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Abstract 
Introduction and Objectives 

The civil infrastructure of our country is by large built by stationary standards to address 
weather and climate related risks. However, with increasing effects of climate change being 
manifested, we are interested in re-assessing the risk of projects that are based on stationary 
intensity-duration-frequency curves to manage events such as extreme precipitation and flooding 
via runoff. Our objectives are to (1) develop protocols for incorporating nonstationarity into 
extreme value theory, which can be applied to flood frequency as well as extreme precipitation 
events; and incorporate ongoing and future projections of climate warming on flood frequency 
estimates for watersheds affected by (2) rain-on-snow events and (3) atmospheric rivers.  

Technical Approach 
Our technical approach includes two main elements to address our first objective and a 

third element to address the second objective. The first element incorporates nonstationarity as 
observed in historical records of extreme precipitation into the protocols for intensity-duration-
frequency relationships via the examination of the underlying probability distribution function. 
The second element involves the incorporation of regional climate models into flood risks; we 
analyze the effects of atmospheric rivers on flooding/extreme precipitation in the western United 
States. The third element is specific to flood frequency estimation in watersheds affected by rain-
on-snow events and snowmelt. We employ a hydrological model to track both the contributions 
of rain-on-snow events and snowmelt to runoff and assess the sensitivity of this relationship to 
increases in temperature.  

Results 
We divide our results into three main sections, each of which address different aspects of 

flood risk with climate change via different hydrological processes: extreme precipitation, 
atmospheric rivers, rain-on-snow events. We find the tradeoff in the increasing variability versus 
decreasing bias from including a time-varying parameter in extreme precipitation distributions 
for both stationary and nonstationary environments. We conduct a study on the patterns of 
behavior of landfalling atmospheric rivers along three sections of mountains in the west coast. 
We separate the contribution of snowmelt versus rain-on-snow events on flooding events across 
the United States and discuss the differences.  

Benefits 
Our work incorporates time-dependent relationships into the best current extreme 

precipitation and flood frequency estimation methods. The results of this work benefit risk-based 
flood design not only at Department Of Defense and other governmental facilities, which will 
surely be impacted by changing flood risk in the face of climate warming, but also across the 
field of hydrologic engineering design. 
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Executive Summary  
Introduction 
 Floods are a costly natural hazard, having caused more than a billion dollars of damage in 
the United States since the 1980s. There are multiple causes behind flooding events, so while the 
literature on the changing magnitudes of flooding events has remained mixed (e.g. Lins and 
Slack, 1999; 2005; Hirsch and Ryberg, 2012), we have found specific mechanisms such as 
extreme precipitation storms, landfalling atmospheric rivers (ARs), and rain-on-snow (ROS) 
events are changing in magnitude due to changes of temperature with time (e.g. Kunkel et al., 
1999; Mishra and Lettenmaier, 2011; Westra et al., 2013; Groisman et al., 2014). Engineering 
standards to address flooding from these events as well as others are designed to address risk 
assessments that are built with stationary assumptions. However, increasing evidence points to 
nonstationary relationships occurring due to increasing temperature with time, i.e. climate 
change. Increased temperatures lead to increases in saturated water vapor following the Clausius-
Clapeyron relationship at around a 7% increase in saturated water vapor per degree Celsius 
increase (Trenberth, et al., 2003).  

The changes in saturated water vapor can lead to increases in extreme precipitation 
events and has been studied both in historical observations, gridded datasets, and model 
predictions. Studies have found that increases have been observed in extreme precipitation, either 
in intensity or frequency, or both (e.g. Karl and Knight, 1998; Easterling et al., 2000; Frich et al., 
2002; Min et al., 2011; Easterling, et al., 2017). ARs are also impacted by changes in 
temperature due to the Clausius-Clapeyron relationship. When an AR event makes landfall, the 
transportation of large amounts of water vapor can lead to heavy precipitation and flooding. 
Several studies highlight the importance of landfalling AR events and intense precipitation or 
flooding events in the western US (Ralph et al. 2006; Neiman et al. 2008, 2011; Barth et al. 
2017; Konrad and Dettinger 2017; Lamjiri et al. 2017). ROS events can include intense rainfall 
and rapid snowmelt that contributes to flooding that further lead to increased risk for landslides, 
river channel morphology changes, and increased risk of avalanche triggers (Harr, 1981; 
Bergman, 1987; Conwat et al., 1988; Conway and Raymond, 1993; Heywood, 1988; Singh et al., 
1997). There is now a need to update risk assessment protocols so that they will be appropriate 
for the designing and planning of civil infrastructure over the project’s planned lifespan.   
 
