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1 Executive Summary 

Air pollutants emitted from Department of Defense (DoD) facilities can interfere with military 
activities or in some cases even threaten life and property. These emissions can contribute to local 
concerns on the military base and neighboring communities, and regional air quality problems 
can occur through long-range transport and transformation processes. In some cases, operations 
performed for the benefit of one component of the ecosystem may have adverse effects. For 
example, prescribed burnings performed on a base primarily to save the habitat of an endangered 
species may have contributed to the air quality problem in a nearby metropolitan area. Faced with 
such complex problems, DoD needs reliable tools to determine the impact of its operations on the 
environment. In particular, air quality simulation models are needed that can help determine the 
impacts of various types of emissions from military installations on air quality. Existing air 
quality models have limited reliability to respond to such needs. 

The objective of this project was to enhance current air quality models in order to simulate the air 
quality impacts of military activities. Two techniques developed earlier, adaptive grid modeling 
and direct sensitivity analysis, have the potential to improve the ability of the models to capture 
source-receptor relationships between emissions at local scales and air quality at the regional 
scale. While adaptive grid modeling can fill the gaps between local and regional scales, the direct 
sensitivity analysis allows the impacts of specific sources to be discerned from cumulative effects 
on regional air quality. 

In this study, a new air quality model that incorporates the adaptive grid and sensitivity analysis 
techniques was developed. A code review was conducted and test simulations were performed to 
verify that the new model fulfills the design requirements. August 15-18, 2000 period was 
simulated to determine the air quality impacts of the prescribed burning operation at Fort 
Benning, Georgia. The impact on Columbus metropolitan area is of particular interest. Ozone 
levels as well as their sensitivity to nitrogen oxide (NOx) and volatile organic compound (VOC) 
emissions from the fires were modeled. Emission rates from the burns were estimated from the 
fire data which include the location, time and acreage of the burns, using the First Order Fire 
Effects Model (FOFEM). Data for other emissions in the region were obtained from an ongoing 
air quality study. Several simulations were performed with air quality model that is equipped with 
the new techniques as well as the base model. The adaptive grid in the new model enabled better 
resolution of the plumes caused by prescribed burns.  The sensitivity of ozone concentrations to 
the fires was also better resolved in comparison to the brute-force method which takes the 
difference between two old-model simulations: one without and another with the fires. The 
adaptive model with direct sensitivity captured the near-source reduction and downwind increase 
in ozone concentrations due to the fires. This non-linear response of ozone, which is also 
observed in power plant plumes, was totally missed by the base model. In view of these results, it 
was concluded that the new model, enhanced by adaptive grid and sensitivity analysis techniques, 
can be used for accurate assessment of the air quality impacts of most DoD activities. 

The results from this effort are expected to directly benefit the management of prescribed burning 
at Fort Benning. Additionally, the techniques developed can be used for the general purpose of 
predicting the fate of air pollutant emissions from aviation, ship, or coastal operations. Products 
can be developed to assist site managers in responding to immediate needs as well as in planning 
future emissions that will minimize the negative impacts on local and regional air quality. This 
project was completed in FY 2002. 
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2 Introduction 

This project is about the fate of air pollutants associated with the Department of Defense (DoD) 
activities. Emissions from military installations may directly interfere with military activities such 
as training exercises, or in some cases even threaten life and property. They may jeopardize 
wildlife on the base and pose a risk to the neighboring communities. Further, through long-range 
transport and transformation processes, these emissions may contribute to regional air-quality 
problems. In some cases, operations performed for the benefit of one component of the ecosystem 
may have adverse effects on another component. For example, as will be described below, 
prescribed burnings performed on a base primarily to save the habitat of an endangered species 
may have contributed to the air quality problem in a nearby metropolitan area. Faced with such 
complex problems, DoD needs reliable tools to determine the impact of its operations on the 
environment. In particular, air quality simulation models are needed that can help determine the 
air quality impacts of emissions from military installations. 

At their current state, existing air quality models would fall short of responding to DoD needs 
such as those described above. Our objective is to improve the ability to predict the impacts of air 
pollutants emitted as a result of military operations on the surrounding environment.  The 
atmospheric and chemical modeling systems currently used by various agencies tend to focus on 
a single scale that seems to be the most relevant to a particular air pollution problem (e.g., global 
climate models or local scale accidental release models). However, the study of the impact of 
DoD facilities requires the investigation of the interaction between various scales due to the fact 
that both the location of the facilities and the lifetimes of emitted pollutants are conducive to 
long-range transport. Existing modeling systems need improvement in their representation of 
source-receptor relationships over a wide range of scales in order to predict accurately the 
ultimate fate of pollutants emitted from specific sources such as DoD facilities.  

Recently, we have developed two unique techniques that would improve current air quality 
models by filling the gaps between the scales from local to regional and by discerning the impacts 
of specific sources from cumulative effects on regional air quality. These techniques are: 
1) Adaptive grid modeling, and 2) Direct sensitivity analysis. We have developed both of these 
techniques to a level where they have been successfully applied to very relevant air quality 
problems. However, for application to DoD-related systems, a proof-of-concept was necessary to 
show that the techniques would work under the unique conditions of DoD operations. Although 
the techniques were developed with similar applications in mind, the primary objective has not 
been, for example, source apportionment at the facility level. This project aims to provide an 
early assessment of potential benefits. 

To achieve the objectives stated above, we tested the two techniques within an advanced air 
quality model, in an urban-to-local scale application, to determine the impact of the prescribed 
burning operation on the ozone levels in a downwind metropolitan area. We assessed the 
potential of these new techniques in bringing the models to the desired level of reliability. This 
application is particularly important since the metropolitan area was recently declared a non-
attainment area, and intends to get back in compliance with the national air quality standards as 
quickly as possible. There are several other sources affecting the ozone levels and it is critical to 
determine the incremental contribution of the DoD operation to develop a strategy for attainment. 

In this project, the particular focus was on prescribed burning emissions from a military 
reservation at Fort Benning, Georgia, and their impact on local and regional air quality. However, 
the techniques are general enough for application to other military operations. We could target 
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other types of emissions, for example from aviation, ship, or coastal operations at various 
locations, in this project. Once the concept is proven, the techniques can be used for the general 
purpose of predicting the fate of air pollutant emissions from various military sources. Products 
can be developed that can assist site managers in responding to immediate needs, as well as being 
able to plan future emissions that will minimize the impact on the environment. This would be 
particularly advantageous in regions where such facilities must meet local pollution standards and 
where ambient concentrations of some pollutants are already high due to contributions from other 
anthropogenic and/or natural sources. 

3 Problem Statement 

3.1 Prescribed Burnings at Fort Benning 

The reasons for prescribed burning at Fort Benning include to improve and maintain endangered 
species habitat, reduce hazardous fuels, prepare sites for seeding and planting, manage understory 
hardwoods, control disease, improve forage for grazing, enhance appearance, and improve access. 
The objective is to convert the landscape as close to its pre-settlement condition (a pine overstory 
with grasses, legumes, and other herbaceous vegetation as a ground cover) as possible. In 1994, 
Fort Benning received a Biological Opinion from the Fish and Wildlife Service stating that the 
actions on the base were likely to jeopardize the endangered red-cockaded woodpecker (RCW) 
habitat. One of the most economical means of maintaining the longleaf pine habitats is prescribed 
burning. Approximately 30,000 acres must be prescribed burned each year, during the growing 
season (March through August). This period falls within the “ozone season.” In order to restore 
the RCW habitat, longleaf seedlings are planted. Prescribed burnings continue from August 
trough October for site preparation purposes which also overlaps with the ozone season. These 
fires reduce unwanted vegetation that would compete with longleaf seedlings.  

Prescribed burning is an efficient and effective means to reduce fire fuel build-up. Heavy roughs 
can build up posing a serious threat from wildfire to lives, property, and all natural resources. A 
burning rotation of approximately 3 years is usually adequate to fire proof pine stands and reduce 
this threat. Prescribed burning helps control undesirable species which compete with pines. It also 
controls brownspot disease, which is a fungal infection that weakens and eventually kills longleaf 
seedlings. Burning increases the yield and quality of herbage, legumes, and browse from 
hardwood sprouts. Wildlife species such as deer, turkey, quail, and doves also benefit from 
prescribed burning. Prescribed burning on a regular basis also serves a military need by providing 
a safer training environment with improved access and visibility. Lastly, growing season burns 
have significantly reduced the tick population on the installation. 

Operational and safety constraints limit the burnings to an average of 300 acres per day 
(Environmental Management Division, 2000). For example, although an attempt is made to burn 
all RCW clusters during the growing season it is logistically impossible due to the number of 
clusters (75-80 annually) and scheduling conflicts with training. Currently, ignition is 
accomplished with hand crews and drip torches.  While this provides better control with respect 
to where the fire is applied and when, it is difficult to control the intensity of the fire. Natural 
firebreaks such as roads, trails, drains, and creeks dictate the size of burn areas. All these 
limitations make it necessary to continue the burnings throughout the year. In realization of the 
Columbus ozone problem, the majority of the burnings (70-75%) were shifted to the January-
April period, which is outside the “ozone season.”  
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Currently, the only external constraint on prescribed burning arises as a result of smoke 
management concerns.  Smoke complaints and the threat of litigation from smoke-related 
incidents / accidents are the primary concerns. Fort Benning follows voluntary (not mandated by 
state or federal government) smoke management guidelines in an effort to minimize the adverse 
impacts from smoke. An additional concern is the effect of prescribed burning on ozone levels in 
Columbus. Forest fires produce nitrogen oxide and hydrocarbon emissions that form ozone 
(Cheng et al., 1998; Battye and Battye, 2002; Ottmar, 2001). These pollutants may be transported 
downwind, mix with emissions from other sources and contribute to the poor air quality in urban 
areas. Sulfur dioxide and particulate matter emissions from forest fires are also of concern but, in 
general, they do not have a direct influence on the urban ozone problem. The ozone alert season 
is from 1 May through 30 September in Georgia. It is during this season that emissions from 
prescribed burning operations could affect smog levels in Columbus. In collaboration with the 
Partnership for a Smog-Free Georgia (PSG), Fort Benning is avoiding prescribed burns when 
meteorological conditions are conducive to ozone buildup. If Columbus shows a trend toward 
more days with elevated ozone levels, it will become more critical to design burning strategies 
that can adapt to changing weather parameters.  

3.2 Limitations of Current Air Quality Models 

The atmospheric and chemical modeling systems currently used by various agencies tend to focus 
on a single scale that seems to be the most relevant to a particular air pollution problem. Global 
scale models address climate issues while regional scale models are used for the tropospheric 
ozone, regional haze or acid deposition studies. Urban scale smog models are being replaced with 
urban-to-regional scale models in most places where transport from other upwind sources play an 
important role. On the local scale, models are used to deal with problems such as accidental 
releases. The domains of local scale models are limited by design; therefore, they cannot be used 
for regional scale impact studies.  

One of the most advanced urban-to-regional scale models is the Multiscale Air Quality 
Simulation Platform (MAQSIP) (Odman and Ingram, 1996). Urban-to-regional scale models are 
used in developing emission control strategies for problems such as urban and regional ozone, 
acid deposition, or regional haze which is attributed to primary (emitted) and secondary (formed 
in the atmosphere) fine particulate matter. While these models are equipped with special tools to 
treat emissions from large power plants (Karamchandani et al., 2000), they lack the ability to 
resolve emissions from relatively small area sources such as those from prescribed burnings. To 
account for such area sources, the models rely on grid resolution. Prescribed burnings are 
performed over areas as small as one square kilometer (approximately 200 acres). This scale is 
too small for typical regional applications. Therefore, emissions from prescribed fires are blended 
with emissions from many other sources within the same grid cell of regional scale models. This 
would make it impossible to conduct an impact study that would target emissions from biomass 
burnings.  

Another limitation of current air quality models is related to numerical errors involved during the 
simulations. Let us suppose that the grid cell size could be reduced to one square kilometer by 
using nested-grid techniques (Odman et al., 1997). In that case, a typical prescribed burning unit 
would cover a single grid cell. The effect of having or not having prescribed burning emissions 
from a single grid cell would be a small perturbation for air quality models. As the perturbation 
gets smaller in size, numerical errors that affect the simulation results become more important. 
The results of an impact study such as the one here would be highly uncertain if the models were 
used as is. Therefore, urban-to-regional scale models, in their current state, are not very reliable 
tools for determining the impact of prescribed burning emissions to the surrounding environment.  
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The study of the impact of biomass burning from DoD facilities requires investigation of the 
interaction between various scales due to the fact that both the location of the facilities and the 
lifetimes of emitted pollutants are conducive to long-range transport. Below, we describe a 
methodology to improve current urban-to-regional scale air quality models with two modeling 
techniques. These techniques improve representation of the transport and transformation 
processes over a wide range of scales and provide more reliable source-receptor relationships. 
The product is a more reliable tool that can predict accurately the ultimate fate of pollutants 
emitted from specific sources such as DoD facilities.  

4 Methodology 

Recently, we have developed two unique techniques that can improve the air quality models by 
filling the gaps between the scales from local to regional and by discerning the impacts of specific 
sources from cumulative effects on regional air quality. They are: 1) Adaptive grid modeling, and 
2) Direct sensitivity analysis. These techniques improve representation of the transport and 
transformation processes over a wide range of scales and provide more reliable source-receptor 
relationships. An air quality model equipped with these two techniques would be a more reliable 
tool that can predict accurately the ultimate fate of pollutants emitted from specific sources such 
as DoD facilities. In this section we describe the two techniques in detail and overview the air 
quality modeling platform. 

4.1 Adaptive Grid Modeling  

We developed an adaptive grid modeling approach to reduce the uncertainty in air quality 
predictions. By clustering the grid nodes in regions that would potentially have large errors in 
pollutant concentrations, the model is expected to generate much more accurate results than the 
traditional fixed, uniform grid counterparts. The repositioning of grid nodes is performed 
automatically through the use of a weight function that assumes large values when the curvature 
(change of slope) of the pollutant fields is large. The nodes are clustered around regions where 
the weight function bears large values, thereby increasing the resolution where the error is large. 
Since the number of nodes is fixed, refinement of grid scales in regions of interest is accompanied 
by coarsening in other regions where the weight function has smaller values. This yields a 
continuous multiscale grid where the scales change gradually. Unlike nested grids, there are no 
grid interfaces, which may introduce numerous difficulties due to the discontinuity of grid scales. 
The availability of computational resources determines the number of grid nodes that can be 
afforded in any model application. By clustering grid nodes automatically in regions of interest, 
the adaptive grid technique uses computational resources in an optimal fashion throughout the 
simulation.  

