 complex-valued unknowns out of which 15120 were constrained and the 
remaining were free. 
 
 
 

Table 1:  Plate Material Parameters 
 Young's modulus (Pa) Density (Kg/M3) Poisson's Ratio Attenuation 
Steel 200 × 109 7900 0.3 0.01 
Concrete 26 × 109 2300 0.22 0.02 
Plaster 7 × 109 1444 0.2 0.02 
 
 

 
 

Figure 4. Co-ordinate system and plate geometry used in the finite 
element calculations of normal surface displacement for point excited 
plates with and without an internal flaw. 
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The flexural wave inversion operator4 we are applying is shown mathematically below: 
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As discussed in Ref. 4, this is a specially designed inversion operator in which a virtual function, 
v, is introduced in such a way that the higher order spatial derivatives, rather than operating on 
the “measured” displacement u(x,y), operate on the virtual function v which are not only analytic 
but can be chosen with beneficial boundary values.  We show the results of applying the 
inversion operator on the plaster, concrete, and steel thin plates in Figs. 5-7 together with the 
displacement maps for the plates with and without the flaw. 
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Figure 5.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions for thin plaster 
plates with flaw and no flaw. 
 
 
 

As can be seen in Fig. 5 for the plaster, the faults are not apparent in the displacement 
maps themselves. However, operation of the inversion operator clearly indicates the presence 
and location of both internal faults. Surprisingly, this is the case even for the lowest frequency 
where there is only perhaps one and one half flexural wavelengths across the plate.  
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Figure 6.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions for thin concrete 
plates with flaw and no flaw. 
 
 
 

Again in the case of concrete, as can be seen in Fig. 6, the faults are not apparent in the 
displacement maps themselves. However, operation of the inversion operator clearly indicates 
the presence and location of both internal faults. And again this is the case even for the lowest 
frequency where there is now only perhaps one half flexural wavelengths across the plate.  
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Figure 7.  Numerically generated displacements at 1, 5, and 10 kHz and flexural wave inversions for thin steel plates 
with flaw and no flaw. 
 
 
 

Finally, in the case of steel, as can be seen in Fig. 7, the faults are again not apparent in 
the displacement maps themselves. However, now only at the higher frequencies, operation of 
the inversion operator clearly indicates the presence and location of both internal faults. This 
lower performance at the lowest frequency is quite expected and is related to the fact that for the 
very high wave-speed in steel, only a small fraction of a flexural wavelength exists across the 
plate.  
 
 
Isotropic Thick Plates Made of Steel and Plaster. 
 

In this section, we apply our inversion method to a finite element database, simulating the 
dynamic response of point-driven, solid, homogeneous plates of dimensions length = 60 cm, 
width = 30 cm, and thickness = 5 cm, without and with internal flaws at three different depths.  
These plates were comprised of steel and plaster, and the material parameters utilized in our 
studies are provided below.  The flaws were modeled as inclusions of length = 2 cm, width = 1.5 
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cm, and thickness = 0.5 cm (centered at x = 8.7 cm, y = 19 cm, and three separate locations (see 
Fig. 8) across the thickness: z1 = 1.27 cm (Top), z2 = 0.0 cm (Mid), and z3 = -1.27 (Bottom)).  In 
each case, while the plates and the inclusions have the same Poisson's ratio, density, and 
attenuation, the Young's moduli differ.  Specifically, there were two variations of the material 
stiffness comprising the inclusion.  In the inversions below, Flaw1 has a Young's modulus 1000 
times less than that of the surrounding plate, while Flaw2 has a Young's modulus 20 times less 
than that of the surrounding plate structure.  The plate material parameters are again shown in 
Table 1.  As before, the plates were dynamically excited at 1 kHz, 5 kHz, and 10 kHz, 
respectively. Again, the flexural wave inversion operator4 shown mathematically in Eq. (3) was 
applied to the calculated surface displacement data base.  

 
 

 
 

Figure 8.  Cross section of thick plate showing flaws at three different depths. 
 
 
 

As can be seen in Figs. 9 - 11, the inversions for the thick steel case show the presence of 
all three flaws for any of the three frequencies. As in the thin plate case, the flaws are not 
noticeable in any of the displacement maps themselves. The inversion at the lowest frequency (1 
kHz) shows an anomalous feature across the top of the plate; and although its origin is not 
understood, we are not surprised that the lowest frequency which has only a fraction of a 
wavelength across the plate has the poorest performance. The flaws are quite dominant in the 
inversion maps for the two higher frequencies. 
 



31 

 
 
Figure 9.  Numerically generated displacements at 1 kHz and flexural wave inversions for thick steel plates with no 
flaw and flaws at three different depths. 
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Figure 10.  Numerically generated displacements at 5 kHz and flexural wave inversions for thick steel plates with no 
flaw and flaws at three different depths. 
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Figure 11.  Numerically generated displacements at 10 kHz and flexural wave inversions for thick steel plates with no 
flaw and flaws at three different depths. 
 
 
 
 

Next we show the inversions for the thick plaster plate case in Figs. 12 - 14.  In contrast 
to the case for steel, all three flaws are noticeable in the inversion maps only for the highest 
frequency (10 kHz). In this case they are barely visible in the lowest frequency maps (1 kHz), 
and in addition there is a dominant artifact in the lower left near the shaker position. At 5 kHz, 
the top flaw and mid-plane flaw are visible but not the deepest one.  
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Figure 12.  Numerically generated displacements at 1 kHz and flexural wave inversions for thick plaster plates with no 
flaw and flaws at three different depths. 
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Figure 13.  Numerically generated displacements at 5 kHz and flexural wave inversions for thick plaster plates with no 
flaw and flaws at three different depths. 
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Figure 14,  Numerically generated displacements at 10 kHz and flexural wave inversions for thick plaster plates with 
no flaw and flaws at three different depths. 
 
 

The best performance for the thick plaster plate is that at 10 kHz where all flaws are 
visible. However, the deepest flaw has the poorest definition.  Although we did not run the data 
for the thick concrete plate, we expect that as in the thin plate case the inversions would be 
similar to that for the plaster case. 
 
 
Orthotropic Inversion Operators and Application to Wood Slabs 
 

Wood materials are orthotropic and we would not expect inversion operators derived 
from the isotropic flexural wave equation to be effective. Accordingly, we developed an 
analogous inversion operator based for orthotropic materials.  In the case of an orthotropic thin 
plate, the differential equation for the transverse bending is given by Leissa18   
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In these equations Dx, Dy and Dxy are the flexural rigidities, Ex, Ey and Gyx are the orthotropic 
elastic moduli, and νxy,νyx the  relevant Poisson’s ratios.  The equivalent variational form can be 
expressed as 
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where the virtual functions, vz , are defined above.  Integration of Eq. (6) by parts four times 
yields 
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As before, one can see that the variational form has forced all but first order derivatives onto the 
virtual functions thereby reducing the effects of spatially varying noise in the process of 
calculating higher order derivatives.       
 
 
Orthotropic Inversion 
 

As in the isotropic case, Eq. (7) can be utilized to solve for the orthotropic flexural 
rigidities away from any applied force (where fz(x,y,ω)=0).  Since there are now three unknowns, 
a minimum of three excitation locations is required to provide a linearly independent set of 
equations.  Labeling the integrals in Eq. (7) as Aij,i,j=1,2,3, and the displacements due to each 
excitation as i

zu , the set of equations may be expressed in matrix form as 
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Letting the 3 × 3 matrix in Eq. (8) be represented as A, the unknown flexural rigidity column 
matrix as D, and the RHS as R, then the solution can be expressed as D = A-1R, (Det A ≠ 0).  This 
set of equations may additionally be over specified and solved using algorithms such as the 
Conjugate Gradient Least Squares (Hansen19) method to site one example.  For orthotropic 
plates, Eq. (8) replaces Eq. (3), its counterpart for the isotropic case.  
 
 
Orthotropic Generalized Force Mapping 

 
In the case of orthotropic plates, the Generalized Force Mapping operator assumes the 

following form 
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where, as discussed above Dx, Dxy, and Dy are the orthotropic flexural rigidities, ρ and h the 

density and plate thickness, respectively, and ( )dxdyhyxfvG
y

zz
x

m ∫∫= ρω),,(   As the left-hand 

side of Eq. (9) is calculated at each two-dimensional voxel centered at the location xm, ym over 
the surface of the plate, non-zero values illuminate and map the spatial distributions of any faults 
(or applied forces). 
 

This particular representation will be applied in two different ways.  The first is one in 
which we utilize the “known” values for the flexural rigidities which are based on the elastic 
moduli used in the forward finite element calculations.  The second is one in which we utilize the 
values for the flexural rigidities obtained from the orthotropic inversions.  In this latter method, 
the values in Eq. (9) are therefore “calibrated” to the solution as provided by the application of 
the inversions.  As will be seen, such an approach can have a dramatic effect in the performance 
of the GFI method. 
 