Objectives 

Our overall objectives are to (1) develop protocols for incorporating nonstationarity into 
extreme value theory, which can be applied to flood frequency as well as extreme precipitation 
events; and incorporate ongoing and future projections of climate warming on flood frequency 
estimates for watersheds affected by (2) rain-on-snow events and (3) atmospheric rivers. These 
objectives are created as a means of responding to the scientific questions related to how can 
engineering design criteria associated with extreme precipitation and flooding be adjusted to 
reflect observed and projected effects of climate change in a manner that is consistent with 
standards of engineering practice? We employ statistical methods, Monte Carlo simulations, at-
site and regional trend analysis, use of regional climate models, downscaling technology, delta-
warming method, and the VIC hydrological model to meet our three objectives. For our work, 
we merge historical station data, reconstructed historical data, gridded observation data, and 
model projections to create a long time series that is consistent throughout past to future time 
periods.  
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Technical Approach 
 We break our technical approach down into three main elements. In the first element, we 
incorporate nonstationarity into extreme value theory by introducing a time-varying parameter 
into the generalized extreme value distribution family. We use this modified distribution to 
model extreme precipitation events, AMS in particular, as pulled from historical observations. In 
particular, we assess the model performance differences in applying a nonstationary model to a 
stationary environment and vice versa, explicitly finding which has a larger penalty as quantified 
in nRMSE of the 10-year and 100-year design storms. This element addresses extreme 
precipitation events and is meant to be applied to short-term IDF curve-based risk assessment.  
 In the second element, we must first define how we categorize an event as an AR based 
on thresholding IVT as well as spatial features. Then for each AR landfalling date, we pull from 
relevant hydrometeorological variables such as precipitation through the dynamic downscaling 
(via WRF) of the NCEP-NCAR atmospheric reanalysis. The WRF parameterization is based on a 
previous study and produces simulated results that are near observations. We then characterize 
daily aggregated changes in precipitation and SWE for each AR event over our domain. We 
assess the severity of AR-induced precipitation by looking at other flood events that did not 
occur during a landfalling AR. We further look to assess the different impacts that ARs have on 
precipitation intensity via characteristics such as latitude, elevation, and dry or wet conditions.  
 The third element addresses the risk of ROS to flood frequency estimation in affected 
watersheds. We characterize ROS events as having a minimum amount of rainfall on a minimum 
depth of a snowpack for which snowmelt makes up at least 20% of the total rainfall and 
snowmelt of the day. We use the VIC hydrological model to simulate SWE and runoff variables 
across the CONUS with relevant variables related to snow mass and energy balance processes 
being tracked throughout the time period of the simulation. We compare the SWE and runoff to 
historical observations as well as the SNSR reanalysis dataset to check the quality of modeling 
and parameterization used. Similar to the first task, we use the updated NS-GEV distribution to 
model flood risk changes with time. We apply a delta-warming method in which the air 
temperature is increased while other variables are left the same to assess how sensitive ROS are 
to impending global warming.  
 