A detailed description of the technique can be found in Srivastava et al. (2000). Here we will not 
repeat that information; instead, we will try to illustrate the technique and its potential with 
relevant applications. The adaptive technique was applied to problems with increasing complexity 
and relevance to air quality modeling. First, it was applied to pure advection tests (Srivastava et 
al., 2000). In a rotating cone test, the adaptive grid solution was more accurate than the fixed 
uniform grid with the same number of grid nodes. The error in maintaining the peak of the cone 
was only 13% compared to 39% with the fixed grid: an accuracy that could only be achieved by 
using 22 times more grid nodes with a fixed uniform grid. In a second test, four cones were 
rotated to measure the performance of the algorithm in following multiple features. Once again, 
the peak accuracy was better than the fixed uniform grid alternative. The peak error increased to 
23% since the grid nodes, whose number was the same as in the previous test, were being 



 5 

clustered around four cones instead of one. Srivastava et al. (2001a) conducted a third test with 
concentric conical puffs of NOx and VOCs reacting in a rotational wind field. The parameters of 
this problem are such that, after a certain time, ozone levels drop below the background near the 
base of the conical puffs but they peak near the vertex of the cones. This feature was resolved by 
the adaptive grid solution while it was completely missed by the uniform fixed grid solution. 
When nine times more grid nodes were used, the fixed grid was finally able to reveal this feature 
but not as accurately as the adaptive grid technique. The overhead involved in adaptive grid 
computations is much smaller than the time spent in computing the chemical kinetics for these 
additional nodes. Overall, the adaptive grid algorithm is about 10 times more efficient than the 
uniform grid alternative for the same level of accuracy. 

Next, the adaptive grid technique was applied to the simulation of a power plant plume 
(Srivastava et al., 2001b). A two dimensional plume with a VOC/NOx emission ratio of 14% was 
advected with uniform winds and diffused over a background with a VOC/NOx ratio of 35. Other 
parameters were chosen to make the dispersion as realistic as possible. After about 12 hours of 
simulation, the composition of the plume was analyzed taking cross sections at various downwind 
distances. At 10 km downwind, the adaptive grid solution showed a NOx rich, but ozone deficient 
core. This feature, which is also observed in actual power plant plumes, was completely missing 
in the uniform grid solution, which artificially diffused the NOx and displayed highest ozone 
levels at the core of the plume. The adaptive grid, on the other hand, had ozone bulges developing 
near the plume edges. At a downwind distance of 30 km, these bulges continued to grow as NOx 
diffused slowly from the core to the edges (at a rate more in line with physical diffusion) and 
radicals were entrained into the plume. This plume structure started disappearing after about 80 
km. At a downwind distance of 135 km, the plume was fully matured with an ozone peak at the 
center. The peak ozone concentration was larger than one predicted by the fixed uniform grid. A 
similar evolution of the plume was observed in the fixed uniform grid solution when the number 
of grid nodes was increased by a factor of nine. However, this solution was about five times more 
expensive than the adaptive grid solution.  

Another relevant application was the multiple source test, where an imaginary city was placed at 
the center of a domain with diagonal winds (Odman et al., 2000b). The city consists of an inner 
circular source representing urban conditions and an outer circle representing suburban 
conditions.  The VOC/NOx emission ratios are 5 and 9, respectively. There are two identical point 
sources with a VOC/NOx emission ratio of 14%: one is located upwind and the other downwind 
from the city. The background has a VOC/NOx ratio of 10. Figure 2 of Section 5.b shows the 
adaptive grid at the beginning of the simulation and 12 hours later. The locations of the sources 
are clearly visible in the initial grid. Note that the grid nodes are clustered around the point 
sources and at the transitions from the background to the outer suburban circle and from the 
suburban to the urban circles. Once the simulation started, the nodes continued to cluster around 
the upwind source but moved away from the downwind source towards the upwind end of the 
city. This behavior was mostly due to a more uniform ozone field downwind of the city. 

After these and other testing of the algorithm (Odman et al., 2001; Khan et al, 2003), finally an 
adaptive grid AQM was developed (Odman et al., 2002). The model was applied to an ozone 
simulation in the Tennessee Valley (Khan and Odman 2003). Ozone results from this application 
were evaluated and showed significant improvement over those from fixed grid models, even 
those employing up to four times more grid cells. In several cases the agreement with 
observations was better compared to fixed grid models. When the reasons were investigated it 
was found that the complex source-receptor relationships, especially the long-range ones were 
much better resolved with the adaptive grid. 
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4.2 Direct Sensitivity Analysis 

Sensitivity analysis is essential in determining source-receptor relationships and designing 
emission control strategies. The traditional “brute-force” method involves running the model 
several times, each time perturbing one type of emission (e.g., NOx or VOC) from a different 
source. If the perturbation is small, the brute-force method may not yield accurate sensitivities 
due to numerical errors propagating in the model. Our group has developed a new and powerful 
direct sensitivity analysis technique to study the response of air quality to various types of 
emissions (Yang et al., 1997). Unlike the brute force approach, this technique is not limited by 
the magnitude of the perturbation and, in theory, it can be used for even infinitesimal changes in 
emissions. Therefore, the technique has the potential of improving current models to a level 
where they can be used for impact analysis of relatively small sources such as military 
installations. 

Air quality models are based on the atmospheric diffusion equation: 
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Here, sij is the sensitivity of ci to emission Ej. Using direct derivatives of Equation (1) the 
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Here, s*
ij is the semi-normalized sensitivity coefficient, Jik is the Jacobian matrix, εj is a scaling 

variable with a nominal value of 1, and δij is a binary variable (either 1 or 0). Since the 
sensitivities to different emissions can vary by many orders of magnitude, it was necessary to 
define semi-normalized sensitivity coefficients, s*

ij.  

The similarities between Equations (1) and (3) allows us to use the same or very similar 
numerical solution techniques and calculate local sensitivities to emission sources simultaneously 
along with the species concentrations. This also makes the implementation of the technique in 
any model relatively straightforward. The technique is also computationally efficient because 
several of these sensitivities (the number being limited by available core memory) can be 
calculated simultaneously with a fractional increase in CPU time. The emission sources can be 
discerned by type as point, area, mobile, or biogenic, and by composition such as SO2, NOx, or 
VOC. Also, the location of the emission source can be specified, for example, as the boundaries 
of a DoD facility (to the grid scale resolution). The technique would predict the sensitivity of air 
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quality at any desired location in the modeling domain (e.g., sensitivity of ozone concentrations at 
a downwind urban center) to a fractional change in the emissions from the source of interest.  

The technique has been evaluated in an application to the Southern California where the 
sensitivities of ozone concentrations to the domain wide reductions of mobile and area sources of 
NOx were compared to a brute-force method (Yang et al., 1997). This technique was used in an 
integrated modeling system focusing, simultaneously, on ozone, particulate matter and acid 
deposition (Boylan, et al., 2001). We investigated the sensitivity of particulate matter 
concentrations to the reductions of SO2 and NOx emissions in the Southern Appalachian 
Mountains region. We also investigated the sensitivity of ozone concentrations to NOx and VOC 
emissions from different states, using state boundaries as sub-regions. As part of that project, we 
compared our method to the brute-force approach for ozone sensitivities to domain wide NOx and 
VOC emissions. The general agreement between the direct sensitivity and the brute-force method 
shows that the former is a reliable tool. Whenever we observed differences, we were able to relate 
the difference to the numerical errors associated with the brute force technique and show that the 
direct sensitivity method yields results that are more accurate. 

Note that in all of the applications thus far, we have focused on a relatively large perturbation 
such as a reduction over the entire domain or an entire state in a region as big as the Eastern U.S. 
When the focus is shifted to a small contributor, such as a single DoD facility in a large region, 
the results of a brute-force analysis would be very unreliable. This is more so if the facility is 
surrounded by other sources of emissions of the same type. As mentioned several times before, 
the reason is that the perturbation may be below the numerical detection limit of the model. It is 
very likely that numerical errors in the model would be larger than the perturbation so that a noise 
is obtained, instead of an accurate response, from the brute-force analysis. The direct sensitivity 
analysis on the other hand is not subject to such a limitation and even the response of an 
infinitesimal change in emissions can be detected accurately.  

4.3 Air Quality Modeling 

The platform of choice for the incorporation of the adaptive grid modeling and direct sensitivity 
analysis techniques is the Multiscale Air Quality Simulation Platform (MAQSIP) (Odman and 
Ingram, 1996), which is an early prototype of the Community Multiscale Air Quality (CMAQ) 
(Byun and Ching, 1999). MAQSIP is a state-of-the-art pollutant transport and chemistry model. 
The following attributes of MAQSIP distinguish it from other models. 

1) Modular:  MAQSIP is a truly modular platform where physical/chemical 
processes are cast into modules following the time-splitting approach.  Each 
process module operates on a common concentration field.  Other variables are 
encapsulated within each module. 

2) Flexible:  MAQSIP has alternative modules for various processes. 

3) Expandable:  New modules can be (and are being) added to the platform by 
scientists using MAQSIP in their research. 

4) Multiscale:  MAQSIP supports multiple, multi-level nested grids. 

5) Generalized Coordinates:  MAQSIP can support practically any coordinate 
system. 
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The MAQSIP model offers the user a choice among the CB-4 and SAPRC-99 chemical 
mechanisms. For the type of emissions involved in prescribed burning, both mechanisms offer 
similar ozone formation pathways. In an application to California, CB-4 and SAPRC-99 
mechanisms gave essentially the same results for ozone, and while the SAPRC mechanism offers 
more detail, the CB-4 mechanism is computationally faster. Investigating the effect of different 
chemical mechanisms on the results is beyond the scope of this project and since their ozone 
pathways are very similar either mechanism could be used. For this study CB-4 mechanism was 
selected.  

The adaptive grid version of MAQSIP is described in detail elsewhere (Odman et al., 2001 and 
2002). The grid adaptation was restricted to the horizontal plane and the same grid structure was 
used for all vertical layers. Air quality models such as MAQSIP have unequally spaced vertical 
layers designed to better resolve mixing in the Planetary Boundary Layer. Typically, starting 
from about 20 m at the surface, layer thickness increases as the model is extending to the upper 
troposphere. Adaptation in the horizontal plane has no direct effect on this vertical resolution.  

A weight function determines where grid nodes must be clustered to obtain a more accurate 
solution. In this study, the curvature in the concentrations of an inert fire tracer was used to 
calculate the weight function that drives the adaptation. The tracer is assumed to be a product of 
the fires at Fort Benning emitted at the same rate as the NO emissions from the fire. The tracer is 
transported and deposited in the same way as other fire species but it is non reactive. 

The presence of convective clouds is an important factor that affects pollutant levels. Cloud 
scavenging of gaseous pollutants and aerosol formation in clouds are important processes that 
must be characterized in air quality models. However, for the ozone episode that was investigated 
in this proof-of-concept study, clouds and precipitation were not major factors. The scenario 
simulated had clear sky conditions conducive to photochemical ozone formation. A follow on 
project, which addresses secondary PM formation, can thoroughly investigate the processes 
related to clouds and precipitation. In addition, in relation to the adaptive grid modeling, the 
presence of clouds presents a good reason for developing three-dimensional adaptation 
techniques. 

5 Accomplishments 

5.1 Data Preparation 

The episode selection is based primarily on the availability and quality of meteorological and 
emissions data as well as the impact potential of prescribed burns at Fort Benning on regional air 
quality. As part of Fall Line Air Quality Study (FAQS), we have already simulated several 
episodes during summer of 1999 and 2000 in Georgia using MM5 meteorological model and 
SMOKE emissions model. The ideal scenario for our case study is one with southeasterly winds, 
biomass burning performed at Fort Benning and high ozone levels observed at Columbus. The 
Host Site Coordinator of the SERDP Ecosystem Management Project (SEMP) at Fort Benning, 
Mr. Hugh Westbury, was very instrumental in providing the fire data for the years 2000-2001. 
Based upon meteorological conditions and fire data a four-day period, August 15-18 2000, was 
selected for modeling. Fires were reported at Fort Benning on those days and there are periods 
during which the winds were southeasterly hence it is possible that fires may have affected air 
quality in Columbus. Table 1 shows the data for the fire events on those days.  
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Table 1.  Fire data during the August 15-18 2000 period. 

Fire Date Time 
(GMT) 

Area 
(km2) 

1 8/15/00 17:00 –20:00 0.142 
2 8/15/00 18:00 0.079 
3 8/16/00 17:00 0.039 
4 8/18/00 1:00 –3:00 0.002 
5 8/18/00 1:00 –3:00 0.001 
6 8/18/00 1:00 –3:00 0.139 
7 8/18/00 1:00 –3:00 0.097 
8 8/18/00 12:00 0.039 

 

Data preparation efforts included meteorological and emissions data preparation as well as post-
processing. Meteorological data were obtained from FAQS. Detailed information on 
meteorological data preparation is given elsewhere (Hu et al., 2003a). Similarly emissions data 
were obtained from FAQS study. More information on emissions data can be obtained elsewhere 
(Unal et al., 2003; Hu et al., 2003b). For biomass burning emissions First Order Fire Effects 
Model (FOFEM) Version 5, developed by Intermountain Fire Sciences Laboratory was utilized. 
In this model fuel type was assumed as natural fuel with long leaf pine trees. For some of the 
pollutants, such as speciated VOCs and NOx, emission factors provided by Battye and Battye 
(2002) were utilized. Table 2 shows the estimated emissions for biomass burning.  

