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Abstract 
 
Buried Unexploded Ordnance (UXO) is a serious and prevalent environmental problem facing 
Department of Defense (DoD) facility managers.  Not limited to active sites and test ranges, 
these problems also occur at DoD sites that are currently inactive and in areas adjacent to 
military ranges that belong to the civilian sector or are under control of other government 
agencies.  The exact amount of land affected is uncertain, but it is generally agreed to be in 
excess of 10 million acres in the continental United States.  Estimated cleanup costs exceed 10 
billion dollars.  Over the past decade, SERDP and ESTCP have invested heavily in developing 
survey data analysis and processing techniques for use with commercial and custom sensor suites 
that improve the detection, characterization, and classification of UXO and anthropic clutter.  
These techniques include procedures for quantitatively characterizing and classifying the 
anomalies. 
 
In this report, we compare and contrast the performances of feature-based discrimination 
decisions on magnetic and EMI data acquired at the Aberdeen Proving Ground (APG) 
Standardize Test Site.  The APG test site was selected because it was designed to imitate 
conditions commonly found at munitions response sites, and includes emplaced ordnance 
ranging from 20mm projectiles to general practice bombs. 
 
We analyzed magnetic and electromagnetic induction data that was acquired using standard 
production methodologies by others.  Two EM61 MK2 data sets, one acquired using an array 
and the other acquired using a commercial cart configuration, were included in our analysis.  To 
bound performance expectations, we also acquired and analyzed EM61 MK2 EMI data collected 
using a template.  The template data provide an upper bound on performance because the 
deleterious effects of motion noise and positioning errors are mitigated. 
 
The anomaly characterization algorithms utilized in this demonstration assume a dipolar source 
and derive the best set of induced dipole model parameters that account for the spatial variation 
of the signal as the sensor is moved over the object.  The model parameters are location, depth, 
three polarization coefficients (EMI only), magnetic moment (magnetic only), and three 
orientation angles.  The primary metrics chosen to report results include the target of interest 
(TOI) retention rate and non-TOI rejection rates. 
 
Blind test results showed that, for the production survey EMI data and all UXO, it was possible to 
correctly identify 82% of the UXO, while correctly rejecting 25% of the clutter items.  Blind test 
results for the magnetic data correctly classified 87% of the UXO while correctly rejecting 27% of 
the emplaced clutter. 
 
Discriminating UXO from clutter based upon their inverted polarizabilities is inherently limited by 
how well the measured data can be replicated using a dipole model source and by the extent to 
which the class polarization distributions overlap in feature space.  The mean dipole fit error for 
the template EMI data was 4.7% (standard deviation of 5.1), which is quite good, and allows us to 
use the template data to evaluate the polarization distributions.  By comparison, the mean fit error 
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the production cart-mounted EMI data was 24.1% (standard deviation of 17.2).  Using the fitted 
parameters from the template EMI data to evaluate the separability of the TOI and non-TOI 
clusters, we find that the polarizabilities from non-TOI objects overlap significantly in feature 
space with those derived from the larger UXO.  Thus, even with well positioned static data, 
discrimination performance at this site is limited by the distributions of the TOIs relative to the 
non-TOI objects.  Interestingly, however, we also find that subclasses of UXO, namely 57mm and 
smaller UXO, can be effectively discriminated at this site.  This finding is probably unique to APG 
and should not be extrapolated to live sites that possess large numbers of small fragments and 
clutter items. 
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1 Introduction 
1.1 Background 
 
Buried Unexploded Ordnance (UXO) is arguably one of the most serious and prevalent 
environmental problems currently facing Department of Defense (DoD) facility managers.  Not 
limited to active sites and test ranges, these problems also occur at DoD sites that are currently 
inactive and in areas adjacent to military ranges that belong to the civilian sector or are under 
control of other government agencies.  The exact amount of land affected is uncertain, but it is 
generally agreed to be in excess of 10 million acres in the continental United States.  UXO 
mitigation and remediation requirements assume even more compelling proportions when the DoD 
lands involve Formerly Used Defense Sites (FUDS) or Base Realignment and Closure (BRAC) 
sites.  These sites must be certified as suitable for the end use depending on the pending 
disposition.  Oversight and evaluation of these processes involve non-DoD agencies including the 
Environmental Protection Agency (EPA); state, county, and local governments; and the civilian 
community. 
 
An objective of this project is to make available and document the capabilities of feature-based 
discrimination techniques.  Specific goals include transitioning physics-based characterization and 
classification algorithms for magnetic and electromagnetic data to a commercial product, and 
conducting demonstrations at live sites with the aim of discriminating targets of interest from 
targets that are not of interest in order to mitigate risk during the recovery process. 
 
Feature-based characterization and classification schemes have improved discrimination 
performance in some demonstrations (Robitaille et al., 1999).  These algorithms, however, are not 
readily available to the user community and have had limited exposure to data acquired under 
'production-imposed' constraints.  ESTCP project MM-0210 is designed to address the availability 
problem as well as further test the ability to improve decisions using features - or model 
parameters - derived from field data. 
 
Our technical approach promotes the selection of potential UXO targets using quantitative 
evaluation criteria and transparent decision-making processes.  As such, we developed an analysis 
framework within Oasis montaj and integrated previously developed, physics-based 
characterization and statistical classification algorithms.  The analysis algorithms provide 
quantitative evaluation criteria.  Transparency is achieved by leveraging the professional, flexible, 
and visual computing environment inherent in Oasis montaj.  Oasis montaj is a geophysical data 
processing and visualization package developed and marketed by Geosoft Incorporated.  It has a 
large capacity database, a professional graphic interface, and an established client base.  Oasis 
montaj was selected in order to leverage its significant capabilities, marketing channels, and 
customer support services. 
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1.2 Objectives of the Demonstration 
 
The objective of this demonstration was to shakedown UX-Analyze and to document, contrast, 
and compare the performance of feature-based discrimination decisions on multiple magnetic 
and EMI data acquired at the Aberdeen Proving Ground Standardize Test Site. 
 
1.3 Regulatory Drivers 
 
The Senate Report (Report 106-50), pages 291–293, accompanying the National Defense 
Authorization Act for Fiscal Year 2000 (Public Law 106-65), included a provision entitled 
“Research and development to support unexploded ordnance clearance, active range unexploded 
ordnance clearance, and explosive ordnance disposal.”  This provision requires the Secretary of 
Defense to submit to the Congressional defense committees a report that gives a complete estimate 
of the current and projected costs, to include funding shortfalls, for UXO response at active 
facilities, installations subject to BRAC sites and FUDS. 
 
The following statements are taken verbatim out of the DoDs 2001 Report to Congress: 
 

“Decades of military training, exercises, and testing of weapons systems has required that we 
begin to focus our response on the challenges of UXO.  Land acreage potentially containing 
UXO has grown to include active military sites and land transferring or transferred for private 
use, such as BRAC sites and FUDS.  DoD responsibilities include protecting personnel and the 
public from explosive safety hazards; UXO site cleanup project management; ensuring 
compliance with federal, state, and local laws and environmental regulations; assumption of 
liability; and appropriate interactions with the public. 
 
