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1 PROJECT BACKGROUND 
 

Biological fouling (biofouling) is the undesirable accumulation of microorganisms, plants 
and animals on artificial surfaces. Biofouling can occur on artificial surfaces submerged 
in water such as ship’s hulls and piers, as well as on other surfaces in continuous contact 
with water, such as the internal surfaces of water pipes.   
 
The first stage of fouling is the formation of a thin film of slime, containing bacteria, 
diatom ooze, Bacillariophyceae and other materials (Tucker 1998).  These are normally 
suspended in the water, and tend to stick to non-moving objects as they float into them.  
This is why offshore structures, laid up vessels and moored ships suffer from excessive 
fouling problems.  Once the initial film of slime has formed, larger organisms become 
attached to it.  These are both plants and animals, and include plant life such as green 
algae, seaweed, and Ectocarpus.  The most commonly-found animal fouling agents are 
barnacles (Cirripedia).  Eventually, larger organisms such as bladder wrack, kelp, 
mussels, limpets and oysters will establish themselves, though this does not tend to 
happen to vessels in service.  It has been found that biological slime cannot form at 
speeds of greater than two knots, and consequently fouling cannot occur if a vessel does 
not slow to below this speed (Tucker 1998).  Fouling can occur at speeds of over two 
knots, however, if the slime film has already formed, so brief stopovers can be sufficient 
to induce serious fouling problems. 
 
Ship biofouling (including hulls, sea chests, rudders and propellers, seawater piping  
systems, and anchor systems) is an important issue to the Navy because it impacts ship 
performance; decreases fuel efficiency and maneuverability, and promotes corrosion 
through the damage of paint.  Tucker (1998) estimated that without the anti-fouling 
efforts currently employed, the marine industry would use 40% more fuel than it 
currently does.  On static structures (e.g., buoys, piers, jetties, offshore platforms) 
biofouling can enhance the corrosion of metal by seawater and increase the risk of 
mechanical failure.  Biofouling increases maintenance costs for both ship hulls and static 
platforms. 

 
Another consequence of biofouling is that non-native species may be introduced into a 
new ecosystem as a result of organisms being transported from one part of the world to 
another. Historically, hull fouling has been the most important means by which shipping 
has transported non-indigenous aquatic species.  Prior to the use of antifouling paints, 
about one-third of the introduced species in Australia are believed to have been 
transported via fouled hulls (Rainer 1995). With the introduction of effective antifouling 
paints (in particular tributyltin (TBT)) on commercial ships, there has been a reduction of 
fouled hulls, considerably reducing the risk of invasive organism introductions (Carlton 
1993; Minchin and Sheehan 1995).  However, fouling is still observed, most notably in 
situations where antifouling paint is damaged, or in areas where it is difficult to apply, or 
otherwise ineffective.  In addition, because Department of Defense (DoD) policy 
prohibits the use of TBT on DoD vessels, military vessels may be more susceptible to 
hull fouling and therefore more likely to transport invasive species by this mechanism 
than commercial ships.  Furthermore, because the International Maritime Organization 
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(IMO) is in the process of banning TBT and reviewing the use of other harmful biocides 
as antifoulants, the pathway of invasive species introductions via ship fouling is being 
revisited.  New data indicates ship fouling has a higher potential for exotic species 
introduction than previously believed (Brancato and MacLellan 1999).  Reports from 
Germany and Australia found over 400 species were introduced in waters directly from 
the fouled hulls of ships. In the Pacific Northwest and the Eastern US coast, the European 
green crab is a major nuisance species believed to have come from accumulated fouling 
on the hulls of ships.  The seriousness of the invasive species problem has even led 
several researchers to suggest that we should “consider all sides of the problem when 
looking at establishing marine regulations “that would limit or ban antifouling paints 
because of their potential toxic effects on the environment” (Brancato and MacLellan 
1999). 
 
Because of improved hull husbandry methods (including advances in antifouling paints 
and hull cleaning practices), and changes in shipping activity (including faster ship 
speeds and reduced port residency times), there is a perception that hull fouling has 
become less important than ballast water as a transfer mechanism for non-native species. 
However, the modern-day role of ship fouling is not well known, and evidence suggests 
that non-ballast modes of transport may remain important in the introduction of non-
indigenous species. Further, impending limitations on the use of the most effective 
antifouling paints and on the conduct of hull cleanings, may result in increased fouling of 
ship hulls and subsequent transport of non-indigenous fouling species (Everett 2001).  
Governments and environmental authorities around the world are introducing legislation 
to try to control this problem. These laws and regulations may significantly impact the 
operational effectives of US Navy vessels.  The DoD needs to quantify the risks that are 
associated with hull fouling, specifically the risks associated with DoD vessels which 
may be different from civilian vessels due to differences in operational scenarios, hull 
coatings, and maintenance procedures.  
 
The recognition of hull fouling as a potentially significant pathway for transport of 
invasive species has prompted the Australian government to launch a new effort “to carry 
out research into the risks posed by vessel hull fouling.”  Two major objectives of the 
new effort include:  (1) A review of the current state of knowledge concerned with the 
fouling of ships' hulls and the potential for marine organisms to be translocated, both 
domestically and internationally and (2) an estimate of significance of the proposed IMO 
ban on tributyltin (TBT) and an assessment of the risk posed by vessels visiting 
Australian waters with depleted levels of antifoulant. 
 
There is concern that this renewed international and national interest on hull fouling as a 
potentially significant mechanism for transport of invasive species could result in new 
requirements and potentially new operational restrictions on the movement of DoD 
vessels or on the current practices used by military ships to manage hull fouling.    
Therefore, it is important for the DoD to better understand what risks are actually 
associated with hull fouling.  It is also important to better understand how the risk from 
Navy (and other DoD vessels) compares with the risk associated with civilian vessels.   
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These risks may be different due to differences in operational scenarios, hull coatings, 
and maintenance procedures.   
 
