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Executive Summary 

 
The United States Military will eventually need to satisfy federal pollution emissions regulations 
during training exercises with stationary and mobile diesel-based equipment.  Currently, the 
Environmental Protection Agency (EPA) supports the computation and use of emissions factors 
to estimate pollutant emissions for nearly all types and sources of pollution, such as stationary 
diesel generators and mobile vehicles, and scale them up to represent large activities such as 
military training maneuvers and facility operations (EPA AP-42).  An emission factor is a 
representative value that attempts to relate the quantity of a pollutant released to the atmosphere 
with an activity associated with the release of that pollutant.  Emission factors are generally used 
to estimate emissions from a source when more reliable emissions data, such as records from 
continuous emission monitoring (CEM) or from stack tests are not available for that source.  For 
many urban air toxics (UATs) and mobile source air toxics (MSATs), the EPA lacks ambient air 
toxic concentration data.  Data has been collected is non-temporal, non-spatial, and cannot be 
used for emission factors.  Because of this, emissions factors often require significant 
overestimation.   

 

The development of emissions factors (EFs) could be improved significantly.  Reliable EFs 
could reduce the need for gross overestimation if individual source emission characterizations 
supporting the EFs could be improved using non-permanent, on-location CEM technology.  A 
new characterization technique was needed to produce “instantaneous” pollutant concentration 
profiles of emissions from both stationary and mobile sources.  The instruments needed to be 
portable and capable of detecting both low and elevated concentrations of pollutants.  The 
research presented in this report was intended to support the need to identify and characterize 
emissions of trace air toxic compounds, especially persistent organic pollutants, from operations 
and activities at Department of Defense (DoD) facilities.  The compounds targeted for this study 
included acetaldehyde, acrolein, benzene, and 1,3-butadiene.  These toxics contribute 
significantly to UATs and MSATs.   

 
An instrument was developed that was self-contained, person-portable, and capable of being 
operated from a notebook computer, providing near-real-time emissions analyses.  The 
instrument employed inexpensive, nearly disposable, miniature sensor arrays capable of rapidly 
detecting and characterizing air toxics in real time.  Sensing elements in the array were 
composed of various ceramics, metals, and metal oxides tailored to be sensitive to specific 
compounds.  The arrays were self-heated to an ideal operating temperature, and were then 
exposed to the four primary compounds of interest, at different concentrations and in different 
combinations, in air and mixed into actual diesel exhaust.  Chemical “signatures” were gathered 
and recorded, and a library of signatures was constructed.   
 
The sensing array used two different types of sensing elements, voltammetric and photocatalytic 
sensing elements, and two different chemical measurement techniques to improve chemical 
detection and discrimination.  Both are experimental technologies with the voltammetric 
technique being the more mature of the two.  Voltammetry is normally an analysis technique 
applied to aqueous systems.  Voltammetry used in this project was tailored specifically for gas 
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detection.  The voltammetry proved capable of detecting a wide range of gas concentrations, 
from part per million levels to percent levels.  Software was developed to implement 
voltammetry at near-real-time speeds.  Efficient and flexible chemometrics methods (neural nets 
and support vector machines) were used to resolve composite signals, effectively allowing gas 
concentrations to be determined.  The more novel photocatalytic microsensors demonstrated far 
lower power consumption and at ambient temperatures than the voltammetric sensing elements 
did.  The photocatalytic microsensors produced meaningful signatures to some of the target 
analytes at saturated concentrations, but were not able to measure target gases at ppm levels.  
The voltammetry-bases measurement technique coupled with the photocatalytic sensors required 
more development than this program allowed, so the use of the photocatalytic microsensors was 
discontinued.   
 
Results from this work demonstrated that the instrument could be used to detect and discriminate 
the four gases of interest at varying low (ppm) concentrations.  The microsensors created in this 
research could readily be tailored for detection of other toxic industrial chemicals at part per 
million levels.  Additional effort is needed to improve sensor detection at low part per billion 
levels.  That effort may include the use of a gas pre-concentrator (increasing sensitivity by 
increasing the effective surface area of the sensors) and/or introducing nanoparticle films to 
increase sensor reactivity to target gases.   
 
Projects prior to this SERDP effort explored other sensor applications where ppb levels of 
detection were not required.  These included the detection of insect pest (termite) infestations, 
detection and classification of fires (on board naval ships), and detection and classification of 
weapons of mass destruction (cyanide compounds and TICs).  The significant advancement of 
this sensing technology made during the course of this project will allow all of these applications 
to be readdressed and solved.  Demonstrations of that capability are underway at the time of this 
report.   
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Objective 

 
This project responded to the need to identify and characterize emissions of trace air toxic 
compounds, especially persistent organic pollutants, from operations and activities at Department 
of Defense (DoD) facilities.  The project had three main objectives:  (1) development of field-
portable CEM instrument (miniature sensors and arrays) capable of detecting and characterizing 
trace air toxic compounds rapidly in near-real-time; (2) integration of pollutant-data collection 
into spatial and temporal emission profile models of pollutants and correlating these with 
specific DoD activities; (3) development of improved emission factors for the targeted pollutants 
released during various activities.  The emission factors and the quantifiable estimates of their 
uncertainty were to be incorporated into a structured, verifiable, user-friendly model.  Project 
deliverables were to be new toxic gas CEM instrument, an emissions model for mobile and 
stationary emissions sources, and a software tool for calculating EPA-approved emission factors.   
 
The first of the objectives was accomplished.  Gas microsensors and arrays were fabricated and 
new electronic instrument was built and tested against the gases of interest during several series 
of experiments.  A significant portion of the second objective was accomplished by completing a 
large portion of the field testing in a special-purpose Diesel Engine Test Facility (DETF) in 
Argonne’s Center for Transportation Research.  Testing at the DETF greatly reduced project 
expenses and allowed the project to advance despite a funding reduction during the second year.  
Using the DETF, a library of chemical composition signatures was developed for acetaldehyde, 
acrolein, benzene, and 1,3-butadiene in air and in diesel exhaust at several different 
concentrations and in a wide range of combinations.  The project was discontinued by SERDP 
before the second objective (field testing at Yuma Proving Ground) was finished and before the 
third objective (emission model and emissions factors) could begin.   
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Background 
 

A new characterization technique is needed to produce “instantaneous” emission pollutant 
concentration profiles from both stationary and mobile sources.  The instruments must be 
portable, capable of detecting both low and elevated concentrations of pollutants, and engineered 
to provide CEM.  Characterization of gaseous emissions in-situ will allow for improved 
emissions factors that can be computed for future pollution management.   

 

Emissions Factors 
Currently, the EPA lacks ambient air toxic concentration data for most of urban air toxics 
(UATs) and mobile source air toxics (MSATs) (listed in Tables 1 and 2 of the Strategic 
Environmental Research and Development Program Statement of Needs for FY2002 
http://www.serdp.org/o2SONJ/CPSON-0201.html).  Data that has been collected is non-temporal 
and non-spatial, and cannot be used for emission factors.   

 

Emission factors are used to develop estimates of pollutant emissions for essentially all types and 
sources of air pollution (EPA AP-42).  Consequently, emission factors play an important role in 
planning and implementing many air pollution control programs.  An emission factor is a 
representative value that attempts to relate the quantity of a pollutant released to the atmosphere 
with an activity associated with the release of that pollutant.  Emission factors are usually 
expressed as the weight of pollutant divided by a unit weight, volume, distance, or duration of 
the activity emitting the pollutant.  Emission factors are used to estimate emissions from all 
major types of air pollution: point (large stationary), area, mobile, and biogenic sources (e.g., 
trees).  In most cases, these factors are averages of all available data of that has been quality 
assured for facilities in the source category.  Emission factors are generally used to estimate 
emissions from a source when more reliable emissions data, such as monitoring data from 
continuous emission monitoring (CEM) or from stack tests are not available for that source.   
 
Gas Detection 
Instruments to support CEM and improve the modeling of emissions factors begin with gas 
sensors.  In recent years, much effort has been devoted to developing technologies to facilitate 
the detection and analysis of gaseous organic pollutants.  Traditional gaseous organic analyses 
usually rely upon collection and sorption of the gaseous organic onto a fiber, transport of the 
fiber to a laboratory, desorption of the organic from the fiber, and analysis by gas 
chromatography/mass spectrometry (GC/MS).  Although good detection limits and speciation 
can be achieved with GC/MS analysis of the samples, the sample collection process is lengthy, 
complex, and the analytical portion rarely can be performed in situ.  Analytical technology is 
moving toward a more “instantaneous” approach, where an instrument can be used in-situ to 
produce immediate contaminant concentration profiles.  The use of solid state sensors aligns with 
this approach.   

 
Metal oxide semiconductors have been found useful as gas sensors for gases such as O2, CO2, 
H2O, NO, NH3, CH4, alcohols, etc.  The most extensively studied oxides for this purpose are 
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ZnO and SnO2 (Henrich and Cox 1994).  Application of metal oxides as gas sensors exploits the 
change in surface conductivity that occurs when gas molecules are adsorbed at the oxide surface.  
When the change in conductivity is large enough to be measured, it can be used to monitor the 
presence of the gas molecule.  Sometimes certain metals deposited on the oxide surface enhance 
the sensitivity and selectivity of oxide sensors.   

 
The ANL voltammetric and photocatalytic microsensors are active chemical measurement 
devices (Bard and Faulkner 1980) that also are metal-oxide enhanced (Kumazawa 1999).  They 
are comprised of a miniature electrochemical cell sensing element (< 1 cm2) and control software 
to produce a virtual instrument.  Both devices generate a complex and unique electrical signature 
when excited by a varying electrical potential while being exposed to chemical analytes 
(Edmonds 1988).   

 
In a voltammetric cell, the analytes react (oxidize or reduce) at very characteristic potentials 
according to the following simplified equation (Smyth and Vos 1992): 
 

Ox +ne-  Red     Red + X  Ox + Y    (1) 
Ox = oxidizing species, Red = reducing species 

 
In a catalytic reaction, a reversible reduction is followed by regeneration of the electroactive 
species.  The resultant voltammogram is very effective at fingerprinting compounds and 
mixtures (Radomski et al. 1995 and Salikhdzhanova et al. 1994).  The electrochemical cell can 
be driven to react by the applied potential or the cell can produce a current-limited steady state 
output potential that follows the Nernst equation (Fraden 1993):   
 

E = Eo + ((RT)/nF)ln(CO/CR)    (2) 
CO: concentration of oxidant, CR: concentration of reduced product, n: number of electrons 
transferred, F: Faraday constant, R: gas constant, T: absolute temperature, EO: electrode potential 
at standard state.  Nernst equation governs many half-cell reactions in electrochemical cells.   

 
The cell/sensor can operate in either mode.  A microcontroller driving the measurement is 
programmable and allows the output to be an analog value for interfacing to control equipment, 
or it can be a classification and confidence factor for reporting to a monitoring system.   
 
The ANL devices have been under development for a variety of military applications that range 
from low-level human metabolic gas monitoring (breath analysis for diving applications) to 
intelligent fire detection systems (distinguishing complex burning mixtures).  All the components 
have been commercially manufactured for military testing and evaluation in live demonstrations.  
The prototype systems use popular and inexpensive commercial-off-the-shelf (COTS) support 
electronics and communication follows popular industry standards.  The analysis software 
employs a collection of digital filters and neural networks to identify the signatures.  This 
approach also allows unknowns to be classified and re-recognized in the future.   

