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Executive Summary 
 
This report summarizes and synthesizes the major findings and activities of the SERDP project 
“Application of Hyperspectral Techniques to Monitoring and Management of Invasive Plant 
Species Infestation” for the period from 2000 through 2006. The study explored the potential for 
hyperspectral remote sensing technologies (an imaging technology that measures many (100s) of 
contiguous narrow spectral bands across the visible to mid-infrared spectrum (400-2500 
nanometers), especially those having the capability of high spatial resolution, to provide a basis 
to detect invasive plant species.  If suitable, this technology could be used to improve mapping 
and monitoring for early detection and management of invasive plant species.  This study 
examined the potential for detection of invasive plant species on six military bases (Aberdeen 
Proving Ground, Camp Pendleton, Fort Benning, Vandenberg Air Force Base, Yakima Training 
Center, and Yuma Proving Ground) using hyperspectral imagery.  These military bases were 
located in different ecoregions of the continental United States allowing the project to test the 
detectability of invasive plant species that grow over a wide range of environmental and climate 
conditions.  Additionally, the study selected invasive plant species that had different growth 
forms, from herbs to vines and shrubs, and native ecosystems ranging from aquatic, salt marsh, 
riparian zone, chaparral, warm and cold desert scrub, to deciduous forest.     
 
The project used NASA’s airborne Advanced Visible Infrared Imaging Spectrometer (AVIRIS) 
with 224 contiguous narrow spectral bands, flown at high spatial resolution (~ 9-12 m2 pixels 
[picture elements]), over parts of each base.  The airborne flightlines were oriented to include 
invaded and uninvaded native vegetation and generally, multiple flightlines were acquired at 
each base in order to include a range of conditions and growth stages to test detection of invasive 
plant species and native species.  At two bases, flights were made in more than one season, 
providing a basis to comment on use of multiple-date data for invasive plant species detection.   
 
Significant Findings and Lessons Learned 
A number of significant findings and lessons learned were derived from this SERDP study.  The 
findings of this study are consistent with other recent studies of invasive plant species and other 
vegetation mapping studies using hyperspectral data, indicating that these results have general 
applicability. 

   
1.  Portability of Methods.  This study demonstrated that hyperspectral methodology has broad 
applicability for invasive plant species mapping at these six military installations and is 
extendable to other bases.  The analysis of hyperspectral imagery was tailored to address unique 
spectral, spatial, and temporal characteristics of each invasive plant species studied.  In each case 
these methods were able to identify the invasive plant species to satisfactorily high accuracy 
using field-acquired training data combined with standard processing methods and validated with 
independent field data.  
 
2.  Uniqueness of Invasive Plant Species within the Native Plant Community. The biology of 
the invasive plant species and the native plant communities must be considered in identifying the 
best choice for the spatial, spectral, and temporal resolutions.  Detection depends on the presence 
of a structural and/or biochemical difference between invasive plant species and native species.  

 ix
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Detection is best when different growth forms are present between the invasive and native 
species, e.g., an invasive grass in a shrubland or vise versa.  In cases where the growth forms of 
invasive and native species are similar, differences in size and density of invasive species vs. 
native contribute to detection. Timing data acquisition to periods when phenological differences 
(timing of seasonal growth) are greatest between native and invasive plant species also 
contributes significantly to detection.  Phenological differences capture both structural 
(herbaceous, woody, leaf type; flowering, fruiting) and biochemical differences (concentrations 
of pigments, water, organic matter (e.g., woody stems) between species.  Only hyperspectral 
imagery can capture differences in concentrations of plant pigments, canopy water, and canopy 
dry material and differences in soil properties and this information aids in detection. It is easier 
to differentiate structural differences (generally causing changes in light scattering) from 
biochemical differences (generally caused by absorption of energy at specific wavelengths) using 
hyperspectral imagery than multispectral imagery.  The ability to differentiate species using 
hyperspectral imagery will continue to improve as the technology improves and as radiative 
transfer models improve.  These are a class of physically based models that characterize the 
processes of light scattering and absorption that are due to leaf and plant canopy characteristics. 
As this understanding increases, the ability to discriminate species more precisely will improve. 
    
3.  Spatial Resolution. The best choice of spatial resolution requires some knowledge of the 
within class spatial (distributional) heterogeneity of the invasive plant species and the 
heterogeneity of the background vegetation classes.  For the sites studied, patches of invasive 
plant species were routinely detected in hyperspectral imagery at spatial resolutions of 3-4 m x 3-
4 m (9 to12 m2).  The actual pixel size measured depends on the instrument design and the height 
of the plane above the ground surface.  Hyperspectral image data was not available at higher 
spatial resolution therefore no conclusions are implied from this study about whether improved 
maps would result from better resolution.  However implications from geostatistical models like 
krigging, indicate that if spatial resolution is too fine (e.g., within canopy crown measurements) 
that the pixel-to-pixel variability may overwhelm correlation to spatial patterns at somewhat 
coarser scales.  Similarly, if the pixel size is larger than the spatial resolution where correlations 
occur, then the data is not useful.  Therefore, a geostatistical analysis of the spatial heterogeneity 
of the invasive species and the native plant background would provide the critical information 
needed to a priori determine the “best” spatial resolution.   
 
Most cases found that spatial resolutions higher than 4m x 4m pixels were not required, if the 
analysis used the full spectrum from the visible (400 nm) to the full extent of the reflected solar 
infrared (~2500 nm).  In this study’s examination of spatial resolution, in at least one case, the 
heterogeneity of the background plant community was actually best mapped at a coarse spatial 
resolution of 30 m when the full hyperspectral spectral resolution (in these data, 224 spectral 
bands) was available.  The improved mapping accuracy for invasive plant species in the larger 
pixels was attributed to reduced pixel-to-pixel heterogeneity of the background vegetation.  In 
this study, identification of invasive species required densities of at least 20% of the total plant 
canopy.  It is well established in the remote sensing literature that subpixel estimates of cover 
can be accurately estimated from hyperspectral data when sufficient spectral differences between 
class types (other plant species, soil, etc.) exist. 
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4.  Use of Field Data.  Field observations of patches of invasive plant species and non-invaded 
native communities should be located with Global Positioning System (GPS) points centered in 
homogeneous patches or as a polygon that maps the periphery of the patch. This method to 
obtaining training and validation data for the image analysis works well on small pixel sized data 
(e.g., the scale used in this study).  Obtaining training data this way is simpler than making field 
spectral measurements of the range of dominant species in the habitat. This is partially due to the 
limited time per day that good field spectral measurements can be made (near solar noon and 
under clear sky conditions) and near the date of the overflight (typical rule of thumb is about 2 
weeks on either side of the overflight).  If field data are used to create training data for image 
analyses, it is critical that the field data and images be geolocated as precisely as possible to true 
locations so that GPS located field data are related to the correct pixels.  The ability to geolocate 
pixels to correct geographic coordinates currently provides a practical limit of about one meter 
square spatial resolution. Nonetheless, given location errors it is difficult (except for very limited 
surveys) to geolocate pixels to base maps and to match field GPS data to pixels that are smaller 
than 2m x 2m.  Thus, training data is best if mapped patches are several pixels in extent.  

 
5.  Requirements for Hyperspectral Data.  In particular, this study found that although full 
spectrum measurements provided the best results when a biophysical difference (e.g., succulence 
vs. xeric foliage) was present between the invasive plant species and the native plant community, 
simpler methods like the band ratios that are used in spectral indexes were suitable for quick 
analysis.  When the invasive plant species is present in dense and relatively homogeneous 
patches, all methods, including the simpler spectral index methods, were sufficient for 
identification.  In no case did multispectral (4-6 band) analysis produce a better distribution map 
of invasive plant species than using the full resolution hyperspectral data. 

   
5.  Universality of Spectral Methods.  In many cases, several methods using full spectrum 
techniques were found to be sufficient for mapping, including linear spectral mixing, spectral 
matching, and principal components analysis methods.  The better detection derived from these 
methods is partially attributed to the smoothing that occurs across the full spectrum, relative to 
methods that use isolated bands.  The shortwave infrared (1500-2500nm) significantly 
contributes to the detection of invasive plant species in a vegetated environment, despite the 
small absorption signals present in this part of the spectrum and the lower signal-to-noise of the 
detectors.  Because multispectral instruments typically lack bands in the shortwave infrared, this 
is one reason why hyperspectral data produces better accuracy as is the redundancy that makes it 
possible to interpret an over-determined system. 

 
6.  Timing Image Acquisition.  The spectral information in the data is enhanced if the timing of 
the data acquisition maximizes phenological differences between the invasive plant species and 
the native species.  The goal in timing the collection of hyperspectral measurements is to 
capitalize on differences in plant cover and the fraction of bare soil and differences in the 
proportions of photosynthetic pigments, canopy water content, plant litter, and woody debris.  
Data collected in spring, when all species in a community tend to be actively growing, yields the 
poorest results for identifying invasive plant species in native communities.  Periods of near-total 
dormancy for native and invasive species also produce poor results. Species differences are 
accentuated by acquiring the airborne hyperspectral data sometime after the peak of the growing 
season, and thus providing greater separation of the invasive plant species and native species.  

 xi
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Separation of invasive plant species from background vegetation is further enhanced using 
multiple-date data, particularly by combining data from different seasons, again emphasizing 
differences in timing of phenologic cycles between the invasive plant species versus the native 
vegetation.  Declining costs and greater availability of airborne hyperspectral imagers by 
government and commercial vendors will make it feasible to time data collection to more 
optimal periods. 
 
7.  Minimum Detectability.  This study was not able to detect invasive plant species in the 
presence of background vegetation when concentrations were below 20-40% (depending on the 
specific invasive plant specie and background). This implies that the earliest phase of invasive 
plant species establishment is not detectable or only marginally detectable.  While this limitation 
may be improved by better quality higher spatial resolution data and/or improved analytical 
methods, it is likely that it cannot identify this first critical establishment stage from airborne 
data.  Similarly, field observations are likely to miss this phase also since field sampling is 
severely limited in extent relative to the synoptic observations in images.  It is likely that spatial 
modeling methods that predict risk of invasion and establishment of invasive species is the most 
approachable means for anticipating directions of spread once maps of current distributions of 
invasion are known.  

 
8.  Utilizing Spatial Information in Images.  Most image processing packages focus on 
analysis of the spectral bands and consideration of the spatial context of the pixels is not part of 
the package of analytical tools.  Recently, new programs e.g., eCognition, that consider the 
textural and spatial relationships have becoming more widely used. This spatial relationship 
information significantly adds to the spectral information in images.  Methods that use spatial 
classifiers or merged spatial and spectral techniques are expected to continue to have increased 
applications.  The hyperspectral datasets in this study were integrated into GIS databases with 
other site characteristics, e.g., soil, topography, and land use to both evaluate the invasive plant 
species identification and to develop an understanding of site conditions “at risk” for invasion.  
One type of spatial model, the Classification and Regression Tree (CART), was investigated in 
this study which showed that a GIS-based model can be developed to predict locations that exist 
on military installations that have characteristics that promote invasion by invasive plant species, 
thus implying that they are susceptible to invasion.  There are a number of other spatial models 
that also are appropriate to be used to predict conditions favorable to invasion, e.g., genetic 
algorithm models (GAMs).  Under the present limits of technology, a strategy focused on using 
the hyperspectral maps to identify where established patches of invasive plant species occur and 
then extending this to predict where propagules of invasive plant species might spread appears to 
be an achievable objective. 
 
9.  Integrating Imagery into a GIS Based Model Framework.  Detection of invasive plant 
species from native species is best when the range of variability of other conditions in the 
environment is minimized.  This can be done by eliminating all areas within the images that are 
irrelevant to the study (e.g., deleting open water pixels from further analysis when mapping 
terrestrial plant species).  This is first accomplished by stratifying the scene into generalized 
components, identifying the native plant communities subject to invasion, and other conditions 
that are not suitable for invasion (e.g., impervious and developed areas, water bodies, etc.). 

 xii
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Pixels identified in non-relevant strata should be masked out (unused or deleted) from all further 
analyses, which will improve the accuracy of the final maps of invasive species.  
 
10.  Portability of Methods.  The analytical tools used in this study were focused on image 
analysis methods available in commercial image processing packages because it was expected 
that these methods facilitate transfer of the technology to staff at military installations.  Prior to 
the study, it was anticipated that some highly specialized spectral matching tools for image 
processing would be required but instead several methods commonly used in commercial 
hyperspectral image analysis programs, including linear mixture analysis, principal components 
analysis, and spectral fitting algorithms like “spectral angle mapper” and a method termed 
“mixture tuned matched filters” provided good results.  It is thought that for many applications 
following a simple sequence of image analysis procedures, as described in the “user guide 
feature” later in this report, can be adopted successfully. 
 
11.  Technology Limitations and New Mapping Technologies.  The technological limitations 
are rapidly changing and hyperspectral imagers are becoming available with significantly better 
spectral resolution, over expanded wavelength ranges (380nm to 3000nm), and with higher 
optical fidelity than the measurements used in this study.  The next generation of high fidelity 
imaging spectrometers promise substantially better results than were obtained in this study 
(image data that was acquired from 2000-2004).  These newer instruments have higher photon 
detection rates, therefore can measure smaller pixels if this is necessary (currently smaller than 
1m2 pixels are possible).  Improved geolocation capability, including ortho-rectification of 
images performed in flight is now achievable. Additionally, the software for correcting 
atmospheric processes using radiative transfer models to account for scattering and absorptions 
by gases and aerosols in the atmosphere are also improving and thus, will improve the quality of 
the reflectance calibration, enabling better detection and characterization of surface conditions.   
 
During the period of this project, LiDAR data, airborne laser sensors that produce topographic 
maps of the ground elevation at 0.5m to 1m horizontal and a few centimeters of vertical 
resolution, and either the height of the canopy (a first and last return LiDAR) or a three-
dimensional profile through the canopy (a full waveform LiDAR) have become and are 
becoming widely available.  When combined with optical hyperspectral images, the merged data 
provide unprecedented information about the structure and biochemistry of species in the habitat, 
and the composition and density of the vegetation. These combined data have significant 
potential to revolutionize mapping species composition and detection of invasive species.  It is 
likely that such data will improve the ability to measure invasions at an earlier stage of 
establishment than observed in this study. 
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Summary Table: Study sites, target invasive plant species, associated habitat, 
detection results, relative success and findings 

Study Sites and 
Habitat 

Target Invasive Plant 
Species 

Best Analytical 
Method(s) 

Detection/Results 
Success/Findings 

Vandenberg Air 
Force Base 
Coastal Dunes 

Iceplant - Carpobrotus 
spp. (C. edulis, C. 
chilensis, hybrids) 

Maximum 
Likelihood on 
Minimum Noise 
Fraction 

Pixel sized patches 
identified; high 
accuracy  

Vandenberg Air 
Force Base 
Chaparral 

Jubata Grass Maximum 
Likelihood on 
Minimum Noise 
Fraction 

Accuracy depends on 
inter-pixel variability 
in background 
vegetation 

Camp Pendleton 
Marine Corp Base 
Grassland 
Riparian 

Fennel - Foeniculum 
vulgare 
 
Giant reed - Arundo 
donax 

Mixture Tuned 
Matched Filter 
 
Maximum 
Likelihood on 
Minimum Noise 
Fraction 

Fennel detected even 
when grasslands dry; 
Giant reed sometimes 
confused with other 
riparian species. 

Fort Benning 
Deciduous Forest 

Lovegrass - Eragrostis 
spp.  
Kudzu – Pueraria 
lobata 

Spectral Angle 
Mapper on 
Minimum Noise 
Fraction 

Lovegrass not 
observed under tree 
canopies but detected 
along roads; kudzu 
was mapped in some 
locations aided by 
texture characteristics

Yuma Proving 
Ground 
Sonoran Desert 

Mediterranean grass - 
Schismus spp.  
Asian mustard 
Brassica tournefortii 
Tamarisk - Tamarix 
spp.  (T. chinesis, T. 
aphylla) 

Schismus not 
measured due to 
drought;  Any 
method for 
Tamarisk adjacent 
to irrigated 
agriculture; only 
Mixture Tuned 
Matched in dry 
washes 

Schismus and 
Brassica not  
measured due to 
drought  
conditions at time of 
overflight; 
Most any method 
worked for  
Tamarisk receiving 
agricultural  
water in native 
landscape but  
near undetectable in 
dry washes   
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Yakima Training 
Center 
Great Basin 
Sagebrush 

Cheatgrass – Bromus 
tectorum 
Russian knapweed- 
Acroptilon repens 

Mixture Tuned 
Matched Filter 
 

Mapping improved 
using combined spring 
and summer dates that 
takes advantage of 
phenological 
separation 

Aberdeen Proving 
Ground 
Riparian 
Aquatic 

Common reed – 
Phragmites australis 
 
Hydrilla – Hydrilla 
verticillata 

In dense patches, 
Minimum Noise 
Fraction and 
physiological 
indexes; in mixed 
patches Mixture 
Tuned Matched 
Filters 

Phragmites detection 
successful in 
environments with 
simpler structure than 
more heterogeneous 
landscape; unable to 
map Hydrilla because 
of too few training 
data and specular 
reflection off water. 
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1. Introduction 

The rapid spread of invasive plant species is causing and has caused irreparable damage to the 
natural resources on military installations.  The problem of invasive plant species has accelerated 
in recent years and is recognized as one of the most serious and rapidly increasing ecological 
threats faced by military environmental managers.  Controlling and managing invasive plant 
species is a global environmental problem and is not unique to military installations. However, 
the significant role that ecosystem disturbance plays in facilitating the spread of noxious invasive 
plant species creates a challenge for military resource managers who must still fulfill the military 
mission while reducing or mitigating impacts on ecosystem structure and function.  Troop, 
vehicle, and other operational and training activities on military bases cause the types of 
landscape disturbances that facilitate the spread of noxious invasive plant species. These 
problems are exacerbated by the inadvertent transmittal of invasive pests during military 
transport of people and equipment around the world. DOD, along with other federal agencies, 
has been mandated to develop proactive management that protects native species and preserves 
the structure and function of natural ecosystems.   
 

2. Project Objectives 

This study investigated the use of hyperspectral imagery, also termed imaging spectroscopy, to 
map invasive plant species in the presence of native vegetation.  These remote sensing imagers, 
currently available on airborne and spaceborne platforms, have many narrow, contiguous 
spectral bands, producing a laboratory-like spectrum for each pixel in the image.  This project 
addressed two of the objectives listed in the SERDP Statement of Need (SON): 1) develop 
methods to inventory the spatial extent, and where applicable, the densities of established 
populations of noxious weeds; and 2) develop methods to estimate the likelihood of noxious 
weed expansions into and/or invasion of new habitats/areas on military bases.   To test the 
applicability and portability of image analysis methods under different environmental conditions, 
the study consisted of mapping 12 invasive plant species on six military bases.  All airborne 
hyperspectral data for this project was provided by purchase order from the National Aeronautics 
and Space Administration (NASA) instrument, the Advanced Visible Infrared Imaging 
Spectrometer (AVIRIS) which measures 224 bands of approximately 10nm bandwidth over the 
spectral range from 400 to 2500 nm.  This covers the visible (400-700nm) and reflected solar 
infrared (700-2500 nm) spectrum. It was anticipated that the spectral resolution of this 
instrument, when flown at low altitude to produce images of high, 9-12 m2 pixel spatial 
resolution, would provide sufficient spectral separability to distinguish homogeneous patches of 
the target invasive plant species.   
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3. Background 

3.1. Mapping Invasive plant species with Hyperspectral Imagery 
The principal objective of the project was to develop and test a hyperspectral methodology for 
mapping invasive plant species.  If successful, this technology could provide better and more 
accurate maps of invasive plant species on military installations that would allow base personnel 
to meet eradication and containment goals with more timely and cost effective management. A 
secondary goal was to develop methods with broad applicability to military installations that 
would also improve invasive plant species management at other bases. To provide the broadest 
basis for assessing transportability of the methods, the invasive plant species selected (Table 1)  
and native vegetation had a range of growth characteristics (herbaceous, grasses, shrubs, trees) 
chosen from military bases with different missions (Vandenberg AFB, Camp Pendleton, Yakima 
Training Center, Yuma Proving Ground, Ft. Benning, and Aberdeen Proving Ground), and 
located in different climate zones (Northwest Great Basin semi-desert, southern California Coast, 
Sonoran desert, Atlantic coast wetlands, and southeastern hardwoods).  In each case, the base 
personnel identified 2-3 invasive plant species of greatest management concern. Their potential 
for identification using hyperspectral data was evaluated and species were selected that had some 
potential for detection, although not necessarily the easiest to detect.  The goal was to test the 
methodology across a range of conditions that would help establish the general applicability of 
the technology. This set of species and bases allowed the project to compare invasive plant 
species and communities with different growth forms and climate conditions. The mix of 
invasive plant species and conditions at the different bases has allowed us to generalize results 
and compare methods.  In this study, the unique spectral, spatial, and temporal characteristics of 
each invasive plant species was studied to assess the applicability of hyperspectral imaging (HSI) 
sensors to provide invasive species mapping.  The project focused on using commercial image 
processing and analysis programs where appropriate, to facilitate technology transfer.   
 

3.2. Past SERDP Projects 
The Center for Spatial Technologies and Remote Sensing (CSTARS) had no prior experience 
with SERDP grants. 
 

3.3. Research and Development Proceeding this Project 
At the time the study was proposed in 1998, there were no specific examples in the literature for 
mapping individual species from hyperspectral data.  In fact, an influential paper by John Pierce 
(1994) questioned whether species identification was possible given the phenological changes 
plants undergo during the growing season, especially when combined with landscape 
heterogeneity that causes some individuals of a species to be stressed while others are at a fully 
healthy state.  While photogrammetric examples existed in 1998, these were primarily based on 
visual interpretation and expert knowledge of the interpreter over areas of very limited spatial 
extent. Similarly, examples using multispectral data were based on classifying bands using 
clustering algorithms, but observed over a limited range of environmental conditions. These 
studies were case specific and were generally not applicable in other environmental situations.    
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Prior to this SERDP study, CSTARS had significant long-term experience in using hyperspectral 
imagery to map plant community types in a range of ecosystems. CSTARS had also completed a 
demonstration study for NASA, the U.S. Geologic Survey (USGS), and National Park Service 
(NPS) on mapping leafy spurge (Euphorbia esula) at Theodore Roosevelt National Park in North 
Dakota (O’Neill et al. 2000) using NASA’s Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) hyperspectral imagery.  This was the first study to map an invasive plant species in a 
natural landscape, although it built on experience using mixture modeling to map chaparral 
communities and species in studies conducted with Dar Roberts (1998) of the Santa Monica and 
Santa Ynez Mountains. 
 

3.4. Criteria for Detection of Invasive Plant Species 
Many plant species are not appropriate for image-based detection because they are 
indistinguishable from surrounding species or are understory species whose direct detection from 
remote sensing is almost impossible (Joshi et al. 2004).  Successful approaches to detecting 
invasive species have generally capitalized on the presence of some unique phenological or 
biochemical properties that are measurable by hyperspectral instruments based on their spectral 
and structural characteristics. Detection is also relatively easy when the spatial patterns created 
by the invasive species are large and distinctive monocultures, e.g., leafy spurge, at scales of tens 
of meters to kilometers.   
 
Spectral characteristics of plants are derived from biochemical absorption features related to 
chlorophyll and other foliar pigments, water, proteins, starches, waxes, and structural 
carbohydrate molecules such as lignin and cellulose (Elvidge 1990; Wessman 1992; Fuentes et 
al. 2001; Penuelas et al. 1997).  Plants share a common metabolism, and therefore express a 
similar suite of biochemical compounds.  Identification generally targets differences in the 
abundance of these biochemicals between species.  For example, some biochemical features have 
little dependence on phenology, such as the strong water-absorption features associated with the 
succulent leaves of pickleweed (Salicornia virginica) (Sanderson et al. 1998) or iceplant 
(Carpobrotus edulis) (Underwood et al., 2003).  In contrast, many others depend on capturing a 
phenological event to identify the unique biochemical attribute, e.g., flower color of the target 
invader may be distinct, as the case for the yellow bracts of leafy spurge (Euphorbia esula) or the 
unique orange-brown color of Chinese tamarisk (Tamarix chinensis) prior to leaf drop.  In order 
to distinguish these features, the timing of image acquisition is of critical importance.  It is 
difficult to time an airborne mission to meet very brief phenological events, as scheduling is 
often impossible and cloud cover and other factors will limit the times that are suitable for 
observation.  These factors are even more constraining for satellites due to infrequent temporal 
coverage of high spatial resolution satellites. 
 

3.5. How Does Remote Sensing Distinguish Invasive Species? 
The characteristics of the particular invasive plant species in question determine whether remote 
sensing techniques are cheaper and more efficient than traditional field-based methods.  
Successful approaches to detecting invasive species capitalize on identifying unique 
phenological or biochemical properties that can be measured by hyperspectral imagers based on 
their spectral and structural characteristics, or their spatial patterns.   
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3.6. Biochemical characteristics 
Remote sensing images record the reflectance spectra of vegetation (and other land-cover 
elements such as soils and geologic minerals) within each pixel based on their interactions with 
electromagnetic radiation in the reflective spectral region. The biochemical and structural 
properties of these elements determine the observed reflectance.  Spectral characteristics of 
plants are derived from biochemical absorption features related to chlorophyll and other 
pigments, water, proteins, starches, waxes, and structural carbohydrate molecules such as lignin 
and cellulose (Elvidge 1990; Fuentes et al. 2001; Penuelas et al. 1997).   
 
Plants share a common metabolism; therefore express a similar suite of biochemical compounds.  
Identification generally targets differences in the abundance of biochemicals between species.  
For example as previously described, some biochemical features have strong absorption features, 
such as those associated with the succulent leaves of pickleweed (Salicornia virginica) 
(Sanderson et al. 1998) or iceplant (Carpobrotus edulis) (Underwood et al. 2003).  In order to 
distinguish these features the timing of image acquisition is of critical importance to successful 
mapping.  
 

3.7. Ecological Assessment of Native/Invasive Interaction 
The ecological research and fieldwork parts of the project were integral in development of the 
invasive plant species location information and ancillary information on density, plant condition, 
presence of other species, and other factors like recent disturbance and the type of disturbance 
(wheel tracks, fire, trampling, erosion, etc.).  The study used a combination of field data locating 
the distribution of invasive plant species and image analysis to develop maps of invasive plant 
species for the six bases.  Typically, as a minimum, the GPS location, species composition, and 
percent cover were recorded.  Sites for data collection were chosen partially from base 
information about locations of invasive plant species and the dominant vegetation types on the 
base.  Initially, for the SERDP study, more detailed data was collected on plant height, condition, 
and evidence for disturbance on the plots. One goal of sampling was to acquire some field data at 
locations across the imagery.  Additionally, site information (topography, roads, soils, etc.) was 
used to identify other areas where invasive plant species were likely to occur.  In some cases, due 
to military activities, some areas had restricted access to various parts of the bases and field 
crews were unable to fully sample all land cover strata, which in some cases, limited the ability 
to improve the invasive plant species maps that were produced.  
 
Field spectral measurements were made of the dominant native plant species, invading plant 
species, and bare soils that were used as reference spectra to create spectral libraries for the 
image analysis.  Later in the study, GPS locations of “patches” were used to identify vegetation 
and invasive plant species, generally at scales of 5 pixels x 5 pixels in extent (areas of 15-20m x 
15-20m in extent), that could be identified in the imagery and used to extract spectra of specific 
species from the corresponding geolocated pixels.  This method turned out to be equally or more 
effective than field-measured spectra for the 3-4m x 3-4 m (12-16m2) pixels measured by the 
airborne AVIRIS data. It was found to be significantly faster, therefore a more cost effective 
method, than collecting field spectral measurements with a field spectrometer.  
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The approach to image analysis adopted here was to obtain preliminary GIS information from 
the base’s digital database on topography, road and construction layers, and any vegetation, soil 
or geology maps available from the base. Additionally, some bases provided information on land 
use history that helped us identify possible sites of plant species invasion and impact of 
disturbance. These data sources were used in consultation with base personnel to develop a flight 
plan for the base that included known locations of the target invasive plant species and areas of 
the same native vegetation that were not invaded by the invasive plant species.  Field sampling 
locations were chosen to be within the flightlines and include areas of invaded and non-invaded 
vegetation.  This information was used in the GIS to characterize different landscape conditions 
and used presence and absence information to train the image classifiers and other data to 
evaluate the accuracy of the map produced in the analysis.   
 

3.8. GIS Model of Invasion 
Assuming invasive plant species can be mapped, there are many management questions that a 
spatial database can help answer. For example, what pre-conditions promote the spread of 
invasive plant species at the base?  How does this relate to military use and activities at the base? 
Can environmental conditions be identified (e.g., soil type, water flows and drainage, 
topography, etc.) or human activities (e.g., proximity roads, trails, and construction) that 
facilitate the spread of invasive plant species?  Such information should aid management and 
identify alternative actions that will reduce spread of invasive species.   
 
At Vandenberg Air Force Base, the information on invasive plant species and native species 
distributions extracted from the hyperspectral datasets was used to populate a GIS database. This 
allowed integration with other site characteristics, e.g., soil, topography, and land use, to create a 
Classification and Regression Tree (CART) model to predict possible locations where the 
invasive plant species could spread.  To a lesser extent this type of CART model was also 
applied at Fort Benning on the kudzu distribution and on tree decline at the base.   
 

3.9. Technology Transfer 
This project created a manual for SERDP to use in personnel training at military bases to assist 
in performing the hyperspectral image analysis methods that were found to be successful in this 
study.  The training manual and a “User’s Guide” for mapping invasive plant species using 
hyperspectral imagery are provided as an appendix to this report.  Once this report is approved, 
CSTARS will provide each of the six military installations with a copy of the report, training 
manual, datasets, and User’s Guide.  It is based on a modification of the tutorial the Environment 
for Visualization of Images (ENVI), but tailored for the methods found useful in this study.  This 
commercial software program is widely used by the research community for analyzing 
hyperspectral data.  Its pull-down menus are easy to use while the software tools in the program 
provide advanced capabilities.  A workshop was held at UC Davis in 2004 and at least one 
person from each base received training at UC Davis on the use of the methods that were found 
most efficient for detecting invasive plant species.  The project has provided an updated training 
manual to SERDP, based on feedback received after the SERDP workshop and a second 
workshop given to graduate students and others at Davis on mapping invasive species. 
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4. Methods and Materials 

4.1. Methods for Overall Project 
Hyperspectral imagery was used to map the following invasive plant species at the following six 
bases (Table 1).   
 

Table 1: Study sites, Target Invasive Plant Species and Associated Habitat. 

 

Study Site Target Invasive Plant Species Habitat 
Vandenberg Air Force 
Base 

Iceplant - Carpobrotus spp. (C. edulis, 
C. chilensis, hybrids) 

Coastal Dunes 

Vandenberg Air Force 
Base 

Jubata Grass Chaparral 

Camp Pendleton 
Marine Corp Base 

Fennel - Foeniculum vulgare 
Giant reed - Arundo donax 

riparian 

Fort Benning Lovegrass - Eragrostis spp.  
Kudzu – Pueraria lobata 

Deciduos Forest 

Yuma Proving Ground Mediterranean grass - Schismus spp. 
Asian mustard Brassica tournefortii 
Tamarisk - Tamarix spp.  (T. chinesis, 
T. aphylla) 

Sonoran Desert 

Yakima Training 
Center 

Cheatgrass – Bromus tectorum 
Russian knapweed plant species - 
Acroptilon repens 

Great Basin Sagebrush 

Aberdeen Proving 
Ground 

Common reed – Phragmites australis 
Hydrilla – Hydrilla verticillata 

Riparian 

4.2. Brief Description of Sites and Invasive Plant Species Studied 

4.2.1.  Vandenberg Air Force Base, California 
This base is located in the Pacific coastal margin physiographic province with a strong 
Mediterranean climate, in a climate transition zone between northern and southern California. It 
occurs on diverse landforms including dunes, hilly terrain and wetlands that are home to several 
endangered plant and animal species.  This study examined invasive plant species in two 
dominant southern California forms of low-stature shrub ecosystem types, the Coastal Sage 
Scrub, a diverse and globally rare habitat type occurring in coastal terraces and foothills below 
1,000 m occupying the dunes and coastal margin at Vandenberg and the Burton Mesa Mixed 
Chaparral.  The Coastal Sage Scrub type is termed soft chaparral due to the predominance of 
soft, drought-deciduous leaves in contrast to the hard, waxy-cuticle leaves characteristic of the 
sclerophyllous plants of California's chaparral communities.  Characteristic plants include 
California sagebrush (Artemisia californica), black sage (Salvia mellifera), white sage (Salvia 
apiana), California buckwheat (Eriogonum fasciculatum), coast brittle-bush (Encelia 
californica), golden yarrow (Eriophyllum confertifolium), with the larger shrubs toyon 
(Heteromeles arbutifolia) and lemonade berry (Rhus integrifolia), along with other shrubs and 
herbaceous plants, grasses, and in some places, cacti and succulents.  
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The California Gnatcatcher (Polioptila californica), is a critically endangered bird species 
endemic to this type and 13 plant species are recognized as threatened or endangered.  The Burton 
Mesa Mixed Chaparral is a unique form of maritime chaparral restricted to the aeolian sands of the 
Orcutt Formation, a few miles inland from the Pacific Ocean. This sclerophyllous chaparral is 
characterized by numerous endemic species, many found only in this community.  The 
dominants include manzanitas (Arctostaphylos rudis and A. purissima), varieties of Lompoc and 
Santa Barbara ceanothus (Ceanothus cuneatus var. fascicularis and C. impressus var. impressus), 
local varieties of flowering annuals and many other taxa.  Both vegetation types represent unique 
and endangered ecosystem types on the California coast.  
 
1.  Iceplant (Carpobrotus edulis) – an aggressive invader into endangered Coastal Sage Scrub 
that alters soil salinity and moisture, allowing it to form extensive monotypic stands.  Has 
succulent prostrate herbaceous species with bright red/yellow flowers; succulent leaves turn red 
in fall, increasing detectability at that time.  Causes changes in biochemical cycling and soil 
surface salt accumulation; restricts regrowth of native species. 
 
2.  Jubata grass (Cortaderia jubata) – an aggressive invader into coastal mixed chaparral and 
forms monotypic stands, taller than native shrub species.  Has a tall bunchgrass habit with large 
white terminal inflorescences and accumulation of dry leaves in canopy. Jubata grass provides a 
comparison with giant reed and common reed in terms of structure, but grows in open sparse 
shrublands while the two bamboo-like grasses are riparian and fresh to brackish marsh species. 
 

4.2.2.  Camp Pendleton Marine Base, California 
This base is located in the southern California Pacific coastal margin physiographic province 
having a strong Mediterranean climate. Camp Pendleton extends over approximately 53,872 ha, 
with coastal dunes and lowlands, and wetlands in the southern-most part of the Base. The steep 
west-facing hillslopes extend from the California coastal range along its eastern border to its 
ocean border.  Along the coastal margin, Camp Pendleton retains one of the largest remnants of 
relatively intact Coastal Sage Scrub on the southern California coast.  Although much of the 
hillslopes of the base are composed of extensively disturbed and fragmented patches of semi-arid 
grasslands, mixed chaparral, and along the Santa Margarita River and the other smaller creeks 
that flow through the base to the Pacific Ocean, riparian woodlands.  Riparian woodlands support 
several species of willow, cottonwoods, sycamore, coast live oak, ash, white alder, and a diverse 
flora of herbaceous plants, shrubs, and vines, including several listed and endangered species. 
 
