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Introduction

The objective of this project is to demonstrate a system capable of providing the

precise relative position of an electromagnetic induction (EMI) sensor while recording

data over a buried target. EMI data acquired as a function of position can be used as

input into sophisticated target characterization algorithms that require spatial

sampling. The basic approach is to used the active transmitter of the EMI sensor as a

beacon that can be located and oriented in space relative to a set of fixed reference coils

that detect the sensor transmitter field (Fig. 1).

In the course of this work, Geophex has investigated two beacon location algorithms

based on this principle. The first algorithm requires beacon signals recorded by two sets

of orthogonal coils to compute the (x, y, z) coordinates and the orientation of the active

sensor. This approach requires a nonlinear, iterative least-squares algorithm, which is

relatively computer intensive. The theoretical basis of this algorithm is reviewed in

Appendix A. A photograph of the prototype positioning system is shown in Figure 2.

In the photo, the two sets of three orthogonal coils are housed inside each end of the

“beam.” The separation between the two sets of coils is about 1.8 meters. In this

system, the beam needs to be elevated above the plane on which the sensor moves to

allow flux linkage through the vertical coils (i.e., the coils whose axes point

horizontally).

3-axis
receiving coils

3-axis
receiving coils

sensor

Figure 1. The primary field is detected by two sets of three orthogonal receiving coils.

These six measurements are sufficient to determine the location and orientation of the

sensor in three-dimensions.
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Figure 2. A set of tri-axis coils is housed inside each end of the beam.

A second, simpler algorithm has been more recently developed, which requires only

three horizontal coils (axes vertical). The latter configuration assumes that the coils

and the sensor are in the same horizontal plane, i.e., it solves for the (x, y) coordinates

of the sensor position and assumes z = 0. The significant advantage of this algorithm is

that a closed-form, analytical solution exists for computing (x, y), which eliminates the

need for an iterative algorithm. The orientation of the sensor is not computed using

this approach; however, its accuracy is independent of the sensor orientation. A third

(center) coil is used to normalize the end coil measurements. It can be shown that the

sensor orientation dependence disappears as a result of this normalization. The only

assumption is that the coils and sensor center are co-planar (although the sensor

transmitting coil need not be horizontal). Simulations have shown, however, that the

accuracy of the (x, y) calculation is fairly insensitive to small (e.g., 5 or 10 cm)

deviations of the sensor from the plane of the three reference coils. A schematic

illustration of the three-coil system and the analytic solution for the sensor coordinates

are shown in Figure 3. Details of the derivation of the closed-form solution giving (x, y)

in terms of the measurements can be found in Appendix B.
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In a later section, results are presented using a prototype three-coil system based on this

new scheme. Our original system (Figs. 1 and 2) has been extensively tested using the

Geophex GEM-3 and, more recently, on signals generated using the Geonics hand-held

EM-61HH sensor. Results using the EM-61HH are reported in the next section.

Figure 3. Schematic of the new three-coil design and the analytical solution for the

(x, y) coordinates. V +, V 0 and V − denote the outputs of the three coils. The sensor

and the three receiving coils are assumed to lie in the same plane.

Geonics EM-61HH results

Below we present test results using our prototype positioning system (Figs. 1 and 2) to

locate the EM-61HH sensor. Figure 4 shows a photo of our test setup with the

EM-61HH sensor head positioned on a flat board upon which a grid of points is drawn.

A closeup of the sensor head is shown in Figures 5 and 6.
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Figure 4. Test setup showing the positioning system and the EM-61HH sensor head.

Figure 5. EM-61HH sensor head on the recording grid.
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Figure 6. EM-61HH sensor head.

