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Abstract 
 

Containment of chemical wastes in near-surface and repository environments is 

accomplished by designing engineered barriers to fluid flow. Containment barrier 

technologies such as clay liners, soil/bentonite slurry walls, soil/plastic walls, 

artificially grouted sediments and soils, and colloidal gelling materials are intended 

to stop fluid transport and prevent plume migration. However, despite their 

effectiveness in the short-term, all of these barriers exhibit geochemical or 

geomechanical instability over the long-term resulting in degradation of the barrier 

and its ability to contain waste. No technologically practical or economically 

affordable technologies or methods exist at present for accomplishing total 

remediation, contaminant removal, or destruction-degradation in situ. A new type of 

containment barrier with a potentially broad range of environmental stability and 

longevity could result in significant cost-savings. This report documents a research 

program designed to establish the viability of a proposed new type of containment 

barrier derived from in situ precipitation of clays in the pore space of contaminated 

soils or sediments. The concept builds upon technologies that exist for colloidal or 

gel stabilization. Clays have the advantages of being geologically compatible with 

the near-surface environment and naturally sorptive for a range of contaminants, and 

further, the precipitation of clays could result in reduced permeability and hydraulic 

conductivity, and increased mechanical stability through cementation of soil 

particles. While limited success was achieved under certain controlled laboratory 

conditions, the results did not warrant continuation to the field stage for multiple 

reasons, and the research program was thus concluded with Phase 2. 
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Preface 
 

 

This report summarizes project CU-1093 “In-Situ Clay Formation: A New Technology for 

Stable Containment Barriers,” performed under sponsorship of the Strategic Environmental 

Research and Development Program (SERDP), the Department of Defense’s (DoD) 

corporate environmental research and development (R&D) program, planned and executed 

in full partnership with the Department of Energy (DOE) and the Environmental Protection 

Agency (EPA).  

 

The concept that was the subject of the research effort was originally described in a proposal 

written by K. L. Nagy, J. D. Betsill, and J. T. Fredrich (all Sandia), and recommended for 

funding in FY98. The results of Phase 1 gel experiments are reported in three papers 

published in the open literature by K. L. Nagy (currently at University of Illinois at Chicago) 

and co-workers. This report describes the results of the Phase 2 laboratory experiments that 

were aimed at precipitating clay phases in sediments. The laboratory experiments were 

performed as a collaborative effort with Professor Nagy, then at the University of Colorado, 

Boulder. In 2001, Fredrich and Nagy concluded that the results of the Phase 2 laboratory 

experiments did not warrant continuation of the research. 
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1 Introduction 
 
Containment of chemical wastes in near-surface and repository environments is 

accomplished by designing engineered barriers to fluid flow. Impermeable barriers are 

intended to contain wastes for subsequent cleanup treatment or for longer-term isolation in 

cases where no effective cleanup treatment yet exists. Impermeable barriers also have 

recently been applied as components of “funnel and gate” approaches to selectively channel 

contaminated fluid flow through a reactive treatment zone (Shoemaker et al., 1996).  

Containment barrier technologies such as clay liners, soil/bentonite slurry walls, soil/plastic 

walls, artificially grouted sediments and soils, and colloidal gelling materials are intended to 

stop fluid transport and prevent plume migration. However, despite their effectiveness in the 

short-term, all of these barriers will exhibit geochemical or geomechanical instability over 

the long-term resulting in degradation of the barrier and its ability to contain waste. For 

example, grouts and colloidal silica both require saturated conditions to maintain their 

structural integrity (Rumer and Ryan, 1995; Whang, 1996). No technologically practical or 

economically affordable technologies or methods exist at the present time for accomplishing 

total remediation, contaminant removal, or destruction-degradation in situ.  

 

A new type of containment barrier with a potentially broader range of environmental 

stability and longevity could result in significant cost-savings to the Department of Defense 

(DoD) and Department of Energy (DOE). This report documents a research effort designed 

to establish the viability of a proposed new type of containment barrier derived from the in 

situ precipitation of clays in the pore space of contaminated soils or sediments. The concept 

builds upon technologies that exist for colloidal or gel stabilization. Unlike colloidal or gel 

barriers, however, a precipitated-clay barrier would not require saturated conditions to be 

functional. Thus, it could be emplaced without loss of performance in the vadose zone as 

well as in areas with fluctuating water tables. Clays have the advantages of being 

geologically compatible with the near-surface environment and naturally sorptive for a range 

of contaminants. The precipitation of clays in situ in soils and sediments could result in 

reduced permeability and hydraulic conductivity, and increased mechanical stability through 

cementation of soil particles. By analogy with diagenesis in sedimentary rocks, it may be 

possible to engineer “artificial” lithification in soils and sediments. Unlike natural 

diagenesis, however, the time-scale for clay growth would be accelerated greatly from more 

than tens of thousands of years down to a few weeks. 

 

The research effort described in this report was conducted under project CU-1093 “In-Situ 

Clay Formation: A New Technology for Stable Containment Barriers,” performed under 

sponsorship of the Strategic Environmental Research and Development Program (SERDP), 

the DoD’s corporate environmental research and development (R&D) program, planned and 

executed in full partnership with the DOE and the Environmental Protection Agency (EPA). 