 
There has been some interest in investigating TiO2 in sensor applications and the photocatalytic 
gas sensor investigated for this project employs that material.  Titanium dioxide has been useful 
as an oxygen sensor because at high temperatures oxygen diffuses into its oxygen vacancies, 
increasing its resistivity (Sharma et al. 1996).  At low temperatures, chemisorption of gases at the 
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oxide particle surface changes surface states and charge distribution of the oxide with 
concomitant change in resistivity (Edelman et al. 2000).  In metal oxide sensors the oxides are 
usually deposited on a substrate in either thin (50 to 200 nm) or thick (0.02 to 10 mm) films.  
Thin films of metal oxide semiconductors such as TiO2 either in single phase or in combination 
with other oxides have been studied as gas sensors.  For example, recent investigations address 
novel nanostructured materials such as TiO2, and WO3 in single phase or as mixed oxides 
(Comini et al. 2000 [1]), and TiO2-Fe2O3 thin films.  These applications exploit semiconductor-
sensing properties based on surface reactions between the semiconductor and the gases in the 
atmosphere, which cause a change in the semiconductor’s resistance due to charge transfer 
between the adsorbate and the adsorbent. Two types of reactions have been shown to occur: with 
the oxygen absorbed at the surface, or directly with the semiconductor surface (Comini et al. 
2000[2]).  Stability, porosity and high surface to volume ratio are key properties for a sensing 
film.  The sensing properties are enhanced with decreased particle size of the semiconductor.  
TiO2 thin films with different dopants were successfully used to detect ppm levels of alcohol at 
400 to 500°C (Sberveglieri et al. 2000).  TiO2 thin films prepared using a chemically modified 
sol-gel technique produced anatase particle sizes of 3 to 30 nm and greatly increased sensitivity 
to ethanol and methanol detection at 400°C to 500°C compared to standard sol-gel methods 
which produce larger (25-50 nm) particle sizes (Garzella et al. 2000).   
 
Several recent studies involving TiO2 thick-film sensors have focused on nanometric oxides for 
atmospheric CO detection (Traversa et al. 2000, Carotta et al. 1999, Carotta et al. 2000).  TiO2 
particle sizes ranged from 10 to 60 nm in these studies.  The sensors were deployed at 450°C.  It 
was found that smaller particle size greatly enhanced the sensor sensitivity.  TiO2 has also been 
used recently in a novel method for detecting alcohols and aromatic compounds.  There, it was 
found that when AC voltage was applied to the sensor, the resulting conductance, surface 
potential and phase lag could be used to distinguish various compounds (Islam et al. 1998; 
Kumazawa et al. 1999).  It was also found that illumination with monochromatic light (700 nm 
wavelength) improved the sensitivity of the sensor (Kumazawa et al. 1999).  However, none of 
the above studies with the TiO2-based sensors intentionally exploited the photocatalytic 
properties of this semiconductor.   
 
TiO2 has long been known as an effective photocatalytic agent for removing organic pollutants 
from both aqueous and gaseous environments.  Heterogeneous semiconductor photocatalysis 
relies upon the use of photoactive semiconductors, such as TiO2, to not only adsorb noxious and 
pollutant gaseous emissions, but to photocatalytically oxidize (or reduce) them into less toxic 
organics and carbon dioxide (CO2).  When TiO2 is illuminated with light of energy equal to or 
exceeding its bandgap energy (3.2 V [volts] for anatase TiO2), electrons are excited into the 
conduction band creating positive holes in the valence band.  If these electron-hole pairs do not 
recombine to produce heat, they can promote oxidative and reductive electron transfers as 
described in the simplified Equations 3 through 8 (Butler and Davis 1993, Das et al. 1994, Luo 
and Ollis, 1996, Serpone and Pelizzetti, 1989) 
 

TiO2 – hν  h+ + e-   electron-hole pair formation   (3) 
e- + M(n+1)  Mn    reduction     (4) 
h+ H2O(ads)  •OH + H+   oxidation of adsorbed water   (5) 
h+ + 2OH-

(ads)  •OH + OH-   oxidation of adsorbed hydroxide ions  (6) 
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•OH + R  R• + H2O   propagation     (7) 
R• + O2  R2 + HO2    termination     (8) 
 
where hν = light energy, h+ = hole, e- = electron, Mn = oxidized compound, R = reduced aldehyde, 
alcohol, light hydrocarbon, aromatic, chlorinated solvent, etc. and R2 = oxidized R.   
 

Photoexcited electrons can reduce compounds sorbed onto TiO2.  Generally, holes do not 
directly oxidize organic compounds.  Instead, they react with adsorbed water molecules or 
hydroxyl ions to produce hydroxide radicals, powerful oxidizing species that in turn oxidize 
sorbed species (described by the mechanisms in Equations 5 through 8).  
 
A variety of gases have been detoxified by TiO2 photo-oxidation.  Included in these are benzene, 
toluene, acetaldehyde, trichloroethylene, formaldehyde, propionaldehyde, pyridine, ethylene, and 
acetone (Buechler et al. 1998, d’Hennezel and Ollis 1997; d’Hennezel, et al. 1998; Hager and 
Bauer 1999; Jacoby and Nimlos 1996; Maira et al. 2000, Sampath et al. 1994, Sirisuk et al. 1999, 
Sopyan et al. 1994, Takeda et al. 1995). Detoxification processes occur by the sorption of the gas 
upon the TiO2 followed by ultraviolet light (UV)-induced photooxidation.  Results from these 
studies have shown conversions up to 100% (d’Hennezel and Ollis 1997).   
 
Several studies have taken this phenomenon one step further to detect atmospheric constituents 
based on TiO2 sorption processes in the presence of light.  Distinct conductivities and surface 
potentials are produced when thin-film rutile TiO2 is exposed to vaporized liquids such as 
methanol, ethanol, n-pentanol, benzene, toluene, and monochlorobenzene in darkened 
conditions.  These responses are greatly enhanced when the TiO2 is exposed to these constituents 
and illuminated with 700 nm light (Kumazawa et al. 1999).  In another study, rapid responses in 
photoconductivity occurred when TiO2-Nb was exposed to oxygen pressure changes.  These 
responses were obtained at 120°C, a temperature much lower than most metal oxide sensors 
require for operation (Golego et al. 2000).   
 
In a recent ANL study (Skubal et al. 2000), thick-film anatase TiO2 sensors were developed that 
operated at room temperature and photocatalytically responded to a variety of organic gaseous 
constituents.  The investigation employed a systematic approach to analyze resistance signatures 
from anatase TiO2 sensors, enabling investigators to distinguish and profile individual gaseous 
constituents.  The "smart" microsensors and processing capabilities allowed investigators to 
extract complex information that normally was not taken advantage of with chemical sensors.  
Electrical perturbations including actual peak applied potential, average applied potential, 
applied potential rate change, and applied potential waveform shape (stair-step, square wave, 
differential pulse) were implemented using programmable microcontroller devices.  Sensor 
responses (select or all) to an analyte, temperature, light, electrical perturbations, etc. were 
combined into a surface or hypersurface that provided the signal processing with a wealth of 
information to support the identification, differentiation, and quantification of a gaseous 
[analyte] constituent.  Experimental results indicated that the TiO2 sensors showed promise as 
viable sensors capable of distinguishing different contaminants by providing characteristic and 
reproducible electrical signals for each compound tested.  Distinct characteristic responses were 
obtained to different gases (isopropanol. ethanol, and xylene in ppm concentrations) when 
sensors were illuminated with UV light at room temperature.  Tests also indicated that the 
sensors were reusable and reproducible.  These results can be explained by the photocatalytic 
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properties of TiO2 exploited in previous ANL investigations (Meshkov et al. 1999; Skubal et al. 
1996; Skubal, 1999; Skubal et al. 2000) and outlined in equations 3 through 8 above.  
Illumination induced reactions in the adsorbed gases leading to changes in the electrical 
properties of the TiO2.  Humidity found in ambient room air provided the water/hydroxyl groups 
sorbed to the TiO2 and needed to produce radicals upon illumination.  The molecules sorbed to 
the surface of the TiO2 were photochemically transformed, released, and the process repeated 
continuously.   
 
Other previous investigations at ANL had shown that certain organic compounds exhibited a 
specific affinity for TiO2, and allowed varying amounts of charge transfer to occur between TiO2 
and sorbed compounds.  Functional groups on a compound dictated the orientation of the sorbed 
compound to the TiO2, the binding of the compound to the TiO2, and the pathway for charge 
transfer to occur from the TiO2 to the sorbed compound.  Different functional groups affected the 
interaction of the compound with the TiO2.  This had been confirmed by experimental results, 
and was used as the basis for developing sensor selectivity.  Investigators found that results from 
the sensor were reproducible, consistent, and that the sensor could be reused without 
thermodynamic or chemical regeneration before reuse.  From an economic standpoint, it was 
advantageous to have a sensor that was self-cleansing/self-regenerating in the presence of 
ambient air. 
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Materials and Methods 
 
The experimental characterization of DoD-produced emissions required the selection of a subset 
of Toxic Industrial Chemicals (TICs) found in diesel exhaust and the design and fabrication of a 
specialized instrument to support CEM of those gases.   
 
Primary Focus on Four Diesel Exhaust Gases: Benzene, 1,3-Butadiene, Acetaldehyde, and 
Acrolein  
After an assessment of expected atmospheric contaminants at Yuma Proving Grounds (the DoD 
field test facility collaborating with ANL on this project), the investigators decided to focus 
primarily on gases inherent in diesel exhaust.  The project scope of work was tailored to focus on 
four significant mobile source air toxics at YPG from diesel exhaust gases: acetaldehyde, 
acrolein, benzene, and 1,3-butadiene.  Table 1 lists selected information about these gases.  
Source concentrations of these diesel constituents, especially from older engines, typically is in 
the several hundred parts per million range (Stern 1968).   
 

Target Toxic Gases in Diesel Exhaust 
EPA has very little data regarding the concentrations of acetaldehyde, acrolein, benzene, and 1,3-
butadiene released from stationary and mobile diesel exhaust sources.  The experimental stage of 
this project would provide valuable data needed by EPA.  Table 1 presents information on the 
compounds of interest.   

 

Table 1.  Selected Information on Diesel Exhaust Gases 

 Acrolein, C3H4O Acetaldehyde, 
C2H4O Benzene, C6H6 1,3-Butadiene, C4H6

Molecular Weight 56.06 g/mol 44.05 g/mol 78.11 g/mol 54.09 g/mol 

Conversion factors 

 
1 ppmv   = 2.33 

mg/m3 

1mg/m3 =  0.43 
ppmv 

(20oC and 1atm) 
 

1 ppmv   = 1.83 
mg/m3 

1 mg/m3 =  0.55 
ppmv 

(20oC and 1 atm) 

1 ppmv = 3.25 
mg/m3 

1 mg/m3 =  0.31 
ppmv 

(20 oC and 1 atm) 

1 ppmv = 2.25 
mg/m3 

1 mg/m3 =  0.44 
ppmv  

(20 oC and 1atm) 

OSHA TWA limit 
(8-hour day, 40-

hour week) 
0.1 ppm 200 ppm 10 ppm 1 ppm 

*EPA ambient 
concentrations in 
suburban areas 

(1988 data) 

No data 1.63 ppbv 1.27 ppbv 0.67 ppbv 

Combustion 
related vehicular   75-270 ppmv  
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emissions** 
*EPA average 
concentrations 
released from 

1981-1989 year 
cars 

No data 0.804 mg/mile 10.214 mg/mile 1.405 mg/mile 

Comments 

breaks down fairly 
rapidly in the air 
(half-life about 1 
day) by reacting 

with other 
chemicals 

atmospheric half-
life is 15 hours, 

reacts with 
hydroxyl radicals 

reacts with other 
chemicals in the 
air and breaks 
down within a 

few days 

breaks down 
quickly in air by 

sunlight, half-life is 
2 hours to a few 

days depending on 
the amount of 

sunlight. 
 