The primary legal driver for controlling the introduction of invasive species comes from 
Executive Order 13112 (64 FR 6183, Feb 8, 1999), which specifies that “each Federal 
agency whose actions may affect the status of invasive species shall, to the extent 
practicable and permitted by law, identify such actions, and, subject to the availability of 
appropriations, use relevant programs and authorities to, among other things, prevent, 
detect, control, and monitor the introduction of invasive species.”  
 
At present, most information on hull fouling is based on diver inspections (NAVSEA 
1996), which are costly, sometimes dangerous, and often subjective.  Improved methods 
are needed to evaluate the abundance and diversity of fouling organisms on ship hulls. 
 
 

2 TECHNICAL OBJECTIVE 
 
 

The objective of this proof-of-principle effort is to demonstrate the feasibility of 
developing automated image processing/image understanding algorithms coupled with an 
artificial neural network (ANN) based classification scheme for estimating area coverage 
(abundance) and diversity of fouling organisms on ship hulls.  

 
 

3 TECHNICAL APPROACH / RESULTS 
 
 
Efforts conducted as part of this investigation were divided into two phases:  The first 
was to evaluate methods to automatically classify or identify the type of fouling organism 
and the second was to evaluate methods to automatically estimated the abundance or 
degree of fouling. 
 
Previous efforts aimed at automated identification and classification of biological 
organisms have generally investigated the potential for automated classification of 
individual organisms isolated using a flow cytometer systems (Smits, Breedveld et al. 
1992; Wilkins, Boddy et al. 1999; Boddy, Morris et al. 2000).  Because flow cytometer 
systems are designed to sort mixtures of organisms and measure characteristics of 
individual cells this represents a much simpler problem than the problem of quantifying 
the number and type of organisms that are attached to a solid surface.  Other efforts have 
focused on automated methods for classification of plankton images collected with a 
towed underwater video system (Tang and Stewart 1996; Tang, Stewart et al. 1998).  
Although the images collected with the towed underwater video system show more 
variability than those collected with the flow cytometer systems that still do not provide 
the variability observed with fouling of surfaces.  To our knowledge the only other 
studies that looked directly at automated quantification and or classification of fouling 
were conducted by Wright et al (1991) and Hodson et al (1995).  Wright et al used image 
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analysis to quantify tubeworm fouling on flat panels.   They found that automated 
computer based methods offered the potential for significant timesavings over manual 
counting techniques.  However, they also noted that automated methods were highly 
dependent on three critical factors: (1) sufficient contrast between substratum and 
fouling: (2) homogeneity of color or texture in the substratum; and (3) the absence of 
light reflections during image captures which degrades contrast of the image.  It should 
also be noted that because of their unique shape characteristics it is not possible to 
generalize methods developed for tubeworms to other more general types of fouling 
organisms.  Hodson et al focused on quantifying biofouling on fish-cage netting.  In these 
studies, the emphasis was more on evaluating the mesh occlusion (reduction of mesh 
area) rather than quantifying the abundance and type of fouling organisms. 
 
3.1 Automatic identification and classification of fouling organisms.   
The general approach followed for development an automated classification algorithm in 
this study is shown in Figure 1.  It consists of four processing modules:  (1) image 
acquisition, (2) image pre-processing, (3) feature extraction, and (4) object classification.    
 
 

 
Figure 1.  Schematic of general approach used for automated classification 
algorithm.   

 
 
More specifically in this effort, our goal was to investigate the possibility of using an 
artificial neural network to automatically classify organisms based on an array of object 
properties (e.g., size, shape, color, etc.).   The idea is to use the object properties as an 
input array to train or map a specific set of features to a specific organism or class of 
organisms using an artificial neural network.  This “mapping” process is accomplished by 
iteratively adjusting a set of weighting factors that connect an input array to an output 
array through one or more hidden layers of interconnected weighing factors.   Once the 
network is trained by example using images many organisms that have previously been 
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identified, the weighing factors are fixed and the trained network can then be used to 
automatically classify organisms in new images based on the unique differences in the 
array of properties.  This approach is shown schematically in Figure 2.   
 
 

 
Figure 2.  Artificial Neural Network based classifier for automatically classifying 
organisms based on an array of object properties. 
 
 
The first test of this approach our investigation focused on evaluated the feasibility of 
automatic classification of images of different types of marine organisms.  Several 
different sources of images that could potentially be used for developing and testing our 
classification algorithms were evaluated.  Initially, a site visit was conducted to Naval 
Surface Weapons Center Carderock to evaluate the possibility of using the thousands of 
images of fouling panels that have been collected and archived for many years for 
documenting the effectiveness of different antifouling coatings.   However, it was found 
that because the images were collected as a means of documenting studies and not as the 
primary source of data, the images proved to be of insufficient quality to serve as the 
primary source of data for development of algorithms.  The images often showed large 
variations in contrast due to variable lighting, shadows and other factors. 
 
Ultimately, it was decided to use images scanned from printed sources because they 
represented a convenient source of “studio” quality images collected under similar 
conditions.  In addition, these printed materials also documented the identity of each 
organism.  This choice represented a best-case scenario and not an attempt to test the 
approach using images that were representative of actual hull fouling conditions.  For the 
initial studies, 213 images of mollusks representing 16 different families were scanned 
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from Kay (1979).  A breakdown of the number of images scanned for each mollusk 
family is summarized in Figure 3.  Typical images from several Families are shown in 
Figure 4.  Because of the quality of these “textbook” images, it was not necessary to use 
sophisticated image enhancement techniques to improve the quality of the images prior to 
subjecting the images to the feature extraction procedures. 
 
 

 
Figure 3.  Mollusk Classification:  A total of 213 images of mollusks representing 16 
different families were scanned.  (Image Source:  E.  Alison Kay, Hawaiian Marine 
Shells:  Reef and Shore Fauna of Hawaii, 1979) 
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Figure 4.  Mollusk Classification:  Example Organisms for classification. 
 