Results and Discussion 
 The main takeaway conclusions from the first element are concerning the misapplication 
of either the S-GEV or NS-GEV distribution with regards to environments with different, 
realistic values of CV, skewness, record length, and time. The application of S-GEV is 
associated with lower variance but larger bias in the resulting error. The application of NS-GEV 
is associated with increased variance, due to the inclusion of a fourth parameter, but possibly 
lower bias in error. Error in this element is defined as the nRMSE of the estimations of the 10-
year and 100-year design storm. We found that for short record lengths of thirty years, while the 
NS-GEV is capable of modeling near-stationary conditions, the increased variance is too high to 
offset any decrease in bias. For a record length of fifty years, the tradeoff between variance and 
bias is closer to being equal and the question of which application is safer if the underlying 
distribution is unknown depends on many other factors such as the CV, skewness, and amount of 
nonstationarity present. For the longest record length option used of 100 years, the nRMSE of 
the 10-year and 100-year design storm is much larger at the initial time (t = 0 indicating the 
beginning of the record length) for the misapplication of the S-GEV than that of the NS-GEV. 
As time increases, the ranges of nRMSE stabilize to be around 0.1 regardless of the data 
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characteristics. For large amounts of nonstationarity, the application of NS-GEV is preferred 
over S-GEV regardless of other characteristics of the environment.  
 Overall, in deciding which model of the GEV distribution to apply to an AMS with 
unknown underlying distribution, the decision should take into particular consideration the 
record length available as well as the project lifespan required. To a smaller degree, they will 
benefit from knowing the data CV and skewness. For scenarios most representative of current 
conditions, the S-GEV should be applied if the record length is under 50 years for more accurate 
design storm estimates. When the record length is at least 50 years, the additional complications 
of the relationship between nRMSE and CV, skewness, and time must be considered carefully 
before deciding which GEV model to use. The application of the NS-GEV can be used when the 
record length is long enough to reduce the additional variance inherent in the model; we found 
that a record length of 100 years would be sufficient. Further, as the degree of nonstationarity, 
quantified as the NSI, increases or the lifespan of the project increases, the NS-GEV tends to 
lead to more accurate design storms. For environments where the data is not truly GEV-based, 
stationary or nonstationary, we found that the S-GEV is fairly robust and capable of estimating 
design storms with similar accuracy for NS-GUM, NS-LGN, and NS-LGS data. For larger 
storms, there should be increased caution if the environment is NS-LGN. For environments 
where the behavior of the data is truly NS-PEA, however, the application of a GEV distribution 
is inappropriate.  
 In our work downscaling NCEP-NCAR reanalysis data using the WRF model, we 
focused on the time period of 1949 to 2015 and over three subregions in coastal western US: 
northern Cascades, southern Cascades, and the Sierra Nevada mountains. We found that 
landfalling ARs in the Sierra Nevada subregion had higher precipitation amounts than in the 
Cascade ranges, despite more AR events occurring in the Cascades. At latitudes below 42.5 
degrees N, the most extreme events take place in January and February. The largest increase in 
SWE related to AR events occurs in January, and again the Sierra Nevada subregion sees the 
largest increase in SWE out of the three subregions. Decreases in SWE are also capable of 
occurring due to ARs during the cold months and can lead to extreme snowmelt conditions that 
is related to early snowmelt and increased chances of ROS conditions.  
 We found that ARs are a key component of water resource management in the western 
US due to their ability to increase early snowmelt, increase flood risk, and to end droughts. We 
categorize ARs by wet versus dry years and find that in the Sierra Nevada subregion, ARs during 
wet years occur more frequently than in dry years and also produce heavier precipitation and 
snow accumulation per landfalling event. In contrast, in the Cascade subregions, precipitation 
amounts are fairly comparable between wet and dry years. In the Cascades, the number of AR 
events are also smaller for dry years than wet years. Our final concluding observation on the 
differences between AR characteristics amongst the subregions is that most AR extreme 
precipitation events in the northern subregions are produced during warm AR dates as compared 
to all upper 10th percentile precipitation. Warm AR events result in lower SWE accumulation and 
higher snowmelt rates particularly for northern latitudes over both Cascade subregions.  
 In our research into ROS events, we find that VIC hydrological model was quite capable 
of providing believable details of snow mass and energy transfer and produced results that were 
similar to the SNSR SWE data in both spatial and temporal patterns. The total SWE between 
VIC results and SNSR data are consistent over the common overlapping period. Further, the 
timing of the annual max SWE of the VIC results correlate highly with the timing of SNSR max 
SWE, being mostly within two days (earlier or later) than each other.  
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Typically, due to the elevation profiles of the mountain ranges, the western mountains 
have largest snow accumulations and are most impacted by ROS events with mid-elevation 
transition zones having the largest ROS flood-generating potential. ROS in the mountains of the 
West occur most often in early spring – as opposed to in fall and winter for the coastal West and 
general Eastern US. Outside of the western mountains, there are mountain ranges in the 
Northeast, upper Midwest, and Appalachian region that are affected by ROS events. Altogether, 
these regions stand to be most impacted by future changes in ROS characterizations. We identify 
in particular a “significant influence zone” as being western US mountain ranges with elevations 
between 1,000 and 1,500 meters. With global warming, it is likely that this zone will shift 
upwards to be above 2,000 meters in the future as snowpack depths decrease at lower elevations.  