1.  Giant reed (Arundo donax) –a very aggressive riparian grass species that forms dense, tall 
cane (up to 7 m height) or bamboo-like monospecific stands. Canopy is distinctive due to its 
height and density.  It changes hydrology and riparian margin ecology; due to its extensive water 
use during the dry season, producing abundant biomass that promotes more frequent wildfire in 
riparian zone during dry season.  
 
2.  Fennel (Foeniculum vulgare) –an aggressive invader into grasslands of the Coastal Sage 
Scrub and mixed chaparral semiarid shrublands of southern California.  This herbaceous species 
is difficult to measure from remote sensing due to the diffuse and sparse canopy and low leaf 
cover.  This species presents a significant detectability challenge for the analysis. 
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4.2.3.  Fort Benning, Georgia 
Fort Benning occupies 73,653 ha on the Chattahoochee River, along the Alabama-Georgia 
border, on the linear transition zone between the higher Piedmont physiographic province to the 
north and west, and the lower Coastal Plain physiographic province to the south and east.  The 
Southern Mixed Forest is composed of mixed pine on sandy soils interspersed with oak-hickory 
or beech-magolia hardwood forests that include several oak species and sweetgum.  Ft. Benning 
is a national heritage site; species diversity is high and there are 66 known State and Federal 
Threatened, Endangered, and Special Concern plant and animal species on the base.  The 
detection problem at this site is to identify a single broadleaf invasive plant species within the 
variable composition of a mixed forest class. 
 
1.  Kudzu (Pueraria lobata) –aggressive invasive liana using other species for support invading 
open disturbed sites, in forests, riparian zones, roadsides, and in abandoned fields or logged 
forest.  Kudzu is common in riparian zones in the eastern deciduous forest and southeastern 
mixed pine forest biomes.  Leafy crown grows over native vegetation, cutting off light and 
eventually killing the overgrown species. While distinctive by sight from ground, it is likely to 
be difficult to separate its foliage from the native vegetation it grows over in remote sensing data. 
The timing of its annual growth is largely in phenological synchrony with background 
vegetation, also contributing to difficulty in identification.  
 
2.  Weeping lovegrass (Eragrostis curvula) – this species has potential to be invasive and is 
under study at Ft. Benning to determine its risk.  The base has planted this grass species 
extensively for erosion control, a significant environmental management problem. As such, the 
base has identified this species as a top priority. This species is primarily planted along roads or 
on open land patches but could expand into the understory of the surrounding forest.  Because 
the base knows the locations where it has been planted for erosion control (even if they cannot 
provide all locations), these data can be used to train a detection algorithm.  Some sites may be 
planted in the understory of native vegetation and be undetectable or too sparse to be detected. 
 

4.2.4.  Yuma Proving Ground, Arizona 
This base, 336,700 ha established in 1943 for weapons testing, is located in southwestern 
Arizona in the hot Sonoran Desert physiographic province within the North American monsoon 
climate zone. The bi-seasonal rainfall pattern, with mild winter storms and intense summer 
thunderstorms, combined with a low total amount of annual rainfall define the characteristics of 
the Sonoran Desert. The Yuma desert is one of the most arid parts of the U.S., with low-stature 
low-density xeric shrubs, primarily composed of widely spaced creosote bush (Larrea 
divaricata) and white bursage (Ambrosia dumosa), which are among the most drought tolerant 
species known, and a limited diversity of other Sonoran shrubs. These species typically respond 
to winter precipitation and only grow abundantly in wet years.  Along the washes and riparian 
zones canopy cover is higher and palo verde (Cercidium floridum, C. microphyllum) and 
ironwood (Olneya tesota), saguaros (Carnegiea gigantia), ocotillo (Fouquieria splendens), 
elephant trees (Bursera spp.), and limberbush (Jatropha spp.) are common but which are often 
leafless unless water is available. Two dominant plant life forms distinguish this desert from 
other North American deserts, the tree legumes like palo verde and columnar saguaro cacti. The 
combination of growth forms, low plant density and low leaf cover of perennial species make 
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this site challenging to detect invasive species with hyperspectral imagery.  Cryptophytes and 
annuals grow for brief periods following the infrequent and unpredictable rains.  Annual species 
generally comprise more than half the plant diversity (up to 90% in the driest sites). The spatial 
and temporal variability of the growth of annuals, particularly in response to summer rainfall, 
contribute additional complexity to the analysis. 
 
1.  Salt cedar (Tamarix species) - aggressive phreatophyic riparian zone shrub invader, changing 
hydrology, fire cycle, and nutrient cycling of the habitat.  Large shrub/sub-tree form growing 
with willows and riparian trees along water courses and in other semiarid sites where water is 
available.  Tamarix out-competes native vegetation for water resources allowing rapid growth 
and accumulation of woody biomass, which enhances fire frequency.  Co-occurrence of palo 
verde and tamarisk in the riparian zone of desert washes allows evaluation of whether, given 
their similar growth forms, they can be distinguished in hyperspectral imagery. 
 
2.  There was an intention to attempt to map the invasive Mediterranean grass, Schismus spp. and 
Asian mustard, Brassica tournefortii, however due to the severe multi-year extended drought in 
the southwest during the timing of the overflights for this project, these species were dormant or 
died after very little growth. Thus, it was impossible to test the potential for hyperspectral 
imaging to detect these species. 
 

4.2.5.  Yakima Training Center, Washington 
The 100,000 ha Yakima Training Center is located in the upper part of the Yakima Valley, 
trending east-west and representative cold desert Great Basin physiographic province. Topography is 
complex with numerous minor valleys and ridges giving a variation in altitude of up to 0.6 km. 
This variation in local relief creates significant variation in microclimate over short distances. 
The valley has relatively hot, dry summers and cool, mild winters with light snowfall. Several 
steppe shrub communities occur within zones determined by microclimate and topographic 
conditions. Vegetation is dominated by a few species of low, small-leafed shrubs; with few trees, 
succulents or annuals. The dominant community is the big sagebrush (Artemisia tridentata) - 
bluebunch wheatgrass (Agropyrons spicatum) association, which often extends over large areas 
with shrub density typically at 25% cover or less. The detection problem is to distinguish an 
invasive grass or herbaceous species at the sub-pixel scale within the shrub community. 
 
1.  Cheatgrass (Bromus tectorum) – grass forming widespread patchy or monoculture infestations 
replacing Great Basin sagebrush scrub and bunchgrass scrub.  It can grow in the shrub 
understory, creating a continuous fuel distribution for wildfire spread.  Frequent wildfires reduce 
shrub replacement and promote long-term conversion of shrubland into grassland.  The difficulty 
of the remote sensing observation is to distinguish cheatgrass from native grasses and shrubs. 
 
2.  Russian knapweed (Acroptilon repens) – aggressive herbaceous species that forms a 
monoculture in Great Basin sagebrush scrub and stays green later than surrounding vegetation. 
Its ecology is also closely tied to the fire cycle. 
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4.2.6.  Aberdeen Proving Ground 
Aberdeen Proving Ground, established in 1917, is an ordinance testing base of 12,141 ha and 
adjacent open water, located on the northwestern shore of the Chesapeake Bay.  It has four 
distinct climate seasons, with maximum rainfall in summer and minimum in autumn.  It is 
drained by eight rivers and streams, with tidal estuaries forming at their mouths and wetlands 
characterized by fluctuating water levels and variable salinity.  Brackish wetlands have richer 
species diversity than salt marshes, and are largely composed of grasses, sedges, rushes, aster, 
and chenopod species, with distributions largely controlled by topography and tidal flooding.  
Common brackish species include Iva frutescens, Typha angustifolia, Scirpus olnei, S. robustus, 
Hibiscus palustris, Eryngium virginianum.   
 
1.  Common reed (Phragmites australis) - large cane or bamboo-like grass, similar in growth 
form but smaller than Arundo donax.  It grows in riparian and disturbed habitats with altered 
hydrology and topography and eutrophied fresh and brackish water.  The structure of common 
reed allows comparison to spectral detection of Arundo donax at Camp Pendleton. 
 
2.  Hydrilla (Hydrilla verticillata) – aggressive submerged aquatic herbaceous species growing 
in estuaries and fresh to brackish water habitats.  The difficulty is to determine presence when 
flooded under variable tide levels and in turbid water. 
 

4.3.  Remote Sensing Methods Used in this Study 
This section describes the methods that were found to be most consistently useful in mapping 
invasive plant species at the military installations. A summary of the methods that were best in 
detecting each of the invasive plant species for the site studies are shown in Table 2. Past 
experience in other studies supports the selection of these methods as the most commonly useful 
techniques. The descriptions of these methods, provided below, have been adapted from the 
Environment for Visualization of Images (ENVI) tutorial manual (Research Systems, 2002). 
 

4.3.1.  Spectral Angle Mapper 
The Spectral Angle Mapper (SAM™, ENVI, Remote Systems, Inc.) is an automated method for 
comparing spectra of image pixels to the spectra of reference endmembers (also termed “training 
classes”) (CSES, 1992; Kruse et al., 1993).  SAM treats each spectrum as a vector and 
determines the similarity between the unknown pixel spectrum and the reference spectrum by 
calculating the “spectral angle” between them.  A simple example is shown in Figure 1, which 
uses a reference spectrum (material A) and an unknown spectrum (material B) from a data set of 
n spectral bands. The reflectance of each material can be plotted in a 2-D scatter plot for each 
combination of bands in the data set.  A vector is then extended from the origin to the point of I-J 
reflectance for each material.  The 2-band spectral angle for the reference and unknown pixels in 
the I-J data space is the angle between the two vectors.   
 
The color of a material is defined by the direction of its unit vector in n-dimensional spectral 
space. The length of the vector relates only to how fully the pixel is illuminated, not its 
absorption features.  Because SAM uses only the direction of the spectrum, and not its length, all 
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levels of illumination are treated equally. Poorly illuminated pixels fall closer to the origin, but 
still lie on the same vector as brightly illuminated pixels. Notice that the angle between the 
vectors is the same regardless of the length.  
 
Table 2:  Site and species characteristics, and preferred mapping methods 
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Base State Invasive plant 
species 

Environment Species 
traits 

Best 
mapping 
method 

Vandenberg CA Iceplant Mediterranean, 
semi-arid chaparral Succulent ML on MNF 

Vandenberg CA Jubata Grass Mediterranean, 
semi-arid chaparral Grass ML on MNF 

Camp 
Pendleton CA Fennel Mediterranean, 

semi-arid chaparral 

Sparse 
canopy 
herbaceous 

MTMF with 
indexes 

Camp 
Pendleton CA Giant cane Riparian Robust reed ML on MNF 

Fort Benning GA Kudzu Temperate forest Vine SAM on 
MNF 

Fort Benning GA Love Grass Temperate 
meadows Grass SAM on 

MNF 

Yuma AZ Tamarisk – 
irrigated Irrigated desert 

Dense 
canopy 
shrub 

Any 

Yuma AZ Tamarisk – 
wash Desert 

Sparse 
canopy 
shrub 

MTMF 

Yakima WA Cheatgrass Semi-arid grassland 
Green & 
senescent 
grass 

MTMF 

Yakima WA Russian 
Knapweed Semi-arid grassland 

Sparse 
canopy 
herbaceous 

MTMF 

Aberdeen MD Common cane 
– Carroll Salt marsh Dense reed SAM on 

indexes 

Aberdeen MD Common cane 
- Spesutie Salt marsh Mixed reed MTMF 

Aberdeen MD Hydrilla Ocean shallows 
Submerged 
aquatic 
vegetation 

-  
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Figure 1: Two-dimensional example of the Spectral Angle Mapper 

 
The SAM algorithm generalizes this geometric interpretation to n-dimensional space. SAM 
determines the similarity of an unknown spectrum t to a reference spectrum r by applying 
Equation 1 (CSES, 1992):  
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where n equals the number of bands in the image. 
 
For each reference spectrum (also termed “endmember”, “training class”, or “pure type”) used in 
the analysis of a hyperspectral image, the spectral angle α is determined for each pixel spectrum 
in the image.  This value, in radians, is assigned to the corresponding pixel in the output SAM 
image, with one output image for each endmember analyzed. The derived spectral angle maps 
form a new data cube with the number of bands equal to the number of reference spectra used in 
the mapping. The user specifies a threshold angle which identifies the maximum allowable angle 
difference between the reference and the unknown pixel.  The pixel will be assigned to the 
reference class that it is most similar to, i.e., the one with the smallest spectral angle.  If α 
exceeds the threshold angle, the unknown will not be placed in the reference class and if it does 
not fit any reference class it is identified as “undefined”. 
 
The SAM algorithm was very useful for species and vegetation type mapping and it has been 
included it as part of the “standard” image processing package for the tutorial and for project 
data analysis.  The method works best if the vegetation classes are well separated spectrally, but 
less well with poorly separated classes.   
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4.3.2.  Spectral Indexes  
A large number of spectral indexes have been identified for use with both multispectral and 
hyperspectral datasets.  It is an important data reduction technique that can reduce the number of 
bands used in an analysis but retain the most important spectral information, by calculating 
spectral indexes relevant to plant properties and functions. 
 
Spectral indexes, in their simplest form, are ratios or linear combinations of two or more spectral 
bands (Jackson & Huete 1991), typically one band at a wavelength affected by the absorbing 
material of interest and one at a reference wavelength where the material does not absorb.  As 
shown in Figure 2, leaf reflectance spectra are dominated by the absorbance of chlorophyll and 
water.  Not surprisingly, spectral indexes are frequently derived to estimate these parameters.  
The most common are vegetation indexes, especially the normalized difference vegetation index 
(NDVI), which has been used in numerous published studies (> 2000 found searching ISI Web 
of Science).  These indexes are sensitive to green plant cover and provide an estimate of the 
“greenness” of an area.  As such, they have shown to be correlates of percent cover of 
vegetation, leaf area index (LAI), and plant biomass. 
 

 
Figure 2: Specific absorption coefficients for absorption in leaves by chlorophyll 
a+b (cm2 μg−1) on the left axis, of water (cm−1) and dry matter (cm2 g−) on the right 
axis (from Ustin & Jacquemoud 2002). 

 
Hyperspectral instruments allow the elaboration of spectral indexes beyond simple greenness 
indicators.  Since AVIRIS samples 224 bands between 400 and 2500 nm, it allows the detection 
of narrow absorption features.  High spectral resolution instruments have used these narrow 
features to elucidate foliar chemistry such as lignin, starch, protein and cellulose concentrations 
(Card et al. 1988, Fourty & Baret 1998, Curran 1989).  These techniques have proven so 
successful in laboratory settings that they can replace traditional wet chemistry extraction 
methods (Curran 1989).  The detectability of foliar chemistry suggests a potential for developing 
spectral indexes sensitive to subtle variations in leaf physiology.  Numerous physiological 
indexes now exist for detecting a range of leaf properties. 
 
Physiological index based classifications allow for explicit interpretations of physical properties 
and, therefore, can be preferable to typical statistical classifications for which the basis of the 
differences in an image data set are unknown.  Statistical classifications integrate all information 
contained within class spectra and capitalize on the fact that classes are different, but do not 
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provide any information regarding the basis of that differentiation.  Also, principal components 
based methods characterize differences based on the variance in the image dataset and, as such, 
are dataset dependent and cannot be extrapolated to other datasets.  Furthermore, these exploited 
differences may be habitat variables that only indirectly relate to vegetation cover or the explicit 
features of the species.  Physiological indexes do not have this limitation because they estimate 
physical parameters to differentiate classes and, as such, have potential for comparison to other 
datasets.  For example, Underwood et al. (2003) successfully mapped dense monotypic 
infestations of invasive iceplant at Vandenberg AFB using a simple water band index (Ustin et 
al., 1998), indicating that physiological differences (in this case succulence contributing to foliar 
water content) confer spectral uniqueness. 
 
The utility of physiological indexes was investigated for mapping invasive species at all six 
bases.  Of particular interest has been the generality of indexes across sites and conditions.  Do 
the same collection of indexes function well across ecological conditions, or are sets of indexes 
site- or species-specific?  Of the possible indexes, 19 physiological indexes were used of three 
basic types:  pigment indexes, foliar water indexes, and foliar chemistry indexes (Table 3 and 
Table 4).  The general conclusion obtained is that within each of the three general classes of 
indexes (pigments, water, and other foliar chemistry), due to correlations, indexes generally 
showed the same pattern, although the strength of the correlation varied between these indexes. 
When several indexes were combined in a classification, there was sufficient variability to 
produce a classification that did not mirror any one index. 
 
Pigment indexes focus on the absorptions of photosynthetic pigments.  Several specifically 
highlight chlorophyll, the predominant photosynthetic pigment of green vegetation.  In addition 
to chlorophyll, however, plants possess other accessory pigments, e.g., several carotenoid 
pigments like violaxanthin and zeathanthin.  The basis for using these indexes in a classification 
is that the relative values measured using these indexes is often consistent for a species or a 
vegetation type.  However, these patterns are not always conclusive and relative accessory 
pigment concentrations may vary between species or between individuals of the same species 
experiencing different stress levels (Zarco-Tejada 1998), therefore differences must be 
interpreted carefully.  See Table 3 for a listing of pigment indexes studied including descriptions 
of their physiological sensitivities. 
 
Water absorbs strongly throughout the solar infrared wavelengths.  Foliar water content thus 
heavily influences reflectance throughout these regions (Carter 1991).  In particular, vegetation 
spectra exhibit strong water absorption features at 0.97, 1.24, 1.4, and 1.9 µm (note units that 970 
nm = 0.97 μm, or a factor of 1000 difference; optical remote sensing typically uses both 
wavelength units interchangeably).  The depth of these absorption features corresponds to foliar 
water content, although not linearly. It is possible, using theoretical curves for water absorption, 
to relate the depth and breadth of the absorption feature to concentration of water. Invasive 
species with strategies of water uptake (e.g, tamarisk) or storage (e.g, iceplant) that differ from 
native vegetation are expected to display water index values that reflect these strategies, and thus 
be readily detectable.  An example of a water index and difference between a native species and 
invasive plant species is shown in Figure 3. 
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Table 3: Pigment based physiological indexes used in vegetation mapping. 

Index formula Details citation 
Pigment indexes 

SR, Simple Ratio 
R

NIR

R
R

 
Index of green vegetation cover.  
Various wavelengths used, depending 
on sensor.(eg: NIR=845nm, R=665nm) 

Tucker (1979) 

NDVI, Normalized 
Difference Vegetation Index 

RNIR

RNIR

RR
RR

+
−

 
Index of green vegetation cover.  
Various wavelengths used, depending 
on sensor.(eg: NIR=845nm, R=665nm) 

Tucker (1979) 

mNDVI, modified NDVI 
705750

705750

RR
RR

+
−

 

leaf chlorophyll content Fuentes et al. 
(2001) 

Summed green reflectance ∑
=

599

500n
nR  Index of green vegetation cover. Fuentes et al. 

(2001) 

PRI, Photochemical 
Reflectance Index 

570531

570531

RR
RR

+
−

 

Xanthophyll response to light ~ 
photosynthetic efficiency. 
Also sensitive to 
carotenoid/chlorophyll ratio 

Rahman et al. 
(2001) 

Red/Green ratio 
599500

699600

−

−

R
R

 anthocyanins/chlorophyll Fuentes et al. 
(2001) 

NPCI, Normalized 
Pigments Chlorophyll Ratio 
Index 430680

430680

RR
RR

+
−

 

total pigments/chlorophyll Peñuelas et al. 
(1995) 

SRPI, Simple Ratio 
Pigment Index 

680

430

R
R

 carotenoid/chlorophyll a content Zarco-Tejada 
(1998) 

NPQI, Normalized 
Phaeophytinization Index 435415

435415

RR
RR

+
−

 

chlorophyll degradation, detects stress 
at early states 

Zarco-Tejada 
(1998) 

SIPI, Structure Intensive 
Pigment Index 680800

445800

RR
RR

−
−

 

carotenoid/chlorophyll a concentrations Zarco-Tejada 
(1998) 

PI1, Pigment Index 1 
420

695

R
R

 plant stress status Zarco-Tejada 
(1998) 

PI2, Pigment Index 2 
760

695

R
R

 plant stress status Zarco-Tejada 
(1998) 

PI3, Pigment Index 3 
690

440

R
R

 vegetation health, based on chlorophyll 
fluorescence ratios 

Lichtenthaler et al. 
(1996) 

PI4, Pigment Index 4 
740

440

R
R

 vegetation health, based on chlorophyll 
fluorescence ratios 

 

Lichtenthaler et al. 
(1996) 
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Table 4: Water and other biochemical physiological indexes used in vegetation mapping. 

Index formula Details citation 
Water indexes    

NDWI, Normalized 
Difference Water Index 

1240860

1240860

RR
RR

+
−

 leaf water content Gao (1996) 

WBI, Water Band Index 
970

900

R
R

 leaf water content Peñuelas et al. 
(1997) 

Foliar chemistry indexes    

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

15101680

1510

1680

1log

log

RR

R
R  

foliar nitrogen concentration NDNI, Normalized 
Difference Nitrogen Index 

Serrano et al. 
(2002) 

NDLI, Normalized 
Difference Lignin Index ⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

17541680

1754

1680

1log

log

RR

R
R  

foliar lignin concentration Serrano et al. 
(2002) 

CAI, Cellulose Absorption 
Index 

0.5 * 
(R2020+R2220)-
R2100

based upon cellulose & lignin 
absorption features, used to 
discriminate plant litter from soils 

Nagler et al. (2000) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The bands used by the water band index (WBI) for sample vegetation at 
VAFB (left) and Yuma Proving Ground (right). 

 
Finally, several indexes have been proposed to estimate leaf chemistry.  As with pigment and 
water indexes, it is probable that different species display distinct proportions of foliar 
chemicals.  For example, the invasive vine kudzu is leguminous, forming a symbiotic association 
with nitrogen fixing root nodules.  As a result, it may have higher foliar nitrogen content than 
native species, and consequently higher normalized difference nitrogen index (NDNI) values.  
Note that the cellulose absorbance index (CAI; Nagler et al. 2000), in contrast to the other 
indexes studied, estimates the cellulose content of senescent plant matter, emphasizing the 
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distinctions between soil and plant litter.  This index has been used in riparian zones in semi-arid 
environments and may be most useful where healthy green vegetation is (seasonally) sparse or to 
detect fall senescence in mixed evergreen and deciduous ecosystems. 
All of the parameters estimated by the physiological indexes described here are in leaves, and as 
a result, all tend to be correlated through leaf area.  Obviously the several indexes estimating 
chlorophyll content will be related.  Additionally, there are correlations between various 
physiological parameters within plants, leading to further correlations between physiological 
indexes.  For example, the water indexes and NDNI are generally highly correlated with NDVI.  
This is because the more water and nitrogen a plant has access to, resulting in higher leaf water 
and nitrogen content, the healthier it is and the more it is able to invest in photosynthetic 
machinery, resulting in higher NDVI.  Of interest are the slight differences in spectral leaf traits 
across species and environments.   
 
The physiological index composite images are created by deriving a variance/covariance matrix, 
eliminating the most highly correlated bands, and then “stacking” the single band indexes into a 
final multi-band image.  These index images can be used to encapsulate the information 
contained within vegetation spectra in meaningful and interpretable ways.  Physiological indexes 
provide several benefits, including relatively straightforward interpretation of spatial patterns and 
differences between species.  Index methods are portable across species and sites because of 
their interpretability and the fact that the index value is not dependent on overall variance as are 
the principal component based methods. 

 

4.3.3.  Continuum Removal 
Continuum removal is a procedure that reduces the data volume by focusing the analysis on 
bands within specific absorption features.  It is a process that compares absorption features of 
pixel spectra to a background reference.  The “continuum” is a representation of what a 
reflectance spectrum would look like if no narrowband specific absorptions were present. It is 
created by fitting a convex hull to the pixel reflectance spectrum using straight line segments to 
connect local spectra maxima that span the bands of an absorption feature, as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 4: Example spectrum showing common absorption features and connecting 
           line segments for continuum removal analysis  
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The continuum line segments provide a common baseline from which to compare individual 
absorption features. This fitting to the background reflectance can be described as fitting “shrink 
wrap” to the spectrum.  
 
The continuum reflectance, Rc, is removed by dividing it by the actual reflectance, R, for each 
pixel in the image (Figure 5).
 
                                                                                                                            [3]
 cR

Rr ='  

The resulting image spectrum, /r’/, is equal to 1.0 where the continuum and the spectrum have 
equal reflectance, and less than 1.0 where absorption features occur, as shown in Figure 5. This 
figure shows typical plant and soil absorption features as noted in the lower reflectance 
spectrum. The upper spectrum shows the same features rescaled as a fractional % of the 
continuum (background) reflectance. This normalization and rescaling relative to the background 
allows quantitative comparison of data. 

 

 

Figure 5: Example of a continuum removal calculation for a mixed pixel spectrum 
showing typical plant and soil absorption features. The lower figure shows the 
reflectance spectrum of a pixel while the upper figure shows the same data with the 
continuum removed, leaving the individual absorption features as deviations from 
the background reflectance. 

 

The continuum removal technique works best when the target invasive plant species have 
absorption features significantly different (by wavelength or depth) than the background pixels.  
This technique may be particularly appropriate in differentiating between the following classes. 

 

• Succulent vs. non-succulent vegetation 
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• Green vegetation vs. dead vegetation 
• Vegetation vs. soil
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             The absorption feature is selected after a review of the image spectra and the hyperspectral data 
             is subset to the region containing the absorption features of interest.  

 

4.3.4.  Minimum Noise Fraction 

The minimum noise fraction (MNF™, ENVI, Remote Systems, Inc.) transformation is a two step 
principal component analysis, that is used to whiten the noise (i.e., reduce wavelength specific 
noise) and to reduce the dimensionality of the hyperspectral data (compress the data into fewer 
“statistically significant” bands). The MNF transform as modified from Green et al. (1988) and 
implemented in ENVI, is essentially two cascaded Principal Components Analysis (PCA) 
transformations.  

 

The PCA is a transformation method for distilling the data by reducing the dimensionality of the 
data set (i.e., a 224 spectral band data set has 224 spectral dimensions).  The image data as 
acquired from the sensor is a data cloud in multi-dimensional space with each band generating an 
axis of dimension.  When the data cloud is viewed in two or three dimensions, the shape of the 
cloud depends on the bands chosen to supply the axis of the visual plot.  Some bands are highly 
correlated and if they are chosen as axes there is very little variation in the data plot.  The PCA is 
a linear transformation that re-orients the axes to capture the spectral information in un-
correlated (orthogonal) axes.  The resultant transformed axes are linear combinations of the 
previous (spectral band based) axes, where each original band contributes to the new transformed 
band, proportional to the variance it explains.   

 
The PCA does the axis-transformation by performing an eigenvector decomposition of the 
sample covariance of the data.  The first axis is placed on a trajectory to capture the widest 
variation in the data cloud.  The second axis is orthogonal to the first and captures the second 
widest variation and so forth.  Figure 6 is a schematic demonstration of the first two axes.  

 
 

Figure 6: Representation of the first two eigenvectors from a Minimum Noise 
Fraction decomposition from the distribution of a hypothetical spectral data set.  
The figure shows the original spectral bands as band 1 and band 2 and the 
transformed bands as MNF TB1 a d MNF TB2. 
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The disadvantage in using the PCA reduction in image analysis is that the eigenvectors are based 
on data variance and not on the signal-to-noise ratio.  Since noise is detector sensitive and the 
solar signal is wavelength dependent (and band based) these sources of noise can contribute to 
large data variances, making this method unable to reliably separate signal from noise.   The 
MNF resolves this problem by using a two-stage PCA.  The first transformation, is based on an 
estimated noise covariance matrix that de-correlates and rescales the noise (whitens or spreads 
the noise across all bands) in the data. The second step is a standard PCA transformation of the 
noise-whitened data. The inherent dimensionality of the data is determined by examination of the 
final eigenvalues and the associated images.  
 
MNF data space can be divided into two parts: coherent eigenimages and noise-dominated 
images. By using only the coherent orthogonal images, and eliminating transformed bands that 
explain little of the variance, the noise is separated from the useful data. The MNF thus improves 
spectral processing results and substantially reduces the volume of the image data set. 

 
Figure 7: MNF Procedures in the ENVI program (Research Systems, 2002). 

 
Figure 7 summarizes the MNF procedure in ENVI. The noise estimate can come from one of 
three sources; from the dark current image acquired with the AVIRIS data, from noise statistics 
calculated from the image, or from statistics saved from a previous transform. Both the 
eigenvalues and the MNF images (eigenimages) are used to evaluate the dimensionality of the 
data.  Eigenvalues for transformed bands that contain information are typically an order of 
magnitude larger than those that contain only noise. The corresponding images are spatially 
coherent when viewed by the user, with little speckle, while the noise images will not contain 
any discernable spatial information. 
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4.3.5.  Analyzing at the Sub-Pixel Level 

The analyses discussed previously are used to assign pixels to classes, with one class per pixel.  
However, pixels are rarely pure (i.e., one material only) and each pixel contains a multitude of 
objects.  The previous classification techniques address this by defining mixed classes, where the 
spectral center of the cluster is the linear combination of the spectra of the individual objects.  
The classification of a pixel is dependent on the dominant spectral feature of the pixel and the 
definition of the classes.  The target invasive plant species is classified both as an individual 
class where the pixel is dominated by the invasive species, and as part of a dominant vegetation 
class (e.g., chaparral-iceplant class at VAFB).   
 
This technique works well for invasive plant species that grow in thick clusters and produce 
fairly strong signals within the pixel.  However, if the invasive plant species of concern does not 
dominate a feature in the pixels used (from 9 to12 meter square pixels in this study), it may not 
be identified as a class in the classification.  The next higher level of mapping techniques assigns 
multiple classes to pixels and estimates the portion that each class contributes to the overall 
spectrum of the pixel. 
 

4.3.6.  Mixing Models 
 
Spectral mixing occurs when materials with different spectral properties are represented within a 
single image pixel.  The simplest model of a mixed spectrum is a linear one, in which the 
spectrum is a linear combination of the pure spectra of the materials located in the pixel area, 
weighted by their fractional abundance.  The linear spectral unmixing model assumes no 
interaction between materials in a pixel. If each photon sees only one material, these signals are 
additive (a linear process).  This method approximates the abundance of materials in mixtures, 
but this assumption does work well in some circumstances (Boardman and Kruse, 1994).  There 
are many published papers that have successfully used this technique (more than 3000 papers 
cited on ISI Web of Science for a range of image and non-imaged based “spectral mixtures”).  
Spectral unmixing is one of the most widely used methods in hyperspectral image analysis since 
the fractional abundance is based on a least-squares fit across all bands.  
 
Mixed pixels can be visualized as points in n-dimensional scatter-plot space (spectral space), 
where n is the number of bands. If only two endmembers mix in two dimensions, the mixed 
pixels will fall along a line (Figure 8A). The pure endmembers are the two ends of the mixing 
line. If three endmembers mix, then the mixed pixels fall inside a triangle (Figure 8B) and the 
endmembers are the vertices.  Higher dimensions of mixing are represented by higher dimension 
geometric figures (e.g.: four endmembers mix within a tetrahedron, etc.). 
 
Mixtures of the endmembers fill in the space between the endmembers. All mixed spectra are 
interior to the convex hull that defines the location of pure endmembers.  Mixtures are inside the 
simplex formed by the endmember vertices because all pixel abundances are positive and sum to 
unity in a “real” mixture.  Mathematically, one can choose to use an “unconstrained” model that 
does not force the mixtures to sum to 1 and allow fractions outside zero and one.  Although when 
an unconstrained model is used, the mixtures may occur outside “real” bounds (e.g., less than 
zero reflectance), by analyzing a mixture this way one can determine whether the “best” 
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endmembers have been found. When endmembers are outside the range of 0-1, it may indicate a 
poor choice of endmembers, a missing endmember, or indicate that the endmember of interest is 
not a true endmember in the data space.  

 

          A)       B) 

 

 
Figure 8: Linear mixture  models.  A) two-dimensional mixing (two endmembers). 
This model is equivalent to a physiological index, where the values range from zero 
at point a to 100%. canopy cover at point b.  B) three-dimensional mixing (three 
endmembers), One axis in this model (a to b) represents from zero to maximum 
plant cover (or 100% soil to zero soil), and the axis (b to c) represents maximum or 
100% green plant cover to maximum or 100% dead/senescent canopy cover, and 
the axis (c to a) represents maximum dry plant cover to zero plant cover (or 100% 
soil cover).  The number of endmembers can be up to one more than the number of 
spectral bands although practical limitations allow only a few axes for any given 
data set. 

 
 
Identifying the set of pixels on the outside of the data cloud (i.e., on the convex hull) is another 
method that can be used to determine how many and which endmembers are present in an image 
and to identify their spectra. One can then decide whether these spectra are relevant to include in 
an analysis based on the purpose of the user.  The mixing model is extensible to higher 
dimensions and the number of mixing endmembers can be up to one more than the inherent 
dimensionality of the data.  Practically however, due to similarity of the spectral endmembers 
(i.e., not fully orthogonal to each other) and the presence of noise in the data, the number of 
spectrally unique endmembers is significantly less than the inherent dimensionality.  On a 
practical basis, the number of endmembers in images is probably half or fewer than the number 
of dimensions.  Selection of too many endmembers will result in unstable solutions. 
Additionally, when the “best fit” composition of each pixel is calculated, the presence of 
endmembers in the equation that are not present in the pixel is a source of error (i.e., the method 
tries to fit a fractional abundance for all endmembers).  Therefore it is best to keep the number to 
a minimum number of common classes. 
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4.3.6.1. Practical Unmixing Methods 
Two typical and very different forms of unmixing use 1) a priori known endmembers or 2) 
image derived endmembers.  Using a set of known or assumed spectral endmembers for which 
the identity is known, can be used to derive the apparent fractional abundance of each 
endmember material in each pixel. These known endmembers can be calculated from (1) 
spectrometer data measured in the field, (2) obtained from a library of pure materials, or (3) 
estimated from models.  
 
The mixing endmember matrix is made up of spectra from field measurements or a reference 
library. Unmixing is an over-determined linear least-squares problem. The mixing matrix is 
inverted and multiplied by the observed spectra to get a least-squares estimates of the unknown 
endmember abundance fractions. Constraints can be placed on the solutions to give positive 
fractions that sum to unity, as described above, or allowed to vary as mathematically determined. 
Shade and shadow are included either implicitly (fractions sum to 1 or less) or explicitly as an 
endmember (fractions sum to 1). While shade and shadow are not physical endmembers like a 
soil type of plant type, the reason for including them in an analysis is that they account for 
varying illumination in topographically variable conditions and some of the variation in the 
shadow component is related to canopy density and architecture. 
 
The second unmixing method uses the hyperspectral image data itself to derive the mixing 
endmembers (Boardman and Kruse, 1994).   The inherent dimensionality of the image spectra is 
determined using a special orthogonalization procedure related to principal components and 
evaluated using other tools in the ENVI software program. This method was found to work very 
well with GPS located information for mapping invasive species at the scale of 3-4m pixels. It 
was relatively easy to find patches of one to several pixels in extent that could be identified on 
the imagery.  This method was simpler and more effective than measuring field spectra and 
building a spectral library of materials for the analysis.  This method only requires field 
personnel to GPS locate some specimens and does not require other more specialized training or 
equipment. 
 