 
Aphelion Image Processing Software (Amerinex Applied Imaging, Amherst, 
Massachusetts) was used to partition or segment each image into separate regions or 
objects.  Once separate objects are identified Aphelion can be used to extract a set of 
features that describe the properties of each object. Aphelion allows computation of 
object measurements for objects such as regions, lines, and chains.  Standard 
measurements computed by Aphelion for spatial objects include texture, shape and color 
measurements for regions. It computes length, contrast, etc for lines.    Figure 5 lists the 
33 standard object measurements computed by Aphelion for regions.   
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Figure 5.  Mollusk Classification.  Feature Extraction.  Images were processed using 
Aphelion software and 33 features were calculated for each image. 
 
 
For the Mollusk classification algorithm an artificial neural network was constructed that 
used 26 inputs, 1 hidden layer and 6 outputs corresponding to the 16 families 
representing 161 species and 52 genera included in the data set.  The 26 input features 
represented 19 unique inputs from the 33 features computed by Aphelion for objects 
identified in the images.  Some of the features have multiple transforms resulting in 26 
inputs to the artificial neural network.  The ANN was trained using features from 149 of 
the 213 available images.  The ANN was then tested using 64 of the 213 available 
images.  Results showed that 41 of the 64 images were correctly classified by family.  
That represents a correct classification rate of 64% by family.  These results are 
encouraging, because as can be seen from the representative photos presented in figure 4 
the differences between many of the families were very subtle.  On the other hand, the 
high quality studio images were probably much better than could be expected from 
images that could be collected with any in situ imaging system. 
 
In a second study, we investigated the potential for developing an automated 
classification algorithm for identifying non-indigenous marine species.  Again, we 
investigated various sources of images that could be used for developing and evaluating 
the classification algorithm.  It was eventually decided to use “images of opportunity” of 
non-indigenous species that could be obtained from the web and other printed sources.  
Although these images were not a similar in format as those used for the mollusk study 
described previously they were still of relatively high quality and in most cases 
represented images of individual organisms.  A total of 84 images of non-indigenous 
marine species including sea stars, amphipods, crabs, mussels and algae, representing 
eight genera were collected.  Figure 6 summarizes the genus and species of the 84 images 
in the data set.  Typical examples of the images are shown in Figure 7.   
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Figure 6.  Genus and species for non-indigenous species classification and 
identification. 

 

 

 
Figure 7.  Example of images used for training and testing ANN classification 
algorithm. 
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Processing of the color images using Aphelion software provide 68 features.  An artificial 
neural network (ANN) was developed that used 12 of these features as inputs.  The 12 
input features were coupled via one hidden layer to an output area of eight variables 
representing the eight genera included in the data set.  The network was trained using 63 
of the 84 images contained in the data set.  The network was subsequently tested using 
the remaining 21 of the images.  Results showed that 12 of the 21 images were correctly 
classified by genera.  That represents a correct classification rate of 76% by genera.  
These results were encouraging for classification of different organisms with a much 
greater variation in image quality than was observed for the mollusk study.  However, 
although these were not all studio quality images, the image quality was probably still 
significantly better than images that could be collected with any in situ imaging system.   
 
Results from these two efforts for developing an automated artificial neural network 
classifier both showed promise.  The mollusk study showed 64% correct classification by 
family for images of visually often very similar organisms.  The initial attempt at 
developing an ANN classifier for a data set containing images of non-indigenous marine 
species produced a 76% correct classification by genera.  However, it must be recognized 
that both of these efforts were conducted using images of organisms collected under 
controlled conditions that produced images of much higher quality than could be 
expected from an in situ imaging system.  Probably an even more serious problem is that 
both of these studies were performed (for the most part) using images of individual 
organisms isolated from their natural settings.  In the real world, such as on an actual 
hull, organisms will obviously not be present as individual organism but as part of an 
assemblage of organisms.  Figure 8 shows several images of fouling organisms on the 
hull of the USNS Anchorage. It is clear from the images that one of the major problems is 
that the fouling organisms are often covered by other fouling organisms.  This layering of 
fouling organisms on top of fouling organism will make it extremely difficult or 
impossible for automated methods (or even human observers) to correctly identify 
individual organisms.   The problem is the fouling will confound the ability of the 
segmentation approaches used in this study to identify individual objects.  If it is not 
possible to identify individual objects, then it will not be possible to correctly extract the 
feature set that is used as the input the neural network classifier.  Therefore it is the 
conclusion from this initial feasibility study that it will only be possible to classify 
fouling organism using the approach described here in very limited situations, situations 
where there is only very light fouling, otherwise the complexity of the fouling community 
comprise the ability to identify individual objects. 
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Figure 8.  Images of fouling organisms attached to the hull of USNS Anchorage. 
 
 
Based on the above observations, we cannot be optimistic about the probability of 
developing an automated classifier for identifying specific organisms that may attach to 
hulls of ships.  We are, however, much more optimistic about the prospect for developing 
automated methods for estimating the degree or extent of fouling. The next section of this 
report will derail efforts conducted as part of this study to develop approaches for 
quantifying the degree of fouling. 
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3.2 Automated classification of fouling conditions. 
 
In addition to classifying the type of organism that is responsible for fouling of a ship hull 
a related problem is the classification and quantification of fouling conditions (degree and 
abundance of fouling organisms).  Monitoring and classification of fouling conditions is 
important to the Navy in terms of hull husbandry issues as well as for estimating the 
potential risk of transporting invasive marine species.  Most existing methods of 
quantifying fouling conditions rely on manual and visual labors by “experts”, which are 
highly subjective and time consuming.  In this section of this report, we describe the 
development of algorithms for automated classification and quantification of fouling 
conditions.  The algorithms include two parts: production and extraction of features and 
neural network classifiers.  Raw images reflecting various fouling conditions were 
produced. Sub-sampling was conducted on the raw images and a total of 360 sub-image 
samples were generated. The 360 sub-image samples were divided into two datasets, one 
with 300 samples for training and the other 60 samples for testing of a Self-Organizing 
Map (SOM).  For each image, 32 feature variables extracted from the statistical method 
of SGLDM were used for training the SOM neural network.   Results show that with 
adequate training, the success rate for prediction can reach ~ 99%. 
 