* Source:  EPA Motor Vehicle-Related Air Toxics Study, April 1993, EPA 420-R-93-005 
** Source:  Air Pollution volume III, Sources of Air Pollution and Their Control, A. Stern, ed., Academic Press, NY 
1968. 
 
Target Detection Limits 
An instrument was designed and developed to detect 1 ppm to 1000 ppm of the four constituents, 
and to achieve a detection limit of 1 ppm or less.  The choice of this detection limit was based on 
the feedback the project investigators received from EPA indicating that a rapid, portable, and 
inexpensive sensor capable of detecting in the low ppm range would be very useful as a 
screening tool, would have a potential for wide-range applications, and would be the most 
valuable to the EPA. 
 
Contact was established with Mr. John Bosch of EPA, who had expressed a strong interest in this 
project and its ongoing progress.  Contact was also established with Mr. Joe Sumers at the EPA 
Transportation Laboratory in Michigan.  They both promised to provide the project staff with 
further information on desirable detection limits for sensor development.   
 
Initial detection levels for the instrument were planned for ppm ranges, but approaches were 
investigated that would allow the instrument for this project to be refined to achieve lower than 
ppm levels of detection as well.  The most feasible improvements were planned to be introduced 
with each new generation of instruments.   
 
Part Per Billion Detection Limits  
Although ppb levels of detection were not desired by EPA, strategies were refined in case other 
interested groups required lower characterization levels.  Several approaches were available to 
lower the detection limits of the project instrument and are described as follows.   
 
1 Use existing microsensors.  Current results indicate that testing should be able to achieve 
at least a 0.1 ppm detection limit with current voltammetric microsensors without any further 
modification.  Staff can easily perform tests at these concentration levels with the available 
equipment.   
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2 Concentrate samples with a resin trap.  Tenax traps can be used to capture components in 
a pre-measured volume of sample gas and then be treated to release those trapped components 
into a smaller volume.  This effectively increases the concentration.  Concentrated samples are 
desorbed from the resin and pumped into the sensor chamber for detection.  A simple calculation 
based on time and flow rate will enable our system to back-calculate the concentrations.  This is 
an established technique for laboratory analyses. The benefits are increased sensitivity without 
changes to the remainder of the instrument.  The costs are added complexity to the final 
instrument and delays in response time.   
 
3 Increase the contact area between the detector and the gases.  One way to accomplish this 
is by increasing the size of the detector (sensor).  The project’s current sensors are approximately 
0.64 cm2.in area.  It was shown in past experiments that if the surface area of the sensors is 
increased to 6.4 cm2, the detection limit will increase tenfold as well (the measurable current is a 
function of exposed surface area).  Sensitivity also can be improved by introducing new 
materials to the sensor, using alternative sensor fabrication techniques, or increasing the gas-
sensor interface area and the number of grain boundaries at those interfaces (the location where 
the gases react).  This can be accomplished by using nanometer diameter particles rather than the 
micrometer diameter particles that are currently used.  Fabrication methods for nanoparticles are 
still experimental, and require additional investigations, but a series of nanoparticle voltammetric 
microsensors were fabricated for this program and will be characterized as funding and time 
allow.   
 
4 Improve measurement technique. Square wave voltammetry can be implemented instead 
of the triangular sweep (cyclic) voltammetry currently being used.  The voltammetry technique 
used for gas detection in this project is based upon voltammetry used for aqueous 
electrochemistry.  Square wave voltammetry greatly improves the detection limits of and 
response speed for aqueous constituents.  As such, it should be able to be adapted for gas 
detection in a similar way that the linear sweep voltammetry was used.  Square wave 
voltammetry applies a changing differential potential and takes twice as many measurements as 
an equivalent linear sweep voltammetry.  The technique is designed to apply opposite polarities 
at each given potential value.  The difference between the polarities corrects for the charging 
capacitance current, isolates the Faradaic (the chemical reaction) signal from the capacitive 
charging portion of the current, and effectively eliminates the “noise” that can mask the chemical 
reaction.  The improvements are two-fold: much faster response times (0.25 second sweep times 
vs. 20 second sweep times) and much lower detection limits made possible by a far better 
chemical signal-to-noise ratio.  This method has been implemented and demonstrated, but 
requires further investigations to characterize it as a replacement for the existing linear sweep 
voltammetry.   

 
Instrument Development 
In FY2003, a new version of the sensor equipment was fabricated and field tested as a portable 
instrument to characterize diesel emissions produced by stationary and mobile sources.  In the 
new version hardware and software were improved.  Methods to both identify and quantify gas 
analytes were developed.   
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Hardware 
The instrument was an evolution of existing gaseous voltammetry equipment developed at 
Argonne.  The instrument was minimized onto a single electronics chassis.  All sensing arrays 
can be run and the data from them processed using a notebook computer. 
 

Photocatalytic and Voltammetric Sensors 
Two types of sensors, photocatalytic and voltammetric, were fabricated and evaluated for 
inclusion in the final emissions instrument, as shown in Figures 1a and 1b.   
 

  
Figure 1a.  Photocatalytic Sensor and the 

UV Diode Light Source Figure 1b.  Voltammetric Sensor 

 
Photocatalytic sensors are based on the photocatalytic properties of metal oxide semiconductors.  
They grew out of Argonne’s research in photocatalytic systems focusing on using TiO2-assisted 
photocatalytic oxidation and reduction processes for environmental applications.  The basic 
principle underlying photocatalytic redox reactions is as follows.  Upon illumination with 
ultraviolet light, electrons are promoted from the valence band to the conduction band in TiO2, 
leaving holes in the valence band.  Both electrons and holes are free to react with constituents 
sorbed to the TiO2 surface.  The extent of interaction with the surface depends upon the chemical 
properties of the sorbed gaseous constituent.  Reaction of the gas with the TiO2 surface affects 
the conductivity of the TiO2 surface which can be measured.  Figure 1a shows the photocatalytic 
sensor and the UV-emitting diode used with it as the excitation source.  Figures 2a and 2b show 
the assembly containing the photocatalytic sensor and the light source mounted inside a tube 
allowing gases to flow through it.   

 
Three types of photocatalytic microsensors were fabricated in the sensor laboratory, each 
employing different forms of TiO2, and using different geometries: Degussa P25 TiO2 (primarily 
the anatase crystal structure), rutile TiO2, and nanoparticle TiO2 (nanoparticles were synthesized 
through the controlled hydrolysis of titanium tetrachloride in our laboratory).  Platinum 
electrodes were screen-printed onto an aluminum oxide (Al2O3) substrate, fired at 1300°C to 
sinter into a thick film, and tested for conductivity.  The TiO2 powder was mixed with an 
electronic vehicle (special organic viscous base) into a paste, which was then screen-printed on 
top of the inter-digitated platinum electrodes and fired at 320°C. 
 
The photocatalytic sensor apparatus was reduced in size from approximately 1 ft3 to 
approximately 3 in3 by incorporating a miniature high-intensity ultraviolet (UV) light emitting 
diode (LED), comparable in size to the sensor, to replace the external UV reactor as a light 
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source to induce photocatalytic reactions.  A new miniature test chamber has been prototyped to 
support the operation (Figure 2b).  
 

 

Figure 2a.  Photocatalytic Sensor Assembly 
Design 

Figure 2b.  Photocatalytic 
Sensor Assembly Prototype 

 
Voltammetric sensors (shown in Figure 1b) exploit the oxygen ion transport properties of solid 
electrolytes to detect and identify gases that are oxidized or reduced at electrode surfaces.  A 
solid electrolyte is sandwiched between platinum electrodes as shown in the micrograph below 
(Figure 3).   
 

 
 

Figure 3.  Voltammetric Gas Microsensor Film Cross-Section 
 
The sensor is exposed to a gas sample, a voltage (usually of saw-tooth form) is applied to the 
electrodes, and the current response is measured.  A voltammogram - a graph displaying the 
current versus voltage - is collected.  A typical 6-cycle voltammogram is shown in Figure 4.   
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Figure 4.  Sensor Signal Reproducibility.   
A YSZ sensor was exposed to 50 ppm acetaldehyde in diesel exhaust.  Six voltammograms were collected and 
are displayed.  As shown, reproducibility is excellent, as the voltammograms are indistinguishable from each 

other. 
 
The shape of a voltammogram will depend on the composition of the gas sample measured, and 
on individual component concentrations.  Typically, as the voltage increases, the current 
increases slowly until the voltage approaches the redox potential of the gas.  At that point the 
current increases sharply because more ions are made available for carrying electrical current.  
As the gas at the electrode surface becomes depleted and the applied potential changes, the 
current lessens and a current peak is observed.  When the applied potential is reversed, a similar 
pattern repeats itself in reverse.  Other factors influence the shape of the voltammogram in 
addition to the redox potential of the sample gas and its concentration.  These factors include 
multiple reactions, reversibility of the reactions taking place at the electrode, and the electrolyte 
used.  Two kinds of electrolytes have been used in the voltammetric sensors for this project:   
 

1. Yttrium stabilized zirconium microparticles (YSZ sensors)  
2. Yttrium-stabilized zirconium doped with tungsten bismuth oxide microparticles 

(WBO sensors)  
 
In the experiments, described later, the two voltammetric sensors (YSZ and WBO) were at first 
used individually.  Later, the two sensors were assembled in a mini-array, and used 
simultaneously to produce a composite response.   
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Initial Focus on the Photocatalytic Sensors 
During the initial stages of this project, sensor development focused on advancing the 
photocatalytic microsensors to the maturity level of the voltammetric microsensors.  Their 
potential for operation at ambient temperatures without the need for self-heating made them 
attractive for field-portable, long-term CEM applications.  During the year FY2002 experiments 
were performed involving several gases (ethanol, isopropanol, methylene chloride, xylene, and 
acetone) at their saturation points.  Specific gases triggered distinct responses from the 
photocatalytic sensor.  Conductance/impedance spectrums for different gases varied both in 
magnitude and in shape in response to the applied voltage.  The micro-sized UV diode has been 
shown to be effective in producing the photocatalytic response in TiO2 and is capable of 
replacing a much larger UV reactor.   
 
During FY2003 similar impedance tests were performed with the TiO2 photocatalytic sensors on 
the target diesel exhaust gases.  However, the responses to the target gases were below existing 
measurement instrument resolution.  These results shifted the project direction to using the more 
mature, responsive voltammetric sensors on exhaust streams, until improvements could be made 
to the photocatalytic measurement technique.   
 

Programmable Potentiostat Instrument 
Project staff worked with ANL’s Computer and Information Systems Division to improve 
components of the existing voltammetry instrument, and to collect the components into a single 
chassis to produce a field-portable system.  The designs went through two generations of testing 
and integrating components.  The voltammetry system produced is unique in that it is designed to 
accommodate gaseous analytes, not liquid ones as all existing commercial voltammetry systems 
are designed to analyze.  Fabricated project voltammetric systems are shown in Figure 5a, 5b, 
and 5c.  The chassis, power supply, and temperature controller are commercial components; the 
potentiostat voltammetry electronics are specialize ANL-developed components.   
 

 

Figure 5a.  Generation II Integrated 
Electronics External Front 

Figure 5b.  Generation II Integrated 
Electronics Chassis 
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Figure 5c.  Generation II Field-Portable Gaseous Voltammetry Instrument 
 
During the project, improvements were made to components and the overall system.  The system 
will continue to be miniaturized and diversified for more flexible use.   
 