The project was funded in FY98, FY99, and FY00. The project was concluded following 

Phase 1 and Phase 2 laboratory testing that indicated that the technology would not be 

practical to implement in the desired field settings. 
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2 The Concept 
 

Functional subsurface barriers are designed to achieve one of two desired outcomes. The 

first is removal of the contaminant as the groundwater flows through a reactive barrier. The 

second is prevention of plume migration past an impermeable barrier. Materials in the 

forefront for use in reactive barriers include zero-valent metals, especially Fe, that reduce 

and adsorb toxic metals such as Cr(VI) (EPA, 1995). Other materials, including lime, fly 

ash, Fe-oxyhydroxides, calcium phosphate, Fe-sulfate, and surfactant-coated zeolites have 

also been shown to sorb various contaminants to differing degrees under prescribed 

environmental conditions (EPA, 1995; Davidovits, 1993; Bowman et al., 1995). While many 

of these materials have narrow windows of geochemical stability that may or may not be 

found in nature, fewer exhibit any geomechanical stability. The latter is particularly 

important because compaction can produce fractures, and therefore, preferential flowpaths 

that bypass most of the surface area of the reactive material, effectively diminishing its 

utility. Thus, there is a need for development of a new containment barrier that will be 

geochemically stable in a wide range of natural contaminated environments and that will be 

geomechanically stable over the long term, in particular for the time period required by 

performance assessment. 

 

When designing a barrier material, existing soil, sediment, or rock often is excluded from 

consideration. In reality, the pre-existing natural material can form the backbone of the 

engineered barrier. Deep-soil mixing and jet grouting (Rumer and Ryan, 1995; Evans, 1996; 

Filz and Mitchell, 1996) are two relatively recent techniques used in constructing vertical 

barrier walls that take advantage of the natural soil in constructing the barrier. Although 

these two techniques destroy the natural arrangement of soil particles, the inclusion of soil as 

part of the barrier is similar conceptually to what happens during lithification. Permeation 

grouting (Rumer and Ryan, 1995) is a more established process for barrier construction that 

is similar to the natural mechanical and geochemical processes that cement together 

individual mineral grains to form a rock. Depending on the grain size of primary phases and 

the amount and location of secondary cementing phases, the porosity and permeability of a 

rock can be quite variable. Given that permeability is the single rock property that controls 

fluid flow, engineering in situ the production of materials that reduce permeability is 

preferred. Ideally, the material that reduces permeability, or hydraulic conductivity, should 

also enhance chemical retardation.   

 

The class of minerals that will have the greatest effect on permeability for the smallest 

volume precipitated is sheet silicates or layered-clay phases (hereafter called “clays”).  In 

natural lithification, clays form small thin grains that tend to be randomly oriented, thus 

greatly increasing the tortuosity of flowpaths. In addition, they tend to nucleate at pore 

throats, the “weak links” in the flow pathways. The requirement of geochemical stability is 

also satisfied by sheet silicates. In nature, they grow as stable minerals at ambient and near-

ambient conditions and have excellent sorption characteristics for cations and cationic 

molecules. By virtue of their nucleation and growth at pore throats, clays may also be 

effective in retarding migration of organic contaminants such as DNAPLs.  Expandable 

clays such as smectites can also adsorb organics within their interlayers (Raussell-Colom 

and Serratosa, 1987; Johnston, 1996). Minerals of similar layer structure called 
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hydrotalcites show strong sorption affinities for anions. Although the stability limits of 

hydrotalcites are not well known, their structural similarity to clays suggests they could 

precipitate and reduce permeability by similar mechanisms. 

 

Injection of Portland cement-based grouts directly into natural materials has been applied 

(Davidovits, 1993; Evans, 1996; Filz and Mitchell, 1996) as an impermeable barrier design.  

Grouts can show significant geochemical instability in the natural environment. In time, 

common groundwater components such as SO4
2-
, CO3

2-
, and Mg

2+
, if present in sufficient 

concentration, can degrade grout. This geochemical instability can lead to geomechanical 

instability such as fracture formation. Also, the processes of jet grouting and deep-soil 

mixing can disrupt any pre-existing structure that would enhance mechanical endurance. 

 

Barriers derived from gelling technology have been used both in the petroleum and 

environmental remediation industries. Mineral polymer gels have been used successfully to 

plug flow from water-producing zones in oil wells and inorganic gels are used for 

consolidating weak formations and plugging lost circulation (Borling et al., 1994). Borling 

et al. reported that Si-gels have been used since the 1920s, but that problems arise in 

controlling their relatively fast gelation times. Schlumberger-Dowell holds a patent on an 

inorganic Al-gel system applied to stop water flow in oil wells (Parker and Davidson, 

1989). This gel contains urea which when heated at downhole temperatures increases the pH 

(by an increase in the pK of the acid dissociation constant) to a region where metastable Al-

polymeric materials precipitate. One advantage of this system is that injection is 

accomplished with a fluid that has a viscosity near that of water before gelation as opposed 

to higher viscosities of the polymer gels. This allows deeper penetration of the gel into the 

formation to obtain a greater effect on permeability. A second advantage is that the 

conditions and rates of gelation can be controlled. This technology is used in day-to-day 

operations and is effective, at least for the typical lifetime of a producing well. 

Disadvantages are that the aluminum phases that form from the gels are metastable and can 

dehydrate or recrystallize over long periods of time. 

 

DuPont (Whang, 1996) has investigated the construction of containment barriers using 

injected colloidal silica. Their technologies include surface chemical modification of the 

colloidal silica to control gellation time. A significant disadvantage of this technology is that 

if the gel dehydrates, it can crack creating fast flow paths for contaminant transport. This 

limits its application to highly saturated soil environments and consequently areas of wetter 

climate. 

 

Another in situ precipitation process, again proposed by DuPont (Whang, 1996), involves 

injection of mildly acidic (pH = 3) Fe solutions in which high concentrations of Fe are 

maintained by an organic chelating agent. The solutions also contain a urea/urease mixture.  