As previously described in Section 3.1 of this report, for the automatic identification and 
classification of fouling organisms, the first challenge for developing an technique for 
classification of fouling conditions was identifying a set of images suitable for the task of 
development and testing of the algorithm.  Similar to the situation that was found for the 
first task of developing a method for classification of fouling organisms it was discovered 
that a suitable set of images was not readily available.  In this case, we had to resort to 
putting test panels in San Diego Bay and to image these test panels on a regular basis in 
order to generate an image database of sufficient quality and quantity to facilitate 
development of the neural network classification algorithm.  Eight metal plates (fouling 
panels), each approximately 8 x 6 inches in area, were fabricated, painted with a non-
antifouling paint, and placed in a rack that could be suspended over the side of a pier in 
San Diego Bay so that the panels were completely immersed in seawater.  The panels 
were then allowed to foul naturally and the progress of the fouling was documented by 
removing the rack from the water periodically and imaging each panel with a high-
resolution digital camera (2560 x 1920 pixels) under controlled lighting conditions in the 
lab.  The panels were then immediately returned to the rack and the rack was put back 
into San Diego Bay.  The panels were imaged regularly over approximately a three-
month period.  A total of 160 images were collected. 
 
The approach used for development of the fouling classification algorithm is shown 
schematically in the flowchart presented in Figure 9.  The technical approach includes 
four (4) parts in a sequential order, including 1) image sampling, 2) image processing, 3) 
feature extraction and 4) neural network classification.  Each of these four processes is 
explained as follows: 
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Figure 9.  Flowchart of Image Processing and Neural-Network-Based Classification 
 
 
1) Image Sampling:  A total of 112 images (showing various degrees of fouling) were 
selected from the image database.  These 112 fouling images (examples are shown in 
Figure 10) are the “raw image data” from which about 360 sub-images were generated 
for training and testing of the neural networks developed for image classification. 
 
 

 
Figure 10.  .  Four Raw Images Reflecting Various Fouling Conditions Ranging 
From Minimal (Far Left), Minor, Moderate, to Heavy Fouling (Far Right) 
 
 
2) Image Processing:  The neural network classifier developed for this study requires 
large amount of image samples for training.  We increased the number of image samples 
by sub-sampling the raw images randomly with a reduced window size of 0.8x0.8 in2 
(256x256 pixels).  On average, for each raw image in each of the four pre-defined 
classes, ~ 2-4 sub-samples were taken.  A total of 360 sub-image samples with 90 sub-
samples for each of the four pre-defined classes were generated for training and testing 
dataset of the neural network classifiers. These 360 sample images were then converted 
from the RGB colors to gray scales by a simple conversion.   It shows that the reduction 
from RGB to gray scales reduces the amount of information for process, and retains the 
essential information that are unique for each of these images. 
 
3) Feature Extraction: We employed the Spatial Gray Level Difference Matrix (SGLDM) 
method to extract features embedded in each of the 360 image samples.  The SGLDM 
method has been proven to be a powerful tool for statistical texture description (Haralick, 
Shanmugam et al. 1973; Haralick 1979).  The performance of this method surpasses other 
statistical methods, especially in the field of Ultrasonic, MR and CT image analysis (We, 
Chen et al. 1992; Mir, Hanmandlu et al. 1995).  The SGLDM methods accounts for gray-
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level differences between any pair of pixels separated by d pixels in between the pair at 
the direction of φ.  Figure 11 shows an example of definition for the method.  The 
extracted features are represented by the 2-D spectrum of color change over the entire 
image pixels.  Since most of the intensity of the spectrum concentrate on the diagonal 
direction, the spectrum is averaged over 64 channels over the entire diagonal axis.  The 
extracted features (i.e., 64 spectrum densities, Figure 12) associated with each image 
sample were then input to the neural network classifiers for training and testing. 
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Figure 11.  SGLDM: Counting frequencies of gray-level differences between pair of 
pixels separated by d (=1) pixels in the φ (=450) direction 

 
 

Class 1               Class 2                 Class 3         Class 4Class 1               Class 2                 Class 3         Class 4

 
Figure 12.   Four Images with Their Features Extracted by SGLDM 
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4) Self-Organizing-Map Neural Network Classifier: 
We applied the SOM (Self-Organizing Map (Kohonen 1997), Figure 13) neural network 
for classifying fouling conditions based on the extracted features.  The feature vectors are 
fed into the SOM neural network system and each nodal output is calculated as the 
weighted sum from the features.  Training takes place when only the weights associated 
with the “winning” node, which has the shortest Euclidian distance, are updated 
according to the formula:  
yc })(min{

1

2∑
=

−
m

i
jisi wx , by minimizing squared distance 
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∑
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i
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which is equivalent to minimizing the squared distance between the weight and input 
vector, 
 
where c denotes the winning node, for which the weights are updated according to, 
 
Wn+1 = Wn + α * (Fs – Wo) 
  
where α is the learning rate constant, Fs is the input feature that has shortest distance to 
the old weight Wn, Wn+1 is the updated weight used for next iteration.  Training 
continues as the weights are updated and converge to stable values.  In order to achieve 
convergence, about over 3 epochs (one epoch is defined as one round of 360 feature 
images randomly fed into the network) of training are required.   The extracted features, 
shown as 2-D spectra in Figure 14, are vectorized by taking the mean values over 64 bins 
along the diagonal axis.  The extracted features (i.e., 64 spectrum densities) associated 
with each image sample were then input to the neural network classifiers for training and 
testing.  The converged sets of weights are shown in the figure for a selection of four (4) 
classes. 
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Figure 13. Self-Organizing Map (SOM) Neural Network  
 

 
During learning, the weights are continuously updated, based on the competitive-learning 
rules mentioned above, until the weights converge.  While we train the network over 20 
epochs (each training epoch is one round of training from the entire 300 training images), 
convergence started after 1st epoch and was reached after 3 epochs of training.  In the 
following figures, weights are plotted at different stages during learning: at initial 
condition (Figure 15), after the end of the 1st epoch (Figure 16), after the end of the 3rd 
epoch (Figure 17), and the converged values (Figure 18).  As can be seen, once learning 
starts, the weights are updated rapidly.   After 3 epochs (3 rounds of training from the 
entire 360 images), the weights reach convergence, even though we continue the training 
for another 20 epochs (Figure 18).  The results after 20 epochs of learning are not too 
different from the results after 3 epochs of learning. In summary, Figure 18 shows the 
original features of all the images (bottom) and the converged weights of the four sorted 
image classes. 
 