Microsensor Enclosures 
In order to convert the laboratory sensor array to an array suitable for field use, the sensing 
elements/arrays needed to be contained in a protective enclosure (Figure 6).  Rapid prototyping 
(RP) methods were employed for this engineering and fabrication need.  Two different RP 
fabrication methods were employed: stereolithography (SLA) and fused deposition modeling 
(FDM).  Three different types of plastic materials were used in the RP models: Watershed™, 
ABS, and polycarbonate.   
 
The case/enclosures were designed to allow gases to flow over the sensor surfaces while 
protecting them from direct physical contact.  The RP fabrication is very efficient and supports 
continual engineering upgrades following each generation of field testing.  The initial designs do 
not include internal baffles or injection ports for calibration and validation testing, but instead 
allow behavior studies to be made to evaluate the different plastic materials to determine which, 
if any, produces an interfering signal via off-gassing of the plastic exposed to the heated 
sensor/array surface.  It was expected that some detectable level of off-gassing would be present 
and tests to determine compensation procedures were completed.  Similar enclosures were 
fabricated using Pyrex glass to help determine optimal geometry and to establish the level of 
chemical interferences given from the plastics.   
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Figure 6.  SLA-Fabricated Sensing Element Enclosure Made with WaterShed™ 11120 
 
The details of the methods used are only tangential to this report and are included in the 
Appendix.   
 

Software 
Specialized software plays a role in both operation of the instrument and in analysis of the 
acquired chemical signatures.  For this project, all software was developed in the MathWorks 
MATLAB™ environment to promote flexible operation and easy adoption of the developed 
instrument.  MATLAB was selected as a development environment for the instrument for several 
reasons.  Software tools exist to significantly streamline complete instrument and system 
development, including the Excel Builder, Curve Fitting Toolbox, Embedded Target for 
Motorola microcontroller, a Neural Network Toolbox, and recently an experimental Support 
Vector Machine Toolbox.  A more detailed explanation of the MATLAB environment is 
included in the Appendix.   
 
Several algorithms were developed for both data acquisition and for signature analysis.  These 
algorithms were tested using both synthetic response data and the voltammograms gathered 
during the experimentation.   
 

Voltammetry Measurement 
Routines to implement both linear sweep voltammetry and square wave voltammetry were 
developed and tested during the extensive experimentation efforts.  The linear sweep 
voltammetry produced simpler to interpret semi-quantitative results and was employed for the 
majority of the experiments as it provided detailed chemical signals corresponding to the 
underlying electrochemical reaction behavior.  The much faster square wave voltammetry was 
tested for speed and sensitivity improvement over linear sweep voltammetry: both of these 
features improved significantly, but at a cost of significantly greater chemical “noise”.  Square 
wave voltammetry produces higher sensitivities and sampling rates that are desirable in a final 
instrument, and will be pursued as noise masking, filtering, and cancellation techniques are 
refined.   
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Signature Analysis 
Several parametric and nonparametric chemometric methods were available for performing more 
complex curve fits, or function approximations, along high numbers of dimensions.  For this 
work, a General Regression Neural Network (GRNN) algorithm was employed.  These topics are 
introduced here, and are described in detail in the Appendix.   
 

Computational Neural Networks 
A neural network is inspired by and loosely models the architecture and information processing 
capability of the biological brain (Masters 1993).  An Artificial Neural Network (ANN) 
accomplishes this by simulating each biological neuron with an integrated circuit as a collection 
of gates and transistors while a Computational Neural Network (CNN) accomplishes this through 
execution of a series of computer instructions.  Neural networks can be structured to perform 
classification (Raimundo and Narayanaswamy 2001), to approximate equations (Joo et al. 2001), 
and to predict values (Freeman and Skapura 1991, Winquist et al. 1993).   
 

Radial Basis Function Networks 
Radial Basis Function Neural Networks (RBFNs) are effective for classification problems, and 
employ a layer of radial basis function neurons that effectively represent a “library” of known 
chemical signatures.  This layer accepts voltammogram signatures as patterns and performs a 
Bayesian (Marcelloni 2001) nearest neighbor classification (Beebe et al. 1998) of the patterns to 
produce a match, along with an associated confidence measure for that match.  This type of NN 
algorithm was used to establish initial discrimination capability of the instrument, identifying 
and classifying the components in the experimental mixtures of the four target gases.  A test 
matrix was compiled with fixed-concentrations (100 ppm of each component) in combinations of 
one, two, and three gases added to the diesel exhaust background.  All gas mixtures from the 
diesel mixture test matrix were classified correctly. Other methods for classification were also 
investigated to set the stage for more complex discrimination problems.   
 

Probabilistic Neural Networks 
A Probabilistic Neural Network (PNN) is an extension to the RBFN that introduces statistical 
weighting for the given classification categories based upon the occurrences and classes of the 
example signatures in the training collection.  While training samples for a RBFN are selected by 
the developer from a population of samples expected to represent the desired classes, the samples 
for a PNN are drawn randomly from that same collection.  It is anticipated that if a particular 
sample is popular across a collection, then examples of that will occur more often in a training 
set, and this will be realized as additional neurons in the selection layer.  When an example of a 
popular sample is presented to the NN for processing, it will produce a stronger response than a 
less popular example.  In this way, a-priori statistical information for the entire population is 
captured in the classification process and used to improve class assignment.  PNNs were tested 
for use with the voltammograms gathered during the discrimination experiments.  The PNNs also 
produced zero straight-classification error (straight classification meaning only that no value 
analysis was performed, only simple assignment of signatures to categories) and as such were 
uninteresting to compare to the RBFN classifier performance.   
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Generalized Regression Neural Networks 
The General Regression Neural Network (GRNN) is also a specialized version of the RBFN, but 
includes a linear output layer that allows weighted combinations of analog values to be 
produced.  GRNNs are specifically tailored for regression or function approximation and allow 
input patterns to be mapped to scalar or vector values.  By training a GRNN with different 
voltammograms gathered during experiments that exposed the sensing array to varying 
concentrations of one or more components, the functional relationship between the changing 
voltammograms and the concentration values is modeled and captured in the network weights.  
This effectively “calibrates” the network algorithm and allows unknown voltammograms to be 
analyzed for concentration data, interpolating values in between known training samples.   
 
For this effort, several different GRNN architectures were implemented to analyze entire input 
voltammograms for individual target components – producing a single scalar value, and to 
extract multiple components simultaneously.  A collection of the individual component analyzers 
is more complex than the single GRNN “to extract all components” network, but both performed 
well and produce very low level error when validated against known samples removed from the 
original training data.   
 
A GRNN with a more complex architecture was used to produce discrimination and 
concentration values from tests with gas mixtures.  This algorithm was trained to detect a given 
single value of 100 ppm concentrations of each of the four target toxic gases.  When the trained 
network was presented with mixtures of these gases, it recognized the presence of any of the four 
gases responding within 25% of the 100 ppm target values.  This algorithm structure correctly 
classified all combinations of the four target gases in a diesel background, singly, in pairs, and in 
triples.  Additional test will be completed to establish discrimination of individual gases at 
varying concentrations for each component.  (Detailed results of the performance of the neural 
network classification and analysis methods can be found in the Results section of this report.)   
 

Support Vector Machines 
Support Vector Machines are classification and regression algorithms that are derived from the 
field of statistical learning theory.  They often can be simpler in structure than an equivalent 
neural network algorithm performing the same task, but have advantages of being both more 
economical computationally and are based upon provable operations vs. the black-box neural 
network methods.  SVM have been adopted for chemometrics applications and were investigated 
for analyzing our voltammetry data.   
 
We found that the performance difference between the properly tuned GRNN function 
approximation and the SVM approximator were minimal, and did not warrant the adoption of the 
SVM signature processing at this time.  Future experimental results may require the improved 
generalization that the SVM is theoretically capable of, so these algorithms will remain as a tool 
evaluated and ready to apply as needed.   
 



 21

Diesel Engine Test Facility Replaces Portions of Field Testing 
The original Experimental Plan anticipated field testing of the developed instruments, both to 
benchmark the equipment and to begin to gather representative measurements from various 
diesel emissions sources.  Two issues altered that strategy – a reduction in the second year’s 
funding, and, the availability of the diesel test engines at Argonne’s Department of 
Transportation’s Advanced Engine Test Facility.  Due to the availability of this facility the 
project was able to perform many tasks at Argonne that were originally planned for Yuma 
Proving Ground.  The Test Facility contains a variety of diesel engines, operated at specific loads 
and with specific fuels that can be selected and controlled.  This facility, for both light-duty and 
heavy-duty engine research, allowed the project to generate emissions and test them both with 
experimental microsensors and with gas chromatography/mass spectrometers in situ.  Exhaust 
parameters in this facility can be controlled by adjusting inputs into the engines.  In a field 
environment, select organic diesel exhaust gases of interest (such as our target gases) occur in the 
presence of all other gases from diesel exhaust.  Using this facility offset expenses and eased the 
transition from laboratory research to field demonstrations.  
 
Gas Characterization Procedures and Verification Methods 
Gas species and mixture characterization methods were developed for the project’s experimental 
CEM instrument.  The detection method developed for use in the field was validated in the 
laboratory using defendable common laboratory methods.   
 

Traceable Gas Characterization Procedure 
Diesel exhaust was pumped at known flow rates through a mixing chamber where it was spiked 
with known and certified concentrations of acetaldehyde, acrolein, benzene, and 1,3-butadiene 
(the 1 ppmv, 10 ppmv, 100 ppmv, and 1000 ppmv gas standards were National Institute of 
Standards and Technology (NIST)-certified concentrations and were procured through AGA, 
Inc.).  Flow rates of the spiking gases were measured on calibrated and certified flow meters 
from ScienceWare™, Inc.  The initial diesel exhaust was checked for concentrations of 
acetaldehyde, acrolein, benzene, and 1,3-butadiene via GC/MS.  The final mixed results did not 
require GC/MS re-verification because the concentrations of the spiking gases were known, the 
flow meters were calibrated, and both were certified by NIST. 
 

Diesel Sampling Procedure 
Diesel exhaust was collected at ANL’s Transportation Center Diesel Engine Test Facility using 
37.7 liter Tedlar™ sampling bags and Teflon fittings.  Samples were transported between 
buildings and analyzed within minutes to hours of sampling using the experimental voltammetry 
instrument.   
 

GC Verification 
Ambient acetaldehyde, acrolein, benzene, and 1,3-butadiene concentrations were determined in 
the exhaust using a Hewlett Packard HP5971 Quadrapole™ Gas Chromatograph/Mass 
Spectrometer (GC/MS) with a 30 meter DB-5 0.25 µm film (thickness) column.  300 µL of 
exhaust was injected into the GC/MS for each experiment.  The total run time was 7 minutes at 
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35˚C (isothermal).  Acetaldehyde eluted at 1.22 minutes; 1,3-butadiene at 1.31 minutes; acrolein 
at 1.46 minutes; and benzene at 2.59 minutes.  Approximate detection limits are: benzene, 1 
ppm; 1,3-butadiene, 1 ppm; acrolein, 2 ppm; and acetaldehyde, 20 ppm (masked by carbon 
dioxide).   
 

Predicting Missing or Unknown Initial Concentrations - Method of Standard Additions 
The detection method developed for the series of gas voltammetry tests included a modified 
version of the Method of Standard Additions (MSA).  The MSA approach was ideal because 
responses from individual gases in a voltammogram are not as easy to predict as they are with 
liquid species.  The MSA method is used to determine a particular component’s contribution to a 
combined signal for a given mixture.  When the individual component cannot be isolated from a 
mixture or compound, then a sample is ‘spiked’ with several predetermined amounts of that 
same component and the sensor response for each is recorded.  The response curves for each 
spiked sample should follow the same governing function and when that curve is fitted, the 
sensor response value for a spike of “0” can be calculated.  The sensor response curve to the 
differential samples is linear.  This spike of 0 is actually the Y-intercept for the y = mx + b 
equation.  While it is convenient from a computational perspective to have a purely linear fit, it is 
not required – as long as the response curve is regular and can be fit, then any regular expression 
can be used to predict the spike=0 response.  Thus the original contribution (concentration) of the 
target component can be calculated.   
 