The urease breaks down the urea which generates ammonia raising the pH and causing Fe-

hydroxides to precipitate. In this example, the Fe-hydroxides have the added advantage of 

having high sorption affinity for a variety of chemical wastes including metals and organics. 

DuPont researchers have observed a reduction of hydraulic conductivity from 10
-2 
cm/s to 

10
-7
 cm/s in laboratory sand columns after Fe-hydroxide precipitation by permeation 

grouting. 
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The methods used to precipitate simple metal hydroxides and gels used in the environmental 

remediation and petroleum industries could be extended to the precipitation of sheet 

aluminosilicate, or clay, minerals. This would provide the added advantages of geochemical 

and geomechanical stability described above.  

 

In an experiment designed to simulate a natural situation, Michalopoulos and Aller (1995) 

demonstrated that K-Fe-Mg sheet silicates can grow in relatively short times, 12 to 36 

months, in delta sediments from the Amazon River incubated under anoxic conditions in the 

laboratory at 28°C. The clay formation appears to require a fairly mobile form of dissolved 

Al and is accelerated in the presence of unstable Si glass beads.  Results from numerous 

laboratory syntheses conducted from one to three decades ago show that sheet silicates can 

be grown from inorganic gels at room temperature in a matter of days to months depending 

on initial gel composition and pH. However, typically in these older studies, the reported 

results indicated that the identity of the newly formed clays was poorly known, the yield of 

crystals was not high, and the crystallinity of the clays was low (i.e., small grain size). In 

other words, the kinetics of clay formation from the gels were not optimized in these 

investigations.  

 

Together, the above studies on clay precipitation from gels, clay precipitation in Amazon 

River delta sediments, and commercial applications of mineral-gels to occlude porosity and 

reduce permeability, all suggested that the engineering of clay precipitation in situ to form 

impermeable and/or reactive barriers was a feasible goal.  

 

 

3 Overview of the Research Project 
 

The purpose of project CU-1093 “In-Situ Clay Formation: A New Technology for Stable 

Containment Barriers” was to evaluate the viability of a proposed new type of containment 

barrier, derived from the in situ precipitation of clays in the pore space of contaminated soils 

or sediments, with a potentially broad range of environmental stability and longevity. 

 

The research program was to be conducted in discrete stages that involved a number of 

different institutions. The first phase of the research effort focused on the laboratory 

synthesis of clays and clay-like materials from gels at room or ambient temperature. As a 

result of K. L. Nagy’s move from Sandia to the University of Colorado just prior to the 

project’s start, this effort was conducted at the University of Colorado, with supporting 

analytic (Transmission Electron Microscopy) work conducted at the University of 

Wisconsin. The initial effort focused on reproducing experimental designs from various 

published studies in which clay products were identified (e.g., Decarreau 1980, 1981; 

Decarreau and Bonnin, 1986; Decarreau et al., 1987; Flehmig, 1992; Harder, 1971, 1974, 

1976, 1977, 1978; Hem and Lind, 1974; La Iglesia Fernandez and Martin Vivaldi, 1973; La 

Iglesia and Martin-Vivaldi, 1975; La Iglesia and Sema, 1974, Linares and Huertas, 1971a,b; 

Siffert, 1962; Siffert and Wey, 1973). In addition to these formulations, the synthesis of an 

anionic clay called a layered double hydroxide (Cavani et al., 1991), that has a naturally 

occurring mineral counterpart called a hydrotalcite (e.g., Taylor and McKenzie, 1980), was 
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attempted. A third type of material investigated falls within the new class of mesoporous 

silica materials that can be formed at room temperature using surfactant templates (e.g., 

Kresge et al., 1992; Anderson et al., 1995; McMullen et al., 1995). Finally, a related study 

with researchers at the University of Grenoble was conducted to investigate the nucleation 

of clays on quartz surfaces under ambient conditions. The results of the Phase 1 research are 

described in three technical papers published in the peer-reviewed scientific literature 

(Manceau et al., 1999; Zhao et al., 2000, Zhao et al., in press) and are not described further 

in this report. 

 

The second phase of the research effort focused on precipitating two of the studied clay and 

clay-like materials, anionic clay and mesoporous silica, in natural sediments under 

laboratory conditions. As originally designed, Phase 2 was to be followed by a third phase 

that included a pilot scale test to be conducted in a physical model, followed by a full-scale 

field test. The research program included several Go/No Go decision points, and because the 

results of the Phase 2 experiments indicated that application in the field would not be 

practical, the research program concluded during Phase 2. As noted, the Phase 1 research is 

documented in three papers published in the open literature. The Phase 3 research plan was 

outlined in a white paper submitted to the SERDP project office on August 23, 2000 (“In-

Situ Clay Formation: A New Technology for Stable Containment Barriers: Potential for 

conducting pilot experiments in a physical model”, by B.P. Dwyer, J.T. Fredrich, and K.L. 

Nagy). The remainder of this report describes the results of the Phase 2 research program 

and rationale for not continuing to the field scale. 

  

 

4 Phase 2 Laboratory Experiments 
 

Following conclusion of the Phase 1 gel experiments, the aim of the Phase 2 laboratory 

experiments was to precipitate clay and/or clay-like solids in situ in both quartz and natural 

sediments in laboratory sand-column scale experiments. Emplacement of the solutions/gels 

in the laboratory tests was to emulate field technologies such as permeation and jet grouting, 

and soil-mixing. The laboratory experiments focused on the optimization of clay gel mixes, 

gelation/setup time, and hydraulic conductivity reduction. 

