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1. Background and Goals 
 
A primary goal of the UXO research community is to develop technologies that detect and localize 
buried UXO, and that discriminate them from clutter.  Electromagnetic sensors such as EMI systems 
operate by detecting the presence of an anomalous electromagnetic field that could be caused by buried 
UXO.  Physics-based modeling and analysis procedures, developed under previous SERDP and ESTCP 
funding for electromagnetic induction and magnetometer sensor data of isolated targets, have been 
shown to discriminate UXO from clutter based on the derived source parameters for spatially discrete 
target signatures.  However, many real world UXO remediation sites contain highly-contaminated 
regions with high density of anomalies, both UXO and clutter.  In these cases, where the signatures from 
multiple targets overlap, whether or not they are UXO, the standard procedures do not work well.   
 
The primary problem with overlapping signatures is that conventional inversion procedures assume a 
single source whose signature is spatially separated from other signatures.  Currently, analysts attempt to 
isolate anomalies by carefully selecting the data to be inverted (usually by manually inspecting a two-
dimensional plot of the anomaly and carving out two separate regions of data) and assuming that the 
selected data reflect the signature caused by a single source.  This is time-consuming, requires a good 
deal of experience, and is not very effective.  Better methods are needed to extract the individual target 
parameters from a multiple target signature. 
 
The goal of this project was to develop advanced iterative techniques for inverting magnetic and 
electromagnetic data for situations in which the signatures from two targets overlap.  After developing 
the methodology, the algorithm(s) would be tested first on synthetic data without any added noise.  The 
synthetic data would be used to systematically vary the parameters of the two targets by changing their 
depths, the distance between them and their relative orientations.  Later, controlled test data would be 
used to further validate and test the algorithms in real-life situations. 
 
3. Technical Approach 
 
3.1 General Inversion Methodology 
 
For UXO detection and discrimination, models are fit to survey electromagnetic or magnetometer data 
using indirect (iterative) inverse methods.  These all follow the common process in which (1) model 
parameters are input to a forward model, (2) output is compared against observed data and used to find a 
figure of merit (commonly chi-squared error), which is (3) used to generate a new set of model 
parameters (guesses) for the next iteration.  Successive iterations lead to improved fits, until an optimum 
fit (locally optimum, at least) is found.  Because this iterative inversion is performed many times, a fast 
algorithm is desired. 
 
electromagnetic data  Our method for electromagnetic data, like almost all inversion routines, uses the 
dipole approximation.  Each target is completely characterized by three positions (xo,yo,zo), three angles 
(φ,θ,ψ), and 3*Nt betas (β1(ti), β2(ti), β3(ti)), where Nt is the number of time gates for the sensor.  The 
betas are the eigenvalues of the symmetric effective magnetic polarizability tensor, and represent the 
response of the target along its three principal axes.   
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We can reduce the number of fit parameter by making use of the fact that the modeled sensor response is 
linear in the betas.  We perform a non-linear Levenberg-Marquardt [1] inversion on the position and 
angles, with an embedded linear determination of the β’s at each iteration.  We note that this method 
produces one set of positions and orientations for all time gates.  The algorithm continues until the χ2 fit 
between the predicted and measured response at successive iterations changes by less than a set 
tolerance. 
 
Initial guesses must be provided for the 6 spatial parameters.  We set all three angles to 45°.  The 
position parameters xo and yo are determined from a signal-weighted mean of the measurement 
locations.  Previous experience with this method has shown that the final results depend most strongly 
on zo, since some initial choices for zo lead to local, rather than global, minima.  It was therefore decided 
to loop over several different initial guesses for zo that covered a reasonable range for the targets.  The 
results with the smallest mismatch between measured and modeled data (i.e., best χ2) is chosen as the 
solution. 
 
magnetometer data  Two methods were considered for the inversion of magnetic data.  In both cases, 
the target is characterized by three positions (xo,yo,zo), two angles (dec,inc) for the orientation of the 
induced dipole (assuming an axisymmetric target), and the radius (a) of an equivalent sphere.  In the first 
method, the algorithm first fits the shape of the footprint, then its magnitude.  Initial guesses for the fit 
parameters are determined internally within the code based on the measured signature.  Tests on 
synthetic, noise-free data did not produce excellent results for this method.  This second method is a 
two-stage approach, in which output from the first stage is used as input for the second stage.  The first 
stage provides a coarse estimate of target location using a simplification of the problem, which cuts the 
number of fitted variables in half, and the second stage provides a more precise solution using the full 
parameterization of the problem.  The presence of the first stage effectively makes the algorithm robust 
against local minima and poor guesses for the initial parameter values, which, unlike the first algorithm, 
are provided by the user rather than calculated internally. 
 