We found from our historical period that over half of what we defined as “large” runoff 
days (upper 1 percentile) and over three-quarters of “extreme” runoff days (upper 0.1 percentile) 
are related to ROS events within our study area of the above-mentioned mountain regions. 
However, the total runoff from ROS days only accounts for less than a quarter of the runoff from 
large runoff days and barely five percent of the runoff for extreme runoff days. This implies that 
most extreme runoff is a result of intense rainfall or radiation-driven snowmelt even on ROS 
days. In the west coast, the extreme runoff generated during ROS days is mostly due to extreme 
rainfall, while along the east coast, extreme runoff is associated with snowmelt. The snowmelt in 
the east coast is dominated by both net radiation and turbulent heat flux, as opposed to the 
snowmelt in the west coast which is dominated only by net radiation. We found that the amount 
of snow directly melted by rainfall through heat advection is negligible.  

With global warming, ROS events will play an increasingly large role in high-elevation 
mountains (over 2,000 m) and decreasing roles for low to moderate elevations below 2,000 m. It 
is likely that the effects of ROS, due to this conditioning on elevation bands, will decrease across 
most of the Midwest and eastern US. However, in the western US, the runoff contribution from 
ROS to extreme flooding events will increase. Further, the timing of the ROS will shift earlier by 
about a month when under our specified delta-warming methods where temperatures are 
uniformly increased by 2 degrees Celsius across the CONUS.  
 
Implication for Future Research and Benefits 
 Our work across all facets has implications for water management and civil engineering 
design standards. Establishing a nonstationary probability and cumulative distribution function 
has direct implications for the construction of IDF and IDAF curves, which are essential to the 
sizing of any engineering project dependent on precipitation intake. The application of the NS-
GEV distribution to AMS will help practitioners in the public and private sector understand how 
flood risk related to extreme precipitation will change with time by being a tool with which to 
model how design storms are estimated to change with time. Without this updated methodology, 
projects in areas of increasing flood risk will be under-prepared for design storms while projects 
in areas of decreasing extreme precipitation intensity will be over-prepared and likely more 
costly than necessary. This work is a vital component of understanding how risk assessment will 
change in the short-term future as we aim to provide guidance of when there will be a larger 
penalty for staying with a S-GEV model versus implementing an NS-GEV model. Further 
research in this area could include more assessments of how a five-parameter NS-GEV model, 
with a time-varying index in both the location and scale parameter, performs compared to the 
four-parameter NS-GEV and the three-parameter S-GEV. Research could also be conducted in 
what the penalties are when using nonstationary versions of other commonly used distributions 
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for modeling extreme precipitation such as the NS-GUM, NS-LGN, and NS-LGS. Further work 
should be done to apply the methods discussed to regional precipitation.  

Given the associated extreme precipitations with ARs, a better understanding of ARs will be 
essential to water management in the western US. Our research in this area has further 
implications in flood and drought risk assessment due to the ARs role as a drought-buster in the 
west, and in operational weather forecasting. Water resource management needs to include the 
effects of ARs for higher accuracy. Key to this is first the ability to detect and forecast ARs and 
second the understanding of the relationship between precipitation and ARs based on local 
conditions such as elevation, latitude, and other conditions such as being a warm versus dry year. 
In particular, to improve water resource management, one will need to incorporate our work here 
and that of future research in order to have better forecasting and management of AR induced 
precipitation, snow melting rate, and shifting of timing of peak SWE – all three are elements that 
play an important role in the water resources of the western US. It is likely that with climate 
change leading to increasing temperatures, landfalling AR events will lead to increased induced 
precipitation and to higher elevations being needed for orographic precipitation. Snow melting 
rates will likely increase, shifting important snowpack characteristics including timing of peak 
SWE, and will impact the profile of any snow-melt related runoff. The melting snowpack lead to 
spring runoff that is vital in understanding and managing water resources in the west. Future 
work should be done for a more detailed understanding of the impacts of AR precipitation and 
runoff on modeling the water budget in the western US. Further, these hydrological changes will 
affect reservoir operations. Highlighting the spatial differences in AR characteristics will be key 
in developing better forecasting methods of AR-related changes, and further research is needed 
to provide this information.  

