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29 June 2000

1. Imntroduction

1.1 Background Information

Buried unexploded ordnance, UXO, is one of the Department of Defense’s most pressing
environmental problems. Not limited to active ranges and bases, UXO contamination is also
present at DOD sites that are dormant and in areas adjacent to military ranges that are under the
control of other government agencies and the private sector.

Traditional methods for buried UXO detection, characterization and remediation are labor-
intensive, slow and inefficient. Typical detection and characterization methods rely on hand-
held detectors operated by explosive ordnance disposal (EOD) technicians who slowly walk
across the survey area. This process has been documented as inefficient and marginally
effective.’ In addition, a large portion, approaching 70% in some cases, of the total budget of a
typical remediation effort is spent on digging targets that do not turn out to be UXO.

The Environmental Security Technology Certification Program, ESTCP, has supported the Naval
Research Laboratory in the development of the Multi-sensor Towed Array Detection System,
MTADS, to address these deficiencies. The MTADS incorporates both cesium vapor full-field
magnetometers and pulsed-induction sensors in linear arrays that are towed over survey sites by
an all-terrain vehicle. Sensor positioning is provided by state-of-the-art Real Time Kinematic
(RTK) GPS receivers. The survey data acquired by MTADS is analyzed by an NRL-developed
Data Analysis System (DAS). The DAS was designed to locate, identify and categorize all
military ordnance at its maximum self-burial depth. 1t is efficient and simple to operate by
relatively untrained personnel.

The performance of the MTADS has been demonstrated at a number of prepared sites and live
ranges over the past two years.”!! It can detect and locate ordnance with accuracies on the order
of 15 cm.> However, even with careful mission planning and preliminary training there are still




significant numbers of non-ordnance targets selected. Thus, more effective discrimination
algorithms are required. This program was designed to exploit the dependence on target shape of
the pulsed-induction response to enhance the discrimination capability of MTADS.

1.2 Official DOD Requirement Statement

The Navy Tri-Service Environmental Quality Research Development Test and Evaluatlon
Strategic Plan specifically addresses under Thrust Requirements 1.A.1 and 1.A.2, the
requirements for improved detection, location and removal of UXO on land and under water.
The index numbers associated with these requirements are 1.1.4.e and 1.IIL.2.f. The priority 1
rankings of these requirements indicate that they address existing statutory requirements,
executive orders or significant health and safety issues. Specifically the requirements document
states:

There are more than twenty million acres of bombing and target ranges under DOD
control. Of particular concern for the Navy are the many underwater sites which have
yet to be characterized. Each year a significant fraction (200,000-500,000 acres) of
these spaces is returned to civilian (Private or Commercial) use. All these areas must be
surveyed for buried ordnance and other hazardous materials, rendered certified and safe
for the intended end use. This is an extremely labor intensive and expensive process,
with costs often far exceeding the value of the land.... Improved technologies for locating,
identifying and marking ordnance items must be developed to address all types of terram
such as open fields, wooded areas, rugged inaccessible areas, and underwater sites.!

The MTADS addresses all aspects of the Tri-Service Requirements for land-based buried UXO.
Itis de31gned to survey large sites rapidly and efficiently, with commensurate economic benefits.
Moreover, it is capable of detecting all classes of buried UXO at their likely self-burial depths.
The system will correctly locate buried targets, determine their burial depths, classify the likely
ordnance size, provide for future target way pointing, as well as create GIS-compatible target
output maps and sorted target tables.

1.3 Objective of the Demonstration

This was the final demonstration of the modified MTADS incorporating the analysis techniques
described below. We showed in the first demonstration of this program, the Requirements
Demonstration conducted on the NRL Test Field at Blossom Point, that these methods are useful
tools for target classification. This Final Demonstration was designed to use these tools on a
real-world site and quantify the benefits obtained from their use.

1.4 Regulatory Issues

There were no external regulatory issues impacting this demonstration. All activities described
here occurred on a government test range and were governed by a locally approved Health and
Safety Work Plan.

1.5 Previous Testing of the Technology

An initial test of the technology described in this report, designated the Requirements
Demonstration, was conducted in February 1999 at the NRL Test Site' at the Blossom Point
Facility. Resuits of that test will be described in following sections of this report.
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2. Technology Description

2.1 Background and Applications

The standard MTADS technology has been described in detail previously.? Briefly, the system
hardware consists of a low-magnetic-signature vehicle that is used to tow linear arrays of
magnetometer and pulsed-induction sensors to conduct surveys of large areas to detect buried
UXO. The MTADS tow vehicle, manufactured by Chenowth Racing Vehicles, is a custom-built
off-road vehicle, specifically modified to have an extremely low magnetic signature. Most
ferrous components have been removed from the body, drive train and engine and replaced with
non-ferrous alloys.

The MTADS magnetometers are Cs-vapor full-field magnetometers (Geometrics Model
822ROV). An array of eight sensors is deployed as a magnetometer array. The time-variation of
the Earth’s field is measured by a ninth sensor deployed at a static site removed from the survey
area. These data are used to correct the survey magnetic readings. The pulsed-induction sensors
(specially modified Geonics EM-61s) are deployed as an overlapping array of three sensors. The
sensors employed by MTADS have been modified to make them more compatible with vehicular
speeds and to increase their sensitivity to small objects.