 

Success of the method was to be demonstrated by obtaining a significant reduction in 

permeability (or hydraulic conductivity) and increase in geomechanical stability, under 

conditions practical for field application. Ultimately, the experiments needed to demonstrate 

that practical quantities of clays and/or clay-like solids could be formed within a timeframe 

appropriate for installment of a barrier, and secondly, that the material properties would be 

improved over those of existing containment barriers. 

 

Clay and clay-like solids were preciptated in situ in two different sands, Arizona Magic 

Sand, a nearly pure quartz sand of 0.1-1 mm grain size, and U.S. Silica Min-U-Sil-10, a 

crushed sand with average grain size of 10 microns, in plastic syringes in the laboratory 
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Figure 4.1  Experimental setup for column mixing experiments and permeability testing. A plastic 

beaker below the column collects solutions that exit the column. 

(Figure 4.1). Mesoporous silicate (MPS) materials and layered double hydroxides (LDH) 

were deemed the best candidates because these materials have gel characteristics similar to 

the kaolin group clay gel, but crystallize in a shorter time period appropriate for field 

application. To enable the precipitate to develop within the pore space of the column in situ, 

the precursor solutions were formed separately. For each material, there were two precursor 

solutions that after mixing would form a solid precipitate of the desired phase. In the case of 

the MPS, a third solution, consisting of 1N HCl, was added to lower the pH and maximize 

the yield.  

 

Permeability after column mixing of the precursor solutions was used to evaluate the 

potential effectiveness of each precipitate as an in-ground containment and remediation 

barrier. In the simplest case, fluid permeability can be described by Darcy's law: 

 






 Δ








=

L

PkA
Q

µ
 (4.1) 

where Q is the volumetric flow rate of fluid, determined in our experiments by measuring a 

fixed volume of de-ionized water passing through the sample and recording the time 

increment in which this takes place. The use of Darcy's law assumes that fluid flow is slow, 

unidirectional and steady (e.g. Dullien, 1992). Of the remaining variables in Eq. 4.1, A is the 

cross-sectional area of the sample normal to the flow direction and L is the length of the  
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Figure 4.2  Falling head permeameter testing configuration (after Dullien, 1992). 

sample in that same direction. ΔP is the pressure driving the fluid flow and µ is the viscosity 
of the fluid, where the constant k is the permeablity of the sample. To determine 

permeability from the configuration of our laboratory experiment (Figure 4.1) that is similar 

in design to a falling head permeameter (FHP) test (Figure 4.2), an alternate formulation 

applies: 

 ( )10ln hh
gAt

aL
k 








=

ρ

µ
 (4.2) 

Here the symbols are the same as Eq. (1) with the additional terms, a and t, being the 

diameter of the column of water above the sample and the elapsed time, respectively. In our 

experiments, the diameter of the sample and the diameter of the water column were 

identical; a = A. Specifically, the sample cross-section was 5.38 × 10
-6
 m

2
 and the flow 

direction, L, was 0.07 m for the 50.00 g of AZ magic sand in our experiments. The driving 

force for fluid flow is related to the hydrostatic pressure drop, ΔP = P1-P2, measured by the 

change in the height of the water column, Δh (measured from the opening at the bottom of 

the syringe). With this equation the total elapsed time, t, was recorded for a specific height 

(or volume) of water above the sample, where h0 is the initial height of the fluid in the 

column at t0 = 0.), and depends linearly on density and gravity as ρgΔh, where ρ = 1000 

kg/m
3
 and g = 9.8 m/s

2
. The water viscosity, µ, was taken as 0.001 kg/m-s. Thus, Eq. (4.2) 

reduces to: 
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 ( )10ln hh
gt

L
k 








=

ρ

µ
 (4.3) 

Our experimental configuration differs slightly from the example shown in Figure 4.2, 

because the fluid drains directly at the bottom of the column rather than being directed 

upwards in a ‘U’. However, the change in pressure still behaves as a function of ρgh and 
should not affect the measurements provided the fluid flow is slow enough through the 

sample that continuous flow is maintained between orifices (as was the case).  

 

 

4.1 Experiments to evaluate in situ mesoporous silicate precipitation 
 
Seventeen experiments were conducted to evaluate in situ precipitation of mesoporous 

silicate (MPS) in sand packs and the effect on permeability. Experiments were conducted 

using Arizona Magic Sand, a nearly pure quartz sand of 0.1-1 mm grain size, and U.S. Silica 

Min-U-Sil-10, a crushed sand with average grain size of 10 microns. The microstructure of 

the quartz grains are shown in Figure 4.3. 

 

 

4.1.1 Solution preparation and column mixing 
 

Preparation of the mesoporous silicate began by mixing 14.4 g of reagent grade sodium 

silicate (242.2 g/mol) solution with 30.0 g of de-ionized water. This comprised the first of 

the two precursor solutions. The second solution was prepared by dissolving 3.3g of 

hexadecyltrimethylammonium bromide (HDTMA) in 120.0 g of de-ionized water to which 

the pH had been adjusted to 11.7 by the addition of solid NaOH. Mixing of the sodium 

silicate solution with the HDTMA solution causes precipitation of the mesoporous silicate. 

After mixing these solutions, reducing the pH using HCl to a value of 8.5 optimized the 

amount of precipitation to form from solution. 

 

Equal masses of the large- and small-grained sands were poured into 60 mL and 10 mL 

syringes, respectively. Sand was held in the syringes using initially a disposable luer-lock 

filter at the bottom of the syringes. HDTMA solution and Na-silicate solution were added 

separately to the tops of the columns in proportional amounts calculated to fill, but not 

exceed, the porosity. Alternate addition of the solutions is necessary to induce the formation 

of the precipitate within the column, rather than in the mixed solution before it is added to 

the sediment. 