ROS events impact the major western mountain ranges of the US as well as some mountain 
ranges in the upper Midwest and along eastern US. Our research on ROS has implications for 
water resource management in these regions, especially at elevations of 1,000 to 1,500 m 
presently (shifted up to 2,000 m in warmer climates). Understanding the influence of ROS on 
runoff plays a modest role in large runoff events and a small role in extreme runoff days. In a 
warmer future, the role of ROS in runoff will become increasing important at high elevations and 
along the west coast. Further the change in the timing of ROS shifting to be earlier will impact 
the characteristics of snowpack accumulation and depletion which has implications on water 
resource management particularly in the west. Future work done based on how ROS will respond 
to global warming as predicted by GCMs or RCMs will be a valuable extension of the sensitivity 
analysis we conducted using the delta warming method.  
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Final Report 
 
Introduction/Objective 

Floods are an extremely costly natural hazard and can be life-threatening. There are some 
clear patterns of changes in flooding across the western US under projected climate change 
(Hamlet and Lettenmaier, 2007), but overall, there is a lack of literature on the possible changes 
of flood risk with increasing temperatures. Our overall objectives remain very similar to our 
original objectives, but over the course of the project we may have changed them in light of 
results found. Thus we aimed to (1) develop protocols for incorporating nonstationarity into 
extreme value theory, which can be applied to flood frequency as well as extreme precipitation 
events; and incorporate ongoing and future projections of climate warming on flood frequency 
estimates for watersheds affected by (2) rain-on-snow events and (3) atmospheric rivers.  

The original proposal broke down our work into nine tasks, including Task 1 as being the 
acceptance of subcontracts. As we progressed in our research, we found that it was more natural 
to regroup these task items as based on topic rather than as sequential steps. To that end, we will 
structure our report into four main chapters, which together do cover the original task items. In 
the first chapter, we discuss the nonstationary behavior that can be found in extreme precipitation 
events through both historical station data and using regional climate model-based projections. 
Chapter 1 covers Task 2 (Site selection), Task 3 (Develop and test a time-varying GEV-based 
regional frequency approach), and Task 4 (Evaluate scaling relationships for implementation of 
IDF and IDAF analysis). Chapter 2 - MET STATS. Chapter 3 is centered on how climate change 
and atmospheric rivers have affected precipitation and flood frequencies via analysis of both 
station data and simulated historical data over the same range. This chapter effectively covers 
Task 5 (Evaluate the consistency of methods developed in Tasks 3 and 4 for use with RCM 
output), Task 6 (Develop a seamless approach to merging regional IDF and IDAF relationships), 
and Task 7 (Evaluate uncertainty in IDF and IDAF estimates over the WRF domain). In our final 
chapter on how climate change affects rain-on-snow events and thereafter floor frequencies, we 
cover the remaining Task 8 (Adapt Hamlet & Lettenmaier (2007) approach to evaluate changes 
in snowmelt-related flood risk over the CONUS) and Task 9 (Evaluate snowmelt-affected flood 
frequency changes over the CONUS). 
 
Background  
 Because of climate change, there is a need to assess what trends can be established or are 
projected for various hydrological variables in the interest of accurate water resource 
management. With increasing temperatures, there is an associated increase in saturated water 
vapor pressure that roughly follows the Clausius-Clapeyron (CC) relationship at about a 7% 
increase in saturated water vapor per degree of Celsius increase (Trenberth et al., 2003). Studies 
are emerging in establishing a trend between certain hydrological events like flood events or 
extreme precipitation events and an index that is often either time or temperature. Modeling with 
temperature typically leads to lower uncertainties in projections as temperature and saturated 
water vapor pressure have a well-known and established relationship. Min et al. (2011) show that 
global warming is linked to the intensification of intense extreme precipitation events across 
much of the Northern Hemisphere. Kunkel (2003) established increases in the frequency of 
extreme precipitation events since the 1920s in the CONUS. Armstrong et al. (2014) found that 
in the northeastern US, the annual flood magnitude had increasing trends at 75% of the gages 
tested. Further, they link hydroclimatic changes in flooding to changes in both cyclic 



2 
 

atmospheric variability and to anthropogenic climate change which affect antecedent conditions 
and event-scale processes.  
 