 

Table 2.  Estimated emissions for the fire events during the August 15-18 2000 period. 
Pollutants (kg/hr) Fire 

CH4 CO NO NO2 PAR OH HCHO ALD TOL XYL OLE CRE 
1 34.6 745 9.08 1.01 6.82 2.94 5.19 3.03 1.70 0.19 0.57 0.93 
2 17.9 387 4.72 0.52 3.54 1.53 2.69 1.57 0.88 0.10 0.30 0.48 
3 11.9 257 3.14 0.35 2.36 1.02 1.79 1.05 0.59 0.07 0.20 0.32 
4 0.73 15.6 0.19 0.02 0.14 0.06 0.11 0.06 0.04 0.00 0.01 0.02 
5 0.20 4.25 0.05 0.01 0.04 0.02 0.03 0.02 0.01 0.00 0.00 0.01 
6 54.3 1170 14.3 1.58 10.7 4.62 8.14 4.76 2.66 0.30 0.90 1.45 
7 37.8 814 9.93 1.10 7.46 3.21 5.67 3.31 1.85 0.21 0.63 1.01 
8 8.9 193 2.35 0.26 0.04 0.04 0.01 0.00 0.04 0.00 0.01 0.00 
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5.2 Model Preparation 

The task here was to install the direct sensitivity analysis technique, which we have previously 
developed for a static grid model, into the adaptive grid version of MAQSIP. This required 
several modifications to the algorithm and the computer code. The most important change is the 
treatment of the emission source during the calculation of sensitivity to that source. Since an 
emission source is fixed with respect to the static grid, in the old code the grid cells overlapping 
the emission source (e.g., location of the fire) were being flagged before the simulation. Then, the 
sensitivity of the emitted species in the flagged cells was being set equal to the emission rate into 
that cell. In the adaptive grid model, since the grid nodes are constantly moving, the grid cells 
cannot be flagged beforehand. Also the intersection of the emission source with each cell keeps 
changing. An algorithm was devised to find this intersection. In the new code, the sensitivity of 
the emitted species in each cell is being set equal to the emissions per unit area times the 
intersection area of the cell with the emission source. Another change worth noting is the addition 
of an inert fire tracer species to drive the grid adaptation. This tracer is transported just like the 
other species and the grid is adapted to the curvature in the tracer’s concentration. 

In order to verify the new model which incorporates the adaptive grid and sensitivity analysis 
techniques, a test simulation was performed with fire emissions under controlled meteorological 
conditions (i.e., constant winds). The sensitivity results obtained with the new model have been 
compared to the “brute-force” sensitivity (i.e., the difference between two runs: one with and 
another without the fire emissions) obtained from the old model (i.e., static grid MAQSIP). 
Initially, the sensitivities from the two models were significantly different so the new model 
could not be verified. A quick review of the critical modules revealed several programming 
mistakes or “bugs.” To identify the few remaining "bugs", the computer program was reviewed 
by the principal investigator and a programmer. In this review, the flow of the program was 
followed through a debugger during a typical simulation. After the remaining bugs were found 
and fixed, it was concluded that the program properly executed the operations described in the 
algorithm. In addition, the results of test simulations showed that the computer program fulfills 
the requirements of the original design. Therefore, the new model was declared “verified” and 
ready for simulations. 

 

5.3 Simulations 

Emissions and meteorology data were processed to prepare the inputs required to run the air 
quality model. Simulations were conducted in three stages: 
(1) Simulation of the selected episode with 4×4 km2 static grid version of the MAQSIP model;  
(2) Simulation of the selected episode with the new version of the MAQSIP model incorporating 
the adaptive grid and direct sensitivity analysis techniques. 

Static Grid Simulations 

To be used for comparison in the evaluation of the new model, the selected episode was 
simulated with a 4×4 km2 static grid version of the MAQSIP model. Lambert Conformal 
projection with parameters of 300N, 600N, and 900W, centered at 400N and 900W, was utilized for 
the domain. The 4×4 km2 grid has 102 columns and 78 rows with 13 vertical layers. The results of 
the static grid run were compared with outputs from CMAQ model for the same location and time 
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period generated during the FAQS project. The comparison showed that static grid results were 
similar to the CMAQ results. Since CMAQ results were already compared with observed air 
quality data and found to be an accurate representation of actual conditions, no further evaluation 
of the static grid MAQSIP results (i.e., with observations) was performed. A second run was also 
made including emissions from the fires at Fort Benning. The difference between the 
concentrations of these two simulations yields the static grid “brute-force” sensitivities. 

Adaptive Grid Simulations 

The adaptive grid also used the same domain definitions as for the static grid. In adaptive runs the 
concentration of an inert fire tracer was used to calculate the weight function that drives the 
adaptation. The tracer is assumed to be a product of the fires at Fort Benning emitted at the same 
rate as the NO from the fires. The tracer is transported and deposited in the same way as the other 
fire species but it is non reactive. Two different runs were made with the adaptive grid model. 
These runs include: one run with base emissions; and one run with base emissions plus fire 
emissions, which also has the direct sensitivity calculations. In both runs the grid adapted to the 
same fire tracer, therefore the grids are identical in both simulations. The difference between the 
concentrations of these two simulations yields the adaptive grid “brute-force” sensitivities. Direct 
sensitivity results were compared with “brute-force” and it was observed that differences were 
within the bounds of previously reported differences (Hakami et al., 2003). Only direct 
sensitivities will be used hereafter. 

Simulation Results 

First we compared the adaptive grid model with the static grid model. The tracer concentrations 
calculated by the two models as a result of fires at Fort Benning on August 15, 2000 at 19:00 
Greenwich Mean Time (GMT) are shown in Figures 1 and 2. During this period two different 
fires happened at two different locations. The fire to the south is emitting at a higher rate than the 
northern one since the area burnt is almost 1.5 times bigger. The location of these fires can be 
seen in both static and adaptive simulation results.  

One of the significant differences between these simulations is the fact that static grid distributes 
emissions uniformly to the 4×4 km2 cell area where the fire takes place. Adaptive grid, on the 
other hand, increases the grid resolution around the fire location as shown in Figure 2. At the 
points where fires occur, adaptive grid reduces cell size to approximately 400 m or one tenth of 
the static grid size. This provides adaptive grid the capability to distinguish two distinct plumes 
from the fires. For this reason concentration gradients are much better resolved by the adaptive 
grid model than by the static grid model. Simulation results for other hours are presented in 
Appendices. 

Another objective of this study was to utilize direct sensitivity method to estimate sensitivity of 
ozone to NO emissions from fires. We made a comparison between static “brute-force” and 
adaptive direct sensitivity results. Figures 3 and 4 present sensitivity of ozone concentration to 
fire emissions as estimated by static and adaptive grids respectively on August 15, 19:00 (GMT). 
While the fires reduce the ozone concentrations near the source by as much as 8 parts per billion 
(ppb), they result in an increase by as much as 7 ppb further downwind for this particular time 
period. Such a distinction between the near and the far field impacts is not so clear in the “brute-
force” sensitivities calculated by the static grid model shown in Figure 3. Simulation results for 
other hours are presented in Appendices. 
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Figure 1.  Static Grid Result for Inert Fire Tracer Concentrations (ppm) 

 
Figure 2.  Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) 
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Figure 4.  Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions 

 
Figure 3.  Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions 
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5.4 Analysis of Results 

There are no special measurements taken along the trajectory of the fire plumes during the 
simulated period. The only data available for evaluation are the routine air quality observations 
from the existing monitoring network. The differences between new and old model simulation 
results were very small at the monitoring locations, therefore it was difficult to judge if the new 
model is performing better than the old model solely based on observations. In the absence of 
measurements, we performed the following evaluations in the vicinity of the fires. 

Comparison of Ozone Estimates  

We performed statistical analysis to determine the differences between static and adaptive grid 
simulation results. For this purpose, we identified the adaptive cells that intersect with each static 
cell. Figure 5 presents an example for intersection of static grid cell with adaptive cells. For this 
particular case, there are about 40 adaptive cells that fall in one static cell. For the intersected 
cells we recorded individual adaptive cell concentrations and also estimated a weighted average, 
based upon area, in order to compare to static cell values. Note that in this analysis we selected a 
region where changes in O3 concentration occurred due to fire events. Adaptive grid O3 
concentrations are very similar to static grid simulation results in the rest of the domain.  

Figure 6 presents a scatter plot of O3 concentration values for static and corresponding adaptive 
cell values for August 15, 21:00 (GMT). In this figure both average values as well as minimum 
and maximum values of adaptive cells within each 4×4 km2 static cell are shown. One of the 
important finding in Figure 6 is that O3 concentrations of adaptive cell averages are very close to 
static cell results. The correlation coefficient of the regression is 0.9 and has a slope of 0.9 which 
is an indication of a strong linear relationship between average adaptive and static cell results. 
However, it should also be noted that adaptive cell averages tends to over predict lower 
concentrations and under predict higher concentrations as compared to static cell values. In other 
words, the variation in average adaptive results is slightly smaller than the variation in static cell 
results. For this particular case, coefficient of variation, which is defined as the ratio of the 
standard deviation to the mean, is 8.1 percent in adaptive case and 8.6 percent in static case. The 
coefficient of variation in maximum and minimum values together is slightly greater with a value 
of 8.9 percent. These values suggest that variability is about the same with maximum-minimum 
values of adaptive cells having the highest variability. It should be noted however that the number 
of data for this category is twice the static and average adaptive cells.  Another important point is 
the range of variability. Static grid O3 concentrations change between 62 ppb and 95 ppb, 
whereas average adaptive cells range between 63 ppb and 92 ppb. For the max/min values this 
range is between 62 ppb and 96 ppb. Similar results were obtained for other periods of simulation 
where fire events were observed and they are provided in Appendices.  
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Figure 5.  Intersections of Static and Adaptive Cells 
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Figure 6.  Adaptive versus Static Grid O3 Concentrations (ppb) for August 15, 21:00 
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Table 3.  Comparison of Static versus Adaptive for O3 Concentration 

Range of O3 (ppb) Linear Regression  
(Adaptive Average vs. Static) Date Time Adaptive 

Average 
Adaptive 
Max/Min Static R2 Slope 

15 19:00 69 – 100 66 – 106 68 – 103 0.96 0.94 
15 20:00 66 – 99 66 – 104 67 – 101 0.92 0.92 
15 21:00 63 – 92 61 – 96 62 – 95 0.90 0.90 
16 18:00 55 – 99 55 – 101 55 – 100 0.97 1.04 
16 19:00 55 -100 54 – 103 55 – 97 0.95 1.01 
16 20:00 54 – 101 54 – 106 54 – 97 0.96 1.02 
16 21:00 54 – 102 54 – 104 53 – 101 0.96 1.00 
16 22:00 48 – 104 47 – 108 39 – 103 0.95 0.97 
16 23:00 26 – 103 18 – 105 10 – 100 0.90 0.94 
18 2:00 10 – 68 3 – 73 2 – 76 0.92 0.90 
18 3:00 7 – 64 2 – 72 2 – 75 0.91 0.91 
18 4:00 5 – 64 1 – 64 1 – 72 0.91 0.91 
18 5:00 32 – 64 27 -70 31 – 61 0.83 0.97 
18 6:00 45 – 63 43 – 65 40 – 61 0.65 0.82 
18 7:00 47 – 64 44 – 64 41 – 62 0.68 0.72 
18 8:00 43 – 60 42 – 61 39 – 59 0.66 0.73 
18 9:00 42 – 57 42 – 58 37 – 55 0.69 0.69 
18 10:00 35 – 58 34 – 58 31 – 55 0.93 0.82 
18 13:00 38 – 67 36 – 67 29 – 66 0.93 0.91 
18 14:00 53 – 75 51 – 77 44 – 74 0.91 0.90 

 

Table 3 summarizes the comparison between adaptive and static grids for 20 different hours when 
fires occurred. As seen in Table 3, the range of variation is similar in adaptive maximum-
minimum values and static values. The range is slightly smaller in adaptive averages. Parameters 
of regression between adaptive averages and static values are also given in Table 3. In most cases 
(15 out of 20) R2 values are greater than or equal to 0.9, and slopes are between 0.9 and 1.04. 
There are, however, nighttime fire events where R2 is less than 0.85 and slope is less than 0.8. In 
general, it is observed that there is a strong linear relationship between adaptive averages and 
static values. In 16 cases, the slope of regression is less than 1.0 indicating that the adaptive 
average O3 concentration is less than the static cell values. These results are in agreement with the 
study conducted by Jang et al. (1995) where they found that lumped finer-scale grid (i.e., 20km) 
produced less O3 than coarser grid (i.e., 80km) for equal size area. 

Another implication of the differences in adaptive and static predictions is at the local scale. 
Figure 7 shows O3 concentrations from adaptive and static grid simulations at a cell near the fires 
for selected time periods. Adaptive cell averages as well as minimum and maximum values of 
adaptive cells that fall in the 4×4 km2 static cell are presented. Adaptive averages are 4 ppb more 
than static values on the average, and the difference ranges from -2 ppb to +18 ppb. For minimum 
and maximum adaptive values the average difference from static concentration is +6 ppb, and it 
ranges from -6 ppb to +28 ppb. These findings suggest that there can be significant differences in 
O3 between adaptive and static grids at the local scale. For example, one static grid O3 is 47 ppb 
whereas one of the adaptive cells inside that static cell has a value of 75. This 28 ppb difference 
may have important implications from a policy perspective. 
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Comparison of Ozone Sensitivities 

We did a similar analysis to compare sensitivity results from static and adaptive simulations. 
Figure 8 presents the comparison for the selected region on August 15, 21:00 (GMT). As in the 
case for O3 predictions, R2 and slope values indicate that there is a linear relationship between 
adaptive averages and static values for sensitivity. However, there is a high variability in 
individual adaptive cell values as shown by the minimum and maximum sensitivity values. 
Variation ranges from -8 ppb to +6 ppb for the maximum-minimum adaptive values, whereas it is 
between -6 ppb and +5 ppb in static grid. For the adaptive averages the range of variation is 
between -6 ppb and +5 ppb. Similar results were obtained for other periods of simulation where 
fire events occurred and they are provided in Appendices. Table 4 presents a summary of these 
events. As seen in Table 4, variability in O3 sensitivity is smallest in adaptive averages. 
Maximum-minimum adaptive values have a higher variability than static values. Table 4 also 
presents parameters of regression between adaptive averages and static values. It is seen that most 
of the cases (15 out of 20) have R2 values greater than 0.85 and slope values are greater than 0.70. 
There are several fire events where there is weak correlation between adaptive averages and static 
values. One R2 value is 0.14 at the beginning of a fire. Others are during the nighttime events. In 
all these cases the sensitivity is mostly negative. The differences in the sensitivities estimated by 
static and adaptive grids are indicative of the scale-related uncertainty in modeling the impact of 
prescribed burns.  
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Figure 7.  Static versus Adaptive O3 predictions (ppb) for a specific cell near the fires
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Table 4.  Comparison of Static versus Adaptive for O3 Sensitivity 