 
Wooden Plate Detail 
 

We focus our study and demonstration of these techniques on a solid, homogeneous, 
orthotropic wooden plate of dimensions length = 60 cm, width = 30 cm, and thickness = 2.54 cm 
with and without an internal inclusion. As depicted in Fig.15, we take the x, y, and z axes to be 
aligned with tangential, longitudinal (fiber), and radial wood grain and growth ring directions, 
respectively. The nine independent stiffness constants and density (450 kg/m3) are taken to be 
that of Douglas coastal fir (see Table 2) as computed from the elastic and Poisson’s ratios 
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reported by Green et. al.20 .  The flaw is in the form of a rectangular inclusion (see figure 1) of 
length = 2 cm, width = 1.5 cm, and thickness = 0.5 cm (centered at x = -8.7 cm, y = 19 cm, z = 
1.27 cm) with the density unchanged but with each of the nine stiffness constants reduced to 0.05 
its value in the normal wood.  
 
 

Table 2. Nine independent stiffness matrix elements for Douglas fir (10 8 Pa). 
C11 C22 C33 C44 C55 C66 C12 C13 C23 

8.450 150.6 11.44 11.50 1.030 9.430 4.784 3.390 4.851 
 
 

The damping factor is taken to be 5 % and is accounted for by adding the appropriate 
imaginary component to each elastic moduli (Hosten21). Some support we can offer for choosing 
5% is that the 2 dB/cm and 15 dB/cm longitudinal and shear attenuations in Douglas fir at 1MHz 
reported by Bucur22 correspond to damping factors of 4.4 % and 2.2 %, respectively.  Of course, 
our results are obtained at much lower frequencies (5 - 10 kHz) and for flexural waves. Also, 
damping factors for various wave types in white oak reported by Kerlin23 fall anywhere between 
1 % and 3 % in our frequency band. We favored erring on too high rather than too low a 
damping factor recognizing that the performance of our inversions are expected to decline with 
larger attenuation.  In any case, the results we will present should not be too dependent on the 
actual damping number used in the range given above.  
 
 
Finite Element Data Base 
 

The displacement response 
of the orthotropic wood plate was 
obtained using a parallel hp-version 
finite element technique (Dey and 
Datta24) with a mesh consisting of 
9000 volume elements. After a p-
convergence check, a cubic (p = 3) 
discretization was used consisting 
of 208,448 complex-valued 
displacement degrees of freedom. 
The surface displacements were 
obtained resulting from a normal 
point force applied one at a time to 
three different positions on the 
plate, one near the lower left 
corner, one directly above it 
halfway up the plate, and the third 
near the upper left corner. (See Fig. 
15.)  In the finite element model, the boundary conditions were taken to be fixed, i.e. all three 
displacement components at the edges are zero. Particular boundary conditions should have little 
effect on our inversions since the latter are based on infinite plate, free-wave propagation. And 

 
 
Figure 15.  Wooden plate and Cartesian axes system.  The x and z 
axes are along the wood tangential and radial growth ring 
directions, and the z axis along the longitudinal or fiber direction. 
The flaw is in the form of a rectangular inclusion centered midway 
through the plate depth. Also shown are three independent shakers 
used to excite the plate. 
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except for “edge distortion” at positions very near the boundaries of the plate (i.e. within 
distances << structural wavelength), the displacement responses are well-represented by linear 
combinations of the infinite plate, free-wave solutions (Skudrzyk25).   
 

The responses were computed for two frequencies (5 kHz and 10 kHz) defining a band 
which we believe would be practical from both a force application and a scanned surface 
displacement measurement point of view. For each case we compute the normal surface 
displacement uz (x,y,ω) on a rectangular grid with a spacing of 0.25 cm.  The displacements at 
each frequency are shown in Fig. 16 for both the homogeneous plate and the flawed plate. It 
should be pointed out that the displacement maps themselves show little indication of the 
presence of the internal flaw. 
 
 

 

 
 

Figure 16.  Calculated color-coded surface displacement at 5 kHz and 10 kHz when the shaker in the lower left 
position is excited at each frequency.  Positive and negative relative phase is indicated by red to yellow and dark to 
light blue, respectively. 
 
 
 
Results 
 

To provide the inversion results, the integrations in Eq. (8) were calculated over 16 × 16 
data points, centered at each of 106 × 226 pixels (xm,ym), i.e.  xm ± 8Δx,  ym ± 8Δy, yielding 
surface elements with sides cmLL y

m
x
m 4== .  First, we can apply the inversion operator, Eq. (3), 

developed from the isotropic wave equation to the numerical data base of displacement on the 
wooden plates.  In Fig. 17 we show the result of this operation on both the homogeneous plate 
and on the flawed plate for one of the driver positions (lower left).  As can be seen – and as 
expected– the inversion algorithm fails in two respects: (1) it does not recover the known spatial 
uniformity of the effective plate stiffness for either plate (note the presence of large stiffness 
parameter values at a number of locations); and (2) it does not do well in detecting and localizing 
the internal flaw.  These failures are not surprising and are a consequence of applying an 
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inversion operator built on the isotropic wave equation to an orthotropic structure.  The same 
problems persisted when inverting the data associated with the other two shaker locations as 
well, although the results are not shown here.   

 
 
 

 
 
Figure 17.  Result of applying weak flexural wave inversion operator (WFWI) developed for the isotropic case, Eq. (5), 
to the displacement data (lower left driver excited) at each frequency for both the homogeneous wooden plate and 
the flawed wooden plate.  The magnitude of the inversion in units of D/ρh is color coded from blue to red. 
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Figure 18.  Result of applying the weak flexural wave inversion operator (WFWI) developed for the orthotropic case, 
Eq. (11), to the displacement data at each frequency for the homogeneous wooden plate to obtain the three stiffness 
parameters Dx/ρh, Dxy/ρh, and Dy/ρh. The magnitude of the inversion in units of the respective D/ρh values is color 
coded from blue to red. The three artifacts seen in each figure are due to the presence of the shakers. 
 
 
 

Next, we apply the orthotropic inversion algorithm as described in Eq. (8).  Fig. 18 shows 
the inversions yielding the three stiffness parameters Dx/ρh, Dxy/ρh, and Dy/ρh, respectively, 
mapped spatially over the homogeneous wooden plate. As can be seen, away from the three 
shaker positions, each inversion correctly produces a spatially uniform stiffness parameter. In 
Fig. 19 we show the inversion results for the flawed plate. As can be seen, all three inversions 
successfully detect and localize the rectangular internal inclusion through the three D 
coefficients.  From the perspective of contrast, the inversion yielding Dy/ρh seems somewhat 
superior in performance to that for Dx/ρh or Dxy/ρh.  This is perhaps related to the fact that the 
displacement response may be determined predominantly through Dy as appears to be the case 
based on the modal spatial patterns seen in Fig. 16.  For example, from these displays we find an 
estimate of the dominant structural wavenumber, k, to be consistent with ω/k = ω1/2 ( Dy /ρh )1/4, 
the latter being the phase speed of a flexural wave in a plate with stiffness given by Dy.  In any 
case, these results confirm the efficacy and correctness of our extension of the flexural wave 
inversion technique to the orthotropic case. 
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Figure 19.  Result of applying the weak flexural wave inversion operator (WFWI) developed for the orthotropic case, 
Eq. (11), to the displacement data at each frequency for the flawed wooden plate to obtain the three stiffness 
parameters Dx/ρh, Dxy/ρh, and Dy/ρh.  The magnitude of the inversion in units of the respective D/ρh values is color 
coded from blue to red. The three artifacts again seen in each figure are due to the presence of the shakers. The flaw 
which is located in the upper left of the wooden plate can be seen in each display. 
 
 
 

Although not unexpected, the actual numerical values for the D’s obtained through the 
inversions are different from the values used in the forward finite element calculations. At 5 kHz 
the ratios of the values obtained through inversion to the known values are 0.4, 0.5, and 0.6 for 
Dx, Dxy, and Dy, respectively, and at 10 kHz 0.1, 0.2, and 0.3.  We surmise that these 
inconsistencies are related to the use of the thin plate approximation inherent in the free-space 
wave equation, Eq. (7), which is increasingly in error as frequency increases.  For example, 
Cremer and Heckl26 argue that failure in this approximation results in less than a 10 % difference 
in the computed flexural wave speed when the flexural wavelength, λf  > 6h.  At 5 kHz, for our 
plate thickness we have λf /h ~ 8 and 3.7 in the y and x directions, respectively and the thin plate 
approximation is beginning to breakdown, albeit weakly. However, at 10 kHz we have λf /h ~ 5.9 
and 2.7 for y and x directions. The computed flexural wave speeds are now off by 10 % or more, 
and this should begin to have a significant impact on the inversions.  A rough argument as to the 
magnitude of this error can be made by thinking of the inversion operator as a λ estimator and 
recognizing that a generalized modulus, M, would be given by M= ρC2 with C = λω/2π.  
Accordingly, a 20 % error in λ (or C) would give about a 40 % error in the stiffness. We believe 
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that this is probably responsible for the large error in the D coefficient values at 10 kHz.  In any 
case, our goal in the inversions is to detect spatial anomalies in the local stiffness and thus to 
detect the presence of a fault causing this variation. In this respect, errors in the magnitude of the 
stiffness obtained as a by-product of the inversions are not of any serious consequence.  
 