Materials and Methods 
 The materials used over the course of this research project include multiple datasets that 
cover historical observations as well as climate model projections. We used both point data, areal 
data, and a distinct type of gridded data. One of the at-site observation-based data we used 
consists of a set of quality-checked hourly precipitation data established by Mishra et al. (2012) 
which has stations distributed across CONUS. The quality checks imposed are regarding flagged 
data and completeness of record. The stations are all managed by NOAA and include stations 
within subsets of NOAA data such as being in the COOP network or the HCN network. Station 
density is uniform across the CONUS but with sparser coverage in the mountainous regions of 
the western US. The stations span a 60-year period from 1950 to 2009, although no station has 
complete coverage over these 60 years. We extended the dataset through 2013 using the NOAA 
dataset available via File Transfer Protocol (meaning available in bulk). We used a gridded data 
set as created by Livneh et al. (2015), that has fields of temperature and precipitation at a 1/16th 
degree spatial resolution and daily time resolution. From this data set, we used grid cells that 
cover CONUS entirely. The Livneh et al. (2015) data uses the PRISM methodology established 
in Daly et al. (1997) and observation-based climatology values. We also made use of the Livneh 
et al. 2013 dataset specifically for their SWE variable which is model-generated. Another data 
set we used for SWE comparisons is the Sierra Nevada SWE reanalysis (SNSR) established in 
Margulis et al., 2016, which is based on Landsat satellite observations. It covers portions of the 
Sierra Nevada range with a high spatial resolution of 90 meters and is available for the period of 
1985 to 2015. 

In delineating the Cascades and Sierra Nevada subregions, we used the boundaries from 
the Commission for Environmental Cooperation Ecological Regions of North America, Level III 
(McMahon et al., 2001; Omernik, 2004). For streamflow observations, we used the Geospatial 
Attributes of Gages for Evaluating Streamflow Version II (GAGES II; Falcone et al. (2010)) data 
set which is made by the USGS and has over 9,000 streamflow gages across the CONUS. From 
this network, we selected 311 gages that serves as reference gages, have no or minimal upstream 
regulation or diversions, and with over 50 years of data over the time period of 1950 to 2009. To 
determine AR events, we used the IVT-based AR catalog established in Guan and Waliser 
(2015) as well as the IWV-based Neimen et al. (2008) catalogue. Guan and Waliser (2015) ARs 
are identified based on imposing thresholds at the 85-percentile specific to both season and 
location with a fixed lower bound. The Neimen et al. (2008) catalogue has a minimum threshold 
of IWV being over 2 cm. They also used physical characteristics to find ARs by specifying that 
the ARs be over 2000 km long and under 1000 km wide. This catalogue was extended in 
Dettinger et al. (2011), and we used this extension as well.  Further, we used the NCEP-NCAR 
reanalysis covering the water years of 1949 to 2015 which gives us necessary 
hydrometeorological variables needed for our modeling work. This data set has a temporal 
resolution of 6-hour timesteps and a spatial resolution of 2.5 latitude-longitude degrees.  
 Extreme precipitation analyses made use of extreme value theory (EVT) and we 
specifically employed the Generalized Extreme Value (GEV) distribution for assessing risk. The 
parameters of the GEV distribution can be estimated from observational data via L-moment 
analysis (Hosking and Wallis, 1997). The NS-GEV distribution has an additional time-varying 
fourth parameter that can be estimated in a Matlab software package called NEVA, described in 
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Cheng et al., 2014. NEVA uses a Bayesian approach with a differential evolution Markov Chain 
(Ter Braak, 2006; Vrugt et al., 2009). For trend analysis, we applied the Mann-Kendall trend test 
across AMS at various significance levels but mainly at alpha of 0.05 or 0.10. For the work 
involving Monte Carlo simulations, we computed the mean, variance, and skewness of the AMS 
extracted from observational data in order to create realistic environments. We considered 300 
unique combinations of mean, CV, and skewness. Using the relationships of these statistical 
characteristics with relevant probability distribution functions, we were able to solve for the 
matching parameters of the GEV, GUM, LGN, LGS, and PEA distributions. For each unique 
parent distribution, we generated 10,000 synthetic observation sequences of either 30,50, or 100 
observations for three distinct scenarios involving nonstationarity within the mean and/or the CV 
and standard deviation. We then fit the S-GEV or NS-GEV as appropriate to the synthetic data 
and discuss the errors in the 10-year and 100-year design storms.  