The sensor positions are measured in real-time (5 Hz) using the latest RTK GPS technology. All
navigation and sensor data are time-stamped and recorded by the data acquisition computer in
the tow vehicle. The DAS contains routines to convert these sensor and position data streams
into anomaly maps for analysis. '

The standard MTADS analysis method has also been described previously."* The magnetometry
data has been very successfully modeled using a dipole response. We routinely recover target
X,y positions to within 15 cm and target depths to £ 20%.> Within the signal to noise ratio of the
MTADS, we see no residual signature attributable to higher moments.'* The pulsed-induction
modeling has been less successful. The standard algorithm is based on a sphere model and does
not well represent the signatures we obtain. We have discussed the deficiencies of this model
and proposed an ordnance model based on a prolate spheroid."*

This program was organized around the premise that classification based on shape is central to
the problem of discriminating between unexploded ordnance (UXO) and clutter. Most UXO fita
specific profile: they are long and slender with typical length-to-diameter aspect ratios of four or
five. Many clutter items, on the other hand, do not fit this profile. Using pulsed-induction
sensor data, we have developed a model-based estimation procedure to determine whether or not
a target is likely to be a UXO item. The model relies on exploiting the dependence of the
induced field on target size, shape and orientation.

The EM61 is a time domain instrument. It operates by transmitting a magnetic pulse that induces
currents in any nearby conducting objects. These currents produce secondary magnetic fields that
are measured by the sensor after the transmitter pulse has ended. The sensor response is the
voltage induced in the receiver coil by these secondary fields, and is proportional to the time rate
of change of the magnetic flux through the coil. The sensor integrates this induced voltage over a
fixed time gate and averages over a number of pulses. An illustration of the magnitude and
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direction of the field transmitted by the MTADS array is shown in Figure 1. Note that the field
experienced by an object directly below the array is substantially different than an object in front
or behind the array. The implications of this for target signatures will be seen in Section 5 of this

report.
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Figure 1 — Direction and magnitude of the magnetic field transmitted by the MTADS EM-61 array.

The model to be used in this demonstration has been jointly developed by NRL and AETC, Inc.
and has been described recently.!*'* Briefly, it relies upon the fact that the EM61 signal is a
linear function of the flux through the receiving coil. The flux is assumed to originate from an
induced dipole moment at the target location given by:

m =UBUT -H, ')

where H, is the peak primary field at the target, U is the transformation matrix between the
coordinate directions and the principal axes of the target, and B is an empirically determined,
effective magnetic polarizability matrix. For any arbitrary compact object, this matrix can be
diagonalized about three primary body axes and written as:

Bx 0 0
B=/0 B, 0] , @)
0 0 B,




The relative magnitudes of these B’s are determined by the size, shape, and composition of the
object as well as by the transmit pulse and fixed time gate of the EM61. Different time gates
may result in different values and different relative values of these B’s for a given object. The
transformation matrix contains the angular information about the orientation of these body axes.

For an axisymmetric object, B is a diagonal tensor with only two unique coefficients,
corresponding to the longitudinal (f;) and transverse (f;) directions:

B 0 0
B=|0 B, 0 3)
0 0 B

Empirically, we observe that for elongated ferrous objects such as cylinders and most UXO, the
longitudinal coefficient is greater than the transverse coefficient. For flat ferrous objects such as
disks and plates, the opposite is true. This matches the behavior of these objects in the
magnetostatic limit. For non-ferrous objects such as aluminum cylinders and plates, these
relationships are reversed.

We tested several implementations of this model in the Requirements Demonstration. All were
designed to take advantage of the fact that we obtain reliable position (x,y,z) information from
the magnetometer signals. We then fitted the pulsed-induction response to models with
combinations of two or three response coefficients, B, and two or three orientation angles. One
of the goals of the Requirements Demonstration was to determine which of these models resulted
in the most classification utility with the least data collection expense. As we will discuss below,
we have determined that collecting two orthogonal EM surveys and fitting the data using the
three B, three angle model yields the optimum results. This is the survey methodology that was
used in this Demonstration.

2.2 Strengths, Advantages, and Weaknesses of the Technology

No single method currently available will be the “magic bullet” of classification. We have
already demonstrated™’ that an impressive level of discrimination is possible using the standard
MTADS if a small training area is investigated prior to data analysis on the entire site and the
distribution of ordnance is limited. This discrimination is based primarily on fitted dipole “size.”
In this program we have demonstrated methods designed to add an extra “dimension” to the
discrimination, that of “shape.” For items of the same induced magnetic dipole we can
discriminate based on the ratio of responses of the items three axes to the EM induction sensors
in the MTADS suite. As we will show in a later section, this adds some discrimination capability
to the system.

Even with the most optimistic result however, these methods will not result in a perfect system.
As we have stated above, this program is based on the idea of classification by shape. By
definition, this implies that clutter items that have similar shapes to ordnance will be classified as
ordnance. Items such as pipes and post sections are representative of this problem. Ifit is
important to reduce remediation costs to the extent that these items are not dug, other methods,




possibly sensitive to composition or the presence of explosive compounds, will have to be
employed in conjunction with those being developed in this program.