…Through limited experience gained in executing these activities, it has become increasingly 
clear that the full size and extent of the impact of sites containing UXO is yet to be realized. … 
DoD has completed an initial baseline estimate for UXO remediation cost.  This report 
provides a UXO response estimate in a range between $106.9 billion and $391 billion in 
current year [2001] dollars. …Technology discovery, development, and commercialization 
offers some hope that the cost range can be decreased. … 
 
… Objective: Develop standards and protocols for navigation, geo-location, data acquisition 
and processing, and performance of UXO technologies. 
• Standard, high quality archived data are needed for optimal data processing of 
geophysical data, re-acquisition for response activities, quality assurance, quality control, and 
review by all stakeholders. In addition standards and protocols are required for evaluating 
UXO technology performance to aid in selecting the most effective technologies for individual 
sites. 
•  Standard software and visualization tools are needed to provide regulatory and public 
visibility to and understanding of the analysis and decision process made in response 
activities.” 
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1.4 Stakeholder/End-User Issues 
 
The stakeholders and end-users of this data processing and analysis technology include private 
contractors that conduct geophysical investigations in support of UXO clean up programs and 
governmental employees that provide technical oversight.  This demonstration introduced the 
stakeholders and end-users to data products associated with this analysis approach and to the 
inherent transparency of the decision-making process. 
 

2 Technology Description 
 
2.1 Technology Developments and Application 
 
All field production data were processed using Oasis montaj and analyzed using UX-Analyze.  
The field production datasets include magnetic data acquired by G-tek and electromagnetic 
induction (EMI) data acquired by Tetra Tech-Foster Wheeler (TTFW).  These data were 
acquired and scored as part of ESTCP project MM-0103 entitled “Standardized UXO 
Technology Demonstration Sites” (http://aec.army.mil/usaec/technology/uxo03.html).  
Summaries of the sensing systems are provided below. 
 
To bound performance expectations, we also acquired and analyzed EM61 MK2 EMI data 
collected using a template.  The template data provide an upper bound on performance because 
the deleterious effects of motion noise and positioning errors are mitigated. 
 
2.1.1 UX-Analyze 
 
The anomaly characterization algorithms developed during the past decade assume a dipolar 
source and derive the best set of induced dipole model parameters that account for the spatial 
variation of the signal as the sensor is moved over the object.  The model parameters are target 
location and depth, three dipole response coefficients corresponding to the principle axes of the 
target (EMI only), magnetic moment (magnetic only), and the three angles that describe the 
orientation of the target.  The size of the target can be estimated using empirical relationships 
between either the dipole moment for magnetic data or the sum of the targets’ response 
coefficients.  Cylindrical objects, like most UXO, have one large coefficient and two smaller, 
equal coefficients.  Plate-like objects nominally have two large and one small coefficient. 
 
UX-Analyze was developed during the first year of the program to facilitate efficient UXO data 
analysis within the Oasis montaj environment.  It consists of multiple databases, custom 
graphical interfaces, and data visualizations.  UX-Analyze provides the infrastructure to 
systematically identify and extract anomalies from the dataset, call the characterization routines, 
store the fitted source parameters for each anomaly, perform target classification, and document 
the analysis.  Once the analysis is complete, individual images for each anomaly can be 
automatically produced for documentation purposes. 
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2.1.2 Magnetic Array 
 
G-tek deployed a hand-held TM-4 magnetometer array and a digital global positioning system 
(DGPS) (Figure 2-1).  The TM-4 is a self-contained magnetometer system, which was 
configured with four, optically pumped magnetic sensors mounted in an array oriented 
perpendicular to the survey direction.  The sensor separation is 30 cm and ground clearance 25 
cm.  The TM-4 was interfaced with a real-time kinematic DGPS.  The sensor data was positioned 
in post processing to achieve a reported position accuracy of five cm or less. 
 
A two-person crew operated the TM-4 system.  One-person carries the sensor array to which is 
attached the DGPS antenna and odometer system.  A five-meter cable eliminating interference at 
the sensors from the other hardware separates the two operators.  Data processing consists of 
magnetic base-station subtraction, optional band-pass spatial filtering to enhance particular 
source depths, grading and imaging.  G-tek surveyed the open field area in 57 man hours. 
 

 
Figure 2-1. Photograph of G-tek’s magnetic sensor system during data acquisition at the open 
field area of APG. 
 
2.1.3 EM61 Cart  
 
TTFW deployed a Geonics EM61 MK2 time-domain geophysical sensor and a Leica Series 1100 
Robotic Total Station (RTS) laser positioning systems at APG (Figure 2-2).  The EM61 MK2 
consists of two coils 100 by 100 cm that are oriented in a horizontal coplanar fashion and separated 
by a vertical distance of 40 cm.  The lower coil was maintained 40cm above the ground by the 
nonmagnetic wheel assemblage provided by the manufacturer.  The Leica Series 1100 RTS 
consists of a laser-based total station survey instrument (transmitter), prism (receiver), and RCS 
100 remote control.  The receiver prism is centered over the EM61 MK2 coils, and the RTS 
automatically tracks the prism at distances of several thousand feet to an accuracy of 
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approximately one inch.  Transects were spaced no more than 2 to 2.5 feet apart in order to detect 
the smaller objects. 
 
The positioning and EM61 MK2 signal data were merged with the software developed by TTFW.  
The data were leveled (background subtraction as determined by mode of data) during processing 
and are output as an ASCII file that contained the state planar coordinates of each measurement 
location in feet, EM61 MK2 signal intensity for each time gate in millivolts, and a quality 
identifier for each recorded position (number 1-6, based on standard deviation).  TTFW surveyed 
the open field area in 64 man hours. 
 

 
Figure 2-2. Photograph of TTFWs EM61 MK2 sensor system during data acquisition at the open 
field area of APG. 
 
2.1.4 EMI Template  
 
The template data collection used an EM61 MK2 with a 1.0x0.5 meter coil.  We recorded three 
bottom coil time gates (0.216ms, 0.366ms and 0.660ms) and one upper coil time gate (0.660ms).  
The data were collected on a 7x5 point rectangle grid (nodes separated by 25cm and 50cm 
respectively resulting in a 1.5x2.0m area).  The grid was elevated 20 cm above the ground, and 
the EM61 was positioned directly on the grid, without wheels (Figure 2-3).  Sensor location on 
the grid was precisely controlled by lining up cross hairs on the EM61 bottom coil with grid line 
intersections.  The choice of grid layout and elevation was based on results of simulations of data 
inversion sensitivity as well as past experience. 
 
Previous experience with test stand data and data collected at various sites indicated that the grid 
does not need to be precisely centered over the target in order to recover useful inversion results.  
Offsets of approximately 40 cm between the actual center of the target and the center of the grid 
template produce good inversion results.  We performed the collections within these guidelines.  
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The data collection per target required approximately 20 minutes.  This reflects the time required 
to align the sensor and collect a couple of seconds of data at each grid point, as well as recording 
background levels before and after the grid. 
 