We used the WRF model for dynamic downscaling using the NCEP-NCAR data as initial 
and boundary conditions. In some exploratory work, we found that using nested domains, 
originally proposed as an option, gave little to no benefits over using a single domain. We 
continued with WRF simulations over a single domain over the western US at a resolution of 15 
km. We selected the Morrison double-moment scheme (Morrison et al., 2009) option 10 for 
microphysics and the Kain-Fritsch (Kain and Fritsch 1990, 1993) option 1 for cumulus physics. 
For the planetary boundary layer, we chose the Yonsei University (Hong et al., 2006) scheme. 
We used Noah-MP v 1.6 land surface model with the Monin-Obukhov option 1 for surface layer 
drag, the CLASS option for ground surface albedo, and the Jordan model (Jordan, 1991) option 1 
for precipitation partitioning between snow and rain. We ran simulations over 1949 to 2015 and 
produced hourly output variables for the water season of October 15 to April 1. The first 15 days 
of outputs are used as model spinup and discarded. We aggregated the hourly precipitation and 
SWE outputs from WRF and conduct our statistical analyses based mainly on these two 
variables. Other variables we evaluated are AR storm duration and frequency, and surface air 
temperature.  

We used the VIC hydrological model (Liang et al., 1994; Andreadis et al., 2009), v 4.2d, 
to simulate SWE and runoff across the entire CONUS. Specifically, we used the VIC snow 
model with detailed snow mass and energy balance processes which account for mass and energy 
transfers to and from the atmosphere as well as the intervening effects of overlying vegetation. 
Each VIC grid cell has five elevation bands and 12 vegetation tiles to characterize the terrain and 
vegetation on a sub-pixel level. We allowed for partial snow coverage function for more realistic 
snow spatial variability in our simulations. The VIC model as we implemented it required four 
forcing variables – maximum and minimum temperature, precipitation, and wind speed. We 
supplemented other variables from calculations from the mountain microclimate simulation 
model (Hungerford et al., 1989). For simplification, we did not route through stream networks 
but rather model output streamflow using the direct aggregation of runoff and baseflow over the 
drainage area over relevant gages. From the output of the VIC modeling, we used SWE and 
precipitation to find ROS events with flood-generating potential. We characterized some aspects 
of ROS behavior in the western US by finding the frequency of days per year and the centroid of 
the timing. We analyzed various aspects of the upper percentiles of runoff generated by both 
ROS and total (non-ROS) days. We calculated the contribution of both rainfall and snowmelt to 
these extreme runoff events.  
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Chapter 1 - Extreme Precipitation Events 
We make use of EVT based on AMS as constructed from a historical record of rain 

gauges across the CONUS and both introduce and discuss the implications of adding the ability 
to be nonstationary. Specifically, we focus on GEV type II distribution, hereafter just labeled 
GEV, which has three parameters: location, scale, and shape. We introduce a time-dependent 
variable into the location parameter thus increasing the number of parameters for a NS-GEV to 
be four. There are many methods to determine which distribution may be the best fit for extreme 
rainfall data, but the truth is that the underlying distribution is always unknown. The application 
of S-GEV and the NS-GEV have their own advantages and disadvantages. The S-GEV, due to its 
smaller number of parameters, has more steady amounts of variance over-estimates. However, 
due to its inability to capture nonstationary behavior, use of the S-GEV in a NS-GEV 
environment will have increasingly large biases as time continues. On the other hand, the NS-
GEV, due to the inclusion of a fourth parameter, has inherently higher variance across estimates, 
but is better able to capture either stationary or nonstationary behavior and thus have lower bias. 
We answer the question: which misapplication leads to larger errors?   

We used Monte Carlo simulations to set up different scenarios of S- and NS- rainfall, fit 
NS-GEV or S-GEV distributions to the data and find the estimated 10-year and 100-year storm. 
We evaluated the performance of the models by the normalized root mean square (nRMSE) of 
these two storms. The scenarios we consider are (1) S-GEV environment with NS-GEV 
modeling, and (2) S-GEV modeling for an NS-GEV environment where (a) only the mean is 
increasing, (b) the mean and std are increasing, and (c) the mean, std, and CV are increasing. The 
penalty ratio of misapplication for the stationary scenario is shown in Figure 1 and the nRMSE 
values are shown in Figure 2. The parameter space, mean, CV, and skewness, we defined for the 
simulations were based on the range of the parameters we found from 1000+ stations across the 
CONUS. We used three record lengths in our simulations of 30, 50, and 100 years. We show the 
resulting nRMSE patterns of the 10-year design storm for all these nonstationary scenarios in 
Figure 3. We found that at a record length of 30 years, the variance is too high to warrant 
applying an NS-GEV model. Even though the NS-GEV theoretically can model an S-GEV data 
with a low slope parameter, the increase in variance in adding the fourth parameter contributes to 
a large nRMSE. For a record length of 50 years, the tradeoff between bias and variance and the 
question of which misapplication is better depends on other factors such as CV, skewness, time, 
and amount of nonstationarity. We define a nonstationary index (NSI) as being the estimated 
change of the mean of the data over a century. At low NSI, the skewness of the data is important 
with high skewness leading to larger errors in applying the S-GEV. At large NSI, data with low 
CV or if the project has a long lifespan, the application of the NS-GEV is preferred. If there is 
ample record length, such as 100 years, the application of NS-GEV is usually preferred since 
variance is fairly low over such a record length.  