Range of O3 Sensitivity (ppb) Linear Regression  
(Adaptive Average vs. Static) Date Time Average 

Adaptive 
Max/Min 
Adaptive Static R2 Slope 

15 19:00 -9 – 4 -13 – 8 -8 – 7 0.69 0.77 
15 20:00 -5 – 5 -7 – 8 -5 – 6 0.88 0.78 
15 21:00 -6 – 5 -8 – 6 -6 – 5 0.90 0.85 
16 18:00 -2 – 2 -5 – 3 -2 – 4 0.14 0.23 
16 19:00 0 – 6 0 – 8 0 – 6 0.77 0.71 
16 20:00 0 – 3 0 – 5 0 – 4 0.93 0.81 
16 21:00 0 – 2 0 – 3 0 – 3 0.90 0.73 
16 22:00 0 – 2 0 – 3 0 – 2 0.88 0.74 
16 23:00 0 – 1 0 – 2 0 – 1 0.91 0.74 
18 2:00 -30 – 0 -33 – 0 -48 – 0 0.84 0.52 
18 3:00 -33 – 0 -38 – 0 -48 – 0 0.78 0.54 
18 4:00 -35 – 0 -40 – 0 -47 – 0 0.76 0.58 
18 5:00 -15 – 0 -18 – 0 -15 – 0 0.98 0.96 
18 6:00 -8 – 0 -9 – 0 -8 – 0 0.98 0.98 
18 7:00 -4 – 0 -4 – 0 -4 – 0 0.97 1.00 
18 8:00 -3 – 0 -3 – 0 -3 – 0 0.97 0.97 
18 9:00 -2 – 0 -2 – 0 -2 – 0 0.96 0.95 
18 10:00 -1 – 0 -1 – 0 -1 – 0 0.96 0.89 
18 13:00 -9 – 0 -12 – 0 -16 – 0 0.87 0.49 
18 14:00 0 – 2 0 – 2 0 – 3 0.95 0.67 
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Figure 8.  Static versus Adaptive O3 Sensitivities (ppb) for August 15, 21:00 
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6 Conclusions 

Our objective was to bring current air quality models to a level where they can be used to predict 
the impact on the surrounding environment of air pollutants emitted from military installations. 
We improved the models’ ability to capture source-receptor relationships between emissions at 
local scales and air quality at regional scale. In this project, we focused on the prescribed burning 
emissions from Fort Benning as a case study. The immediate questions we answered are: 

• Can our recently developed techniques bridge the gap between the current state of the models 
and DoD’s needs of determining the fate of emissions from military operations? 

• If so, do the prescribed burning operations have an impact to the air quality in Columbus 
metropolitan area? 

The answer to the first question is positive but the study was inclusive for the second question. 
Now that the first phase objectives are achieved, follow-on research in a second phase should 
address the following questions: 

• What extensions are necessary for the techniques to be applied to other DoD activities such as 
aviation, ship and coastal operations? 

• Can we develop reliable tools to help site managers not only to plan their operations but adapt 
them as necessary for minimizing adverse effects to the environment? 

The development of this impact analysis technology has many upside potentials. A user-friendly 
product tailored to DoD needs can be developed, along with a detailed plan for the transfer of this 
technology to DoD facilities. The technology can be implemented in U.S. EPA’s Community 
Multiscale Air Quality (CMAQ) model and applied to many other sectors including energy, 
agriculture and homeland security.  

In conclusion, the new model (i.e., MAQSIP enhanced by adaptive grid and sensitivity analysis 
techniques) can be used for accurate assessment of the air quality impacts of most DoD activities. 
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8 Appendices 

8.1 Simulation Results  

8.2 Analysis Results  

8.3 Publications 

a) Conference Paper (Submitted to 2nd International Wildland Fire Ecology and Fire 
Management Congress, Orlando, FL 16-20 November 2003 ) 

b) Conference Presentation (Presented at 2nd International Wildland Fire Ecology and Fire 
Management Congress, Orlando, FL 16-20 November 2003 ) 

c) Journal Paper (Submitted to either “Journal of Agricultural and Forest Meteorology” or 
“International Journal of Wildland Fire”) 



8.1 Simulation Results 



 

 
Figure 1 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 18:00 



 
Figure 2 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August15, 20:00 



 
Figure 3 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August15, 21:00 



 
Figure 4 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August15, 22:00 



 
Figure 5 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August15, 23:00 



 
Figure 6 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August16, 00:00 



 
Figure 7 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 18:00 



 
Figure 8 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 19:00 



Figure 9 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 20:00  



 
Figure 10 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 21:00 



 
Figure 11 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 22:00 



 
Figure 12 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 23:00 



 
Figure 13 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 2:00 



 
Figure 14 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 3:00 



 
Figure 15 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 4:00 



Figure 16 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 5:00 



 

 
Figure 17 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 6:00 



 
Figure 18 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 7:00 



 
Figure 19 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August18, 13:00 



 
Figure 20 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 14:00 



 
Figure 21 Static Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 15:00 

 

 

 

 

 

 

 

 

 



 
Figure 22 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 18:00 



 
Figure 23 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 20:00 



 
Figure 24 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 21:00 



 
Figure 25 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 22:00 



 
Figure 26 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 23:00 



 
Figure 27 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 0:00 



 
Figure 28 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 18:00 



 
Figure 29 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 19:00 



 
Figure 30 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 20:00 



 
Figure 31 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 16, 21:00 



 
Figure 32 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 22:00 



 
Figure 33 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 15, 23:00 



 
Figure 34 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 2:00 



 
Figure 35 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 3:00 



 
Figure 36 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 4:00 



 
Figure 37 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 5:00 



 
Figure 38 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 6:00 



 
Figure 39 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 7:00 



 
Figure 40 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 13:00 



 
Figure 41 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 14:00 



 
Figure 42 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) for August 18, 15:00 

 

 



Figure 43 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
18:00 



 
Figure 44 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
20:00



 
Figure 45 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
21:00



 
Figure 46 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
22:00



 
Figure 47 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
23:00



 
Figure 48 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
0:0



 
Figure 49 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
18:00



 
Figure 50 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
19:00



 
Figure 51 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
20:00



 
Figure 52 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
21:00



 
Figure 53 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
22:00



 
Figure 54 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
23:00



 
Figure 55 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
2:00



 
Figure 56 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
3:00



 
Figure 57 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
4:00



 
Figure 58 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
5:00



 
Figure 59 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
6:00



 
Figure 60 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
7:00



 
Figure 61 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
13:00



 
Figure 62 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
14:00 



 
Figure 63 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions, 
August 18, 15:00 



Figure 64 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
18:00



 
Figure 65 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
20:00



 
Figure 66 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
21:00



 
Figure 67 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
22:00



 
Figure 68 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 15, 
23:00



 
Figure 69 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
0:00



 
Figure 70 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
18:00



 
Figure 71 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
19:00



 
Figure 72 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
20:00



 
Figure 73 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
21:00



 
Figure 74 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
22:00



 
Figure 75 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 16, 
23:00



 
Figure 76 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
2:00



 
Figure 77 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
3:00



 
Figure 78 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
4:00



 
Figure 79 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
5:00



 
Figure 80 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
6:00



 
Figure 81 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
7:00



 
Figure 82 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
13:00



 
Figure 83 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 18, 
14:00 



 
Figure 84 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions, August 
18, 15:00 



8.2 Analysis Results 
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Figure 1. Static versus Adaptive Comparison for O3 Concentration for August 15, 18:00 
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Figure 2. Static versus Adaptive Comparison for O3 Concentration for August 15, 19:00 



y = 0.92x + 6.2511
R2 = 0.9235
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Figure 3. Static versus Adaptive Comparison for O3 Concentration for August 15, 20:00 
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Figure 4. Static versus Adaptive Comparison for O3 Concentration for August 15, 21:00 
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Figure 5. Static versus Adaptive Comparison for O3 Concentration for August 18, 02:00 
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Figure 6. Static versus Adaptive Comparison for O3 Concentration for August 18, 03:00 
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Figure 7. Static versus Adaptive Comparison for O3 Concentration for August 18, 04:00 
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Figure 8. Static versus Adaptive Comparison for O3 Concentration for August 18, 05:00 
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Figure 9. Static versus Adaptive Comparison for O3 Concentration for August 18, 06:00 
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Figure 10. Static versus Adaptive Comparison for O3 Concentration for August 18, 07:00 
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Figure 11. Static versus Adaptive Comparison for O3 Concentration for August 18, 08:00 
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Figure 12. Static versus Adaptive Comparison for O3 Concentration for August 18, 09:00 
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Figure 13. Static versus Adaptive Comparison for O3 Concentration for August 18, 10:00 
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Figure 14. Static versus Adaptive Comparison for O3 Concentration for August 18, 13:00 
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Figure 15. Static versus Adaptive Comparison for O3 Concentration for August 18, 14:00 
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Figure 16. Static versus Adaptive Comparison for O3 Concentration for August 16, 18:00 
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Figure 17. Static versus Adaptive Comparison for O3 Concentration for August 16, 19:00 
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Figure 18. Static versus Adaptive Comparison for O3 Concentration for August 16, 20:00 
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Figure 19. Static versus Adaptive Comparison for O3 Concentration for August 16, 21:00 
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Figure 20. Static versus Adaptive Comparison for O3 Concentration for August 16, 22:00 
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Figure 21. Static versus Adaptive Comparison for O3 Concentration for August 16, 23:00 
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Figure 22. Static versus Adaptive Comparison for O3 Sensitivity for August 15, 18:00 
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Figure 23. Static versus Adaptive Comparison for O3 Sensitivity for August 15, 19:00 
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Figure 24. Static versus Adaptive Comparison for O3 Sensitivity for August 15, 20:00 
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Figure 25. Static versus Adaptive Comparison for O3 Sensitivity for August 15, 21:00 
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Figure 26. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 02:00 
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Figure 27. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 03:00 
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Figure 28. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 04:00 
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Figure 29. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 05:00 
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Figure 30. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 06:00 
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Figure 31. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 07:00 
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Figure 32. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 08:00 
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Figure 33. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 09:00 
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Figure 34. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 10:00 
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Figure 35. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 13:00 
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Figure 36. Static versus Adaptive Comparison for O3 Sensitivity for August 18, 14:00 
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Figure 37. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 18:00 
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Figure 38. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 19:00 
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Figure 39. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 20:00 



y = 0.7325x + 0.103
R2 = 0.8976

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4

Static O3 Sensitivity (ppb)

A
da

pt
iv

e 
O

3 S
en

si
tiv

ity
 (p

pb
)

 
Figure 40. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 21:00 
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Figure 41. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 22:00 
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Figure 42. Static versus Adaptive Comparison for O3 Sensitivity for August 16, 23:00 
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Figure 43 Static versus Adaptive O3 predictions (ppb) for a specific cell near the fires 
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Adaptive Grid Modeling for Predicting the  
Air Quality Impacts of Biomass Burning 

Alper Unal and M. Talat Odman 
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 

Georgia 

 

1. INTRODUCTION 

Wildland fires are essential in creating and 
maintaining functional ecosystems and achieving 
other land use objectives (Hardy and Leenhouts, 
2001). However, biomass burning produces 
combustion byproducts that are harmful to human 
health and welfare (Hardy and Leenhouts, 2001; 
Battye and Battye, 2002). Guided by the 
Endangered Species Act (ESA), the Department of 
Interior (DoI) through the Fish and Wildlife Service 
(FWS) mandates that some military installations and 
air force bases in the South-Eastern United States 
use prescribed burning to recreate the natural fire 
regimes needed to maintain the health of its native 
long leaf pine forestland thus protecting the habitat 
of the endangered Red Cockaded Woodpecker 
(RCW). Proper management may require as much 
as 1/3 of the forest to undergo treatment by fire each 
year. These activities, however, can contribute 
significantly to already burdened local and regional 
air pollutant loads. In recognition of the conflicting 
requirements between the ESA and Clean Air Act 
(CAA) statutes, the Strategic Environmental 
Research and Development Program (SERDP), 
supported by Department of Defense (DoD), initiated 
a program to determine the effects of biomass 
burning from military installations. As part of this 
effort, we focused on determining the effects of 
biomass burning from military reservation, Fort 
Benning in Georgia, to the local and regional air 
quality, specifically, in Columbus metropolitan area.  

Fort Benning, which covers an area of approximately 
182,000 acres, is located in the lower part of central 
Georgia and Alabama, six miles southeast of 
Columbus, Georgia, as shown in Figure 1. Thus 

emissions from this facility may be affecting the air 
quality in Columbus, which is reported to violate air 
quality standards for Ozone (EPD, 2003). The 
Columbus Environmental Committee is viewing the 
prescribed burning operation as a potential 
contributor to the ozone problem. This became a 
public relations concern for Fort Benning (Larimore, 
2000).  

Approximately 30,000 acres must be prescribed 
burned each year at Fort Benning, during the 
growing season (i.e., March through August). This 
period falls within the “ozone season.” In order to 
restore the RCW habitat, longleaf seedlings are 
planted. Prescribed burnings continue from August 
through October for site preparation purposes, which 
also overlaps with the ozone season. These fires 
reduce unwanted vegetation that would compete 
with longleaf seedlings. Operational and safety 
constraints limit the burnings to an average of 300 
acres per day (Environmental Management Division, 
2000). For example, although an attempt is made to 
burn all RCW clusters during the growing season it 
is logistically impossible due to the number of 
clusters (75-80 annually) and scheduling conflicts 
with training. Natural firebreaks, such as roads, 
trails, drains, and creeks dictate the size of burn 
areas. All these limitations make it necessary to 
continue the burnings throughout the year. In 
realization of the Columbus ozone problem, the 
majority of the burnings (70-75%) were shifted to the 
January-April period, which is outside the “ozone 
season.”  