 
 

 
 
Figure 20.  Result of applying the generalized force mapping operator (GFM) developed for the orthotropic case, Eq. 
(12), to the displacement data at each frequency for the homogeneous and  flawed wooden plates when the driver in 
the lower left is excited.  The resulting generalized force values are shown color coded from blue to red. The operator 
defined in Eq. (12) has been determined inserting the values for Dx/ρh, Dxy/ρh, and Dy/ρh that were used in the 
forward finite element calculation of displacements. The highlight seen in each figure in the lower left is due to the 
presence of the shaker. The inclusion located in the upper left of the flawed wooden plate can be seen best in the 5 
kHz result. 
 
 
 

Consider next the generalized force method. Inserting the known (i.e. those used in the 
numerical calculations) values for Dx/ρh, Dxy/ρh, and Dy/ρh into Eq. (9), we now apply the GFM 
algorithm to the numerical displacement data.  As can be seen in Fig. 20, the algorithm is very 
effective at detecting and locating the internal fault at 5 kHz. Once again the results at the higher 
frequency are worse, and this time they almost completely fail.  Earlier we saw that the 
inversions produced values for the D coefficients which were different from those used in the 
calculations, presumably from the effect of the thin plate approximation, and that these 
differences grow with increased frequency. We expect that this effect is responsible for the very 
poor result observed in the GFM processing at 10 kHz. In the section on adaptive algorithms, we 
will show how this problem can be eliminated.  
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Figure 21.  Result of applying the generalized force mapping operator (GFM) developed for the orthotropic case, Eq. 
(12), to the displacement data at each frequency for the homogeneous and  flawed wooden plates when the driver in 
the lower left is excited.  The resulting generalized force values are shown color coded from blue to red. The operator 
defined in Eq. (12) has been determined inserting the values for Dx/ρh, Dxy/ρh, and Dy/ρh that were obtained by 
applying the inversion operator to the displacement data. The highlight seen in each figure in the lower left is due to 
the presence of the shaker. The inclusion located in the upper left of the flawed wooden plate can be clearly seen at 
both frequencies. 
 
 
Adaptive Algorithms 
 

We saw earlier in the case of the wood slab that even though the orthotropic inversion 
operators successfully detected the internal flaw the stiffness parameters obtained through the 
inversion were somewhat different from those used in the finite element simulation. This was not 
unexpected in that the thin plate equations upon which the flexural wave inversion operator was 
based begin to fail at the frequencies used in the study.  Further, the Generalized Force method 
began to fail as well. In particular, when we inserted the known (i.e. those used in the numerical 
calculations) values for Dx/ρh, Dxy/ρh, and Dy/ρh into Eq. (9) and applied the GFM algorithm to 
the numerical displacement data, as was seen in Fig. 20, the algorithm was very effective at 
detecting and locating the internal fault at 5 kHz. But the results at the higher frequency were 
considerably worse.   
 
Adaptive GFM by Prior Inversion 
 

In addressing this problem, we conceived of a new “adaptive” approach which could 
mitigate the effect of poorly known or even unknown equations of motion. The approach uses 
the flexural wave inversion and GFM operators sequentially in the following manner. In place of 
inputting the known values for the D’s, we subsequently used the values produced by the flexural 
wave inversions and then applied the GFM algorithm; this result is shown in Fig. 21.  Notice that 
the results at 10 kHz are no longer degraded. In fact, even the already good results at 5 kHz are 
now improved.  Apparently, differences associated with the onset of failure of the thin plate 
approximation have been in a sense “corrected” in an adaptive sense by the inversion choosing 
coefficients in the wave equation (Eq. (4)) which more correctly describe the dynamics at that 
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particular frequency. In fact, we have been developing a more generalized adaptive inversion 
algorithm which works in this way.  
 

In a second approach, we developed an algorithmic method which can potentially be 
trained for any surface, medium, or structure and does not rely on any a priori knowledge of the 
equations of motion.  In this approach, we define a set of equations each with a specific operator 
and associated unknown coefficients, and set these equations equal to the displacements.  As 
they appear, they resemble a set of homogeneous equations of motion with arbitrary coefficients.  
The displacements and their corresponding derivatives must be determined with a sufficient 
number of independent inputs such that the coefficients for each of the equations in the set can 
be solved for in a linearly independent fashion.  We demonstrated that the one equation out of 
the entire set which is the most “appropriate” model is that whose coefficients have a minimum 
normalized variance within a known region of homogeneity.  After having determined these 
“trained” coefficients, they may be utilized in the Generalized Force Mapping (GFM) technique. 
As the algorithm is calculated elsewhere within a medium or on a structure, if the material 
parameters are constant and/or there are no flaws, inclusions, or actuators, a minimized local 
residual will arise from the equation.  In the event that the material parameters fluctuate or if 
there are any flaws, inclusions or actuators, a distinct and quantitatively different residual will 
result.  The principle is identical to that which was used previously for plates, however here we 
have developed a corresponding generalized equation with arbitrary coefficients which can 
potentially adapt to any structure or situation.  The coefficients are solved for using the 
Conjugate Gradient Least Squares (CGLS) algorithm, which is particularly efficient in the 
solution of ill-conditioned systems of equations or noisy data.  It should be mentioned that the 
coefficients determined from this generalized training procedure may or may not be directly 
correlated with the concept of material parameters such as stiffness or flexural rigidity due to 
issues such as thickness, boundary condition effects, depth profiles of flaws, porosity, locally 
heterogeneous materials such as amorphous media, etc.  In particular cases, however, they will 
identically represent such physical quantities. 
 
 
The Fundamental Concept – Adaptive Coefficients 
 

We begin by defining an equation based on an arbitrary set of spatial derivatives 
operating on known displacements with unknown coefficients and set this equation equal to the 
displacements as  
 ( ) ( )( ) ( )ωωωω ,,, 2 rururM rrrrr

=⋅L . (10) 
In this expression, the vector ),( ωrM r  represents the coefficients while the expression 

( )( )ω,ru rrL  represents the operator providing the specified set of spatial derivatives on the data, 
rr  is the position vector and ω  the radial frequency of dynamic excitation.  Both vectors are of 
identical, yet arbitrary length.  As it appears, it resembles a generalized homogeneous equation 
of motion with unknown coefficients, where ),( ωrM r  represents a parameter divided by the 
density, and possibly thickness.  These components are then provided using a sufficient number 
of inputs such that the coefficients can be solved for, thereby “training” the algorithm to develop 
an appropriate “characteristic equation of motion” i.e.   
 ( ) ( )( ) ( )ωωωω ,,, 2 rururM rrrrr -1L⋅= . (11) 
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When the coefficients are determined by training the algorithm on a region of a structure where 
there are no faults, they are then considered to be independent of position.  As the algorithm is 
calculated elsewhere on the structure utilizing these same coefficients, a non-zero value labeled 
as ),( ωrGm

r  will arise from the equation where a local force or a fault is present, or if the 
material parameters fluctuate.  The principle is identical to that underlying the GFM algorithm 
described above; however in this new approach, we have developed a corresponding generalized 
equation with unknown coefficients which can adapt to any structure or situation.  The resulting 
cases may be represented as 

 ( )( ) ( )
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=−⋅
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The variational form of Eqs. (11) and (12) may also be obtained as previously presented, and 
initial results indicate that this representation, once again, tends to reduce the effects of noise in 
the process of obtaining spatial derivatives from measured data.  Additionally, the system may be 
overspecified in the solution of Eq. (10) for the unknown coefficients, ),( ωrM r  and in this 
context, the CGLS Algorithm is utilized, since it has been shown to be useful in the solution of 
ill-conditioned systems of equations or noise contaminated data.  As mentioned above, the 
coefficients determined from this generalized training procedure may or may not be directly 
correlated with the concept of material parameters such as stiffness or flexural rigidity.  In 
particular cases, however, they will identically represent such physical quantities. 
 