 

 

4.1.2 Results 
Falling head permeability tests were made using deionized water on “columns” with filters 

removed (Table 4.1).  Permeability was calculated as described above, and then converted to 

hydraulic conductivity. Hydraulic conductivity was reduced 2 to 3 orders of magnitude over 

that of uncemented quartz columns (from ~7 x 10
-2 
cm/sec to 4 x 10

-5
 cm/sec), depending on 

the order of addition of the solutions, air-drying vs. oven-drying at 70º to 75ºC, and the  
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Figure 4.3  Backscattered electron micrographs showing the bimodal morphology of  Arizona magic 

sand. Grains are smooth and faceted (top), or alternatively rough and irregular (bottom).  

number of solution additions (the maximum number was two).  In two cases in the oven-

dried samples, fluid flow was completely stopped after 3 to 4 days of continuous flow. 

Generally, flow was faster in all columns when water was first added after the cementing 

agents had been allowed to dry.  Over one to two days, flow would decrease to a steady-

state, as represented by the permeability and hydraulic conductivity (Table 4.1). 
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Table 4.1  Summary of in situ precipitation of mesoporous silicate (MPS) in sand pack experiments. 

 

Experiment Quartz (g) Solutions Drying 

Conditions 

Darcy 

permeability 

(cm
2
) 

Hydraulic 

conductivity 

(cm/sec) 

A-10-AZ
1,2
 2 mL HDTMA/Na-silicate 75°C 1.2 x 10

-7
 1.2 x 10

-2
 

B-10-AZ
1,2
 2 mL Na-silicate/HDTMA 75°C 4.8 x 10

-9
 4.7 x 10

-4
 

1-60-AZ
3
 77.53 Na-silicate/HDTMA x 2 room T 5.9 x 10

-8
 5.8 x 10

-3
 

2-60-AZ
3,4
 77.49 Na-silicate/HDTMA x 2 75°C 4.2 x 10

-9
 4.1 x 10

-4
 

3-60-AZ 77.51 Na-silicate/HDTMA x 2 room T 2.4 x 10
-8
 2.3 x 10

-3
 

4-60-AZ
5
 77.51 Na-silicate/HDTMA x 2 room T 3.9 x 10

-8
 3.8 x 10

-3
 

5-60-AZ 77.51 HDTMA room T rapid flow rapid flow 

6-60-AZ
4
 77.51 HDTMA 70°C 3.9 x 10

-9
 3.8 x 10

-4
 

7-60-AZ 77.51 Na-silicate room T rapid flow rapid flow 

8-60-AZ 77.50 Na-silicate 70°C 7.4 x 10
-9
 7.2 x 10

-4
 

A-10-US
6
 3.00 Na-silicate/HDTMA room T 4.6 x 10

-9
 4.5 x 10

-4
 

B-10-US 3.00 Na-silicate/HDTMA room T 2.5 x 10
-9
 2.5 x 10

-4
 

C-10-US 3.00 Na-silicate/HDTMA room T 2.3 x 10
-9
 2.3 x 10

-4
 

E-10-US 3.04 HDTMA room T 3.7 x 10
-10
 3.7 x 10

-5
 

F-10-US 3.04 HDTMA 70°C 1.4 x 10
-9
 1.4 x 10

-4
 

G-10-US 3.04 Na-silicate room T 2.6 x 10
-10
 2.5 x 10

-5
 

H-10-US 3.04 Na-silicate 70°C rapid flow rapid flow 
1 AZ = Arizona Magic Sand 
2 Mass was not measured in these experiments, but instead quartz sand volume. 
3 Solutions of Na-silicate immediately followed by HDTMA were applied twice, because the volume needed to fill porosity 

was undercalculated for the first application. 
4 Over one to two days after reported permeability was measured, flow slowed to zero. 
5 Solutions of Na-silicate immediately followed by HDTMA were applied twice, but with a two-day intervening period. 
6 US = U.S. Silica sand. 

   
 

Generally, flow was faster in all columns when water was first added after the cementing 

agents had been allowed to dry.  Over one to two days, flow would decrease to a steady-

state, as represented by the permeability and hydraulic conductivity (Table 4.1). 

 

The sand packs were allowed to sit for ~8 months to assess the integrity of the simulated 

barrier materials; most samples dried completely during this period as they were not capped 

tightly with parafilm. In only one experiment was solution flow completely stopped for the 8 

months, and that experiment contained only Arizona magic sand and HDTMA (6-60-AZ) 

(the surfactant used as the templating substrate for MPS materials). All but one of the 

remaining sand packs dried completely. The sand pack that did not dry completely as well as 

the sand pack with negligible permeability had both been dried in the oven at 70° to 75°C.  

 

All of the sand packs that contained quartz and precipitated MPS behaved essentially as 

powders upon complete drying (Figure 4.4). While some quartz would be weakly cemented 

with mesosilicate precipitate, even this material powdered easily with minimal applied 

pressure.  The only materials that had even slight mechanical integrity were those cemented 

with Na-silicate solution. If mesoporous silicates are precipitated along with quartz sand as a 

slurry, the resultant cemented material is slightly more durable and can maintain its integrity 

(essentially as a plug of material) under small amounts of applied pressure.  However, 

pressing hard against such a plug with a blunt instrument results in the plug breaking apart  
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Figure 4.4  Bulk sample following in situ precipitation of MPS in sand pack (Arizona magic sand), 

followed by drying at 60 °C after removal from the column. Indurated material taken from the lower 

portion of the plastic syringe is located at the left side of the image and mimics the cone shape of the 

syringe bottom. The larger piece to the right of the image is from the column head where solutions were 

introduced. The smaller pieces in the center and the loose sand came from space in between the two 

ends (sample from experiment AZ-MPS-11, Table 4.2).  

into smaller pieces. These plugs are not as physically durable as plugs formed by adding Na-

silicate only to quartz sand. The microstructure of the samples was evaluated in detail using 

scanning electron microscopy, presented later in Section 4.3. 