The neural network with the converged weights was then applied for classification 
prediction for the remaining 60 images.  The success rate for prediction reaches 100%.   
In summary, we have developed neural network classifiers that can self-learn the rules 
(features) hidden in the images and classify faster and more accurately than an expert 
can. Because of the self-learning capabilities, the un-supervised neural network does not 
allow human intervention except one needs to specify the number of classes.  The 

 21



algorithm was tested and works equally well for classification number ranging from 3 – 
10 (we only present results for 4 classes.  Finally, the high success rate of prediction 
(100%) provides a solid foundation to apply the SOM neural network for the current 
study. 
 
 

Class 1

Class 2

Class 3

Class 4

All

Class 1

Class 2

Class 3

Class 4

All

 
Figure 14.  Classification Results:  The original (before classification) image features 
(bottom) and the 4 self-classified image features (the top four figures) 
 

 

 
Figure 15.  Initial weights associates with the 4 classes 
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Figure 16.  Weights associates with the 4 classes after 1st epoch of learning 

 

 

 
Figure 17.   Weights associated with the 4 classes after 3rd epochs of learning 

 
 

 
Figure 18. Converged weights associated with the 4 classes 
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4 CONCLUSIONS 
 
Initially we had good success identifying and classifying biological organisms in images 
collected under rather idealized conditions (e.g., “studio” quality images scanned from 
printed sources and images of individual organisms or groups of similar organisms 
obtained from the internet).  However, at this time we cannot be optimistic about the 
probability of generalizing this approach to the classification and identification of 
specific organisms in actual images of fouled ship hulls or other surfaces.  As was shown 
in Figure 8, in the real world fouling is usually very complex, with many layers of 
overlapping fouling occurring on a surface.  This layering of fouling organisms on top of 
fouling organism will make it extremely difficult or impossible for automated methods 
(or even human observers) to correctly identify individual organisms.   The problem is 
the fouling will confound the ability of the segmentation approaches used in this study to 
identify individual objects.  If it is not possible to identify individual objects then it will 
not be possible to correctly extract the feature set that is used as the input the neural 
network classifier.  Therefore, it is the conclusion from this initial feasibility study that it 
will only be possible to classify fouling organism using the approach described here in 
limited situations, situations where there is only very light fouling, otherwise the 
complexity of the fouling community comprise the ability to identify individual objects. 
 
Although the prospects for identifying and classifying individual organisms may be 
limited, we believe, based on results of this investigation, that it should be possible to 
exploit automated methods for estimating the degree or extent of fouling.  This is 
possible because the methods that we have used for quantifying the degree of extent of 
fouling depend on textural properties rather than segmentation processes, as was the case 
for classification algorithms. In this study:   
 
1) We have developed neural network classifiers that can self-learn the rules (features) 
hidden in the images and classify faster and more accurately than an expert can. 
2) Because of the self-learning capabilities, the un-supervised neural network does not 
require human intervention except to specify the number of classes or degrees of fouling. 
3) The algorithm was tested and works equally well for classification number ranging 
from 3 – 10 (data is presented for the case of four classes in this report). 
4) Classification of fouling conditions using neural networks (unsupervised learning) 
increases classification accuracy to > 99%. 
5) The algorithms developed are generic and can be readily applied for surveillance-
related imageries, such as identifying attached objects to underwater ship hulls, and/or 
mines. 
 
 

5 TRANSITION PLAN 
 

Based on results of this proof of concept study several potential opportunities have been 
identified for the transition of the technology developed here.  As was discussed in the 
conclusions, automated imaged processing of digital images appears to be best suited for 
automatically quantifying the degree or extent of fouling.  Several important applications 
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where this is important are related to hull husbandry issues.  These include inspection of 
hulls to determine whether hull cleaning is required to maintain operational effectiveness 
and inspections to determine the condition of hull paint and antifouling coatings.   
Currently, these inspections are routinely preformed by divers. Diver inspections are 
costly, potentially dangerous, and often subjective.  Improved methods are needed to 
more effectively conduct underwater hull inspections, objectively quantify the degree of 
fouling and the condition of paint and antifouling coatings.  Although it is not the focus 
of this effort, this approach could also be extended to facilitate automated remote 
inspection of ship hulls for defects such as cracks or other abnormalities.  In addition, 
there is also a requirement for inspection of pilings and other underwater structures. 
 
With these applications in mind, we have held preliminary discussions with personnel 
(Dr. Eric Holm and Mr. G.S. Bohlander) from Naval Surface Warfare Center (NSWC), 
Carderock about the possibility of transitioning the approaches developed here to these 
hull husbandry applications.  One application that looks particularly promising would be 
to further develop and expand the image processing/image understanding algorithms 
developed as part of this study for use with the Remotely Operated Vehicle (ROV) for 
Underwater Hull Evaluation (Figure 19), which is currently under development at Naval 
Surface Warfare Center (NSWC), Carderock (POCs:  Mr. G.S Bohlander and D.C. 
Lynn).  This system consists of a free-swimming ROV that includes an integrated 
navigation system that allows the ROV to be positioned anywhere in the water column 
relative to the ship hull and a 3-D navigation interface that provides a real-time display of 
the ship hull and the position of the ROV on the ship hull (Figure 20).  Although this 
ROV system presently provides a capability for collecting high resolution video and still 
images of the hulls and other underwater structures it does not presently have a capability 
for automatically analyzing these images.  Therefore, at present it is necessary to use 
human observers to manually review the underwater images images to evaluate hull 
fouling or paint condition. 
 