2.3 Factors Influencing Cost and Performance

Implementation of the methods developed in this program requires additional survey time
compared to a minimum detection survey. We have previously demonstrated that, in many
cases, the MTADS can detect essentially all UXO with a total-field magnetometry survey. For
ordnance target sets that include 60- and 81-mm mortars at depths of 0.75 to 1 m an overlapping
EM induction survey is required to get a high detection probability. With the current MTADS
EM array configuration, we require two orthogonal EM surveys to ensure sufficient
“illumination” of each target to get a reliable fit to the model presented in this report. This
increases the survey hours on-site considerably although it does not impact the mobilization and
data analysis costs. In many cases, these extra costs are only equivalent to the cost of digging
one or two targets per acre.

3. Site/Facility Description

3.1 Background

The Requirements Demonstration was performed at the Naval Research Laboratory Ordnance
Classification Test Site located on the Army Research Laboratory’s Blossom Point Research
Facility. This site was designed'® to contain a variety of ordnance, ordnance simulants and
clutter at known positions and orientations for algorithm development and testing. The Final
Demonstration was performed on a live range at the Blossom Point Facility, the “L” Range.

During World War II, Harry Diamond and his team at the National Bureau of Standards (NBS,
now named NIST) needed open areas where they could test the fuzes they were developing.
They established test sites at Aberdeen Proving Ground, MD, Fort Fisher, NC and in early 1943
NBS leased land and established a proving ground for proximity fuzes at Blossom Point. By
September 1945, 14,000 rocket and mortar rounds had been fired. In 1953, the lease on the
property was transferred to the Army, which operated the property as a fast-reaction, low-cost
range for experimental work. Firing ranges provided a 2000-yard maximum range for land
impact and a 10,000-yard maximum for water impact. During the Vietnam War, the Army’s
Harry Diamond Laboratory was very active at the site.

The “L” Range is the main range for impact testing of various munitions at Blossom Point. It is
approximately 800 feet wide by 5000 feet long and encompasses ~93 acres. This range has been
the primary impact area throughout the history of the site. Some of the known firings include
81-mm mortars in 1961, 2.75-inch rockets fired from helicopters throughout the 70’s, and
various listings of 60-mm mortars, 75-mm projectiles, 81-mm mortars and various barrage
rockets.

HFA, Inc. conducted an ordnance removal at the Blossom Point Test Facility in 1996."7 Two
sites were cleared in conjunction with utility work and construction. Two sites totaling 66 acres
were cleared; one a clear area parallel to “L” range and one a wooded area north of the first.
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The area was excavated to 4 feet on the construction sites and 2 feet for the utility lines. Seven
hundred fifty three UXO items and 9,267 1bs. of scrap were removed from the site. The UXO
consisted of a wide variety of ordnance types ;
and classes with a preponderance of 20- and
30-mm rounds, 60- and 81-mm mortars, and
4 2-in rockets. This is consistent with the
firing records mentioned above.

3.2 Site Characteristics

Figure 2 is a road map of a portion of Charles
County, Maryland showing the location of
Blossom Point relative to La Plata, the County
Seat. Figure 3 is an aerial photo of the
Blossom Point Field Facility with the area
comprising the Final Demonstration test site

highlighted.

The Demonstration area is located on high
ground, well above the surrounding rivers.
The site has good sky view for GPS but is
bordered by a densely wooded area that is ideal ¥
for testing non-GPS location systems.

Figure 2 — Road map showing the location of
Blossom Point.

Figure 3 — Aerial view of Blossom Point, MD with the approximate
location of the Demonstration Site on the Army Research Laboratory
Blossom Point "L" Range highlighted.




4. Demonstration Approach

4.1 Performance Objectives

The objective of the Demonstration was to quantify the classification performance available
using the MTADS array of modified, off-the-shelf pulsed-induction sensors and the data
modeling algorithms developed in this program. The Demonstration proceeded in three phases:
data collection; data analysis, and target marking and remediation.

Data collection consisted of surveying an approximately three-acre area on a live range, known
to have had many detonations, using both the magnetometers and pulsed-induction sensor suites
of MTADS. The magnetometer survey was conducted in an E-W orientation to minimize the
effects of GPS signal loss at the woodline. The pulsed-induction survey was carried out both E-
W and N-S to get the best possible “illumination” of each target.

Data analysis was accomplished using the MTADS Data Analysis System. The DAS has been
upgraded during this program to simultaneously analyze a magnetometer and several pulsed-
induction survey data sets. The analysis consists of fitting individual target signatures to the
model discussed above to extract target position, size, and relative response along three
orthogonal axes. These relative response coefficients were used to classify the target as UXO or
scrap. This phase of the Demonstration resulted in a spreadsheet-like target report that included
target number, location, depth, three response coefficients, and predicted class. This spreadsheet,
and the reasoning behind the target assignments, was communicated to the Institute for Defense
Analyses (IDA) before remediation was begun.

The final phase of the Demonstration consisted of remediation of the analyzed targets. We had
planned to select approximately 200 targets for remediation. After analysis of the survey data we
found that there were only ~200 targets in the survey area with signatures well enough separated
to get a good model fit so no selection was necessary. This target set represents ~25% of those
targets with magnetic anomaly > 50nT and/or EM anomaly > 70nT. In our view, this is a large
enough fraction of the total targets to ensure that a representative sample of all targets was
remediated. These targets were flagged and remediated by a commercial UXO firm.