 

The experiments indicated that the in situ MPS precipitation under even idealized laboratory 

conditions failed to achieve one of the key goals which was increased mechanical strength 

and integrity. While mesoporous silicate did indeed precipitate in the sand packs, the 

distribution of the precipitate was ineffective in so far as cementing or lithifying the sand 

pack. For this reason, a second series of experiments was conducted that focused largely on 

in situ precipitation of a layered double hydroxide (similar to naturally occurring 

hydrotalcite). 

 

 

4.2 Experiments to evaluate in situ layered double hydroxide precipitation 
 

Twenty-seven experiments were conducted to evaluate in situ precipitation of layered 

double hydroxide (LDH) in sand packs and the effect on permeability. Experiments were 

conducted using Arizona Magic Sand, a nearly pure quartz sand of 0.1-1 mm grain size, and 

U.S. Silica Min-U-Sil-10, a crushed sand with average grain size of 10 microns. A single 

additional experiment was performed with the mesoporous silicate solution sequence. 
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4.2.1 Solution preparation and column mixing 
 

Similar to the mesoporous silicate synthesis, the LDH synthesis derived from making two 

separate solutions. The first was an aqueous solution comprised of reagent grade magnesium 

chloride and aluminum chloride. 40.68 g of MgCl2 and 24.12 g of AlCl3 was added to 300 

mL of de-ionized water to produce a 2:1 ratio of magnesium to aluminum. The pH of this 

solution was 2.5. The second solution was an aqueous solution of 2N sodium hydroxide. 

When 16.8 mL of the sodium hydroxide solution was added to 18 mL of the salt solution, a 

milky white precipitate of LDH would form with a pH after mixing of 10.0. Plastic syringes 

with 60 CC capacity were used as columns to hold the sand packs, that for these experiments 

consisted solely of Arizona Magic sand. Prior to filling the column with the sand, circles the 

size of the inner column diameter were cut from high flow rate filter paper (Fisher Brand Q8 

#09-790E) and placed at the bottom of the column. The column was suspended over a 

beaker used to collect effluent from the mixing tests and the aqueous permeant from the 

permeability tests. 

 

A standard 50.00 g (29 CC) of Arizona Magic sand was used. The volume of pore space in 

29 CC of Arizona Magic sand was determined experimentally by water absorption to be 

approximately 12 CC (yielding a porosity of 41%). The precursor solutions, that after 

mixing would form the MPS and LDH precipitates, were formulated such that their 

combined volume would be equal to the estimated pore volume of 12 CC. All solution 

mixtures were measured and distributed using various pipettes (10-100 µL; 100-1000 µL; 

500-5000 µL) that were calibrated with de-ionized water. In general, when fluid was 

released from the pipette it was done such that the sand at the top of the column was 

disturbed minimally. After introducing a precursor solution at the top of the column, enough 

time was allowed for it to be absorbed prior to introducing the next solution. The total 

amount of time required to introduce the chemicals into the column from the pipette was 

typically less than 5 minutes for the initial treatment of each precipitate.  

 

Multiple treatments were applied to the sand columns in an effort to maximize the 

precipitation of solid within the pore space and to subsequently minimize the permeability of 

the matrix. However, multiple treatments required increasingly longer times between 

subsequent applications, as the initial permeability reduction would impede the treatment 

chemicals from diffusing through the column (e.g. - three treatments would take over five 

hours to complete). 

 

In addition to varying the number of treatments applied to the sand column, other attempts 

were made to maximize the amount of precipitate. One such approach consisted of varying 

the order in which the precursor chemicals were introduced into the column. Because 

solutions with a high pH, such as 2N NaOH, will react strongly with quartz and other minor 

phases present in the sand, different reactions could possibly occur if these solutions enter 

the column first, rather than after the complementary solution had already saturated the 

microstructure. Also, as initial results indicated some effectiveness to the multiple 

treatments, it was postulated that introducing the precursor solutions into the column in 

smaller increments might further ensure more adequate mixing and ultimately, greater 

permeability reduction. The ‘standard’ amount of precursor solution was thus halved so that  



 

 25 

Table 4.2  Summary of in situ precipitation of layered double hydroxide (LDH) in sand pack experiments. 

 

Experiment Solution (first 

in column)   

No. 

Treatments 

Solution 

Temperature 

Drying 

Conditions 

Measurement 

Time (s) 

Permeability 

(m
2
) 