 
Figure 19.   NSWC Carderock ROV for automated hull inspections. 
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Figure 20.  Integrated 3D Navigational Software provides ROV position information 

 
Discussions with Dr. Eric Holm have also indicated that there would be interest in using 
the methodology developed here for quantifying the degree of fouling for estimating the 
potential risk posed by hull fouling as a pathway for introduction of invasive species.  
According to Dr. Holm, even though results of this study suggest that it may not be 
feasible to classify individual fouling organisms, it would still be very useful to be able to 
automatically quantify the extent of fouling on ship hulls.  We have had several 
discussion related to pursing this opportunity with Dr. Holm in conjunction with his 
SERDP supported effort that is aimed at evaluating the importance of different potential 
transport pathways for invasive species on Navy ships (bilge water vs. hull fouling).  We 
are aware at this time SERDP does not plan to support the investigation of ship hulls as a 
transport pathway for invasive species.  It has been suggested that Dr. Rich Everett with 
the US Coast Guard might have an interest in automated capabilities for characterizing 
hull fouling. 
 
Finally, another potential opportunity for the application of this technology has evolved 
in the area of fleet and force protection.  That application is the capability for real-time, 
continuous inspection of ship hulls for the presence of underwater explosive devices or 
other foreign objects.  The concept is that the automated image processing/image 
understanding algorithm could be adapted for automated processing and classification of 
foreign objects that might be placed on a ship hull through terrorist activities.  This 
approach could be used to enhance the capability of free-swimming remotely operated 
vehicle (ROV) for underwater hull inspections similar to that developed by NSWC 
Carderock.   At present it is necessary to use divers to manually inspect ship hulls or to 
use human observers to manually review the underwater images to identify and classify 
potential explosive devices.  The capability proposed here would provide a means to 
automatically process the video and/or still images to detect and classify objects in the 
images. 
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6   RECOMMENDATIONS 
 
 
From the results of this investigation, it is clear that the greatest opportunities for follow 
on efforts for automated image processing/image understanding related to ship hull 
conditions are in the area of automatically estimating the degree or extent of fouling or 
the condition of paint systems.  We believe the most promising opportunities are in the 
areas related to hull husbandry applications that are currently conducted using diver 
inspections.  In particular, we believe the results of this study support the concept that 
this approach of using automated image processing techniques would offer significant 
improvements or conventional diver based hull inspections that are currently used for 
estimating the amount of hull fouling or the condition of paint and antifoulant coating 
systems. 
 
Another potentially important application related to fleet/force protection is the detection 
of underwater explosive devices that could be attached to a hull as a result of terrorist 
activities.  This application could be of interest to both the Department of Defense and 
the private sector (commercial shipping and cruise ship operators). 
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11th International Marine Corrosion & Biofouling Congress 
July 21-26, 2002 
 
Abstract:    
 
Use of automated image processing coupled with an artificial neural network based 
classifier for identifying fouling organisms on ship hulls. 
 
Lieberman Stephen H., He Li-Ming, and Timothy Adam, Space and Naval Warfare 
Systems Center San Diego, 2361, 53475 Strothe Rd., San Diego, CA 92152 
 
Invasive (or non-native) species have been introduced inadvertently into many marine 
and fresh water systems via ship movements. The major transport pathways that have 
been identified include ballast water, tank sediments and ship hull fouling.  To date, most 
monitoring and control programs have focused on ballast water as the dominant pathway 
for transport of invasive species.  However, recent studies suggest that historically, as 
well as presently, hull fouling may represent an important pathway for transport of 
invasive species. 
 
Most information on invasive species and hull fouling organisms is based on diver 
inspections of hulls.  This method is costly, potentially dangerous, and often subjective.  
Improved methods are needed to more effectively conduct underwater hull inspections, 
objectively quantify the abundance and diversity of fouling organisms, and more 
specifically identify non-indigenous species. 
 
In this study we report on the investigation of the use of automated image 
processing/image-understanding algorithms coupled with artificial neural network based 
classifiers for identifying fouling organisms on ship hulls from digital images.  The 
methodology is based on a four-step process that includes:  1) image acquisition, 2) 
image pre-processing, 3) feature extraction, and 4) object classification.  Initial results 
will be presented from studies in which an artificial neural network is used to 
automatically classify various types of fouling organisms isolated via the standard digital 
image processing methodologies. Once individual objects are identified in the images, 
then an array of object properties (e.g., size, shape, color, texture, etc.) is used as an input 
array to train an artificial neural network to discriminate and thereby identify certain 
classes of organisms.  After the network is trained by example using many images of 
organisms that have been previously identified, then the trained network is used to 
automatically classify organisms in new images based on the unique differences in the 
array of object properties. Preliminary results will be presented for the application of this 
approach to common hull fouling organisms with special attention to classification and 
discrimination of target non-indigenous species. 

 31



SERDP 2002 Conference 
 
 
Automated identification of fouling organisms on ship hulls using digital image 
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Invasive (or non-native) species have been introduced inadvertently into many marine 
and fresh waters via ship movements. The major transport pathways that have been 
identified include ballast water, tank sediments and ship hull fouling.  Until recently, 
most monitoring and control programs have focused on ballast water as the dominant 
pathway for transport of invasive species.  However, recent studies suggest that hull 
fouling may also represent an important pathway for transport of invasive species.  To 
date, most information on invasive species and hull fouling organisms is based on diver 
inspections of hulls.  This method is costly, potentially dangerous, and often subjective. 
In addition, assessments of hull fouling organisms are limited to exposed hull areas.  Less 
accessible areas such as sea chests and associated piping systems are generally not 
available for inspection by divers. New methods are needed to more effectively conduct 
underwater hull inspections and objectively quantify the abundance and diversity of 
fouling organisms and more specifically non-indigenous species. 
 