 
Figure 2-3 Photograph taken during collection of EM61 MK2data using a template at APG. 
 
2.1.5 EM61 Array  
 
The Multi-Sensor Towed Array Detection Systems (MTADS) hardware consists of a low-
magnetic signature vehicle that is used to a 3-sensor array of EM61 MK2 sensors or eight cesium 
vapor magnetometers (Figure 2-4).  The pulsed-induction sensors (specially modified Geonics 
EM61 MK2’s) are deployed as an overlapping array of three sensors. 
 
The sensor positions are measured in real-time (five Hz) using the latest real time kinematic 
global positioning system technology.  The EM61 data are recorded in a down-track sampling of 
approximately 15 cm and a cross-track interval of 50 cm.  In order to obtain sufficient views of 
the targets, NRL collects data in two orthogonal surveys.  NRL surveyed the accessible portions 
of the open field area in 7 hours. 
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Figure 2-4. Photograph of NRLs Multi-Sensor Towed Array Detection Systems (MTADS). 
 
2.2 Previous Testing of the Discrimination Technology 
 
We performed preliminary tests of the demonstration data analysis and classification technology 
during algorithm development.  A number of the user graphical interfaces and dialogue boxes are 
briefly described below.  Each of these capabilities was tested on small data sets prior to the 
demonstration. 
 
2.2.1 UX-Analyze 
 
UX-Analyze allows users to systematically identify, extract, edit, and store data around 
individual anomalies.  It provides efficient data structures and access for the analysis algorithms, 
stores the fitted parameters, and allows for multiple data types and surveys.  This module is the 
interface between Oasis montaj and the demonstration analysis software (Figure 2-5). 
 
2.2.2 Characterization Modules 
 
Characterization routines for magnetic and EMI data have been integrated with UX-Analyze 
framework.  These 3-D routines include graphic displays and controls that allow the user to 
manually select and filter the input data for each anomaly (Figure 2-6).  The derived model 
parameters are stored in a master target database.  The characterization modules, or inversion 
routines, were previously developed by AETC Incorporated (SAIC acquired AETC in 2006) for 
the MTADS Data Analysis System under funding from ESTCP and SERDP.  The MTADS DAS 
codes were prototyped using the Interactive Development Language. 
 
Algorithm equivalency tests verified that the C-based inversion routines embedded in Oasis 
montaj produce identical performances as the original formulations.  Magnetic and EMI data 
were synthesized for forty-nine sources that have a unique combination of inclination and 
declination but constant moment and depth of burial.  The layout and noise-free synthetic data 
are shown in Figure 2-7 while Figure 2-8 shows screen snapshots of the user interfaces at various 
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stages of the analysis process.  To ensure that each routine received the exact same input for each 
anomaly, we extracted data samples around each anomaly individually once and then used the 
extracted data subsets as input for both.  Source parameters were then calculated using the two 
inversion routines and compared.  No statistically significant differences were observed. 
 

 
Figure 2-5. Screen snapshots showing UX-Analyze during target selection. 
 

Measured Model

Analysis Options and Results

 
Figure 2-6. Screen snapshots showing the user interface during data inversion. 
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Figure 2-7. Top – schematic showing the inclination and declination of the source objects.  The 
inclination and declination range from 0 to 90 degrees in 15-degree increments.  Bottom – 
synthesized electromagnetic and magnetic data, left and right respectively. 
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a)  

b)  
 

c)  

d)  
 

Figure 2-8.  Screen snapshots showing from left to right along each row (i) the segmentation of 
individual anomalies, (ii) the graphical interface used to identify and select individual anomalies, 
and (iii) anomaly-specific comparisons of measured and modeled data.  Row (a) shows images 
for UX-Analyze EMI data, (b) DAS EMI, (c) UX-Analyze magnetic, and (d) DAS magnetic. 
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2.2.3 Classification Modules included in this Demonstration 
 
2.2.3.1 Classifiers 
 
KNN: The k-nearest neighbor (KNN) classification rule uses the k neighbors of an unlabeled test 
point to estimate its label.  The posterior probability of the class H given the unlabeled test point 
x, p(H|x), is approximated by the proportion of the k neighbors in the labeled training data that 
are from class H.  Thus, KNN provides a simple and intuitive classification rule where new data 
points are labeled according to a majority-vote of the nearest neighbors.  KNN has been shown 
to have attractive asymptotic properties when the amount of available training data and the 
number of neighbors k are both large. 
 
GLRT: The generalized likelihood ratio test is grounded in Bayesian decision theory.  The 
likelihood ratio test λ(x) is defined at the ratio of two conditional probabilities: the probability of 
the features given H1 p(x|H1)  and the probability of the features given H0 p(x|H0), where H1 
and H0 correspond to the UXO and clutter classes, respectively.  Given probability distributions 
of the feature values for the classes of UXO and clutter, the likelihood ratio test can be calculated 
for any new data point by taking the ratio of the likelihoods of the features of the new data point 
under both H1 and H0.  However, one issue arising with the likelihood ratio test is that the 
probability distributions p(x|H1) and p(x|H0) are rarely known.  Thus, one solution is to assume 
the conditional probability distributions follow a parametric form with parameters estimated 
using the training data.  The GLRT is calculated using the conditional probabilities that are 
dependent on the estimated parameters (McDonough and Whalen, 1995).  In our implementation 
it is assumed that the UXO features have a Gaussian distribution. 
 
SVM and RVM: The support vector machine (SVM) and relevance vector machine (RVM) are 
generalized linear classifiers.  In both the SVM and RVM, the use of a kernel to represent the 
input data introduces nonlinearity and can transform the data into a higher dimensional space 
where it may be separable by a hyperplane. The differences between the SVM and RVM arise in 
the frameworks for optimization and training.  The RVM finds relevance vectors that typically 
are located near the “centroids” of the decision boundary contours, whereas the SVM finds the 
support vectors that define the decision boundary.  The RVM also does not utilize a margin 
between the classes, which is directly optimized in the training of the SVM.  The SVM finds a 
decision boundary with the constraint of maximizing the margin, whereas the RVM does not 
consider a boundary margin in any sense.  Instead, the RVM is a Bayesian kernel machine that 
applies a Bayesian framework to define the weights and relevance vectors through iterative 
calculation of the posterior weight distributions.  A characteristic common to both the RVM and 
SVM is sparse representation of the decision space using a small subset of the training data.  
Rather than keeping track of all of the training data, the RVM and SVM techniques only require 
a limited subset of training vectors to discriminate between classes.  The RVM tends to select 
fewer relevance vectors than the number of support vectors found by the SVM.  Therefore, the 
training data is represented by an even more compact set of vectors which can further reduce the 
risk of overtraining. 
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2.2.3.2 Feature normalization 
 
The feature normalization consisted of three steps.  The feature values were first log-scaled (to 
prevent taking the log of negative values, the feature values were shifted to have a minimum 
value of 1 prior to taking the log).  The feature values were normalized by the standard deviation 
calculated over the interquartile values (25 percentile to 75 percentile).  We subtract the median 
value as the final step.  Using the standard deviation of the interquartile range, rather than the 
standard deviation of all values, and subtracting off the median rather than the mean, makes the 
normalization more robust in the presence of outliers (i.e. outliers don't skew the normalized 
features).  Each feature was normalized independently. 
 