The EM-61HH is a time-domain instrument and the signals generated by this device

consist of a train of sharp pulses with a repetition rate of about 150 Hz. A pulse train

recorded over a time window of 1/30 second is shown in Figure 7. The EM-61HH signal

was sampled at a rate of 192,000 Hz. The pulse train required pre-processing prior to

using the positioning algorithm to provide the most accurate measurement of the signal

amplitude. One approach tried was to use a peak-to-peak amplitude measurement as

input into the positioning algorithm. It was found, however, that more accurate results

were obtained by calculating the area under the absolute magnitude of the waveform

after applying a bandpass filter to the waveform. The bandpass filtering removed a

small DC component and rendered the pulse integration calculation more accurate. An

FFT algorithm was used to perform the bandpass filtering. Prior to the rental of an

EM-61HH sensor, our pre-processing and positioning algorithms were tested on another

time-domain system (owned by Geophex), the Schiebel PSS-12, which generates a

waveform that resembles that of the EM-61HH, although the Schiebel sensor operates

at a somewhat slower repetition rate and lower amplitude.
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Figure 7. Waveform generated by the EM-61HH transmitter.

The transmitted signals generated by the EM-61HH were recorded over a grid of points

at distances ranging from 1 to 4 meters from the positioning-system receiving coils.

The positioning grid is visible in Figures 4, 5 and 6. Excellent positioning accuracy

(average error less than 0.5 cm) was achieved for points between 1 and 3 m from the

receiving beam. For distances beyond 3 meters the positioning accuracy began to

visibly deteriorate with this system. A plot of the calculated positions is shown in Fig.

8. The dots in this figure are the calculated positions, which show excellent accuracy up

to 3 meters, beyond which positioning errors are evident.
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Figure 8. The dots are the computed positions. Excellent accuracy is shown out to 3

meters. Beyond 3 meters deterioration of the positioning accuracy is evident.

Testing of the new three-coil system

Test were conducted on the three-coil system illustrated in Figure 3. Data were

acquired both with the EM-61HH sensor and with the Geophex GEM-3 sensor. A new

smaller (length 0.82 meters) and portable beam was constructed and appears in the

foreground of the photo in Figure 9. In the background is the larger locator beam.

Data were again acquired by moving the sensor on the grid shown in previous photos.

The computed location using the EM-61HH sensor are shown in Figure 10 and the

computed results of the GEM-3 sensor are shown in Figure 11. Aside from one point in
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the upper right of Figure 10, the EM-61HH performed quite well. The results using the

GEM3 appear comparable.

Figure 9. The smaller locator beam is in the lower left.

Figure 12 shows a second test of the three-coil system in which the gains of the three

coils were adjusted to “force” the computed positions to coincide with the actual

locations of the sensor as measured on the grid. In the figure, the circles identify the

correct locations and the asterisks are the computed locations. The adjustment shown

in Figure 12 was performed by slightly modifying the coil gains to minimize the

mean-squared deviation of the computed locations from the actual locations. This

suggests that a method could be devised to pre-calibrate the positioning system to

correct for small differences in the gains of the three coils.
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Figure 10. Computed location of EM-61HH sensor.
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Figure 11. Computed location of GEM-3 sensor.
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Figure 12. Computed locations of the GEM-3 sensor after calibration. The circles

indicate the correct locations and the asterisks are the computed locations.

Discussion and conclusions

Our positioning algorithms require accurate measurements of the amplitude of the

sensor signal by the reference coils. Accurate estimations of this amplitude were more

difficult to achieve using the EM-61HH due to the greater complexity and very short

duration of the time-domain pulse compared to that of the continuous-wave GEM-3

signal. Part of the challenge in estimating the amplitude of the EM-61HH waveform is

in the selection of a time window over which the amplitude integration is to be

performed. The optimal duration and location of this window are more difficult to

determine as the signal becomes noisier at greater sensor ranges. An advantage of the

GEM-3 instrument is its excellent signal-to-noise performance, which arises from the

narrowband quality of the signals. The sine and cosine multiply and integrate process

performed by the GEM-3 over many cycles greatly reduces the effects of broadband

noise. Broadband time-domain systems are, however, inherently more sensitive to

broadband noise, although high signal levels can compensate to some extent for this

sensitivity.