Initial tests with raw diesel exhaust were performed without the availability of a gas 
chromatograph/mass spectrometer (GC/MS) instrument to analyze the composition.  Four target 
gases were selected that were of importance to DoD and EPA.  These gases were acetaldehyde, 
acrolein, benzene, and 1,3-butadiene.  It was anticipated that these would be in very low 
concentrations as produced from a well-managed experimental diesel engine test stand.  Spike 
amounts of each component (from the certified stock gas standards) were introduced into diesel 
samples.  Both the un-spiked and spiked samples were used to produce voltammograms from an 
array that contained two materially-different types of microsensors.   
 
The common MSA was modified to allow for an entire 100-point voltammogram to be used for 
each signal value.  This presented a problem as the shape-change of a voltammogram is not 
simple and is not necessarily linear, so a simple linear curve fitting approach was not 
appropriate.  Another issue of concern in a non-linear complex curve fit is that only the relative 
concentration-response values can be measured – not absolute values.  This required that 
whatever curve fit was used, it would need to reflect the ‘spike’ amount, not the total amount of a 
chemical component.   
 
Several parametric and nonparametric chemometric methods were available for performing more 
complex curve fits, or function approximations, along high numbers of dimensions.  For this 
work, a General Regression Neural Network (GRNN) algorithm (see the Appendix for more 
information on Computational Neural Networks and GRNNs) was employed.   
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Results and Accomplishments 
 
Engineering work was completed that produced an experimental field-portable instrument for 
CEM.  The initial evaluations of suitable sensing array elements included both voltammetric 
microsensors and photocatalytic microsensors.  The target sensitivity and speed were low ppm 
levels and near-real-time response, to satisfy EPA recommendations.  This primary objective was 
accomplished.  Much of the second objective, emissions characterization and modeling, was also 
accomplished through a series of emissions characterization experiments.   
 
Photocatalytic results 
Early experiments evaluating the photocatalytic sensor used an ultraviolet (UV) diode (<320 nm) 
to produce the excitation light source.  Sensors were exposed to various gases, in the presence of 
the UV light and in the dark.  Conductance profiles (an impedance measurement) were gathered 
and processed (Figure 7).   
 

 
 

Figure 7.  Photocatalytic Microsensor Responses 
 
Figure 7 shows the response of the photocatalytic TiO2 sensor to different gases in air when 
illuminated with UV light.  Individual gas concentrations are at their respective saturation levels.  
Responses recorded are averages over six sweeps for each gas.  The graph also shows the 
response for “uncontaminated” background air.  Figure 7 illustrates the measured conductivity 
vs. the applied potential – the results of using the voltammetry instrument to perform impedance 
measurements.  As Figure 7 shows, specific gases produce distinct responses from the 
photocatalytic microsensor.  Conductances for different gases vary both in magnitude and in how 
they change with the applied voltage.  No conductance was detected in the dark for any of the 
gases.  Air alone exhibited no conductance either in the dark or when illuminated.  The micro-
sized UV diode has been shown to be effective in producing the photocatalytic response in TiO2 
and can be used to replace a much larger UV reactor.  Later testing of these same gases in a 
diesel background indicated that the sensitivity required was not yet achievable and the 
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photocatalytic microsensors were discontinued for the duration of the CEM instrument 
development.   
 
Voltammetric results 
The prototype CEM instrument was completed using only the voltammetric microsensors and 
passed a series of internal electronics tests that calibrated its response to nominal target gases and 
established that its measurement capabilities were suitable for the emissions gas testing that 
would follow.  Once a first prototype instrument was constructed, a second instrument was also 
made and evaluated using the same test procedure.  The anticipated electrical current output from 
a voltammetric sensor was input using a calibrator and the instruments were challenged against it 
to establish that they would produce matching and identical results.  When this was completed, 
the instruments were used as a pair to drive dual sensing elements as an array; one driving a YSZ 
microsensor and the other simultaneously driving a WBO microsensor.   
 
The voltammetry experiments performed are listed in Table 2.  The results of the emissions 
characterizations are shown below.   

 
Table 2.  Tests Completed with the YSZ and WBO Sensing Array 

All tests were performed at a sensor operating temperature of 280˚C.  Concentrations 
listed in this table are not detection limits, rather, they represent the wide range of 
concentrations typically found at a variety of diesel emission sources. 

 
Individual gases in air:  According to EPA data, concentrations of acetaldehyde, 
acrolein, benzene, and 1,3-butadiene range from low ppm levels to hundreds of ppms 
in various diesel emission sources.  Since no current analytical technology can detect 
such a wide concentration range of these four gases, the sensor array was first tested 
to determine if it could detect such a span of concentrations of each of the four 
constituents in air without changing the sensors or operating parameters.  Establishing 
the range of detection of these individual gases in air is important because in real 
world environments, source gases will be diluted with air as distance from the source 
increases and will span across several orders of magnitude in concentration.   
Gas tested and matrix Concentrations 

tested (ppmv) 
Dates of 
testing 

acetaldehyde in air 2, 3, 4, 7, 15, 32, 67, 
105, 50, 100, 200, 
400, 800, 1000 

9/2/03, 
9/3/03, 
9/24/03, 
9/25/03 

benzene in air 10, 50, 100, 200, 
400, 800,1000 

8/27/03 

acrolein in air 7, 10, 35, 50, 100, 
101, 148, 200, 400, 
800, 1002 

9/19/03, 
4/10/03 

1,3-butadiene in air 22, 39, 50, 59, 91, 
100, 200, 400, 800, 
1000 

9/23/03, 
4/11/03 
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Individual gases in a background of diesel exhaust:  At a diesel emission source, 
the four gases of interest are in a matrix of combusted diesel fuel.  Depending on the 
source, these concentrations can vary over several orders of magnitude. A four stroke 
diesel engine in ANL’s Transportation Center Engine Test Facility was used to 
produce diesel emissions.  The emissions were collected, analyzed for the four 
constituents by GC/MS, and spiked with various concentrations of individual gases.  
These tests were performed to simulate conditions found in the field, and to determine 
if a wide range of concentrations of the gases could be detected on a background of 
diesel exhaust.   
acetaldehyde in exhaust 1, 5, 10, 33, 50, 58, 

81, 148 
9/3/03, 
10/15/03, 
11/12/03 

benzene in exhaust 8, 37, 82, 156 9/15/03, 
10/15/03 

acrolein in exhaust 1, 5, 10, 11, 32, 50, 
59, 78 

9/17/03, 
10/15/03, 
11/12/03 

1,3-butadiene in exhaust 24, 31, 61, 102 9/22/03, 
10/15/03 

Mixtures of gases in a background of diesel exhaust:  In real-world situations, the 
four gas constituents of interest exist together in diesel exhaust.  The following tests 
were performed to determine if mixtures of constituents produced voltammograms 
that were distinguishable from one another, and if one gas signal dominated in the 
voltammograms. (In many analytical methods, high concentrations of one or multiple 
analytes oftentimes “swamp” the detector.  This test represented the “worst case” 
scenario that could be found in a field application – high concentrations of analytes all 
competing for chemisorption/physisorption sites on the sensor).  
acrolein, acetaldehyde in exhaust 100 each 10/15/2003 
acrolein, 1,3-butadiene in exhaust 100 each 10/15/2003 
acrolein, benzene in exhaust 100 each 10/15/2003 
acetaldehyde, benzene in exhaust 100 each 10/15/2003 
acetaldehyde, 1,3-butadiene in exhaust 100 each 10/15/2003 
benzene, 1,3-butadiene in exhaust 100 each 10/15/2003 
acrolein, acetaldehyde, benzene in exhaust 100 each 10/15/2003 
acrolein, benzene, 1,3-butadiene in exhaust 100 each 10/15/2003 
acrolein, acetaldehyde, 1,3-butadiene in exhaust 100 each 10/15/2003 
acetaldehyde, benzene, 1,3-butadiene in exhaust 100 each 10/15/2003 
acrolein, acetaldehyde, benzene, 1,3-butadiene 
in exhaust 

100 each 10/15/2003 

 
Experiments began using high (1000 ppm) gas concentrations; so that determinations could be 
made as to whether the target gases could be detected by the voltammetric microsensors.  Figure 
8 shows some of the early results, and demonstrates that the four gases of interest are easily 
detected at high concentrations.  The instrument was updated and improved to support 
measurements of concentrations of the same gases from low (1ppm) to high (1000 ppm) levels.   
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Figure 8.  Diesel Exhaust Gases in Air at High Concentrations with the YSZ Sensor 

 
The remainder of this discussion will focus on experiments performed at lower concentrations on  

(1) individual gases in diesel exhaust background, and  
(2) gas mixtures in diesel exhaust background.   

 
Semi-Quantitative Analysis of Voltammetry for Detection Limits and Accuracy.   
A series of experiments was performed in diesel exhaust spiked with the target gases at added 
concentrations ranging from 11 ppm to 156 ppm.   

 
Figures 9 through 13 show voltammograms obtained for the four gases – acetaldehyde, acrolein, 
benzene, and 1,3-butadiene – in a diesel exhaust matrix at four different added concentrations of 
each gas (1 ppm, 5 ppm, 10 ppm, and 50 ppm) and collected simultaneously by YSZ and WBO 
sensors hooked up in an array.  A six-cycle saw tooth voltage was applied to each sensor exposed 
to a particular gas, and the current responses from each sensor were measured for each cycle.  
The voltammograms for each of the six cycles are for all practical purposes indistinguishable, as 
can be seen in Figure 4.  Voltammograms obtained for each cycle are then averaged over the six 
cycles. Each experiment was repeated seven times with both sensors for every added gas 
concentration and for diesel exhaust without the added gases.  The seven repetitions were 
averaged and standard deviation was computed for each data point composing the 
voltammogram.  The voltammograms in Figures 9 through 13 show these averages as well as the 
averages plus and minus the standard deviation.  These graphs showing the standard deviations 
provide a measure of accuracy for detection of the gases at each concentration.  Selected portions 
of the voltammograms are shown separately.   
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Figure 9.  Acrolein on a Diesel Background - YSZ.  The two bottom graphs are blown up 
portions of the top graph and show at which voltages the YSZ sensor is most responsive to 

acrolein. 
 
Figures 9 and 10 show voltammograms obtained in a diesel exhaust matrix for acrolein.  
Comparison of the YSZ and WBO sensor voltammograms for acrolein leads to the following 
observations.  We note that the portion of the voltammograms between 0.5 and 0.75 volts shows 
a clear separation between the four added concentrations, but the 1ppm curve is indistinguishable 
from the diesel exhaust background.  The portion of the diagram between -1.0 and -0.7 volt 
shows a clear separation between the curves for 10 ppm and 50 ppm, but lower concentrations 
are blurred.  On the other hand, the WBO sensor voltammograms appear to be more capable of 
discriminating lower concentrations than the higher ones.  The portion of the chart for the WBO 
sensor between 0.6 and 0.8 volt shows a clear separation between the diesel exhaust background 
and the 1 ppm and 5 ppm curves, while higher concentrations overlap somewhat.  In other 
words, WBO sensor is good at discriminating low concentrations, while YSZ is better for 
distinguishing higher concentrations.  This is a key issue and benefit when designing a 
microarray instrument.   