2.2.3.3 Feature selection 
 
Feature selection was implemented using wrapper techniques, measuring classification 
performance on a set of training data with various sets of features to find the best-performing 
feature set.  The feature selection technique was performed using four classifiers described 
above.  We performed an exhaustive feature search for the best feature set containing between 1 
and 5 features.  The wrapper techniques used k-folds cross-validation with k = 5.  The fitness 
metric for each feature set or feature, used to determine the best feature set in the exhaustive 
search or which feature to add next in the search, was the area under the ROC curve.  If two 
feature sets / features have the same area under the ROC curve, the probability of false alarm at a 
probability of detection equaling 90% was used as a tie-breaker.  The number of features was 
selected to maximize the fitness metric (area under the ROC curve) on the training data. 
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2.2.3.4 UX-Analyze classification capability 
 
Dr. Leslie Collins, Duke University, and her colleagues incorporated the GLRT classifier into 
UX-Analyze as part of this program.  The graphical user interface is shown in Figure 2-9. 
 

  
Figure 2-9. Screen snapshots showing the GLRT classification dialogue in UX-Analyze. 
 
2.2.4 Data Analysis Documentation 
 
UX-Analyze produces individualized anomaly reports, one for each anomaly, to document the 
decision process for each anomaly (Figure 2-10).  In each plot, the measured data is graphically 
displayed next to the modeled data.  The model parameters are listed in the middle of each page, 
and a profile extracted along the transect that passes closest to the dipoles location – as estimated 
by the inversion routine – is located at the bottom.  The positions of individual measurements are 
superimposed on the maps. 
 
Essentially, the anomaly plots graphically provide an intuitive confidence measure.  If the 
measured and modeled data are indistinguishable, the reviewer can have confidence that the 
estimated source parameters are approximately correct.  If the two maps are do not resemble 
each other, however, it tells us that the source in question (i) cannot be represented well using a 
point dipole source, (ii) is not isolated, (iii) does not have sufficient signal-to-noise ratio, or (iv) 
was not properly sampled (spatially or temporally).  In any case, if the two maps are dissimilar 
the inverted model parameters are most likely not correct. 
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Figure 2-10. UX-Analyze generates a one-page summary for each anomaly.  In the anomaly 
summaries shown above, the measured data is shown in the upper left hand corner, the inverted 
model parameters in the middle left, the forward model in the upper rights, and a profile in the 
lower left corner.  EMI data for the anomaly are shown in the left summary, and magnetic data 
on the right. 
 
2.3 Factors Affecting Cost and Performance 
 
The analysis approach demonstrated here utilizes the spatial distribution of the measured magnetic 
or EMI signatures.  As such, it requires high signal-to-noise data that possess a high degree of 
spatial precision across the footprint of the anomaly.  The costs to acquire data that will support 
discrimination decisions are higher than that required if the goal is only to detect the presence of an 
object.  The analysis costs are also higher if attempts are made to quantitatively discriminate 
relative than only to detect. 
 
The factors affecting acquisition costs relate to particulars of the sensing system, spatial 
registration system, the target objectives, and the site environment.  Although these costs are not 
the focus of this demonstration, they are very important to the ultimate transferability of this 
approach. 
 
The factors affecting analysis time include are significantly affected by (i) the degree to which the 
anomalies are spatially separated, (ii) the number of anomalies, and (iii) the amount of geologic-
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related signatures that possess similar wavelengths as the targeted signatures.  The data density is 
also a factor, but only marginally so compared to the factors listed above. 
 
Discrimination performance is measured by our ability to characterize and classify one object from 
another.  The factors that affect performance, therefore, relate to the similarity (in feature space) 
between the sought-after object versus the clutter, our ability to accurately measure the responses, 
the presence of signatures that spatially interfere or otherwise compete with the UXOs response, as 
well as our ability to quantitatively characterize and classify the source objects.  Many of these 
factors are not under our direct control. 
 
2.4 Advantages and Limitations of the Technology 
 
This analysis approach uses spatially referenced geophysical data to estimate target parameters 
for each anomaly.  This has an inherent advantage over ancillary analysis methods that are 
commonly used.  Due to a lack of analysis routines available, many contractors make UXO and 
non-UXO declarations based on anomaly amplitude, half width, spatial footprint, or overall 
‘look’.  These characterization methods are sensitive to the targets’ orientation and depth of 
burial (or distance from the sensor).  The methodology demonstrated here separates the measured 
signatures into that which is inherent to the target, and that which is related to the geometry of 
the problem (such as distance to sensor and orientation).  The fitted parameters that are inherent 
to the target itself are used to classify the unknown object. 
 
The primary advantage, therefore, is the potential for discriminating between UXO and non 
UXO-like objects based upon geophysical survey data.  This is in contrast to simply identifying 
the location of anomalies from the geophysical survey data.  Magnetic discrimination is based 
primarily on the apparent fitted dipole size (or scaled dipole moment).  Using EMI data, 
increased discrimination performance can sometimes be achieved by utilizing estimated shape 
information.  If successful discrimination capabilities can be achieved, significant excavation 
savings can be realized by leaving the non-hazard clutter items unearthed. 
 
This is not to say, however, that the data analysis technology being demonstrated will solve the 
UXO characterization and classification problems.  Even with optimal data quality, the estimated 
fit parameters cannot always be separated into distinct, non-overlapping classes of UXO and non 
UXO-like objects.  In fact, none of the fit parameters are actually unique to UXO items.  Because 
of this, clutter items that physically resemble UXO will probably be misclassified.  Additionally, 
if the data quality is not optimal the fitted parameters cannot be trusted. 
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3 Demonstration Design 
 
3.1 Performance Objectives 
Table 3-1. Qualitative Performance Objectives 

Type of 
Performance 

Objective 

Primary Performance 
Criteria 

Expected Performance 
(metric) 

Actual Performance 
Objective Met? 

Ease of use 
Minimal training required for 
data processor experienced in 
Oasis montaj  

Minimal training is 
required for users 
experienced in Oasis 
montaj 

Robustness Analysis flow not seriously 
interrupted by bugs 

Software bugs initially 
limited/stopped flow, 
but were fixed during 
the course of the 
demonstration 

Qualitative 

End-user Acceptance NA Positive 
Non-TOI 
Rejection Rate 0.25 or greater Yes 

TOI Retention Rate 0.8 or greater Yes 
Location Accuracy 0.3m Yes 

Quantitative 

Depth Accuracy 0.3m Yes 
 
3.2 Selecting Test Sites 
 
The APG site was selected because of the combination of reliable ground truth information and 
availability of multiple, high quality production data sets. 
 