The first stage uses the assumption that the dipole field D from the target is much weaker than the 
Earth's field BE at all measurement locations (valid only if the sensor is not too close to the target), so 
that the magnitude of their vector sum is approximately equal to |BE| plus the component of D that lies in 
the direction BE.  This allows a linear solution of dipole strengths along the coordinate axes so that the 
fitted parameters are reduced to only the 3 positions.  Within each iteration of the loop, the x-, y-, and z-
components of the best-fit target dipole (Mx, My, Mz) are determined through linear regression on the 
data.  At the end of the process, the best-fit inclination and declination are derived from (Mx, My, Mz), 
and fed into the 2nd stage as a starting point. 
 
The second stage executes a non-linear search on six parameters: the three positions, two angles, and a 
scalar offset applied to the whole data set to account for various problems (e.g., drift in the earth's field 
strength or local geologic anomalies).  The magnitude, and therefore, the equivalent sphere radius, is 
determined through scaling.  This two-stage method was found to give better inversion results on noise-
free synthetic data than the first method, and was used to produce all the magnetic results discussed for 
this project. 
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3.2 Two-Dipole Fit Methods 
 
The general inversion methodology described 
above is followed for any data, whether fitting a 
single target or multiple targets.  For data that 
potentially contains two dipole signatures, 
however, the fit algorithm must account for the 
multiple sources.  We developed a two-dipole 
iterative residual routine for this fit and then, to 
improve on the performance, developed a 
simultaneous two-dipole fit algorithm (called 
“double happiness”). 

3.2.1 Two-Dipole Iterative Residual Fit 
Procedure 
We assume that two dipoles produce an 
overlapping signature that can be generated by 
adding individual anomalies (i.e., there is no 
coupling between the targets).  The iterative 
residual fit routine is a straightforward approa
decomposing the measured response field into two
as shown in Figure 1.  The anomaly data is inverted
parameters that represent this dominant source are
parameters is subtracted from the original data and
source.  If one is detected above the background
modeled signal subtracted from the total anomaly,
This basic loop is repeated until the summed fit of
some specified tolerance.   
 
As will be seen in Section 4, this method was o
noise, for objects with lateral separations of at least
the nature of the method tends to favor cases wit
dipoles are much harder to fit accurately.  Second, 
nested iterations required.  A different method, 
proved to be more effective.   

3.2.2 Double Happiness Algorithm 
This approach developed a simultaneous two-dipo
not require the extra iterations of the two-dipole it
Here, the measured anomaly is fit directly by two
double happiness algorithm is applied in this projec
 
The approach taken by this algorithm for electro
tensor, representing the coefficient of proportiona
induced dipole.   Since the predicted signals are 
linearize most parameters and solve for them dire
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Subtract forward  model(s) 
of residual source(s).  
Skipped if initial pass

Find dominant dipolar 
signature and invert for 
model fit parameters

Calculate the forward 
model using the derived 
fit parameters and 
subtract it from the 
original input data

Evaluate residual response.  
If additional dipolar 
responses are observed, 
invert the residual response 
for additional source 
parameters.  Exit if residual 
response is below a user-
defined threshold
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Calculate the forward 
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fit parameters and 
subtract it from the 
original input data

Evaluate residual response.  
If additional dipolar 
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invert the residual response 
for additional source 
parameters.  Exit if residual 
response is below a user-
defined threshold

     Figure 1.  Logic flow for the two-dipole iterative     
     residual fit algorithm. 
ch to disentangling an overlapping signature by 
 dipole sources by multiple sub-iterative subtractions, 
 to determine the dominant dipolar source and model 
 estimated.  A forward model using these estimated 

 the residual is examined for the presence of a second 
 noise, the residual is fit as the second dipole, its 

 and this new residual is again fit as the first dipole.  
 the two dipoles matches the total anomaly to within 

nly moderately successful on synthetic data without 
 40 cm, and it suffered from two shortcomings.  First, 
h one strong and one weak dipole; two nearly equal 
the method is relatively slow, since there are multiple 
described in the next section, was investigated that 

le inversion (called “double happiness”), which does 
erative residual method and is therefore much faster.  
 dipoles, with the fit iterating to convergence.  The 
t to both electromagnetic and magnetometer data. 

magnetic data is to express the target response as a 
lity between the illuminating field and the resulting 
linear with elements of the response tensor, we can 
ctly in each iteration of the search loop.  Nonlinear 
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search is applied only on target locations (x, y, z for both targets; 6 parameters total), and the elements 
of both response tensors are solved for directly in each iteration.  This assumes only the dipole model 
approximation.  The tensors are symmetric, so six values define each completely and the target 
orientation angles and beta values (response coefficients) are expressed within the elements of this 
tensor.  For a two-dipole solution, 12 parameters are found using linear methods in each iteration.  After 
iteration is complete, rotation matrices are found that diagonalize the tensors, revealing target 
orientations.  This approach cuts parameters in the nonlinear search down to 6.  A similar approach is 
used for magnetometer data. 
 