Currently, the only external constraint on prescribed 
burning arises as a result of smoke management 
concerns.  Smoke complaints and the threat of 
litigation from smoke-related incidents / accidents 
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are the primary concerns. Fort Benning follows 
voluntary (not mandated by state or federal 
government) smoke management guidelines in an 
effort to minimize the adverse impacts from smoke. 
An additional concern is the effect of prescribed 
burning on ozone levels in Columbus. Forest fires 
produce nitrogen oxide and hydrocarbon emissions 
that form ozone (Cheng et al., 1998; Battye and 
Battye, 2002; Ottmar, 2001). These pollutants may 
be transported downwind, mix with emissions from 
other sources and contribute to the poor air quality in 
urban areas. Sulfur dioxide and particulate matter 
emissions from forest fires are also of concern but, 
in general, they do not have a direct influence on the 
urban ozone problem. The ozone alert season is 
from 1 May through 30 September in Georgia. It is 
during this season that emissions from prescribed 
burning operations could affect smog levels in 
Columbus. In collaboration with the Partnership for a 
Smog-Free Georgia (PSG), Fort Benning is avoiding 
prescribed burns when meteorological conditions 
are conducive to ozone buildup. However, more 
complex methods are required to identify the real 
effects of biomass burning from Fort Benning on 
ozone problem in Columbus region.   

Main objective in this study is to improve the ability 
to model the air quality impacts of biomass burning 
on the surrounding environment. For this purpose 
we equipped an advanced air quality model, 
Multiscale Air Quality Simulation Platform (MAQSIP) 
(Odman and Ingram, 1996), with two newly 
developed techniques; Adaptive Grid Modeling, and 
Direct Sensitivity Analysis to accurately isolate and 
determine the effects of biomass burning on ozone 
formation. In this paper we first describe the 
methods utilized and then discuss the important 
findings of the study. 

2. METHODOLOGY 

The atmospheric and chemical modeling systems 
currently used by various agencies tend to focus on 
a single scale that seems to be the most relevant to 
a particular air pollution problem. Global scale 
models address climate issues while regional scale 
models are used for the tropospheric ozone, 
regional haze or acid deposition studies. Urban 
scale smog models are being replaced with urban-
to-regional scale models in most places where 
transport from other upwind sources play an 

Figure 1 Location of Study Area 
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important role. On the local scale, models are used 
to deal with problems such as accidental releases. 
The domains of local scale models are limited by 
design; therefore, they cannot be used for regional 
scale impact studies.  

One of the most advanced urban-to-regional scale 
models is the MAQSIP. Urban-to-regional scale 
models are used in developing emission control 
strategies for problems such as urban and regional 
ozone, acid deposition, or regional haze which is 
attributed to primary (emitted) and secondary 
(formed in the atmosphere) fine particulate matter. 
While these models are equipped with special tools 
to treat emissions from large power plants 
(Karamchandani et al, 2000), they lack the ability to 
resolve emissions from relatively small area sources 
such as those from prescribed burnings. To account 
for such area sources, the models rely on grid 
resolution. Prescribed burnings are performed over 
areas as small as one square kilometer 
(approximately 200 acres). This scale is too small for 
typical regional applications. Therefore, emissions 
from prescribed fires are blended with emissions 
from many other sources within the same grid cell of 
regional scale models. This would make it 
impossible to conduct an impact study that would 
target emissions from biomass burnings.  

Another limitation of current air quality models is 
related to numerical errors involved during the 
simulations. Let us suppose that the grid cell size 
could be reduced to one square kilometer by using 
nested-grid techniques (Odman et al, 1997). In that 
case, a typical prescribed burning unit would cover a 
single grid cell. The effect of having or not having 
prescribed burning emissions from a single grid cell 
would be a small perturbation for air quality models. 
As the perturbation gets smaller in size, numerical 
errors that affect the simulation results become more 
important. The results of an impact study such as 
the one proposed here would be highly uncertain if 
the models were used as is. Therefore, urban-to-
regional scale models, in their current state, are not 
very reliable tools for determining the impact of 
prescribed burning emissions to the surrounding 
environment.  

The study of the impact of biomass burning from 
DoD facilities requires investigation of the interaction 
between various scales due to the fact that both the 

location of the facilities and the lifetimes of emitted 
pollutants are conducive to long-range transport. 
Below, we describe a methodology to improve 
current urban-to-regional scale air quality models 
with two modeling techniques. These techniques 
improve representation of the transport and 
transformation processes over a wide range of 
scales and provide more reliable source-receptor 
relationships. The product is a more reliable tool that 
can predict accurately the ultimate fate of pollutants 
emitted from specific sources such as DoD facilities.  

2.1. Adaptive Grid Modeling 

We developed an adaptive grid modeling approach 
to reduce the uncertainty in air quality predictions. 
By clustering the grid nodes in regions that would 
potentially have large errors in pollutant 
concentrations, the model is expected to generate 
much more accurate results than the traditional 
fixed, uniform grid counterparts. The repositioning of 
grid nodes is performed automatically through the 
use of a weight function that assumes large values 
when the curvature (change of slope) of the pollutant 
fields is large. The nodes are clustered around 
regions where the weight function bears large 
values, thereby increasing the resolution where it is 
needed. Since the number of nodes is fixed, 
refinement of grid scales in regions of interest is 
accompanied by coarsening in other regions where 
the weight function has smaller values. This yields a 
continuous multiscale grid where the scales change 
gradually. Unlike nested grids, there are no grid 
interfaces, which may introduce numerous difficulties 
due to the discontinuity of grid scales. The 
availability of computational resources determines 
the number of grid nodes that can be afforded in any 
model application. By clustering grid nodes 
automatically in regions of interest, the adaptive grid 
technique uses computational resources in an 
optimal fashion throughout the simulation.  

A detailed description of the technique can be found 
in Srivastava et al. (2000). Here we will not repeat 
that information; instead, we will try to illustrate the 
technique and its potential with relevant applications. 
The adaptive technique was applied to problems 
with increasing complexity and relevance to air 
quality modeling. First, it was applied to pure 
advection tests (Srivastava et al., 2000). In a rotating 
cone test, the adaptive grid solution was more 
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accurate than the fixed uniform grid with the same 
number of grid nodes. The error in maintaining the 
peak of the cone was only 13% compared to 39% 
with the fixed grid: an accuracy that could only be 
achieved by using 22 times more grid nodes with a 
fixed uniform grid. Srivastava et al. (2001a) 
conducted a third test with concentric conical puffs 
of NOx and VOCs reacting in a rotational wind field. 
The parameters of this problem are such that, after a 
certain time, ozone levels drop below the 
background near the base of the conical puffs but 
they peak near the vertex of the cones. This feature 
was resolved by the adaptive grid solution while it 
was completely missed by the uniform fixed grid 
solution. When nine times more grid nodes were 
used, the fixed grid was finally able to reveal this 
feature but not as accurately as the adaptive grid 
technique.  

Next, the adaptive grid technique was applied to the 
simulation of a power plant plume (Srivastava et al., 
2001b). A two dimensional plume with a VOC/NOx 
emission ratio of 14% was advected with uniform 
winds and diffused over a background with a 
VOC/NOx ratio of 35. Other parameters were chosen 
to make the dispersion as realistic as possible. After 
about 12 hours of simulation, the composition of the 
plume was analyzed taking cross sections at various 
downwind distances. At 10 km downwind, the 
adaptive grid solution showed a NOx rich, but ozone 
deficient core. This feature, which is also observed 
in actual power plant plumes, was completely 
missing in the uniform grid solution, which artificially 
diffused the NOx and displayed highest ozone levels 
at the core of the plume. The adaptive grid, on the 
other hand, had ozone bulges developing near the 
plume edges. At a downwind distance of 30 km, 
these bulges continued to grow as NOx diffused 
slowly from the core to the edges (at a rate more in 
line with physical diffusion) and radicals were 
entrained into the plume. This plume structure 
started disappearing after about 80 km. At a 
downwind distance of 135 km, the plume was fully 
matured with an ozone peak at the center. The peak 
ozone concentration was larger than one predicted 
by the fixed uniform grid. A similar evolution of the 
plume was observed in the fixed uniform grid 
solution when the number of grid nodes was 
increased by a factor of nine. However, this solution 
was about five times more expensive than the 
adaptive grid solution.  

After these and other testing of the algorithm 
(Odman et al., 2001; Khan et al, 2003), finally an 
adaptive grid AQM was developed (Odman et al., 
2002). The model was applied to an ozone 
simulation in the Tennessee Valley (Khan and 
Odman 2003). Ozone results from this application 
were evaluated and showed significant improvement 
over those from fixed grid models, even those 
employing up to four times more grid cells. In several 
cases the agreement with observations was better 
compared to fixed grid models. When the reasons 
were investigated it was found that the complex 
source-receptor relationships, especially the long-
range ones were much better resolved with the 
adaptive grid. 

2.2. Direct Sensitivity Analysis 

Sensitivity analysis is essential in determining 
source-receptor relationships and designing 
emission control strategies. The traditional “brute-
force” method involves running the model several 
times, each time perturbing one type of emission 
(e.g., NOx or VOC) from a different source. If the 
perturbation is small, the brute-force method may 
not yield accurate sensitivities due to numerical 
errors propagating in the model. Our group has 
developed a new and powerful direct sensitivity 
analysis technique to study the response of air 
quality to various types of emissions (Yang et al, 
1997). Unlike the brute force approach, this 
technique is not limited by the magnitude of the 
perturbation and, in theory, it can be used for even 
infinitesimal changes in emissions. Therefore, the 
technique has the potential of improving current 
models to a level where they can be used for impact 
analysis of relatively small sources such as military 
installations. 

Air quality models are based on the atmospheric 
diffusion equation: 

( ) ( ) iiii
i SRcc
t
c

++∇⋅∇=⋅∇+ Ku
∂
∂  (1) 

Here, ci is the concentration of the ith pollutant 
species, u describes the velocity field, K is the 
diffusivity tensor, Ri(c1, c2, ...) is the chemical 
reaction term and Si is a source term for certain 
types of emissions. The local sensitivity of the 
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concentration of a species (e.g., ozone) to a certain 
emission type (e.g., NOx or VOC) from a particular 
source can be defined as: 

( ) ( )
j

i
ij E
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∂
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=     (2) 

Here, sij is the sensitivity of ci to emission Ej. Since 
the sensitivities to different emissions can vary by 
many orders of magnitude, it is necessary to define 
semi-normalized sensitivity coefficients, s*

ij.  
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where jE
~ is the unperturbed emission field (i.e., 

without fire). Using direct derivatives of Equation (1) 
the following equation can be obtained for 
sensitivities.  
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Here, s*
ij is the semi-normalized sensitivity 

coefficient, Jik is the Jacobian matrix, εj is a scaling 
variable with a nominal value of 1, and δij is a binary 
variable (either 1 or 0).  

The similarity between Equations (1) and (4) allows 
us to use the same or very similar numerical solution 
techniques and calculate local sensitivities to 
emission sources simultaneously along with the 
species concentrations. This also makes the 
implementation of the technique in any model 
relatively straightforward. The technique is also 
computationally efficient because several of these 
sensitivities (the number being limited by available 
core memory) can be calculated simultaneously with 
a fractional increase in CPU time. The emission 
sources can be discerned by type as point, area, 
mobile, or biogenic, and by composition such as 
SO2, NOx, or VOC. Also, the location of the emission 
source can be specified, for example, as the 
boundaries of a DoD facility (to the grid scale 
resolution). The technique would predict the 

sensitivity of air quality at any desired location in the 
modeling domain (e.g., sensitivity of ozone 
concentrations at a downwind urban center) to a 
fractional change in the emissions from the source 
of interest.  

The technique has been evaluated in an application 
to the Southern California where the sensitivities of 
ozone concentrations to the domain wide reductions 
of mobile and area sources of NOx were compared 
to a brute-force method (Yang et al., 1997). This 
technique was used in an integrated modeling 
system focusing, simultaneously, on ozone, 
particulate matter and acid deposition (Boylan, et al., 
2001). We investigated the sensitivity of particulate 
matter concentrations to the reductions of SO2 and 
NOx emissions in the Southern Appalachian 
Mountains region. We also investigated the 
sensitivity of ozone concentrations to NOx and VOC 
emissions from different states, using state 
boundaries as sub-regions. As part of that project, 
we compared our method to the brute-force 
approach for ozone sensitivities to domain wide NOx 
and VOC emissions. The general agreement 
between the direct sensitivity and the brute-force 
method shows that the former is a reliable tool. 
Whenever we observed differences, we were able to 
relate the difference to the numerical errors 
associated with the brute force technique and show 
that the direct sensitivity method yields results that 
are more accurate.  

3. AIR QUALITY SIMULATIONS 

3.1. Episode Selection 

The episode selection is based primarily on the 
availability and quality of meteorological and 
emissions data and the impact potential of 
prescribed burns at Fort Benning on regional air 
quality. As part of Fall Line Air Quality Study 
(FAQS), we have already simulated several 
episodes during summer of 1999 and 2000 in 
Georgia using MM5 meteorological model and 
SMOKE emissions model. The ideal scenario for our 
case study is one with southeasterly winds, biomass 
burning performed at Fort Benning and high ozone 
levels observed at Columbus. Based upon contacts 
with Land Management Brach at Fort Benning we 
obtained the locations, date, and time of biomass 
burning efforts (Westbury, 2002). There were 
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biomass burnings at Fort Benning between August 
15 and August 18 2000. Also ozone levels in 
Columbus region were over the standards at least 
four times and prevailing winds were southeasterly 
during the same period. Therefore, we decided to 
simulate the period from August 15 through August 
18, 2000.  

3.2. Data Preparation 

Data preparation efforts included meteorological and 
emissions data preparation as well as post-
processing. Meteorological data were obtained from 
FAQS. Detailed information on meteorological data 
preparation is given elsewhere (Hu et al., 2003). 
Similarly emissions data were obtained from FAQS 
study. More information on emissions data can be 
obtained elsewhere (Unal et al., 2003; Hu et al., 
2003). For biomass burning emissions First Order 
Fire Effects Model (FOFEM) Version 5, developed 
by Intermountain Fire Sciences Laboratory was 
utilized. In this model fuel type was assumed as 
natural fuel with long leaf pine trees. For some of the 
pollutants, such as speciated VOCs and NOx, 
emission factors provided by Battye and Battye 
(2002) were utilized. 

3.3. Static Grid Simulation 

To verify model efforts, a 4×4 km Static Grid version 
of the MAQSIP model was used in simulation for the 
selected episode. Lambert Conformal projection with 
parameters of 300N, 600N, and 900W, centered at 
400N and 900W, was utilized for the domain. The 
4×4 grid has 102 columns and 78 rows with 13 
vertical layers. The results of the Static Grid  run 
were compared with outputs from the FAQS project 
for the same location and time period. The 
comparison showed that Static Grid results were 
similar to FAQS results.  
A separate run was made with emissions including 
fire as well. The difference between the 
concentrations of these two simulations yields an 
static grid “brute-force”. 