In this study we report on a SERDP funded proof-of principle effort to investigate the 
feasibility of using automated image processing/image-understanding algorithms coupled 
with artificial neural network based classifiers for identifying fouling organisms on ship 
hulls from digital images.  The methodology is based on a four-step process that includes:  
1) image acquisition, 2) image pre-processing, 3) feature extraction, and 4) object 
classification.  Initial results will be presented from studies in which an artificial neural 
network is used to automatically classify various types organisms isolated via the 
standard digital image processing methodologies. Once individual objects are identified 
in the images, then an array of object properties (e.g., size, shape, color, texture, etc.) is 
used as an input array to train an artificial neural network to discriminate and thereby 
identify certain classes of organisms.  After the network is trained by example using 
many images of organisms that have been previously identified, then the trained network 
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is used to automatically classify organisms in new images based on the unique 
differences in the array of object properties. Preliminary results will be presented for the 
application of this approach to common hull fouling organisms with special attention to 
classification and discrimination of target non-indigenous species. 
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Abstract 
We will present initial results of our continuing research on automated image 
classification and quantification of fouling conditions for ship hulls.  Motivated by the 
fact that existing methods of quantifying fouling conditions and physical oceanographic 
conditions (e.g., coral reef population) have to rely on manual and visual labors by 
“experts”, which are highly subjective and time consuming, we have developed 
algorithms to classify and quantify fouling conditions of ship hulls from images taken 
underwater.  The algorithms include two parts: production and extraction of features and 
neural network classifiers.  To produce sample data of metal plate fouling in seawater, 
metal plates, each with an area of 8x6 in2, were put into seawater at one of the SSC SD 
piers for different periods of time, ranging from 2 to 10 days.  Digital images, each with a 
resolution of 2560x1920, were taken at the end of each different periods and a total of 
112 fouling images were taken, covering various fouling conditions. Each of the 112 
underwater images was sub-sampled randomly ~ 2-4 times, with a window of a reduced 
size of 256x256, producing a total of 360 sub-image samples. The 360 sub-image 
samples were divided into two datasets, one with 300 samples for training and the other 
60 samples for testing of a feature-based Artificial Neural Network (ANN) and a Self-
Organizing Map (SOM). The 300 training datasets were classified subjectively by a 
person into 4 fouling conditions: minimal, mild, moderate and heavy fouling conditions. 
For each image, a total of 32 feature variables extracted from the statistical method of 
SGLDM were fed into the ANN for supervised training of the image classification into 
the 4 pre-defined fouling conditions.  The unsupervised training using SOM was also 
conducted using the same feature data.  Results show that with adequate and supervised 
training, the ANN classifier is able to classify images from the testing dataset with ~70% 
accuracy.  If we use SOM for initial pre-classification of the raw feature data and then 
use ANN for final classification, the success rate for prediction can reach ~99%.  The two 
novel approaches used in that study, including the reclassification of the sub-sampled raw 
images with self-reclassification using SOM and the combination use of ANN and SOM 
in improving the prediction accuracy, will be discussed. 
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ABSTRACT 

 
We have developed algorithms to automate 
image classification and quantification of 
fouling conditions for ship hulls.  Motivated by 
the fact that existing methods of quantifying 
fouling conditions and physical oceanographic 
conditions (e.g., coral reef population) have to 
rely on manual and visual labors by “experts”, 
which are highly subjective and time 
consuming, we have developed algorithms to 
classify and quantify fouling conditions of ship 
hulls from images taken underwater.  The 
algorithms include three parts: image 
production, feature extraction, and neural 
network classifiers.  Raw images reflecting 
various fouling conditions were produced. Sub-
sampling was conducted on the raw images and 
a total of 360 sub-image samples were 
generated. The 360 sub-image samples were 
divided into two datasets, one with 300 samples 
for training and the other 60 samples for testing 
of a Self-Organizing Map (SOM) neural 
network.  For each image, a total of 32 feature 
variables extracted from the statistical method 
of SGLDM were used for training the SOM 
neural network.   Results show that with 
adequate training, the success rate for prediction 
can reach 100%. 
 

INTRODUCTION 
Fouling on ship hulls has been an issue for 
commercial boating industry.  Besides damages 
to the ship hull, fouling can cause extra 
hydrodynamic frictions, which subsequently 

may produce noise and vibrations for surface 
vessels, let alone reduced propulsion efficiency 
caused by the extra frictions.  As a result, most 
ships need to be dry-docked for maintenance, 
including de-fouling, on a regular or un-
scheduled basis.  While much effort has been 
taken, in recent years, in automating underwater 
image-taking techniques, such as Un-manned 
Autonomous Vehicle (UAV), progress in 
automating image and information processing 
from these advanced imagery techniques has 
been extremely slow.  From the consideration of 
cost and readiness, capabilities of fast and 
accurate estimation of fouling conditions on 
ship hulls have been urgently needed.  For this 
study, we developed an approach to classify 
fouling conditions of ship hulls by applying 
state-of-the-science image processing and 
pattern classification techniques to images of 
fouling taken underwater.  While all the image 
samples for this study were produced in studio 
near a seaport pier, the algorithms developed to 
process and classify these images are generic 
and can applied to field data. 
 

TECHNICAL APPROACH 
 
As shown in the flowchart (Figure 1), the 
technical approach includes four (4) parts in a 
sequential order, including 1) image sampling, 
2) image processing, 3) feature extraction and 4) 
neural network classification.  Each of these 
four processes is explained as follows: 
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Figure 1. Flowchart of Image Processing and 
Neural-Network-Based Classification 
 
1) Image Sampling:  To prepare fouling images 
for this study, we inserted steel plates, each with 
the size of 8x6 in2 with similar quality and 
finishing as those of actual ship hull steel plates, 
into seawater for different periods of time, 
ranging from 2 to 10 days.  Each day the plates 
were retrieved from seawater and digital images 
were taken.  A total of 112 fouling images were 
taken, which include various fouling conditions.  
These 112 fouling images (Figure 2) are the 
“raw image data” from which about 360 sub-
images were generated for training and testing 
of the neural networks developed for image 
classification. 

into seawater for different periods of time, 
ranging from 2 to 10 days.  Each day the plates 
were retrieved from seawater and digital images 
were taken.  A total of 112 fouling images were 
taken, which include various fouling conditions.  
These 112 fouling images (Figure 2) are the 
“raw image data” from which about 360 sub-
images were generated for training and testing 
of the neural networks developed for image 
classification. 