3.3 Test Site History/Characteristics 
 
The Standardized UXO Technology Demonstration Site Program is a multi-agency program 
spearheaded by the U.S. Army Environmental Center.  The U.S. Army Aberdeen Test Center and 
the U.S. Army Corps of Engineers Engineer Research and Development Center provide 
programmatic support.  The program was funded and supported by ESTCP, SERDP, and the Army 
Environmental Quality Technology program.  A brief description of the APG test site is presented 
below.  See http://aec.army.mil/usaec/technology/uxo03a.html for additional details. 
 
The APG Standardized Test Site is located within a secured range area of the Aberdeen Proving 
Ground, which is located approximately 30 miles northeast of Baltimore at the northern end of the 
Chesapeake Bay.  The Standardized Test Site encompasses 17 acres of upland and lowland flats, 
woods and wetlands.  There are multiple challenge areas within APG.  The blind grid and open 
field areas are shown in Figure 3-1. 
 
The Open Field area provides the demonstrator with a variety of realistic scenarios essential for 
evaluating sensor system performance.  The scenarios and challenges found on the Open Field area 
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consist of a gravel road, wet areas, dips ruts and trees.  Vegetation height varies from 15 to 25 
centimeters.  Other challenges within the open field site include electrical lines, swales, stone 
pads/roads, and metallic fencing.  The Standardized UXO Technology Demonstration Site 
Program emplaced a diverse set of targets at the APG test site (Table 3-2). 
 

Table 3-2. Inert ordnance emplaced at APG. 
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BLIND GRIDBLIND GRIDBLIND GRID

 
Figure 3-1. Aerial photograph of the Aberdeen Proving Ground Test Site. 
 
3.4 Present Operations 
 
The Standardized Test Sites have been, and continue to be, utilized to benchmark a significant 
number of technologies and contractors (McDonnel and Karwatka, 2007). 
 
3.5 Pre-Demonstration Testing and Analysis 
 
This demonstration used characterization and classification algorithms that have been prototyped 
and undergone limited testing during previous research programs.  Characterization algorithms for 
magnetic and electromagnetic (EM61 MK1 and MK2) and classification routines were rewritten 
and compiled into dynamic link libraries and integrated into Oasis montaj.  Prior to the 
demonstration, we verified that the rewritten code produces the same result as the prototype code 
for each algorithm. 
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3.6 Testing and Evaluation Plan 
 
3.6.1 Demonstration Set-up and Start-up 
 
This demonstration leveraged data acquired under ancillary projects.  Details of the hardware 
setup and field operations can be found at http://aec.army.mil/usaec/technology/uxo03f01.html.  
The relevant reports are SR0157 TTFW and SR0311 G-tek. 
 
3.6.2 Period of Operation 
 
Data collection occurred under prior projects associated with the Standardized Test Site program.  
TTFW acquired EM61 data in November 2003.  Geo-Centers acquired magnetic and EMI data in 
August 2004.  G-tek acquired magnetic data in October 2003.  NRL acquired magnetic data during 
June 2004 and EMI data during October 2004. 
 
3.6.3 Area characterized or Remediated 
 
The APG Standardized UXO Technology Demonstration Open Field area comprises 13.7 acres 
and the Blind Grid comprises 0.5 acres.  No targets were remediated as part of this demonstration. 
 
Two collections, or groups, of data from APG are considered here.  The first collection consists of 
stationary data that were acquired using a template grid over 250 anomalies (identified in Figure 
3-2) from the Opend Field and 20 anomalies from the Blind Grid/Calibration area.  The selected 
targets were also surveyed by TTFW and NRL’s EMI systems.  The stationary data provide a 
baseline, therefore, with which to compare results obtained from the dynamic production data 
using common targets. 
 
The second target collection consists of anomalies in the open field (Figure 3-3) that were selected, 
analyzed, and scored in a blind test.  Magnetic and EMI analysis results for the second target 
selection were sent to the AEC and IDA for scoring.  The template data, and their labels, were 
acquired after blind tests were completed and scored.  They were not used in any way to better the 
performance of the blind test. 
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Figure 3-2. Color contour map of the EM61 Mk2 data (0.366ms time gate) collected by TTFW in 
November 2003.  The symbols represent targets for cued investigation. 
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Figure 3-3. False color images showing G-tek magnetic (left) and TTFW EMI (right) data from the Open Field area.  The 
symbols identify anomalies included in the analysis. 
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4 Performance Assessment 
4.1 Performance Criteria 
 

Table 4-1. Criteria for this Demonstration 

Performance Criterion Description Primary or 
Secondary 

Ease of Use Analysis flow and anticipated skill level required. Primary 

Robustness No major bugs that artificially limit the analysts’ 
ability to conduct analysis. Primary 

End-user Acceptance 

The EPA and Corps of Engineers must ultimately 
accept and prefer this approach if it is going to be 
successfully transitioned.  This will be our first 
opportunity for constructive criticism. 

Primary 

Non-TOI Rejection Rate Number of non-TOIs rejected by the discrimination 
decision / Number of non-TOIs Primary 

TOI Retention Rate 
(Efficiency) 

Number of TOIs retained after discrimination / 
Number of TOIs. Primary 

Location Accuracy The average absolute distance error for ordnance 
correctly identified in the discrimination stage 

Primary 

Depth Accuracy The average missed depth for ordnance correctly 
identified in the discrimination stage Primary 

 
The ‘ease of use’ and ‘robustness’ criterion report the analysts’ experience regarding the programs’ 
flow, speed, computational capabilities, graphics, and bugs as they relate to efficient data analysis. 
 
Analysis time was logged manually.  The principal baseline metrics are (i) identifying, 
characterizing, and classifying anomalies, and (ii) documenting the analysis with anomaly specific 
fit images, parameters, and dig sheet information.  Actual times for these metrics are reported. 
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4.2 Performance Confirmation Methods 
 
Table 4-2. Quantitative Performance Objectives: Open Field Blind Test (MAG GLRT) 
Primary Performance 

Criteria 
Expected Performance 

Metric (pre demo) 
Performance 
Confirmation 

Actual Performance 
Open Field 

PRIMARY CRITERIA (Performance Objectives) 
(Quantitative) 

Non-TOI 
Rejection Rate 0.25 or greater Open Field 0.27 

TOI Retention Rate 0.8 or greater Open Field 0.87 
Location Accuracy 0.3m Open Field 0.24m 
Depth Accuracy 0.3m Open Field 0.18m 
 
Table 4-3. Quantitative Performance Objectives: Open Field Blind Test (EMI GLRT) 
Primary Performance 

Criteria 
Expected Performance 

Metric (pre demo) 
Performance 
Confirmation 

Actual Performance 
Open Field 

PRIMARY CRITERIA (Performance Objectives) 
(Quantitative) 

Non-TOI 
Rejection Rate 0.25 or greater Open Field 0.25 

TOI Retention Rate 0.8 or greater Open Field 0.82 
Location Accuracy 0.3m Open Field 0.24m 
Depth Accuracy 0.3m Open Field 0.01m 
 



 24

4.3 Data Analysis, Characterization, and Evaluation 
 
4.3.1 Cued Target Collection Comparisons and Results 
 
Approximately 250 targets from the APG test site were surveyed using both a stationary template 
and dynamic survey modes.  We received labels for 107 of these.  We consider here two dynamic 
surveys, the first collected using an array of EM61 sensors, and the second used a commercial 
EM61 cart system.  In this section, we present visualizations of the fitted parameters and present 
ROC curves for labeled targets.  This comparison and analysis of different data sets, with different 
inherent data quality, provides a baseline and establishes performance bounds. 
 