 
The Training Criteria  
 

For a region of known homogeneity, HΓ , the coefficients associated with the most 
appropriate solution will have a minimum variance normalized by the mean square value.  
Explicitly, we define the mean value within the homogeneous region for each coefficient  
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We define the variance within this same homogeneous region as the mean square value about the 
mean which can be represented as 
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is a minimum is the best fit for the “optimized” equation of motion.  Once these coefficients, 
)(min ωM , have been found, they are assumed to be spatially independent, and can be 

implemented in the GFM algorithm as shown above in Eq. (12). 
 

Below we show examples of such “test” equations of motion with arbitrary coefficients, 
restricting ourselves to a two-dimensional domain. 
 

Consider the following set of equations: 
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The first equation (Eq. (16)) is a two-dimensional Laplacian representing a plane shear 
wave propagating in the x-y plane.  In this instance, the coefficient, A1,1, would represent the 
shear modulus divided by the density μ/ρ.  The second equation (Eq. (17)) is also based on the 
same two-dimensional Laplacian, yet is allowed to have independent coefficients for each 
derivative, A1,2 and A2,2, respectively; therefore we may label this equation as an “anisotropic 
shear” equation.  Equation. (18) is similar to Eq. (16); however it has an additional term 
representing the partial derivatives with respect to x and y, while it has one coefficient, A1,3.  
Equation (19) is similar to Eq. (18); however it has three coefficients, one for each derivative, 
A1,4, A2,4 and A 3,4, respectively.  Equation (20) is the fourth order plate equation wherein the 
single coefficient, A1,5, represents the flexural rigidity divided by the density and the plate 
thickness such as D/ρh.  Equation. (21) is also a fourth order plate equation; however this 
representation is appropriate for thin, orthotropic plates, wherein A1,6=Dx/ρh, A2,6=(Dxy/ρh) and 
A3,6=Dy/ρh, respectively.  
 

Initial studies utilizing earlier data demonstrate that this algorithm is robust in the 
presence of noise and should be adaptable to many situations in fault detection and material 
parameter variation.  In particular, we used three existing data sets for proof of concept: interior 
displacements maps on agar tissue phantoms taken with magnetic resonance elastography and 
surface displacement maps on steel plates and on wooden slabs generated numerically.  In this 
study we used three of the above model equations namely the isotropic shear, isotropic plate, and 
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orthotropic plate equations. Figures 22-24 show how the adaptive algorithm correctly selects the 
correct equation of motion for each case, where the correct equation is the one having the least 
variance (indicated by the red box).  
 

 
 
Figure 22.  Adaptive algorithm chooses correct shear wave equation upon locally sampling 2-D slice of internal 
displacement map measured in Agar using magnetic resonance elastography. 
 
 
 

 
 
Figure 23.  Adaptive algorithm chooses correct isotropic plate wave equation upon locally sampling surface 
displacement map computed by finite element model.  
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Figure 24.  Adaptive algorithm chooses correct orthotropic plate wave equation upon locally sampling surface 
displacement map computed by finite element model.  
 
 
 
Modern Classifiers 
 

We also explored albeit briefly the potential for exploiting modern identification (ID) 
algorithms that use feature spaces derived from the displacement maps or from the spatial images 
derived from the previously described algorithms.  The Physical Acoustics Branch has extensive 
experience in applying such ID algorithms in our on-going work10-14 on underwater mine and 
UXO identification.  These algorithms include hidden Markov models (HMM), relevance vector 
machines (RVM), and kernel matching pursuits (KMP).  We expected that application of these 
algorithms as well as fusion of their modalities might provide both improved performance for 
fault detection and material parameter determination as well as determination of depth profiles of 
faults or material parameter fluctuations. Given the larger efforts we executed on what we 
perceived to be the more promising aspects of our SEED effort, we explored only some simple 
Fourier-transform derived features from the plate data. This simple effort was not successful.  
However, we continue to believe there is some potential in these techniques, but their merits will 
have to be explored in a future effort.     
 
 
Plaster Dome Ceiling 
 

Another area we explored involved plaster domed ceilings. In the SEED study, we used a 
simulated data base of surface vibration generated using an advanced structural acoustic finite 
element-based code.  In particular, we explored application of the speaker-based technique to 
what we consider to be a generic domed ceiling – a common structure found in historic buildings 
and residences - in which a plaster layer is attached to, and takes the shape of, a backing structure 
considered to be relatively rigid such as brick or mortar. 
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Ceiling Structure 
 

The ceiling structure (Fig. 25a) is modeled as a three-dimensional thin shell enclosing a 
volume of air. The geometry of the shell is that of half an ellipsoid with radii along x, y, and z 
directions given by 4.2164 m, 4.2164 m, and 1.9304 m, respectively, with a uniform thickness t 
of 0.0254 m. The somewhat shallow 3-D elliptical shape is a common dome geometry since a 
13-20 % rise-to-diameter ratio guarantees virtually no bending moments. The shell is considered 
made of plaster which is modeled as a linear visco-elastic material having density ρ of 1444 
kg/m3, Young's modulus E of 7 GPa, Poisson's ratio σ of 0.2 and uniform damping of 2%. The 
air inside has density 1.25 Kg/m3 and speed of sound 320m/s.  The ceiling base (where a real 
ceiling would meet a supporting wall) and the outer surface (where it would meet and attach to 
the mortar or brick  foundation) are considered rigidly fixed, and the system is subjected to 
acoustic excitation from a point source located 0.5 m below the center of the base of the 
ellipsoidal volume (Fig. 25b). 
 
 
 

 
 
Figure 25.  (a) the geometry of the elliptical ceiling and location of the acoustic source (viewed from beneath the 
ceiling); (b) the boundary conditions assumed in the finite element calculation; (c) the mesh used in conjunction with 
the hp-finite element code (viewed from above the ceiling). 
 
 
 
Numerical Code 
 

The coupled structural acoustic response is computed using the parallel hp-version finite 
element code STARS3D (Dey et. al.27, Dey and Datta24 ) which utilizes high-order basis 
functions to achieve accurate results. This is necessary since in the frequency regime studied 
here (100 Hz to 400 Hz), structural wavenumber-thickness products reach values as high as ~ 90.  
For models with fixed low-order h-approximations, one must use a spatial mesh with enough 
refinement to satisfy the requirement of a certain number of elements per wavelength.  We use a 
p-version approach where the dispersion error can be controlled by increasing the polynomial 
degree of approximation (p) for a fixed spatial mesh refinement (h). Accordingly, we use a 
spatial mesh (Fig. 25c) that approximates the curved shell-geometry well and then execute a p-
convergence study to determine the proper polynomial degree of approximation (p) to use with 
the mesh at hand.  For the present model, a p-convergence analysis indicated numerical 
converged solutions at cubic (p = 3) approximations.  The numerical model is solved at 100 Hz, 
200 Hz, 300 Hz, and 400 Hz to determine the complex-valued three-dimensional displacement 
field on the surface of the ceiling in contact with the air inside. 
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Ceiling Conditions 
 

Three ceiling conditions are modeled:  (1) Pristine Ceiling:  In this model, depicted in 
Fig. 25b, the homogeneous ceiling is considered rigidly attached to the backing throughout the 
outer boundary. This implies no motion along the portions marked ‘fixed’.  (2) Partial 
detachment:  In this model, a portion of the outer boundary of the ceiling is fully detached from 
the rigid backing and the boundary condition is considered to be free.  The shape and location of 
this free patch, shown as the shaded area in Fig. 26a, resulted from the desire to have both a non-
axisymmetric defect shape and the ability to derive it based on the geometric model and mesh 
already used for the homogeneous ceiling finite element model. To achieve this in a 
straightforward manner we isolated a circular portion of the homogeneous mesh and selected one 
quarter of it to be the defect patch region.  Fig. 26b illustrates the boundary condition for this 
case which implies free motion of that portion of the boundary marked ‘free’.  (3) Embedded 
deconsolidation: In this model, depicted in Fig. 26c, we consider a small pocket of heavy fluid 
with the same shape and location as that of the detached segment.  The thickness of the pocket, 
whose center is located midway through the plaster layer, is one third of the total ceiling 
thickness.  The fluid defect, with density 1444 kg/m3 and wave-speed 1175 m/s (compressibility 
= 2 GPa), is taken to represent plaster deconsolidation at least in a simple sense. 
 
 
 

 
 
Figure 26.  (a) the geometry of the defect (plan view from above the ceiling). The insert shows a circular flaw having 
the same area as the pie-shaped flaw; (b) the boundary conditions for the ceiling with detached defect; (c) the 
boundary conditions for the ceiling with deconsolidated defect.  
 