Results have been presented using the new analytical algorithm employing data

recorded with a prototype of the three-coil system (Fig. 3 and Fig. 9). Such a system
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has been constructed and tested using both EM-61HH data and GEM-3 data. Good

results were obtain with both sensors, although somewhat superior positional accuracy

was achieved with the GEM-3 system, which is likely due to the narrowband character

of its signals and the ease of the processing of such signals, as opposed to the more

complex waveforms generated by time-domain systems.
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Appendix A: locator system 1

This system employs two sets of three mutually orthogonal receiving coils, as illustrated

in Figure 1.

A.1 Basic location equations

In this system, the two sets of orthogonal coils are elevated some distance above the

sensor so that the coils with horizontal axes intercept some of the primary flux. Using a

calibration procedure, accurate prior knowledge of the orientations of the six receiving

coils is unnecessary, but knowledge of the relative (x, y, z) positions of each coil set is

assumed known and defined relative to some convenient coordinate system with respect

to which the sensor coordinates will be calculated. Simulations and field tests show,

however, that the method is fairly tolerant of small errors in the positions of the

receiving coils after calibration.

We model the sensor transmit coil as a magnetic dipole with dipole moment

(Mx,My,Mz) centered at the location (X,Y,Z). We also approximate the receiving

coils as dipoles. Tests confirm that the dipole approximation is excellent for distances

greater than about half a meter.

This system uses two sets of three mutually-orthogonal coils fixed at opposite ends of a

rigid beam. We define an (x, y, z) coordinate system with the origin at the center of the

beam, the x-axis coinciding with the beam axis (transverse direction) and the y-axis

perpendicular to the beam (range direction). The centers of the two sets of coils are

located at (−a, 0, 0) and (a, 0, 0). If (x, y, z) is the location of the transmitter with

dipole components (Mx,My,Mz), the outputs of the three orthogonal coils are

V ±
x =

A

r5
±

[(2(x ± a)2 − y2 − z2)Mx + 3(x ± a)yMy + 3(x ± a)zMz] (A1)

V ±
y =

A

r5
±

[3y(x ± a)My + (2y2 − (x ± a)2 − z2)My + 3yzMz] (A2)

V ±
z =

A

r5
±

[3z2(x ± a)Mx + 3zyMy + (2z2 − (x ± a)2 − y2)Mz], (A3)

where r± =
√

(x ± a)2 + y2 + z2 and A is a constant. The + and − refer, respectively,

to the coils at (a, 0, 0) and (−a, 0, 0). The existing algorithm uses the six measurements

(V ±
x , V ±

y , V ±
z ) to recover the six unknowns (x, y, z) and (Mx,My,Mz).

The moment components (Mx,My,Mz) define the orientation of the sensor, although it

is convenient to use the angles (θ, φ) to define this orientation, where

Mx = M sin θ cos φ
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My = M sin θ sin φ (A4)

Mx = M cos θ

From the latter, the orientation of the sensor can be computed from

tan φ = My/Mx (A5)

tan θ =
√

M2
x + M2

y /Mz (A6)

and M =
√

M2
x + M2

y + M2
z . We shall see later that the calibration procedure allows us

to define the sensor moment to be M = 1. Thus we have five unknowns to determine:

(X, Y , Z, θ, φ).

From reciprocity principles, one can show that the induced emf in the n-th receiving

coil is given by [1]

Vn =
iωµ0

I
Hn · M, (A7)

where Hn is the magnetic field generated by the n-th receiving coil when driven with

the current I. Now suppose that the n-th receiving coil has a magnetic moment, MR
n ,

with components (MR
xn, MR

yn, MR
zn), where the superscript R stands for “receiving.”