4.3.6.2. Mixture-Tuned Match Filters (MTMF) 
Mixture-Tuned Matched Filter™ (ENVI, Remote Systems, Inc.) is a hybrid method based on the 
combination of matched filtering and linear mixture theory (Boardman, 1998). This method 
combines the strength of the matched filter method with physical constraints imposed by mixing 
theory.  Matched filtering is a technique adapted from electrical engineering that maximizes the 
target-to-background contrast by suppressing the response of the composite unknown 
background, thus matching the known signature (Chen and Reed, 1987; Stocker et al., 1990; Yu 
et al., 1993; Harsanyi and Chang, 1994). It provides a rapid means of detecting target spectra 
based on matches to specific library or image endmember spectra. This technique produces 
images similar to unmixing, but its advantage is that it does not require all endmembers to be 
known. It does, however, suffer from high false positive rates, where materials may be randomly 
matched if they are rare in a pixel (thus not contributing to the background covariance). 
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The equation for the MF image is as follows: 
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Where: 
d = endmember spectrum 
x = target spectrum 
Σ = covariance matrix 
 
Mixture tuning uses linear spectral mixing theory to constrain the result to feasible mixtures and 
reduce false alarm rates (Boardman, 1998).  MTMF results are presented as two sets of images: 
1) the MF score (matched filter image presented as gray-scale images with values from 0 to 1.0) 
which provides a means of estimating relative degree of match to the reference spectrum (where 
1.0 is a perfect match); 2) an infeasibility image that indicates when mixing between the 
composite background and the target is not feasible. The best match to a target is obtained when 
the MF score is high (near 1) and the infeasibility score is low (near 0).  The MTMF was one of 
the best methods found for identifying invasive plant species when there was little contrast 
between the invasive plant species and the background.  

 

5. Results and Accomplishments 
 
This study successfully mapped eight of the original species identified for this project: iceplant 
and jubata grass (Underwood et al., 2003, 2006a), fennel, giant cane (DiPietro et al., 2002), 
kudzu and lovegrass (Cheng et al., 2007), cheatgrass and knapweed (Noujdina and Ustin, 2007) 
the project set out to map. Two species were mapped with mixed success (tamarisk and common 
reed), and we were not able to analyze three species (Mediterranean grass, Asian mustard, and 
hydrilla) due to insufficient site conditions.  The choice of analytical methods depended on the 
site conditions at the time of the airborne data acquisition.  Figure 9 shows an example for 
mapping three invasive plant species, iceplant, jubata grass and bluegum, within two native plant 
communities, Coastal Sage Chaparral and Burton Mesa Mixed Chaparral at Vandenberg AFB 
based on an analysis that used the MNF method to classify species using field measured training 
data.   
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Figure 9: Classification of five community types using 14 bands from the Minimum 
Noise Fraction Transform performed on AVIRIS imagery (224 bands, 16m2). 
Vandenberg Air Force Base, California (after Underwood et al. 2003; Underwood 
et al., 2006a) 

 
In this case, the succulence of iceplant is distinctive against the xerophytic shrublands it is 
invading, jubata grass, as a large bushgrass, has a very different canopy structure than the shrub 
species, and the bluegum tree species has a different growth form than the shrub species. 
 
Figure 10 provides a second example, from the eastern deciduous forest, mapping the invasive 
plant species, kudzu and lovegrass.  In this example, physiological indexes were used to 
distinguish these invasive species from the native hardwood and pine forests.  Lovegrass was 
detected primarily in open disturbed sites along roadsides while kudzu was located in forested 
sites and strongly influenced by site elevation. 
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Figure 10: Mixed southern mixed pine-oak-hickory forest within Fort Benning, a 
National Heritage Site in southwestern Georgia. The classified  image is a 
composite georeferenced mosaic of three AVIRIS flightlines (~6km width) shown by 
the yellow, red, and blue lines within the figure. Nine “physiological indexes” were 
used to create a classified map.  Indexes were: water (NDWI, WBI), dry plant 
material (CAI, SIPI), and green foliage (EVI, MSR, MNLI, NDVI*SR, SAVI*SR). 

5.1. Invasive Plant Species Mapping Accomplishments: Case Studies 
The following five case studies were selected to provide examples of the range of results derived 
from this project and highlight their applicability to other conditions. They provide a more 
complete summary of the findings at each individual site. Additional details of other 
accomplishments are available in the published papers.  
 

5.1.1. Case Study 1: Mapping Tamarisk (Tamarix spp.) Using Hyperspectral Image Data 
Tamarisk is a phreatophytic invasive plant species invading rangelands throughout the western 
US.  Tamarisk aggressively displaces native riparian species (Brotherson & Winkel 1986, Smith 
et al. 1998, Friederici 1995) and significantly alters hydrologic processes, wildfire frequency, 
and a wide range of other ecosystem properties.   
 
Infestations of tamarisk cause a decrease in water tables, desiccating marshes, springs, and 
streams (Vitousek 1990, Vitousek 1986, Loope et al. 1988, Friederici 1995, Johnson 1987, 
Busch & Smith 1995, Di Tomaso 1998). High levels of water use result in accumulating salts at 
the surface and in the root zone, increasing soil salinity by up to 50-fold (Berry 1970). The roots 
and stems trap sediments, narrowing channels, thus increasing flow rates, contributing to both 
increased flood frequency and intensity (Di Tomaso 1998, Zavaleta 2000a, Zavaleta 2000b). 
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Previous remote sensing studies have demonstrated the potential for mapping tamarisk 
infestations using broad-band aerial photography (Everitt & Deloach 1990, Everitt et al. 1992, 
Everitt et al. 1996).  These investigators found that tamarisk could be distinguished during 
periods when unique foliar colors are present, prior to leaf drop in late autumn.  Such 
characteristics require images to be acquired in a brief time period in the year which may not be 
predictable, and may vary with environmental conditions. Therefore, image acquisition 
scheduling becomes very difficult or impossible and adding significant cost to the data 
collection.  This study was undertaken to determine whether hyperspectral imagery could detect 
tamarisk independent of phenological conditions.  At the continental scale, Morresette et al. 
(2006) used the MODIS weather satellite sensor at coarse pixel resolution (1km) to map potential 
tamarisk habitat for the United States using a logistic regression model trained on field 
observations.  This approach is possible due to the association between water sources and 
tamarisk habitat and provides a basis for land managers to anticipate where an invasive species 
might spread, even when the direct detection of the invasive species is beyond the resolution of 
the instrument. 
 

5.1.1.1. Materials and Methods 

Three AVIRIS flightlines were acquired over the Yuma Proving Ground in southwestern 
Arizona on April  14th, 2002, during the driest year on record.  Two of these flightlines were 
analyzed.  The imagery had a nominal spatial resolution of 4 m x 4 m.  Ground reference GPS 
and spectrometer data were collected in April 2002 and April 2004.  Point data were collected 
for individual tamarisk shrubs and co-occurring native desert shrubs (palo verde, creosote, and 
ironwood), located in surrounding regions of irrigated agriculture and in the dry desert washes. 
These locations were selected to account for the variability in backgrounds where the target 
species could be found. 
 

5.1.1.2. Hyperspectral Analysis 
Images were atmospherically corrected to apparent surface reflectance using the radiative 
transfer package the Fast Line-of-sight Atmospheric Analysis of Spectral. Hypercubes 
(FLAASHTM developed by the U.S. Air Force Research Laboratory (AFRL) and the Spectral 
Information Technology Application Center (SITAC)).  All image processing was performed in 
ENVI.  Flightlines were georegistered and mosaicked together.  We tested multiple analyses on 
the image data in order to determine the optimal method to detect tamarisk.  Algorithms included 
Spectral Angle Mapper (SAM) classifications of the reflectance image trained with field 
spectrometer- and image-derived spectra, Maximum Likelihood (ML) classifications of the 
Minimum Noise Fraction (MNF) transformed image, ML classifications of physiological index 
images, linear spectral unmixing (SMA), and Mixture Tuned Matched Filter (MTMF).   
 
From the suite of analysis, MTMF was the only technique that successfully detected tamarisk in 
the dry desert washes.  This classification method may be especially useful in arid regions that 
are characterized by low plant cover and a high degree of mixed pixels with complex mosaics of 
various soil types.  In arid regions, a major limitation for remote sensing is the high degree of 
spectral variability within species (Okin et al. 2001).  As a result, the analysis was performed 
using several endmembers for each vegetation class.  Where possible, endmembers were selected 
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from both the irrigated agricultural region and the wash region.  Tamarisk was represented by the 
largest number of endmembers (n=5) to enhance classification accuracy, since tamarisk was the 
target species and its spectral characteristics had the highest within species variability.  The 
remaining classes were represented with two spectra each. A map was generated from the 
MTMF results by assigning pixels to the class receiving the highest MTMF score above a 
threshold of 0.3 (Figure 11).   
 

5.1.1.3. Results and Discussion 
Tamarisk was the most spectrally variable class (Figure 11).  Individuals in the area surrounding 
the irrigated agriculture were larger and had more vigorous growth and foliage than all native 
species and thus exhibited stronger “green” vegetation spectra.  Irrigated tamarisk occurred in 
pure pixels that were not mixed with the soil background and, as a result, were clearly distinct 
from all native vegetation and identifiable by all classification methods.  However, tamarisk also 
occurred in the dry desert washes, and in this setting tamarisk shrubs were of much smaller sizes 
and canopies, and supported significantly less green leaf area.  Pixels were therefore mixed and 
tamarisk spectra overlapped significantly with the native species (Figure 11) which were also in 
a dormant or semi-dormant condition in late summer during a multi-year drought. 
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Figure 11: Field GPS located points on MNF bands 2 (corresponding to the 
gradient between vegetation and bare ground) and 6 (brightness in the infrared 
and/or depth of water absorptions.  Asterisks are points collected in April 2002, 
squares were collected in April 2004. 
 

Because tamarisk occurred in mixed pixels in the desert washes, the combined unmixing and 
matched filter approach, MTMF, was necessary for detection.  The MTMF map of tamarisk is 
shown in Figure 12.  This map detected 81.46% of known tamarisk (including 8 of the 19 wash 
individuals) with a user’s accuracy of 91.16% (Table 5). 
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Figure 12: Tamarisk map generated from mixture tuned matched filter results.  
Pixels were assigned to the class with the highest MTMF score, if greater than 0.3. 
Unclassified pixels are white. 
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Table 5: Confusion matrix for MTMF tamarisk classification 

 
These results demonstrate that it is possible to map tamarisk with hyperspectral image data, even 
under extreme drought conditions where it is dormant or severely stressed.  Indeed, it is only 
possible to detect wash tamarisk with the detailed spectral information from hyperspectral image 
data combined with advanced image processing tools.  Although tamarisk may have reduced 
ecosystem impacts where it occurs in dry washes, it is important to monitor it invasive plant 
species throughout the range of its infestation; these plants will grow opportunistically, and serve 
as sources for future spread.   

 

5.1.1.4. Conclusions and Lessons Learned 
Mapping invasive tamarisk, such as that next to agricultural fields, is among the easiest of 
detection problems because it occupies a particular zone within the habitat and can often tap 
water resources unavailable to other species in the habitat.  The result is that tamarisk typically 
has a larger canopy and denser, healthier foliage than other species in the environment. Pixels of 
inappropriate habitat type can be masked to increase the likelihood of detection, and to further 
focus on the physiological differences between the native and invasive species.  However, in the 
case of the dry washes occupied by dormant species, it becomes difficult to distinguish tamarisk.  
The detectable spectral signal comes from plant photosynthetic pigments.  The strength of the 
spectral signal from dry plant material like woody stems and dry leaves is weak and can often be 
confused with spectral features from the soil, particularly in arid environments where different 
clay minerals, organic matter and carbonate may be present. 
 

5.1.2.        Case Study 2: Mapping Cheatgrass (Bromus tectorum) Using Multi-date AVIRIS 
Data 

Cheatgrass is the most aggressive invasive plant species invading the shrub-steppe ecoregion of 
the Great Basin.  The Yakima Training Center in eastern Washington is representative of this 
ecoregion type and has a major problem with management of cheatgrass. A mixture tuned 
matched filter (MTMF) algorithm was used to map percent cover of cheatgrass on a merged 
multi-seasonal dataset derived from two hyperspectral AVIRIS flightlines. The MTMF analysis 
utilized transformed bands derived from a minimum noise fraction (MNF) output. 
 

5.1.2.1. Materials and Methods 
AVIRIS hyperspectral images were acquired on July 27, 2000 and May 5, 2003. Spatial 
resolution of the 2000 and 2003 images were 3.8 m and 3.0 m, respectively. The datasets 
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consisted of the 224 contiguous spectral bands ranging from 400-2500 nm, at approximately 10 
nm per channel.  The two dates of data acquisition corresponded to two distinct life stages of 
cheatgrass: in May it is well established and vegetative whereas native vegetation is just 
emerging from winter dormancy.  In July, the cheatgrass lifecycle is complete and it has 
senesced or is dormant while native grasses are still green. In both cases, spectral signals of the 
invasive plant species are distinct from that of the background vegetation. It was hypothesized 
that combining data from these two different growth states of cheatgrass would improve the 
contrast with the surrounding vegetation, increasing accuracy of the invasive plant species maps.  
The field data used to train the classifier and to build and test the models was collected in spring 
2002, spring 2003, and summer 2005. Vegetation plots were sampled within the overlapping area 
of the two image dates. Data collected contained detailed descriptions of vegetation cover, 
including species names, percent cover, vegetation phenological stage, and type of soil where 
possible.  
 

5.1.2.2. Hyperspectral Analysis 

Both hyperspectral datasets (July 27, 2000 and May 5, 2003) were preprocessed in ENVI 

software and atmospherically corrected using Atmospheric CORrection NowTM (ACORN4, 
Imspec, Inc.). The resulting two 176-band, atmospherically corrected datasets were applied with 
the minimum noise fraction (MNF) rotation. MNF transformation was performed to reduce the 
dimensionality of the data and to prepare the input for the next step, mixture tuned matched 
filtering (MTMF). The first 22 MNF bands from each date where chosen as they contained the 
majority of the spectral variation. These were geometrically corrected and merged into a single 
dataset. Georectification was carefully executed to ensure that the datasets from different dates 
matched each other when combined. All three datasets (spring, summer and multi-date) were 
spatially trimmed to the aerial extent of the overlapping area. The ability of each dataset to detect 
cheatgrass using the MTMF algorithm was compared. 
 
MTMF was chosen as the preferred algorithm because it incorporates the best properties of 
spectral mixture analysis (SMA) and matched filters (MF) and avoids the drawbacks of both. 
The advantage of the MTMF method is that it only requires knowledge of the target species 
endmembers. Pixels which have an MF score above the background value and a low Infeasibility 
index are those considered to have a high probability of being identified correctly.  MTMF was 
run on the three datasets using training data of endmembers derived from pure dense cheatgrass 
plots, as determined from the field data. 
 
Multiple linear regressions based on the MF score and Infeasibility score versus field-estimated 
percent cover yielded linear coefficients that were used to fine-tune the cheatgrass abundance 
maps in each case. Cheatgrass abundance was estimated for each pixel using equation 5 after 
Pontius et al. (2005): 
 

Abundance = b1*Probability - b2*Infeasibility,                         [5] 
Where: 
 Probability – the probability output, MF score from MTMF image; 
 Infeasibility – the infeasibility output from MTMF image 

b1 and b2 are coefficients derived by regression analysis 
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5.1.2.3. Results and Discussion 

The comparison of correlation between cheatgrass abundance predicted by MTMF and the 
reference cover fraction of the invasive plant species for each of the three datasets demonstrated 
the following: 
1. Multi-temporal dataset produces a higher accuracy map of invasive cheatgrass 
abundance. The R2 coefficient for the multi-temporal data is 0.79 (P = 3.88E-35), which is 
significantly higher than the R2 of either single-date dataset:  0.41 (P = 3.63E-33) for July 2000 
and 0.51 (P = 1.56E-29) for May 2003. 
2. Low spectral contrast between cheatgrass and the surrounding semiarid sagebrush-steppe 
vegetation in July resulted in a slight overestimation of cheatgrass abundance at low fractions. 
Certain species, such as tumble mustard (Sisymbrium altissimum L.) mirrors the spectral 
characteristics of cheatgrass in summer, thus lowering its detectability.  
3. Analysis of the May dataset resulted in overestimating cheatgrass abundance at low 
fractions and underestimating it at high cover fractions. This effect can be attributed to spectral 
confusion between cheatgrass and shrubs, which are both near full foliage and green at this time 
of year.  
4. The effects of over- and under-estimation of cheatgrass were reduced or eliminated when 
the multi-date dataset was used. The results based on the multi-date dataset provide better 
agreement with the field data.   
  
The results of each MTMF analysis were reclassified to correspond to three abundance classes: 
high, moderate and low, and are shown in Figure 13.  Quantitative accuracy assessment of the 
multi-temporal analysis is given in Table 6. 

 

 

Figure 13: The results of MTMF classification for cheatgrass based on: (1) – multi-
temporal spectral stack; (2) – July 2000 spectral data; (3) – May 2003 data  
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Table 6: Confusion matrix for multi-temporal data classification (Zstat = 15.88). 

 

Overall accuracy for the multi-temporal data classification was significantly higher then either of 
single date dataset: 81% vs. 70% (July) and 72% (May).  Analyzing the multi-temporal dataset 
primarily reduced commission errors of cheatgrass detection:  user’s accuracies were 0.66, 0.67, 
and 0.78 in the July, May, and combined datasets, respectively.  Omission errors were also 
reduced using the combined dataset; producer’s accuracies were 0.76, 0.83, and 0.84 in the July, 
May, and multi-temporal analyses. 
 
Further analyses of surrounding vegetation which weakened the cheatgrass abundance 
predictions in single season’s images supported the advantage of using multi-temporal dataset 
when detecting invasive cheatgrass in an arid environment.  The difference in cheatgrass 
detection using hyperspectral data acquired in different seasons corresponded to the seasonal 
phenologic stages of vegetation in the area. When summer hyperspectral data were used, 
cheatgrass was not detected in sparsely vegetated, arid areas because the spectral signal of dry 
vegetation is less distinguishable between individual species.  This result is similar to tamarisk in 
the previous example.  In contrast, when spring hyperspectral data was analyzed to detect 
cheatgrass abundance, it was overestimated in sparsely vegetated areas since spectral contrast 
between vegetation and soil is much stronger than that between different grass species. In the 
areas with mixed grass cover, cheatgrass was detected at a 30% threshold. These discrepancies 
are subdued when a multitemporal data set is used. 
 

5.1.2.4. Conclusions and Lessons Learned 

These results support the use of multi-temporal data to increase the accuracy of cheatgrass 
detection in the semi-arid rangelands of the western states. Spectral detection of rangeland 
species depends on additional structural differences between the density of the canopy and/or 
foliage, the canopy architecture or branching pattern characteristic of the species, and the 
biochemical composition of the species.  Detection requires that some elements are different 
between the invasive species and the native species.  The simplest is plants having different 
growth forms e.g., shrubs and herbaceous/grass species.  The spectral contrast between 
cheatgrass and the surrounding environment is controlled by their respective phenologies, which 
are captured when measured at multiple times. It is more effective when each measurement is 
timed to specific phenological stages or events in the life cycle of the target species. It is likely 
that multitemporal data from different seasons will enhance the detection of most invasive 
species. 
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5.1.3. Case Study 3: Mapping Common Reed (Phragmites australis) Using Hyperspectral 

Image Data 

Phragmites australis, or common reed, has a circumpolar distribution, wide salinity tolerance, 
and a broader elevation range than most wetland plants. It has been described as the “most 
widely distributed angiosperm” (Mal & Narine 2004).  With its worldwide distribution, its origin 
is unclear, however the species or possibly a subspecies is also considered to be native to the 
U.S.  (http://plants.usda.gov/), making its listing as an aggressive invasive plant species unusual.   
Peat core data indicate that it has been a part of the mixed tidal wetland plant communities of 
North America for the past 3,000 years (Niering et al. 1977, Orson et al. 1987). Beginning in the 
19th century and accelerating over the past century, the distribution of common reed has 
undergone conspicuous changes as it expanded its range and abundance by invading fresh and 
brackish wetlands.  Once a rare, benign component of North American wetlands, it is now 
aggressively spreading and has come to dominate many of these systems with negative impacts 
on ecosystem processes and native wildlife (Marks et al. 1994, Meyerson et al. 2000).  Here 
common reed was mapped in hyperspectral imagery on two islands of Aberdeen Proving Ground 
in Maryland. 
  

5.1.3.1. Materials and Methods 
Four AVIRIS flightlines were obtained over Aberdeen Proving Ground in eastern Maryland on  
September 12, 2002.  The imagery has a pixel resolution of 4.3 m x 4.3 m (18.5m2).  Two of the 
four flightlines covering Carroll and Spesutie Islands were analyzed for common reed detection.  
Ground reference data were collected in August 2002 and November 2003.  Point data were 
collected of common reed and co-occurring wetland and riparian species, including grass, trees, 
cattails, and sedges. 
 
The flightlines were radiometrically calibrated and atmospherically corrected using Atmospheric 
CORrection NowTM (ACORN4, Mode 1, Imspec, Inc.) to apparent surface reflectance.  Both 
flightlines were registered to georeferenced aerial photos.  Because the flightlines did not 
overlap, they could not be cross-calibrated to reflectance and therefore, were analyzed 
separately.  Many analyses were tested on the image data in order to determine the optimal 
method of detection.  Algorithms investigated included maximum likelihood (ML) classification 
and spectral angle mapper (SAM) classifier, both performed on the full reflectance data set. 
Additionally several data reduction steps were tried including: 1) the minimum noise fraction 
transformation (MNF), a two step principal components transformation of the original bands, and 
2) calculating 19 physiological indexes, which are primarily ratios of band combinations. This 
was followed by an ML classification of physiological index images to species type, and a newer 
merged method termed mixture tuned matched filter (MTMF).   
 
Different techniques produced the best map of common reed on each island.  On Carroll Island, a 
SAM classification performed on physiological indexes optimized common reed detection.  The 
19 physiological indexes listed in Table 7 were calculated from the reflectance image, registered, 
and stacked into a single multiband image.  Two groups of highly correlated indexes were found.  
The first group contained pigment indexes and indexes expected to correlate with the greenness 
and vigor of a plant:  NDVI, mNDVI, SIPI, PI2, and NDNI.  Additionally, CAI was highly 
correlated to NDNI.  The second group included SGR and CAI.  Three indexes contained little 
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information and excluded from further analyses:  WBI, NPCI, and NDLI.  To determine which 
set of indexes resulted in the best classification, each independent index was iteratively added 
and removed as classification inputs to determine their influence on classification accuracy.  
Finally, indexes were substituted with highly correlated counterparts to determine their effect on 
mapping. A SAM classification was performed on the final set of indexes chosen.  
 
In contrast, none of the classification methods performed well on Spesutie Island (Table 8).  The 
unmixing algorithm, MTMF performed on the first 16 MNF bands, however, did successfully 
map common reed.  Training spectra were derived from the most spectrally extreme (the convex 
hull of the data volume) ground reference pixels in each class, and thus represented the purest, 
least mixed points.  Pixels were assigned to the class for which they received the highest MF 
score, if greater than a threshold of 0.3. 
 

5.1.3.2. Results and Discussion 

Only 3 indexes were necessary to accurately map common reed on Carroll Island:  NDVI, 
NDWI, and PRI, indicating that greenness, water content, and xanthophyll content provide 
sufficient information necessary to distinguish common reed from co-occurring species.  The 
resultant SAM classification is shown in Figure 14.  Overall accuracy was 80% based on the 
validation data (independent of the training data), and common reed was detected with 
producer’s and user’s accuracies of 71% and 74% (Table 7). Clearly the coherent spatial 
distribution pattern of common reed in the map (Figure 14) is consistent with expectations for a 
good classification (clumped distributions with no speckle). 

 
Table 7: Accuracy assessment of SAM classification of NDVI, NDWI, and PRI on Carroll 

Island, including Spesutie Scirpus and cattail endmembers. 

For all Carroll Island classifications, SAM outperformed the maximum likelihood algorithm, 
suggesting that the field data collected and training data used were highly characteristic of the 
entire common reed infestation on this island.  Since relatively few endmembers were necessary 
per class, this also suggests that there was relatively little within class spectral variability and that 
each type occurred as large, discrete entities with relatively little mixing.  This finding is 
confirmed by the poorer performance of spectral unmixing with MTMF analyses. 
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Figure 14: Spectral angle mapper classification of common reed  performed on the 
physiological indexes NDVI, NDWI, and PRI. 
 

The use of the MTMF algorithm was necessary to map common reed on Spesutie Island (Figure 
15), which was supported by field observations that considerable mixing of wetland species 
occurs on this island.  Despite this, the common reed map accuracy was exceptional using the 
MTMF, with an overall accuracy of 97% correct.  Furthermore, 88% of known common reed 
was detected with a user’s accuracy of 72% (Table 8).  Common reed was most often confused 
with cattails. 
 

Table 8: Accuracy assessment of MTMF analysis of Spesutie Island 

 

5.1.3.3. Analogies to Giant Reed (Arundo donax) 
Both giant reed and common reed are tall, cane or bamboo-like grass species.  Giant reed grows 
6-10m tall in contrast to the 2-6m height of common reed, and is more characteristically found in 
freshwater wetlands and riparian zones.  However, both form dense impenetrable stands, which 
can rapidly extend by vegetative propagation.  Giant reed, introduced to California from the 
Mediterranean has become a serious pest throughout the streams and rivers of coastal California 
and the Central Valley.  Unlike other wetland species, giant reed significantly increases the 
probability of wildfire in riparian zones, due to its accumulated biomass and because it is dry or 
senescent in the summer drought high fire risk period in the West.  
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Because of the similarity of their growth forms and the habitats they invade, a comparison of the 
techniques to map these similar species is informative.  Spectral indexes and MTMF successfully 
detected common reed under different background conditions.  Indexes were not systematically 
applied to map giant reed (it was one of the first SERDP sites at the project worked at), however 
the depth of the water absorption feature at 970 nm successfully isolated giant reed from other 
grass and chaparral species.  This absorption feature is the basis of the WBI index and is a metric 
of the amount of foliar water present in a pixel.  It is often highly correlated to NDWI, which 
contributed to common reed detection on Carroll Island.  By itself, the water absorption feature, 
however, did not consistently separate giant reed from aquatic vegetation species, which also had 
high water contents.  It is possible that if this feature had been used in combination with the suite 
of 19 vegetation and pigment indexes, such as NDVI and PRI that were successful in mapping 
common reed on Caroll Island, Aberdeen Proving Ground, giant reed could have been 
successfully mapped with spectral physiological information.  Clearly giant reed has structural 
distribution features that suggest this method would be successful: large, relatively uniform 
monotypic clumps that are continuous over many pixels.  Both giant reed and common reed case 
studies highlight the importance of foliar water content in successful mapping of invasive plant 
species (as does unpublished data [not shown] for cheatgrass) but suggest that additional 
information about plant vigor and pigmentation are also necessary to fully characterize the 
species. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: MTMF map of common reed (mapping threshold = 0.3) for Spesutie 
Island. 
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5.1.3.4. Conclusions and Lessons Learned 

Again, the success in spectral detection is dependent on the variability of the invasive species 
pixels versus the other classes in the data set. If all locations for the invasive species are 
consistent and the range of variability is small, the likelihood of detection is reasonably good. 
However, if the invasive species class overlaps with other classes, it becomes difficult to 
consistently detect them.  Also, if the background vegetation is heterogeneous, this decreases the 
potential for detecting the invasive plant species in its presence.  This example for increased 
difficulty in mapping common reed on Spesutie Island is consistent with the findings shown for 
tamarisk in the dry washes and for iceplant in the Burton Mesa Mixed Chaparral. 
 

5.1.4. Extending Mapping Beyond the Image Space Using CART Modeling 

5.1.4.1. Introduction 
As shown in previous sections remote sensing provides a very useful tool for mapping plant 
communities and invasive species.  However, for larger facilities, it could be expensive and 
difficult to acquire aerial imagery for the entire base.  Therefore, a technique that allows base 
managers to extend mapping capabilities beyond the boundaries of the actual image itself would 
be useful.  As part of the SERDP project, the hyperspectral imagery at VAFB was used to create 
models which would predict the locations of plant communities and invasive plant species.  The 
technique found most useful was classification and regression tree (CART) analysis. 
 
CART trees explain the variation of a single response variable through repeated partitioning of a 
dataset into increasingly homogeneous groups using combinations of categorical or numeric 
explanatory variables.  Trees are represented graphically beginning with the complete data set at 
the root node.  Each binary split separates samples at the next lower branch as defined by a value 
or range of values for the explanatory variables.  Splitting continues until the tree is over-fitted to 
the data and the final groups occupy the leaves or terminal nodes of the diagram. The over-fitted 
tree is then pruned to the desired size based on complexity plots and a consideration of the 
research goals. 
 

5.1.4.2. Mapping Vegetation Community at VAFB 
The primary reason that VAFB was chosen for these modeling studies is that the project had the 
most detailed field data for this site both from CSTARS and the project’s industry partner, 
Dynamac Corporation. All field data were compiled and GIS layers available for VAFB were 
used in a CART analysis. In total, 579 field locations were used.  The field data provided the 
response variable (community type) and the GIS layers provided the explanatory variable.  Some 
layers that were used are shown in Figure 16.  The major two communities identified at VAFB 
were the Southern Coastal Sage Scrub and Burton Mesa Maritime Chaparral communities. 
 
The CART model provided a list of rules defining the important splits where the scrub and 
chaparral were located on the CART tree (see Figure 17).  The tree was used and it was applied 
to the GIS layers for the entire study area to develop a map of the scrub and chaparral plant 
communities.  To provide a qualitative check, the CART map was compared with an existing 
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vegetation map provided by VAFB.  As shown in Figure 18, there is strong visual agreement 
between the two maps. 
 
To provide a more rigorous quantitative evaluation, the CART map was compared to the map 
developed from the hyperspectral imagery.  Then the community information was extracted from 
the vegetation image categories and produced a map which divides the image area into scrub, 
chaparral and “other”.   Using the hyperspectral map as a baseline, it was determined that the 
CART model predicted the location of the vegetation communities within the image area with 
76.9% accuracy (see Figure 19).  This is excellent accuracy showing that the CART model is 
robust and a powerful tool for plant community mapping. 
 

5.1.4.3. Identifying Factors which Promote Invasion  
Another avenue that was explored with the VAFB data set was whether the environmental and 
disturbance factors that would promote the spread of invasive plant species at VAFB could be 
identified.  This analysis produced promising results modeling the invasive iceplant and jubata 
grass at VAFB. 
 
One of the problems with modeling invasive plant species is that the environmental (natural 
“steady state”) and disturbance factors are usually confounded making them difficult to tease 
apart.  From an environmental management standpoint it would be most useful to know which 
areas are especially vulnerable to invasion due to environmental conditions and should be 
monitored more closely.  And whether these factors could separately determine which 
disturbance factors promote invasion, the base personnel could then make informed decisions 
about whether to allow a specific type of disturbance in the vulnerable areas.   
 
To model a site in this degree of detail requires an exceptional number of samples and would be 
near impossible using field data.  However, by using the hyperspectral map as the data set, 
produced in effect, 100% sampling within the image area.  Since there were 1.65 million 
classified pixels within the image, the data could be subset many times to provide test data, 
verification data and validation data. 
 
To separate the natural environmental conditions and disturbance factors required a two-stage 
approach: 

1. Identify the most favorable environments for invasive plant species growth 
2. Identify the most important disturbance factors influencing invasive plant species 

growth in both favorable and unfavorable areas. 
3.  

5.1.4.4. Analysis of Environmental Factors 
To identify the location of the most favorable environments for iceplant and jubata grass, the 
work began with an assumption that invasive plant species will cluster most densely where 
environmental conditions are optimal and sparsely where conditions are unfavorable.  Using this 
assumption, the first step of the analysis was to locate areas were there were high invasive plant 
species densities and areas where invasive plant species densities were low or not present.  This 
gave each pixel a score representing the number of neighboring pixels were also invaded.  The 
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pixels with the highest score were considered the densest clusters and thereby, the optimal 
environments.  Figure 20 shows the location of the optimal environments for iceplant and jubata 
grass. 
 
Then a CART analysis was performed on the best and worst environments for invasive plant 
species to determine associated characteristics.  The results are described for iceplant in Table 9 
and jubata grass in Table 10.  The CART analysis shows that iceplant invasion of the chaparral 
community seems to be most favorable when iceplant is located in hilly areas having deep soils 
that are prone to water erosion.  Iceplant does not do well in riparian zones or areas too far from 
the coastline.   
 
For the scrub community, iceplant grows best in hilly terrain with deep soils that are prone to 
erosion.  However, the slopes most favorable to iceplant invasion are much steeper (>7%) and 
soils are much more erodable (rank >5).  Iceplant has an affinity for acidic soils with a high 
storie index.  It does not grow well in riparian zones (although it is less limited than in the 
chaparral community), in soils that retain water or on north and west facing slopes. 
 
The results of the jubata grass analysis are summarized in Table 10.  Jubata grass invasion is 
favored in areas with markedly different conditions than iceplant.  The factors favorable for 
jubata grass invasion include flat areas away from the coastline, with stable sandy soils and low 
shrink-swell (clay) potential and low erosion potential.  In contrast to iceplant, jubata grass does 
well on north and west facing slopes.   
 

5.1.4.5. Influence of Disturbance Factors 
The above classifications were used to determine which areas of the base are most at risk for 
plant species invasion.  The next step in the analysis was to explore how the high risk (favorable) 
and low risk (unfavorable) areas respond to disturbance factors (Tables 11-13).  The project 
sampled both the high risk and low risk areas separately and looked at which disturbance factors 
were important in each environment.   
 
The CART results are rather complicated, but overall trends can be extracted for scrub-iceplant, 
chaparral-iceplant, and chaparral-jubata grass as shown in Tables 11, 12, and 13, respectively. 
 
Proximity to fences enhances the spread of iceplant and yet seems to provide a deterrent to the 
spread of jubata grass.  Proximity to firebreaks and parking lots enhances both jubata grass and 
iceplant spread.  Proximity to roads enhances the spread of both invasive plant species and yet 
this positive feedback seems to be ameliorated somewhat if the roads are paved.  The proximity 
to hydrologic structures can either enhance or deter spread of invasive plant species.  The mixed 
results may be due to different types of hydrologic structures.  Some structures enhance drainage 
(ditches) and others enhance soil moisture (dams).  Dams in particular seem to favor the spread 
of jubata grass.  The other major factor affecting invasive plant species spread is fire.  Jubata 
grass seems particularly sensitive to fire and is deterred even in favorable environments if there 
has been a recent burn.  Iceplant, on the other hand, was not particularly sensitive to fire and in 
favorable environments, and recent fires seemed to enhance the spread of iceplant. 
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Table 9: Summary of environmental factors for iceplant invasion from CART Analysis. 
Community Favorable factors for iceplant Unfavorable factors 
Chaparral – 
Iceplant 

Distance to coast between 2284 and 
2982 m 

Closeness to fresh water (< 570 
m) 

  Hilly terrain (slope > 1%) Non-erodable soils  
  Storie Index between 24 and 30   
  Deep soils (depth to bedrock > 4.1m)   
  High TRMI > 18   

Nearness to fresh water (< 
172m) Scrub - Iceplant Nearness to coast 

  Hilly terrain (slope > 7%) Moist soils  
North and West facing slopes 
(Aspect > 276)   Storie Index > 34 

  Deep soils (depth to bedrock > 4.1m)   
  Highly erodable soils    
  Acidic soils (minimum pH <= 5.1)   

 

Table 10: Summary of environmental factors for jubata invasion from CART Analysis. 
Community Favorable factors for jubata Unfavorable factors 
Chaparral - Jubata Distance to coast > 1619m Soil class SM 
  Sandy soils Shrink-swell >1 
  Storie Index > 34 Erodable soils  
  Storie Index < 24   
  Flat terrain (slope < 2%)   
  Distance to fresh water > 105m   

  
North and West facing slopes 
(Aspect > 290)   

  Soil class ML    
  High TRMI > 24   

 

 

 

 

 

 

 

 

 

 41



Project SI-1143 Application of Hyperspectral Techniques to Monitoring and Management of Invasive Plant Species 
Infestation (January 2008 Final Report) 

 
Table 11: Summary of disturbance factors determined to be important for the spread of 
iceplant in scrub community. 