4.2 Physical Setup and Operation

Since this Demonstration was conducted on the Blossom Point site adjacent to where our
equipment is housed, many of the normal pre-survey logistics such as establishment of first-order
GPS markers, transport of the equipment to the site, and equipment setup and testing were not
required. We performed the Demonstration “out of the garage.” In all other ways, this
Demonstration was conducted in accordance with our normal survey practices. The actual
demonstration schedule was:
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Date Activity Required Time
Magnetometer Survey of Fusion Site and Man- .
29 July 1999 portable Extension. 2 hrs Survey Time
3 August 1999 East-West EM Survey of Fusion Site and MP 5 hrs Survey Time
Extension.
= Nor'th-So.uth EM Survey of a portion of the 1 hr Survey Time
Fusion Site
North-South EM Survey of remaining Fusion .
4 August 1999 Site and MP Extension. 4 hrs Survey Time
Data Analysis and Target Classification
-12-13 August 1999  Flag Targets for Remediation. 16 Man Hours
16-18 August 1999  Target Remediation. 12 Man Days

26 August 1999

Required Demolition. 81 Shots on 73 Targets.

5. Performance Assessment

Although not part of the Final Demonstration of this project, data will be presented in this
section that was collected during the development of the algorithms and in the Requirements
Demonstration in February 1999. These data will illustrate the performance of the model
presented here under idealized conditions and will allow useful conclusions to be drawn about
the performance degradation suffered when real-world sensor noise, location uncertainty, and
finite target density are encountered. ’

S.1 Performance Data

5.1.1 Requirements Demonstration
The NRL Ordnance Classification Test Site contains a series of ferrous and non-ferrous shapes,
selected clutter items and inert ordnance buried at known locations, orientations, and depths."
During development of the model, EM induction signatures were acquired for many of the items
to be emplaced in the test field on a laboratory jig that held the items in precisely known
positions and orientations. During the Requirements Demonstration, survey data were collected
on the test field using a variety of deployment approaches and MTADS EM array orientations to
determine the most cost-effective approach for classification. For the purposes of this report, we
will only consider the data set that consists of combined N-S and E-W survey lines. The results
obtained from other combinations of survey conditions are similar.

As an illustration of the performance of the model developed in this work compared to the sphere
model which is the basis of the initial MTA4DS DAS, let us focus on one of the targets in the test
field, an 81-mm mortar at 0.5 m depth. The individual survey tracks over this target are shown
in Figure 4. At each of the locations shown, a reading is acquired from the sensors. The
measured data and model fits from the 33 model and the sphere model are shown in Figure 5 for
each of the two surveys. As can be seen in the left-hand panel of the Figure, the signature from a

9




North-South Survey East-West Survey

1 T i 7! T T U 1 ¥ 1 ¥ L) T T
2F 2 -
1r 1k

E ol E
S 0 ol S 0 .
> > s
[ oo000
At Ak
[—e0ev
L 5 =
2+ 2+ -
1 1 hd N ! 1 1 1 1 1 1
1 2 -2 -1 0 1 2
X(m) X (m)

Figure 4 — MTADS survey tracks over an 81-mm mortar placed pérallel to the surface at a
depth of 0.5 m. The right sensor is represented by green symbols, the center by black and the
left by red.

North-South Survey East-West Survey

] M ] T T M ¥ T i 1 ' T M T v T M i

400 & measured data, d =0.50 m
--+- sphere model,d=091m
| —— Bmodel, d=051m

coil 1 response (mV)

y (m) y (m)

Figure 5 — Measured response and model fits using both the sphere model and the 3B model
developed for this program for an 81-mm mortar at 0.5 m. The color scheme for the three
sensors in the MTADS array is as in Figure 4.
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target oriented along track is the now familiar double-humped shape. This arises from the
varying coupling of the transmitted pulse, as shown in Figure 1, with the target. As the array
approaches a target oriented along track, the coupling with the long axis of the target is strong,
although the distance is large, and the signal is large. Directly over the target, the coupling is to
the short axis of the target and the signal is relatively weak. Of course, the sphere model can not
reproduce this asymmetry. The right-hand panel depicts the target oriented across track. Here

% the sphere modet can reproduce the observed shape but the fitted depths are not correct. The -

’ results are similar for the mortar placed vertically; the shape is symmetric but the sphere model
does not return the correct depth.

An overview of the entire Test Field is shown in Figure 6. The measured anomalies associated
with each of the 61 targets in the test field were isolated and fit to the model as above. Sample
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Figure 6 — North-South EM survey of the Test Field.
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fit results for various test shapes are presented in Table I. Two goals of this test were to
determine how the beta coefTicients varied with object shape and how much measurement errors
would effect the absolute and relative values of the fitted betas compared to those obtained in a
static jig test of the items emplaced in the test ficld.

Table I._Model Fits and Trial Classification of Target Shape for Sample Test Field Targets

Item B1 B2 Bs Classification.
3"d x 6"1 steel cylinder 2.063 1.195 1.100 LONG
3"d x 12"1 steel cylinder 5.74 2.76 2.526 LONG
3"d x 24"1 steel cylinder 8.634 | 4.475 3.828 LONG
8" x 8" x V4" square steel plate 4954 | 4577 1.499 FLAT
4" x 4" x V4" square steel plate 1.142 0.906 0.303 FLAT
12" x 3" x ¥4" rectangular steel plate 3427 | 0.796 0.422 LONG
4.8"d steel sphere 3.093 | 2217 | 2.029 LONG
81-mm Mortar 5373 | 0.842 0.721 LONG
Shovel Blade 6.315 | 5.806 3.386 FLAT

Depending on these two factors, it was initially thought that significant discrimination could be
achieved by simply relating the relative betas directly to object shape, i.e. B1 > B2 = B; implies a
long, ordnance shape and B = 8, > B; implies a flat, debris shape. Overall, we correctly
classified 33 of the 34 targets that were ordnance or ordnance simulants as being long and 10 of
the 25 plate and clutter items as being flat. Thus, using this model we are able to avoid
identifying 40% of the debris as ordnance (false positives) while only missing one ordnance item
(false negative) in this idealized test field.