In Figure 4-1, we plot SNR versus dipole fit error for all of the targets that were surveyed using the 
template.  Symbols and colors identify the data type.  Black diamond symbols are used for the 
template, blue asterisks identify EM61 Array data, and red triangles are used to show EM61 Cart 
data.  As expected, the stationary template data possess much smaller dipole fit errors [defined as 
100*sqrt(1-correlation_coefficient^2); Table 4-4]. 
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Figure 4-1. SNR versus dipole fit errors for all targets surveyed using the template. 
 

Table 4-4. SNR and Fit Error statistics across data sets 

 

 SNR 
Mean 

SNR 
Standard Deviation 

Dipole Fit Error 
Mean 

Dipole Fit Error 
Standard Deviation 

Template 
(stationary) 42.9 12.3 4.7 5.1 

TTFW (dynamic) 35.7 10.8 24.1 17.2 
NRL (dynamic) 41.6 10.7 19.4 11.9 
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Actual versus estimated depths for the cued target collection anomalies are shown in Figure 4-2.  
Depth errors for UXO only are shown in Figure 4-3. 
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Figure 4-2. Actual versus fitted depth estimates. 
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Figure 4-3. Depth errors for UXO 
 
Polarizations for UXO are shown in Figure 4-4.  The vertical lines in the figure extend from β2 
and run to β3 for each fitted target.  Because the UXO are axially symmetric, we expect that 
β1>β2≈β3.  This is generally true for the template data, but not for the cart mounted EM61 and 
marginally true for the EM61 array data. 
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Figure 4-4. Polarization plots for labeled UXO from the Open Field. 
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ROC curves for the cued target collection are shown in Figure 4-5 thru Figure 4-7.  For each 
classifier, we considered intrinsic features only.  An exhaustive search of features was then 
performed, considering (2N-1) sets of features, where N is the number of intrinsic features.  We 
selected the set of features that maximized area under the ROC curve.  In the figures, the 
accompanying table shows the area under the curve if the features selected with one classifier 
(rows) are used on a different classifier (columns). 
 
Based on the area under the curve (AUC) for the ROCs, the template data performed best, 
followed by the EM61 array results.  The EM61 Cart data performed the poorest.  Results of the 
template data, however, were not ideal.  Although the majority of the UXO were classified as 
being UXO, some of larger UXO were classified as being very similar to non-TOIs.  Inspection 
into the template-data failures showed that the 9 out of the first 10 were either 105mm or 155mm 
projectiles. 
 
The reason for misclassifying large UXO is perhaps explained by examining the distribution of 
clutter at this site.  Figure 4-8 compares the polarization estimates by data set and by UXO size.  In 
the figure, black color is used to identify clutter (non-TOI) and red color is used for UXO.  Also, 
‘Small UXO’ refers to ordnance smaller than 60mm in diameter; ‘Large UXO’ refers to 105mm 
UXO and larger; and ‘Medium UXO’ is everything else.  From this plot, it is clear the emplaced 
clutter at APG significantly overlaps, in polarization feature space, with large UXO items.  The 
clutter marginally overlaps with the medium-sized UXO, and not all with small-size UXO.  ROC 
curves for the three size-based clusters of UXO are presented in Figure 4-9 thru Figure 4-11. 
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Figure 4-5. Discrimination performance for EM61 Cart data (cued target collection).  A) ROC 
curve B) Comparison of all intrinsic features versus selected C) table listing selected and 
intrinsic features (names ending in “_R” or “_sum” are a ratio or sum respectively) 
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Figure 4-6. Discrimination performance for EM61 Array data (cued target collection).  A) ROC 
curve B) Comparison of all intrinsic features versus selected C) table listing selected and 
intrinsic features (names ending in “_R” or “_sum” are a ratio or sum respectively) 
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Figure 4-7. Discrimination performance for EM61 Template data (cued target collection).  A) 
ROC curve B) Comparison of all intrinsic features versus selected C) table listing selected and 
intrinsic features (names ending in “_R” or “_sum” are a ratio or sum respectively) 
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Figure 4-8.  Polarization plots segmented by survey approach and by size-based clusters of UXO.   
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Figure 4-9. Discrimination performance for EM61 Template data, restricting the TOI subclass to 
UXO smaller than 60mm.  A) ROC curve B) Comparison of all intrinsic features versus selected 
C) table listing selected and intrinsic features (names ending in “_R” or “_sum” are a ratio or 
sum respectively). 
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Figure 4-10 Discrimination performance for EM61 Template data, restricting the TOI subclass to 
UXO larger than 57mm but smaller than 105mm projectiles.  A) ROC curve B) Comparison of 
all intrinsic features versus selected C) table listing selected and intrinsic features (names ending 
in “_R” or “_sum” are a ratio or sum respectively) 
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Figure 4-11. Discrimination performance for EM61 Template data, restricting the TOI subclass 
to UXO larger than 105mm.  A) ROC curve B) Comparison of all intrinsic features versus 
selected C) table listing selected and intrinsic features (names ending in “_R” or “_sum” are a 
ratio or sum respectively) 
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4.3.2 Blind Test Scores 
 
In this section, we report performance scores for blind tests that were conducted using EM61 cart 
data acquired by TTFW and magnetic data acquired by G-tek.  These data were processed using 
solvers embedded into UX-Analyze and served as a shakedown for the software suite.  The KNN 
classifier was not available when the blind test was conducted. 
 
4.3.2.1 Labeled Data: Characterizations and Feature Selection 
 
Approximately six objects of each UXO emplaced in the challenge areas were buried in the 
calibration area by the AEC.  The objects were buried at a few depths and a few orientations, and 
spaced two meters apart.  We inverted each target for model parameters.  Some of the target 
signatures possessed low signal strength and could not used, while others overlapped spatially with 
their neighbors and could not be used.  After filtering the low SNR and overlapping signatures out, 
we created a library of features from the remaining targets.  EMI data and fit statistics area shown 
in Figure 4-12.  Magnetic data and fit statistics are shown in Figure 4-13. 
 