3.4. Adaptive Grid Simulation 

The adaptive grid also used the same domain 
definitions as for the static grid. In adaptive runs 
inert fire tracer concentrations are used to calculate 

the weight function that drives the adaption. The 
tracer is assumed to be a product of the fires at Fort 
Benning emitted at the same rate as NO emissions 
from fire. The tracer is transported and deposited the 
same way as other fire species but it is non reactive. 
Two different runs were made with the Adaptive Grid 
model. These runs include: one run with base 
emissions; and one run with base emissions plus fire 
emissions, which also has the direct sensitivity 
calculations. In both runs the grid adapted to the 
same fire tracer, therefore the grids are identical in 
both simulations. The difference between the 
concentrations of these two simulations yields an 
adaptive grid “brute-force”. 

4. RESULTS AND DISCUSSIONS 

First we compared the Adaptive Grid model with the 
Static Grid version. The tracer concentrations 
predicted by the two models as a result of fires at 
Fort Benning are shown in Figures 2 and 3. On 
August 15, 2000 at 19:00 UTM, two different fires 
happened at two different cells of the Static Grid, 
which is clearly observed in Figure 2. The fire to the 
south is emitting at a higher rate than the northern 
one, since the area burned is almost 1.5 times 
bigger. It should be noted that Static Grid distributes 
emissions uniformly to the whole cell area where the 
fire takes place. 

Figure 3 presents concentrations of the inert fire 
tracer as well as the grid orientation around Fort 
Benning at 19:00. From Figure 3 it is clear that 
Adaptive model increases the grid resolution around 
the fire at Fort Benning. Figure 3 also gives an 
enlargement of the figure where adaption occurs. At 
the points where fires occur, adaptive grid size 
reduces almost to 400m by 400 m, one tenth of the 
Static grid size. As seen in Figure 3, two distinct 
plumes from fires at Fort Benning are clearly visible 
during the simulation. Note that concentration 
gradients are much better resolved by the Adaptive 
Grid model than by the Static Grid model. 

Another way of evaluating the results of an air 
quality simulation is to compare them to air quality 
observations from the existing monitoring network. 
Unfortunately, there are no measurements along the 
trajectory of the fire plumes during the simulated 
period. Special air quality measurements are 
required for this purpose.  
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Figure 2 Static Grid Result for Inert Fire Tracer Concentrations (ppm) 

 

 

Figure 3  Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm) 
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Researchers at Georgia Tech are currently collecting 
air quality data in the vicinity of Fort Benning as part 
of a study supported by SERDP to characterize 
pollutants emitted from prescribed burning 
(Baumann et al., 2003). Data from this study were 
not available for the selected episode. However, as 
part of our future work we are planning to utilize 
these data for evaluation of our model. 

Recall that another objective of this study was to 
utilize direct sensitivity method to estimate sensitivity 
of ozone to NO emissions from fires. For this 
purpose, we equipped our Adaptive Grid model with 
direct sensitivity technique.  Figure 4 presents this 
sensitivity in the afternoon of August 15. While the 
fires reduce the ozone concentrations near the 
source by as much as 16 ppb, they result in an 
increase by as much as 7 pbb further downwind. 
Such a distinction between the near and the far field 
impacts is not so clear in the “brute-force” 
sensitivities calculated by the Static Grid model, as 
shown in Figure 5. The impacts of the fires on the air 
quality in Columbus are minimal on this particular 
day.  

5. CONCLUSIONS AND FUTURE WORK 

The objective of this study is to determine the air 
quality impacts of biomass burning on the 
surrounding environment. Fort Benning military 
reservation, Georgia, was utilized as a case study.  

Current air quality models lack the capability of 
dealing with multi-scale air quality problems. In this 
study we utilized an Adaptive Grid model which 
inherently has the ability of continuous multiscale 
gridding. This method also reduces uncertainty in air 
quality predictions by clustering the grid nodes in 
regions that would potentially have large errors in 
pollutant concentrations.  

We successfully implemented the Adaptive Grid 
model in our study and observed that concentration 
gradients are much better resolved by the Adaptive 
Grid model than the Static Grid version. This is due 
to the fact that Adaptive Grid model has 400m by 
400m grid cells at locations where fires occur 
compared to 4km by 4km Static Grid cells.  

It should be noted that we did not have the air 
quality observations data to compare our simulation 

results for the selected episode. However, we are 
going to compare our results to a database that is 
being developed by researchers at Georgia Tech. 

Another important aspect of this study is to 
implement direct sensitivity technique to our 
Adaptive Grid model. We successfully achieved this 
task and showed that our results are superior to the 
results of “brute-force” technique that we utilized with 
the Static Grid version. The Static Grid can not 
resolve the difference between the near and far field 
impacts as Adaptive Grid does. It was found that the 
impact of the fires ranged from 16 ppb reduction to 7 
ppb increase in ozone concentrations. The impact of 
the fires on the air quality in Columbus area was 
minimal during the selected period.  

Overall, we successfully incorporated two new 
techniques into a regional-scale air quality model. 
This study showed that Adaptive Grid model 
equipped with direct sensitivity method can 
accurately determine the impact of small-scale 
emission events on the air quality in larger scales. 
We showed that these techniques can be utilized to 
determine the impact of biomass burning.  
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Figure 5. Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions 

 

 

 
Figure 4 Static Grid Result for Brute Force Sensitivity of O3 (ppm) to Fire Emissions 

 
Figure 5 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions 
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Endangered Species Act Clean Air Act

Motivation
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•The endangered Red Cockaded Woodpecker 
(RCW) resides only in the mature long-leaf 
pine forests.

•Most of the forests are on federal and military
lands.

•These ecosystems require periodic burning to 
maintain health.

•Prescribed burning is a safe and effective 
alternative to natural fire regimes.

Motivation
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Gridded Daily Maximum Hourly Averaged Surface Ozone Concentrations 
for 12-km grid (left) and 4-km grid (right).
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Study Area: Fort Benning, GA
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Methodology

• Adaptive Grid Modeling

• Direct Sensitivity Analysis
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Adaptive Grid Modeling

• Inadequate grid resolution -- Important source of uncertainty in 
air quality models. Adaptive grids offer an effective and 
efficient solution.

• Our adaptive grid technique is a mesh refinement algorithm 
where the number of grid cells remains constant and the 
structure (topology) of the grid is preserved.

• A weight function controls the movement of the grid nodes 
according to user-defined criteria. It automatically clusters the 
nodes where resolution is most needed.

• Grid nodes move continuously during the simulation.  Grid 
cells are automatically refined/coarsened to reduce the solution
error. 
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Adaptive Grid Modeling
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• Define first order sensitivities as

• Take derivatives of

• Solve sensitivity equations simultaneously
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Data Preparation

• Episode: August 15-18, 2000 (Hugh Westburry @ Fort 
Benning provided the fire data)

• Meteorology Data: MM5 (FAQS)

• Base Emissions: FAQS-2000 Inventory

• Biomass Burning Emissions: FOFEM V5 + Battye and 
Battye (2002)
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Fire Tracer: Adaptive Grid 
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O3 Sensitivity to FIRE 
Static + Brute Force
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O3 Sensitivity to FIRE 
Adaptive + Direct Sensitivity
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O3 Sensitivity to FIRE 
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Conclusions

• Adaptive Grid Modeling with Direct Sensitivity 
Methods were successfully implemented to 
determine the impact of biomass burning on the 
surrounding environment

• The impact of fires ranged from 16 ppb reduction to 7 
ppb increase in O3 concentrations. Impact on 
Columbus area is minimal due to wind directions

• Concentration gradients were better resolved by 
Adaptive Grid

• Direct Sensitivity compared to Brute Force, better 
differentiated near and far field impacts 
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Future Work

• Emissions Inventory: 
– Better emissions estimation for biomass burning

– Plume Rise calculations

• Comparison with Monitoring Data:
– “Prediction of Air Quality Impacts from Prescribed 

Burning: Model Optimization and Validation by Detailed 
Emissions Characterization “ with Dr. Karsten Baumann 
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Adaptive Grid Modeling for Predicting the Air Quality  1 

Impacts of Biomass Burning 2 

Alper Unal and M. Talat Odman 3 

School of Civil and Environmental Engineering,  4 

Georgia Institute of Technology, Atlanta, Georgia 5 

Abstract 6 

The objective of this study is to improve the ability to model the air quality impacts of biomass 7 

burning on the surrounding environment. The focus is on prescribed burning emissions from a 8 

military reservation, Fort Benning in Georgia, and their impact on local and regional air quality. 9 

The approach taken in this study is to utilize two new techniques we recently developed: 10 

1) Adaptive grid modeling and 2) Direct sensitivity analysis. We equipped an advanced air 11 

quality model, MAQSIP, with these techniques and conducted regional scale air quality 12 

simulations. Grid adaptation reduces the grid sizes in areas that have rapid changes in 13 

concentration gradients consequently the results are much more accurate than those of traditional 14 

static grid models. Direct sensitivity analysis calculates the rate of change of concentrations with 15 

respect to emissions. This enabled us to isolate the effect of emissions from a specific source 16 

such as biomass burning. 17 

The adaptive grid simulation estimated large variations in O3 concentrations within 4×4 km2 18 

cells for which the static grid estimates a single average concentration. In one cell, the maximum 19 

of adaptive grid values was 28 ppb higher than the static grid value. On the other hand, the 20 

average of the adaptive grid O3 concentrations generally agreed well with the static grid 21 

concentration.  22 

The differences between adaptive average and static grid values of O3 sensitivities were more 23 



 
2

pronounced. The sensitivity of O3 to fire is difficult to estimate using the brute-force method 1 

with coarse scale (4×4 km2) static grid models. The qualitative analysis shows that the adaptive 2 

grid model equipped with the DDM method can estimate the sensitivity of O3 to relatively small 3 

perturbations such as a prescribed burn more accurately. The static grid can not resolve the 4 

difference between the near and far field impacts as adaptive grid does. It was found that the 5 

impact of the fires ranged from almost 50 ppb reduction to 8 ppb increase in ozone 6 

concentrations. However, the impact of the fires on the air quality in Columbus area was 7 

minimal during the selected period.  8 

1. INTRODUCTION 9 

Wildland fires are essential in creating and maintaining functional ecosystems and achieving 10 

other land use objectives (Hardy and Leenhouts, 2001). However, biomass burning produces 11 

combustion byproducts that are harmful to human health and welfare (Hardy and Leenhouts, 12 

2001; Battye and Battye, 2002). Guided by the Endangered Species Act (ESA), the Department 13 

of Interior (DoI) through the Fish and Wildlife Service (FWS) mandates that some military 14 

installations and air force bases in the South-Eastern United States use prescribed burning to 15 

recreate the natural fire regimes needed to maintain the health of its native long leaf pine 16 

forestland thus protecting the habitat of the endangered Red Cockaded Woodpecker (RCW). 17 

Proper management may require as much as 1/3 of the forest to undergo treatment by fire each 18 

year. These activities, however, can contribute significantly to already burdened local and 19 

regional air pollutant loads. In recognition of the conflicting requirements between the ESA and 20 

Clean Air Act (CAA) statutes, the Strategic Environmental Research and Development Program 21 

(SERDP), supported by Department of Defense (DoD), initiated a program to determine the 22 
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effects of biomass burning from military installations. As part of this effort, we focused on 1 

determining the effects of biomass burning from military reservation, Fort Benning in Georgia, 2 

to the local and regional air quality, specifically, in Columbus metropolitan area.  3 

Fort Benning, which covers an area of approximately 182,000 acres, is located in the lower part 4 

of central Georgia and Alabama, six miles southeast of Columbus, Georgia. Thus emissions from 5 

this facility may be affecting the air quality in Columbus, which is reported to violate air quality 6 

standards for Ozone (EPD, 2003). The Columbus Environmental Committee is viewing the 7 

prescribed burning operation as a potential contributor to the ozone problem. This became a 8 

public relations concern for Fort Benning (Larimore, 2000).  9 

Approximately 30,000 acres must be prescribed burned each year at Fort Benning, during the 10 

growing season (i.e., March through August). This period falls within the “ozone season.” In 11 

order to restore the RCW habitat, longleaf seedlings are planted. Prescribed burnings continue 12 

from August through October for site preparation purposes, which also overlaps with the ozone 13 

season. These fires reduce unwanted vegetation that would compete with longleaf seedlings. 14 

Operational and safety constraints limit the burnings to an average of 300 acres per day 15 

(Environmental Management Division, 2000). For example, although an attempt is made to burn 16 

all RCW clusters during the growing season it is logistically impossible due to the number of 17 

clusters (75-80 annually) and scheduling conflicts with training. Natural firebreaks, such as 18 

roads, trails, drains, and creeks dictate the size of burn areas. All these limitations make it 19 

necessary to continue the burnings throughout the year. In realization of the Columbus ozone 20 

problem, the majority of the burnings (70-75%) were shifted to the January-April period, which 21 

is outside the “ozone season.”  22 
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Currently, the only external constraint on prescribed burning arises as a result of smoke 1 

management concerns.  Smoke complaints and the threat of litigation from smoke-related 2 

incidents / accidents are the primary concerns. Fort Benning follows voluntary (not mandated by 3 

state or federal government) smoke management guidelines in an effort to minimize the adverse 4 

impacts from smoke. An additional concern is the effect of prescribed burning on ozone levels in 5 

Columbus. Forest fires produce nitrogen oxide and hydrocarbon emissions that form ozone 6 

(Cheng et al., 1998; Battye and Battye, 2002; Ottmar, 2001). These pollutants may be 7 

transported downwind, mix with emissions from other sources and contribute to the poor air 8 

quality in urban areas. Sulfur dioxide and particulate matter emissions from forest fires are also 9 

of concern but, in general, they do not have a direct influence on the urban ozone problem. The 10 

ozone alert season is from 1 May through 30 September in Georgia. It is during this season that 11 

emissions from prescribed burning operations could affect smog levels in Columbus. In 12 

collaboration with the Partnership for a Smog-Free Georgia (PSG), Fort Benning is avoiding 13 

prescribed burns when meteorological conditions are conducive to ozone buildup. However, 14 

more complex methods are required to identify the real effects of biomass burning from Fort 15 