5-U-AZ
1,2
 2N NaOH 1x room T room T 5650 4.38 x 10

-11
 

7-AZ
1
 Mg/Al (2:1) 1x room T 60 °C 10630 3.65 x 10

-12
 

8-AZ
1
 Mg/Al (2:1) 1x room T room T 2490 6.72 x 10

-11
 

9-AZ
1
 2N NaOH 1x room T room T 4320 4.45 x 10

-11
 

10-AZ
1
 2N NaOH 1x room T 60 °C 2730 6.62 x 10

-11
 

11-AZ-MPS
1,3
 Na-Si - 1X 1x room T 60 °C 9521 1.70 x 10

-14
 

13-AZ
1
 2N NaOH 1x room T room T 9055 3.51 x 10

-11
 

16-AZ
1
 2N NaOH 2x room T 60 °C 11580 3.65 x 10

-12
 

17-AZ-MPS
1,3
 HDTMA, HCl 1x room T room T 5423 1.48 x 10

-14
 

20-AZ
1
 2N NaOH 2x room T room T 15900 1.23 x 10

-11
 

21-AZ
1
 Mg/Al (2:1) 1x 45 °C room T 1350614 3.85x 10

-11
 

22-AZ
1
 2N NaOH 2x 45 °C room T 1210476 3.51 x 10

-11
 

23-AZ
1
 Mg/Al (2:1) 2x 45 °C room T 1289005 6.71x 10

-12
 

24-AZ
1
 Mg/Al (2:1) 2x room T room T 249930 4.07 x 10

-11
 

25-AZ
1
 Mg/Al (2:1) 2x room T room T 149183 3.29 x 10

-11
 

26-AZ
1
 Mg/Al (2:1) 3x room T room T 1013210 1.96 x 10

-11
 

27-AZ
1
 Mg/Al (2:1) 3x room T room T 1270878 5.61 x 10

-12
 

28-AZ
1
 Mg/Al (2:1) 2x 45 °C room T 977270 1.73 x 10

-11
 

1 AZ = Arizona Magic Sand. All experiments conducted using standard 50.00 g. 
2 U = ultrasonic treatment.  Samples immersed in ultrasonic bath for these experiments to enhance mixing. 
3 MPS = mesoporous silicate (rather than LDH) precipitation experiment. 

 

the combined volume was 6 CC, equal to half of the expected pore volume (see Table 4.2). 

Based on the Phase 1 results, heating of the chemical species was also attempted to increase 

the efficiency of the precipitate yield. The precursor solutions were placed into small 

Nalgene containers, sealed with Parafilm and placed into a water bath at 45 °C, for a 

minimum of 60 minutes. They were quickly removed and pipetted into the column in the 

same way as the room temperature column mixing experiments. A final technique involved 

sealing the bottom and end of the column and placing the entire column into an ultrasonic 

bath for up to 20 minutes, subsequent to applying the precursor chemicals. 

 

 

4.2.2 Results 
 

Falling head permeability tests were made using deionized water on “columns” with filters 

removed (Table 4.2).  Permeability was calculated as described above. Permeability was 

reduced 1 to 2 orders of magnitude over that of uncemented quartz columns (from ~2 x 10
-9 

m
2
 to a minimum of 3 x 10

-11 
 m

2
), depending on the order of addition of the solutions, air-

drying vs. oven-drying, and the number of solution additions. Most significantly, heating of 

the solution as well as increasing the number of chemical treatments causes a decrease in the 

permeability of the sand packs. 

 

As observed with the previous mesoporous silicate experiments, all of the sand packs that 

contained quartz and precipitated LDH behaved essentially as powders upon complete 

drying (Figure 4.5). While some quartz would be weakly cemented with LDH, even this  
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Figure 4.5  Bulk sample following in situ precipitation of LDH in sand pack (Arizona magic sand), 

followed by drying at 60 °C after removal from the column. Compared to the experiments with 

mesoporous silicate precipitation (see Figure 4.4), the indurated regions of the LDH sand packs were 

smaller and noticeably more friable. Material from the lower region of the column is shown on the left 

and upper region at the right of the image (sample from experiment AZ-7, Table 4.2).  

material powdered easily with minimal applied pressure. The LDH samples were noticeably 

more friable than the MPS samples. 

 

 

4.3 Microanalysis 
 

Specimens for microanalysis, including high voltage field emission scanning electron 

microscopy and energy dispersive x-ray spectrometry (EDS), were prepared from both the 

starting (unreacted) sand, and from both indurated as well as powdered regions of the 

reacted mesoporous silicate and layered double hydroxide sand packs. 

 

As previously mentioned, Arizona magic is a very pure quartz sand. Scanning electron 

microscopy (Figure 4.3) reveals a bimodal grain morphology, consisting of grains with 

faceted, smooth crystalline surfaces and also grains with highly rough and irregular surfaces 

that are clearly not crystal faces. 

 

The solidified regions of the dried columns appeared to develop similarly for both types of 

precipitates. Indurated sand particles were found at the head of the column, at the end of the 

column, and in limited regions within the center of the columns. The pieces taken out of the 

central regions of the column were smaller in volume as compared to those from the head or 

bottom of the column, and the extent of induration of the LDH sand packs was generally less 
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than that for the MPS sand packs. Moreover, the mechanical integrity of the lithified regions 

within the LDH sand packs was less than that of the MPS sand packs. As discussed below, 

this may be due to the nature of the precipitate coverage and the inherent strength of the 

precipitate as discussed below. 

 

The location of the maximum precipitation in the sand packs, associated with indurated 

regions after drying, suggests the nature of in situ mixing within the sand pack. At the top of 

the sand pack, where the chemicals are introduced by pipette, there may be a region of more 

thorough mixing that results from kinetic disturbances of the fluid and sand, resulting in 

increased precipitate yield. Several factors may contribute to an increase in the amount of 

precipitate formed in the bottom of the sand pack. A funnel effect at the bottom of the sand 

pack (see Figure 4.1) likely forces unreacted precursor solutions into close proximity, 

allowing for further mixing. The build up of precipitate and reduction of pore volume at the 

end of the column could also act to trap or collect solid precipitate that formed higher up in 

the sand pack, either having been dislodged from a grain surface, or alternatively having 

precipitated in the pore space without bonding to a grain surface, and traveled through the 

pore space with the precursor solutions. That precipitate was observed in the effluent 

indicates unambiguously that precipitate was formed in the pore fluid, rather than nucleating 

at a grain surface. Finally, pockets of lower permeability material may also have existed 

randomly throughout the sand pack, allowing for enhanced mixing and subsequently 

precipitation of solid in random locations.  