Community 
Favorable Factors for Invasive 
Plant Species Spread 

Unfavorable Factors for 
Invasive Plant Species Spread 

Scrub - Iceplant Fences Paved roads 
Unfavorable 
Environment Firebreaks Hydrologic structures 
  Multiple lane roads   
      
Scrub - Iceplant Fences   
Favorable Env. Building   
  Parking lots   
  Hydrologic structures   
  Unpaved roads   

 
Table 12: Summary of disturbance factors determined to be important for the spread of 
iceplant in chaparral. 

Community 
Favorable Factors for Invasive 
Plant Species Spread 

Unfavorable Factors for 
Invasive Plant Species Spread 

Chaparral - Iceplant None identified None identified 
Unfavorable Env.     
Chaparral - Iceplant Recent fires (within ~ 30 yrs) Hydro structures 
Favorable Env. Hydrologic structures   
  Fire breaks   
  Buildings   
  Parking lots   

 
Table 13: Summary of disturbance factors determined to be important for the spread of 
invasive plant species 

Community 
Favorable Factors for Invasive 
Plant Species Spread 

Unfavorable Factors for 
Invasive Plant Species Spread 

Chaparral - Jubata Fire breaks Recent fires (within ~ 30 yrs) 
Unfavorable Env. Roads (particularly unpaved) Fences 
  Hydrologic structures   
  Parking lots   
Chaparral - Jubata Fire breaks Recent fires (within 3 yrs) 
Favorable Env. Parking lots Fences 
  Roads (particularly unpaved)   
  Dams   
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Figure 16: Example of GIS layers used in the CART analysis. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 17:  CART model for scrub and chaparral community mapping. Note area is larger 
than original AVIRIS flightlines. 
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Figure 18:  Comparison of 
CART map with VAFB 
preexisting vegetation map. 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 19:  Comparison of 
CART vegetation community 
map with classified 
hyperspectral map. 
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Figure 20:  Optimal locations for invasive plant species predicted from CART model. 

 

5.1.4.6. Conclusions and Lessons Learned 

Because it seems likely that hyperspectral imagery will not be able to identify the earliest 
establishment of an invasive plant species in a new site, modeling is likely to be the best method 
for predicting sites of invasion and the most vulnerable locations.  There are many modeling 
methods that have potential for site-specific modeling. This study investigated CART modeling 
as it is relatively simple binary tree to develop, assuming a GIS database is available and can be 
intuitively interpreted. It can incorporate various types of data and because variables can be 
incorporated at various levels in the model, provides a basis for handling non-linear relationships 
among variables.   CART modeling provided significant insights into factors that promote the 
spread of invasive iceplant from natural environmental conditions and from human activity.  This 
type of information would be useful to resource managers for understanding where invasions 
might spread and for anticipating the impact of activities on the spread of invasive plant species.   
 

5.1.5. Tree Decline at Fort Benning 

5.1.5.1. Introduction 

A small subproject was attempted in the final year of the study at Ft. Benning, to determine 
whether hyperspectral AVIRIS data could detect loblolly pine tree decline as noted in the field 
by base biologists and others.  A total of 38 tree plots with GPS locations were provided to us by 
Dr. Lori Eckhardt of Auburn University.  The data set contained 22 healthy trees and 16 trees 
with evidence of Loblolly Pine Decline (LPD).  We used this data in two ways: 
 

1) We performed a preliminary review to evaluate whether hyperspectral data collected at 
Fort Benning could be used to map trees with LPD.  The plots in Dr. Eckhardt’s study 
were used as ground control points.  

  
2) Performed a CART model with Ft. Benning GIS data to see if local  environmental 

parameters correlate with LPD.   
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5.1.5.2. Results of LPD Derived from Hyperspectral Mapping  

The location of Dr. Eckhardt’s plots in relationship to our AVIRIS-classified map is shown in 
Figure 21.   

 
Figure 21: Location of loblolly pine study plots at Fort Benning 

 
There were only 5 healthy trees and 4 trees with LPD within our flightlines.  Therefore, there 
was insufficient training data to directly map the LPD using the hyperspectral signatures.  We 
tried several methods e.g., PPI, MTMF, and SAM methods without clear success. There are 
several likely explanations why these results were poor: 
 

1) There were insufficient samples within the AVIRIS flightlines to make a valid statistical 
comparison of the spectral signatures of the healthy vs. diseased trees. 

2) We had difficulty co-registering the precise location of the trees to our hyperspectral 
imagery.   Normally when we register vegetation targets on the ground, we try to find 
plots that encompass several pixels within the image, thus reducing the potential that the 
field data will be in a different pixel due to georegistration error.  Since the pixels in the 
Fort Benning imagery are 3.5 m x 3.5 m in size (~ 12 m2), we typically try to locate 
targets of at least 50 sq meters. 

3) Trees with LPD were scattered within the distribution of healthy trees, therefore location 
errors and no clear spectral signal made it impossible to adequately train the classifier. 
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4) The proximity of healthy trees to trees with LPD, resulted in few pixels containing only 

trees with LPD. 
5) There was a time lag of 2 to 3 years between the time that the hyperspectral data was 

acquired and the tree plots were measured.  The progress of the disease may have 
significantly changed during this interval. 

6) The possibility that other analysis methods would have detected the LPD in the 
hyperspectral data. We did not exhaustively test a wide range of possible algorithms. 

 
A new feasibility study is planned to collect high spatial resolution hyperspectral data in an area 
covering known LPD and healthy trees. However, from this study, as we discuss in the next 
section, we were still able to use the hyperspectral imagery in combination with a CART model 
to map potential LPD sites indirectly. 
 

5.1.5.3.    Results of Hyperspectral Mapping of Pine Species  

Pine endmembers were used in a tree classification using the Spectral Angle Mapper method.  
The results for tree type mapping were much better than tree health.  The pixels classified as pine 
are shown in Figure 22. The pine endmembers included pure pine (2,107,899 pixels), pine mixed 
with hardwoods (195, 781 pixels) and pine mixed with grasses (608, 926 pixels).  This is 10 % of 
the total area within the three flightlines (364,173,732 m2).   

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 22: Location of pine trees in classified AVIRIS image 
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A close-up of the area where the flightlines overlap with Dr. Eckhardt’s plots is shown in Figure 
23.  It is difficult to compare the plots directly with the classification, due to uncertainties in the 
co-registration.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 

 
 
 
 

Figure 23: Close-up of overlap of flightlines and plots 
 

5.1.5.4. Results of CART Models  

We used the GIS from Ft. Benning to extract environmental variables from a CART analysis for 
Dr. Eckhardt’s tree plots.  Table 14 lists the variables that we used in the analysis. 
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Table 14:  Variables used in Loblolly Pine Decline environmental CART analysis. 
   

Variable Definition Values 

elevation Meters above sea level meters 

Aspect Direction of greatest slope degrees 

Slope Rise over run percent 

curvature The degree of curvature of the terrain 

0 = flat, 
negative = concave, 
positive = convex 

Erosion Does the soil survey list soils as eroded? Yes or No 
L=loam, S=sand, 
LS=loamy sand, 
SL=sandy loam, 
CL=clay, SCL=sandy 
clay loam Surface Soil surface texture 

No40 Percent soil passing No. 40 (42mm) sieve percent (max and min) 

No200 Percent soil passing No. 200 (0.074mm) sieve percent (max and min) 
Clay Clay content of soil percent (max and min) 

perm 

The quality of the soil that enables water to move 
downward through the profile.  Measured as the 
number of inches per hour that water moves 
downward through the saturated soil.   inches / hr 

awcrank 

Mean maximum value for the soil available water 
capacity in inches water per inches soil expressed 
as a volume fraction.  Example: If a soil has a 
water capacity value of 0.20 a 10 inch zone then 
contains 2 inches of available water. inch water / inch soil 

minph Mean minimum value for soil pH 0 through 14 

maxph Mean maximum value for soil pH 0 through 14 

ohmrank 

The amount of soluble salts in a soil. The 
conventional measure of soil salinity is the 
electrical conductivity of a saturation extract 
(Mohms/cm at 25C). rank: 1 to 4 

 
We used the Rulequest Research, SEE5 data mining program to create the CART model.  The 
CART analysis on the GIS data was able to predict the training set within an error of 2.6% when 
boosting was used.   
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The following environmental factors were important in the CART model of LPD: 
 

1) Aspect (the only variable of importance for Regression Trees 0 and 2):  Slopes oriented 
in a North or Northwest direction were unfavorable for LPD as also previously described 
by Dr. Eckhardt.   The remaining slopes seemed to be favorable for the spread of LPD.  
However, this may be an artifact of the small size of our sample.  Of the 18 LPD plots, 
there were no plots on a north-facing or north-west facing slope and only one plot on a 
north-east facing slope.  The north and northwest aspects are the only slopes “healthy” 
trees are found, according to the CART analysis. 

2) Surface soil texture (important in Regression Trees 1, 3, and 4):  The LPD was found on 
plots with sandy or loamy surface textures.  Loamy sand and sandy clay loam had a mix 
of healthy and LPD trees.   

3) Profile topographic curvature (important in Regression Tree 1):  Topographic areas that 
are concave in shape are prone to LPD, again consistent with Dr. Eckhardt’s (Auburn 
University) prior research at Ft. Benning.   

4) Slope (important in Regression Trees 1, 3 and 4):  Areas of steep slope (> 6%) are less 
prone to LPD than flatter terrain areas. This result is inconsistent with Dr. Eckhardt’s 
research, however. 

 
The summed results for the five trees are shown in Figure 24.  In the figure, nearly the entire 
base is identified by at least one CART regression tree.  To classifying using the boosting 
algorithm, the outcome for each CART tree is counted as a probability and pixels with a tally of 
3 or more probabilities results in CART classifying the pixels as areas prone to LPD.  Figure 25 
shows the final classification result using this procedure and Figure 26 shows an enlarged view. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24:. Summed results for the five                  Figure 25: Final CART Classification 
 trees at Fort Benning               at Fort Benning         
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Figure 26: Close-up view of plots within CART classification map   

 

5.1.5.5. Conclusions and Lessons Learned 
Based on the data available, it was possible to adequately map pine species within Ft. Benning 
although direct mapping of tree health was poor. This is most likely due to too few LPD affected 
tree samples to acquire a good search relationship.  When tree data were combined with GIS 
layers, it was found that healthy and declining pines were somewhat associated with topography 
and soil conditions. This combination of GIS data and hyperspectral image data holds promise 
for tree-level mapping of LPD. 
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6. Project Conclusions 
 
To test the technology of hyperspectral remote sensing data for the detection and mapping of 
invasive plant species, hyperspectral imagery was acquired at six military bases, located 
throughout the U.S., to map twelve invasive species.  Sites and species were chosen to represent 
a wide range of habitats and vegetation characteristics as described in Table 1.  A range of 
classification techniques was evaluated for each species in order to identify the optimal 
approach.  The algorithms tested were implemented in standard image processing software 
(Environment for Visualization of Images, ENVI) and are thus commonly available to invasive 
plant species management and base personnel.  No other invasive plant species mapping study of 
this scale and diversity exists.  Integrated over the six sites and twelve species, these results 
present an unprecedented demonstration of species-level mapping.  Taken together, a consistent 
picture of which method performs the best under a given set of conditions emerges (Table 2). 
 
No classifications were performed directly on the 224 band reflectance data set.  Under all 
conditions, data reduction techniques were used, such as the minimum noise fraction (MNF), 
which retains the full spectrum information, and physiological indexes that target specific 
absorption features.  This reduction step is because the wealth of spectral information provided 
by hyperspectral sensors, which, although necessary for species-level discrimination, 
overwhelms traditional classification techniques.  In general, MNF transforms outperformed 
physiological indexes as classification inputs.  This is because MNF bands, as a type of principle 
component analysis, integrate the entire reflectance spectrum  and contain more spectral 
information than indexes derived from pairs of narrow bands.   
 
Vegetation Indexes (VIs) like the normalized difference vegetation index (NDVI) perform as 
well as MNF when the target species is physiologically distinct from background vegetation and 
the chosen indexes are sensitive to that trait.  For example, iceplant, an invasive succulent, was 
clearly distinguishable using foliar water indexes (Underwood et al., 2003).  Indexes were also 
the most successful at mapping common reed on Carroll Island of Aberdeen Proving Ground.  
Only three indexes contributed to the latter classification:  NDVI, the normalized difference 
water index (NDWI), and the photochemical reflectance index (PRI). These are metrics for 
vegetation cover, foliar water content, and xanthophyll cycle pigments and photosynthetic 
efficiency, respectively, illustrating that common reed differs from surrounding vegetation in 
these parameters.  In a study on invasive species in Hawaii, Asner & Vitousek (2005) also found 
that spectrally estimated physiological parameters were sufficient to detect a structurally 
distinctive nitrogen fixing invasive species with unique physiological traits (i.e., elevated foliar 
nitrogen and water contents relative to native species).  Andrew & Ustin (2006) successfully 
discriminated the invasive plant species Lepidium latifolium from co-occurring vegetation using 
indexes that highlighted unique reflectance in the visible wavelengths due to flowering.  In short, 
the choice of data reduction technique will depend upon the spectral and physiological features 
of the target species.  When the invasive plant species to be mapped possesses novel physical 
traits that are manifested spectrally, specific relevant spectral indexes will successfully detect the 
species.  However, when the target species differ only subtly from background vegetation over a 
broader range of wavelengths, statistical dimensionality reduction tools such as the MNF 
transform are more appropriate. 
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Following data reduction, either a classification using the transformed bands from the MNF or a 
spectral unmixing algorithm was performed to identify target invasive plant species in the image 
data.  Species architecture and stand characteristics determine whether a classification versus an 
unmixing approach is needed to define individual species.  Classifications are statistical tools 
that define group membership of pixels.  They assume that pixels are dominated by a single 
component and provide no information on the proportional composition of a pixel.  Conversely, 
spectral unmixing algorithms are subpixel analyses that model each pixel as composed of 
fractions of several materials.  Not surprisingly, classifications perform well when detecting 
dense monotypic vegetation while unmixing approaches are necessary for species with sparse 
canopies or that occur in mixed stands. 
 
Several classification tools successfully mapped iceplant, jubata grass, kudzu, love grass, and 
under certain conditions, tamarisk and common reed (Table 2).  In all cases, the target species 
occurred in large patches of robust growth relative to the pixel size.  The two preferred 
classification algorithms were maximum likelihood (ML) and spectral angle mapper (SAM).  
These techniques are markedly different and their selection is probably predicated most 
importantly by the quantity and variability of training data.  ML calculates summary statistics 
(mean, variance, covariance) for each pixel at all bands to generate probability distribution 
functions for each class.  Pixels are classified to the group to which they have the highest 
likelihood.  ML requires a large amount of training data in order to accurately estimate statistics 
for each class.  Furthermore, classes must meet the assumptions of the ML classifier; i.e., spectra 
must be normally distributed.  SAM requires much less training data.  This algorithm compares 
the unclassified pixel spectrum individually to each training spectral class and calculates the 
angular divergence between them in spectral space, by treating the each spectrum as a large-
dimensional vector.  Pixels are assigned to the most similar class  based on the calculated angles 
and assigned thresholds.  Both algorithms perform well and their selection appears to be more 
dependent upon how much training data is available and how representative the reference 
spectrum is for each class rather than the spectral and physical characteristics of the species of 
interest. 
 
Unmixing algorithms were used to detect fennel, cheatgrass, Russian knapweed, and, under 
certain conditions, tamarisk and common reed (Table 2).  Each of these species presented sparse 
canopies and often patchy, fragmented distributions.  While this problem is less important with 
newer high spatial resolution instruments, sparse vegetation always creates a mixed spectrum of 
live vegetation, plant litter and woody debris, and soil.  Pixel spectra were thus mixed with litter 
in the case of fennel and cheatgrass, soil in the case of tamarisk, and/or other vegetation in the 
case of common reed.  Mixtures degrade pixel spectra, reducing the spectral uniqueness of a 
given species relative to the background.  Additionally, since plants may occur mixed with a 
variety of components, mixing increases the spectral variability of target species.  The net result 
is a concurrent reduction of between-species variation and increase of within-species variation, 
which traditional classification approaches cannot successfully resolve. 
 
Mixture tuned matched filtering (MTMF), the unmixing algorithm performed in all mixed cases 
here, is a very powerful image processing technique derived from signal processing methods.  
MTMFs use the MNF transformed image as input. This method has been demonstrated to be 
capable of detecting materials that differ only subtly from the background, such as sparse and/or 
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patchy distribution of invasive plant species (Parker Williams & Hunt, 2002; Mundt et al., 2005; 
Glenn et al., 2005).  The matched filter method is constrained by a mixing model that determines 
the likelihood that the material is correctly classified.  MTMF turned out to be as well-suited for 
the four sparse invasive plant species studied here as those in the references above. 
 
The previous discussion focused on how species characteristics determine optimal mapping 
techniques.  However, the interaction of species and site characteristics can often be just as 
important.  For two of the species tamarisk at Yuma Proving Ground, and common reed at 
Aberdeen Proving Ground, different techniques were required to address site conditions.  At 
Yuma, tamarisk occurred in two distinct zones:  in dense thickets surrounding irrigated 
agriculture and in dry desert washes as isolated, sparse shrubs with low leaf area.  When 
receiving irrigation outwash, tamarisk had a large and robust green canopy and much more leaf 
area than other desert vegetation, and was thus comparatively easy to detect.  In the dry 
ephemeral washes, however, tamarisk was spectrally and morphologically more similar to the 
condition of the native desert shrubs, at least at the time of overflight.  This situation was 
aggravated by the data being collected in late summer during the third year of a regional drought. 
All mapping methods successfully identified irrigated tamarisk, but MTMF was the only 
approach that could detect tamarisk in the dry wash habitat.  Although this variation was 
observed spatially, similar patterns should be observable following the course of tamarisk 
invasion.  A phreatophytic species, tamarisk’s deep roots access the water table to grow more 
robustly than native vegetation.  However, young individuals that have not yet reached deep 
water should resemble native species more closely than they do mature tamarisk shrubs.  
Advanced unmixing strategies such as MTMF are likely to be required to map the early stages of 
an invasion in this habitat. 
 
At Aberdeen, common reed was mapped on two islands:  Carroll and Spesutie.  On Carroll 
Island, the ML classifier was performed on output from 19 spectral indexes (Table 3), which 
achieved the highest accuracies, while on Spesutie Island, MTMF was required to map this 
species.  This requirement for different methods is corroborated by the observations of the field 
crews.  At the time of image acquisition, common reed infestations were large, dense, and 
monospecific on Carroll Island but tended to be patchier and mixed with native species on 
Spesutie Island.  Detailed knowledge of species characteristics, site characteristics, and the 
specific infestation characteristics at each site are considerations that should inform the choice of 
mapping methods.  Poor classification accuracy results when using an inappropriate method but 
this in itself does not provide insight into why the analysis failed or what is needed to improve 
the accuracy of a classification. 
 
Finally, not all species were successfully discriminated under all conditions in this SERDP study.  
Although targeted as management priorities, Asian mustard and hydrilla could not be mapped 
with the image data that was acquired.  Asian mustard was senescent and or dead at the time of 
image acquisition due to the late summer timing of the overflight and the extreme drought 
conditions.  It is challenging if not impossible to spectrally resolve different species of dead 
vegetation. Somewhat unexpectedly, dry fennel (Foeniculum vulgare) was successfully mapped 
in dry grasslands at Camp Pendleton in an autumn image using MTMF.  This discrimination may 
be more related to reflectance differences due to canopy structural differences rather then 
spectral differences in the plant material. While it is possible to show that different types of dry 

 54



Project SI-1143 Application of Hyperspectral Techniques to Monitoring and Management of Invasive Plant Species 
Infestation (January 2008 Final Report) 

 
plant material (leaf litter, wood, bark, etc.) are spectrally different, development of the methods 
to differentiate these among different species has not occurred.   
 
Hydrilla is a species of submerged aquatic vegetation, and the Aberdeen image data was not 
acquired with the requirements for mapping submerged species, e.g., acquisition avoiding 
sunglint and low tide level.  Submerged aquatic invasive plant species were mapped in other 
studies, primarily Brazilian Waterweed plant species (Egeria densa) in the Sacramento delta of 
California (Underwood et al., 2006b; Hestir et al., 2008). See Hestir et al. (2008) for a discussion 
of the unique challenges and special considerations of detecting submerged aquatic vegetation.  
For species such as these that pose additional challenges to detection, image timing may be the 
determining factor.  It is common knowledge that species are more easily mapped when data 
acquisition is timed to coincide with unique phenological stages.  For Asian mustard, imagery 
should be acquired while the plants are living, instead of the dry season of a record drought year.  
In this study the project had no control of the timing of NASA’s overflight schedule; however, 
timing of data acquisition would be of key importance for a management protocol.  For hydrilla, 
imagery must be acquired under low tide and calm surface conditions (i.e., low wind conditions) 
and when sun angles are low enough to avoid sunglint in the imagery.  Even when a species is 
not detectable at any single image date, a combination of multi-date images, by capturing 
phenological trajectories, may allow mapping of recalcitrant species.  For example, the in-
tandem analysis of both spring and summer image dates of Yakima improved mapping accuracy 
of cheatgrass. 
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Table 15: Indicators for Invasive Species Potentially Measurable by Remote Sensing 

Indicator Spatial 
Scale 

Description Considerations of remote 
sensing technology 

recommended with the 
following qualifications 

Area covered by 
invasive species  

m to km Success highest when 
infestations are dense or 
have a uniform canopy 

All full spectrum methods; 
physiological spectral indexes 

Requires identification of 
spectral bands; methods like 
physiological spectral indexes, 
continuum removal; all full 
spectrum methods  

Identification of 
particular invasive 
species 

M Possible where target species 
has distinct biochemical or 
structural characteristics 
compared to surrounding 
species, e.g., water 
absorption, early green-up 

Trends in invasive 
species 

m to km Time series analysis Multidate imagery of the same 
area; should be acquired at the 
same stage of the species life 
cycle and processed in the same 
manner 

Multidate imagery to 
map particular invasive 
species 
 

m to km Multi-season analysis Multidate imagery of the same 
area; Acquired in multiple 
seasons to take advantage in 
phenological differences 
between invasive plant species 
and native vegetation 
Depends on the measurement 
scale and distribution of 
vegetation community; minimize 
within class variation and 
maximize between class 
variation (invasive plant species 
vs. native vegetation) 

Variability of native 
vegetation  

M Areas of sparse native 
vegetation often vulnerable 
to invasion.  Areas of either 
high or low species richness 
are also reported to be 
vulnerable 

Identification of 
vulnerable areas based 
on known invasion 
drivers 

m to km Invasion is often greatest in 
riparian zones; were 
topographic relief is low 

Overlay image data on digital 
terrain map 

Disturbance sites (e.g., 
roads or natural such as 
landslides or post-fire) 

m to km Anthropogenic and natural 
disturbances create areas 
vulnerable to invasion 

High spatial resolution or use 
change detection methods 

Fragmentation of 
landscape 

m to km Edge habitats are more 
vulnerable to invasion than 
core habitats 

Location of roads, construction;  
analyze spatial distribution and 
statistics (e.g., geostatistics, 
wavelets) 

Inappropriate/excessive 
grazing 

m to km Intensive grazing can result 
in invasions 

Identify areas of reduced plant 
cover and erosion 

Proximity to sources of 
invasion (e.g., urban 
areas), military training, 
and transportation 
corridors 

m to km Urban areas provide sources 
of propagules (e.g., 
ornamental plantings) and 
car traffic can disperse seeds 
on tires  

Identify man-made objects and 
disturbance characteristics 
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6.1.  Factors Relevant to Invasive Species Detection in Remote Sensing Imagery 

6.1.1.  Phenological characteristics 

The timing of image acquisition is an important determinant in whether an invasive species can 
be detected.  Some invasive species become greener earlier than surrounding species in the 
spring or alternatively senesce earlier, e.g., cheatgrass (Bromus tectorum) or later, e.g., yellow 
starthistle (Miao et al. 2006).  Again, the timing of image acquisition is important and acquiring 
two or more images at different times in the life cycle can improve classification results, 
compared to a single acquisition.  Researchers mapping Chinese tallow (Sapium sebiferum) 
found that although the red senescing leaves were spectrally distinct, field observations showed 
that leaves turned red at different times with significant spectral variability in the leaves (Ramsey 
et al. 2002).  Consequently they recommended three sets of data collections during the autumn to 
adequately map the distribution of Chinese tallow. 
 

6.1.2.  Structural characteristics 
Sometimes the architecture of the canopy, if it contrasts with the background vegetation, can be 
used to distinguish the target species.  For example, Broom snakeweed (Gutierrezia sarothrae) 
has an erect-leaf canopy structure that makes it dark in its image response (Hunt et al. 2005b) or 
the contrast in canopy between invasive blue gum trees (Eucalyptus globulus) and the 
surrounding shrublands in California chaparral have proved useful for identification purposes.   
Figure 9 shows a vegetation map comprised of species having different growth forms. 
 

6.1.3.  Spatial pattern of invasion 

Target species whose invasion pattern has both dense and uniform canopy cover is more likely to 
be detectable, particularly when infestations spread over large spatial areas.  For example, the 
rhizomatous spread of iceplant (Carpobrotus edulis) produces a dense, uniform cover which 
assists in detection (Underwood et al., 2006a) or the density of redberry juniper (Juniperus 
pinchotii) infestations are detectable compared to the surrounding rangelands (Everitt et al. 
2001).     
 

6.1.4.  Indirect measurements 
The majority of studies apply remote sensing techniques to invasive species that dominate the 
vegetation canopy.  However, many invasive species are understory species or occur in 
compositions of mixed species (e.g., a meadow) which present additional challenges for 
detection with remote sensing and requires the use of indirect methods of mapping often using 
other GIS data layers (Joshi et al. 2004).   The example of weeping lovegrass shown in Figure 10 
was successfully mapped because it often occurred in canopy gaps and other openings at the 
edges of roads.  
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6.1.5.  Image Resolution and Image Types Needed for Identifying Invasive Species 

An influential paper in the mid-1990s (Price 1994) suggested that mapping individual species 
from canopy reflectance may be an impossible task, given the variability within a species and the 
potential for species to appear similar to other ones.  Today, however, the potential to use 
hyperspectral imagery to map species does seem feasible under some conditions and at some 
spatial scales.  The application of remote sensing to invasive species has seen a transition from 
the use of imagery with a high spatial but low spectral resolution, such as panchromatic or color 
infrared aerial photographs, to digital images with greater spectral resolution although coarser 
spatial resolution, and more recently to imagery that couples both high spatial and high spectral 
resolution.  Concurrent improvements in radiometric resolution, detector stability and calibration 
have also contributed to improved mapping capability. 
 
Similar to mapping classes of vegetation for other purposes, the choice of image pixel size 
(spatial resolution) depends on the smallest patch that must be mapped.  Researchers  suggest the 
pixel size of the imagery should be at least one-fourth the area of the smallest patch that needs to 
be mapped (Hunt et al. 2005a).  The advantage of finer spatial resolutions is that fewer pixels fall 
on the boundaries between invaded and uninvaded areas, thus increasing the number of ‘pure 
pixels’ and potentially greater mapping accuracy.  The spectral resolution, or the number and 
width of spectral bands, provides more spectral information as the number of bands increases 
and thus greater likelihood of identifying the target species.  The large number of published 
studies which have used a variety of hyperspectral image types illustrates how these capabilities 
relate to mapping invasive plant species. 
 

6.1.6.  Aerial photography and videography  
At the fine spatial end of the continuum of image options, aerial photographs have the benefit of 
being relatively inexpensive and typically have fine spatial resolution (from 0.1 m x 0.1m or 2 m 
x 2 m, or 0. 01 m2 to 4 m2).  This spatial resolution meets all or most criteria for sampling even at 
the smallest patch size.  Aerial photography (digital or film) and digital videography are 
particularly appropriate where the invasive species has unique visual characteristics that readily 
distinguish it from the surrounding vegetation, biochemical properties such as flower color, or 
phenological and structural characteristics like growth form (physiognomic) differences and 
early senescence.  The use of infrared imagery can further assist in the detection of target species 
since there is higher reflectance in the infrared rather than the visible part of the spectrum thus 
allowing differences to be more pronounced.  In addition, spatial variation in canopy texture (as 
detected by brightness variation) can contribute to species identification.   

Chinese tamarisk (Tamarix chinensis) has been identified with aerial photography using 
the unique orange-brown color prior to leaf drop, the distinctive yellow bracts of leafy spurge 
(Euphorbia esula) have also provided useful characteristics for discrimination, as well as the 
relatively dark green foliage of redberry juniper (Juniperus pinchotii) compared to surrounding 
species (Everitt et al. 1995; Everitt et al. 1996; Everitt et al. 2001). High resolution infrared aerial 
photography was used to map a number of woody invasives, including blackberry (Rubus 
fruticosus), European olive (Olea europaea), and pine species (Pinus spp.) in the Mount Lofty 
Ranges of South Australia and achieved an overall success rate of 74%, but noted that when the 
species occurred in the understory successful detection was limited to either gaps or at the 
fringes of the canopy (Crossman & Kochergen 2002).  Visual and computer assisted 
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interpretation of digital infrared images was also used to successfully map invading Acacia 
species from surrounding native vegetation and other invasive species in the fynbos biome of 
South Africa (Stow et al. 2000).  In the aquatic realm, expert interpretation of color aerial 
photographs were successful in mapping submerged aquatic vegetation in the Lower Chesapeake 
Bay, Maryland (Orth & Moore 1983).  However, similar photographic methods in the 
Sacramento-San Joaquin delta in California were not able to provide reasonable maps of 
submerged aquatic invasive plant species. 

While aerial photography is relatively inexpensive and can be acquired at high spatial 
resolution, disadvantages include extensive manual labor for processing including digitizing and 
georegistering of imagery as well as time-intensive interpretation requiring both skill and 
experience (Anderson et al. 1993; Everitt et al. 1995).  Although modern digital aerial cameras 
preclude the need to scan photographs from film and GPS and onboard navigation systems 
minimize registration problems, interpretation and the need for expert interpreters remains the 
greatest obstacle.  Furthermore, as highlighted in the studies reviewed here, its utility often relies 
on the visual identification of unique spectral characteristics which places significant challenges 
in coordinating image acquisition and field measurements at the appropriate time to capture 
spectral differences.  Given the resolution of the imagery, along with the requirement for expert 
interpretation and associated manual processing time, data collection is only feasible over 
relatively small spatial areas. 
 

6.1.7.  Multispectral imagery 
In contrast to aerial photography and videography, the use of digital multispectral imagery offers 
coverage over larger spatial areas, objective change detection through direct analysis of historical 
image archives, and the opportunity for automated image processing.  Some studies have had 
success even using resolution as coarse as the Advanced Very High Resolution Radiometer 
(AVHRR) (1.1 km x 1.1 km pixels with red and near-infrared wavebands) imagery to identify 
invasive species.  For example, identifying moderate to heavy infestations of broom snakeweed 
(Gutierrezia sarothrae) from surrounding grassland species was achieved by capitalizing on 
differences in phenological activity using the normalized difference vegetation index (NDVI) - a 
normalized ratio of red and near-infrared (Peters et al. 1992).  Information on water clarity and 
turbidity from AVHRR images collected in different seasons were found to be accurate 
indicators of the locations of zebra mussels (Dreissena polymorpha) in Lake Huron (Budd et al. 
2001).  Clearly, these examples represent invasive species which have spatially extensive 
distributions and where background conditions remain relatively consistent over large areas.  
 
At a medium spatial and spectral resolution, the Landsat Thematic Mapper (TM) (30 m x 30 m 
pixels and 6 spectral bands) imagery has been used successfully to map target invasive plant 
species that are spectrally or temporally unique.  For example, infestations of dyers woad (Isatis 
tinctoria) were mapped using correlations with brightness, greenness, and wetness values 
derived from reflectance data (Dewey, Price, & Ramsey, 1991).  Similarly, Systéme Pour 
l’Observation de la Terre (SPOT, 20 m x 20 m pixels and 4 spectral bands + 1 panchromatic 
band at 10 m x 10 m pixels) imagery has been used to successfully identify speargrass (Imperata 
cylindrica) invading savanna areas in Cameroon (Thenkabail 1999).  SPOT has also been 
suggested to be an appropriate sensor for monitoring the control of emergent aquatic invasive 
plants such as water hyacinth (Eichhornia crassipes) in Bangalore, India using NDVI 
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(Venugopal 1998).  Landsat Enhanced TM (ETM: 30m x 30 m pixels, with 6 spectral bands + 1 
panchromatic band at 10 m x 10 m) has been used to locate invasive species in the understory 
using indirect methods.  Forest canopy density and light intensity reaching the understory were 
derived from Landsat imagery and combined with data on grazing to map the extent of bitter 
bush (Chromolaena odorata) in lowland forests in Nepal (Joshi et al. 2006).   
 
Multiband imagery offers some clear advantages over aerial photographs and videography but 
the coarse spatial and spectral resolution of both AVHRR, MODIS, and Landsat (E)TM present 
challenges for infestations which are neither continuously widespread, dense, nor of 
monospecific composition.  Additionally, the 16 day repeat interval may make it difficult to 
target acquiring data at a specific stage in the life cycle.  
  

6.1.8.  Hyperspectral imagery  
While aerial photography and multiband remote sensing imagery have been available for many 
years, more recently, new technologies such as hyperspectral imagery, also known as imaging 
spectroscopy, allow detailed laboratory-like spectra to be acquired for each pixel in an image.  
Airborne and spaceborne hyperspectral instruments are characterized by many narrow 
contiguous spectral bands that have been used to produce high mapping accuracies and 
identification of individual species through the detection of specific narrow-band differences and 
subtle variation in reflection and absorption patterns (Aspinall et al. 2002; Vane & Goetz 1993).  
The large number of wavebands (e.g., 224 for Airborne Visible Infrared Imaging Spectrometer 
(AVIRIS) imagery) offers great potential for mapping invasive species compared to 
multispectral and photographic methods, especially where the target species is present at low 
densities.  Flightlines should be oriented to cover known locations of invasive plant species and 
native vegetation without invasive plant species invasion. Also, different installations had some 
restrictions on flightline locations, which resulted in flightlines not being oriented in a consistent 
direction. This added complications for aligning the radiometric data to allow cross-calibration 
of flightlines. Flying the lines in the principal plane of the sun would reduce this analysis 
complication.  Several commercial atmospheric calibration software programs were used. Each 
has some advantages and disadvantages for applications.  The FLAASH program yielded poorer 
results in sites with high humidity compared to ACORN.  The program ATCOR with its 
topographic module provided the best surface reflectance in mountainous terrain. 
 