 
 
Analysis & Results 
 

In order to establish a response baseline, we calculate the surface displacement level for 
the case of an infinite flat plaster plate of thickness t under the action of an applied static 
pressure.  For pressure P the displacement, W, would be given by  

 
E

PtW )1(~
2σσ −−−  (22) 

The finite element-based numerical simulation has modeled a pressure of 1 Pa at the source point 
(i.e. at a position 0.5 m below the plane at which the ceiling begins) which with spherical 
spreading would become (2.43)-1 Pa at a point at the plaster surface directly above the source.  
For this pressure, E = 7 GPa, and t = 2.54 cm, using Eq. (22) we obtain W ~ 0.8 × 10-12 m.   
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With this base displacement level established, we now examine the normal displacement 

maps produced from the dynamic numerical simulation for the unflawed elliptical ceiling (Fig. 
27). We consider only the normal displacements since in an actual experimental study the typical 
laser Doppler vibrometer would measure only this normal vibration component.  As can be seen, 
at all four frequencies studied, the numerical computations predict somewhat complicated, nearly 
circularly symmetric response patterns.  

 
 
 

 
 
Figure 27.  Normal displacement levels for the unflawed ceiling calculated with the STARS3D code for four 
frequencies (displayed on the exposed surface of the ceiling). 
 
 
 

We find that these circularly symmetric frequency dependent response patterns (Fig. 27) 
are in fact what one would expect for the pressure interference patterns produced and determined 
by reflections from the elliptical ceiling surface and the incident spherical wave. Further, the 
azimuthally dependent superposed weaker patterns are related to elastic wave effects in the 
plaster layer.  To test this reasoning, we also used the finite element structural acoustic code to 
compute the pressure on the same elliptical surface for the case in which the plaster itself is rigid, 
and these are shown in Fig. 28.  The computed pressure patterns are almost identical to those 
shown in Fig. 27 for the unflawed ceiling displacements; in addition, the weaker azimuthally 
dependent response is now missing.  Further, we find that normalizing the displacement levels 
shown in Fig. 27 by the pressure levels in Fig. 28 produces average normalized responses over 
the ceiling very close to 3 × 10-12 m/Pa which is the same value obtained for W/P = t(1 - σ - σ2)/E 
from Eq. (22) using our specific ceiling parameters. These facts support our contention that the 
prominent ceiling response patterns are related to acoustic interference and focusing effects 
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determined by the ceiling geometry while the much weaker structure is associated with elastic 
wave propagation and modal effects in the plaster layer.   
 
 
 

 
 
Figure 28.  Surface pressure levels for a perfectly rigid elliptical ceiling calculated with the STARS3D code for four 
frequencies (displayed on the exposed surface of the ceiling). 
 
 
 

This is in contrast to the case in which shakers (See Refs. 1,3) are applied to the structure 
locally wherein elastic waves propagating in the plaster layer and modal responses are the cause 
of the observed frequency and spatially dependent displacement response functions. As is well 
illustrated here, in using an air-borne acoustic wave to excite the ceiling, not surprisingly the 
“architectural acoustics” will to a large extent determine the effective spatial distribution of the 
pressure applied to the ceiling, and one must take these effects into account when attempting to 
detect defects based on local variations in the acoustically forced displacement. Of course, these 
patterns would be affected by both additional returns in an actual room enclosed by walls and by 
changes in the position of the source. These pressure interference effects could be problematic in 
that they can serve to confuse attempts to detect and localize a defect by direct observation of the 
abrupt increase in displacement level associated with a mobile flaw.   
 
 
Detached Defect  
 

Before reviewing the numerically simulated dynamic response data associated with these 
flaws, we estimate the displacement response one would expect for acoustically-forced detached 
layers and how this might depend on defect size. This is of interest since defect displacement 
amplitudes sufficiently high compared to the levels produced on the non-flawed areas could be 
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detected and localized simply by direct observation of the displacement maps themselves without 
further need of post-processing.  
 

We are able to determine this in an approximate sense using available expressions in the 
literature for the deflection under static loading of simple geometries obeying ideal, but we think 
relevant, boundary conditions.  In particular, we consider a circular detached plate segment of 
radius a in an otherwise unflawed flat plaster plate of uniform thickness, t, under the action of a 
uniform static pressure, P, and for fixed boundary conditions over the circular edge of the defect.  
For this case, the center displacement, WC, of the defect is given by Young28 as  

 
D

PaWC 64
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where D is the flexural rigidity given by 
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For the above case, the ratio of the defect center displacement to the plaster layer 
displacement away from the defect is then given from Eqs. (22)-(23) as 
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 (25) 
We plot this expression as a function of a for three different plaster thicknesses in Fig. 29.  In 
order that the defect displacement be clearly pronounced above any spatial structure in the 
plaster layer displacement maps (such as seen in Fig. 27), we require the ratio WC / W to be large, 
say ≥ 4.  Equation. (25) in turn requires that  

 2≥
t
a . (26) 

The minimum directly visible 
defect size defined by Eq. (26) is then 
seen to be directly proportional to the 
plaster thickness, t.  For our 2.5 cm 
thick plaster ceiling, Eq. (26) implies 
that defect sizes (i.e. 2a) of about 10 
cm or greater should be directly 
visible in the scanned displacement 
data. The corollary is that much 
smaller defects (« 10 cm’s) will not 
stand out against the background 
displacement, and post processing 
methods such as flexural inversion 
(Bucaro, et. al.4) will be required for 
their detection.  The analysis so far 
pertains to defect size requirements 
necessary for sufficient contrast 
between the background ceiling 

 

 
 
Figure 29.  The ratio of detached flaw displacement to that of the 
healthy ceiling versus the circular flaw radius computed from the 
static expression of Eq. (25) for three plaster thicknesses. 



56 

displacements and those associated with the defect. We will discuss in the final section minimum 
displacement levels required for detection by a typical SLDV system. 
 

The above argument is based on a static response analysis expected to be sufficient at 
frequencies well below the first mechanical resonance of the defect. If, however, the dynamic 
acoustic excitation excites a defect resonance, levels higher than those predicted above could be 
experienced. One can estimate the fundamental resonance frequency, fR, of the disk-shaped 
defect using a lumped-mass approximation wherein the spring constant, k, would be given as 
Pπa2/WC and the mass, m, as πρta2.  Then with the help of Eq. (23) we have 
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We plot this expression as a function 
of a in Fig. 30 for two plaster layer 
thicknesses.  As can be seen, for the 
plaster thickness used in the 
simulation (t = 0.0254m), defect 
sizes with diameters of about 0.5 m 
would resonate within our current 
band and thus have higher 
displacement levels than predicted 
statically. However, relying on the 
use of resonant excitation to lower 
the minimum observable defect size 
(~10 cm for t = 0.0254m) predicted 
by Eq. (26) would  require very high 
frequencies as can be seen from Eq. 
(27) which gives fR > 8.4 kHz for 2a 
< 10 cm.  We will discuss these 
resonance frequency estimates 
further in the discussion of the 
dynamic response. 

 
For each of the four frequencies, we show in Fig. 31 the numerically computed dynamic 

displacement maps for the detached ceiling resulting from the point source excitation.  We point 
out that displays using the same scale factor as in Fig. 27 (although not shown here) show almost 
identical interference patterns away from the defect region as expected.  As can be seen in Fig. 
31, the defect stands out clearly, i.e. displacements over the defect are much larger than those 
over the healthy plaster, and the normal plaster displacements appear as almost black on the 
linear scale over which these are displayed. Although the defect shape used in the finite element 
computations is not circular but quasi-pie-shaped (chosen for convenience to be consistent with 
the grid structure), we note that its area would be approximately that of a flat circular disc with 
radius 25 cm (see the insert in Fig. 26a).  For the latter, such a defect size has a/t = 10 which 
easily meets the requirement specified in Eq. (26) so that we should expect the displacement 
levels associated with the defect to dominate the spatial maps as indeed they do (Fig. 31).  Using 
Fig. 27 to estimate the healthy plaster displacement near the flaw location, we find the contrast 

 

 
 
Figure 30.  The resonance frequency versus circular flaw radius 
computed using Eq. (27) based on a lumped parameter model for 
two plaster thicknesses. 
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ratio to be between 1500 and 1800 over our frequency range in agreement with Eq. (25) which 
predicts a ratio of 2000.  We also point out that for this circular disc, the displacement predicted 
by the static expression (Eq. (23) is 6 × 10-9 m for a pressure of 1Pa. This compares well with the 
dynamic displacement of 4.3 × 10-9 m at 100 Hz if we note from Fig. 28 that the dynamic 
pressure at the flaw is about 1 Pa.  
 

 
Figure 31.  Normal displacement levels for the flawed ceiling (detached segment) calculated with the STARS3D code 
for four frequencies (displayed on the exposed surface of the ceiling).  
 