An interesting side effect of this approach is that the rotation matrices may define different dipole 
orientations for different time gates.  This can be a physically real effect for an isolated target, since 
different parts of some targets at some orientations can have different time decays, but can also be an 
indicator of overlapping targets within the signature. 
 
4. Performance on Synthetic Data 
 
4.1 Synthetic Data Generation 
 
Synthetic data sets for testing the two-dipole fit algorithms were created using a Monte Carlo approach.  
The advantage of a Monte Carlo method is that any number of target types, target combinations, target 
orientations, relative distances and depths can be chosen for analysis and comparison.  We randomly 
chose two targets from a pool of six UXO targets and varied their separation, depths and orientations. 
 
All data sets were generated on a 9m x 9m grid, with a transect spacing of 0.25m in both x and y.  The 
targets were created using the forward dipole models of the inversion algorithms.  The models were 
based on a total field magnetometer and an EM61 sensor.  (The electromagnetic runs used an EM61MkI 
for the iterative residual method and an EM61MkII for the double happiness algorithm.  This can affect 
the performance comparisons, as discussed later.)  The size of the magnetic targets, and the betas for the 
EM targets, were chosen to roughly correspond to 20mm, 40mm, 57mm, 81mm, 105mm, and 155mm 
ordnance.  For each data set, two of the target types were randomly paired.  The target depths were 
random, but were constrained to fall between 0 and the rule of thumb for the maximum penetration 
depth for that target (11 times the diameter) as determined by the CORPS DID OE-005-05.01.  The 
target orientations were random and unconstrained.  Target separations in the xy-plane were distributed 
from 0.1m to 2m, equally divided among 4 bins (0.1-0.3m, 0.3-0.7m, 0.7-1.2m, and 1.2-2m).  No noise 
was added.  For electromagnetic and magnetic cases, 2000 data sets were produced, with 500 in each 
lateral separation bin. 
 
4.2 Performance of the Iterative Residual Method 
 
We applied the iterative residual method to the 2000 synthetic data sets described in the previous 
section.  Preliminary testing showed that while one could use the entire grid for inversion of magnetic 
targets, it was often necessary to manually specify subsets of the grid for the more widely separated EM 
targets (i.e., draw polygons in a manner similar to the traditional method).  This is because the algorithm 
has difficulty when it is forced to fit two roughly equal targets with only one dipole (in the first 
iteration).  This may be a serious problem with the method and, if it performs well, must be addressed in 
the future.  Because of this, only 80 cases were used for the EM data. 
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Figures 2 and 3 show the synthetic data results for the iterative residual method on magnetic and 
electromagnetic data, respectively.  Shown are plots of the errors (averaged over both dipoles) in the 
derived target parameters (x, y, depth, relative size and enclosed solid angle), as a function of the 3D 
separation of the targets.  The total coherence for the two-dipole fit to the data is also shown.  The size 
parameter shown for the EM fits is derived empirically for the EM61MkI and is given by 
Size=0.05*(β1+β2+β3)1/3.  
 
Figures 4 and 5 plot the same errors versus the lateral separation instead of the 3D separation.  
Differences are slight, but they show that the errors for 3D separation greater than 1m are due to depth 
differences rather than horizontal separation, which agrees with our physical understanding of the 
problem.  The iterative residual method starts to have difficulty at separations about 1m, although there 
are many cases that give good results at much smaller separations.   
 
We also tested the iterative residual algorithm on an artificial signal created by taking magnetic and 
electromagnetic measurements in air of an isolated horizontal 81mm target and an isolated vertical, 
nose-up 155mm target for separation, adding them together to create artificial magnetic and 
electromagnetic overlapping signatures, and then increasing the lateral separation in increments of 
0.25m.  Figure 6 demonstrates the performance of the iterative residual method on magnetic and 
electromagnetic artificial signals as a function of lateral separation of the two targets, and also compares 
it to the traditional method, in which polygons are defined manually to delimit the range of each target’s 
footprint.  The plots show the fitted positions and the total coherence of the two-dipole fit to the data as 
a function of lateral separation.  For the magnetic signal, the fitted size is proportional to the amplitude 
of the signal.  For the EM plots, the beta sum is formed by simply adding the three betas, and is an 
indicator of target size.  The beta aspect ratio is formed by dividing the longitudinal beta by the 
transverse beta, and is an indicator of target shape.  In each plot, the correct parameter values are plotted 
as dashed lines, and the derived values as squares.  In the results for the traditional method, green 
squares are used when the targets are too close to discern the presence of two objects and the fit is for 
one dipole. 
 