 

Acrolein with the YSZ sensor 9 in Diesel Exhaust
November 12, 2003
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Figure 10.  Acrolein on a Diesel Background - WBO.  The two bottom graphs are blown up 
portions of the top graph and show at which voltages the WBO sensor is most responsive to 

acrolein. 
 
Figures 11 and 12 show similar voltammograms obtained in diesel exhaust matrix for 
acetaldehyde.  Comparison of the WBO and YSZ results for acetaldehyde show a pattern similar 
to that for acrolein, i.e. WBO appears to be better at discriminating between low concentrations 
of acetaldehyde than YSZ does.  However, the portion of the WBO graphs between 0.4 and 0.75 
volt shows a very clean separation between all the added concentrations, as well as the diesel 
exhaust by itself.   
 
The graphs in Figures 9, 10, 11 and 12 clearly illustrate how two sensors in an array can 
complement each other by providing different signal responses to the same input.    
 
Figures 13 through 16 show results for benzene and 1,3-butadiene in diesel exhaust at added 
concentrations of target gases of 1, 5, 10 and 50 ppm.  For both benzene and 1,3-butadiene, the 
YSZ sensor results exhibit a very clear separation between the voltammograms corresponding to 
different concentrations, indicating that these concentrations can be clearly distinguished to 
within a standard deviation.  On the other hand, for the WBO sensor the voltammograms for both 

Acrolein with the WBO sensor 10 in Diesel Exhaust
November 12, 2003
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gases overlap for different concentrations.  In addition, a wide separation between the 1 ppm and 
the diesel exhaust graphs suggests that much lower concentrations (0.1 ppm and below) may be 
detectable for these gases using the YSZ sensor.   
 
In addition to individual gases, mixtures of gases were detected with the YSZ and WBO sensors.  
All gas concentrations are at 100 ppmv spikes above a background of diesel exhaust.   

 
Table 3.  Test Matrix of Multiple Constituents 

Acrolein x x x x x x x x
Acetaldehyde x x x x x x x x
Benzene x x x x x x x x
1,3-Butadiene x x x x x x x x  

 

Figure 11.  Acetaldehyde on a Diesel Background - YSZ.  The two bottom graphs are blown 
up portions of the top graph and show at which voltages the YSZ sensor is most responsive 

to acetaldehyde. 
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Figure 12.  Acetaldehyde on a Diesel Background - WBO.  The two bottom graphs are 
blown up portions of the top graph and show at which voltages the WBO sensor is most 

responsive to acetaldehyde. . 
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Benzene in Diesel Exhaust with the WBO sensor 10
December 11, 2003
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Figure 13.  Benzene on a Diesel Background - WBO.  The two bottom graphs are blown 
up portions of the top graph and show at which voltages the WBO sensor is most 
responsive to benzene. 
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Figure 14.  Benzene on a Diesel Background - YSZ.  The two bottom graphs are blown 
up portions of the top graph and show at which voltages the YSZ sensor is most 
responsive to benzene. 
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1,3-Butadiene in Diesel Exhaust with the WBO sensor 10
December 12, 2003
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Figure 15.  1,3 Butadiene on a Diesel Background - WBO.  The two bottom graphs are 
blown up portions of the top graph and show at which voltages the WBO sensor is most 
responsive to 1,3 butadiene. 
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Figure 16.  1,3 Butadiene on a Diesel Background - YSZ.  The two bottom graphs are 
blown up portions of the top graph and show at which voltages the YSZ sensor is most 
responsive to 1,3 butadiene. 
 



 33

 
Experiments for all four target gases in the concentration range between 10 ppm and 160 ppm 
exhibit distinct voltammograms for different concentrations of the same gas.  Behavior of the 
voltammograms for a given gas changes with the concentration in a regular way for both the 
YSZ and the WBO sensors.  These features indicate that our sensors are capable of 
discriminating different concentrations for these gases in the diesel exhaust matrix.  
Voltammograms for different gases also exhibit distinct patterns in at least one of the sensors of 
the array.   
 
Voltammograms from tests in the concentration range between 1 ppm and 50 ppm show that for 
acrolein and acetaldehyde, the WBO sensor is good at discriminating low concentrations, while 
YSZ is better for distinguishing higher concentrations. However, for acetaldehyde, portions of 
WBO graphs show a very clean separation (well within a standard deviation) between all the 
added concentrations, as well as the diesel exhaust by itself.  This clearly illustrates how two 
sensors in an array can complement each other by providing different signal responses to the 
same input.  For both benzene and 1,3-butadiene, YSZ sensor results exhibit a very clear 
separation between the voltammograms corresponding to different concentrations, indicating that 
these concentrations can be clearly distinguished to well within a standard deviation.  In addition, 
a wide separation between the 1 ppm and the diesel exhaust graphs suggests that much lower 
concentrations – 0.1 ppm and below – may be detectable for these gases using the YSZ sensor.  
On the other hand, for the WBO sensor, the voltammograms for both gases overlap for different 
concentrations.     
 
These results clearly show that a detection limit of 1 ppm is achievable with the current 
instrument, and that much lower concentrations may be detectable without any significant 
changes.  Currently established detection limits are shown in Table 4.    
 

Table 4.  Currently Established Detection Limits for  
Diesel Exhaust Gases with Voltammetric Sensors 

 Acrolein 
C3H4O 

Acetaldehyde 
C2H4O 

Benzene 
C6H6 

1,3-Butadiene 
C4H6 

YSZ  5 ppm 1 ppm 1 ppm 1 ppm 
WBO 1 ppm 1 ppm 1 ppm 50 ppm 

 
 

Quantitative Detection and Discrimination Performance Analysis (CNN exercises) 
The results and performance of the chemometrics methods used to quantify the capabilities of the 
project’s developed CEM instrument are divided and described under detection and 
discrimination topics.   
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Detection Results 
The Method of Standard Additions (MSA) technique described earlier in the Methods section of 
this report was implemented using a GRNN.  This technique proved successful and will be 
refined for more exhaustive applications.   
 

Implementing MSA with GRNNs 
The GRNNs used were designed to accept the 100-point input and produce individual values for 
each spiked component.  By training the GRNN with voltammograms/spike-value pairs, the 
network weights arrive at values that store the curve fit for the response curve of the spiking 
chemical.  This response curve represents only the contribution of the added chemical 
component used for spiking, and should be independent of the other components.  As may be 
expected, use of more spiking values leads to a better representation of the response curve, and to 
a more accurate curve fit.  When this training stage was completed, the trained GRNN was then 
presented with a sample voltammogram that was produced from an analyte that was known to 
contain none of the chemical(s) used for the spiking.   
 
An example of this methodology is illustrated using the WBO sensor results for diesel exhaust 
spiked with acetaldehyde (C2H4O) at added concentrations of 0, 33, 58, 81, and 148 ppm.  
Sextuples of voltammograms were gathered for each concentration value. The input pattern 
voltammograms for the 33 ppm concentration are shown in Figure 17.  The resulting numerical 
arrays were paired up against the output target spike values as shown in Figure 18.   
 

  
Figure 17.  33 ppm acetaldehyde–spiked 

diesel sextuple of voltammograms 
Figure 18.  33 ppm target values 

(calibration range of 0 – 1000 ppm) 
 
The GRNN was trained adjusting both the Error Goal (EG) and the Spread Constant (SC) 
parameters until suitable curve fits were produced.  The curves in Figure 19 are plots of sample 
concentration (ppm) on Y-axis vs. sample number along X-axis, and illustrate fit vs. sample 
number.   
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a.  SC=5000, over-generalized: all inputs 
produce a value of 64 ppm (the statistical 
average of the spiking values). 

b.  SC=500, noisy, but major trend starting to 
show across data 

  
c.  SC=50, improving, average error 
dropping, but still local (concentration-
specific) high error. 

d.  SC=5, complete “fit” with zero error 
between result and target values 

Figure 19.  Spread Constant Influence on Estimation Error 

 
A wide range of values for EG and SC produced nearly identical results making the computed 
default values acceptable and the methodology more rigorous.  A scatter plot of the target vs. 
estimated responses for the WBO sensor for acetaldehyde is shown in Figure 20.  Each of the six 
points for each concentration value was obtained by using five of the voltammogram sextuples to 
predict the sixth one. The procedure was repeated for each of the six voltammograms.  Such 
scatter plots were repeated for all target gases. The plots for all target gases exhibit a linear 
behavior of target vs. estimated response, but also show significant “open” areas in what would 
be the calibration curve.  To characterize the final instrument, additional concentration 
measurements should be performed to fill the gaps in the open areas, so that there is uniform 
confidence in instrument’s performance over a wide envelope of concentrations.   
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Figure 20.  Scatter plot of predicted vs. actual values for spiking concentrations of 

0, 33, 58, 81, and 148 ppm acetaldehyde to diesel exhaust 
 
When presented with voltammograms for air and nitrogen (absolute concentration of 
acetaldehyde assumed = 0 ppm) the trained GRNN estimator outputted an average “spike” value 
of -0.6 ppm, which is zero to within the estimation error.  
 
It is apparent from the figures that the GRNN implementation performs as expected, but also that 
there is room for improvement.  The sextuples of voltammogram signatures each show quite low 
sample-sample drift or error, which actually reduces the GRNN’s ability to “generalize” a curve 
fit as it is reinforced by nearly-identical samples vs. being better generalized by a wider variety 
of concentration samples.  Future more purposeful systems employing this method will use more 
concentration values for spiking and will actually introduce a small amount of random error 
(noise) into the sextupled training voltammograms (patterns) and values (targets) to better 
prevent “memorizing” behavior in favor of better generalization.  The wide range of the spiking 
concentrations that were represented by so few samples also made the curve fitting difficult.  A 
major strength of the voltammetry detection method is its scalability to a wide range of 
concentration values without saturation of responses.  This strength would also be better 
supported by a larger, more representative set of spiking values for each component.   
 

Analyzing Compositions - CNNS 
After the analysis of single gases was implemented using GRNN, the diesel exhaust was 
analyzed by GC/MS and the actual values for each of the four gases of interest were all found to 
be less than 1 ppm.  With this information, a second GRNN was designed and used to analyze 
the waveforms and produce measurement values.  Most neural networks can perform 
classifications or analyses.  “Classification” accepts an input vector (for this application a 
voltammogram) and assigns it to a category.  “Analysis”, or function approximation, accepts a 
vector input as a set of variable coefficients and produces one or more analog values that 
represent a functional relationship between the variables and the resultant output.  The analysis 
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type computational neural network effectively maps a function in a way similar to the earlier 
effort, with the difference being that now there are no unknowns in the training set, and so a 
direct mapping from voltammogram values to absolute concentrations can be made where earlier 
only relative (spiked) concentrations could be estimated.  All the values in raw diesel exhaust in 
the tables were set to “0” as a detection threshold, and a GRNN was again designed and trained 
using the rest of the acetaldehyde-spiked data/sensor WBO 7 responses.  Since this was still a 
very sparse data set, there was some experimentation with training to establish individual 
interpolation and extrapolation performances.   
 
Curve fits routinely interpolate better than they extrapolate, so training tests were completed to 
exercise both of these capabilities.  The interpolation test removed the 58 ppm spiked 
voltammograms patterns and concentration targets from the training, then used them as 
“unknowns” to test the behavior of the partially trained network.  The results are shown in 
Figures 21 and 22.   
 

 

Figure 21.  Target concentrations in red, actual 
results in blue for the post-training processing of 

the original training pattern set without the 58 
ppm acetaldehyde training pattern 

Figure 22.  Target concentrations in red, actual 
results in blue for the interpolation validation 

processing of the removed 58 ppm acetaldehyde 
training pattern 

 
The extrapolation test removed the 33 ppm spike from the training and then used it as an 
unknown.  Those results are shown in Figures 23 and 24.   
 