6.1.9.  Context dependence of invasive plant species mapping methods 
Detecting invasive species with remotely sensed data is a challenging endeavor.  All vegetation 
has the same basic spectral characteristics since all vegetation is composed of the same suite of 
biochemicals (pigments, water, cellulose, etc.).  Leaf spectra are dominated by the influence of 
only four variables:  photosynthetic pigments, water, dry matter, and a structure parameter 
related to leaf thickness (Jacquemoud and Baret 1990).  All plant species are not spectrally 
unique (Price 1994) and spectral variability may be greater within than between species (Okin et 
al. 2001). 
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Appendix B: Mapping Invasive Plant Species Using Hyperspectral Imagery 
A Hyperspectral User’s Guide 

 
By 

 
Susan Ustin 

University of California Davis 
2 January 2008 

 
 

This guide is designed to provide a quick summary of the steps involved in planning a 
hyperspectral image data collection and analysis of the data to produce maps of invasive plant 
species.  It is often impossible to meet all criteria and there are numerous tradeoffs that must be 
considered and balanced to obtain the best compromise for the purpose.  
 

1. Mission Planning 
 
1.1.1.  Identify what structural and/or biochemical differences are likely to be present between 
the target invasive plant species and the native vegetation it is invading  
 
- Differences in growth form (grass vs. shrub, shrub vs. tree, conifer vs. broadleaf tree, etc.) 
- Differences in plant height (e.g., giant cane vs. annual grasses or low stature shrubs) 
- Differences in plant density (uniform, patchy, partial cover vs. total cover) 
- Differences in leaf area density (sparse leaves vs. dense leaves) 
- Differences in composition (i.e., how heterogeneous the distribution of species is in the habitat: 
uniform to clumped) 
 
Structural differences enhance the ability to detect invasive species. It will be nearly impossible 
to accurately map species without some differences in their structure. 
 
1.1.2.  Conduct a reconnaissance of the proposed flight lines to determine whether the area 
includes the range of vegetation types and site conditions being invaded and examples that are 
several pixels in extent, of both “pure” native species and “pure” invasive species and areas 
where they are mixed. 
 
1.1.3. How diverse is the installation? Does it cover a wide elevation range and/or a mosaic of 
ecosystem types? 
 
If the installation covers several distinct ecosystem types, it is best to stratify the data into these 
types at the first stage of analysis and treat them separately. The final result can be merged back 
together into one map encompassing the entire installation. 
 
Is a pre-existing vegetation map of the installation available that is considered to be reasonably 
good? This can be used with the elevation map to create the different strata for the analysis. If 
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not, or if the map is not current, consider doing a simple land cover classification using a Landsat 
Thematic Mapper image. This data is available from USGS and is inexpensive if data older than 
2 years is used. 
 
 
1.2.1.  Identify timing of image acquisition. 
 
Data should be acquired near midday unless the target invasive species is aquatic and then 
because of sunglint, data is best acquired earlier or later in the day (around 9-10am or 3-4pm).  
Ideally, the sky should be completely free of clouds, including high cirrus clouds, as they 
degrade the spectral quality by attenuating the signal.  The best quality data is acquired near the 
summer solstice when the sun angle is highest in the sky, since shadows are minimized.   
 
In some cases, structural differences are most apparent when more shadows are present and the 
observation goal is to maximize shadows, e.g., when plant spacing is varied or forests of 
contrasting even-aged vs. multiple age structures. 
 
1.2.2. Identify any likely differences in phenological timing between the native and invasive 
species. Are there differences in timing of leaf on/leaf off, flowering, or fruiting that could be 
used to identify the species? 
 
Data acquired in multiple seasons will increase the accuracy of the map.  If there is a time when 
the native species are growing and the invasive one is dormant that will improve their separation.  
The best time to acquire data is when the invasive species is still growing and the native species 
is dormant or partially dormant. These periods might be near the beginning or/and end of the full 
growing season.    
 
It is very difficult to schedule an overflight to meet the timing of a very brief biological event.  
Also, it is unlikely that all individuals of the species to be identified in an area would be at the 
same phenological stage at the same time.  Therefore slowly changing differences that might be 
present for a month or more are the preferred timing in order to get most of the species present in 
that growth stage.. 
 
1.3.1.  Will the entire installation be flown with hyperspectral imagery? 
 
If so, fly in N-S orientation or in the solar principal plane (in line with the sun). This minimizes 
shadows and differences in solar brightness across flightlines and between adjacent flightlines, 
making the data easier to analyze.  To avoid gaps between flightlines, plan on 20-25% overlap 
between adjacent flightlines. 
 
1.3.2. Only part of the base will be flown.  Can flightlines be planned that cross both invaded and 
non-invaded native vegetation?   
 
If practical, fly in N-S orientation or in solar principal plane.  
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1.4.  Identify the pixel size needed to map the invasive plant species.  What is a typical patch size 
of the invasive species and of the native species?  Is the native vegetation reasonably 
homogeneous, that is, are the mix of species about the same over its distribution or are species 
clumped in different parts of the territory, making it inhomogeneous?  
 
1.4.1. monoculture, several >400m2 in size 
1.4.2. monoculture,  100m2 in size 
1.4.3. mixed species, patches never more than 50m2 in size 
 
1.4.4. Consider acquiring some preliminary data to develop a krigging model of spatial 
dependence to use to determine the optimal size. If the pixel size is much smaller than the 
heterogeneity of the native community, there will be difficulty in developing a contrast between 
the invasive species and the invaded community. If the pixel size is much larger than the patch 
size of the invasive species then it will be hard to spectrally characterize.  Sub-pixel methods 
work best if the native and invasive species are spectrally distinct, therefore pixel sizes are best if 
smaller than the typical invasive species patch size.  Typically pixel sizes of 3m x 3m or 4m x 
4m were adequate for most types of species. 
 
1.4.5. If the native community is heterogeneous, consider treating it as multiple background 
types, rather than a homogeneous type in comparison to the invasive species. 
 
1.4.6. Data volume increases exponentially as pixel size is reduced.  The signal to noise is poorer 
(due to fewer photons detected) with small pixels so the spectral differences between the 
invasive species and the native species must be greater to maintain the same level of accuracy of 
detection. Pixel to pixel heterogeneity is greater (e.g., shadows vs. sunlight ground and foliage) 
as pixel size decreases. Therefore, smaller pixels will not necessarily improve the analysis and 
goal should be to collect largest pixel size that is likely to detect “pure” pixels of the invasive 
species and average the variability of the native plant community.  
 
1.4.7.  Most hyperspectral imagers are of the line scanner technology.  This results in significant 
potential spatial distortion in the airborne data (from roll, pitch, and yaw) that must be corrected 
to actual geographic position to be able to use ground data or other GIS data with the analysis.   
If pixel size is too small it becomes difficult to spatially register the data to geographic 
coordinates. How small depends on several factors, including how uniform the vegetation is and 
whether there are recognizable “tie points” in the data (e.g., road intersections, buildings, etc.). 
For example, it is much easier to identify geographic tie points on a base with many recognizable 
features and roads than a large undisturbed natural landscape, e.g., you might find in Alaska. For 
the U.S., 1m2 pixel orthophotos are available for registering the imagery. 

 
1.5.  Collect GPS data locating the invasive species and pure patches of the native species. 
 
1.5.1.  For most plant communities, unless there is a major disturbance, once a plant community 
has become invaded, the invasive species remains in place. The invasive species may continue to 
spread over time, so it will continue to invade new areas, but will not change rapidly within a 
growing season.  Therefore, GPS data locating invasive and native plant species can be acquired 
over a period of time, although recognizing that the data can become incorrect, if too much time 

 B3



Project SI-1143 Application of Hyperspectral Techniques to Monitoring and Management of Invasive Plant Species 
Infestation (January 2008 Final Report) 

 
has passed.  Nonetheless, this lets base personnel make observations of plant locations over an 
extended period that can be used in the analysis for training and validation data. 
 
1.5.2. Collect GPS point data by standing in the center of a “patch” of the invasive species or 
native vegetation and record additional information with the point, including the estimated size 
of the patch or dimensions in cardinal directions, how uniform the vegetation in the patch is, it’s 
percent cover (in 10% increments), and if it is a mix, how much of each species is present. Also 
record what stage in the life cycle is it at (vegetative, flowering, fruiting, senescent, dead, etc.).  
 
1.5.3.  If it is a native vegetation patch, record species presence and if it is not more or less 
evenly mixed, what species is dominant and collect other data on cover and life stage. 

 
1.6.  Acquiring digital photos at all locations is useful in case there are questions later during the 
image analysis. Standardize how the data is collected to make it easier to interpret later, e.g., 
from the GPS center point with the camera direction to the north at 1.5m height. If the vegetation 
is low, a downward looking photo at 1.5 or 2m height is also useful.  These data can be linked to 
the GPS locations in the GIS for the project. 
 

2. Field Data Collection During the Overflight 
 
2.1.  Record GPS locations of invasive species and native vegetation at as many sites as possible.  
It is not necessary that they are concurrent with the overflight, so this data can be acquired over 
an extended period. 
 
2.2.  During the overflight or in days immediately preceding or following, if a field spectrometer 
is available, obtain near solar noon (between 10am - 2pm standard time) above canopy 
measurements of the dominant species within the flightlines. The spectrometer foreoptics should 
be leveled so that the data is acquired directly above the canopy.  Collect 5-10 spectra per area 
and record species, plant condition and GPS location. 
 
2.3.  Collect as many spectra from as many as possible locations along the flightlines within 
project limitations. This will help the analysis if the conditions vary within the flightlines.  
 
2.4.  Collect spectra of invariant calibration targets. These should be parking lots, sand, bare dry 
soil, or rock outcrops. These can be used with the atmospheric correction programs to improve 
the calibration. Programs don’t do a good job with dust and aerosols and have problems when a 
wide range in elevation is present. This step makes the image data more suitable for using field 
measured spectra in the spectral library. These field data also provide independent measurements 
to evaluate how well calibrated to reflectance the images are.  
 

3.  Preliminary Image Data Analysis 
 
3.1.  Use an atmospheric correction algorithm to calibrate the data to apparent surface 
reflectance. 
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3.1.1. There are several commercial packages available for correcting the data to reflectance;  
examples are ATCOR, ACORN, and FLAASH. All programs produce artifacts and unless you 
are comparing data from various sites or want to use a spectral library to identify species, these 
errors probably will not affect the results. 
 
3.1.2. To make a mosaic of several flightlines, the data will need to be cross-calibrated or the 
different flightlines in the mosaic will have brightness differences that will be observable.  This 
is done by selecting one line as the “reference” and calibrating the other lines to it. This is done 
by developing a series of empirical linear regressions for each flightline relative to the reference 
image for each spectral band. Pixels located in the overlapping regions, where the reflectance of 
the reference and other image, can be used to develop band-by-band regressions. These 
regressions are then applied to the fitted images to bring them into spectral alignment with the 
reference image. 
 
3.1.3.  If there is extreme topographic variation in the imagery or climate conditions, the data sets 
could be stratified (segmented) into different regions and different calibrations applied. Such a 
case might be present if you had tall mountains next to the ocean, with a rain shadow on the 
interior side. 
 
3.1.4..  If a field spectrometer is available, the accuracy of the atmospheric correction can be 
improved if “invariant” calibrations sites can be located in the imagery.  It is necessary to locate 
at least two sites, a darker and a lighter material and to make spectral measurements of their 
surfaces along with GPS location of the measurements.  An example of the type of surfaces 
would be a cement/asphalt parking lot or the flat roof of a building.  These materials would be 
located in the imagery and a regression between the “true” field reflectance and the image 
“pixel” reflectance would be constructed. This band-by-band regression would be applied to all 
pixels in the image.  For example in the program ACORN, they term this step “effort” 
smoothing.  Another option is to measure a target continually with the field spectrometer during 
the overflight, and recording the time of each measurement. This way a pixel to pixel calibration 
could be performed in cases where there was a significant change in the atmosphere, for example 
with a weather front moving in or between two different flight acquisitions, if all the data could 
not be collected at one time. 

 
3.2.  Use a base GIS data layer to register the hyperspectral imagery to geographic coordinates. 
 
3.2.1.  Registration might be improved or/and the accuracy validated by measuring the GPS 
locations at recognizable places in the imagery.  
 
3.3.  Using GIS layers, eliminate all materials in the images that are not relevant to the map of 
the invasive species.  This reduces the processing time and improve the accuracy of the final 
map. 
 
3.3.1. Mask water bodies, impervious surfaces, buildings, and other man-made objects. 
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3.3.2. Determine if any vegetation types can be eliminated because the invasive species is not 
going to occur in that type, e.g., agriculture or forest?  Use pre-existing vegetation map or the 
land cover map created for this project. 

 
3.4.  Using the imagery available, eliminate before hand any land cover types that are not 
relevant to the analysis. 
 
3.4.1. Use a vegetation index like NDVI or EVI to find a threshold that eliminates non-vegetated 
areas if the invasive species is only present in vegetated pixels or eliminates densely vegetated 
pixels if the invasive species is found only at low density. Typically an NDVI of <0.2 will locate 
non-vegetated pixels and > 0.6 will locate high density vegetation.  
 
3.4.2. Perform a preliminary classification according to growth form type: grass, shrubs, 
conifers, broadleaf trees; and use it to eliminate any classes that are not potentially composed of 
the target native plant community type and/or invasive species.  
 
3.4.3.  If the invasive species is a riparian zone invader, using a digital elevation model to locate 
streams and then selecting a buffer mask of the appropriate size, e.g., 100m on each side of the 
stream can be used.  Likewise, an elevation limitation or a soil type limitation can be used to 
eliminate locations where the invasive species would not be present. 

 

4.  Hyperspectral Image Analysis 
 
The ENVI software has a method they term the “Spectral Hourglass Wizard” which defines 
some basic steps in image analysis that are useful for locating and mapping invasive plant 
species.  Use the Spectral Hourglass Wizard to guide you step-by-step through processing flow 
to find and map image spectral endmembers. The wizard displays detailed instructions and useful 
information for each function.  The hourglass processing flow uses the spectrally over-
determined nature of hyperspectral data to find the most spectrally pure, or spectrally unique, 
pixels (i.e., endmembers) within the data set, to map their locations and sub-pixel abundances.  
 
4.1.  Data Compression Steps: 
 
Minimum Noise Transform  
 
The MNF transform is used to determine the inherent dimensionality of image data, to segregate 
and equalize the noise in the data, and to reduce the computational requirements for subsequent 
processing. Typically the first transformed band or sometimes the first and second will relate to 
albedo or brightness differences and have a spatial pattern that grades across the image or from 
end to end and not be much affected by variability on the ground. These can be discarded from a 
classifier, despite containing most of the image variance. There will generally be from 10-30 
bands out of the original data set of hundreds of bands, which have coherent spatial patterns, i.e., 
not just speckle or noise patterns, containing the most significant information of the imagery.  
 
4.2.  Application of vegetation indexes  
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A large number of spectral vegetation indexes (VIs) have been developed that capture 
differences in pigment composition, water content and dry matter in the plant canopy. If invasive 
species have biochemical differences relative to background vegetation (e.g., higher nitrogen, 
pigment, or water content, or more dead/dry matter in the canopy).  This study used 19 indexes 
that were found to contain information over a wide range of data sets. 
 
4.3.  These MNF bands alone or VIs alone, or combined can be input into a supervised 
classification using training data to classify the imagery into cover types, where one or more 
types are the invasive species of interest. 
 
MNF bands with training data are effective at producing maps of many invasive species. 
However, the MNF transforms are dependent on the variance of the specific data set and are not 
transferable to another site or to another data collection of the same location. However, the 
location of the training sites could be re-used in another dataset to compare the maps for changes 
in the distribution of the invasive species over time. 
 
4.4.  Locating pixels of invasive species. 
 
4.4.1.  Field Located GPS points. 
GPS locations can be used to identify pixels in the image of native and invasive species. The 
pixel spectra can be added into a spectral library to be used to identify the species using spectral 
matching techniques.   
 
4.4.2.  Pixel Purity Index 
The PPI is a method to find pure pixels from the image.  The PPI is computed by repeatedly 
projecting n-D scatter plots on a random unit vector and a threshold value is used to define how 
many pixels are marked as extreme at the ends of the projected vector. The threshold value 
should be approximately two to three times the noise level in the data, which is 1 when using 
MNF transformed data. By understanding this small collection of the purest pixels, it is possible 
to understand the factors that control the variance in the imagery and whether the invasive 
species is distinctive. The PPI maps locations that should be visited for ground truth validation 
and spectral measurements in the field. 
 
4.5.  n-D Visualizer.  
 
Locate pixels with GPS to select spectra in order to create a spectral library of known materials 
from the image. Compare them to the PPI pixels to determine if any of them are spectrally 
unique. Display known pixel spectra in n-D Visualizer to see if there are spectral projections 
where they are distinct.  
 
If there are NO projections where the invasive species is distinct, it will not be possible to 
differentiate them unless it is possible to eliminate additional parts of the data set through more 
stratification. If this removes pixels that are spectrally similar to the invasive species, it will 
improve the detection. However, there is also the possibility that the invasive species is also 
being removed with the mask and tests must be done to determine if this is a problem. It is still 
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possible to use this segmented method and sequentially map the invasive species using these 
more restricted ranges of variation and at the end of these steps, create a mosaic image of the 
invasive species over the entire area.  
 
4.6.  Classifications using Mixture Tuned Matched Filtering (MTMF), and Spectral Unmixing, 
and Spectral Angle Mapper (SAM) methods as described in the final report or in the ENVI 
software help program. 
 
There is no single method that is best for all conditions. The Spectral Unmixing methods provide 
a subpixel cover estimate of the invasive species for each pixel. If the invasive species is located 
nearly everywhere, this is a good choice of method to use.  This method requires that all spectral 
types are known and also part of the mixing analysis.  If the plant spectra are too similar, the 
method does not work well. Also, if the invasive species is not present in many pixels, i.e., many 
pixels have 0% cover of the invasive species, it is likely to be overestimated. A more recent 
method, available by ftp from Dr. Dar Roberts at University of California Santa Barbara (termed 
“multiple endmember spectral mixture analysis, or MESMA), addresses this limitation. 
However, use of this method requires significant investment in obtaining spectra of all types 
present in the image in contrast to standard mixing that uses a one or two “average” types to 
represent all vegetation in the image. 
 
The SAM provides maps of how closely pixels match a reference spectrum. If there is little 
variance in the spectra between pixels this method works well. But if there are a range of 
conditions, e.g., might be found if soil moisture varied in different parts of the image, then this 
method runs into problems.  Additionally, the method produces a continuous range of similarity 
from exactly matching the reference to completely different.  The analyst must specify a 
threshold cutoff where the similarity value is too low to be considered a good match. This is 
typically done by comparison of the SAM values to the training and validation data and selecting 
a “best fit” cutoff. 
 
The Mixture Tuned Matched Filter (MTMF) which uses the MNF transformed bands as inputs 
provided the most consistently correct maps of the invasive species, even under the most 
challenging conditions.  This method produces two images a Matched Filter image, which 
determines how similar the pixel is to the reference spectrum and an “infeasibility” image that 
estimates the likelihood that the classification is correct. Where the MF is high and the 
Infeasibility is low provides a good fit to the data. The analyst must set these thresholds and 
again, it is done using the field training and validation data to determine the optimal threshold. 
This is the method that has been used most frequently in the published literature at this time. 
 
4.7.  Other methods 
 
We originally proposed to use a newer statistical analysis procedure termed “support vector 
learning machines” (SVLM) to map invasive species. It was not used in this study as the 
commercial programs were sufficient in most cases to obtain good results and because the 
SVLM methods were not practical outside of a few laboratories testing these methods. This is 
still the case for this method although it has been tried in several studies and does appear to be a 
promising method for difficult mapping cases.  Because the instrument capabilities and the 
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spatial resolution have also improved over this period of time, resulting in large improvements in 
mapping using established methods, the SVLM method remains relatively under-explored at this 
time.  Nonetheless, if it was incorporated into standard image processing packages, it could 
prove to be a valuable tool for detecting invasive species, particularly where differences between 
the invading species and the background species are minimal. 
 
We used Classification and Regression Tree (CART) models to identify pixels at risk for 
invasion by iceplant based on environmental conditions (e.g., soil type, topography, distance 
from water, etc.) or human-caused conditions (roads, fires, buildings, etc.).  This type of 
modeling can extend the analysis beyond the immediate image data (assuming that the relevant 
GIS layers are present) and can provide a basis for predicting direction and location of potential 
spread. 

 

5.  Validation of the Invasive Species Map 
 
5.1.    Assuming that some field GPS locations were not used to develop the maps, the remaining 
data can be used to start the validation process by determining the accuracy of the map classes.  
This step is usually iterated with the analysis to get the best final product. 
 
5.1.1. This is typically done using a matrix with the field classes on one axis and the image pixel 
classes on the other. This will tell you how often the classification is correct, and where image 
predicted classes are wrong, including which classes were confused with the correct class. This 
information is very useful to help improve the classification overall by understanding where 
mistakes occur.  
 
5.1.2.  Because the location of the pixels in the matrix are also known, it is possible to determine 
where in the image the classification was wrong. For example, if errors are located in one part of 
the flightline, it may be possible to deduce what is wrong (a missing endmember, atmospheric 
calibration problem, etc.). 
  
5.2.  Additional Field Data Collection for Validation 
 
5.2.1. At the stage where the image map appears to be reasonable, the next step is to take the 
map to the field to acquire additional independent data on the classification accuracy. 
 
5.2.2.  Because of the large number of pixels in an image (millions), it is not feasible to do a 
completely random sampling design and test the entire area of the flightline(s). Alternate 
methods use combinations of approaches.   
 
5.2.3. Using a hand-held GPS/computer with the image map displayed, locate boundaries on the 
image and go to these areas and either walk the boundary to determine if it is correctly mapped 
or walk transects that cross the boundary and record species and plant density. 
 
5.2.4.  Locate unusual spots or areas where you think the classification is mistaken to determine 
what is at these locations. An example might be a patch forming a geometric shape like a circle 
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or rectangle.  Such areas could be disturbed habitats now invaded by the target species or some 
other anomaly that is mistaken for the invasive species. 
 
5.2.5.  Use the species map and stratifications and go to as many locations as possible that are 
scattered over the full extent of the flightline(s) that are identified for the invasive species to 
verify the classification. 
 
5.2.6. Vegetation maps are dynamic. Once the map is accepted as the base, it is still important to 
keep validating it and updating it as new information becomes available and as the invasive 
species continues to spread into new areas.  

 

6.  Post-analysis Review and Assessment 
 
6.1.  Conduct a formal review of the invasive species mapping process to evaluate how methods 
can be improved in future activities.   
 
6.1.1. If the invasive species was not successfully mapped, it is important to attempt to determine 
what was the basis of the failure to avoid similar problems in the future. 
 
6.1.2.  If the results were successful, what steps can be improved or made more efficient? 
 
6.1.3.  Use the maps to develop a model to predict how management will affect the spread of the 
invasive species or to predict where the invasive species will spread.  
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1 Introduction 

1.1 Format 
 

The tutorial format is a combination of slide presentations and hands-on instruction.  A 
training manual, computer workstation and a set of sample images are provided to each 
attendee.  The format is intended to be flexible and you have the option of working 
individually or in groups on the assigned tutorials. 
 
The data used in the tutorial consists of a complete set of images from different 
processing stages during an invasive plant species mapping project.  These images were 
extracted from data sets used to map invasive plants at U.S. military bases by the 
CSTARS lab.  The tutorial data set referenced in the lessons was created specifically to 
use with the tutorials provided in the manual.   
 
The use of this tutorial assumes access to the ENVI software program 0 (Research 
Systems, Inc., Boulder, CO). The image classification techniques used to map the 
invasive plants for this project are performed using ENVI 4.. ENVI is used in the tutorial 
manual (Research Systems, 2002); it was modified and used with permission (RSI, 2003) 
to provide detailed instructions to allow an ENVI-novice to complete all the exercises in 
the manual.  However, if you have ENVI, you also have the option, at any time of 
accessing the online help provided with the program. 
 
During the course of two days, you will work through each of the image processing 
procedures that were used during the SERDP mapping project.  The more basic 
procedures are covered with a full day of instruction on the first day.  The second day 
will be a combination of practicing the techniques learned on the first day, field 
equipment demonstrations and presentations on some of the more advanced topics such 
as spectral unmixing and Mixture-Tuned Matched Filtering. 

1.2 Invasive Plant Species Threat at U.S. Military Installations 
 
The rapid spread of invasive plant species is causing irreparable damage to the natural 
resources on military installations.  Current estimates indicate that in the U.S., invasive 
plants infest 70,000 hectares and cost more than $100 billion annually, causing severe 
economic losses and ecological degradation (Babbitt, 1998; Pimentel et al., 2000).  Plant 
invasions are one of the most serious and rapidly accelerating ecological threats to land 
degradation and long-term environmental health faced by military environmental 
managers.  
 
The significant role that ecosystem disturbance plays in facilitating the spread of invasive 
plant species creates a challenge for military resource managers, who must continue to 
fulfill the military mission, while reducing or mitigating impacts on ecosystem structure 
and function. Troop, vehicle, and other operational and training activities on military 
bases cause the types of landscape disturbances that facilitate the spread of invasive plant 
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species, while the inadvertent transmittal of invasive plants during military transport of 
people and equipment around the world exacerbates these problems.  DOD, along with 
other federal agencies, has been mandated to develop proactive management techniques 
to protect native species and preserve the structure and function of natural ecosystems.   
 
New remote sensing technologies, especially hyperspectral imagers, may improve 
monitoring and mapping capability to improve early detection and management of 
invasive plants.  Our research addresses two of the objectives listed in the SON: 1) 
develop methods to inventory the spatial extent, and where applicable, the densities of 
established populations of invasive plants; and 2) develop methods to estimate the 
likelihood of invasive plant species expansions into and/or invasion of new habitats/areas 
on military bases.  
 

1.3 Mapping with Remote Sensing 
 
A hyperspectral methodology was developed for mapping invasive plants which has 
broad applicability to the military installations in this study and to management at other 
bases.  To provide the broadest basis for assessing transportability, the invasive plant 
species selected have a range of growth characteristics (herbaceous, grasses, shrubs, 
trees) from military bases with different missions (Vandenberg AFB, Camp Pendleton, 
Yakima Training Center, Yuma Proving Ground, Ft. Benning, Aberdeen Proving Ground 
and Eglin AFB) in different climate zones (Northwest Great Basin semi-desert, southern 
California Coastal, Sonoran desert, Atlantic coast wetlands, Gulf coast wetlands, and 
southeastern hardwoods).  
 
The tutorial addresses the unique spectral, spatial, and temporal characteristics of each 
invasive plant studied, to assess the applicability of using hyperspectral imaging (HSI) 
sensors for invasive plant species mapping.  Commercial programs were used where 
appropriate, in order to facilitate technology transfer, but the tutorial also investigates 
more advanced techniques e.g. non-linear image analysis and other linked spatial-spectral 
analysis procedures like wavelet decomposition and multi-scale resolution when required 
for discrimination of the invasive plant species from the environmental background.   
 
 

2 Data Acquisition and Fieldwork 
 

2.1 Target Invasive Plant Species 
 
The example invasive plants used in this tutorial were chosen by their respective military 
base personnel as important invasive plant species for their management.  Nonetheless, 
not all invasive plants have potential to be mapped using remote sensing techniques. 
Because invasive plants occupy landscapes with native species it is not sufficient to 
merely detect the presence of vegetation as the indicator of invasive plant species 
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presence. Several criteria must be present to successfully identify the  invasive plant 
species.  First the invasive plant should occupy several pixels, preferentially clustered to 
improve the identification.  The invasive plant species has to be there in sufficient 
amount to form a substantial part of individual pixels to be detected  The exact fraction 
required depends on the relative spectral and spatial contrast between the invasive plant 
and the surrounding vegetation, with the greater the separation the less of the invasive 
plant needs to be present to detect its presence.  Contrast can be improved if phenological 
differences exist between target invasive plants and/or native vegetation and if the 
invasive plant species have some aspect of unique biology, ranging from different growth 
forms (grasses vs. shrubs or trees), biogeochemistry (different proportions of pigments, 
water, and dry matter sufficient to characterize it) and/or plant and canopy density.  
Lastly, the pixel-to-pixel variability of the “background vegetation” should be low to 
avoid confusing the background vegetation with varying amounts of invasive plants in 
the pixels.  This tutorial illustrates detection of invasive plants under a range of external 
conditions. 
 

2.2 Hyperspectral Data Acquisition 
 
Specific detail about the data acquired for each site is available in past annual SERDP 
reports and in this report in the results section below.  This study acquired data from 
NASA’s Advanced Visible Infrared Imaging Spectrometer (AVIRIS), measuring 224 
spectral bands over the 400-2500nm interval and having a nominal wavelength resolution 
of 10nm.   Several flightlines of data were acquired at 3-4 m pixel resolution at each base.   
 

 
 
 
Figure 2-1:  True color composite of three AVIRIS flightlines. GPS sampling locations 
are displayed as yellow dots. 
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2.3 Spectral Fieldwork  
 
Field spectral measurements were acquired to meet two goals: (1) acquiring spectra of 
invasive plant species and native vegetation, soils, and other materials to use in image 
analysis, and (2) acquire spectra of “invariant” targets, i.e., those that are spectrally stable 
over time and can be used to improve the calibration of the data to surface reflectance. 
Examples of invariant targets are large (several pixels in size) cement or blacktop parking 
lots, bare dirt fields or roads, etc.  The spectra are used to atmospherically calibrate the 
image data and in spectral unmixing.  Locations of spectra and field notes are made along 
with GPS location. 
 
Canopy spectra were measured using two field portable spectrometers, Analytical 
Spectral Devices (ASD) Spectrometer.  The ASD measures in the visible, near-infrared 
(NIR) and short-wave infrared (SWIR) spectral regions from 0.4-2.5 nm.  
 
Measurements were made in the nadir orientation with a 25º field of view at about 1 
meter above the canopy or water surface in the case of submerged aquatic plants. A black 
shade cloth was draped over the edge of the boat to minimize solar reflection from the 
boat. Three sample points were taken at each location and each sample point was an 
average of ten spectra. Spectra were calibrated to surface reflectance by ratioing spectra 
to a horizontally leveled Spectralon panel (Labsphere, Inc., North Sutton, NH). Spectra 
were measured ± 2 hours from the time of the overflight in the morning and again in the 
afternoon (when the sun was at the same angle) to reduce solar angle effects and sun glint 
off the water.  
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Figure 2-2:  Spectral measurements taken during fieldwork in the shrubland community 
of Yakima Training Center. 

2.3.1 Locate Ground Control Points 
 
GPS locations of road intersections and other objects that can be unambiguously 
identified in the imagery were used as ground control points (GCPs).  These known 
locations are used to more accurately georeference image data.  If aerial photos are 
available, these can be used to identify potential ground control points prior to entering 
the field. 
 

2.3.2 Collect Regions of Interest (ROIs) 
 
Both during the initial field sampling and during the validation sampling, polygons of 
“homogeneous” materials are identified to be used to identify particular surface materials 
in the imagery. Typically ROIs are several pixels in extent and could be bare soil, road 
materials, invasive plant species, native vegetation (either community types or individual 
species).  The goal is to identify as many materials as possible and limit the potential of 
having other materials in the image that could be confused with the invasive plants.    
 
ROIs were collected primarily by using a Trimble Pro-XRS (Trimble, Inc., Sunnyvale, 
CA) to record the location of areas of interest. Range finder binoculars were used to 
record the locations of vegetation species located on the levees, on islands within the 
channels, and in areas that the airboats could not reach.  
 

2.3.3 Create Spectral Library 
 
Field spectra are examined and any bad data removed.  Spectra become part of the library 
of materials for each base and are used to either (1) train a classifier to identify the 
material or (2) used to evaluate the “correctness” of a classification or (3) used to 
determine which “pure” materials (i.e., spectra of known objects) are detectable if they 
are the only materials in a pixel and (4) how likely the material is detectable when it is 
mixed with other materials at the site.  For example, when a plant has partially senesced, 
it may spectrally look like a mixture of two other species.  
 

a) Calibration Targets 
 
Calibration targets are the “invariant” targets that are sufficiently large that pure pixels of 
the material can be identified in the image. Ideally, both a dark target (e.g., a lake or 
large, deep water body or a dark material like asphalt) and a light target (e.g., a sand pit, 
beach, or cement structure) are needed to improve the calibration of the image to surface 
reflectance. Typically these are used after a radiative transfer model has been used to 
calibrate scattering and absorption by the atmosphere.  These targets are used by 
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performing a regression between the “actual reflectance measured in the field and the 
reflectance retrieval of the pixels where the field measurements were made after the 
atmospheric radiative transfer model has been applied.  The resulting set of linear 
equations (one for each waveband) is then applied to all pixels in the image. This step 
will eliminate a lot of artifacts in the image data, but if not done carefully (and with 
subsequent checking of other known ground targets), can introduce errors. 

b) Vegetation 
 
Spectra of individual plant characteristics of each of the native plant communities and of 
the invasive plant species are measured in as many site locations as possible, given time 
constraints.  Spectra of plants at different densities and stages in their life cycles should 
be collected to improve the spectral library. The goal is to identify as many conditions as 
realistically possible. 
 
Sampling was undertaken to collect information on the invasive plants of concern in the 
SERDP as well as additional native and non-native species that are found in similar areas. 
The goal was to determine how well the various species found in similar niches 
throughout the military installations could be differentiated. The locations of the sample 
locations were random although consideration was given to areas that were easily 
accessible, had large monotypic areas of invasive plant species of interest that were not 
likely to move, patches that were not obscured by over hanging branches, and areas that 
were a mixture of different combinations of vegetation species. 
 
At the same time field spectral signatures were collected on each boat, GPS readings of 
the locations were taken using a Trimble Pro-XRS with an accuracy of <1m. Site-specific 
characteristics were recorded such as percent cover, surrounding vegetation, and water 
clarity. Digital photographs of each sample area were taken.   A total of 224 spectral 
signatures from various species were collected, measured, and recorded with the ASD 
and GPS instruments 
 

c) Soils 
 
Spectra of the dominant soil types that occur in each of the plant communities are 
acquired.  Spectra are taken of large openings of bare soil where possible.  Because the 
underlying soil reflectance beneath the plant canopy affects the pixel reflectance, this step 
increases the likelihood that the image data will be reproducible from the spectral library 
by mixing the plants, soils, and plant litter in various proportions.  
 

2.3.4 Processing of field spectrum 
 
Spectra from the field were input, managed, and analyzed in the Spectral Analysis and 
Management System (SAMS) (a proprietary package of CSTARS). SAMS was used to 
organize field spectra and delete noisy data. The spectral signatures of the three sample 
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points taken per species/location were averaged.  SAMS was used to compare the spectra 
for each species and spectra between different plants of the same species. SAMS was 
used to determine appropriate endmember selection, compare pixel endmembers to field 
referenced spectral signatures, and begin a spectral library. 
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3  Overall Technical Approach 
 
A combination of field knowledge of invasive invasive plant species and image analysis 
were used to develop maps of invasive plants for the bases.  This approach has been to 
obtain preliminary information from the base GIS database on topography, road and 
construction layers, and any vegetation, soil or geology maps of the base. These were 
used in consultation with base personnel to develop an over flight plan for the base that 
included known locations of the target  invasive plant species and areas of the same 
native vegetation that were not invaded by the invasive plants.  Field sampling locations 
were chosen to be within the flightlines and include areas of invaded and non-invaded 
vegetation.   
 