 

Description

20mm M55 15 2 1 0 17.3 17 30.7 0.03

40mm M385 16 3 2 0 4.5 3 26.3 0.05

M42 19 0 2 0 2.7 0 25.4 0.03

MK 118 ROCKEYE 20 1 10 0 4.4 2 33.6 0.07

16 GAGE 15cm LOOP 24 - 0 - 0.9 - 18.2 -

BDU-28 25 1 4 1 2.2 1 20.3 0.02

18 GAGE 30cm LOOP 29 - 0 - 0.7 - 13.0 -

BLU-26 30 2 3 0 3.6 2 18.1 0.03

40mm MK II 32 7 5 0 21.9 28 29.9 0.06

12 GAGE 15cm LOOP 37 7 4 5 21.1 18 27.3 0.04

57mm M86 40 3 5 0 3.5 0 14.7 0.01

8# SHOT 45 2 4 0 1.7 0 13.3 0.01

60mm M49A3 46 6 8 0 5.2 4 18.5 0.01

12# SHOT 56 - -6 - 1.3 - 23.9 -

16 GAGE 30cm LOOP 57 - 0 - 1.0 - 16.6 -

105mm M60 67 8 15 0 1006.9 1856 26.8 0.06

81mm M374 69 1 15 0 2.5 1 19.7 0.04

105mm M456 HEAT 78 14 15 8 3.6 2 19.3 0.02

12 GAGE 30cm LOOP 80 - 0 - 2.1 - 12.1 -

30 CM STEEL PLATE 84 13 0 0 2.1 0 28.8 0.08

2.75 M230 92 15 20 0 7.0 4 14.9 0.01

T62 AT MINE 102 10 0 0 2.9 0 12.2 0.00

155mm M483A1 118 19 25 0 2.6 1 23.9 0.04

60 CM STEEL PLATE 173 11 0 0 1.9 0 17.5 0.01

Black -- mean;  Blue -- standard deviation

Size Est.
(mm) Aspect Ratio Fit ErrorDepth Error

(mm)

 
Figure 4-12. A false-color image of the EM61 Cart data, calibration lanes, is shown on the left.  
Fit statistics for targets in the calibration lanes are shown on right. 
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Description

12 GAGE 30cm LOOP 6 - 30 - 35 - 31.6 -

16 GAGE 15cm LOOP 9 - 17 - 26 - 38.2 -

20mm M55 19 4 5 3 39 4 36.4 0.03

M42 23 1 11 6 28 11 29.8 0.01

MK 118 ROCKEYE 24 - 15 - 74 - 34.9 -

BLU-26 26 6 5 4 43 38 29.6 0.06

BDU-28 26 7 10 9 26 9 35.2 0.05

40mm MK II 45 7 9 9 24 10 32.8 0.05

60mm M49A3 48 3 7 4 50 28 35.9 0.01

8# SHOT 48 5 4 2 20 8 35.7 0.07

12# SHOT 54 - 5 - 33 - 31.7 -

57mm M86 55 6 6 4 31 7 21.1 0.00

81mm M374 59 15 7 6 40 27 29.6 0.03

105mm M456 HEAT 86 17 18 17 41 22 21.6 0.02

2.75 M230 89 2 1 0 26 14 37.1 0.03

30 CM STEEL PLATE 95 - 13 - 47 - 28.5 -

T62 AT MINE 97 1 3 2 30 4 22.0 0.03

105mm M60 119 29 12 5 46 41 21.4 0.01

60 CM STEEL PLATE 150 18 7 6 70 4 26.1 0.02
155mm M483A1 158 31 33 15 39 28 22 0.01
Black -- mean;  Blue -- standard deviation

Size
(mm)

Solid Angle
(degrees) Fit ErrorDepth Error 

(mm)

 
Figure 4-13. A false-color image of the magnetic data, calibration lanes, is shown on the left.  Fit 
statistics for targets in the calibration lanes are shown on right 
 
The approach adopted for the blind test followed a process in which all of the features from the 
labeled data, not just those that are intrinsic to the target, are fed into a feature selection search 
algorithm to determine the optimum performance.  Here, we used a forward sequential search 
algorithm and leave-one-out methodology to determine which features produced the optimal 
performance for the labeled data.  The features chosen are listed in Table 4-5. 
 

Table 4-5. Selected features used by the classifiers for blind testing 
 GLRT SVM 

Mag solid angle, declination, inclination depth, size, solid angle, declination, 
inclination 

EMI data depth, β2, and three orientation angles depth, β2, and three orientation angles 
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4.3.2.2 Blind Test Results 
 
We characterized and classified 1073 EMI targets and 1925 magnetic targets.  The fitted features 
were classified using the classifiers discussed in §4.3.2.1 above.  Prioritized dig lists were 
generated and submitted to AEC and IDA for scoring.  The discrimination performance scores are 
shown in Table 4-6, Table 4-7, and Table 4-8. 
 
Table 4-6. EMI Blind Scoring Results 

GLRT SVM
TOI Retention Rate 0.82 0.57
Non-TOI Rejection Rate 0.25 0.43  
 
 
Table 4-7. Magnetic Blind Scoring Results 

GLRT SVM
TOI Retention Rate 0.87 0.60
Non-TOI Rejection Rate 0.27 0.45  
 
Table 4-8. Depth and XY Location Error Statistics 

Depth Error (m) Depth Error 
(Std Dev, m) XY Distance Error (m) XY Distance Error 

(Std Dev, m)
EMI 0.01 0.29 0.24 0.13
Mag 0.18 0.27 0.24 0.11  
 
Discrimination statistics for discrete coherence ranges are shown in Table 4-9 thru Table 4-12.  
In the tables, the TOI Retention rate was calculated by dividing the number of correct ordnance 
declarations by the number of actual ordnance in the interval.  The Non-TOI Rejection Rate for 
specific coherence intervals was calculated by dividing the number of correct clutter declarations 
by the number of actual clutter objects in the interval.  Numbers are rounded to the nearest 5%.  
Perhaps the most significant observation that results from this analysis is that all of the methods 
miss-classify some ordnance regardless of coherence.  Given the analysis results of the template 
measurements, however, this result is not unexpected. 
 