Our calibration procedure will allow us to compute (MR
xn, MR

yn, MR
zn) for n = 1, . . . , 6

using four sensor measurements at known locations, as described below. Letting

(X,Y,Z) denote the coordinates of the center of the sensor and (Xn, Yn, Zn) the

coordinates of the center of the n-th receiving coil, define xn = X−Xn, yn = Y −Yn,

zn = Z−Zn and rn =
√

x2
n + y2

n + z2
n. With the sensor magnetic moment denoted by M,

one can show that the voltage induced in the n-th receiving coil is given by

Vn = MR
n · Hn · M, (A8)

where

Hn ≡ x̂Hxn + ŷ Hyn + ẑ Hzn (A9)

is a dyadic quantity, x̂, ŷ and ẑ are Cartesian unit vectors and [2]

Hxn =
A

4πr5
n

[(2x2
n − y2

n − z2
n)x̂ + 3xnynŷ + 3xnznẑ] (A10)

Hyn =
A

4πr5
n

[3ynxnx̂ + (2y2
n − x2

n − z2
n)ŷ + 3ynznẑ] (A11)

Hzn =
A

4πr5
n

[3znxnx̂ + 3znynŷ + (2z2
n − x2

n − y2
n)ẑ]. (A12)

Here Hxn, Hyn and Hyn are the magnetic fields generated by dipoles each of unit

moment oriented, respectively, in the x, y and z directions. In these equations,
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A = iωµ0/I is an unimportant constant which will be “normalized out” by the

calibration procedure.

A.2 Calibration procedure

The calibration procedure allows us to compute independently the magnetic moments,

MR
n = (MR

xn, MR
yn, MR

zn), for all six receiving coils (n = 1, . . . , 6) with four

measurements of the sensor at four known locations. These locations where chosen to

be the corners of a square with the axis of the sensor assumed vertical (in the positive

z-direction). Each receiving coil is treated independently; in fact, we need not assume

exact orthogonality of the coils.

To describe the procedure, suppose (MR
x , MR

y , MR
z ) are the moment components of one

of the receiving coils. Define the magnitude of the moment of the sensor transmitter

coil equal to unity (|M| = 1) and assume that the coil’s axis is vertical. Further, let

(xi, yi, zi), with i = 1, 2, 3, 4, denote the (known) coordinates of the four sensor

measurements and let Vi denote the corresponding outputs of the coil at these four

positions. Since the sensor axis is assumed vertical (with respect to the sensor

coordinate system), we obtain the following four measurements (assumed to be the

corners of a square):

Vi =
1

4πr5
i

[3zi xi M
R
x + 3zi yi M

R
y + (2z2

i − x2
i − y2

i )MR
z ], i = 1, 2, 3, 4. (A13)

This system of four equations is then solved for the three unknowns (MR
x , MR

y , MR
z )

using a linear least-squares algorithm. This was done using singular-value

decomposition, which is also convenient for computing the condition number of the

linear system. The condition number was found to be relatively small, indicating a

well-conditioned system. Although only four measurements were used for calibration in

our experiments, a greater number could be used in the calibration process if desired.

Define
xli = XL − Xcali

yli = YL − Y cali

xri = XR − Xcali

yri = YR − Y cali

where i = 1, 2, 3, 4 label the four calibration points, (Xcali, Y cali) are the coordinates of

the i-th calibration point, and (XL, YL,ZL) and (XR,YR,ZR) are the coordinates of

the centers of the left and right receiving coils, respectively. For the left three coils, set

xi = xli, yi = yli and z = ZL and for the right three coils set xi = xri, yi = yri and

z = ZR. We then solve for the moment vector for all six coils separately.
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Call the three components of the moment vector (M1,M2,M3) for one of the six coils.