One problem identified with this simple shape based discrimination arises with rectangular
plates. Despite the distinct relative dimensions of the 12" x 3" x '4" plate in Table I, the range of
measured betas does not directly reflect this: 3.427:0.796:0.422. The relative betas are more
indicative of a long, ordnance type item than flat, clutter item.

The variability of the fitted betas for one of the test targets, a 3"d by 12"1 steel cylinder, at
different depths and orientations is shown in Table II. For each beta, there is a 20-30% variation
about the mean. Related to this is the fit result for a steel sphere in Table I. While it is expected
that the fitted betas should be equal, they are not. The range in the three values is again roughly
25% about the mean. This variation presumably arises from measurement error (sensor noise
and positioning error) and it places a limit on how well the relative beta values can be used to
discriminate shape based on relative values and individual objects based on absolute values.
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Table II. Model Fits for the four 3" D x 12" L Steel Cylinder at the Test Field

B1 B2 Bs Depth (m) Orientation
5.740 2.760 2.526 0.35 Horizontal
3.918 2.733 2.051 0.35 Vertical

3.822 2.052 1.804 0.5 Horizontal
6.297 1.777 1.058 0.5  Vertical

This variability in relative betas is illustrated in Figure 7. The left-hand panel of the figure is a
ternary plot of the betas derived from measurements on the test field objects on a test jig fit
assuming axial symmetry. We did not collect enough data at this time to allow a fit without
assumption of symmetry. As expected, the long symmetric objects (cylinders and ordnance)
exhibit one large beta and two smaller betas and the plates have one small and two large
responses. The right-hand panel shows the same plot for betas derived from the fits to the survey
data. The effect of sensor noise and location uncertainty is to broaden the long objects off the
diagonal and partially confuse them with the rectangular plates.

square plates
rectangular plates
ferrous clutter

]

0 1 20 30 40 5 60 70 8 9 100
B1 B1

Figure 7 — Ternary plots of the relative values of the three betas derived from fits of measured
signatures. The left-hand panel is the result of measurements in a test jig. The right-hand panel results
from field measurements and shows the effects of measurement errors as discussed in the text.

One measure of performance in detection and discrimination problems is a Receiver Operating
Characteristic (ROC) curve. These curves plot the probability of detection (Pp) versus the
probability of false alarm (Pra) as some threshold of detection is varied. In the case of
ordnance/clutter discrimination, the curve plots the probability of correctly identifying an
ordnance item as ordnance versus the probability of incorrectly identifying a clutter item as
ordnance. The threshold level that is varied is the range of the discriminating fit parameter. A
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ROC curve for this analysis methodology can be generated by creating an area with 3; > 40 and
B2 = B3 and then progressively expanding the width of this area. This ROC curve is shown in
Figure 8. Approximately one third of the false alarms can be eliminated without reducing Pp.
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Figure 8 — ROC curve generated using 3 analysis on the
survey data from the Ordnance Classification Test Field.

For all 61 targets in the test field the model-derived locations were a fraction of the data spacing
(0.15m along track and 0.5m sensor separation). Depth estimates were a fraction of the object
size. For most targets the derived orientations agreed well with the known values. The
exceptions were symmetric objects oriented vertically. These targets should have a symmetric
anomaly. At the time these data were collected, we had a small timing error among the three
sensors in the array. The result of this timing error was to introduce some artifact asymmetry
into the anomalies. This timing error has since been eliminated.

5.1.2 Final Demonstration
After completion of a magnetometer and two EM surveys in perpendicular directions, 201 targets
were analyzed and marked for remediation on the L Range Final Demonstration site. An
abbreviated version of the MTADS target report for these items is attached as Appendix C. A
more complete version of the report with positions in absolute coordinates and the results of the
trial 2P analysis has been provided to IDA and is available from the authors.

A total of 188 targets were recovered from this test area. Examples are pictured in Figure 9.
There were 66 ordnance items, 20 ordnance related items, 66 exploded fragments, and 36 items
not related to ordnance. The ordnance items broke down into three groups: 48 81-mm mortars, 8
mortars of smaller sizes, and 10 miscellaneous ordnance items. The miscellaneous items
included 2 bomb fuzes, a 76mm projectile, and two 5-in rockets. The ordnance related items
were rocket motors with fins and mortar tail booms. The exploded fragments appeared to be
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Figure 9 — Examples of the items remediated during the Final Demonstration of the program.
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mostly from mortars. The non-ordnance items included cable tie down points for test towers that
had been removed, block and tackles from the cables, and a variety of odd scraps of metal (rebar,
sheet metal, angle iron, and bolts). We will concentrate our initial discussion on the 81-mm
mortars as they provide the best fit statistics. After remediation, three of what proved to be 81-
mm’s (targets 166, 171, and 178) were found to have 3f fits in which the primary B was very
large and one of the secondary B’s was near zero. Re-inspection of the survey data showed that
this resulted from a large zero offset between the two perpendicular survey tracks. After
correcting for this offset, reasonable B fits were obtained for these objects. The parameters of
these corrected fits are listed in Appendix C and used in the analysis that follows.