Table 4-9. TOI Retention Rates as a function of dipole error 

TOI Retention Rate 0 to 10 11 to 14 15 to 22 23 to 32 33 to 55
GLRT 0.9 0.8 0.95 0.95 0.9
SVM 0.65 0.5 0.55 0.6 0.4
GLRT 0 0.8 0.85 0.95 0.85
SVM 0 0.7 0.5 0.5 0.55

Dipole Fit Error %

EMI

Mag
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Table 4-10. Non-TOI Rejection Rate as a function of dipole error 

Non-TOI Rejection Rate 0 to 10 11 to 14 15 to 22 23 to 32 33 to 55
GLRT 0.6 0.4 0.4 0.35 0.25
SVM 0.55 0.6 0.5 0.6 0.45
GLRT 0.75 0.6 0.55 0.4 0.4
SVM 0.75 0.8 0.65 0.65 0.55

Dipole Fit Error %

EMI

Mag
 

 
Table 4-11. Depth Errors (actual minus estimated, meters) 

Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev
MAG 0.04 0.11 0.05 0.15 0.09 0.15 0.03 0.19
EMI 0.01 0.20 -0.05 0.32 -0.02 0.27 -0.07 0.51 0.21 0.61

Dipole Fit Error %
33 to 550 to 10 11 to 14 15 to 22 23 to 32

 
 
Table 4-12. XY Distance Errors (meters) 

Average Std Dev Average Std Dev Average Std Dev Average Std Dev Average Std Dev
MAG -- -- 0.20 0.08 0.20 0.12 0.25 0.10 0.26 0.12
EMI 0.23 0.13 0.21 0.12 0.26 0.14 0.24 0.10 0.29 0.13

Dipole Fit Error %
33 to 550 to 10 11 to 14 15 to 22 23 to 32

 
 
4.3.3 Effects of Changing the Labeled Data and Feature Selection 
 
The blind tests used labels from the calibration area only.  At the time of the blind tests, there 
were no other available labels.  Later, additional labels for 326 objects in the Open Field and 
Blind Grid objects were publicly released.  To investigate if the additional labels would 
materially impact the discrimination performance, we performed feature selection and retrained 
the classifiers using the new labels.  Results of the new prioritizations did not improve 
discrimination performance (Appendix A).  Given the overlapping nature of the TOI and non-
TOI signatures for the EMI Cart and magnetic data, this result is not unexpected. 
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4.3.4 Analysis Time 
 
The time required to quantitatively analyze individual anomalies is highly dependent on the 
nature of the data under consideration.  The principle factors relate to the density of targets, the 
degree of editing required removing noise spikes or erratic positions, and the background noise 
due to geology, the environment, or objects on the surface.  It is possible to identify, 
characterize, and classify hundreds of anomalies per hour if (i) the signal-to-noise ratio is high, 
(ii) the spatial registration of the data is consistently high, (iii) the data are well leveled, and (iv) 
the anomalies are separated such that they do not spatially overlap. 
 
For this demonstration, four hours were spent preparing the Open Field magnetic data for 
analysis and fourteen hours for the EMI.  Selecting targets and inverting for model parameters 
required approximately one minute per anomaly for the magnetic data and three minutes per 
anomaly for the EMI.  Creating the anomaly plots involves two steps – creating the Oasis montaj 
map and exporting the map as a JPEG image.  For these data, each step required approximately 
0.5 seconds per anomaly (roughly 120 maps per minute). 
 
4.3.5 Qualitative Metrics 
 
The analysis flow consists of characterizing and classifying the anomaly.  Steps taken within the 
classification phase include identifying anomalies, selecting the spatial footprint of the anomaly, 
and reviewing the results.  The most tedious and labor intensive portion of the characterization 
phase is identifying the spatial extent of each anomaly and editing individual samples that are 
inconsistent.  The output of the characterization phase is a detailed dig list and is then submitted to 
the classifier.  Steps taken during the classification phase include creating or updating a library for 
training purposes, selecting and calling the classifier.  UX-Analyze adheres to the look and feel of 
Oasis montaj and, as such, is easily mastered by experienced Oasis montaj users. 
 
This demonstration was the first major shakedown of UX-Analyze.  As such, we encountered bugs 
and logic problems that had not been exposed during development or tests with more modest data 
sets.  During the course of this demonstration, we identified and resolved 71 bugs associated with 
data handling, 51 bugs associated with visualization, 15 bugs associated with the inversion 
routines, 22 bugs generated while adding new features and user interfaces, and 38 bugs associated 
with miscellaneous functionality.  Due in part to the large number of data sets analyzed during this 
work, there are no remaining bugs that interfere with the processing flow. 
 
End user comments were solicited from the government and regulatory community and the 
consulting firms providing services to the government.  We also conducted a third party peer 
review.  The goal was to solicit comments regarding the flow and functionality of UX-Analyze as 
well as gauge the desire for and acceptance of advanced analysis tools. 
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4.4 Discussion 
 
This shakedown demonstration was instrumental in exposing a number of programming issues and 
bugs that were primarily related to data handling and visualization functions.  These limitations 
were not revealed during tests conducted on small data sets. 
 
Discriminating UXO from clutter based upon their inverted polarizabilities is inherently limited by 
how well the measured data can be duplicated using a dipole model source and by the extent to 
which the class polarization distributions overlap in feature space.  The mean dipole fit error for 
the template EMI data was 4.7% (standard deviation of 5.1), which is quite good.  By comparison, 
the mean fit error the production cart-mounted EMI data was 24.1% (standard deviation of 17.2.  
Using the fitted parameters from the template data to evaluate the separability of the TOI and non-
TOI clusters, we find that the polarizabilities from non-TOI objects overlap significantly in feature 
space with those derived from the larger UXO.  Thus, even with well positioned static data, 
discrimination performance at this site is limited by the distributions of the TOIs relative to the 
non-TOI objects.  Interestingly, however, we also find that subclasses of UXO, namely 57mm and 
smaller UXO, can be effectively discriminated at this site.  This trend is probably unique to APG 
and should not be extrapolated to live sites that possess extremely large numbers of small 
fragments and clutter items. 
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5 Cost Assessment 

5.1 Cost Reporting 
 
This demonstration focuses on characterizing and classifying anomalies observed in magnetic and 
electromagnetic data.  As such, it encompasses only a small subset of costs that are typically 
associated with acquisition demonstrations.  The relevant cost categories for data analysis 
demonstration are shown in Table 9. 

 
Table 5-1. Cost categories and details 

Cost Category Sub Category Costs 
Data Preparation $10K* 

Analysis Anomaly Specific 
Characterization $2 - $6 per anomaly 

Documentation Anomaly Summaries $0.05 per anomaly 
* this reported cost is highly variable and can deviate significantly from that reported for these data 
 

6 Implementation Issues 
 
6.1 End-Users Issues 
 
The primary end-users of this data analysis technology are high-end geophysical service providers, 
technically orientated DoD oversight personnel, and government-sponsored researchers.  In order 
to be successfully transitioned to the production community, this technology must not only be 
accepted by the Environmental Protection Agency and the Corps of Engineers, it must initiate a 
change in the requested deliverables regarding data analysis for UXO concerns.  This program 
explored the methods and logic that are necessary to create a prioritized dig list. 
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Appendix A:  Discrimination performance for supplemental labels from the APG Open Field. 
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c)  

Figure A-1. Discrimination performance for Mag data (Open Field supplemental labels only).  
A) ROC curve B) Comparison of all intrinsic features versus selected C) table listing selected 
and intrinsic features. 

SVM GLRT KNN All intrinsic 
MOMENT MOMENT MOMENT MOMENT 
  SOLID-ANGLE SOLID-ANGLE SOLID-ANGLE 
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c) 
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Figure A-2. Discrimination performance for EMI Cart data (Open Field supplemental labels 
only).  A) ROC curve B) Comparison of all intrinsic features versus selected C) table listing 
selected and intrinsic features. 
 