 
 

In Table 3 we list the total normal force (real part) acting on the flaw as determined from 
integration of the pressures (shown in Fig. 28) over the area of the flaw.  We then normalize the 
maximum detached flaw displacements (more clearly seen in the expanded display in Fig. 32a) 
by this force level and list these ratios in Table 3. As can be seen in the table, for the three lower 
frequencies these force-normalized displacement levels only increase weakly with frequency.  
However, as can be seen in column (d), the force-normalized response at 400 Hz is an order of 
magnitude higher.  This would suggest that we are beginning to approach a resonance frequency.  
We say “suggest” because the actual response of the defect would not be simply proportional to 
the total force but would involve the spatial dependence of the force over the defect in some 
manner. Nonetheless, earlier using Eq. (27) we had estimated the fundamental resonance 
frequency of the defect as fR = 336 Hz (with a = 25 cm, the radius of a disk whose area would be 
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approximately that of our pie-shaped defect). This is seen to be consistent with the conjecture 
that at 400 Hz we are near the first resonance of the detached segment.  For much larger defects, 
our band would be well above fR; and unless higher order resonances were excited, the resulting 
displacement levels would be greatly reduced from the levels predicted below resonance.  
 
 

Table 3.  Dynamic Displacements, Total Force Acting on Flaw, and Wavelengths 
 (a) (b) (c) (d) (e) (f) 

Frequency 
(Hz) 

Dynamic 
Fluid Flaw 

Displacement 

Dynamic 
Detached 

Flaw 
Displacement 

Total 
Force 

On Flaw

Force-
Normalized 

Displacement 
(b)/(c) 

λ 
Flexural 

λ 
Acoustic

 (m × 10-10) (m × 10-9) (N) (m × 10-9/N) (m) (m) 
100 1 4.3 0.2 22 1.8 3.44 
200 1.2 0.48 0.02 24 1.27 1.72 
300 2.2 -3.2 -0.1 32 1.04 1.14 
400 110 -90 -0.85 106 0.9 0.86 

 
 

Before leaving detached defects, we point out that oftentimes a plaster wall or ceiling is 
formed in three or more layers. For example, in many historic structures built in the latter part of 
the 19th century three plaster layers were used consisting of the base or scratch-coat layer (also 
called Trullisatio), the middle or brown coat layer (also known as Arriccio), and the finish or 
white coat layer (also called Intonacco).  By simple extension of the analysis leading up to Eq. 
(25), when the detachment involves delamination between two of these layers, one can show that 
an appropriate modification of Eq. (25) would be 
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where ti is to be interpreted as the distance between the outer plaster surface and the 
delamination and we have assumed that the elastic parameters and thicknesses of the layers are 
the same.  Since ti is by definition less than t, smaller delaminated sections can be visualized 
directly. For example, for delamination of the innermost or outermost layers the discernable 
defect size shrinks by factors of 2.3 and 1.4, respectively.  
 
 
Deconsolidation Defect 
 

Next, we consider the second defect type, viz. plaster deconsolidation here modeled as a 
heavy fluid pocket with a somewhat smaller compressibility than the consolidated plaster. The 
dynamic displacement maps calculated with the finite element code are shown in Fig. 32b in the 
area around the flaw.  The displacement levels associated with the deconsolidated segment are 
again seen to be much larger than those associated with the unflawed regions of the ceiling 
although somewhat smaller than for the detached case. Thus this defect can also be detected and 
localized merely by observing the displacement map itself. 
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As can be seen in Fig. 32b, the surface response for the fluid defect case oscillates 
spatially as one goes over the defect. This is in contrast to what we observed for the detached 
layer where the spatial response pattern fell off monotonically from the center of the flaw (Fig. 
32a).  Also, we show in the next section the spatial wavenumber spectra obtained by application 
of our newly developed transform.  Although the origin of this effect is unclear at the present 
time, we point out that this feature may provide one the ability to distinguish between detached 
segments and deconsolidated defects, and this is currently under further investigation.   
 
 
 

 
 
Figure 32.  Normal displacement levels for the flawed ceiling in an area around the flaw calculated with the STARS3D 
code for four frequencies (displayed on the exposed surface of the ceiling): (a) detached flaw; (b) deconsolidated 
flaw. 

 
 
 
One explanation we considered for this spatial variation of the surface displacement 

across the deconsolidated pocket is the following. As shown in Table 3, the flexural wavelength 
λflex in the 2.54 cm plaster plate is 0.9 m at 400 Hz.  Beneath the deconsolidated segment, the 
plaster layer thickness is reduced by a factor of three; and since λflex varies as t½ , it becomes ~ 
0.5 m in the lower plaster layer. The defected segment is now of order λflex on a side, and this 
could result in a pseudo standing wave spatial modulation.  However, closer examination of Fig. 
32b indicates much larger wavenumbers (smaller wavelengths) associated with the 
displacements beneath the defect than expected for the flexural wavenumber at these 
frequencies. This mismatch would seem to indicate that the effect is tied more to the response of 
the fluid layer itself than the plaster layer above it.  
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Findings from Ceiling Study 
 

(1) We have demonstrated that even relatively small defects result in large displacement 
levels which stand out against those of the healthy plaster. But can those displacement levels be 
detected by a typical laser vibrometer?  We find that indeed even away from defect resonances, 
practical levels of speaker excitation produce easily measured defect surface vibration. For 
example, scaling our finite element-based simulations predicts that a 74 dB SPL speaker source 
(0.1Pa) located ~ 2.4 m beneath the ceiling at 300 Hz produces a displacement on the order of 
4.3 × 10-10 m (8 × 10-7 m/s velocity) beneath a detached pie-shaped segment of radius 0.5 m and 
area roughly 0.2m2.  Commercially available laser vibrometers (e.g. the Polytec PSV 400) have 
minimum detectable levels < 5 × 10-12 m/√Hz in this frequency range.  Over a 1 Hz bandwidth, 
this corresponds to a minimum measurable displacement of < 5 × 10-12 m which is about a factor 
of 100 below the predicted defect displacement levels mentioned above.  Recognizing that the 
defect displacement levels are proportional to the square of the defect area (see Eq. (23)) implies 
that defects as small as 0.15 m (2a for the circular defect) should have displacement levels which 
are detectable with such a system.  Increasing the source level to 100 dB SPL would allow 0.07 
m flaws to be detected at 300 Hz.  Also, since the Doppler vibrometer measures velocity which 
is ω × displacement, one could achieve still improved performance by increasing the frequency.  
 

These minimum size estimates have assumed a plaster layer thickness of 0.0254 m which 
is fairly common. Since detachment displacements are proportional to t-3 (see Eqs. (23) and 
(24)), even slightly thinner detached layers would have much higher displacements.  For 
example, for a 25 % thickness reduction, the detachment displacement levels increase by a factor 
of 2.4.  Finally, we point out that if the delamination happens between the first and second or 
second and third layers, significantly smaller detachment sizes should have sufficient contrast 
and also be detectable (see Eq. (28)).  
 

(2) Unlike the use of locally applied shaker excitation, the architectural acoustics of the 
room (walls and ceilings) must be taken into account. On the positive side, however, the plane-
like waves from the speaker excite far fewer elastic excitations and modal responses in the 
plaster ceiling layer compared to that generated by the high spatial wavenumbers of the locally 
applied force of the shaker.  
 

(3) For both the defect types and size simulated here (~ 0.5 m pie-shaped segment of 
detachment from the supporting structure and plaster deconsolidation),  the displacement levels 
are considerably higher than those of the healthy plaster layer so that these flaws should be 
detectable by mere observation of the vibration maps.  
 

(4) In general, the directly observable (sufficiently contrasted) minimum defect size is 
found to be less than 2 times the plaster layer thickness. For a typical plaster ceiling of 2.54 cm 
thickness, detachment segments with diameters (circular flaw) or radii (pie-shaped flaw) 
somewhat smaller than 10 cm should be sufficiently contrasted and thus directly observable. 
Much smaller sizes should nevertheless be accessible by post-processing of the displacement 
maps using for example successfully reported inversion operators (Bucaro, et. al.4) or by 
increasing the acoustic frequency.  For delamination in ceilings comprised of several layers, and 
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probably for an internal pocket of deconsolidated plaster as well, these directly observable defect 
sizes are reduced considerably. 
 

(5) In the frequency range studied here (100 Hz to 400 Hz), the spatial structure in the 
displacement maps beneath the defect may provide a wavenumber-based feature which could 
separate plaster detachment from the other types of defects such as deconsolidation.  
 
 
Novel Spatial Transforms for Arbitrarily-Shaped Surfaces 
 

Most of the tools (both standard as well as specialized) for understanding the relations 
between sound, elastic vibration, and structural detail exploit knowledge about wavenumber 
space (spatial Fourier analysis) and the extrapolation of wavefields from one surface to the 
other5.   
 

Up to now, the application of Fourier decomposition and analysis and the powerful 
techniques based upon them have been restricted to separable geometries (planes, spheres, 
cylinders, etc.).  This is primarily because the Fourier kernels (and their corresponding basis 
functions) for the spatial transforms of these simple geometries provide a direct and physical 
interpretation of the vibrational behavior.  For non-separable geometries, however, such a direct 
interpretation has not been available. 
 