The results of the three-beta fits for the 81-mm’s are shown in Figure 10. The values of the
primary beta (largest) are plotted on the x-axis. The two smaller betas are plotted on the y-axis,
where the symbol in the plot represents the average of the two and the vertical line represents the
spread between the two values. We want to preserve the magnitude of beta, which was lost in
the ternary plots used above. We find this to be an easier way to visualize the spread in the data
than plotting the points in three dimensions. Note that if the fit results were perfect (no
measurement errors) then the data would all be symbols with no vertical line (secondary betas
are equal for axisymmetric objects).
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Figure 10 — Two-dimensional representation of the three beta fits for the 81-
mm mortars in the Final Demonstration. The value of the primary beta
(largest) is plotted on the x-axis. The two smaller betas are plotted on the y-
axis, where the symbol represents the average and the vertical line represents
the spread.

The three beta values are best described by a log-normal distribution. In logarithmic quantities,
the mean is 0.6970, 0.3183, and 0.3098 with standard deviations of 0.2, 0.09, and 0.13 for By, B2,
and B3 respectively. In measured units, this corresponds to an average response of 4.98 along the
length of the mortar and 2.0 transverse to this. Note that the value range from 2 to 12 along the
primary axis, which is much greater than the 20-30% observed for objects in the test field. Itis
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thought that this enlarged spread is largely due to positioning errors in height as the array is
towed over the uneven ground of a live site. We will discuss this point in more detail later in the
report. The ellipse plotted in Figure 10 represents a three dimensional ellipsoid with major and
minor radii that are equal to two standard deviations of the primary and secondary betas. The
ellipse is tilted because of a weak correlation between the primary versus the secondary betas
(stronger primary betas have stronger secondary betas). As we will show below, this ellipsoidal
curve can be uséd to calculate the probability that a given beta fit represents an 81-mm mortar.

The three beta fit results from the other ordnance items recovered at the L Range are plotted in
the left panel of Figure 11. The approximate primary versus secondary beta values range from
0.7/0.5 for the bomb fuze to 178.0/62.0 for the 5-in rockets. A similar plot for the fragments, the
ordnance related scrap, and the non-ordnance scrap is presented in the right panel of Figure 11.
It is interesting to note that the bulk of the fragments do not overlap the 81-mm mortars. One
would expect that a large spread in the secondary betas should result from an irregularly shaped
object. Overall, the spread observed in the right panel of Figure 11 is not much worse than the
spread for the axisymmetric ordnance objects (Figure 10 and left panel of Figure 11). After
examining photos of the objects dug, this is not too surprising. Most of the scrap is to first order
elongated, with approximately equal secondary dimensions.
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Figure 11 — Two-dimensional representation of the three beta fits for targets from the Final
Demonstration plotted as in Figure 10. The left panel shows the results for all other ordnance
recovered from the site, and the right panel those for the scrap and clutter recovered.

Examples of ROC curves based on the L-Range data are shown in Figures 12 and 13. To
generate these curves, the ellipsoid in Figure 10 is grown larger (in three dimensions) and the
number of ordnance (PD) and non-ordnance (FA) betas that fall within this three dimensional
region are counted. Figure 12 plots the results for a single 81-mm ellipsoid. In Figure 13,
ellipsoids are generated about each of the ordnance items present. The sizes of these ellipsoids
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are grown uniformly based on the standard deviations and correlations of the 81-mm betas; too
few of these other ordnance items were fitted to generate valid beta statistics. This is illustrated
on the familiar beta plot in Figure 14.
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Figure 12 — ROC curve for the detection of 81-mm mortars
from the Final Demonstration
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Figure 13 — ROC curve for detection of all ordnance at the
Final Demonstration
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Figure 14 — Two-dimensional representation of the three beta fits to all targets
from the Final Demonstration with ellipses for each ordnance class derived
from the 81-mm mortar ellipse

The discrimination performance for a single ordnance item, 81-mm mortars, matches that -
observed in the test field. We achieve a roughly 40% reduction in false alarms without
impacting Pp. The story is more complicated when trying to discriminate several classes of
ordnance from the background clutter, Figure 13. In order to identify the small fuzes in this field
as ordnance, a large number of clutter items have to be included. In part, this is the inevitable
result of trying to discriminate ordnance ranging in size from fuzes to 5-in rockets from clutter.
This difficulty may be mitigated by obtaining more data, hence better fit statistics, on the smaller
ordnance items. Using the error ellipsoid derived from the distribution of 81-mm mortar fits, as
we were forced to do, may well overstate the region of the 3-D space occupied by the smaller
ordnance items. As we obtain more model fits to remediated ordnance and improve our fit
statistics we will be able to test this notion.