Figure 23.  Target concentrations in red, actual 
results in blue for the post-training processing of 
the original training pattern Set without the 33 

ppm acetaldehyde training pattern 

Figure 24.  Target concentrations in red, actual 
results in blue for the extrapolation  validation 

processing of the removed 33 ppm acetaldehyde 
training pattern 

 
The overall results of these first tests were very good.  They clearly showed that a wide range of 
concentrations can be measured for the components and that the average error for a prediction 
was less than 5%.   
 
For each concentration value, the entire sextuplet of voltammograms was used for training.  The 
GRNN structure and training method allow for a near-zero error over the training set, so there 
was no advantage in training with only a fraction of the sample set and retaining the rest for 
validation.  Figures 25 through 32 show the revalidation performance of GRNNs trained for each 
of the four gases of interest.  The red stars indicate the target concentration values, and the blue 
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circles indicate the estimated responses for the training values.  The error for all examples is 
extremely low, less than 5%, with actual zero error for most.   
 
Future characterization experiments will employ more points and fill in the response gaps 
observed by this first set of experiments.   
 

 
Figure 25.  Acetaldehyde WBO 7 

revalidation with complete training set 
Figure 26.  Acrolein WBO 8 revalidation 

with complete training Set 

 
Figure 27.  Benzene WBO 8 revalidation 

with complete training set 
Figure 28.  1,3-Butadiene WBO 8 

revalidation with complete training set 

Figure 29.  Acetaldehyde YSZ 7 revalidation 
with complete training set 

Figure 30.  Acrolein YSZ 8 revalidation with 
complete training set 

Figure 31.  Benzene YSZ 8 
revalidation with complete training set 

Figure 32.  1,3-Butadiene YSZ 8 revalidation 
with complete training set 

 

Sensing Instrument Performance Computations 
Several different neural algorithms were employed to “reduce” the voltammograms and extract 
the response contribution from each component in a mixture.  Two different GRNN construction 
strategies were implemented and compared to see which performed better and which was more 
robust (often simpler).  In the first strategy, a single GRNN was trained to extract and produce all 
of the component values.  In the second strategy, a separate analysis GRNN was trained to 
extract and measure each individual gas component.  Both approaches performed similarly as far 
as analysis and prediction error.  Unlike the simple statistical averaging, the value(s) produced by 
the GRNN do reflect the variable weighting and dominance of portions of the voltammogram 
where chemical behavior is more closely associated with a given chemical species.  In this way, 
the statistics produced to describe the overall instrument performance are more meaningful if 
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they include the GRNN reduction of the voltammograms down to single values for each 
component in a given gas sample.   
 

GRNN Behavior for this Project’s Analysis Calculations 
During development, training the GRNN under MATLAB is nearly automated.  Most operation 
parameters are computed from architectures and Pattern-Target dimensions.  Since the 
workhorse layer of the GRNN is composed of neurons using a radial basis function (RBF), the 
controls of that RBF have a large impact on the performance of the overall network.  The spread 
constant (SC) governs how the curve fit function generalizes, or how smooth it is.  Figure 33 
illustrates the response curve fits for the combined oxygen (O2), carbon monoxide (CO), carbon 
dioxide (CO2), and acetaldehyde (C2H4O) analysis example.  The error (in arbitrary units) is 
plotted vertically, the sample number – horizontally. The response curves are dimensioned to fit 
the voltammograms (100 points → 100 dimensions).  Comparison of the target with the actual 
values in Figure 33 shows (with exaggerated vertical scaling) that both following too closely and 
smoothing too much are the extreme cases for a curve fit.  The displayed curves illustrate the 
“fit” for each test case, and do not indicate functional relationships.   

 

  
a.  Over Fit (too noisy) c.  Under Fit (too smooth) 

 

 
 

 
 

b.  Good Fit Legend 
Figure 33. Estimation Error Impact of the Spread Constant 

 
It should be noted that the curves as displayed in Figure 33 are not meant to indicate functional 
relationships, but simply illustrate the “fit” at each test case used.  The response curves are 

O2 target 
O2 actual 
CO target 
CO actual 
CO2 target 
CO2 actual 
C2H4O target 
C2H4O actual 
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dimensioned to fit the voltammograms (100 points → 100 dimensions).  These graphs illustrate 
the error vs. sample point.   
 

Discrimination Results 
When complete mixture matrix testing was completed, a GRNN was designed and trained with 
the sole purpose to identify and differentiate components in various mixtures of the four gases of 
interest spiked in combinations in a diesel background.  This discrimination test was performed 
to yield analog values as outputs, with gross classification assigned by identification error being 
less than 25% in any one gas.  Overall classification error was significantly less than this, closer 
to a fraction of a percent for any gas singly or in mixtures.  This low error was a function of 
interference elimination using a combined signal from both YSZ and WBO elements in the 
sensing array.  This was a first time test for this technique with these gases, and further 
improvements are expected.   

 

Discrimination Capabilities of Sensor Array 
A subset of tests exposed the WBO element to varying combinations (pairs and triples) of the 
four spiking gases, each at a nominal 100 ppm concentration.  These tests were designed to 
establish the initial discrimination capability of the WBO element of the dual-sensor array.  The 
WBO sensors were developed several years earlier by “doping” the YSZ solid electrolyte with 
tungsten bismuth oxide.  This was intended to suppress many of the hydrocarbon reactions, 
leaving more subtle reactions at the same reaction potentials more visible.  The WBO also 
provided lattice sites for other reactions (such as CO2) that were less susceptible to YSZ alone.  
Examination of the WBO error vs. sample number chart clearly shows very low, but not uniform, 
error, far below what is needed for 100% correct classification of each sample (any error less 
than 50% would still classify properly).   
 
A second portion of the tests was designed to establish the initial discrimination capability of the 
YSZ element of the dual-sensor array.  The YSZ sensors were the original ANL voltammetric 
devices and when paired with the standard catalytic platinum working electrode, triggered 
reactions for a wide range of gas species across a wide range of potentials.  Those reactions can 
readily be observed in Figure 34.  In this figure, the gross detected value for each of the spiked 
gases is shown below the table matrix describing what was in each mixture.  The first column on 
the left, in the upper table and in the lower chart, shows zero spiking for any gas.  The upper 
chart indicates the WBO element gross estimate of component concentration and the lower chart 
indicates the YSZ element response.   
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Figure 34.  Discrimination Error for Tests 5 and 6, WBO and YSZ Sensors 
Note: The upper graph is the WBO response, the lower graph is the YSZ response 

 
For discrimination tests, the error shown for either sensor did not affect gross classification and 
identification.  It is important to note that there is still significant interference between some gas 
components for this test with the YSZ sensor.  Comparing the YSZ error across the chemical 
compositions against the WBO sensor shows that at the locations where the YSZ sensors (sixth 
column) exhibits the most interference (large error), the WBO sensors exhibit very low error for 
the same gas component.  This is exactly why the two sensor types were paired and why the 
discrimination tests were executed with both sensors simultaneously.  This complimenting 
behavior is observed throughout the series of mixture tests.   
 
The average error results across the entire tested concentration range and component 
combinations are shown in the Table 5.  The units of the values reported are ppm.  This was a 
first generation discrimination test for these compounds; the sensors were paired and operated 
simultaneously.  These results are considered gross, and as such, clearly show that with gas 
concentrations of 100 ppm for all the tests, the average error is similar for all gases and is 
acceptably low.  (The small negative values are typical of these numerical methods and reflect 
the statistical error inherent in approximation methods.  More comprehensive and exhaustive 
calibration at lower concentration levels will remove this error and inhibit reporting negative 
physical concentration amounts.)   
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Table 5.  Average Discrimination Error 

  Test 5 WBO Test 6 YSZ Average % 
Error 

C2H4O acetaldehyde 0.0513 -1.2693 0.609 
C3H4O acrolein 0.2661 -1.9638 0.848 
C6H6 benzene -0.1952 -1.0578 0.626 
C4H6 1,3-butadiene -0.0535 0.4656 0.259 

 
This is a simple average of the gross, un-normalized raw voltammograms, and does not represent 
the actual lower limit of discrimination capability.  Discrimination capability will continue to be 
improved as more data are gathered and appropriate pre-processing techniques are developed and 
applied.   
 
The software development plan requires significant data to be gathered and characterization and 
performance generalized before determining what pre-processing will be required.  Several 
techniques have been successfully applied in the past to improve discrimination by producing a 
“differential” voltammogram by comparing each sample voltammogram to either a nitrogen gas 
sample or to a simultaneous “reference” gas sample created on-the-fly by passing a portion of the 
sample through a tenex trap.  Tenex traps effectively remove all organic constituents leaving 
background air.  This technique is not difficult, but does increase the complexity of the process.   
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Conclusions 
 
Results from these investigations demonstrated that the instrument could be used to detect and 
discriminate the four gases of interest at low ppm concentrations.  Detection of the target diesel 
exhaust gases - acetaldehyde, acrolein, benzene, and 1,3-butadiene - to a 1 ppm limit (to within 
one standard deviation) was clearly achievable, when these gases occurred singly in a diesel 
exhaust matrix.  Testing also demonstrated that the experimental CEM instrument can 
discriminate between different concentrations of these gases in a diesel exhaust matrix (to within 
a standard deviation) at concentrations of 1, 5, 10, and 50 ppm.  Even the two gases, benzene and 
acrolein, which exhibit voltammograms in diesel exhaust that look similar to the YSZ sensor, are 
readily distinguishable using a composite YSZ/WBO array response and [neural network] 
pattern recognition and approximation algorithms.   
 
The microsensors created in this research could readily be tailored for detection of other 
industrial chemicals also at part per million levels.  Additional effort is needed to improve the 
sensing for low part per billion level detection.  That effort may include the use of a gas pre-
concentrator, increasing the effective surface area of the sensors (thus increasing sensitivity), and 
introducing the use of nanoparticle films (to increase interaction with the gases) to replace the 
microparticle films used now.   
 
Projects prior to this SERDP effort explored other applications where ppb levels of detection 
were not required.  These included the detection of insect pest (termite) infestations, detection 
and classification of fires on board naval ships, and detection and classification of toxic gases 
(cyanide compounds, TICs).  The significant advancement of this sensing technology made 
during the course of this project will allow all of these applications to be readdressed and 
reasonably solved.  Demonstrations of that capability are underway at the time of this report.   
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Appendices 
 

Appendix A 
 
Comprehensive Experimental Data 
 
The data generated during the course of this project is substantial, and it is not practical or useful 
to reproduce the actual data in table form.  The entire collection of experimental plans, 
spreadsheets, acquired measurements, charts, and software code are available on a CDROM 
accompanying the original copy of this report.   

 
Appendix B   
 
List of Technical Publications 
 
We have a patent application pending for the TiO2 sensor. 

 
Poster Abstract for Partners in Environmental Technology Technical Symposium and 
Workshop, Washington, D.C. December 2-4, 2003. 
 
The Department of Defense needs to identify and characterize emissions of trace air toxic 
compounds, especially persistent organic pollutants, from operations/activities at its facilities.  
Currently, the available ambient air toxic concentration data are non-temporal and non-spatial, 
and produce low-quality emission prediction factors that must often significantly overestimate 
the emissions produced.  This project is developing a new emissions characterization technique 
to produce “instantaneous” pollutant concentration profiles of emissions from both stationary 
and mobile sources.  The technique will combine experimental electronic nose instrument and a 
spatial-temporal emissions model.  The miniature instrument employs several types of cermet 
microsensors, experimental photocatalytic sensors, and more mature voltammetric sensors.  The 
approach will be developed and validated focusing on gases from diesel exhaust, specifically, 
benzene, 1,3-butadiene, acetaldehyde, and acrolein.  Interim results are presented.  They include 
sensor responses from diesel component gases at multiple concentrations, individually and in 
combinations and in air.   
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Appendix C 
 

Computational Neural Networks Used for Chemometrics 
 

A neural network is inspired by and loosely models the architecture and information processing 
capability of the biological brain (Masters 1993).  An Artificial Neural Network (ANN) 
accomplishes this by simulating each biological neuron with an integrated circuit as a collection 
of gates and transistors while a Computational Neural Network (CNN) accomplishes this through 
execution of a series of computer instructions.  Neural networks can be structured to perform 
classification (Raimundo 2001), to approximate equations (Joo et al. 2001), and to predict values 
(Freeman 1991, Winquist 1993).   
 