In the past, efforts to adapt simple Fourier decompositions to accommodate more 
complex structures have involved rather ad hoc remedies.  These include, for example, the 
approximation of complex, curved structures with locally planar, piecewise continuous transform 
“elements” (or plates), and the axial “weighting” of the radius within a cylindrical transform as 
an estimation for the transforms along conical and ellipsoidal structures.  Although these 
representations seemed logical and provided particular feature spaces, their physical 
interpretations were left to speculation and they did not provide a direct analysis and 
interpretation of the vibrational fields in a conformal wavenumber spectrum. 
 

We have now developed a powerful new method17 which enables two-dimensional 
spatial Fourier decompositions on parameterized C1 surfaces.  This is an extension of our 
previous work in Waveguide Constrained Magnetic Resonance Elastography29, wherein we 
performed dispersion analysis along particular fiber pathways within a tapered waveguide.  That 
study was able to extract spatially dependent velocities of propagation even though the material 
comprising the structure did not vary significantly throughout.  We have now extended this 
development to surfaces. 
 

In Ref. (17) we give the detailed theoretical development of this approach from 
fundamental principles using differential geometry and demonstrate how the Fourier transform 
representations of some simple geometries can be recovered.  As a test case, we have also 
developed the particular form of this generalized transform applicable to a conical surface, and 
we analyzed the vibration of a point driven, fluid loaded conical structure whose displacements 
and pressures were calculated using the finite element method.   
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This new, general transform capability can be applied directly to our fault detection and 
localization method as it allows us to analyze dispersion behavior on a surface or structure 
irrespective of its shape. This leads to an important augmentation of our ω  - k mapping5 
technique (although we have not yet applied it here) in which local differences in the dispersion 
curves from those observed or expected in unflawed structures indicate variations in wave types 
or in their speeds which are directly related to material parameter variations associated with the 
development of flaws.  We also anticipate that this new transform approach will lead to 
heretofore unexploited spectral features for classification and vibration analysis.  In this regard, 
we applied this new transform to the spatial displacement maps associated with the two flaw 
types studied in the elliptical dome plaster ceiling study.  
 

We used this new transform machinery to obtain the kx,ky wavenumber spectra associated 
with the two flaw types in our elliptically-shaped ceiling having the displacement x,y maps 
shown in Fig. 32 at the four frequencies.  This was accomplished by taking the general 
expression for the forward conformal transform from Ref. 17 and expressing it in ellipsoidal 
coordinates.  Over the patch, we defined the wavenumbers as kφ (φ being in the circumferential 
direction) and kθ (θ being in the vertical direction, i.e. top to bottom along the ellipsoid).  We 
also defined kφ as being (2 × n × π)/(2 × π × c × sin(θ)), c the height of the ellipsoid, and kθ as 
being (2× m × π)/(20 × a × dθ), a the radius of the base of the ellipsoid (being equal to b), and 20 
is the number of spatial locations along the θ direction providing the total arclength from top to 
bottom of the flaw.  Therefore, kφ varies with respect to the angle, θ, yet is pointed in the phi 
direction (around the circumference of the ellipsoid).  kθ does not vary with respect to angle but 
is pointed in the θ direction (top to bottom).  We then performed the integral transforms with 
these kernals and appropriate surface areas, and the resulting wavenumber spectra are displayed 
in Figs. 33 and 34 labeled with the indices n and m.   
 
 
 

 
 

Figure 33.  New spatial transform applied to the detached ceiling flaw. 
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Figure 34.  New spatial transform applied to the deconsolidated ceiling flaw. 
 
 
 

As can be observed, for the detached flaw, each of the transforms has only one dominant 
kφ = kθ = 0 component.  This implies that there is essentially no modal structure and the patch is 
simply moving uniformly back and forth, irrespective of frequency.   
 

For the deconsolidation, however, as can be seen in Fig. 34 there is different modal 
structure at each frequency.  For 100 Hz, the transform shows that there is only a kφ = 0 (n = 0) 
component, meaning that the mode shape is constant over the flaw with respect to the 
circumferential direction, φ, while there is a standing wave or sorts in the θ direction, with kθ 
having two wave components for m = -2, and m = +1.  For 200 Hz, again, the dominant mode in 
the φ direction is kφ = 0 (n = 0), meaning that the wave is constant with respect to φ, while kθ has 
two dominant wavenumber components for m = -2 and m = +2, representing a standing wave 
along the θ direction. For 300 Hz, the transform image is somewhat smeared around the φ 
direction, with dominant modes for kφ appearing at n = -3, 0, and +3, representing a standing 
wave in the φ direction and the modal structure can be seen in the images.  In the θ direction, 
these kφ modes can be seen to be coupled with the kθ modes of m = -2 and +2, as for the 200 Hz 
case.  For 400 Hz, there are some residual wavenumber components for kθ at the modes m = -3, -
1, and +1, +3, coupled with kφ =  0 (n = 0), while another set of modes is coupled at kθ = 0 (n = 
0) with kφ modes n = -6 and +6.  While there do not appear to be 6 complete waves within the 
displacement image around the circumference, the transform implies that the resulting field is 
composed of all of these modes.  
 

While at the present time, we have not gone further in using the spatial transforms to 
understand more clearly the dynamic response associated with the deconsolidated inclusion, 
clearly the differences in these transforms and their related features can be used to differentiate 
in a formal way between the two types of flaws.  
 
 
Laboratory Demonstration 
 

The experimental component of this program focused on application of our LDV-based 
approach to the study of a long 2” × 10” ceiling support beam in which was created an internal 
2” × 2.5” × 5/8” thick defect at its mid-plane filled with saw dust which approximated decay or 
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termite-like damage to the wood (see Fig. 35).  In addition, a similar smaller 1” × 1.25” defect 
was also included.  Of all the cases studied in the numerical component of this SEED program, 
the wood beam case represents the most challenging owing to the orthotropic nature of the 
material. In addition, although we have in the past carried out experimental structural acoustic 
work in a number of other materials, we had not done so for wood. For convenience, we used an 
available 2” × 10” untreated Douglas fir beam which is typical of what one would find at a home 
building supply store.  
 
 
 

 
 
Figure 35.  Drawing of beam with faults, shaker, and scan area locations. This view is from SLDV side. Shakers 
actually mounted on backside of beam.  
 

 
 
Broadband SLDV scans were obtained across one surface of the wooden beam (side 

opposite the shaker) providing dynamic normal velocity (derivative of displacement) fields in the 
usual manner. A photograph of the laboratory set-up is shown in Fig. 36.  In the background, one 
can see the tripod-mounted Polytech SLDV. A separate photograph of the SLDV is shown in 
Fig. 37. 
 

The structural response was measured for three cases due to point force excitation applied 
by a 1 lb-force Wilcoxon F3/F9 shaker attached sequentially at three separate locations on the 
beam as shown in Fig, 35. The shaker #1 location is ~17.0 cm from the left edge of the scan, and 
shaker #2 and #3 locations are ~1.6 cm and ~ 60 cm from the right edge of the scan, respectively. 
The shaker contains both an electromagnetic and piezoceramic element to generate force over 
the entire frequency band of interest.  One of the mounted shakers can be seen in photograph in 
Fig. 36. The force normalized measurements were conducted using a chirp waveform which 
covered a band from 200 to 10000 Hz with 1.6 Hz resolution.  The wooden experimental beam 
was loaded by two jack screw bars which pushed it up against ribbed concrete ceiling supports.  
The highly spatially sampled scans for the flawed beam consisted of 47 vertical and 209 
horizontal points, yielding a total of 9823 measurement locations.  The measurements were made 
with 4.3 mm spatial resolution over a 0.2 × 0.9 m scan area which included the two flaws.  The 
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typical signal-to-noise ratio (SNR) varies from approximately 50 dB at low frequency near the 
shaker #1 location to approximately 15 dB at the high end of the frequency band near the far end 
of the scan area away from the shaker. 
 
 
 

 
 
Figure 36.  Laboratory study of flawed wooden support beam. 
Scanning laser Doppler vibrometer shown in background. 
Dynamic shaker mounted on upper right corner of beam.  Larger 
interior flaw depicted by rectangle drawn on beam.  

 

 
 

Figure 37.  Polytec Inc. PSV-400 laser 
Doppler vibrometer scanning head. 