Denote the measurements from the four calibration points by Vi, i = 1, 2, 3, 4. In the

program, we call these values LXcali, LY cali, LZcali, RXcali, RY cali and RZcali,

i = 1, 2, 3, 4, where LX, LY , LZ, RX, RY and RZ label the six coils. We call the

corresponding moment vectors MLXj , MLYj , MLZj , MRXj , MRYj and MRZj ,

j = 1, 2, 3. To obtain Mj, we solve the overdetermined system

Vi =
1

r5
i

[3zi xi M1 + 3zi yi M2 + (2z2
i − x2

i − y2
i )M3], i = 1, 2, 3, 4,

where Vi are the measurements at the four calibration points [a factor of 1/4π has been

absorbed into (M1,M2,M3)]. For example, for the LX coil, we solve

3∑

j=1

FijMLXj = Bi, i = 1, 2, 3, 4,

using SVD, where the elements of the matrix F are given by

F11 = 3z x1 , F12 = 3z y1 , F13 = 2z2 − x2
1 − y2

1

F21 = 3z x2 , F22 = 3z y2 , F23 = 2z2 − x2
2 − y2

2

F31 = 3z x3 , F32 = 3z y3 , F33 = 2z2 − x2
3 − y2

3

F41 = 3z x4 , F42 = 3z y4 , F43 = 2z2 − x2
4 − y2

4

and the vector B is defined by

B1 = V1 (x2
1 + y2

1 + z2)5/2

B2 = V2 (x2
2 + y2

2 + z2)5/2

B3 = V3 (x2
3 + y2

3 + z2)5/2

B4 = V4 (x2
4 + y2

4 + z2)5/2 (A14)

A.3 Inversion algorithm

The outputs of the receiving coils are related to the parameters (X,Y,Z, θ, φ) in a

nonlinear fashion through the six equations (A8). Substituting

MR
n = MR

xnx̂ + MR
ynŷ + MR

znẑ and M = Mxx̂ + My ŷ + Mz ẑ into (A8), we obtain the six

relations

Vn =
A

4πr5
n

{ MR
xn[(2x2

n − y2
n − z2

n)Mx + 3xn yn My + 3xn zn Mz]

+ MR
yn[3yn xn Mx + (2y2

n − x2
n − z2

n)My + 3yn zn Mz]

+ MR
zn[3zn xn Mx + 3zn yn My + (2z2

n − x2
n − y2

n)Mz] } , (A15)

n = 1, . . . , 6, in which the moment components (MR
xn,MR

yn,MR
zn) are obtained in the

above calibration procedure. With (Mx, My, Mz) related to the angles (θ, φ) through
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(A4) (with M = 1), this gives six equations in the five unknowns (X, Y , Z, θ, φ). We

solve for the latter parameters using a standard Levenberg-Marquardt nonlinear

least-squares algorithm.

A.4 Closed-form solution for EMI locator assuming zero tilts

If it is known that the axis of the sensor transmitting coil is vertical, one can derive an

analytical solution for the (x, y, z) coordinates (this solution is not to be confused with

that of Appendix B, where the assumption of a vertical sensor axis is not required,

although that approach does not recover the z coordinate.)

We assume the origin of coordinates (0, 0, 0) is at the center of the beam. The (x, y, z)

coil positions are (−a, 0, 0) and (a, 0, 0). For zero tilts and (x, y, z) the location of the

transmitter, the six coil voltages are

V +
x =

3Dz(x + a)

R5
+

(A16)

V +
y =

3Dzy

R5
+

(A17)

V +
z =

D[2z2 − (x + a)2 − y2]

R5
+

(A18)

V −
x =

3Dz(x − a)

R5
−

(A19)

V −
y =

3Dzy

R5
−

(A20)

V −
z =

D[2z2 − (x− a)2 − y2]

R5
−

(A21)

where R± =
√

(x ± a)2 + y2 + z2. Define

α+ ≡ V +
x

V +
y

=
x + a

y
(A22)

α− ≡ V −
x

V −
y

=
x − a

y
(A23)

This approach differs from previous approaches in that we divide by the y-coil voltages,

V ±
y . I will argue that it is not necessarily an advantage to divide by the z-coil voltages,

since, in the latter case, the final expressions are complex and involve both these ratios

and their reciprocals. Defining the ratios as given by (A22) and (A23) results in the

simplest closed-form solution, without a sign ambiguity in the final expression for z. In
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general, we have V ±
y → 0 when z → 0 and V +

x → 0 or V −
x → 0 when |x| → a. We shall

assume |z| > 0 throughout.