For this pair of targets, the iterative residual algorithm performs much better than the traditional method.  
The latter cannot distinguish overlapping dipoles at lateral separations less than one meter, and even for 
separations larger than one meter, especially for the EM signal, the derived values are not very accurate.  
The iterative residual method, on the other hand, can distinguish the two dipoles at lateral separations 
less than 50cm.  However, as expected, the iterative residual inversion performs poorly for very small 
separations, where the two signatures begin to merge into one and it becomes difficult for the algorithm 
to distinguish the two dipoles.  Because the iterative residual method was tested on EM61MkI synthetic 
data, which has measurements at a single time gate, it was not unexpected that it had trouble 
distinguishing the two dipoles at very close ranges.    
 
4.3 Performance of the Double Happiness Method 
 
The double happiness algorithm was developed as an alternative method for discrimination of multiple 
targets at close separations.  Results of this algorithm are shown in Figures 7 and 8 for magnetic and 
electromagnetic synthetic data, respectively.  The same errors in x, y and depth are plotted, as well as the 
overall coherence of data with the two-dipole solution.  For the EM data, response betas were fixed for 
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each target and the percent of correct solutions are plotted as a function of 3D separation; they range 
from 86% to 100%. 
  
Comparing Figures 2 and 7, and Figures 3 and 8, it is clear that, for synthetic data without any added 
noise, the double happiness method performs excellently, and much better than the iterative residual 
method.  Ground truth target parameters were derived with exact agreement in 98% of the cases), 
although there is still a trend of worsening results with decreasing 3D separation.   
 
The difficulty with the comparison of results for the iterative residual and double happiness methods on 
EM synthetic data (there is no problem for magnetometer data) is that the former was tested on an 
EM61MkI data set and the latter on an EM61MkII data set.  Since the MkII version of the EM61 takes 
measurements at three time gates, it is possible that this improves the performance of the algorithm.  
However, this is a potential, partial, explanation of the results only if the later time gates contain 
sufficient signal to affect the fits.  Our experience has been that the signal falls off fast enough with time 
that this is not often the case, unless the time gate response is weighted toward the later measurements. 
 
While performance results as a function of horizontal separation are not available, we expect it to 
improve, especially the EM case, equivalent to the change in the iterative residual algorithm. 
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             Figure 2.  Two-Dipole Iterative Residual method on magnetic synthetic data, 2000 cases. 
                             All quantities are plotted versus 3D separation. 



 

 
 
             Figure 3.  Two-Dipole Iterative Residual method on electromagnetic data, 80 cases.   
                              All quantities are plotted versus 3D separation. 
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                    Figure 4.  Two-Dipole Iterative Residual method on magnetic synthetic data, 2000 cases.   
                   All quantities are plotted versus separation in the horizontal plane. 
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                   Figure 5.  Two-Dipole Iterative Residual method on electromagnetic synthetic data, 80 cases.   
                   All quantities are plotted versus separation in the horizontal plane. 
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        Figure 6.  (left) The performance of the iterative residual method on a single artificial signal from  
        two UXO as a function of horizontal separation.  (right) The performance of the traditional method  
        of manual definition of polygons to delimit the range of each target. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
               Figure 7.  Double Happiness method on magnetic synthetic data, 2000 cases.   
                                All quantities are plotted versus separation in the 3D plane. 
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            Figure 8.  Double Happiness method on electromagnetic synthetic data, 2000 cases.   
                            All quantities are plotted versus separation in the 3D plane. 
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5. Performance on Real Data 
 
5.1 Data Description 
 
Measurements of actual ordnance and clutter items 
were conducted by NRL at Blossom Point with a total 
field magnetometer, an EM61-MkII, an EM63 and a 
GEM-3.  Four different types of ordnance were used 
(40mm, 60mm, 80mm, and 105mm), along with four 
pieces of actual clutter and two clutter clouds meant to 
simulate metal fragments.  In addition, each of the 
targets was measured individually, with the ordnance 
positioned in three orientations (horizontal, vertical 
with nose up, and vertical with nose down).  Finally, a 
background measurement was taken with no target 
present.  Figures 9 and 10 show the library signatures obta
 
In Figure 10, the plots show the 
longitudinal beta versus the 
average of the transverse betas 
for items measured singly.    The 
“error bars” show the values of 
the transverse betas. Note that 
the ordnance has essentially 
equal transverse betas, implying 
a rod-like shape. The diagonal 
line represents equal longitudinal 
and transverse betas. 
 