 

 
 
 

Three examples of the LDV scanned measurement results are shown in Fig. 38 for 431.25 
Hz, 1260.94 Hz, and 7162.50 Hz.  The displays show the magnitude of the normal surface 
response level in (meter/second)/Newton over the scanned area for each frequency.  The modal 
structure of the beam at 431.25 Hz has approximately 2 half wavelengths along the length of the 
beam (horizontal in display) and one half wavelength across the width (vertical in display).  At 
1260 Hz, ~4 half wavelengths are found in the length direction and 1 to 2 half wavelengths in the 
width direction, and the modal structure at 7162.50 Hz shows much higher mode numbers.  The 
very small dots observed in the display at 7162.50 Hz are believed to be real very local responses 
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due to the non-homogenous nature of the beam.  It should also be noted that the SNR is reduced 
at this higher frequency. 
 
 

 
 
Figure 38.  Normal surface velocity ((m/s)/N) magnitude displays at 431.25 Hz, 1260.94 Hz, and 7162.50 Hz.  The 
horizontal dimension is along the length of the flawed beam and the vertical dimension is across the width of flawed 
beam 
 
 
 

The broadband data bases were analyzed in two ways: direct observation of the 
displacement maps in search of high contrast motion and application of the orthotropic thin plate 
inversion algorithm.  First, the displacement maps were examined without any inversion to 
determine if the defect was observable by direct observation of the contrast in the spatially 
mapped displacements. As discussed by Bucaro et. al.1 and Vignola et. al.3, direct observation is 
most effective when the displacement maps are first averaged over appropriate frequency bands 
in order to remove the artifacts caused by the frequency dependent modal response structure of 
the beam itself. (See the modal patterns in Fig. 38.) When this is done, the internal defect is 
clearly visible as is shown in the maps in Fig. 39.  The lower display has been magnitude 
averaged over the entire band while the upper display over the band 7600 Hz to 8000 Hz. The 
artifacts in the upper left corner are associated with the shaker itself.  In an actual fault 
assessment exercise, the region around a shaker would automatically be ignored.  
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Figure 39.  Band averaged displacements. Lower display is average over complete band; Upper display is average 
over resonance band. The defect centered at about scan point 80 is clearly evident in both maps.   
 
 
 

We can estimate the frequency at which there would be a resonant response at the flaw by 
calculating the frequency at which there would be one half a flexural wavelength across the flaw. 
We estimate this to be at about 8 kHz where the flexural wavelength in the wood layers above 
and below the fault would be twice the flaw size, and this is in agreement with the strong flaw 
response we see at 7900 Hz in Fig. 40 below. 
 
 

 
Figure 40.  Direct displacement at 7900 Hz showing flaw. 

 
Using similar reasoning to that leading up to Eqs. (22)–(25) for an acoustically excited 

ceiling flaw, we can intuit that the contrast ratio for the displacement levels of the wood away 
from the flaw to that over the flaw for shaker excitation would be simply approximated by the 
cube of the ratio of wood thickness to flaw depth. This would predict a vibration level contrast 
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ratio of (1.6”/0.8”)3 = 8 or 18 dB. Since the red spot in Fig. 40 is 15 dB above the green level, 
this simple estimate appears to be valid.  
 

Turning to the smaller defect, we estimate the resonance frequency to be double that of 
the larger defect, i.e. ~ 16 kHz, which is well above our current measurement band. Thus we 
would not expect to be able to observe this defect by direct observation of the displacement maps 
which indeed turns out to be the case.  
 

Next, we applied the orthotropic inversion operator to the three displacement fields 
generated by the three shakers excited one at a time according to the expressions indicated in Eq. 
(8). The inversions for the three stiffness parameters Dx/ρh, Dxy/ρh, and Dy/ρh are shown in Fig. 
41 for 8609 Hz. As can be seen, where we were expecting a uniform stiffness mapping across the 
beam we instead see a significant variation. This is in contrast to the orthotropic inversions 
shown earlier in Fig. 18 for the numerical simulation of a homogeneous wooden slab. For 
example, the inversion maps for the real wood beam show fluctuations in Dy/ρh that range from 
about 2 to 2000 Pa m5kg-1 whereas for uniform Douglas fir we would have expected a constant 
value of 1100.  Also, we fail to see either flaw impression on this map.  
 

This result is under further investigation. At the current time, we do not believe the 
problem is associated with unknown measurement system issues such as noise or operation of 
the LDV.  We are exploring the possibility that these fluctuating stiffness maps are in fact correct 
and are due to the poor wood quality of our support beam.  
 
 
 

 
 
Figure 41.  Displacement (left) and filtered displacement (middle) for the three shaker positions. Orthotropic inversion 
of displacement data for (right) for Dx/ρh, Dxy/ρh, and Dy/ρh on top,  center, and bottom, respectively. 
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Conclusions 
 

The multi-pronged progress in this SEED effort detailed above represents a significant 
advance in the capability and applicability of our structural acoustics-based fault detection and 
localization approach using laser measured surface vibration. In particular: 
 

The successful numerical studies on plates of differing materials – plaster, steel, concrete, 
and wood – indicate that our approach can be effective on structures and fabrics made of various 
materials in an historic building.  

 
In the particular case of wood, our numerical studies confirm that our orthotropic 

inversion operators are valid. This, together with earlier results we had obtained experimentally 
on framed graphite-epoxy composite plates indicates that our technique can also be effective on 
more complex orthotropic and anisotropic materials and structures.  

 
Again for wood, our experimental study on a Douglas fir wooden support beam 

demonstrated the ability of direct observation of laser measured surface vibration to detect and 
locate an internal defect simulating termite damage. The inversion operator, however, produced a 
beam stiffness spatial map with large fluctuations. Further work is required to validate that these 
variations are indeed correct.  

 
The successful numerical study on thick plates with various fault depths demonstrates 

that at least up to modest thicknesses, we can detect both flaws close to the surface as well as 
much deeper defects. Heuristic post analysis can allow one to infer the defect depth, but further 
work should be done to develop algorithms that can do so directly. 

 
Two powerful advances were achieved in adaptive inversion. The first was achieved by 

operating two algorithms in sequence to overcome incomplete knowledge of the equations of 
motion for the structure. In a numerical demonstration for the case of a thick plate for which the 
thin plate equations were no longer valid, application first of the thin plate inversion operator on 
the displacement data followed by the application of the generalized force operator with the 
material parameters as determined by the inversion first inserted produced very clear maps 
showing the internal flaws.  The second approach introduces general high order equations of 
motion with unknown coefficients which are adaptively identified using the measured 
displacement data and a normalized variance test. We validated this approach using existing 
magnetic resonance elastography data on agar tissue phantoms and numerical data on isotropic 
and orthotropic plates. The next step here would be an experimental demonstration on a general 
structure.  
 

There was insufficient time available to explore the potential for modern day classifiers 
such as relevance vector machines and hidden Markov models to detect the presence of a flaw 
based on robust features present in the displacement signals. Our original plan was to carry out 
this study using the numerically generated data bases. Subsequently we realized that a superior 
way to study this time-frequency feature-based problem is using broadband displacement data. 
Given that our advanced finite element codes are frequency-based, such a study would be 
prosecuted most efficiently using experimentally generated broadband data.  
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The plaster dome ceiling study was very productive. We have provided the first (to our 

knowledge) models allowing one to predict flaw size detectability or to generalize to different 
conditions for our general surface vibration approach. We have demonstrated that even relatively 
small defects result in large displacement levels which stand out against those of the healthy 
plaster and that even away from defect resonances, practical levels of speaker excitation produce 
easily measured defect surface vibration. Defects as small as 0.07 m (2a for the circular defect) 
should have displacement levels which are detectable with commercially available laser 
vibrometers. Unlike the use of locally applied shaker excitation, when using speakers the 
architectural acoustics of the room (walls and ceilings) must be taken into account.  In the 
frequency range studied here, the spatial structure in the displacement maps beneath the defect 
may provide a wavenumber-based feature which could separate plaster detachment from the 
other types of defects such as deconsolidation.   

 
We have now developed a powerful new method which enables two-dimensional spatial 

Fourier decompositions on parameterized C1 surfaces.  This new, general transform capability 
can be applied directly to our fault detection and localization method as it allows us to analyze 
dispersion behavior on a surface or structure irrespective of its shape. This leads to an important 
augmentation of our ω  - k mapping technique in which local differences in the dispersion curves 
from those observed or expected in unflawed structures indicate variations in wave types or in 
their speeds which are directly related to material parameter variations associated with the 
development of flaws.  We also anticipate that this new transform approach will lead to 
heretofore unexploited spectral features for classification and vibration analysis.  In this regard, 
we applied this new transform to the spatial displacement maps associated with the two flaw 
types studied in the elliptical dome plaster ceiling study.  

 
In the concluding laboratory-based study for this SEED program, we successfully 

detected an interior defect (thin, small sawdust-filled cavity) in a 2” × 10” wooden ceiling 
support beam by direct observation of the laser measured surface displacement maps.  
Subsequent inversions of the displacement maps indicated large fluctuations in the beam 
stiffness properties, and these results are still under investigation.  
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