5.2 Data Assessment :

The survey data-collected at the Final Demonstration of this program were of sufficient quality to
meet the goals of the Demonstration. We were able to increase the discrimination available
using MTADS EM induction survey data. Several features of the data limited the classification
ability however. We showed in the Requirements Demonstration that sensor noise and sensor
location error limited the estimated betas to a precision of ~25%. Some improvement is possible
in this regard but not a lot. The GPS units used for sensor location on the MTADS array are
state-of-the-art receivers with cm-level precision. Because of the response of the EM-61 sensors
to the GPS antenna, the antenna is located ~1.5 m in front of the sensor array. Although the
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antenna location is known to centimeters, there is some location uncertainty introduced by the
back projection of the sensor locations from the antenna position. A two-antenna array, witha
GPS antenna in front of and behind the EM sensors, would reduce sensor location uncertainties.
At the time of this Demonstration, this would have involved the purchase of another independent
GPS receiver/radio combination. Now, because of the demand from the mining and construction
markets, dual antenna systems are available for a modest increase in price. Sensor noise is a
different issue.-Progress here requires a new generation of EM induction sensors.

Compared to the data collected during the Requirements Demonstration, there was a further
decrease in the precision of the fitted beta values during the Final Demonstration. We attributed
this above to vertical motion of the EM array over the rough ground at the live site. In an
attempt to provide some quantitative underpinning to this assertion, we have performed a Monte
Carlo simulation of the fitted response of an 81-mm mortar simulant with varying sources and
magnitudes of noise. The object used in the simulation had a primary beta of 5 and two
secondary betas of 2,-about that expected for an 81-mm mortar. The object was placed at a
distance of 0.6 m from the sensor array and given a random X,y position relative to the survey
tracks and a random orientation. Each simulation included real MTADS GPS and sensor noise.
The results of this simulation are shown in Figure 15. The top panel shows the results using only
GPS and sensor noise. In this case, the fitted betas exhibit just the precision observed in the
Requirements Demonstration, ~25%. For the simulation depicted in the bottom panel of Figure
15, a component of sensor height variation was added to simulate array bouncing over rough
ground. We find that red noise with an RMS amplitude of 3 cm reproduces the spread in betas
observed in the Final Demonstration. This is easily within the realm of possibility; the MTADS
EM array platform does not have a suspension and is observed to bounce in rough terrain.

The terrain at the L Range demonstration was not especially rough for a live-site demonstration;
MTADS has been demonstrated at several sites with much more challenging terrain. Therefore,
to take advantage of the shape information inherent in the response of targets to the EM-61 array,
better control of vertical displacements will be required. One option is to add suspension to the
array platform. Another, possibly more effective, method would be to record the displacements
of the array using inertial sensors and explicitly account for the position of the array in three
dimensions in the data analysis procedure.

5.3 Technology Comparison

The obvious baseline for comparison of the value of the technology demonstrated here is the
current MTADS. As mentioned above, the baseline MTADS is able to achieve a reasonable level
of discrimination using magnetometry fits alone, especially when the ordnance distribution is
limited. We will thus compare the results obtained in this demonstration with those that would
be obtained by MTADS at the same site. To accomplish this, we have made use of the fitted mag
“size” parameter that is included in the target report in Appendix C. For each ordnance class, we
calculate a mean “size.” Just as in the case of the 3-beta algorithm, we are able to calculate a
distribution about this mean for the 81-mm mortars. We use the 81-mm distribution to generate
a proportionally sized distribution for each ordnance class. The distributions derived are listed in
Table I
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Figure 15 — Results of a Monte Carlo simulation of the fitted betas resulting from a range of
model 81-mm mortars. The top panel includes MTADS GPS and sensor noise only. The
middle panel adds vertical noise to simulate bouncing of the array over rough terrain. The
lower panel shows results from the Demonstration for reference.
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Table III — Size Distributions used in Magnetometer Analysis of the Final Demonstration

Ordnance Class | Size Distribution (mm) | Ordnance Class | Size Distribution (mm)
Fuzes : 439 81-mm mortar 76 £16
Mk23 56 £ 11 105-mm projectile 105 £ 21
60-mm mortar 60 12 5" rocket 212 £42

We can then generate a ROC curve for this method by varying the width of the distribution
around each ordnance class and declaring each target as ordnance (within the six size bands) or
clutter. The result of this analysis is plotted in Figure 16. Also plotted in the Figure is a curve
generated by enhancing the magnetometry analysis by taking advantage of the fitted magnetic
dipole orientation for each target. This enhancement relies on the observation that UXO targets
have, in general, been shock demagnetized by their impact with the ground and only exhibit
induced magnetic moments while fragments and clutter have remanent moments. This was the
case for the ordnance recovered at the L Range, only one of the 73 items considered had a
magnetic dipole orientation not consistent with an induced dipole only. Note that this method
does not automatically eliminate all items with a remanent moment, only those whose net dipole
orientation is outside that expected from an item with an wholly induced dipole.
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“ Figure 16 — ROC curve for classification at the L Range comparing
the results obtained with the 3-beta algorithm to those using
magnetic dipole "size" and dipole orientation enhancements

The magnetic dipole “size” suffers from many of the same problems as the 3-beta algorithm
when attempting to discriminate all ordnance. In order to capture the fuzes, a large number of
small frag items must be included. The magnetic dipole orientation filter helps greatly in this
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regard as a good number of the frag items are magnetized and are thus correctly identified as
clutter.

It is difficult to compare the performance of the analysis of EM-61 data presented here with that
of other sensors and analysis methods. As we have shown, the current procedure gives excellent
results in the test jig and reasonable results at our Test Field, which is a smooth, clean, and level
site. The onlylegitimate comparison is to results obtained by competing technologies on live-
site surveys. As these data become available, direct comparisons will follow.