 
Figure 2.  Four Raw Images Reflecting Various 
Fouling Conditions Ranging From Minimal (Far 
Left), Minor, Moderate, to Heavy Fouling (Far 
Right) 
 
2) Image Processing:  The neural network 
classifier developed for this study requires fairly 
large amount of  image samples for training.  
We increased the number of image samples by 
sub-sampling the raw images randomly with a 
reduced window size of 0.8x0.8 in2 (256x256 
pixels).  On average, for each raw image in each 
of the four pre-defined classes, ~ 2-4 sub-
samples were taken.  A total of 360 sub-image 
samples with 90 sub-samples for each of the 
four pre-defined classes were generated for 
training and testing dataset of the neural 
network classifiers. These 360 sample images 
were then converted from the RGB colors to 
gray scales by a simple conversion.   It shows 
that the reduction from RGB to gray scales 

reduces the amount of information for process, 
and retains the essential information that are 
unique for each of these images. 

Feature 
Extraction 

Image   
Samples 

Image 
Processing 

Neural 
Network 

 
3) Feature Extraction: We employed the 
SGLDM (standing for Spatial Gray Level 
Difference Matrix) method to extract features 
embedded in each of the 360 image samples.  
The SGLDM method has been proven to be a 
powerful tool for statistical texture description 
[1][2].  The performance of this method 
surpasses other statistical methods, especially in 
the field of Ultrasonic, MR and CT image 
analysis [4][5].  The SGLDM methods accounts 
for gray-level differences between any pair of 
pixels separated by d pixels in between the pair 

at the direction of φ.  Figure 3 shows an 
example of definition for the method.  The 
extracted features are represented by the 2-D 
spectrum of color change over the entire image 
pixels.  Since most of the intensity of the 
spectrum concentrate on the diagonal direction, 
the spectrum is averaged over 64 channels over 
the entire diagonal axis.  The extracted features 
(i.e., 64 spectrum densities, Figure 4) associated 
with each image sample were then input to the 
neural network classifiers for training and 
testing. 

yc  )max(
1
∑
=

m

i
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Figure 3.  SGLDM: Counting frequencies of 
gray-level differences between pair of pixels 
separated by d (=1) pixels in the φ (=450) 
direction 
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Figure 4. Four Images with Their Features 
Extracted by SGLDM 

 
 

4) Self-Organizing-Map Neural Network 
Classifier: 
We applied the SOM (Self-Organizing Map [3], 
Figure 5) neural network for classifying fouling 
conditions based on the extracted features.  The 
feature vectors are fed into the SOM neural 
network system and each nodal output is 
calculated as the weighted sum from the 
features.  Training takes place when only the 
weights associated with the “winning” node, 
which has the shortest Euclidian distance, get 
updated according to the formula:  

 
which is equivalent to minimizing the squared 
distance between the weight and input vector, 
 
where c denotes the winning node for which the 
weights are updated according to, 

 
Wn+1 = Wn + α * (Fs – Wo) 
  
where α is the learning rate constant, Fs is the 
input feature that has shortest distance to the old 
weight Wn, Wn+1 is the updated weight used 
for next iteration.  Training continues as the 
weights get updated and converge to stable 

values.  In order to achieve convergence, about 
over 3 epochs (one epoch is defined as one 
round of 360 feature images randomly fed into 
the network) of training are required.   The 
extracted features, shown as 2-D spectra in 
Figure 4, are vectorized by taking the mean 
values over 64 bins along the diagonal axis.  
The extracted features (i.e., 64 spectrum 
densities) associated with each image sample 
were then input to the neural network classifiers 
for training and testing.  The converged sets of 
weights are shown in the figure for a selection 
of four (4) classes. 

Class 1               Class 2                 Class 3         Class 4Class 1               Class 2                 Class 3         Class 4
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Figure 5. Self-Organizing Map (SOM) Neural 
Network 

 
 

RESULTS 
 
During learning, the weights keep getting 
updated, based on the competitive-learning rules 
mentioned above, until the weights converge.  
While we train the network over 20 epochs 
(each training epoch is one round of training 
from the entire 300 training images), 
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convergence started after 1st epoch and was 
reached after 3 epochs of training.  In the 
following figures, weights are plotted at 
different stages during learning: at initial 
condition (Figure 7a), after the end of the 1st 
epoch (Figure 7b), after the end of the 3rd epoch 
(Figure 7c), and the converged values (Figure 
7d).  As can be seen, once learning starts, the 
weights get updated fairly rapidly.   After 3 
epochs (3 rounds of training from the entire 360 
images), the weights reach convergence, even 
though we continue the training for another 20 
epochs (Figure 7d).  The results after 20 epochs 
of learning are not too different from the results 
after 3 epochs of learning. In summary, figure 6 
shows the original features of all the images 
(bottom) and the converged weights of the 4 
sorted image classes. 

 
 
 
 
 
 
 
 
 
 
 
 

Class 1

Class 2

Class 3

Class 4

All

Class 1

Class 2

Class 3

Class 4

All

Figure 6.  Classification Results:  The original 
(before classification) image features (bottom) 
and the 4 self-classified image features (the top 
four figures) 
 
 

 

 

 
The neural network with the converged weights 
was then applied for classification prediction for 
the remaining 60 images.  The success rate for 
prediction reaches 100%.   In summary, we have 
developed neural network classifiers that can 
self-learn the rules (features) hidden in the 
images and classify faster and more accurately 
than an expert can. Because of the self-learning 
capabilities, the un-supervised neural network 
does not allow human intervention except one 
needs to specify the number of classes.  The 
algorithm was tested and works equally well for 
classification number ranging from 3 – 10 (we 
only present results for 4 classes.  Finally, the 
high success rate of prediction (100%) provides 
a solid foundation to apply the SOM neural 
network for the current study. 

Figure 7a.  Initial weights associates with the 4 
classes 

 
 
 

 

 
 
 
 
 
 
 
 

Figure 7b. Weights associates with the 4 classes 
after 1st epoch of learning 
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Figure 7c. Weights associated with the 4 classes 
after 3rd epochs of learning 

 

 
 
Figure 7d. Converged weights associated with 
the 4 classes 
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