 

At low magnifications (Figure 4.6, top), sand grains in an indurated region of the MPS sand 

pack (from experiment 11-AZ-MPS in Table 4.2) appear unaltered from the original grains 

in the unreacted sand pack (Figure 4.3). However, high magnification reveals a thin, smooth 

coating that permeates the grain structure (Figure 4.6, middle). The coating bonds the grains 

at contact points, forming ‘necks’ that link grains together (Figure 4.6, bottom). In most 

cases, the necks (Figure 4.9) show signs of microcracking that could have occurred during 

either drying or during handling. The lack of widespread occurrence of MPS precipitate in 

the pore volumes and pore throats is consistent with the observed limited effectiveness in 

reducing bulk permeability. 

 

In contrast, the LDH sand packs (Figure 4.7) revealed two different precipitate 

morphologies. Similar to the MPS sand packs, the LDH precipitate coats quartz grains 

(Figure 4.7); however, the “thickness” of the coating (crystal size) is larger, and platelet 

particles with typical sizes of 1-3 microns are easily resolved (Figure 4.7). Within the pore 

network, rose-like platelet structures are found with average platelet sizes approximately 

500 nm in dimension (Figure 4.7). 

 

Spectra collected from various locations on both the indurated as well as powdered regions 

of the MPS and LDH sand packs were in many cases indeterminate, although evidence was 

found for precipitate formation in some areas (Figures 4.8). The most likely explanation is 

the small amount of precipitate that formed within the MPS sand packs, and the ultrafine 

crystalline nature of the LDH precipitate (as observed in the LDH sandpacks), could not 

provide a sufficiently strong x-ray signal that could be distinguished from the very strong Si 

peak of the underlying quartz grains.  
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Figure 4.6  (Top) A low magnification 

back scattered electron micrograph of 

an indurated region of a MPS sand 

pack after drying at 60 °C. The sand 

pack appears unchanged from the 

starting material, and the cohesion 

following the experiment suggests the 

presence of a very thin coating of MPS 

precipitate. (Middle) A “neck” of MPS 

precipitate can be observed between 

two sand grains (boxed region). 

(Bottom) A higher magnification view 

of the MPS precipitate bridging the 

two grains shown in the middle 

micrograph. (Sample from experiment 

AZ-MPS-11.) 
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Figure 4.7  (Top) A low magnification back 

scattered electron micrograph of an indurated 

region of an LDH sand pack after drying at 60 

°C. (Middle) The LDH precipitate is clearly 

evident as a coating over grains (right) where 

platelet size is a few microns, and partially filling 

the pore space where sub-micron platelets 

dominate (left). Despite the pervasiveness of the 

coating, the strength of the bonded LDH sand 

packs is less than that of the MPS sand packs. 

(Lower) The rose-like morphology of the LDH 

precipitate partially filling previously open pore 

space (left middle) is very well developed. The 

typical size of the platelets is 500 nm. (Sample 

from experiment AZ-7.) 
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Figure 4.8  Spectra collected from powdered region from LDH precipitation experiment AZ-7. A light 

gold-palladium film coats all samples as required in scanning electron microscopy. (Top) The signal for 

Mg and Al is moderate as are the Au-Pd peaks. (Middle) The Mg/Al signal from these two regions is 

minimal, indicating possible lack of coverage or incomplete formation of LDH. (Bottom) The signal 

here is strong and in the proper ratio (2:1) of the precursor solutions. The presence of the chlorine peak 

suggests that this area contains remnants of the unreacted precursor solution.  

 

(a) 

(d) 

(c) 

(b) 
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5 Summary 
 

The purpose of project CU-1093 “In-Situ Clay Formation: A New Technology for Stable 

Containment Barriers” was to establish the viability of a proposed new type of containment 

barrier, derived from the in situ precipitation of clays in the pore space of contaminated soils 

or sediments, with a potentially broad range of environmental stability and longevity. 

 

The Phase 1 effort focused on the laboratory synthesis of clays and clay-like materials from 

gels at room or ambient temperature, with promising results (Manceau et al., 1999; Zhao et 

al., 2000, Zhao et al., in press). The Phase 2 effort focused on precipitation of the two most 

promising clay or clay-like materials identified in Phase 1, mesoporous silica and layered 

double hydroxide, in natural sediments under laboratory conditions. Success of the method 

was to be demonstrated by obtaining a significant reduction in hydraulic conductivity and 

increase in geomechanical stability, under conditions practical for field application. The 

experiments needed to demonstrate that practical quantities of clays and/or clay-like solids 

could be formed within a timeframe appropriate for installment of a barrier, and secondly, 

that the material properties would be improved over those of existing containment barriers.  

 

While some success was achieved in the Phase 2 effort, the laboratory experiments failed to 

achieve one of the key goals, increased mechanical stability. Further, engineering and 

environmental considerations were envisioned to complicate field-scale implementation of 

the process. The ultra-high acidic and basic pH of the precursor chemicals would require 

non-standard materials to hold, ship, and inject into the ground environment. Moreover, at 

these same pH levels, the precursor materials might be considered as damaging, if not more 

so, than some of the contamination plumes they were sought to control. Finally, the 

mesoporous silicate and layered double hydroxide clay-like materials were not likely to 

remain stable in the in situ environment for long (due to the near-neutral pH of the natural 

environment), which again violated one of the central premises for the research. The 

combination of these factors, combined with the observed level of permeability reduction 

indicates that the systems investigated, while scientifically interesting, are not likely to lead 

to a viable method to mitigate contaminated ground wastes. 
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