Following preliminary classification of the image data, a field validation survey was 
conducted to ascertain the accuracy of the proposed invasive plant species maps. Based 
on the new data, invasive plant species maps were evaluated for accuracy and then either 
updated and re-analyzed or accepted as meeting accuracy requirements. 
 
The validated map is used in conjunction with the ecological analysis of the native-
invasive plant species interactions to develop an environmental management model as 
shown in Figure 9 of the Final Report.  A schematic of the hyperspectral image 
processing steps which are performed to achieve the validated invasive plant species map 
is provided in Figure 10 of the Final Report. 
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Figure 3-1: Schematic showing overall technical approach for the project. 
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Figure 3-2:  Schematic of hyperspectral image processing steps. 
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4 Imagery Pre-Processing 
 
There are several steps that are required to be performed on hyperspectral imagery in 
order to fully utilize the information content of the data. 

4.1 Image Registration 
 

During image registration, the AVIRIS imagery is registered to the base layer of the GIS.  
The base layer consists of pre-existing aerial photos or digital maps of the study area.  
Often the field ground control points (GCPs) are used to fine-tune the registration of the 
base layer first. 
 

JPL also geocorrected the ten images using proprietary software that uses sensor position 
and orientation data collected simultaneously with the image to calculate the position of 
each pixel in the image.  There was still some geometric distortion within each flight line.  
The flight lines were further georeferenced to USGS 1 meter digital orthophotoquads.  
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 Lesson 1:  Building Spectral Library 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: endmembers_reflectance.sli 
   Ykm_spectral_library.sli 

usgs_veg.sli 
 
The Spectral Libraries module in ENVI is used to build and maintain personalized 
libraries of material spectra, and to access several public domain spectral libraries.  ENVI 
spectral libraries are stored in ENVI image format, with each line of the image 
corresponding to an individual spectrum and each sample of the image corresponding to 
an individual spectral measurement at a specific wavelength. The ENVI spectral libraries 
can be displayed and/or enhanced using the standard ENVI image display and analysis 
routines.  
 
Opening Spectral Libraries 
 
Use Spectral Library Viewer to open and view the contents of a spectral library and to 
plot individual library spectra.  
 
Select Spectral → Spectral Libraries → Spectral Library Viewer. 
 
In the Spectral Library Input File dialog, click Open Spec Lib. 
 

Select endmembers_reflectance.sli 
 
Click OK.  
 
Plotting Library Spectra 
 

1. Open Spectral Libraries and use the Spectral Library Viewer dialog to plot the 
spectra.  

 
2. In the Spectral Library Viewer plot window, click on an individual spectrum in 

the Spectral Library Viewer dialog.  
 

3. Click on multiple spectrum names to plot more than one spectrum.  
 

4. Repeat steps 1 & 2 with Ykm_spectral_library.sli and 
usgs_veg.sli. 
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Building Spectral Libraries (Optional) 
 
Use Spectral Library Builder to create ENVI spectral libraries from a variety of sources 
including ASCII files, spectral files produced by ASD spectrometers, other spectral 
libraries, ROI means, and spectral profiles and plots. The collected spectra are 
automatically resampled to an input wavelength space using full-width-half-maximum 
(FWHM) information, if available.  
 
Inputting Wavelength Data 
 

1. Select Spectral → Spectral Libraries → Spectral Library Builder.  
 

2. In the Spectral Library Builder dialog, select the wavelength set for the new 
library from either an Input Data File (ENVI image file) or from an Input ASCII 
File.  

 
3. In the Output Wavelength dialog, select the input file containing the 

wavelengths and optional FWHM values using standard selection procedures.  
 

4. If you select Input Data File, the wavelengths and FWHM values (if present) are 
read from the ENVI header file.  

 
5. If you select Input ASCII File, the column that contains the wavelength values 

and FWHM values (if present) must be selected.  
 

6. Click OK.  The Spectral Library Builder dialog appears.  
 
Collecting Spectra 
 
Use the Spectral Library Builder dialog to collect endmember spectra from a variety of 
sources. All spectra are automatically resampled to the selected wavelengths.  
 
The methods for collecting spectra in the Spectral Library Builder dialog are the same 
as those for collecting spectra in the Endmember Collection dialog. 
 
Writing Spectral Libraries 
 
Select an output option to build the spectral library with the collected spectra.  
 

1. In the Spectral Library Builder dialog, select File → Save Spectra As → 
ASCII to create an ASCII file containing all of the spectra.  

 
2. Or select File → Save Spectra As → Spectral Library to create an ENVI 

spectral library either as an output file or in memory.  
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 Lesson 2:  Image Registration 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm3_TM.img 

Ykm3_DOQQ.img 
 
Generated Files: Ykm3_TM_warp.img  
   Ykm3_gcp.pts 
 
Designed as a starting point for users doing image registration, this section provides basic 
information about georeferenced images in ENVI and Image-to-Image Registration 
 
Georeferenced Images in ENVI 
 
ENVI’s image registration and geometric correction utilities allow you to reference pixel-
based images to geographic coordinates and/or correct them to match base image 
geometry. GCPs are selected using the full resolution (Main Image) and Zoom windows 
for both image-to-image and image-to-map registration. Coordinates are displayed for 
both base and uncorrected image GCPs, along with error terms for specific warping 
algorithms.  
 
Warping can be performed using Resampling, Scaling and Translation (RST), polynomial 
functions (of order 1 through n), or Delaunay triangulation. Resampling methods 
supported include nearest-neighbor, bilinear interpolation, and cubic convolution. The 
“nearest neighbor” uses the original data values to fill in the additional pixels created 
during the registration warping and is usually the preferred method to maintain the data 
quality of the image.   
 
Comparison of the base and warped images using ENVI’s multiple Dynamic Overlay 
capabilities allows quick assessment of registration accuracy.  As a general guideline, the 
total RMS error from the registration warping process is maintained around 0.5 pixels. 
 
Image to Image Registration 
 
For this tutorial, a georeferenced aerial photo and a text file of GCPs were used to 
register an AVIRIS image.  Ideally, GCP’s are taken from the field, converted into a 
point file or vector layer, then used as a base layer to which an image can be warped.  
However, georeferenced images also can be used as a substitute for field data. 
 
Open and Display Georeferenced Aerial Photos 
 

1. In ENVI’s main menu select File → Open Image File. 
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2. In the Enter Data Filename dialog and select Ykm3_DOQQ.img.  Note:  ENVI 
does not always display the file extension in this dialog. 

 
3. Click Open. 

 
4. In the Available Bands List click Gray Scale radio button, then click Load 

Band button to display the orthophotoquad image. 
 
Open and Display the Simulated Landsat TM Image 
 
Because registering AVIRIS imagery with 224 bands requires considerable computing 
time and disk space, the AVIRIS data was filtered to provide a broadband image 
simulating the spectral output of the Landsat Thematic Mapper (TM).  This smaller 
spectral subset will be used for this exercise. 
 
To open the simulated Landsat TM image:   
 

1. In ENVI’s main menu, select File → Open Image File. 
 

2. In the Enter Data Filename dialog navigate to the data directory and select  
Ykm3_TM.img. 

 
3. Click OK. 

 
4. In the Available Bands List dialog, click radio button RGB Color and select the 

first three bands- 1, 2 & 3. 
 

5. Click New Display. 
 

6. Click Load RGB. 
 
Ground Control Points (GCPs) 
 
Select GCPs by comparing the base image (aerial photo) with the warp image (simulated 
Landsat TM image) and identifying landscape features visible in both images.  Road 
intersections, buildings, and waterways make good choices. Mark these features and use 
them as GCP pairs to register the warp image to the base image. 
 
 

1. In ENVI’s main menu select Map → Registration → Select GCPs: Image to 
Image. 

 
2. In the Image to Image Registration dialog choose Ykm3_DOQQ.img (Display 

#1) as the base image and Ykm3_TM.img (Display #2) as the warp image. 
 

3. Click OK. 
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The Ground Control Points Selection dialog appears. 
 

 
 
Figure 4-1: Ground Control Points Selection dialog for Image to Image Registration 
 
 

4. Explore the image and zoom in to several different features to help you identify 
those that make good GCPs. When you have found a good point, click Add 
Point. The GCP is now displayed on both the base (Ykm3_DOQQ.img) and warp 
(Ykm3_TM.img) images. 

 
5. Select at least 4 GCP points. 
 
6. Click Show List. The Image to Image GCP List dialog appears. Examine the 

base map coordinates, the actual and predicted image coordinates, and the RMS 
error. 

 
7. After the desirable level of RMS is reached, click File  Save GCPs to 

ASCII…; enter a name Ykm3_gcp.pts. 
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Figure 4-2: Image to Image GCP List dialog for image to map registration 
 
 
Warping 
 

1. Now that GCPs have been established, georectify the Landsat TM image. 
 

2. GCP Selection dialog → Options → Warp File. 
 

3. Select Ykm3_TM.img as the Input File and click OK. 
 

4. Save as Ykm3_TM_warp.img and click OK. 
 

5. In the Available Bands List dialog, select Ykm3_TM_warp.img, click Display 
→ New Display → Load Band. 
  

Note that the new image has been rotated so that its coordinates match 
Ykm3_DOQQ.img. 
 

6. In Display #1, select Tools → Link → Link Displays. 
 

7. Select No for the old, unwarped, Landsat TM image Ykm3_TM.img in Display 
#2), click OK. 

 
8. Close the unwarped Landsat TM image. 

 
The new image (Ykm3_TM_warp.img) and the reference image (Ykm3_DOQQ.img) 
are now linked.  Dragging the zoom box in one image window will move it in the linked 
window.   
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Ykm3_TM_warp.img is now registered. Optional exercises on editing map information 
and Image to Map registration are provided on the following pages. 
 
 
 
Edit Map Info in ENVI Header (Optional) 
 

1. In the Available Bands List, right click on the Map Info icon under 
Ykm3_DOQQ.img and select Edit Map Information from the shortcut menu. 

 
The Edit Map Information dialog appears. 
 

 
Figure 4-3: The Edit Map Information dialog 
 
This dialog lists the basic map information used by ENVI in georeferencing. The image 
coordinates correspond to the Magic Pixel used by ENVI as the starting point for the map 
coordinate system. Because ENVI knows the map projection, pixel size, and map 
projection parameters from the header information and the map projection text file, it can 
calculate the geographic coordinates of any pixel in the image. Enter coordinates as either 
map or geographic (latitude/longitude). 
 

2. Click next to the Projection/Datum field to display coordinates.  
 

3. Click DMS or DDEG to toggle between Degrees-Minutes- Seconds, and Decimal 
Degrees, respectively. 

 
4. Click Cancel to exit the Edit Map Information dialog. 

 
Cursor Location/Value 
 

1. Open a dialog box that displays the location of the cursor in the Main Image, 
Scroll, or Zoom windows. 
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2. From the Main Image window menu bar, select Tools → Cursor 
Location/Value. Or open this dialog from the ENVI main menu by selecting 
Window → Cursor Location/Value. 

 
 

 
 
Figure 4-4: The Cursor Location dialog displays the pixel and georeferenced coordinates 
for georeferenced images 
 
 
Note that both pixel and projected coordinates are given. 
 

3. Move the cursor around the image and examine the coordinates for specific 
locations. Note the relation between map coordinates and latitude/longitude. 

 
4. Select File → Cancel to end the dialog. 
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4.2 Atmospheric Correction 
 

The primary objective of atmospheric correction is to simulate the effect of the 
atmosphere on the image pixels and to remove it.  During this process, the water 
absorption bands at 820, 940 and 1140 nm are removed from the spectral data set and the 
input radiance spectra are converted to apparent surface reflectance. 
 
Sensor radiance data were converted to apparent reflectance by the JPL Corporation 
using HYCORR software. This is a program for converting radiance AVIRIS images to 
apparent surface reflectance. Two levels of processing occur. The first is compatible with 
ATREM3 processing. The more advanced level has an ATREM pass followed by an 
EFFORT polishing pass (spectral enhancement) to remove systematic ATREM errors. 
EFFORT processing was used on this data set. The derived surface reflectance image has 
been scaled by 10,000 (reflectance *10000) and the wavelengths are displayed as nm.  
 
There are several other commercial software packages which will atmospherically correct 
hyperspectral data.  In this tutorial, a program called ACORN (Analytical Imaging and 
Geophysics) is used.  The correction algorithms in Mode 1 of ACORN, accept basic 
physical parameters regarding overflight conditions (time of day, day of year, altitude of 
plane) as inputs to a radiative transfer model based on the MODTRAN program.  The 
radiative transfer model extrapolates a hypothetical “standard” atmosphere based on this 
information and subtracts the hypothetical moist atmosphere from the image data on a 
pixel-by-pixel basis to create a reflectance image. A byproduct from this analysis is that 
three additional images are created, an image of the density of water vapor in equivalent 
thickness of liquid water and an image of the distribution of liquid water in the vegetation 
canopy in the image. A third image is possible, that is, if ice or snow is present in the 
image, it can be mapped.  The basis for this discrimination is that the maximum 
absorption band for water is shifted about 40 nm (4 bands) for water in vapor, liquid and 
solid phases. 
 
If field calibration targets are available, Modes 2 and 3 use these targets to fine-tune the 
atmospheric calibration to surface reflectance that matches actual field conditions.   



SERDP Hyperspectral Tutorial:  Mapping Invasive Plant Species with Hyperspectral 
Remote Sensing Data  

21 

 Lesson 3:  Atmospheric Correction 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm3_raw.img 

Ykm3_reflectance.img 
 
Correcting spectral images for atmospheric conditions using Atmospheric COrrection 
Now (ACORN) software from Analytical Imaging and Geophysics LLC is covered in 
this section. 
 
 
Software 
 
ACORN uses radiative transfer calculations and the measured, calibrated hyperspectral 
data, to deduce a subset of the atmospheric properties present in the hyperspectral data. 
These derived atmospheric properties are used in conjunction with modeled atmospheric 
properties to estimate and remove the effect of atmospheric conditions on the 
hyperspectral data. With an input of calibrated hyperspectral radiance data, ACORN 
produces an output of apparent surface reflectance. The hyperspectral data must be 
spectrally and radiometrically calibrated to use ACORN. The ACORN user controls the 
strategy for water vapor estimation, artifact suppression, and visibility constraint and 
estimation. 
 
Several types of files are needed to effectively use the ACORN software.  Because these 
files can take a substantial amount of time to generate, so the output images are provided 
for comparison.   
 
Field Data 
 
Field data from spectrally flat calibration targets visible in the images provide additional 
calibration information. Spectral data need to be taken from these targets 2 hours before 
or after solar noon and as close as possible to (preferably on) the same day the images are 
taken.  Also, recorded observations about atmospheric conditions at the time field data 
are collected can be entered into the calibration software. ACORN converts the image 
data from radiance to reflectance. 
 
At least one pair of targets, one light and one dark, is required to execute a Mode 2 
calibration in ACORN.  Multiple targets are preferred and, more importantly, they should 
be spread throughout the image.  ACORN uses the differences between the field spectral 
data and the raw images to develop algorithms that correct all of the pixels in the raw 
images. If both of these targets are visible in multiple flightlines, use them to cross-
calibrate other flightlines. 
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View Atmospheric Correction Results 
 

1. In ENVI’s main menu select File → Open Image File. 
 

2. In the Enter Data Filename dialog, select Ykm3_reflectance.img and load 
into Display #1. 

 
3. Also open Ykm3_raw.img, display the same bands in Display #2. 

 
4. Select Tools → Link → Link Displays from any image display. 

 
5. Select Yes for both displays. 

 
6. Right-click on the image in the first display window, select Z-profile. This 

resulting spectral profile is for the pixel in the cross hairs of the zoom window. 
 

7. Repeat for the other image and compare the differences. 
 
Note how in the ACORN processed Ykm3_reflectance.img spectral profile, the 
main water absorption bands are removed, and the spectral profile is much smoother than 
the other image. 
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5 Image Classification 
 
 
To classify an image is to assign each pixel in the image to a class.  The spectral band 
values for each pixel in an image forms a cloud of points when plotted in multi-
dimensional space.  A classifier is a computer algorithm that takes the data cloud of 
points and groups the data into clusters or classes. 
 
The assumption used by classifiers is that pixels of like materials will plot close together 
in the data cloud, and that the closest cluster to an individual data point will consist of 
other pixels of the same category.  This is demonstrated schematically in Figure 5-1, 
which shows a data cloud in 2-D image space. 
 

 
Figure 5-1:  Image pixels grouped into classes in a 2D scatter plot  
 
There are two major types of classification: supervised and unsupervised.  Supervised 
classification uses thematic classes defined by the user (invasive plant species, native 
vegetation, roads, etc.) and unsupervised classification uses spectral classes that are 
statistically defined by the computer classifier to group pixels based on their tendency to 
cluster in the data cloud.  Both types of classifiers are used in this tutorial. 
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5.1 Unsupervised 
 
An unsupervised classification is often used as a preliminary stage prior to supervised 
classification.  The unsupervised classifier delineates the clusters within the image based 
purely on their spectral properties, which may or may not represent classes of interest to 
the user. However, it does provide an independent estimate of the number and types of 
independent classes in the data. 
 
The spectral classes found by the computer are then compared to the thematic classes 
defined by the user to fine-tune the definition of the thematic classes.  If there is more 
than one spectral grouping within a thematic class (i.e., stressed vs. unstressed vegetation, 
dense vs. sparse canopy forest, etc.), then the thematic classes may be further broken 
down into finer categories.  On the other hand, if several thematic classes fall within the 
same spectral grouping, it may lead the user to combine categories to maintain a more 
cohesive spectral class. 
 
Unsupervised classification can be very computer intensive since the computer is 
considering all possible data groupings.  Therefore, it often requires data reduction 
techniques (such as covered in Section 6) prior to running on large data sets such as 
AVIRIS. 



SERDP Hyperspectral Tutorial:  Mapping Invasive Plant Species with Hyperspectral 
Remote Sensing Data  

25 

 Lesson 4:  Unsupervised Classification 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm3_reflectance.img  

Ykm3_NDVI_mask.img 
Ykm3_vegtype.img 
Ykm3_DOQQ.img 
Ykm3_gcp.pts 

 
Generated Files: Ykm3_isodata.img 
   Ykm3_isodata_warp.img 

Ykm3_Kmeans.img 
Ykm3_Kmeans_warp.img 

 
Use Unsupervised Classification to cluster pixels in a data set based on statistics only, 
without any user-defined training classes. The unsupervised classification techniques 
available are Isodata and K-Means. 
 
Using Isodata Classification  
 
Isodata unsupervised classification calculates class means evenly distributed in the data 
space and then iteratively clusters the remaining pixels using minimum distance 
techniques. Each iteration recalculates means and reclassifies pixels with respect to the 
new means. Iterative class splitting, merging, and deleting are done based on input 
threshold parameters. All pixels are classified to the nearest class unless a standard 
deviation or distance threshold is specified, in which case some pixels may be 
unclassified if they do not meet the selected criteria. This process continues until the 
number of pixels in each class changes by less than the selected pixel change threshold or 
the maximum number of iterations is reached.  
 

1. File → Open Image File →  Ykm3_reflectance.img select mask band 
Ykm3_NDVI_mask.img. 

 
2. Select Classification → Unsupervised → Isodata 
 
3. In the Classification Input File dialog, select Ykm3_reflectance.img. 

  
The Isodata Parameters dialog appears. Options include input of a range for the number 
of classes to be defined, the pixel change threshold (0 - 100%), the maximum number of 
iterations to be used to separate the classes, splitting, merging, and deleting classes 
thresholds, and optional distance thresholds.  
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Figure 5-2: ISODATA parameters dialog box 
 

4. Use the default values for steps 5 through 10.  
 

5. Enter the minimum and maximum number of classes to be defined. A range for 
the number of classes is used because the Isodata algorithm splits and merges 
classes based on input thresholds and does not keep a fixed number of classes.  
 

6. Enter the maximum number of iterations and a change threshold (0-100%) in the 
appropriate text boxes.  

 
The change threshold is used to end the iterative process when the number of pixels 
in each class changes by less than the threshold. The classification will end when 
either this threshold is met or the maximum number of iterations has been reached.  
 
7. Enter the minimum number of pixels needed to form a class in the appropriate 

text box.  
 
If there are fewer than the minimum number of pixels in a class, then that class will 
be deleted and the pixels placed in the class(es) nearest to them. 
  
8. Enter the maximum class standard deviation (in DN) in the Maximum Class 

Stdv text box.  If the standard deviation of a class is larger than this threshold, the 
class is split into two. 
  

9. Enter the minimum distance (in DN) between class means and the maximum 
number of merge pairs in the appropriate text boxes.   
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If the distance between class means is less than the minimum value entered, the 
classes will be merged. The maximum number of class pairs to be merged is set by 
the maximum number of merge pairs parameter.   

 
10. Set the optional standard 

deviation to use around the class 
mean and/or the maximum 
allowable distance error (in DN) 
by entering the values in the 
Maximum Stdev From Mean: 
or Maximum Distance Error: 
text boxes, respectively.  

 
If both of these optional parameters are 
entered, the classification uses the 
smaller of the two to determine which 
pixels will be classified. If neither 
parameter is entered, then all pixels will 
be classified. 
 

11. Select output to File 
(Ykm3_isodata.img).  
 

12. Click OK to start the Isodata 
classification. 
  

Statistics are calculated for each band 
of the image, and a status window 
displays the progress of the operation. 
The status bar cycles from 0 to 100% 
for each iteration of the classifier.   The 
statistics for the initial class seeds are 
computed with a skip factor of 2.5 for 
both the sample and line directions. 
 

  
Figure 5-3:  Example of Isodata results for a subset of Yakima region. 
 
Using K-Means Classification  
 
K-Means unsupervised classification calculates initial class means evenly distributed in 
the data space and then iteratively clusters the pixels into the nearest class using a 
minimum distance technique. Each iteration recalculates class means and reclassifies 
pixels with respect to the new means. All pixels are classified to the nearest class unless a 
standard deviation or distance threshold is specified, in which case some pixels may be 
unclassified if they do not meet the selected criteria. This process continues until the 
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number of pixels in each class changes by less than the selected pixel change threshold or 
the maximum number of iterations is reached.  
 

 
1. Select Classification → Unsupervised → K-Means.  

 
2. Select Ykm3_reflectance.img file. 
 
3. The K-Means Parameters dialog appears. Options available include selection of 

the number of classes to be defined by the clustering procedure, the pixel change 
threshold (0 - 100%), the maximum number of iterations to be used to separate 
the classes and optional distance thresholds. The default values can be used for 
steps 4 through 6. 
  

4. Enter the desired number of classes and maximum number of iterations in the 
appropriate text boxes.  
 

5. Enter a change threshold (0-100%) 
which will be used to end the iterative 
process when the number of pixels in 
each class changes by less than the 
threshold. The classification will end 
when either this threshold is met or the 
maximum number of iterations has 
been reached.  

 
6. Set the optional standard deviation to 

use around the class mean and/or the 
maximum allowable distance error (in 
DN), enter the values in the 
Maximum Stdev From Mean: or 
Maximum Distance Error: text 
boxes, respectively.  

 
Figure 5.4: K-means Parameters dialog 
 
If both of these optional parameters are entered, the classification uses the smaller of the 
two to determine which pixels will be classified. If neither parameter is entered, then all 
pixels will be classified.  
 

7. Select output to File (Ykm3_Kmeans.img).   
 

8. Click OK to start the K-Means classification.  
 
Statistics are calculated for each band of the image, and a status displays the progress of 
the operation. The status bar cycles from 0 to 100% for each iteration of the classifier.  
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The statistics for the initial class seeds are computed with a skip factor of 2.5 for both the 
sample and line directions.  
 
 

 
 
 

Figure 5-5:  K-Means results for a subset of Yakima region. 
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Figure 5-6:  Vegetation type (Habitat suitability) map for the same subset of Yakima 
region. 
 
Both Isodata and K-means classification results can be compared with the reference map 
of vegetation type Ykm3_vegtype.img or DOQQ layer to see if the classes selected 
by the computer match what the user can determine visually. Since the classification was 
done on the unregistered reflectance image (in order to preserve spectral characteristics of 
the data), and the reference image Ykm3_vegtype.img is georegistered, this data has 
to be geometrically correct using the Ykm3_Isodata.img and Ykm3_Kmeans.img 
It should be done as described in Lesson2 of this Manual. DOQQ layer should be used 
as a base image, and isodata and K-means classification results should be used as warp 
images. The set of ground control points collected and saved in Lesson 2 should be 
downloaded selecting File  Restore GCPs from ASCII… in the Ground Control 
Points Selection dialog.  
Name output files Ykm3_isodata_warp.img and Ykm3_Kmeans_warp.img. 
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Now all three files: Ykm3_isodata_warp.img, Ykm3_Kmeans_warp.img and 
Ykm3_vegtype.img can be opened in three displays and linked to visually compare 
the unsupervised classification patterns with the reference map. 
 

5.2 Supervised 
 

Supervised classification uses spectral clusters defined by the user to assign pixels.  The 
user determines the spectral properties of the class by defining an ROI within an image 
and extracting the spectral information for that group of pixels.  The types of classes 
defined by the user depend on the themes of interest within the image.  The major 
thematic classes often used for invasive plant species mapping are: 
 

• invasive plant species vs. background 
• primary vegetation groupings 
• disturbance 

 
The first level of classification is between invasive plant species and native vegetation 
(binary classification).  This provides us with a map of the status of invasion at the time 
of overflight. 
 
The next level of classification is to map the primary components of the major 
ecosystems present at each base.  This type of classification groups the image into the 
major vegetation systems and distinguishes betweens levels of invasion.  This component 
allows us to look at invaded vs. ecologically similar non-invaded areas and supply 
information for risk assessment modeling.  The modeling can then help delineate the site 
conditions and locations in the study area vulnerable to invasion. 
 
Another type of classification useful for this project is to determine levels of disturbance 
within the image.  This is done by using GIS layers to help find disturbance endmembers 
within the image such as roads and trails, buildings, patches of erosion, etc.  Since 
disturbance is usually a major factor in the spread of most invasive plants, this type of 
classification is an important information layer in the risk assessment modeling. 
 
There are two main types of supervised classifiers used in this project, Spectral Angle 
Mapper and Maximum Likelihood (covered in the next couple of sections) and a couple 
of more advanced techniques covered in Section 7. 
 

5.2.1 Spectral Angle Mapper 
 
This description has been adapted from the ENVI tutorial manual (Research Systems, 
2002). 
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The Spectral Angle Mapper (SAM) is an automated method for comparing the spectra of 
image pixels to the spectra of reference endmembers (CSES, 1992; Kruse et al., 1993).  
SAM treats the spectra as vectors and determines the similarity between the unknown and 
the reference pixels by calculating the “spectral angle” between them. 
 
A simple example is shown in Figure 5-7 which uses a reference spectrum (material A) 
and an unknown spectrum (material B) from a data set of n bands. The reflectances of 
each material can be plotted in a 2-D scatter plot for each combination of bands in the 
data set.  A vector is then extended from the origin to the point of I-J reflectance for each 
material.  The 2-band spectral angle for the reference and unknown pixels in the I-J data 
space is the angle between the two vectors.  The overall spectral angle, α, can be thought 
of as equivalent to the sum of the angles for each 2-band combination of the n bands. 
 

 
 
Figure 5-7: Two-dimensional example of the Spectral Angle Mapper  
 
The color of a material is defined by the direction of its unit vector. The length of the 
vector relates only to how fully the pixel is illuminated.  Because SAM uses only the 
direction of the spectra, and not the length, all possible levels of illumination are treated 
equally. Poorly illuminated pixels fall closer to the origin, but still lie along the same 
vector as brightly illuminated pixels. Notice that the angle between the vectors is the 
same regardless of the length.  
 
The SAM algorithm generalizes this geometric interpretation to n-dimensional space. 
SAM determines the similarity of an unknown spectrum t to a reference spectrum r, by 
applying the following equation (CSES, 1992):  
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which also can be written as:  
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where n equals the number of bands in the image. 
 
For each reference spectrum (endmember) in the analysis of a hyperspectral image, the 
spectral angle α, is determined for each image spectrum (pixel).  This value, in radians, is 
assigned to the corresponding pixel in the output SAM image, with one output image for 
each endmember. The derived spectral angle maps form a new data cube with the number 
of bands equal to the number of reference spectra used in the mapping. The user specifies 
a threshold angle which is used to determine the maximum allowable angle difference 
between the reference and the unknown.  If α exceeds the threshold angle, the unknown 
will not be placed in the reference class. 
 
SAM is a very useful tool for vegetation mapping and have included it as part of the 
“standard” image processing package for the project data.  The method works well if the 
vegetation classes are well separated spectrally, but not as well with less distinct classes.   
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 Lesson 5:  Spectral Angle Mapper 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm1a_reflectance.img  

Ykm1a_MNF.img 
endmembers_reflectance.sli 
endmembers_MNF.sli 

 
Generated Files: Ykm1a_ref_SAM.img 

Ykm1a_ref_SAM_rule.img 
Ykm1a_MNF_SAM.img 
Ykm1a_MNF_SAM_rule.img 

 
The SAM algorithm implemented in ENVI takes as input a number of training classes or 
reference spectra from ASCII files, ROIs, or spectral libraries. It calculates the angular 
distance between each spectrum in the image and the reference spectra or endmembers in 
n-dimensions. The result is a classification image showing the best SAM match at each 
pixel and a rule image for each endmember showing the actual angular distance in 
radians between each spectrum in the image and the reference spectrum. Darker pixels in 
the rule images represent smaller spectral angles and, thus, spectra that are more similar 
to the reference spectrum. The rule images can be used for subsequent classifications 
with different thresholds to decide which pixels are included in the SAM classification 
image. 
 
Execute Spectral Angle Mapper (SAM) 
 

1. Open the reflectance data file Ykm1a_reflectance.img. In Available Bands 
list, right click on Ykm1a_reflectance.img to load a true color image into a 
new display.  This image is based on pre-selected bands. 
 

2. In ENVI’s main menu, select Classification → Supervised → Spectral Angle 
Mapper to start the SAM endmember selection process. 

 
3. In the Classification Input File dialog, select Ykm1a_reflectance.img.  

 
4. Click Spectral Subset to see which bands have been masked out. Click OK when 

ready to proceed. 
 

5. In the Endmember Collection: SAM dialog, select Import → From Spectral 
Library.  

 
6. In the Spectral Library Input File dialogue, choose 

endmembers_reflectance.sli.  Note:  If file isn’t listed, click Open 
File.   
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7. In the Input Spectral Library dialogue, select all the endmembers.  

 

 
 
Figure 5-8: Endmember collection for Yakima region. 
 

8. Click OK to load all of the endmember spectra into the Endmember 
Collection:SAM dialog. 

 
9. In the Endmember Collection:SAM dialog menu, select Options → Plot 

Endmembers. 
 

10. Endmember Spectra → Options → Stack Plots for improved comparison of 
spectral features. Right-click in the plot window, select Plot Key from the 
shortcut menu to display the legend. Enlarge the window so you can see the 
spectra better. 

 
11. In the Endmember Collection:SAM dialog, click Apply. Change the Set 

Maximum Angle to None.  Enter output file names in the Spectral Angle 
Mapper Parameters dialog, and click OK.  

 
12. Repeat steps 5 through 15 with Ykm1a_MNF.img. Use MNF bands 2-20. 

 
 
Review SAM Results 
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1. Select File →Open Image File → Ykm1a_ref_SAM.img to open the SAM 
classification image. The classification image will appear in the Available Bands 
List dialog.   

 
2. The classified image (Ykm1a_ref_SAM.img) consists of one band with coded 

values for each endmember. For example, hyacinth is an endmember.  
 

3. In the Available Bands List dialog, select Gray Scale. 
 

4. Load Ykm1a_ref_SAM.img into Display #2.  
 

5. Use Tools → Color Mapping → Class Color Mapping to identify the 
corresponding endmember colors.  

 
6. In Display #2 use Cursor Location/Value to identify endmember values.  

 
Notice that the number of pixels displayed as a specific endmember is a function of the 
threshold used to generate the classification. SAM is a similarity measure, not an 
identifier.  Therefore, it is up to the user to determine an appropriate threshold for this 
method. 
 
Color Codes Used for Endmembers 
Category Color 
Dry vegetation Cyan 
Soil White 
Riparian Red 
Cheatgrass Green 
Other grass Cyan3 
Shrubs Green3 
Knapweed Purple 
 

7. File → Open Image File and select Ykm1a_ref_SAM_rule.img. 
 
The rule image has one band for each endmember. The pixel values represent the spectral 
angle in radians. Lower spectral angles (darker pixels) represent better spectral matches 
to the endmember spectrum. In the Available Bands List dialog, one band for each 
endmember will appear. 
 

8. In the Available Bands List dialog, select Gray Scale → Display → New 
Display, select a band, then click Load Band to Display #3. 

 
9. To link all three displays: Tools → Link → Link Displays → OK. Evaluate all 

three images using the Cursor Location/Value and the Z Profiler. 
 

10. In Display #3, select Tools → Color Mapping → ENVI Color Tables. 
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11. Use Stretch Bottom and Stretch Top to adjust the SAM rule thresholds. 
Highlight those pixels with the greatest similarity to the selected endmember. 

 
12. Pull Stretch Bottom all the way to the right and Stretch Top all the way to the 

left to highlight the most similar pixels in white. 
 

13. Move Stretch Bottom to the left to show only the best SAM matches in white 
(and reduce the number of highlighted pixels).  

 
14. Use Rule Image color composites or Image Animation to compare individual 

rule images.  Notice that pure white pixels are the unclassified areas and do not 
change. 

 
15. Repeat the process with each SAM Rule Image. Select File → Cancel when 

finished to close the ENVI Color Tables dialog. 
 

16. Repeat steps 1 through 15 with Ykm1a_MNF_SAM.img and 
Ykm1a_MNF_SAM_rule.img.  Note:  The MNF image is the result of a data 
reduction process which will be discussed in a later section. 

 
 

 
 
 
Figure 5-9:  Spectral Angle Mapper results for MNF image (left) and reflectance image 
(right) 
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Practice Questions (Optional) 
 
• What ambiguities exist in the SAM classification when you work with the images and 
spectra in this section? 
 
• What factors could affect how well SAM matches endmember spectra? 
 
• Can you see the topographic shading effects in the SAM data? Why or why not? 
 
• How could you select better endmembers to correct some of the ambiguities in the SAM 
classification? 
 
 
 
 

5.2.2 Maximum Likelihood Classification 
 
The maximum likelihood classifier evaluates the variance and covariance of the spectral 
clusters defined by the user and uses this information to develop a probability density 
function surface as shown in Figure 5-10. 
 

 
Figure 5-10:  Probability density function for pixels in a hypothetical image using the 
Maximum Likelihood classifier (Lillesand and Kiefer, 2000). 
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For each pixel, the probability of its belonging to each class is evaluated, and then it is 
assigned to the class of the highest probability.  This technique can be furthered fine-
tuned by applying weighting factors to the probability functions for each class based on 
user knowledge of a priori probability and the goals of the classification.   
 
For instance, if based on a field ecological study, and the user knows that there is a low 
probability of pixels with a sandy soil containing a particular type of vegetation, then the 
category can be weighted lightly in the sandy soils areas (as defined by the GIS).  This 
lowers the probability of the pixel being classified as the unlikely type of vegetation and 
pixels that are in borderline areas of the cluster will be assigned to the next closest 
cluster.   
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Lesson 6:  Maximum Likelihood Classification 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm1a_MNF.img 

endmembers.roi 
 
Generated Files: Ykm1a_MNF_maxlike.img 
 
Use Supervised Classification to cluster pixels in a data set into categories corresponding 
to user-defined training classes.  
 