Adding and subtracting (A22) and (A23) gives

x = a

(
α+ + α−

α+ − α−

)
(A24)

y =
2a

α+ − α−
(A25)

Note from (A22) and (A23) that α+ − α− > 0 since y > 0, which will always hold. To

find z, define

β+ ≡ V +
z

V +
y

=
1

3yz
[2z2 − (a + x)2 − y2] (A26)

β− ≡ V −
z

V −
y

=
1

3yz
[2z2 − (a− x)2 − y2] (A27)

A simple approach is to multiply β+ and β− by 3yz and subtract, giving

z =
4a

3(β− − β+)

(
x

y

)
=

2a

3

(α− + α+)

(β+ − β−)
. (A28)

However, this is indeterminant at x = 0, since α+ = −α− and β+ = β− at x = 0. A

second approach is to solve the quadratic (A26) or (A27) for z. Using (A26) gives

2z2 − 3yzβ+ − (a + x)2 − y2 = 0. (A29)

Solving for z gives

z =
3yβ+

4
± 1

4

√
9y2β2

+ + 8[(a + x)2 + y2] (A30)

Assume that z < 0 (i.e., the origin of coordinates at the center of the beam is above the

ground). Also, y > 0 always. We shall also assume that y >
√

2|z|. If this is the case,

then from (A26) and (A27), β± > 0. Then from (A26), as z → 0, β+ → +∞. This

implies that we must pick the minus sign in (A30), otherwise the solution blows up as

z → 0. We thus have

z =
3yβ+

4
− 1

4

√
9y2β2

+ + 8[(a + x)2 + y2] (A31)

or, alternatively, using (A27),

z =
3yβ−

4
− 1

4

√
9y2β2

− + 8[(a− x)2 + y2] (A32)
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Appendix B: locator system 2

B.1 Closed-form solution for three horizontal-coil system

As described in the previous appendix, Locator System 1 uses two sets of three

mutually-orthogonal coils fixed at opposite ends of a rigid beam. In that scheme, we

define an (x, y, z) coordinate system with the origin at the center of the beam, the

x-axis coinciding with the beam axis (transverse direction) and the y-axis perpendicular

to the beam (range direction). In this configuration, the centers of the two sets of coils

are located at (−a, 0, 0) and (a, 0, 0). If (x, y, z) is the location of the transmitter with

dipole components (Mx,My,Mz), the outputs of the three orthogonal coils are

V ±
x =

A

r5
±

[(2(x ± a)2 − y2 − z2)Mx + 3(x ± a)yMy + 3(x ± a)zMz] (B1)

V ±
y =

A

r5
±

[3y(x ± a)My + (2y2 − (x ± a)2 − z2)My + 3yzMz] (B2)

V ±
z =

A

r5
±

[3z2(x ± a)Mx + 3zyMy + (2z2 − (x ± a)2 − y2)Mz], (B3)

where r± =
√

(x ± a)2 + y2 + z2 and A is a constant. The + and − refer, respectively,

to the coils at (a, 0, 0) and (−a, 0, 0). Our first algorithm uses the six measurements

(V ±
x , V ±

y , V ±
z ) to recover the six unknowns (x, y, z) and (Mx,My,Mz). From the latter

measurements, the orientation of the transmitter, defined by the sensor tilt angles

(θ, φ), can be computed from
tan φ = My/Mx (B4)

tan θ =
√

M2
x + M2

y /Mz (B5)

The System 1 algorithm computes the parameters (x, y, z) and (Mx,My,Mz) from the

6-coil data set has the disadvantage of requiring a computer-intensive, nonlinear

iterative scheme, which is currently performed on a laptop. We have recently derived a

closed-form analytic solution for recovering the x and y sensor coordinates using only

three horizontal (axes vertical) coils provided that the coils and sensor are co-planar,

that is, assuming that z = 0 in the above coordinate system. This new approach is

described in this appendix.