Benning on ozone problem in Columbus region. 16 

Main objective in this study is to improve the ability to model the air quality impacts of biomass 17 

burning on the surrounding environment. For this purpose we equipped an advanced air quality 18 

model, Multiscale Air Quality Simulation Platform (MAQSIP) (Odman and Ingram, 1996), with 19 

two newly developed techniques; Adaptive Grid Modeling, and Direct Sensitivity Analysis to 20 

accurately isolate and determine the effects of biomass burning on ozone formation. In this paper 21 

we first describe the methods utilized and then discuss the important findings of the study. 22 
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2. METHODOLOGY 1 

The atmospheric and chemical modeling systems currently used by various agencies tend to 2 

focus on a single scale that seems to be the most relevant to a particular air pollution problem. 3 

Global scale models address climate issues while regional scale models are used for the 4 

tropospheric ozone, regional haze or acid deposition studies. Urban scale smog models are being 5 

replaced with urban-to-regional scale models in most places where transport from other upwind 6 

sources play an important role. On the local scale, models are used to deal with problems such as 7 

accidental releases. The domains of local scale models are limited by design; therefore, they 8 

cannot be used for regional scale impact studies.  9 

One of the most advanced urban-to-regional scale models is the MAQSIP. Urban-to-regional 10 

scale models are used in developing emission control strategies for problems such as urban and 11 

regional ozone, acid deposition, or regional haze which is attributed to primary (emitted) and 12 

secondary (formed in the atmosphere) fine particulate matter. While these models are equipped 13 

with special tools to treat emissions from large power plants (Karamchandani et al, 2000), they 14 

lack the ability to resolve emissions from relatively small area sources such as those from 15 

prescribed burnings. To account for such area sources, the models rely on grid resolution. 16 

Prescribed burnings are performed over areas as small as one square kilometer (approximately 17 

200 acres). This scale is too small for typical regional applications. Therefore, emissions from 18 

prescribed fires are blended with emissions from many other sources within the same grid cell of 19 

regional scale models. This would make it impossible to conduct an impact study that would 20 

target emissions from biomass burnings.  21 

Another limitation of current air quality models is related to numerical errors involved during the 22 
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simulations. Let us suppose that the grid cell size could be reduced to one square kilometer by 1 

using nested-grid techniques (Odman et al, 1997). In that case, a typical prescribed burning unit 2 

would cover a single grid cell. The effect of having or not having prescribed burning emissions 3 

from a single grid cell would be a small perturbation for air quality models. As the perturbation 4 

gets smaller in size, numerical errors that affect the simulation results become more important. 5 

The results of an impact study such as the one proposed here would be highly uncertain if the 6 

models were used as is. Therefore, urban-to-regional scale models, in their current state, are not 7 

very reliable tools for determining the impact of prescribed burning emissions to the surrounding 8 

environment.  9 

The study of the impact of biomass burning from DoD facilities requires investigation of the 10 

interaction between various scales due to the fact that both the location of the facilities and the 11 

lifetimes of emitted pollutants are conducive to long-range transport. Below, we describe a 12 

methodology to improve current urban-to-regional scale air quality models with two modeling 13 

techniques. These techniques improve representation of the transport and transformation 14 

processes over a wide range of scales and provide more reliable source-receptor relationships. 15 

The product is a more reliable tool that can predict accurately the ultimate fate of pollutants 16 

emitted from specific sources such as DoD facilities.  17 

2.1. Adaptive Grid Modeling 18 

We developed an adaptive grid modeling approach to reduce the uncertainty in air quality 19 

predictions. By clustering the grid nodes in regions that would potentially have large errors in 20 

pollutant concentrations, the model is expected to generate much more accurate results than the 21 

traditional fixed, uniform grid counterparts. The repositioning of grid nodes is performed 22 
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automatically through the use of a weight function that assumes large values when the curvature 1 

(change of slope) of the pollutant fields is large. The nodes are clustered around regions where 2 

the weight function bears large values, thereby increasing the resolution where it is needed. Since 3 

the number of nodes is fixed, refinement of grid scales in regions of interest is accompanied by 4 

coarsening in other regions where the weight function has smaller values. This yields a 5 

continuous multiscale grid where the scales change gradually. Unlike nested grids, there are no 6 

grid interfaces, which may introduce numerous difficulties due to the discontinuity of grid scales. 7 

The availability of computational resources determines the number of grid nodes that can be 8 

afforded in any model application. By clustering grid nodes automatically in regions of interest, 9 

the adaptive grid technique uses computational resources in an optimal fashion throughout the 10 

simulation.  11 

A detailed description of the technique can be found in Srivastava et al. (2000). The adaptive 12 

technique was applied to problems with increasing complexity and relevance to air quality 13 

modeling. First, it was applied to pure advection tests (Srivastava et al., 2000). In a rotating cone 14 

test, the adaptive grid solution was more accurate than the fixed uniform grid with the same 15 

number of grid nodes. The error in maintaining the peak of the cone was only 13% compared to 16 

39% with the fixed grid: an accuracy that could only be achieved by using 22 times more grid 17 

nodes with a fixed uniform grid. Srivastava et al. (2001a) conducted a third test with concentric 18 

conical puffs of NOx and VOCs reacting in a rotational wind field. The parameters of this 19 

problem are such that, after a certain time, ozone levels drop below the background near the base 20 

of the conical puffs but they peak near the vertex of the cones. This feature was resolved by the 21 

adaptive grid solution while it was completely missed by the uniform fixed grid solution. When 22 

nine times more grid nodes were used, the fixed grid was finally able to reveal this feature but 23 
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not as accurately as the adaptive grid technique.  1 

Next, the adaptive grid technique was applied to the simulation of a power plant plume 2 

(Srivastava et al., 2001b). A two dimensional plume with a VOC/NOx emission ratio of 14% was 3 

advected with uniform winds and diffused over a background with a VOC/NOx ratio of 35. Other 4 

parameters were chosen to make the dispersion as realistic as possible. After about 12 hours of 5 

simulation, the composition of the plume was analyzed taking cross sections at various 6 

downwind distances. At 10 km downwind, the adaptive grid solution showed a NOx rich, but 7 

ozone deficient core. This feature, which is also observed in actual power plant plumes, was 8 

completely missing in the uniform grid solution, which artificially diffused the NOx and 9 

displayed highest ozone levels at the core of the plume. The adaptive grid, on the other hand, had 10 

ozone bulges developing near the plume edges. At a downwind distance of 30 km, these bulges 11 

continued to grow as NOx diffused slowly from the core to the edges (at a rate more in line with 12 

physical diffusion) and radicals were entrained into the plume. This plume structure started 13 

disappearing after about 80 km. At a downwind distance of 135 km, the plume was fully matured 14 

with an ozone peak at the center. The peak ozone concentration was larger than one predicted by 15 

the fixed uniform grid. A similar evolution of the plume was observed in the fixed uniform grid 16 

solution when the number of grid nodes was increased by a factor of nine. However, this solution 17 

was about five times more expensive than the adaptive grid solution.  18 

After these and other testing of the algorithm (Odman et al., 2001; Khan et al, 2003), finally an 19 

adaptive grid AQM was developed (Odman et al., 2002). The model was applied to an ozone 20 

simulation in the Tennessee Valley (Khan and Odman 2003). Ozone results from this application 21 

were evaluated and showed significant improvement over those from fixed grid models, even 22 

those employing up to four times more grid cells. In several cases the agreement with 23 
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observations was better compared to fixed grid models. When the reasons were investigated it 1 

was found that the complex source-receptor relationships, especially the long-range ones were 2 

much better resolved with the adaptive grid. 3 

2.2. Direct Sensitivity Analysis 4 

Sensitivity analysis is essential in determining source-receptor relationships and designing 5 

emission control strategies. The traditional “brute-force” method involves running the model 6 

several times, each time perturbing one type of emission (e.g., NOx or VOC) from a different 7 

source. If the perturbation is small, the brute-force method may not yield accurate sensitivities 8 

due to numerical errors propagating in the model. Our group has developed a new and powerful 9 

direct sensitivity analysis technique to study the response of air quality to various types of 10 

emissions (Yang et al, 1997; Hakami et al., 2003). Unlike the brute force approach, this 11 

technique is not limited by the magnitude of the perturbation and, in theory, it can be used for 12 

even infinitesimal changes in emissions. Therefore, the technique has the potential of improving 13 

current models to a level where they can be used for impact analysis of relatively small sources 14 

such as military installations. 15 

Air quality models are based on the atmospheric diffusion equation: 16 
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Here, ci is the concentration of the ith pollutant species, u describes the velocity field, K is the 18 

diffusivity tensor, Ri(c1, c2, ...) is the chemical reaction term and Si is a source term for certain 19 

types of emissions. The local sensitivity of the concentration of a species (e.g., ozone) to a 20 

certain emission type (e.g., NOx or VOC) from a particular source can be defined as: 21 
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Here, sij is the sensitivity of ci to emission Ej. Since the sensitivities to different emissions can 2 

vary by many orders of magnitude, it is necessary to define semi-normalized sensitivity 3 

coefficients, s*
ij.  4 
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where jE~ is the unperturbed emission field (i.e., without fire). Using direct derivatives of 6 

Equation (1) the following equation can be obtained for sensitivities.  7 
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Here, s*
ij is the semi-normalized sensitivity coefficient, Jik is the Jacobian matrix, εj is a scaling 9 

variable with a nominal value of 1, and δij is a binary variable (either 1 or 0).  10 

The similarity between Equations (1) and (4) allows us to use the same or very similar numerical 11 

solution techniques and calculate local sensitivities to emission sources simultaneously along 12 

with the species concentrations. This also makes the implementation of the technique in any 13 

model relatively straightforward. The technique is also computationally efficient because several 14 

of these sensitivities (the number being limited by available core memory) can be calculated 15 

simultaneously with a fractional increase in CPU time. The emission sources can be discerned by 16 

type as point, area, mobile, or biogenic, and by composition such as SO2, NOx, or VOC. Also, 17 

the location of the emission source can be specified, for example, as the boundaries of a DoD 18 
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facility (to the grid scale resolution). The technique would predict the sensitivity of air quality at 1 

any desired location in the modeling domain (e.g., sensitivity of ozone concentrations at a 2 

downwind urban center) to a fractional change in the emissions from the source of interest.  3 

The technique has been evaluated in an application to the Southern California where the 4 

sensitivities of ozone concentrations to the domain wide reductions of mobile and area sources of 5 

NOx were compared to a brute-force method (Yang et al., 1997). This technique was used in an 6 

integrated modeling system focusing, simultaneously, on ozone, particulate matter and acid 7 

deposition (Boylan, et al., 2001). We investigated the sensitivity of particulate matter 8 

concentrations to the reductions of SO2 and NOx emissions in the Southern Appalachian 9 

Mountains region. We also investigated the sensitivity of ozone concentrations to NOx and VOC 10 

emissions from different states, using state boundaries as sub-regions. As part of that project, we 11 

compared our method to the brute-force approach for ozone sensitivities to domain wide NOx 12 

and VOC emissions. The general agreement between the direct sensitivity and the brute-force 13 

method shows that the former is a reliable tool. Whenever we observed differences, we were able 14 

to relate the difference to the numerical errors associated with the brute force technique and 15 

show that the direct sensitivity method yields results that are more accurate.  16 

3. AIR QUALITY SIMULATIONS 17 

3.1. Episode Selection 18 

The episode selection is based primarily on the availability and quality of meteorological and 19 

emissions data as well as the impact potential of prescribed burns at Fort Benning on regional air 20 

quality. As part of Fall Line Air Quality Study (FAQS), we have already simulated several 21 

episodes during summer of 1999 and 2000 in Georgia using MM5 meteorological model and 22 
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SMOKE emissions model. The ideal scenario for our case study is one with southeasterly winds, 1 

biomass burning performed at Fort Benning and high ozone levels observed at Columbus. Based 2 

upon contacts with Land Management Brach at Fort Benning we obtained the locations, date, 3 

and time of biomass burning efforts (Westbury, 2002). There were biomass burnings at Fort 4 

Benning between August 15 and August 18 2000. Also ozone levels in Columbus region were 5 

over the standards at least four times and prevailing winds were southeasterly during the same 6 

period. Therefore, we decided to simulate the period from August 15 through August 18, 2000.  7 

3.2. Data Preparation 8 

Data preparation efforts included meteorological and emissions data preparation as well as post-9 

processing. Meteorological data were obtained from FAQS. Detailed information on 10 

meteorological data preparation is given elsewhere (Hu et al., 2003). Similarly emissions data 11 

were obtained from FAQS study. More information on emissions data can be obtained elsewhere 12 

(Unal et al., 2003; Hu et al., 2003). For biomass burning emissions First Order Fire Effects 13 

Model (FOFEM) Version 5, developed by Intermountain Fire Sciences Laboratory was utilized. 14 

In this model fuel type was assumed as natural fuel with long leaf pine trees. For some of the 15 

pollutants, such as speciated VOCs and NOx, emission factors provided by Battye and Battye 16 

(2002) were utilized. 17 

3.3. Static Grid Simulations 18 

To verify model efforts, a 4×4 km static grid version of the MAQSIP model was used in 19 

simulation for the selected episode. Lambert Conformal projection with parameters of 300N, 20 

600N, and 900W, centered at 400N and 900W, was utilized for the domain. The 4×4 grid has 102 21 

columns and 78 rows with 13 vertical layers. The results of the static grid  run were compared 22 
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with outputs from the FAQS project for the same location and time period. The comparison 1 

showed that static grid results were similar to FAQS results. A separate run was made with 2 

emissions including fire as well. The difference between the concentrations of these two 3 

simulations yields static grid “brute-force”. 4 

3.4. Adaptive Grid Simulations 5 

The adaptive grid also used the same domain definitions as for the static grid. In adaptive runs 6 

inert fire tracer concentrations are used to calculate the weight function that drives the adaption. 7 

The tracer is assumed to be a product of the fires at Fort Benning emitted at the same rate as NO 8 

emissions from fire. The tracer is transported and deposited the same way as other fire species 9 

but it is non reactive. Two different runs were made with the adaptive grid model. These runs 10 

include: one run with base emissions; and one run with base emissions plus fire emissions, which 11 

also has the direct sensitivity calculations. In both runs the grid adapted to the same fire tracer, 12 

therefore the grids are identical in both simulations. The difference between the concentrations of 13 

these two simulations yields an adaptive grid “brute-force”. DDM sensitivity results were 14 

compared with “brute-force” and it was observed that differences were within the bounds of 15 

previously reported differences (Hakami et al., 2003). Only DDM sensitivities will be used 16 

hereafter.  17 

4. RESULTS  18 

First we compared the adaptive grid model with the static grid model. The tracer concentrations 19 

calculated by the two models as a result of fires at Fort Benning on August 15, 2000 at 19:00 20 