Several different models for neurons are available; each supports a different range of network 
architectures and artificial learning methods.  A generalized neuron model includes some input 
stage with variable weighted interconnections to the outputs of other neurons, a 
summation/comparison stage for combining the weighted inputs, a transfer function that reduces 
the information passed along through the neuron, an output stage that connects to the inputs of 
other neurons, and some feedback/training method to adjust the weights so that a desired output 
is produced when exposed to known inputs.  Some network architectures require an optional 
delay stage to support adaptive learning.   
 

 
 

Figure C1.  Generalize Neuron Model Figure C2. Layers Combined into a Network 
 
Generalized network architecture includes an input layer that interfaces directly to the sensor 
signals, a hidden layer that reduces information and makes intermediate choices and performs 
feature extraction, and an output layer that selects intermediate answers and provides the 
classification or component analysis information (MATLAB, Neural Net Toolbox).  In a generic 
architecture, neurons are referred to as nodes, and inter-node connections are only made between 
adjacent layers.   
 
Electronic noses generally pursue composite odor classification, with component analysis 
representing a more difficult secondary goal.  Probabilistic neural network (PNN) classifiers are 
the most popular CNNs used with electronic noses.  They duplicate the functionality of K-
nearest neighbor or Bayesian statistical classifiers, though the NN versions often out-perform 
both (Stetter et al. 1993).  The PNN uses a radial basis function neuron and competitive hidden 
layer network architecture.  PNNs require supervised training where a set of inputs is constructed 
that has predetermined desired outputs (categories).  During training, a new neuron is 
constructed for each sample in the training set.  The weights between the inputs and the 
competitive neuron are copies of the input values themselves.  The output of each neuron goes to 
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a matching category in the final competitive output layer.  Multiple examples of a given 
input/output pairing create additional copies of a neuron and strengthen the possibility of 
selection for that category, reflecting statistical probabilities of that category’s occurrence in a 
population, hence the name “probabilistic” neural network.   
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During operation of a PNN, a vector containing the input values is presented to each neuron in 
the input layer.  Each neuron compares the input vector and the vector formed from its own local 
set of weights by computing a Cartesian distance between the vectors.  Internal to each neuron 
the distance is then passed through the local radial basis transfer function (a Gaussian bell curve 
centered on input = 0 to produce an output = 1) that outputs a high value for small distances 
(differences) and very small values for larger distances.  The result is that the neuron whose 
weights most closely match the input vector produces the highest final output value and the 
output layer assigns the input to that category.  The options for training PNNs vary with trade-
offs between flexibility, memory resource use, and speed of training.   
 
A common misconception of neural networks is that they have to remain black boxes and that 
internal behaviors are too complex to allow inspection, review, and rigorous analysis.  This 
criticism can be avoided if the network (such as a PNN) structure is kept simple and a fixed-
length vector-type input is adopted.  Simple NNs do not lose their performance benefits, are 
coded easily in software and firmware, and can be optimized for a given application.   
 
For this stage of instrument development, analyses networks that produce analog values were 
developed, as detection limits and discrimination capabilities required measures of performance 
that classifying networks would mask.  Future applications may still change this, when diesel 
sources may be better monitored by classifying the levels and ratios of their outputs vs. 
measuring for specific threshold crossings.   
 
General Regression Neural Networks 
The GRNN was implemented using MathWorks™ MATLAB Version 6.5.0.180913a (R13) and 
the Neural Network Toolbox ver. 4.0.2.  A generalized regression neural network (GRNN) is 
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often used for function approximation (MathWorks 2003).  The general GRNN architecture has a 
radial basis hidden layer and a special linear output layer as shown below (Figure C6).   
 

Figure C6.  Architecture for General Regression Neural Networks 
 
The first layer has as many neurons as there are input-target vector pairs in the training pattern 
set P.  The bias b1 is set to a column vector of 0.8326/SPREAD. The user chooses SPREAD (or 
SC), the distance an input vector must be from a neuron's weight vector to be 0.5.  Each neuron's 
weighted input is the distance between the input vector and its weight vector, calculated with 
dist.  Each neuron's net input is the product of its weighted input with its bias, calculated with 
netprod.  Each neurons' output is its net input passed through radbas.  If a neuron's weight vector 
is equal to the input vector (transposed), its weighted input will be 0, its net input will be 0, and 
its output will be 1.  A larger spread leads to a large area around the input vector where layer 1 
neurons will respond with significant outputs.  Therefore if spread is small the radial basis 
function is very steep so that the neuron with the weight vector closest to the input will have a 
much larger output than other neurons.  The network will tend to respond with the target vector 
associated with the nearest design input vector.  As spread gets larger the radial basis function's 
slope gets smoother and several neurons may respond to an input vector.  The network then acts 
like it is taking a weighted average between target vectors whose design input vectors are closest 
to the new input vector.  As spread gets larger more and more neurons contribute to the average 
with the result that the network function becomes smoother.  The linear output layer allows the 
network to produce smooth continuous values for outputs, lending to good behavior as a general 
function approximator.  All radial basis networks, including the GRNN, train very quickly and 
reproducibly and make for dependable components in an instrument.   
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Appendix D 
 

Support Vector Machines Evaluated for Chemometrics 
 

Classical algorithms like the least squares-support vector machine (LS-SVM) employ a 
functional “kernel” to identify “features” in the data (Schölkopf et al. 1997).  Features are local 
sample point-to-sample point relationships which then taken together, amount to a pattern over 
the larger dataset.  SVM formulation embodies the Structural Risk Minimization (SRM) 
principle, as opposed to the Empirical Risk Minimization (ERM) approach commonly employed 
within other statistical learning methods (Burges 1998).  SRM minimizes an upper bound on the 
generalization error, as opposed to ERM which minimizes the error over the training data itself 
(Pelckmans et al. 2003).  It is this difference which equips SVMs with a greater potential to 
generalize, and to do so with fewer model samples for each class, or each regression state.  SVM 
methods identify the key “support vectors” that lie along and define the buffered boundaries of 
the classes in a classification problem, and which separate definable states in a functional 
regression problem.  These support vectors are then used for comparisons for class assignment or 
for weighted influence in regression analysis.  The remainder of the training sample vectors 
(signatures) are effectively ignored and can be eliminated from the processing leaving behind a 
simpler, more generalized algorithm.   
 
Performance on synthetic data 
Since the GRNN and PNN methods produced no classification error over the training sets, no 
improvement via the SVMs was anticipated.  Sample problems were constructed to compare 
SVM regression methods to the GRNN approximation performed earlier.  Pre-tested LS-SVM 
code for MATLAB was obtained and used to model several types of functions.  The SVM 
algorithms were compared directly to the same RBFN and GRNN algorithms used to analyze the 
voltammetry signature data.  The results shown below in Figures D1 through D4 indicate that the 
properly tuned RBFN and GRNN perform as well as the SVM over these problems.   
 

  
Figure D1.  Approximations of a Sine 

Function 
Figure D2.  Approximations of a 

Polynomial Function 
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Figure D3.  Approximations of a Sinc 

Function 
Figure D4.  Approximations of a Square 

root Function 
Comparison of RBFN, GRNN, and SVM Function Approximation Methods for Common 

Functions 
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Appendix E 
 

The MATLAB Development Environment 
 

MATLAB was selected as a development environment for the instrument for several reasons.  
Software tools exist to significantly streamline complete instrument and system development, 
including the Excel Builder, Curve Fitting Toolbox, Embedded Target for Motorola 
microcontroller, and Neural Network Toolbox.   
 
MATLAB Excel Builder provides the capability to incorporate MATLAB models and functions 
quickly in Excel worksheets. A graphical user interface enables the user to build and deploy 
Excel Add-Ins containing functionality designed in MATLAB but accessed from the Excel 
environment.   
 
The Curve Fitting Toolbox provides a central access point and a graphical user interface (GUI) 
for the functions the users need to perform applications that involve curve fitting. The toolbox 
provides routines for preprocessing data, as well as creating, comparing, analyzing, and 
managing models.   
 
The Embedded Target for Motorola® MPC555 lets the user deploy production code generated 
from Real-Time Workshop Embedded Coder directly onto the MPC555 microcontroller, a 
dramatic time-saver when developing dedicated instruments.   
 
The Neural Network Toolbox provides both command line and a GUI interface to a broad 
collection of neural computing tools and demonstrations.  The developed NNs are built with 
streamlined notation making management of large data sets practicable.   
 
Experimental toolboxes, such as the Least Squares-Support Vector Machine Toolbox, allow the 
latest data processing methods to be tested.   
 
Any of the MATLAB native m-code application programs can be automatically translated into C 
for execution outside of MATLAB or on high-speed DSP hardware.   
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Appendix F. 
 

Rapid Prototyping 
 

Rapid Prototyping (RP) is a term applied to several model fabrication technologies that allow 
three dimensional computer aided design (CAD) software to control automated machinery and 
construct parts, complete, in a matter of minutes or hours with little human physical attention 
[FDM, SLA].  Popular methods were selected for this project’s application, to introduce RP into 
the research and development loop.  The materials that were used dictated the fabrication 
methods employed.  Very good mechanical tolerances were achieved by both methods, and three 
different materials were used to fabricate identical enclosures.  It was anticipated that the sensing 
array that was housed by the enclosure would be exposed to elevated operating temperatures.  
Many plastics off-gas when heated and the gases produced might interfere with target gas 
analytes.  Future experiments will indicate whether the insides of the enclosures will require 
chemical resistant linings to be spray coated to eliminate the effects of off-gassing.   
 
Materials 
The plastic materials available for RP work includes  

• RenShape® SL 5195, a UV-cured clear amber polymer capable of 0.05 mm dimensional 
resolution with a density of 1.18 g/cc.   

• Somos® 9120 Epoxy Photopolymer, a UV-cured transparent amber plastic that is 
chemical resistant and behaves like polypropylene, chemical resistant with a density of 
1.13 g/cc.   

• WaterShed™ 11120, a light green tinged plastic that mimics ABS with a density of 1.12 
g/cc. 

• ABS, a polycarbonate.   
 
SLA – Stereolithography 
Stereolithography, or SLA, creates a tangible 3-D object by directing ultraviolet laser radiation 
onto a vat of polymer resin (liquid plastic).  Parts are commonly finish-cured in an ultraviolet 
oven then hand-polished and finished to specifications.  SLA methods work well with epoxies 
and WaterShed materials.   
 
FDM – Fused Deposition Modeling 
During FDM (Fused Deposition Modeling) a temperature-controlled head extrudes ABS or 
Polycarbonate plastic material, layer by layer.  The designed object emerges as a solid three-
dimensional part without the need for tooling.  A Solid Model 3D design (.STL file) is imported 
into pre-processing software.  The part design is orientated and software slices the 3D drawing 
into horizontal layers varying from .005" -.014" inch thickness.  Support is automatically or 
custom generated based on the position and geometry of the part.  The system operates in X, Y 
and Z axes. In effect, it draws the model one layer at a time.   
 