This method uses a third horizontal coil at the center of the beam; that is, the three

coils have coordinates (−a, 0, 0), (0, 0, 0) and (a, 0, 0). In the calculations, ratios are

taken between the center coil and the end coils. The significant advantage of this

approach is that the solution for x and y is closed-form and thus can be calculated

rapidly. If we add two additional vertical coils (with axes pointing either in the

x-direction or y-direction), we also show that closed form formulas can be derived for

Mx and My, which is sufficient for obtaining the tilt angle φ from (B4). To obtain θ
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from (B5), we also require Mz, or equivalently M since Mz =
√

M2 − M2
x − M2

y . In

principle, M , the dipole moment of the transmitter, is known a priori or can be

obtained with a single calibration measurement, in which case θ can also be obtained.

As noted, this approach assumes z = 0 and thus will be subject to error if the sensor

deviates from the plane of the coils. However, simulations have shown that the

computed values of (x, y) are fairly insensitive to small out-of-plane deviations of the

sensor (e.g., -5 cm < z < 5 cm).

Closed-form solution for x and y

Consider a locator with three identical horizontal coils at coordinates (−a, 0, 0), (0, 0, 0)

and (a, 0, 0), with outputs denoted by V −
z , V 0

z and V +
z , respectively. If we set z = 0 in

(B3), then the outputs of the three coils reduce to

V +
z = − AMz

[(x + a)2 + y2]3/2
(B6)

V 0
z = − AMz

[x2 + y2]3/2
(B7)

V −
z = − AMz

[(x− a)2 + y2]3/2
. (B8)

Thus, when z = 0, the dependence on Mx and My disappears (i.e., the results are

insensitive to the sensor tilt). For the case in which all coils are horizontal and

co-planar, A = iωµ0NAR/4π, where N and AR are the turn number and area of the

receiving coil. Now define the ratios

α ≡
(

V 0
z

V +
z

)2/3

=
(x + a)2 + y2

x2 + y2
(B9)

β ≡
(

V 0
z

V −
z

)2/3

=
(x − a)2 + y2

x2 + y2
. (B10)

Defining R2 = x2 + y2, (B9) and (B10) may be written

R2 + 2ax + a2 = αR2 (B11)

R2 − 2ax + a2 = βR2 (B12)

Subtracting and solving for x gives

x =
1

4a
(α − β)R2. (B13)

Substituting x into (B11) or (B12) and solving for R2, we get
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R2 =
2a2

α + β − 2
. (B14)

Substituting this back into (B13) gives

x =
a(α − β)

2(α + β − 2)
. (B15)

y is obtained by substituting (B15) for x into (B14), recalling that R2 = x2 + y2 and

solving for y:

y =

[
2a2

α + β − 2
− x2

]1/2

, (B16)

with x given by (B15). Note that y will always be a positive number, whereas x can be

positive or negative.

Recovering the tilt of the sensor

When z = 0, we can recover the sensor moment components (Mx,My) once x and y

have been computed if we have two additional vertical coils. The output of two vertical

coils at the ends of the beam whose axes are oriented, respectively, in the x-direction or

y-direction are given by setting z = 0 in (B17) and (B18)

V ±
x =

A

ρ5
±

[(2(x ± a)2 − y2)Mx + 3(x ± a)yMy] (B17)

V ±
y =

A

ρ5
±

[3y(x± a)Mx + (2y2 − (x ± a)2)My], (B18)

where ρ± ≡
√

(x ± a)2 + y2. Once x and y have been computed from (B15) and (B16),

either (B17) or (B18) defines a 2 by 2 linear system that can be solved for (Mx,My).

For example, from (B17), the data consist of (V +
x , V −

x ).
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