Training classes are groups of pixels (ROIs) or individual spectra. Select them as 
representative areas or materials that you want mapped in the output. Try to select ROIs 
that are homogenous.  
 
Prior to performing supervised classification, define the training classes in one of two 
ways: using the Endmember Collection dialog to select spectra or by defining regions of 
interest (ROIs).  The training sites can be defined as multiple irregular polygons, vectors, 
and/or individual pixels. 
 
Selecting Regions of Interest (ROIs) 
 
To select regions of interest as training classes, click on the desired ROI names in the  
Select Classes from Regions list of available ROIs.  Maximum Likelihood requires at 
least two distinct ROIs. 
 
Applying Maximum Likelihood Classification  
 
Maximum likelihood classification uses the assumption that the statistics for each class in 
each band are normally distributed.  It calculates the probability that a given pixel 
belongs to a specific class. Unless you select a probability threshold, all pixels are 
classified. Each pixel is assigned to the class that has the highest probability (i.e., the 
maximum likelihood).  
 

1. In ENVI’s main menu File → Open Image File → Ykm1a_MNF.img. 
 
2. In the Available Bands List dialog →  RGB Color and select the first three 

bands- 1, 2 & 3.  Click Load RGB. 
 

3. Basic Tools → Regions of Interest → ROI Tool.   
 

4. Select File → Restore ROIs → endmembers.roi. Minimize ROI tool. 
 

5. Select Classification →  Supervised → Maximum Likelihood. 
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6. In the Classification Input File dialog, select the input file Ykm1a_MNF.img 
by clicking once.  

 
7. Select Spectral Subset Bands 2 to 5.  

 
8. Click OK. The Maximum Likelihood Parameters dialog appears.  

 
9. Select all items from the list of regions. 

 
10. Set the probability threshold to None. 

 
11. Enter the default value of 1 as the Data Scale Factor.  The scale factor is a 

division factor used to convert integer scaled reflectance or radiance data into 
floating point values. For example, for reflectance data scaled into the range of 
zero to 10,000, set the scale factor to 10,000. 

 
12. Specify Ykn1a_MNF_maxlike.img as the name for the output. 

 
13. In Output Rule Images select No. 

 
14. Click OK. 

 
15. After process is complete, click New Display and select 

Ykm1a_MNF_maxlike.img from Available Bands list.  Click Load Band. 
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6 Data Reduction 
 
Because of the enormous volume of data contained in a hyperspectral data set, data 
reduction techniques are an important aspect of hyperspectral data analysis.  Reducing 
the volume of data, while maintaining the information content, is the goal of the data 
reduction techniques covered in this section. 
 
The images created by the data reduction techniques are then used as inputs to the 
classification techniques described in Section 5.2. 
 

6.1 Masking 
 
Masking reduces the spatial extent of the analysis by masking out areas of the image 
which do not contain data of interest.  Two common masks used in this project were 
hydrology and road masks. 
 
The hydrology masks used a buffer from the hydrology GIS layer to mask out non-
riparian zones which were analyzed for riparian invasive plants. 
 
The road masks used a combination of the roads layer and a vegetation index transform 
of the image data to find non-vegetated areas.  These areas were then masked out to 
remove these areas from the vegetation classification. 
 
Prior to the supervised classification a mask of the waterways was digitized for each 
flight line. This mask was then used during the classification process to restrict the 
analysis to areas of interest and to further reduce the amount of data processed in each 
scene 
 
During the masking process, the user compares the mask carefully to the original image 
to verify that only non-essential data is removed.  If there is any doubt whether data is 
important, it is left in the data set. 
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6.2 Spectral Indices 
 

Another important data reduction technique that can reduce the number of bands used in 
the analysis but retain the most important information is to create spectral indices 
relevant to plant properties and functions. 
 
Spectral indices, in their simplest incarnation, are ratios or linear combinations of two or 
more spectral bands (Jackson & Huete 1991), typically at one wavelength affected by the 
absorber of interest and one reference wavelength.  As shown in Figure 6-1, leaf 
reflectance spectra are dominated by the absorbance of chlorophyll and water.  Not 
surprisingly, spectral indices are frequently derived to estimate these parameters.  The 
most common are vegetation indices, especially the normalized difference vegetation 
index (NDVI), which has been used in numerous published studies (> 1000 found 
searching ISI WebOfScience).  These indices are sensitive to vegetation cover and 
provide an estimate of the “greenness” of an area.  As such, they have shown to be 
correlates of percent cover of vegetation, leaf area index (LAI), and plant biomass. 
 

 
 
Figure 6-1: Specific absorption coefficient of chlorophyll a+b (cm2 μg−1) on the left axis, 
of water (cm−1) and dry matter (cm2 g−1) on the right axis (from Ustin & Jacquemoud 
2002). 
 
Hyperspectral instruments allow the elaboration of spectral indices beyond simple 
greenness indicators.  Since AVIRIS samples 126 bands between 400 and 2500 nm, it 
allows the detection of narrow absorption features.  High spectral resolution instruments 
have used these narrow features to elucidate foliar chemistry such as lignin, starch, 
protein and cellulose concentrations (Card et al. 1988, Fourty & Baret 1998, Curran 
1989).  These techniques have proven so successful in laboratory settings that they can 
replace traditional wet chemistry extraction methods (Curran 1989).  The detectability of 
foliar chemistry suggests a potential for developing spectral indices sensitive to subtle 
variations in leaf physiology.  A plethora of physiological indices now exist for detecting 
a range of leaf properties. 
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Physiological index based classifications allow for explicit interpretations of physical 
properties and therefore, can be preferable to typical statistical classifications for which 
the basis of the differences in an image data set are unknown.  Statistical classifications 
integrate all information contained within class spectra.  They capitalize on the fact that 
classes are different, but do not provide any information regarding the basis of that 
differentiation.  Furthermore, these differences may be habitat variables that only 
indirectly relate to vegetation cover.  Physiological indices do not contain this limitation 
because they estimate physical parameters which may then be used to differentiate 
between classes.  For example, Underwood et al. (2003) successfully mapped infestations 
of the invasive iceplant at Vandenberg AFB using a water band index (Ustin et al., 1998), 
indicating that physiological differences (in this case succulence contributing to foliar 
water content) contribute to spectral uniqueness. 
 
The utility of physiological indices for mapping of invasive plant species was 
investigated at all seven 7 bases spanning a variety of physical and ecological conditions.  
Of particular interest is the generality of indices across sites.  Do the same collection of 
indices function well across ecological conditions, or are sets of indices site- or species-
specific?  Nineteen (19) physiological indices of three basic types:  pigment indices, 
foliar water indices, and foliar chemistry indices were used (Tables 6-1).  
 
Pigment indices focus on the absorptions of photosynthetic pigments.  A number 
specifically highlight chlorophyll, the predominant photosynthetic pigment of green 
vegetation.  In addition to chlorophyll, however, plants possess a variety of accessory 
pigments; examples include carotenoids and xanthophylls.  Relative concentrations of 
these accessory pigments may vary between species or between individuals of the same 
species experiencing different stress levels (Zarco-Tejada 1998).  See Table 6-1 for a 
listing of pigment indices studied including descriptions of their sensitivities. 
 
Water absorbs strongly throughout the solar infrared wavelengths.  Foliar water content 
thus heavily influences reflectance throughout these regions (Carter 1991).  In particular, 
vegetation spectra exhibit strong water absorption features at 970 nm, and 1.24, 1.4, and 
1.9 µm.  The depth of these absorption features corresponds to foliar water content.  
Invasive plant species with different water uptake (e.g, tamarisk) or storage (e.g, iceplant) 
strategies than native vegetation are expected to display water index values that reflect 
these strategies, and thus be readily detectable.  An example of a water index is shown in 
Figure 6-2, below. 
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Table 6-1:  Physiological indices used in vegetation mapping. 
Index formula details citation 
Pigment indices    

SR, Simple Ratio 
R

NIR

R
R

 
Index of green vegetation cover.  
Various wavelengths used, depending 
on sensor.(eg: NIR=845nm, R=665nm) 

 

NDVI, Normalized 
Difference Vegetation 
Index RNIR

RNIR

RR
RR

+
−

 
Index of green vegetation cover.  
Various wavelengths used, depending 
on sensor.(eg: NIR=845nm, R=665nm) 

 

mNDVI, modified 
NDVI 705750

705750

RR
RR

+
−

 
leaf chlorophyll content Fuentes et al. 

(2001) 

Summed green 
reflectance ∑

=

599

500n
nR  Index of green vegetation cover. Fuentes et al. 

(2001) 

PRI, Photochemical 
Reflectance Index 570531

570531

RR
RR

+
−

Xanthophyll response to light ~ 
photosynthetic efficiency. 
Also sensitive to 
carotenoid/chlorophyll ratio 

Rahman et al. 
(2001) 

Red/Green ratio 
599500

699600

−

−

R
R

 anthocyanins/chlorophyll Fuentes et al. 
(2001) 

NPCI, Normalized 
Pigments Chlorophyll 
Ratio Index 

430680

430680

RR
RR

+
−

 
total pigments/chlorophyll Peñuelas et al. 

(1995) 

SRPI, Simple Ratio 
Pigment Index 680

430

R
R

 carotenoid/chlorophyll a content Zarco-Tejada 
(1998) 

NPQI, Normalized 
Phaeophytinization 
Index 

435415

435415

RR
RR

+
−

 

chlorophyll degradation, detects stress 
at early states 

Zarco-Tejada 
(1998) 

SIPI, Structure 
Intensive Pigment 
Index 

680800

445800

RR
RR

−
−

 
carotenoid/chlorophyll a concentrations Zarco-Tejada 

(1998) 

PI1, Pigment Index 1 
420

695

R
R

 plant stress status Zarco-Tejada 
(1998) 

PI2, Pigment Index 2 
760

695

R
R

 plant stress status Zarco-Tejada 
(1998) 

PI3, Pigment Index 3 
690

440

R
R

 vegetation health, based on chlorophyll 
fluorescence ratios 

Lichtenthaler 
et al. (1996) 

PI4, Pigment Index 4 
740

440

R
R

 vegetation health, based on chlorophyll 
fluorescence ratios 

Lichtenthaler 
et al. (1996) 
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Table 6-2:  Physiological indices used in vegetation mapping (continued). 
Index formula details citation 
Water indices    

NDWI, Normalized 
Difference Water Index 1240860

1240860

RR
RR

+
−

 
leaf water content Gao (1996) 

WBI, Water Band 
Index 970

900

R
R

 leaf water content Peñuelas et al. 
(1997) 

Foliar chemistry indices    

NDNI, Normalized 
Difference Nitrogen 
Index 

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

15101680

1510

1680

1log

log

RR

R
R

 

foliar nitrogen concentration Serrano et al. 
(2002) 

NDLI, Normalized 
Difference Lignin 
Index 

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

17541680

1754

1680

1log

log

RR

R
R

 

foliar lignin concentration Serrano et al. 
(2002) 

CAI, Cellulose 
Absorption Index 

0.5 * 
(R2020+R222

0)-R2100 

based upon cellulose & lignin 
absorption features, used to 
discriminate plant litter from soils 

Nagler et al. 
(2000) 

 
 
 
 

Finally, several indices have been proposed to estimate leaf chemistry.  As with pigment 
and water indices, it is probable that different species display distinct proportions of foliar 
chemicals.  For example, the invasive vine kudzu is leguminous, forming nitrogen fixing 
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Figure 6-2: The water band index (WBI) for vegetation at VAFB (left) and Yuma Proving 
Ground (right). 
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symbioses.  As a result, it may have higher foliar nitrogen content than native species, 
and consequently higher normalized difference nitrogen index (NDNI) values.  Note that 
the cellulose absorbance index (CAI; Nagler et al. 2000), in contrast to the other indices 
studied, estimates the cellulose content of senescent plant matter, emphasizing the 
distinctions between soil and plant litter.  This index may be useful in arid and semi-arid 
regions where healthy green vegetation is (seasonally) sparse or fall senescence in mixed 
evergreen and deciduous ecosystems. 
 
All of the parameters estimated by the physiological indices described here are in leaves, 
and as a result, all tend to be correlated.  Obviously the several indices estimating 
chlorophyll content will be related.  Additionally, there are correlations between various 
physiological parameters within plants, leading to further correlations between 
physiological indices.  For example, the water indices and NDNI are generally highly 
correlated to NDVI.  This is because the more water and nitrogen a plant has access to, 
resulting in higher leaf water and nitrogen content, the healthier it is and the more it is 
able to invest in photosynthetic machinery, resulting in higher NDVI.  Of interest are the 
slight differences in spectral leaf traits across species and environments.   
 
The physiological indices images are created by deriving a variance/covariance matrix, 
eliminating the most highly correlated bands, and then “stacking” the single band indices 
into a final multi-band image.  These indices images can be used to encapsulate the 
information contained within vegetation spectra in meaningful and interpretable ways.  
Our use of physiological indices will provide several benefits.  Of immediate concern, 
they are a valuable tool that will facilitate the detection and mapping of invasive plant 
species.  Furthermore, our investigation of their portability across species and sites will 
enhance understanding of the properties of physiological indices. 
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 Lesson 7:  Band Math & Physiological Indices  
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm2a_reflectance.img 
 
Generated Files: Ykm2a_ind01_SR.img 

Ykm2a_ind02_NDVI.img 
* * * 
Ykm2a_ind13_NDNI.img 
Ykm2a_index_stack.img 
Ykm2a_NaN_mask.img 
Ykm2a_index_stack.txt 
Ykm2a_index_stack.sta 

 
Band Math Exercise 
 

1. Calculate vegetation indices, covariance 
statistics, and correlation matrices with 
ENVIs Band Math function.  

 
2. The first vegetation index, (shown in 

Figure 6-3) the Simple Ratio Index (SR), 
is a measure of photosynthetic efficiency 
that is calculated in these steps. 

 
3. In ENVI’s main menu, select File → 

Open Image File → 
Ykm2a_reflectance.img 

 
4. In the Available Bands list, right click on 

Ykm2a_reflectance.img to “Load 
True Color to New Display”. 

 
5. Select Basic Tools → Band Math.   

 
6. In the Band Math Expression dialog, 

enter float(b1)/float(b2). 
 

7. Click OK. 
 

 
Figure 6-3: Water Band Index (WBI) calculated for a fragment of Yakima region. 
 

8. In the Variables to Bands Pairing dialog, click on B1 (undefined).  
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9. Select Band 6 (845nm) for B1. 
 

10. Click on B2 (undefined). 
 

11. Select Band 9 (665 nm).   
 

12. Name the output Ykm2a_ind01_SR.img 
 

13. Click OK. 
 

14. Repeat steps 4 - 13 for some of the other vegetation indices described in Table 6-1 
such as those listed here.   

 
Note:  Some bands were noisy and were removed during the preprocessing stage.  The 
wavelengths corresponding to these bands will not be available. 
 

• NPCI, Normalized Pigments Chlorophyll Ratio Index:  float(b1-b2)/float(b1+b2).  
Click on the previous Band Math expression and assign new variable values. 

 
• SRPI, Simple Ratio Pigment Index:  float(b1)/float(b2). 

 
• WBI, Water Band Index:  float(b1-b2)/float(b1+b2).  Here you can also click on 

the previous Band Math expression and assign different variable values (see 
picture to the left). 

 
• mNDVI, modified NDVI. 

 
• SIPI, Structure Intensive Pigment Index:  float(b1-b2)/float(b1-b3) 

 
• NDNI, Normalized Difference Nitrogen Index:  

alog10(float(b1)/float(b2))/alog10(1/(float(b1)*float(b2))) 
 

• Other indices of your choosing.  
 
Combine Bands into a Single Image 
 
Combine all bands into a single image to calculate covariance statistics and a correlation 
matrix. Use ENVI’s layer stacking function for georegistered images.   
 

1. In ENVI’s main menu, select Files →  Save Image As →  ENVI Standard. 
 

2. Click Import and select vegetation index files you’ve just created: 
hold the Ctrl button to select multiple files (Ykm2a_ind01_SR.img, 
Ykm2a_ind02_NDVI.img,…, Ykm2a_ind13_NDNI.img). 

 
3. Name the file Ykm2a_index_stack.img 
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4. Click OK. 

 
5. In ENVI’s main menu, select File →  Edit ENVI Header →  ENVI Standard.   

 
6. Select Ykm2a_index_stack.img. 

 
7. Click Edit Attributes and select Band Names.  Change band names to the 

appropriate index names – if needed. 
 

8. Click the Display button and select New Display.  Click Load RGB to load the 
New Stacked Layer into a new display. 

 
Checking for Independence of Calculated Indices 
 
Calculating a correlation matrix is a fairly simple method for verifying the usefulness of 
these indices. Mask out zero and –NaN values to ensure that useful values are generated. 
 
Build the Mask 
 

1. Load Ykm2a_index_stack.img  into Display 1.  
 

2. Select Basic Tools →  Masking → Build Mask. 
 

3. In the Mask Definition dialog, select Options → Import Data Range; enter “0” 
for Data Min Value and Data Max Value, and check Mask pixel if ANY band 
matches range. 

 
4. In the Mask Definition dialog, select Options → Mask NaN. 

 
5. Select Options → Selected Areas Off. 

 
6. In the NaN Options dialog, check Mask pixel if ANY band matches NaN 

option. 
 

7. Click OK. 
 

8. Name the file Ykm2a_NaN_mask.img, click Apply. 
 

9. In the Mask Definition dialog, click Cancel. 
 
 
Calculate Statistics and Covariance Image 
 

1. In ENVI’s main window, select Basic Tools →  Statistics →  Compute 
Statistics. 
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2. Select Ykm2a_index_stack.img. 

 
3. In the Compute Statistics Input File dialog, click Select Mask Band and select 

mask you’ve just created: Ykm2a_NaN_mask.img. 
 

4. Click OK. 
 

5. Check Covariance, Output to a Statistics File, and Output to a Text Report 
File. 

 
6. Enter Ykm2a_index_stack.sta for the statistics file and 

Ykm2a_index_stack.txt for the text report file.  
 

7. Click OK. 
 

8. Maximize the File Statistics Report and interpret the correlation matrix.  A high 
absolute value (close to 1 or negative 1) indicates that the two bands are highly 
correlated.   

 
 
Frequently Asked Questions & Troubleshooting Guide for Calculating Physiological 
Indices and Performing Classifications  
 
My index image is all zeros.  
 
All zeros occur because the raw image is saved as an integer data type.  Unless told 
otherwise, the computer will set the type of the output band math image to integer as 
well.  This results in the truncation of decimal places.  An index that ranges between -1 
and 1, which many of them are normalized to do, will be saved as 0.  When entering your 
band math expressions, you must convert the input bands to decimals (or floating point 
values, in computer speak).  Example calculations are: 
 

• NDVI = float(b1-b2)/float(b1+b2) 
 

• SR = float(b1)/float(b2) 
 

• NDNI = alog10(float(b1)/float(b2))/alog10(1/(float(b1)*float(b2)) 
 
How do I combine multiple indices into a single image? 
 
If your images are georegistered, combining multiple indices can be accomplished in 
ENVI using Layer Stacking:   
 

1. Go to Basic Tools → Layer Stacking.   
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2. Select and order bands as desired.  The bands you are stacking must be 
georegistered for this process.  If your indices are not georegistered, you can 
combine bands by selecting File → Save File As → ENVI Standard.  From here 
you can select and reorder bands. 
 
After you have a consolidated index image, rename the bands to be more 
meaningful as follows:   

 
3. In the Available Bands window, right-click on the image name.  Select  

Edit Header → Edit Attributes → Band Names.  You can now rename each 
band to correspond with the index. 

 
4. Click OK when you are finished. 

 
How do I decide which indices to use for a classification?  
 
Many of these indices are correlated with each other.  Multiple highly correlated bands 
will provide no new information to be used by a classifier algorithm.  It may even be 
detrimental to use highly correlated bands due to the noise contained within each band. 
 

1. To determine correlations go to Basic Tools → Statistics → Compute Statistics.   
 
2. Select your physiological index image, mask out margin areas.   

 
3. Click OK. 

 
4. Select Calculate Covariance Statistics.  Choose a text report rather than a 

covariance image. 
 

5. Click OK. 
 
The output will include summary statistics (mean, standard deviation) of each band, a 
covariance table, and a correlation table.  The correlation table is of interest.  It displays 
the correlation between all pairwise comparisons of bands (indices).  As you can see, this 
matrix is diagonally symmetric.  A high absolute value (close to 1 or negative 1) indicates 
that the two bands are highly correlated.  When performing a classification, only one 
index from a group of highly correlated ones should be used. 
 
Noisy indices also should be avoided as inputs to a classification.  You can determine 
noise by visual inspection.  Open each index image as a greyscale, and check how grainy 
or speckled it is. 
 
The correlation matrix I’ve calculated has a lot of zeros, -NaN, or infinite values.  
 
Lots of zeros, -NaN and infinite values come from indices being undefined at some 
pixels.  For example, ratio indices will be undefined in the margin area since they contain 
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a zero in the denominator.  To avoid this problem, when you calculate your correlation 
matrix, you should mask out all undefined areas. 
 

1. Go to Basic Tools → Masking → Build Mask. 
 

2. In the Mask Definition Window, go to Options → Mask NaN values. 
 

3. Repeat for all bands, or check Mask pixel if ANY band matches NaN option in 
the NaN Option dialog.   

 
4. To mask out these areas, select Options → Selected Areas Off. 

 
5. Type a file name, and click Apply. 
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6.3 Continuum Removal 
 
 
Continuum removal reduces the spectral extent of the data by focusing the analysis on 
bands within specific absorption features.  It is a process which compares absorption 
features of reference and image spectra.  The continuum is a convex hull fit over the top 
of a reflectance spectrum using straight line segments to connect local spectra maxima, as 
shown in Figure 6-4.  The continuum line segments provide a common baseline from 
which to compare individual absorption features.  
 
 
 
The continuum reflectance, Rc, is removed by dividing it into the actual reflectance, R, 
for each pixel in the image.  

cR
Rr ='  

The resulting image spectra, r’, are equal to 1.0 where the continuum and the spectra 
match, and less than 1.0 where absorption features occur as shown in Figure 6-5. 

 
  
 

Figure 6-4:  Example spectrum showing common absorption features and connecting 
line segments. 
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An absorption feature at 2100 nm is shown in the reflectance plot in Figure 6-5 with a 
continuum line connecting the shoulders of the absorption feature.  The upper panel 
shows the same feature rescaled as a fractional % of the continuum reflectance. 
 
The continuum removal technique works best when the target invasive plant species have 
absorption features significantly different than the background pixels.  This technique 
may be particularly appropriate in differentiating between the following classes. 
 

• Succulent vs. non-succulent vegetation 
• Green vegetation vs. dead vegetation 
• Vegetation vs. soil 

 
The absorption feature is selected after a review of the image spectra and the 
hyperspectral data is subset to the region containing the absorption features of interest.  

Figure 6-5:  Example of a continuum removal calculation typical 
plant and soil absorption features. 
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 Lesson 8:  Continuum Removal 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm2a_reflectance.img 

 
Generated Files: Ykm2a_cont_rem.img 
 
 
Use Continuum Removal to normalize reflectance spectra to compare individual 
absorption features from a common baseline. The continuum is a convex hull fit over the 
top of a spectrum utilizing straight line segments that connect local spectra maxima. The 
first and last spectral data values are on the hull. Therefore the first and last bands in the 
output continuum-removed data file are equal to 1.0.  
 
Using different spectral subsets gives different results, so you should spectrally subset the 
data to the region containing the absorption features of interest.  
 
The continuum is removed by dividing it into the actual spectrum for each pixel in the 
image. The resulting image spectra are equal to 1.0 where the continuum and the spectra 
match, and less than 1.0 where absorption features occur. Continuum removal can be 
performed on data files or on individual spectra in a plot window. 
 
 

1. In ENVI’s main menu select File → Open Image File select 
Ykm2a_reflectance.img. Load as true color composite (R: Band 28, G: 
Band 19, B: Band 10). 

 
2. Select Spectral → Mapping Methods → Continuum Removal.  Click on 

Ykm2a_reflectance.img once.  
 

3. Spectrally subset the image by turning “off” the bands around the absorption 
feature at 1200nm.  In the Continuum Removal Input File dialog select 
Spectral Subset.  Scroll up to the absorption band of interest (Band 90, 1201nm).  
Hold Ctrl down while selecting Bands 81-100.  This will turn the bands “off”.  
Click OK. 

 
4. Enter output file name Ykm2a_cont_rem.img in the Continuum Removal 

Input Parameters dialog and click OK. 
 

 
5. Click the Display button, and add a new display. 
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6. Click the RGB radio button, and select Band 28 (red), Band 19 (green) and Band 
10 (blue).  Click Load RGB. 

 
Compare the two images by linking them and displaying the z-profile of each image. 
  
7. From one of the main image display windows, select Tools → Link Displays.  

Click OK in the Link Displays dialog box.  
 

8. Right click on the main image window of the first image (reflectance).  Select Z-
Profile.  This will display the spectral profile of the selected pixel.  Repeat for the 
second image (continuum-removed). 

 
You should now have both images linked and two z-profiles displayed.  Notice the 
difference in the spectrum of the images.  Move the zoom box around and display the 
spectral profiles of different pixels.  Notice the absorption feature is now removed. 
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6.4 Minimum Noise Fraction 
 
This section is partially adapted from the ENVI tutorial manual (Research Systems, 
2002) 
 
The minimum noise fraction (MNF) transformation is used to denoise and to reduce the 
dimensionality of the AVIRIS. The MNF transform as modified from Green et al. (1988) 
and implemented in ENVI, is essentially two cascaded Principal Components Analysis 
(PCA) transformations.  
 
The PCA is a transformation method of distilling the data by reducing the data set 
dimensions.  The image data as acquired from the sensor is a data cloud in multi-
dimensional space with each band generating an axis of dimension.  When the data cloud 
is viewed in two or three dimensions, the shape of the cloud depends on the bands chosen 
to supply the axis of the visual plot.  Some of the bands are highly correlated and if they 
are chosen as axes there is very little spread in the data plot.  The PCA is a linear 
transformation that re-orients the axis to capture the information in a non-correlated way.  
The resultant axes are linear combinations of the previous (band-based) axes.   
 
The PCA does the axis-transformation by performing an eigen decomposition of the 
sample covariance of the data.  The first axis is placed on a trajectory to capture the 
widest variation in the data cloud.  The second axis is orthogonal to the first and captures 
the second widest variation and so forth.  A schematic demonstration of the first two axes 
is shown in Figure 6-6. 
 
 

 
 
 
 

Figure 6-6:  Schematic representation of the first two eigenvectors (MNF 
TB1 and MNF TB2) from a PCA decomposition of a hypothetical data set  
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The disadvantage to the PCA reduction is that the eigenvectors are based on data variance 
and not on the signal-to-noise ratio.  Since noise can contribute to large data variances, 
this method is unable to reliably separate signal from noise.    
 
The MNF resolves this problem by using a two-stage PCA.  The first transformation, 
based on an estimated noise covariance matrix, decorrelates and rescales the noise in the 
data. The second step is a standard PCA transformation of the noise-whitened data. The 
inherent dimensionality of the data is determined by examination of the final eigenvalues 
and the associated images.  
 
MNF data space can be divided into two parts: coherent eigenimages and noise-
dominated images. By using only the coherent portions, the noise is separated from the 
data, thus improving spectral processing results and substantially reducing the volume of 
the image data set. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-7:  MNF Procedures in the ENVI program. 
 
 
Figure 6-7 summarizes the MNF procedure in ENVI. The noise estimate can come from 
one of three sources; from the dark current image acquired with the AVIRIS data, from 
noise statistics calculated from the image, or from statistics saved from a previous 
transform. Both the eigenvalues and the MNF images (eigenimages) are used to evaluate 
the dimensionality of the data. Eigenvalues for bands that contain information will be an 
order of magnitude larger than those that contain only noise. The corresponding images 
will be spatially coherent when viewed by the user, while the noise images will not 
contain any discernable spatial information. 
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 Lesson 9:  Minimum Noise Fraction 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm2b_MNF.img 

Ykm2b_reflectance.img 
 
 
Open and Load MNF Image 
 

1. Open the files Ykm2b_MNF.img and  Ykm2b_reflectance.img. 
 

2. In the Available Bands List dialog, click on Gray Scale and select a band from 
Ykm2b_MNF.img. 

 
3. Click Load Band. 

 
Compare MNF Images 
 

4. Select New Display.  Load several other MNF bands, either one at a time for 
individual examination or in RGB composites for comparison. 

 
5. Select New Display.  Right click on Ykm2b_reflectance.img to load into 

display. 
 

6. Use Z-Profile, Image Link, and Dynamic Overlay  to compare MNF spectra 
with apparent reflectance spectra from Ykm2b_reflectance.img.   

 
Note:  Right click on main image window to bring up Z-Profile dialog. Use Tools → 
Link → Link All Displays to create links and overlay. 
 

7. Determine the relationship(s) between the MNF image and the apparent 
reflectance images. Relate MNF band number to MNF image quality. 
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Figure 6-8:  Comparison of Minimum Noise Fraction image (left) and reflectance image 
(right) for Yakima region. 
 
Examine MNF Scatter Plots 
 

8. In the Main Image window, use Tools → 2-D Scatter Plots for forward and 
inverse mapping modes. 

 
9. Load a scatter plot of MNF Band 1 (x-axis) and Band 2 (y-axis). 

 
10. Select Options → Change Bands in the Scatter Plot window to change bands. 

Notice the corners (pointed edges) on some MNF scatter plots (Figure 6-9). 
 
Examine the high variance (low band number) MNF bands. Also examine at least one 
scatter plot of a low variance (high band number) MNF band.  Can you see a difference? 
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Use linked windows, overlays, and Z-profiles to understand the reflectance spectra of the 
MNF corner pixels. Look for areas where the MNF data stops being pointy and begins 
being fuzzy. Also notice the relationship between scatter plot pixel location and spectral 
mixing as determined from image color and individual reflectance spectra. How are these 
patterns explained? How can you exploit them? 
 

 
 

Figure 6-9: MNF 2-D Scatter Plot 
 
Use Scatter Plots to Select Endmembers 
 

1. Derive unmixing endmembers from the data using MNF images and the 2-D 
Scatter Plot Tool.  Use MNF Bands 1 and 2. 

 
2. In the Scatter Plot window, use the ROI drawing functions to circle the extreme 

few pixels in one or more of the corners or arms of the data cloud.   
 

3. Select desired colors from the Class pull-down menu. 
 

4. Use image and scatter plot dancing pixels (double-click and drag with the middle 
mouse button) to help identify unique areas. 

 
5. Select Options → Export All in the Options pull-down menu of the scatter plot 

to export these lists of pixels as ENVI Regions of Interest (ROI). 
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6. Load these ROIs into the window displaying the apparent reflectance data by 
choosing selecting Overlay → Region of Interest in the Main Image window 
menu bar. 

 
7. Continue to select MNF-corner ROIs using different combinations of the first 

several MNF bands. 
 

8. Use the Mean for All Regions menu item in the Options pull-down menu of the 
ROI Tool to extract the mean apparent reflectance spectra of the ROIs. 

 
9. Use the linked windows and Z-profiles to examine the relations between the MNF 

and reflectance spectra. 
 
Note: Corner pixels on the scatter plots generally make good endmember estimates. 
However, note also the occurrence of overlapping or repeat ROIs. This limitation results 
from examining the data in a pairwise fashion (2-D). 
 

10. Close the 2-D scatter plot by selecting File → Cancel in the Scatter Plot 
window. 
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7 Analyzing at the Sub-Pixel Level 
 
The analyses discussed previously in Section 5, are used to assign pixels to classes, with 
one class per pixel.  However, pixels are rarely pure and each pixel contains a multitude 
of objects.  The previous classification techniques address this by defining mixed classes, 
where the spectral center of the cluster is the combination of the spectra of the individual 
objects.  The class a pixel is assigned to is dependent on the dominant spectral feature of 
the pixel and the definition of the classes.  The target invasive plant species is classified 
as “invasive plants” where the pixel is dominated by the invasive plant species, or as an 
“invasive plant species - native vegetation mixture” when the pixel is dominated by the 
background vegetation.   
 
This technique works fairly well with invasive plant species that grow in thick clusters 
and produce a fairly strong signal within the pixel.  However, if the invasive plant species 
of concern is a non-dominant feature in the 4 meter pixels, it may not show up in the 
pixel-level classification.  The next level of mapping techniques assigns pixels to 
multiple classes and estimates the portion that each class contributes to the overall signal 
from the pixel. 
 
The following sections discussion spectral mixing models(Research Systems, Inc., 2002) 
are adapted with permission from the ENVI tutorial discussions (Research Systems Inc., 
2003). 
 

7.1 Mixing Models 
 
Spectral mixing occurs when materials with different spectral properties are represented 
by a single image pixel.  The simplest model of a mixed spectrum is a linear one, in 
which the spectrum is a linear combination of the pure spectra of the materials located in 
the pixel area, weighted by their fractional abundance.  The linear spectral unmixing 
model assumes no interaction between materials in a pixel. If each solar photon only sees 
one material, these signals add (a linear process).  This is at best an approximation, but 
this assumption does appear to work well in many circumstances (Boardman and Kruse, 
1994).  
 
 
Mixed pixels can be visualized as points in n-dimensional scatter-plot space (spectral 
space), where n is the number of bands. If only two endmembers mix in two dimensions, 
the mixed pixels will fall along a line (Figure 7-1A). The pure endmembers will fall at 
the two ends of the mixing line. If three endmembers mix, then the mixed pixels will fall 
inside a triangle (Figure 7-1B).  Higher dimensions of mixing are represented by higher 
dimension geometric figures (e.g.: four endmembers mix within a tetrahedron, etc.). 
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Figure 7-1:  Geometric mixing model.  A) two-dimensional mixing (two endmembers). B) 
three-dimensional mixing (three endmembers). 
 
 
Mixtures of endmembers fill in between the endmembers. All mixed spectra are interior 
to the pure endmembers, inside the simplex formed by the endmember vertices, because 
all the abundances are positive and sum to unity. 
 
This convex set of mixed pixels can be used to determine how many endmembers are 
present and to estimate their spectra. The geometric model is extensible to higher 
dimensions where the number of mixing endmembers can be up to one more than the 
inherent dimensionality of the mixed data.  Typically however, the number of spectrally 
unique endmembers is significantly below the inherent dimensionality and on a practical 
basis, is probably on the order of half that number. 
 
Spectral mixture analysis (SMA) has been one of the most successful techniques for 
quantifying vegetation abundances (Ustin et al., 1998; Elmore et al., 2000). SMA models 
the reflectance spectrum of each pixel as a linear combination of the spectral signatures 
(endmembers) of the dominant ecosystem components (e.g. foliage, soil, rock, senescent 
and woody vegetation).  These fundamental landscape components are useful integrators 
of biochemical and architectural components of canopies (Smith et al., 1990; Ustin et al., 
1993, 1996, 1998).  SMA has been applied to the decomposition of a mixed pixel or 
remotely sensed data for over 30 years (Hortwitz et al., 1971) and has been used to 
identify dynamic ecosystem changes (Adams et al., 1995; Roberts et al., 1997; Ustin et 
al., 1996, 1998b).  It has also been used to map non-native coastal plants (Underwood et 
al, 2003) the distribution of wetland species (Zhang et al., 1997; Sanderson et al., 1998), 
and environmental monitoring (Riano et al., 2002; Elmore et al, 2000).  