6. Cost Assessment

6.1 Cost Performance
The estimated costs for an MTADS EM survey in two directions and the data analysis required to
implement the model described here for a hypothetical 200 acre survey are listed in Table IV.

Table IV — Estimated Costs for a Hypothetical 200-Acre Survey Using These Methods.

Mobilization and Logistics Survey and Analysis Demobilization
Activity $K Activity $K Activity SK
Ié‘(‘;‘l‘l‘;f;%mazd 10 | Surface Clearance 30 | Site Cleanup 10
Equipment Transport 5 Field Surveys 200 | Demobilization 5
Storage and Offices 5 Data Analysis 25
Power and Fuel 3 Target Flagging 25
Miscellaneous ' .
Total - 25 Total 280 Total 15

Note that the survey costs include two EM surveys only, no magnetometer survey is included. If
large, deep targets were expected a magnetometer survey would be required and an additional
$80K would be necessary. Since two perpendicular EM surveys are included in the estimate
while only one would be required for target detection, it is clear that the added cost of these
methods is $500 per acre. This is approximately equal to the costs required to remediate three
targets per acre. Thus, the economic breakeven point for the use of these methods is reached
when three false alarms per acre are avoided.
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7. Technology Implementation

7.1 DoD Need
Past DoD activities have contaminated large tracts of land and water with UXO. It is estimated

that there are millions of acres of suspect land and there are 600 FUDS and 44 BRAC sites
requiring remediation. This UXO contamination prevents civilian use of the land and will thus
require remediation. Approximately $125 M/yr is being spent in the FUDS and BRAC process.
Thus, this is a large problem for the DoD and one where R&D efforts can be repaid many times
over.

The cost of a current technology UXO remediation operation is driven by false alarms. The
Army Corps of Engineers has estimated that during the clean up of a heavily contaminated 5000-
acre site, 76% or $22.8M of the required funds goes to non-UXO removal. Obviously, any
techniques that can reduce this false alarm problem should be investigated.

7.2 Transition :

The baseline MTADS technology has been transitioned via a Cooperative Research and
Development Agreement between NRL and Blackhawk Geometrics of Golden CO. Blackhawk
has replicated both the magnetometer and EM arrays using the engineering drawings and plans
provided to them under a license agreement from NRL. The baseline MTADS data analysis
system was also transitioned using this agreement. Both Blackhawk and NRL have continued to
improve the data analysis system both jointly and independently. For example, both groups are
now running the DAS on a LINUX-based PC instead of the older UNIX work stations. Both
groups have also worked over the past two years to extract classification information from EM
induction survey data. This program is an example of these efforts.

The results of this program have been, and will continue to be, communicated to the UXO
community through presentations and publications. There have been several presentations each
of the past two years at the UXO Forum and we plan to present a wrap-up talk next year. We
have submitted a paper on these methods and the results of the Demonstrations to the upcoming
special issue of the IEEE Transactions on Geoscience and Remote Sensing on UXO. By these
means, we mean to keep the entire community of time-domain EM induction sensor users
informed of our progress, not just the users of the commercial MTADS.

The fitting methods from this program will be used in part during the Jefferson Proving Ground
Demonstration in late Summer 2000. This should provide a good test of these methods at a blind
ordnance detection/classification exercise. If they prove successful, we are confident “they will
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Fax: 202-404-8119
j.mcdonald@nrl.navy.mil
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Mr. Jack Kaiser Site Manager Tel:  301-870-2329
Fax: 301-870-3130
jkaiser@arl.mil
Mr. Bill Davis Explosives Safety Officer Tel:  301-394-2434
Fax: 301-394-2514
wdavis@arl.mil
Hughes Associates, Inc.
L
Mr. Richard Robertson Program Manager Tel:  202-767-3556

Fax: 202-404-8119
roberts5@ccf.nrl.navy.mil



GeoCenters, Inc.

Mr. Larry Koppe

AETC, Inc. =:

Dr. Tom Bell

Dr. Bruce Barrow

Site Safety Officer

Project Manager

Project Scientist

Tel:  301-753-1690
Fax: 301-870-3130
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Tel:  703-413-0500
Fax: 703-413-0505
tbell@va.aetc.com
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Appendix B. Data Archiving and Demonstration Plan

MTADS survey data are collected as a collection of data files each containing the time-stamped
(DAQ computer time) input stream from the individual sensors. These input streams include
GPS UTC time, GPS pulse-per-second (PPS), GPS position, sensor trigger, and sensor input
data. After transfer of the files to the MTADS DAS, the data undergo a preprocessing step in
which all times are corrected to UTC and the individual sensor positions are interpolated from
the measured positions vs. time in the GPS position file. Magnetometer data are then corrected
by removing the diurnal variation of the Earth’s field as measured by a reference sensor located
near the survey site and the heading error resulting from residual vehicle signature. EM data
have the long term baseline drift of the sensors removed by subtracting a 1000-point running
median from the data. At this point, the survey data are available as background-corrected, geo-
referenced, mapped data files.

Both the raw input data files and an ASCII version of the mapped data file are archived. The
preprocessed data file is most useful for other investigators and these files are maintained on a
CD-ROM by the principal investigator. These data files and a copy of the approved test plan are
available by contacting Herb Nelson at herb.nelson@nrl.navy.mil.
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