Approximately 70 different two-
item combinations of these 
targets were measured, using 
various horizontal and vertical separations and target orie
3D separations achieved. 
   
Unfortunately, these measurements were obtained 
prior to the synthetic runs, so our growing 
knowledge of the problem area to investigate (i.e., 
small lateral separations) could not be taken into 
account when the data collection was planned.  As 
a result, the database contains a range of target 
separations in depth but the lateral separations 
were quite small, with the vast majority having 
zero lateral separation.  The largest lateral 
separation was 0.5m, and this occurred in only 
four cases.  Indeed, in no case can the eye discern 
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the presence of two targets from the measured signatures.  
 
5.2 Results for the Iterative Residual Method 
 
The iterative residual algorithm was used on 68 of the experimental setups from Blossom Point.  The 
first step was to subtract the background from the measurements prior to fitting.  Next, the overlapping 
targets were inverted using the iterative method and the fit parameters for the two resulting dipoles were 
then compared with the ground truth for the targets.  As expected, the match was generally poor, with 
the EM results slightly better than the magnetic.  There were two general outcomes.  The majority of 
signatures were fit by one dipole, with a second, deep dipole acting as a perturbation but contributing 
little to the total signal.  Effectively, then, in these cases the signal is being fit by a single dipole because 
the targets are too close to distinguish and, it is interesting to note, that the total fit coherence is often 
quite high for these false solutions.  A minority of the fits contained two dipoles, nearly opposite in 
orientation, with minor differences in size and depth. 
 
Figures 12 and 13 show the EM results for the four experiments with 0.5m horizontal separation of the 
objects.  For these experiments, the same clutter item Cl-3 was paired with each of the four ordnance 
items placed horizontally.  The plots show the same beta values as Figure 10, with the two specific 
targets used for each experiment circled.  The inverted betas using the iterative method are plotted as 
diamonds and shaded yellow for ordnance and green for clutter.  The ordnance betas are well retrieved 
for the 3 largest targets of the 4, and the clutter betas are also well retrieved in 3 of the 4 cases, although 
not for the same 3 cases. 
 

 

   
 
Figure 12. EM61MkII experiments 109 (left) and 110 (right), in which clutter item Cl-3 was paired with the 
105mm ordnance (left) and the 81mm ordnance (right).   
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  Figure 13.  EM61MkII experiments 111 (left) and 112 (right), in which clutter item Cl-3 was paired with   
  the 60mm ordnance (left) and the 40mm ordnance (right).  
.3 Results for Double Happiness Algorithm 

he project was terminated before the final version of the double happiness algorithm could be run on 
he Blossom Point data. 

. Conclusions and Future Work 

he original goal of this project was to develop advanced iterative techniques for inverting magnetic and 
lectromagnetic data for situations in which the signatures from two targets overlap.  The first method 
eveloped was the two-dipole iterative residual algorithm, a straightforward approach to the fit.  A 
econd technique was also developed - a simultaneous two-dipole fit algorithm we call “double 
appiness.”   

n synthetic magnetometer data, the double happiness algorithm performed excellently, and better than 
he iterative residual method.  On synthetic electromagnetic data, the double happiness algorithm still 
erformed better than the iterative residual method, but differences in the assumed sensor (EM61MkI 
ersus EM61MkII) make the direct comparison slightly ambiguous. 

n overlapping signature data collected by NRL at Blossom Point with an EM61MkII, the iterative 
esidual method performed reasonably well for the 4 cases of target pairs separated by 0.5m, but there 
as not enough data with real horizontal separations to adequately evaluate the algorithm.  
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Unfortunately, the project was terminated before we could test the final version of the double happiness 
algorithm on the data. 
 
On the synthetic data it was seen that both algorithms had some difficulty separating two dipoles that are 
very close in horizontal separation, since the signature from the compact targets will appear like a single 
dipole.  Fortunately, this situation is less important in practice than the situation in which a weaker target 
lies some distance from a stronger target, but the two signatures overlap and the weaker target is not 
detected.  In such situations, traditional methods will locate the stronger target, but its excavation may 
miss the weaker one.  In this case, the double happiness algorithm may perform more than adequately. 
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