Greenwich Mean Time (GMT) are shown in Figures 1 and 2. During this period two different 21 

fires happened at two different locations. The fire to the south is emitting at a higher rate than the 22 
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northern one since the area burnt is almost 1.5 times bigger. The location of these fires can be 1 

seen in both static and adaptive simulation results.  2 

One of the significant differences between these simulations is the fact that static grid distributes 3 

emissions uniformly to the 4-km by 4-km cell area where the fire takes place. Adaptive grid, on 4 

the other hand, increases the grid resolution around the fire location as shown in Figure 2. At the 5 

points where fires occur, adaptive grid reduces cell size to 400m by 400 m or  one tenth of the 6 

static grid size. This provides adaptive grid the capability to distinguish two distinct plumes from 7 

the fires. For this reason concentration gradients are much better resolved by the adaptive grid 8 

model than by the static grid model. 9 

Another objective of this study was to utilize direct sensitivity method to estimate sensitivity of 10 

ozone to NO emissions from fires. We made a comparison between static “brute-force” and 11 

adaptive direct sensitivity results. Figures 3 and 4 present sensitivity of ozone concentration to 12 

fire emissions as estimated by static and adaptive grids respectively, in the afternoon of August 13 

15, 19:00 PM (UTM). While the fires reduce the ozone concentrations near the source by as 14 

much as 8 ppb, they result in an increase by as much as 7 pbb further downwind for this 15 

particular time period. Such a distinction between the near and the far field impacts is not so 16 

clear in the “brute-force” sensitivities calculated by the static grid model, as shown in Figure 3.  17 

5. DATA ANALYSIS 18 

5.1. Comparison of Ozone Estimates  19 

We performed statistical analysis to determine the differences between static and adaptive 20 

simulation results. For this purpose, we identified the adaptive cells that intersect with each static 21 

cell. Figure 5 presents an example for intersection of static grid cell with adaptive cells. For this 22 
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particular case, there are about 40 adaptive cells that fall in one static cell. For the intersected 1 

cells we recorded individual adaptive cell concentrations and also estimated a weighted average, 2 

based upon area, in order to compare to static cell values. Note that in this analysis we selected a 3 

region where changes in O3 concentration occurred due to fire events. Adaptive grid O3 4 

concentrations are very similar to static grid simulation results in the rest of the domain.  5 

Figure 6 presents a scatter plot of O3 concentration values for static and corresponding adaptive 6 

cell values for August 15, 21:00 PM (GMT). In this figure both average values as well as 7 

minimum and maximum values of adaptive cells within each 4-km by 4-km static cell are shown.  8 

One of the important finding in Figure 6 is that O3 concentrations of adaptive cell averages are 9 

very close to static cell results. The correlation coefficient of the regression is 0.9 and has a slope 10 

of 0.9 which is an indication of a strong linear relationship between average adaptive and static 11 

cell results. However, it should also be noted that adaptive cell averages tends to over predict 12 

lower concentrations and under predict higher concentrations as compared to static cell values. 13 

The variation in average adaptive results is slightly lower than static cell results. For this 14 

particular case, coefficient of variation, which is defined as the ratio of the standard deviation to 15 

the mean, is 8.1 percent in adaptive case and 8.6 percent in static case. The coefficient of 16 

variation in maximum and minimum values together is slightly greater with a value of 8.9 17 

percent. These values suggest that variability is about the same with maximum-minimum values 18 

of adaptive cells having the highest variability. It should be noted however that the number of 19 

data for this category is twice the static and average adaptive cells.  Another important point is 20 

the range of variability. Static grid O3 concentrations change between 62 ppb and 95 ppb, 21 

whereas average adaptive cells range between 63 ppb and 92 ppb. For the max/min values this 22 

range is between 62 ppb and 96 ppb. Similar results were obtained for other periods of 23 
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simulation where fire events were observed.  1 

Table 1 summarizes the comparison between adaptive and static grids for 20 different hours 2 

when fires occurred. As seen in Table 1, the range of variation is similar in adaptive 3 

maximum/minimum values and static values. The range is slightly smaller in adaptive averages. 4 

Parameters of regression between adaptive averages and static values are also given in Table 1. 5 

In most cases (15 out of 20) R2 values are greater than or equal to 0.9, and slopes are between 0.9 6 

and 1.04. There are, however, nighttime fire events where R2 is less than 0.85 and slope is less 7 

than 0.8. In general, it is observed that there is a strong linear relationship between adaptive 8 

averages and static values. In 16 cases, the slope of regression is less than 1.0 indicating that the 9 

adaptive average O3 concentration is less than the static cell values. These results are in 10 

agreement with the study conducted by Jang et al. (1995) where they found that lumped finer-11 

scale grid (i.e., 20km) produced less O3 than coarser grid (i.e., 80km) for equal size area. 12 

Another implication of the differences in adaptive and static predictions is at the local scale. 13 

Figure 7 shows O3 concentrations from adaptive and static grid simulations at a cell near the fires  14 

for selected time periods. Adaptive cell averages as well as minimum and maximum values of 15 

adaptive cells that fall in the 4-km by 4-km static cell are presented. Adaptive averages are 4 ppb 16 

more than static values on the average, and the difference ranges from -2 ppb to 18 ppb. For 17 

minimum and maximum adaptive values the average difference from static concentration is +6 18 

ppb, and it ranges from -6 ppb to 28 ppb. These findings suggest that there can be significant 19 

differences in O3 between adaptive and static grids at the local scale. For example, one static grid 20 

O3 is 47 ppb whereas one of the adaptive cells inside that static cell has a value of 75. This 28 21 

ppb difference may have important implications from a policy perspective.   22 
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5.2. Comparison of Ozone Sensitivities 1 

We did a similar analysis to compare sensitivity results from static and adaptive simulations. 2 

Figure 8 presents the comparison for the selected region on August 15, 21:00 (UTM). As in the 3 

case for O3 predictions, R2 and slope values indicate that there is a linear relationship between 4 

adaptive averages and static values for sensitivity. However, there is a high variability in 5 

individual adaptive cell values as shown by the minimum and maximum sensitivity values. 6 

Variation ranges from -8 ppb to 6 ppb for the maximum-minimum adaptive values, whereas it is 7 

between -6 ppb to 5 ppb in static grid. For the adaptive averages the range of variation is 8 

between -6 ppb to 5 ppb. Similar results were obtained for other periods of simulation where fire 9 

events were occurred. Table 2 presents a summary of these events. As seen in Table 2, variability 10 

in O3 sensitivity is smallest in adaptive averages. Maximum-minimum adaptive values have a 11 

higher variability than static values. Table 2 also presents parameters of regression between 12 

adaptive averages and static values. It is seen that most of the cases (15 out of 20) have R2 values 13 

greater than 0.85 and slope values are greater than 0.70. There are several fire events where there 14 

is weak correlation between adaptive averages and static values. One R2 value is 0.14 at the 15 

beginning of a fire. Others are during the nighttime events. In all these cases the sensitivity is 16 

mostly negative. The differences in the sensitivities estimated by static and adaptive grids are 17 

indicative of the scale-related uncertainty in modeling the impact of prescribed burns.  18 

6. CONCLUSIONS AND FUTURE WORK 19 

The objective of this study was to determine the air quality impacts of biomass burning on the 20 

surrounding environment. Fort Benning military reservation, Georgia, was utilized as a case 21 

study.  22 
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Current air quality models lack the capability of dealing with multi-scale air quality problems. In 1 

this study we utilized an adaptive grid model which inherently has the ability of continuous 2 

multiscale gridding. This method also reduces uncertainty in air quality predictions by clustering 3 

the grid nodes in regions that would potentially have large errors in pollutant concentrations.  4 

We successfully implemented the adaptive grid model in our study and observed that 5 

concentration gradients are much better resolved by the adaptive grid model than the static grid 6 

version. This is due to the fact that adaptive grid model has 400m by 400m grid cells at locations 7 

where fires occur compared to 4km by 4km static grid cells.  8 

The adaptive grid simulation estimated large variations in O3 concentrations within 4×4 km2 9 

cells for which the static grid estimates a single average concentration. In one cell, the maximum 10 

of adaptive grid values was 28 ppb higher than the static grid value. On the other hand, the 11 

average of the adaptive grid O3 concentrations generally agreed well with the static grid 12 

concentration. The correlation coefficient between adaptive average and static grid values was 13 

about 0.9. The average O3 of adaptive cells had a slightly smaller range than the O3 of 14 

corresponding static cells with lower values on the upper end and higher values on the lower end. 15 

The differences between adaptive average and static grid values of O3 sensitivities were more 16 

pronounced. The sensitivity of O3 to fire is difficult to estimate using the brute-force method 17 

with coarse scale (4×4 km2) static grid models. Qualitative analysis showed that the adaptive grid 18 

model equipped with the DDM method can estimate the sensitivity of O3 to relatively small 19 

perturbations such as a prescribed burn more accurately. The static grid cannot resolve the 20 

difference between the near and far field impacts as adaptive grid does. It was found that the 21 

impact of the fires ranged from almost 50 ppb reduction to 8 ppb increase in ozone 22 
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concentrations. However, the impact of the fires on the air quality in Columbus area was 1 

minimal during the selected period. These findings have to be supported with quantitative 2 

analysis in the future. A monitoring program is underway to collect air quality data to support 3 

our modeling efforts.   4 

Overall, we successfully incorporated two new techniques into a regional-scale air quality model. 5 

This study showed that adaptive grid model equipped with direct sensitivity method can 6 

accurately determine the impact of small-scale emission events on the air quality in larger scales. 7 

We showed that these techniques can be utilized to determine the impact of biomass burning.  8 
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Figure 1 Static Grid Result for Inert Fire Tracer Concentrations (ppm) 
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Figure 2 Adaptive Grid Result for Inert Fire Tracer Concentrations (ppm)
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         Figure 3 Static Grid Result for Brute-Force Sensitivity of O3 (ppm) to Fire Emissions 
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Figure 4 Adaptive Grid Result for Direct Sensitivity of O3 (ppm) to Fire Emissions 
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Figure 5 Intersections of Static and Adaptive Cells 
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Figure 6 Adaptive versus Static Grid O3 Concentrations (ppb) for August 15, 21:00 
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Table 1 Comparison of Static versus Adaptive for O3 Concentration 

Range of O3 (ppb) Linear Regression  
(Adaptive Average vs. Static) Date Time Adaptive 

Average 
Adaptive 
Max/Min Static R2 Slope 

15 19:00 69 – 100 66 – 106 68 – 103 0.96 0.94 
15 20:00 66 – 99 66 – 104 67 – 101 0.92 0.92 
15 21:00 63 – 92 61 – 96 62 – 95 0.90 0.90 
16 18:00 55 – 99 55 – 101 55 – 100 0.97 1.04 
16 19:00 55 -100 54 – 103 55 – 97 0.95 1.01 
16 20:00 54 – 101 54 – 106 54 – 97 0.96 1.02 
16 21:00 54 – 102 54 – 104 53 – 101 0.96 1.00 
16 22:00 48 – 104 47 – 108 39 – 103 0.95 0.97 
16 23:00 26 – 103 18 – 105 10 – 100 0.90 0.94 
18 2:00 10 – 68 3 – 73 2 – 76 0.92 0.90 
18 3:00 7 – 64 2 – 72 2 – 75 0.91 0.91 
18 4:00 5 – 64 1 – 64 1 – 72 0.91 0.91 
18 5:00 32 – 64 27 -70 31 – 61 0.83 0.97 
18 6:00 45 – 63 43 – 65 40 – 61 0.65 0.82 
18 7:00 47 – 64 44 – 64 41 – 62 0.68 0.72 
18 8:00 43 – 60 42 – 61 39 – 59 0.66 0.73 
18 9:00 42 – 57 42 – 58 37 – 55 0.69 0.69 
18 10:00 35 – 58 34 – 58 31 – 55 0.93 0.82 
18 13:00 38 – 67 36 – 67 29 – 66 0.93 0.91 
18 14:00 53 – 75 51 – 77 44 – 74 0.91 0.90 
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Figure 8 Static versus Adaptive O3 Sensitivities (ppb) for August 15, 21:00 PM 
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Table 2 Comparison of Static versus Adaptive for O3 Sensitivity 

Range of O3 Sensitivity (ppb) Linear Regression  
(Adaptive Average vs. Static)Date Time Average 

Adaptive 
Max/Min 
Adaptive Static R2 Slope 

15 19:00 -9 – 4 -13 – 8 -8 – 7 0.69 0.77 
15 20:00 -5 – 5 -7 – 8 -5 – 6 0.88 0.78 
15 21:00 -6 – 5 -8 – 6 -6 – 5 0.90 0.85 
16 18:00 -2 – 2 -5 – 3 -2 – 4 0.14 0.23 
16 19:00 0 – 6 0 – 8 0 – 6 0.77 0.71 
16 20:00 0 – 3 0 – 5 0 – 4 0.93 0.81 
16 21:00 0 – 2 0 – 3 0 – 3 0.90 0.73 
16 22:00 0 – 2 0 – 3 0 – 2 0.88 0.74 
16 23:00 0 – 1 0 – 2 0 – 1 0.91 0.74 
18 2:00 -30 – 0 -33 – 0 -48 – 0 0.84 0.52 
18 3:00 -33 – 0 -38 – 0 -48 – 0 0.78 0.54 
18 4:00 -35 – 0 -40 – 0 -47 – 0 0.76 0.58 
18 5:00 -15 – 0 -18 – 0 -15 – 0 0.98 0.96 
18 6:00 -8 – 0 -9 – 0 -8 – 0 0.98 0.98 
18 7:00 -4 – 0 -4 – 0 -4 – 0 0.97 1.00 
18 8:00 -3 – 0 -3 – 0 -3 – 0 0.97 0.97 
18 9:00 -2 – 0 -2 – 0 -2 – 0 0.96 0.95 
18 10:00 -1 – 0 -1 – 0 -1 – 0 0.96 0.89 
18 13:00 -9 – 0 -12 – 0 -16 – 0 0.87 0.49 
18 14:00 0 – 2 0 – 2 0 – 3 0.95 0.67 
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