  

7.2 Practical Unmixing Methods 
 

                   A)                   B) 
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Two typical and very different types of unmixing are 1) using known endmembers and 2) 
using derived endmembers. 
 
In the first type, by using a set of known or assumed spectral endmembers, the apparent 
fractional abundance of each endmember material can be derived for each pixel. These 
known endmembers can be calculated from the data, obtained from a library of pure 
materials, or estimated with models.  
 
The mixing endmember matrix is made up of spectra from the image or a reference 
library. Unmixing analysis is an over-determined linear least squares problem. The 
mixing matrix is inverted and multiplied by the observed spectra to get least-squares 
estimates of the unknown endmember abundance fractions. Constraints can be placed on 
the solutions to give positive fractions that sum to unity. Shade and shadow are included 
either implicitly (fractions sum to 1 or less) or explicitly as an endmember (fractions sum 
to 1). 
 
The second unmixing method uses the imaging spectrometer data to derive the mixing 
endmembers (Boardman and Kruse, 1994).   The inherent dimensionality of the field 
spectra data is determined using a special orthogonalization procedure related to principal 
components. 
 
• Derive a linear sub-space (flat) that spans the entire signal in the data. 
 
• Project the data onto this subspace to lower the dimensionality of the unmixing and 
remove most of the noise. 
 
• Find the convex hull of these projected data. 
 
• Shrink-wrap the data by a simplex of n-dimensions, giving estimates of the pure 
endmembers. 
 
• Derived endmembers must give feasible abundance estimates (positive fractions that 
sum to unity). 
 
Spectral unmixing is one of the most promising research areas in hyperspectral analysis. 
Analysis procedures using the convex geometry approach already developed for AVIRIS 
data have produced quantitative mapping results for a variety of materials (geology, 
vegetation, oceanography) without a priori knowledge. Combination of the unmixing 
approach with model-based data calibration and expert system identification capabilities 
could potentially result in an end-to-end quantitative, yet automated, analysis 
methodology. 
 

7.3 Linear Spectral Unmixing (LSU) 
 
This section is adapted from the ENVI tutorial manual (Research Systems, 2002). 
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Linear Spectral Unmixing (LSU) is a technique for classifying mixed pixels. LSU is 
based on the assumption that the reflectance at each pixel is a linear combination of the 
reflectance of each distinct material (or endmember) present within the pixel. For 
example, if 25% of a pixel contains material A, 25% of the pixel contains material B, and 
50% of the pixel contains material C, the spectrum for that pixel is a weighted average of 
0.25 times the spectrum of material A plus 0.25 times the spectrum of material B plus 0.5 
times the spectrum of material C. So, given the spectrum of a mixed pixel and a set of 
endmember spectra, the linear unmixing solves for the abundance values of each 
endmember for every pixel. The number of endmembers must be less than the number of 
spectral bands and all of the endmembers in the image must be used.   If all endmembers 
are not known, or if you only want to map a few endmembers, use the Matched Filtering 
or Mixture Tuned Matched Filtering techniques described in the next section. 
 
 

 
 
 
Figure 7-2: Comparison of image endmembers used for spectral mixture analysis of 
Yakima imagery.  
 
ENVI linear spectral unmixing has two constraint options: unconstrained or a partially 
constrained unmixing. In unconstrained unmixing, abundances may assume negative 
values and are not constrained to sum to unity (one). An optional, variable-weight, unit-
sum constraint in the Linear Mixing algorithm allows users to define weighting of a sum-
to-unity constraint on the abundance fractions. It also permits proper unmixing of MNF-
transform data, with zero-mean bands. The user picks a weight factor (default value = 1), 
for the extra constraint equation. This weighted unit-sum constraint is then added to the 
system of simultaneous equations in the unmixing inversion process. Larger weights in 
relation to the variance of the data cause the unmixing to reflect the unit-sum constraint 
more closely. To accurately represent the constraint, the weight is set to be many times 
the spectral variance of the data.  
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 Lesson 10:  Linear Spectral Unmixing 
 
Required Files: Ykm1a_reflectance.img 

endmembers_reflectance.txt 
 
Generated Files: Ykm1a_LSU.img 
 
Applying Linear Spectral Unmixing 

 
1. Select File → Open Image File → Ykm1a_reflectance.img.  

 
2. Spectral → Mapping Methods → Linear Spectral Unmixing.  Select the 

Ykm1a_reflectance.img and click OK. 
 

3. In the Endmember Collection: Unmixing dialog, Import → From ASCII File 
→ endmembers_reflectance.txt, and click OK. 

 
4. In the Endmember Collection: Unmixing dialog, select endmember spectra 

from endmembers_reflectance.txt. Click Apply. The Unmixing 
Parameters dialog appears.  

 
5. Select Yes to “Apply a unit sum constraint” and use default weight of 1.0.  

 
6. Name output  Ykm1a_LSU.img. 

 
7. Click OK.  

 
Spectral Unmixing Results 
 
The results of spectral unmixing appear as a series of gray-scale images, one for each 
endmember, plus a root-mean-square (RMS) error image. Higher abundances (and higher 
errors for the RMS error image) are represented by brighter pixels (larger floating-point 
numbers).  
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Lesson 11:  Pixel Purity Index™ (PPI™) (Optional) 
 

 
Required Files: susbet_MNF.img 
 
 
Use Pixel Purity Index to find the most spectrally pure (extreme) pixels in multispectral 
and hyperspectral images. The most spectrally pure pixels typically correspond to mixing 
endmembers.  
 
The Pixel Purity Index is computed by repeatedly projecting n-dimensional scatterplots 
onto a random unit vector. The extreme pixels in each projection—those pixels that fall 
onto the ends of the unit vector—are recorded and the total number of times each pixel is 
marked as extreme is noted. A Pixel Purity Image is created in which the DN of each 
pixel corresponds to the number of times that pixel was recorded as extreme.  
 
The Pixel Purity Index function can create a new output band or continue its iterations 
and add the results to an existing output band. The PPI is typically run on a Minimum 
Noise Fraction (MNF) transform result excluding the noise bands. The results of the PPI 
are usually used as input into ENVI's n-D Visualizer.  
 
FAST Pixel Purity Index 
 
You have the choice of a disk-based PPI method and a FAST PPI method. The FAST PPI 
places the image data into memory and performs the computations in memory, which is 
much faster than the disk-based PPI method, but requires adequate memory space.  
Use spatial and spectral subsetting or a sparser array of the data (subsampled resolution) 
to help fit the image data into memory. ENVI informs you of the amount of memory 
necessary to perform the FAST PPI and prompts you for continuation. When using FAST 
PPI, you also have the options of creating a new output file and of adding to an existing 
output band.  
 
Selecting Input Files 
 

1. Use New Output Band the first time you run the Pixel Purity Index. An output 
band containing the number of times each pixel was found to be extreme (pure) is 
created and used as input into ENVI's n-D visualizer.  

 
2. Select Spectral → Pixel Purity Index → New Output Band or FAST New 

Output Band.  
 

3. When the Pixel Purity Index Input File dialog appears, open the file 
subset_MNF.img.  
Typically, run the PPI on an MNF transform result, and use spectral subsetting to 
exclude noise bands based on the eigenimages and eigenvalue plot. The MNF 
image has already been spectrally reduced to 15 bands. 
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4. Click OK to continue. The Pixel Purity Index Parameters dialog appears.  
 
Setting the Number of Iterations 
 
In the Pixel Purity Index Parameters dialog, designate the number of times the data will 
be projected onto the random vector by entering a number into the Number of Iterations 
text box.  
 
The more iterations run, the better job ENVI does of finding the extreme pixels. Balance 
the number of iterations against the time available. [Each iteration can take some time 
depending on the CPU and system load.] Typically thousands of iterations are required 
for imaging hyperspectral data. The number of iterations run is listed in the description 
line of the image header file.  The default value is 10,000 which should only take a few 
minutes on a small image. 
 
Setting the Threshold Factor 
 
In the Threshold Factor text box, enter a threshold value in data units for extreme pixel 
selection.  
 
For example, a threshold of 2 marks all pixels greater than two digital numbers (DN) 
from the extreme pixels (both high and low) as being extreme. This threshold selects the 
pixels on the ends of the projected vector.  
 
The threshold should be approximately 2-3 times the noise level in the data. For example, 
for Landsat TM data (which typically has less than 1 DN noise) a threshold of 2 or 3 
works well. When using MNF data, which normalizes the noise, a DN is equivalent to 1 
standard deviation and, again, a threshold value of 2 or 3 works well. Larger thresholds 
cause the PPI to find more extreme pixels, but they are less likely to be pure 
endmembers.  
 
Subsampling the Data 
 
Subsample the data to help it fit in memory. Enter X and Y resize factors less than 1 (eg. 
a resize factor of .5 will use every other pixel).  It is not recommended to subsample by 
less than .25 (every fourth pixel) because extreme pixels may be thrown out.  
 
Starting the Processing 
 
If you are using FAST PPI, a window indicating the amount of memory needed appears 
and prompts you to continue if that amount of memory is acceptable.  
 

1. In the Pixel Purity Index Parameters dialog, select File or Memory output.  
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2. Click OK to start the processing.  
 

3. To interrupt PPI processing, click Cancel in the processing status window.  
 
A processing status window appears with the Pixel Purity Index plot. This plot shows the 
total number of extreme pixels satisfying the threshold criterion found by the PPI 
processing as a function of the number of iterations. It should asymptotically approach a 
flat line (zero slope) when all of the extreme pixels have been found. 
 
If it is difficult to visually distinguish pixel value differences, click on Enhance → 
[Scroll] Equalization within the main image window.  This tool does not change the 
data, it merely enhances the visual contrast of the pixels. 
 
Restarting or Continuing PPI 
 
Use Existing Output Band or [FAST] Existing Output Band if you clicked Cancel and 
PPI was interrupted during processing, or use either option if you want to continue 
additional iterations on a PPI result.  
 

1. Select Spectral → Pixel Purity Index → Existing Output Band or [FAST] 
Existing Output Band.  

 
2. Select an input file (a spectrally subsetted MNF is recommended).  

 
3. Click OK.  

 
4. When the Pixel Purity Index Previous Result dialog appears, select a previous PPI 

image as the input file and click OK.  
 

5. When the Pixel Purity Index Parameters dialog appears, select the number of 
iterations and threshold as described in the previous sections.  

 
6. For FAST PPI, enter X and Y Resize Factors if desired.  

 
7. Click OK to start the processing.  

 
A processing status window and the Pixel Purity Index plot appear. The PPI image 
appears in the Available Bands List when the processing is completed.  
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Figure 7-3:  PPI results with 2.5 threshold, 1000 iterations (left) and 10,000 iterations 
(right) 
 
 
Using PPI Images for Endmember Selection 
 
After the PPI is processed, the PPI image appears in the Available Bands List.  Display 
the image using standardized ENVI display procedures. Brighter pixels represent more 
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spectrally extreme hits and indicate pixels that are more spectrally pure. Darker pixels are 
less spectrally pure. 
 
For the following steps, please review the techniques described in the ENVI Online Help. 
 

8. Select Window → Cursor Location/Value on the ENVI main menu or Tools → 
Cursor Location/Value from the Display menu to determine the range of values 
present in the image.  

 
9. Use interactive density slicing to get a better visual representation of the  

high values.  In the image window, select Tools → Color Mapping → Density 
Slice. 

 
10. In the image window, select Overlay → Regions of Interest → Option → Band 

Threshold to ROI to create an ROI containing only the pixels with high PPI 
values.  Select the pixel purity file. 

 
Typically, use a minimum threshold. For example, a minimum of 10 will include all of 
those pixels with PPI values greater than 10 in the ROI. However, if bad data points exist 
in the PPI image, both a minimum and maximum threshold can be used.  
 
After an ROI has been created containing the high PPI values, you can use the n-
Dimensional Visualizer to interactively define the image endmembers.  
 

11. In the ENVI main menu, Spectral → n-Dimensional Visualizer → Visualize 
with New Data. 
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7.4 Mixture-Tuned Match Filtering (MTMF) 
 
This section is adapted from the ENVI tutorial manual (Research Systems, 2002) 
 
Mixture-Tuned Matched Filtering™ (MTMF™) is a hybrid method based on the 
combination of matched filtering and linear mixture theory (Boardman, 1998). This 
method combines the strength of the matched filter method with physical constraints 
imposed by mixing theory.  
 
Matched filtering is a technique adapted from the electrical engineering field which 
maximizes the target-to-background contrast.  A matched filter image is a result of 
maximizing the response of a known endmember and suppressing the response of the 
composite unknown background, thus matching the known signature (Chen and Reed, 
1987; Stocker et al., 1990; Yu et al., 1993; Harsanyi and Chang, 1994). It provides a 
rapid means of detecting target spectra based on matches to specific library or image 
endmember spectra. This technique produces images similar to unmixing, but does not 
require the spectra of all endmembers. It does, however, suffer from high false alarm 
rates, where materials may be randomly matched if they are rare in a pixel (thus not 
contributing to the background covariance). 
 
The equation for the MF image is as follows: 
 
 
 
 
 
Where: 
d = endmember spectrum 
x = target spectrum 
= covariance matrix 
 
Mixture tuning uses linear spectral mixing theory to constrain the result to feasible 
mixtures and reduce false alarm rates (Boardman, 1998). MTMF results are presented as 
two sets of images: 1) the MF score (matched filter image presented as gray-scale images 
with values from 0 to 1.0) which provides a means of estimating relative degree of match 
to the reference spectrum (where 1.0 is a perfect match); 2) the infeasibility image 
indicates that mixing between the composite background and the target is not feasible. 
The best match to a target is obtained when the MF score is high (near 1) and the 
infeasibility score is low (near 0). 
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 Lesson 12:  Mixture-Tuned Matched Filtering 
 
CD-ROM:   SERDP Training & Data CD 
 
Required Files: Ykm1b_MNF.img 

Ykm1b_mask.img 
Ykm1b_mnf_signature_knap.txt 
Ykm1b_mnf_signature_other.txt 
Ykm1b_reflectance.img 

 
Generated Files: Ykm1b_MTMF.img 

Ykm1b_MTMF_sta.sta 
 
Display MNF and reflectance Data   
 

1. Select File → Open Image File and choose Ykm1b_MNF.img.  
 

2. In the Available Bands List, click RGB, then choose MNF bands 4, 3, and 2.  
 

3. Click Load RGB. 
 

4. Select File → Open Image File and choose Ykm1b_reflectance.img. 
 

5. In the Available Bands List, click RGB and choose Band 54 (red), Band 33 
(green) and Band 19 (blue). 

 
6. Display → New Display → Load RGB. 

 
7. Link the two images using Tools → Link → Link Displays. Compare the MNF 

and reflectance images. 
 

8. Tools → Profiles → Z Profile (Spectrum).  To observe the change in spectral 
profiles, move the cursor in either display.  

 
Run MTMF 
 

9. From ENVI’s main menu, Spectral → Mapping Methods → Mixture Tuned 
Matched Filter → Ykm1b_MNF.img.  Spectrally subset using Bands 2-24. 

 
10. Select mask: Ykm1b_mask.img 

 
11. From the Endmember Collection dialog, Import → From ASCII → 

Ykm1b_mnf_signature_knap.txt and 
Ykm1b_mnf_signature_other.txt. 
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12. Save statistics file as Ykm1b_MTMF_sta.sta. Save image file as 
Ykm1b_MTMF.img. 

 
13. Click OK.  Compare the results for the two endmembers. 

 
 

 
 

Figure 7-4:  MTMF results for Russian knapweed (left) and “other vegetation” class 
(right). 
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8 Verification of Classification 
 
After classifying the hyperspectral images using one or more of the techniques listed in 
Sections 5 through 7, a statistical analysis of the map accuracy is done with a subsequent 
fine-tuning of the classification as necessary. 
 
Start by using some of the data collected during the preliminary fieldwork stage (Section 
2), as test data for the classification verification.  This data set contains plots and ROIs 
that were not used as part of the training set for the classifier, but were intentionally set 
aside to be used during the verification.  The test data are ideally collected at the time of 
the overflight. 
 
This first approximation of accuracy is used primarily to determine if the classifier should 
be more finely tuned prior to post-classification fieldwork. If the classifier is in 
reasonable agreement with the existing field data, then additional independent field 
validation is merited. If the classification results are not in reasonable agreement, the 
parameters are readjusted and the data is reprocessed to produce a new map. There are no 
hard rules for what can be considered reasonable, but accuracies above 50% are expected 
(at least for presence/absence of target invasive plant species). 
 

8.1 Field Data Collection 
 
The post-classification field measurements are usually a combination of stratified, semi-
random, and user-selected sampling of ROIs.  
 
The goal of sample site selection is to collect ROIs that focus on the areas of interest in 
invasive plant mapping, but are also geographically representative of the study area.  
Since field data collection is expensive and time-consuming, techniques for maximizing 
the data content for the minimum field effort are used, such as stratified sampling and 
boundary transects. 
 
Stratified random sampling is a method of maximizing useful information by grouping 
land cover category into stratums and then randomizing the field sampling within each 
stratum (Lillesand and Kiefer, 2000).  Semi-random sampling occurs when points are 
randomly selected across the area (e.g., the grid shown in Figure 8-1).    
 
 

 

Figure 8-1: Semi-random block sampling within a field to 
distribute samples across the area.  ROI are randomly selected 
within grid points.  
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As a broad guideline, Lillesand and Kiefer (2000) suggest that a minimum of 50 samples 
of each vegetation or land use category be acquired to perform the error statistics.  A 
higher number of sampling points are placed in land covers of particular interest.  In areas 
of low interest, further stratify the sampling area into topographic or some other 
ecological units to use as a mask and therefore, limit sampling. 
 
In the case of invasive plant species mapping, the landscape factors that control the 
successful establishment of the species (e.g., disturbance, fire history, erosion, etc.) are 
important to consider in planning the strata. Also the method of dispersal if known (e.g., 
wind, animal vector or stream transport), is taken into consideration in siting the samples.   
 
Prior to going into the field, review the random sampling points to determine if they will 
be accessible to the field crew by reviewing topographic data and other GIS layers.  
Inaccessible points are eliminated.  Also review points for vulnerability to map 
registration error. Sampling points that fall close to the boundaries between classes may 
be eliminated and/or possibly other points are substituted that are several pixels away 
from the classification boundaries. 
 
Besides the semi-random sampling described above, also create a user-selected sampling 
that focuses on specific areas of interest within the classification image.  One area of 
interest is the boundary between different classes.  One useful method is to place 
transects across predicted boundaries between native vegetation and invasive plant 
species to determine if the boundaries are correctly located in the imagery.  The transect 
method is less prone to map registration errors than the point method. 
 
ROIs are also placed in areas of disagreement between the various classification maps.  
The end result of the classification procedure is a series of classified maps, one from each 
classification technique.  Overlay these maps in the GIS and identify areas of agreement 
and areas of disagreement.   Now place sampling points and polygons of interest in both 
types of areas. 
 
Further guidelines for sampling strategies are provided in Appendix A. 
 
 

8.2 Confusion Matrices 
 
A confusion matrix is a standard method of assessing accuracy by comparison between 
the classification and the ground truth information.  The confusion matrix is calculated by 
comparing the location and class of each ground truth pixel with the corresponding 
location and class in the classification image. Each column of the confusion matrix 
represents a ground truth class, and the values in the column correspond to the 
classification image's labeling of the ground truth pixels in the classified image.   
 
The number of pixels correctly classified are found along the diagonal of the confusion 
matrix table. The total number of pixels is the sum of all the pixels in all the ground truth 
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classes.  The overall accuracy is the sum of the number of pixels correctly classified 
divided by the total number of pixels.  
 
The kappa coefficient (k) is another measure of the accuracy of the classification. It is 
calculated by multiplying the total number of pixels in all the ground truth classes (N) by 
the sum of the confusion matrix diagonals (xkk), subtracting the sum of the ground truth 
pixels in a class times the sum of the classified pixels in that class summed over all 
classes (N), and dividing by the total number of pixels squared minus the sum of the 
ground truth pixels in that class times the sum of the classified pixels in that class 
summed over all classes.  
 
Khat = (n * SUM Xkk) - SUM (Xk+ * X+i) / n2 - SUM (Xi+ * X+i)  
 
where SUM = sum across all rows in matrix 
Xi+ = marginal row total (row i)  
X+i = marginal column total (column i)  
n = # of observations  
 
The kappa coefficient takes into account the off-diagonal elements of the contingency 
matrix (errors of omission and commission). Errors of commission represent pixels that 
belong to another class that are labeled as belonging to the class of interest. The errors of 
commission are shown in the rows of the confusion matrix. Errors of omission represent 
pixels that belong to the ground truth class but the classification technique has failed to 
classify them into the proper class. The errors of omission are shown in the columns of 
the confusion matrix.  
 
The producer accuracy is a measure indicating the probability that the classifier has 
labeled an image pixel as Class A given that the ground truth is Class A (avoiding error 
of omission). 
 
The user accuracy is a measure indicating the probability that a pixel is Class A given 
that the classifier has labeled the pixel as Class A (avoiding error of commission).  
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 Lesson 13:  Confusion Matrices 
 
Required Files: Ykm1c_mtmf.img 

Ykm1c_ground_truth.roi 
 
 
Confusion Matrix Example 
 
This example explains the values calculated for the confusion matrix, including the 
overall accuracy, kappa coefficient, confusion (contingency) matrix, errors of 
commission, errors of omission, producer accuracy, and user accuracy. ENVI calculates a 
confusion matrix using either a ground truth image or regions of interest (ROIs). Both 
produce an output similar to this example.  
 
Confusion Matrix: {M6} (640x400x1)  
Overall Accuracy = (131003/256000) 51.1730%  
Kappa Coefficient = 0.2648  
 
Ground Truth (Pixels)      
Class Unclassified Grass Forest Swamp Total  
Unclassified 43689 26949 40 18001 88679 
Grass 32835 64516 1741 3329 102421 
Forest 8202 7277 4096 654 20229 
Swamp 15227 10742 0 18702 44671 
Total 99953 109484 5877 40686 256000 
Ground Truth (Percent)      
Class Unclassified Grass Forest Swamp Total 
Unclassified 43.71 24.61 0.68 44.24 34.64 
Grass 32.85 58.93 29.62 8.18 40.01 
Forest 8.21 6.65 69.70 1.61 7.90  
Swamp 15.23 9.81 0.00 45.97 17.45 
Total 100.00 100.00 100.00 100.00 100.00
Class Commission Omission Commission Omission 
 (Percent) (Percent) (Pixels) (Pixels) 
Unclassified 50.73 56.29 44990/88679 56264/99953 
Grass 37.01 41.07 37905/102421 44968/10944 
Forest 30.32 30.30 6133/20229 1781/5877  
Swamp 58.13 54.03 25969/44671 21984/40686 
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Class Prod. Acc. User Acc. Prod. Acc. User Acc. 
 (Percent) (Percent) (Pixels) (Pixels) 
Unclassified 43.71 49.27 43689/99953 43689/88679 
Grass 58.93 62.99 64516/109484 64516/102421
Forest 69.70 20.25 4096/5877 4096/20229 
Swamp 45.97 41.87 18702/40686 18702/44671 
 
Confusion Matrix (Pixels) 
 
The confusion matrix is calculated by comparing the location and class of each ground 
truth pixel with the corresponding location and class in the classification image. Each 
column of the confusion matrix represents a ground truth class and the values in the 
column correspond to the classification image's labeling of the ground truth pixels. For 
example, look at the ground truth column for the Forest class in the Ground Truth 
(Pixels) table above. The ground truth shows 5,877 pixels in this class. The classification 
was able to classify 4,096 of these pixels properly but 40 pixels were Unclassified and 
1,741 were classified as Grass.  
 
Confusion Matrix (Percent) 
 
The Ground Truth (Percent) table shows the class distribution in percent for each ground 
truth class. The values are calculated by dividing the pixel counts in each ground truth 
column by the total number of pixels in a given ground truth class. For example, in the 
Forest class the percent pixels classified correctly is 4,096/5,877=0.697 or 69.7%.  
 
Commission 
 
Errors of commission represent pixels that belong to another class that are labeled as 
belonging to the class of interest. The errors of commission are shown in the rows of the 
confusion matrix. In the confusion matrix example, the Grass class has a total of 102,421 
pixels of which 64,516 pixels are classified correctly and 37,905 other pixels are 
classified incorrectly as Grass (37,905 is the sum of all the other classes in the Grass row 
of the confusion matrix). The ratio of the number of pixels classified incorrectly divided 
by the total number of pixels in the ground truth class forms an error of commission. For 
the Grass class the error of commission is 37,905/102,421 or 37%. 
 
Omission  
 
Errors of omission represent pixels that belong to the ground truth class, but the 
classification technique has failed to classify them into the proper class. The errors of 
omission are shown in the columns of the confusion matrix. In the confusion matrix 
example, the Grass class has a total of 109,484 ground truth pixels of which 64,516 pixels 
are classified correctly and 44,968 are classified incorrectly (44,968 is the sum of all the 
other classes in the Grass column of the confusion matrix). The ratio of the number of 
pixels classified incorrectly by the total number of pixels in the ground truth class forms 
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an error of omission. For the Grass class the error of omission is 44,968/109,484 or 
41.1%.  
 
Producer Accuracy  
 
The producer accuracy measures the probability that the classifier has labelled an image 
pixel into Class A given that the ground truth is Class A. In the confusion matrix 
example, the Grass class has a total of 109,484 ground truth pixels of which 64,516 pixels 
are classified correctly. The producer accuracy is the ratio 64,516/109,484 or 58.9%.  
 
User Accuracy  
The user accuracy measures the probability that a pixel is Class A given that the classifier 
has labelled the pixel into Class A. In the confusion matrix example, the classifier has 
labelled 102,421 pixels as the Grass class and 64,516 of them are classified correctly. The 
user accuracy is the ratio 64,516/102,421 or 63.0%.  
 
Accuracy Assessment for SERDP Image 
 
ENVI calculates a confusion matrix (contingency matrix) using either a ground truth 
image or regions of interest (ROIs). Overall accuracy, producer and user accuracies, 
kappa coefficient, confusion matrix, and errors of commission and omission are reported.  
 
Using Ground Truth Regions of Interest 
 

1. File → Open Image File → Ykm1c_mtmf.img. 
 

2. In Display #1 → Overlay → Region of Interest. 
 

3. In #1 ROI Tool → File → Restore ROIs → Ykm1c_ground_truth.roi. 
 

4. Select Classification → Post Classification → Confusion Matrix → Using 
Ground Truth ROIs. 

 
5. In the Classification Input File dialog, select Ykm1c_mtmf.img.  Click OK. 

 
6. In the Match Classes Parameters dialog, match the ground truth ROIs with the 

classification results.  Click on the matching names in the two lists.  Do this for all 
pairs. 

 
7. Click Add Combination and then OK.  

 
8. In the Confusion Matrix Parameters dialog, select Pixels and Percent. Click Yes 

and then OK.  
 

9. How accurate was your SERDP classification? 
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Appendix A:  Sampling Strategies 
 
 The following material is derived from the website of Offwell Woodland & Wildlife 

Trust is copyrighted, but is copied with permission (2003) of the nonprofit organization for 
British wildlife conservation and environmental education. 
http://www.countrysideinfo.co.uk/index.htm  

 
 The problem of characterizing a habitat is usually solved by taking a number of 

samples from around the habitat, making the necessary assumption that these 
samples are representative of the habitat in general. In order to be reasonably sure 
that the results from the samples do represent the habitat as closely as possible, 
careful planning beforehand is essential.  

 
 Usually samples are taken using a standard sampling unit so that all of them 

represent the same area or volume (water) of the habitat.  
 

Quadrats 
 
 The quadrat, a typical sampling unit, usually consists of a square frame of 1 m2 (see 

picture below). Using quadrats brings a consistent size and shape to the areas 
sampled. Rectangular and even circular quadrats have been used in some surveys. A 
quadrat’s shape does not matter as much as its being a uniform sampling unit and its 
shape and measurements are stated in any write-up.  

 

  
 A quadrat is used to sample the species present in a habitat. 
 
 Choice of quadrat size depends to a large extent on the type of survey being 

conducted. As a general guideline, 0.5 - 1.0 m2 quadrats are suggested for short 
grassland or dwarf heath. Taller grasslands and shrubby habitats might require 2m 
quadrats and woodland habitats would need quadrats of 20m2 or larger.  

 
 



SERDP Hyperspectral Tutorial:  Mapping Invasive Plant Species with Hyperspectral 
Remote Sensing Data  

89 

 To record percent cover of species in a quadrat, look down on the quadrat from 
above and estimate the percent cover occupied by each species (e.g. species A - D 
left). Species often overlap and there may be several different vertical layers. Percent 
cover may therefore add up to well over 100% for an individual quadrat. 

 
 The estimation can be improved by dividing the quadrat into a grid of 100 squares - 

each representing 1% cover. Either visualize 10 longitudinal and 10 horizontal lines 
of equal size superimposed on the quadrat, or physically divide the quadrat with 
string or wire attached to the frame at standard intervals. 

 
        
        
        
        
        
        
        
        
        
        
        

 
 Quadrats are most often used for sampling, but are not the only type of sampling 

units. It depends on what you are sampling. If you are sampling aquatic 
microorganisms or studying water chemistry, then most likely you will collect water 
samples in standard sized bottles or containers. If you are looking at parasites on 
fish, then an individual fish probably will be your sampling unit. Similarly, studies of 
leaf miners would involve collecting individual leaves as sampling units. In these last 
two cases, the sampling units will not be of standard size. This problem can be 
overcome by using a weighted mean, which takes into account different sizes of 
sampling unit, to arrive at the mean number of organisms per sampling unit. 

 
 

Random Sampling 
 
  

Random sampling is usually carried out when the area under study is fairly uniform, 
very large, and/or there is limited time available. When using random sampling 
techniques, large numbers of samples/records are taken from different positions 
within the habitat. A quadrat frame is most often used for this type of sampling. The 
frame is placed on the ground (or on whatever is being investigated) and the animals, 
and/ or plants inside it are counted, measured, or collected, depending on the intent 
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of the survey. Sampling is repeated many times at different points within the habitat 
to obtain a fair representation of the study site. 

 
 In the simplest form of random sampling, the quadrat is thrown at random within the 

site. Many common statistical techniques are valid only on data that are randomly 
collected. This technique is possible only if quadrats of small size are used.  

 
 An alternative method of random sampling is to map the area and then to lay a 

numbered grid over the map. A (computer generated) random number table is then 
used to select in which squares to sample. For example, if our habitat is mapped from 
the hyperspectral data and a numbered grid is layed over it as shown the Figure 
below, then locations of sampling points can be chosen using the random number 
table.  

 
 In some habitats such as this woodland, it is 

difficult to set up numbered grids and in these a 
random walk may be used. In this method, each 
sample point is located by selecting a random 
number between 0 and 360, to give a compass 
bearing, followed by another random number 
which indicates the number of paces which should 
be taken in that direction. A grid can be 

established in advance to ensure sampling occurs throughout the area. 
 

Line Transect Method 
 
 A transect line can be made using a nylon rope marked and numbered at 0.5 m, or 1 

m intervals. This line is laid across the area to be surveyed. Locating the position of 
the transect line is critical to the results and it depends on the direction of the 
environmental gradient. A line transect is conducted by unrolling the transect line 
along the gradient identified. The species touching the line may be recorded along 
the whole length of the line (continuous sampling). Alternatively, the presence, or 
absence of species at each marked point is recorded (systematic sampling). If the 
slope along the transect line is measured as well, the results can then be inserted onto 
a profile of the transect.  

 

Belt Transect Method 
 
 
 This method is similar to the line transect, but gives information on abundance as 

well as the presence or absence of a species. It may be considered as a widening of 
the line transect to form a continuous belt, or series of quadrats.  

 In this method, the transect line is laid across the area to be surveyed and a quadrat is 
placed on the first marked point on the line. The plants and/or animals inside the 

http://www.offwell.free-online.co.uk/2howto.htm
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quadrat are then identified and their abundance estimated and the percent cover of 
plant species.  

 Quadrats can be sampled the length of the transect line (a belt transect), at each 
marked point on the line, or at some other predetermined interval (or even 
randomly). It is best to have the same person estimate cover because it is likely to 
vary from person to person. The height of plants can be recorded and the biomass of 
plants can also be measured by harvesting all the plants inside the quadrat and then 
weighing either fresh, or dry weight in the laboratory. Sampling should always be as 
least destructive as possible and you should try not to trample an area too much when 
carrying out your survey. 

  
 An example of the type of results that can be obtained from a belt transect survey is 

shown below. This figure illustrates the distribution and abundance of cherry 
seedlings along a transect line. The parent cherry trees were adjacent to section 
number 9. The gradient of distribution apparent in the figure is a result of the 
dispersal of seeds outwards from this point. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Stratified Sampling 
 
 Stratified sampling is used where there are small areas within a larger habitat which 

are clearly different. For example, scrub patches within a heathland area, or areas of 
bracken in a grassland. Sampling would be carried out either randomly, or 
systematically within each separate stratum identified. Major differences within 
communities are recognized before sampling begins. 
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Choosing a Sampling Interval 
 
  

Samples can be taken continuously or at specific points along a transect. For both 
line and belt transects, the interval at which samples are taken depends on the 
individual habitat, as well as on the time and effort which can be allocated to the 
survey.  

  
• Too large an interval – species present may be missed and zonation patterns obscured.  
 
• Too small an interval – too time consuming and produces more data than needed.  
 
• Coincident with regularly occurring landscape features – avoid. For instance, you do 

not want all samples on ridges in an old field with ridge and furrow systems.  
 
• Ideal interval - balances the complexity of the individual habitat with the purpose of 

the survey and the resources available to carry it out.     
 
 
 

 Decision Tree for Selecting Sampling Method 

 Random Sampling?  Systematic Sampling 
(Transects)? 

 This is used where the habitat 
being sampled is fairly uniform. 
  

 To remove observer bias in the 
selection of samples. 

 Where statistical tests are to be 
used which require randomly 
collected data. 

 Where a large area needs to be 
covered quickly. 

 If time is very limited. 
 How many samples? 

 To show zonation of species along 
some environmental gradient.  e.g.  
across an edge between community 
types.                    

 Where there is some kind of 
continuous variation along a line, 

 To sample linear habitats, e.g. a 
roadside habitat or riparian zone. 

 Where physical conditions demand 
it, e.g. sampling a vertical rock 
face. 

 

http://www.offwell.free-online.co.uk/3howto.htm
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 Systematic Sampling - Line or Belt? 

    

 Line Transect?  Belt Transect? 

 Where time is limited. A line transect 
can be measured quicker than a belt 
transect. 

 To visually illustrate how species 
change along the line. 

  
Keys can be chosen to represent 
individual species. Vegetation height 
can be drawn in choosing an 
appropriate scale. The slope of the line 
can also be measured when measuring 
the transect and then incorporated into 
the transect diagram to show species 
distributions along the line.  

 . 

 
 This method generally shows only 

where the species occurs, not how 
much of it is present. 

 

 A belt transect will supply more data 
than a line transect. It will give data on 
the abundance of individual species at 
different points along the line, as well 
as on their range. 

 As well as showing species ranges 
along the line, a belt transect will also 
allow bar charts to be constructed 
showing how the abundance of each 
individual species changes within its 
range.  

  

 
Belt transect data allow the relative 
dominance of species along the line to 
be determined.  

 
 

http://www.offwell.free-online.co.uk/wetland_survey/line.htm
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