Results and Discussion 
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Figure 1: the ratio of how much larger the nRMSE is in misapplying the NS-GEV versus 
correctly applying the S-GEV distribution for the 10-year storm (top) and 100-year storm 
(bottom).  
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Figure 2: the absolute values of nRMSE from applying an NS-GEV model to an S-GEV 
environment for the 10-year storm (top) and 100-year storm (bottom) as a function of record 
length 
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Figure 3: absolute values of nRMSE for the 10-year storm as a function of record length under 
the three nonstationary scenarios with NSI = 0.1. Scenario I (top), II (middle) and III (bottom) 
are all shown under these described conditions.   
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The use of the NS-GEV can be directly translated into creating NS-IDF curves. For IDAF 
curves, the approach is less studied. We have published a summary of the current state of 
research in “Best Practices for Incorporating Non-Stationarity in Precipitation-Frequency 
Estimates”, Chapter 4.2. In moving from station or point data to areal or regionalization, a 
common flood frequency approach is to use regionalization which involves identifying areas 
with the same distribution that may be altered by a certain scale, the flood index, but it otherwise 
identical. We pointed out the need for further research into how potential non-stationarity can be 
identified within homogeneous regions, how to identify and quantify regional trends, and then to 
address non-stationarity in regional growth curves as well as areal reduction factors. Some of the 
characteristics used to determine homogeneity are potentially nonstationary - such as 
characteristics of rainfall like mean annual precipitation and timing of the wet season. In creating 
homogeneous regions, it may be of interest to do a sensitivity analysis of the characteristics to 
changes in time to determine the possible range of error. Another method would be to better 
include mechanistic drivers of extreme precipitation into the clustering process of 
regionalization. Currently, statistics represent behavior of the extreme rainfall and are a stand in 
for these mechanistic drivers. In considering mechanistic drivers of extreme precipitation, 
stations with the same source of atmospheric moisture or causative circulation pattern are likely 
to experience similar changes with time. Nonstationarity should be included in regional growth 
curves and areal reduction factors. Inclusion of a nonstationary distribution into the regional 
growth curve could be developed similar to the work that has been done for station distributions 
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previously discussed. It is much more difficult to quantify change in areal reduction factors, 
however. A stationary assumption could be justified in a carefully homogenized region where the 
mechanistic drivers of extreme precipitation are the same. Otherwise, it is recommended that in 
creating nonstationary ARFs, one could include changes in time by comparing the ratio of areal 
rainfall to point rainfall at various windows of time.  
 
 
Chapter 2 - MET STATS 
 
 
Chapter 3 – Atmospheric River Events 
 Atmospheric rivers are long narrow corridors of high-water vapor content in the 
atmosphere that originate from tropical or extratropical cyclones. The large influx of water vapor 
in the region of landfall can result in heavy precipitation and flooding, particularly in orographic 
regions. ARs have been of particular interest to water resource studies in the Pacific Northwest 
and northern California; it is now widely accepted that landfalling ARs are related to major 
flooding events across the coastal western US. To find ARs, we defined an AR as having an 
integrated water vapor transport (IVT) intensity of either more than 100 kg/m/s or at the 85 
percentile and checked our findings against existing AR catalogues to find good agreement. For 
the AR landfalling dates, we then retrieve precipitation and other hydrometeorological variables 
(SWE, surface temperature) through our WRF-downscaling of the NCEP-NCAR reanalysis, 
which serves as both initial conditions and boundary conditions for our modeling.  
 We chose WRF parameterization schemes and physics processes that were able to 
replicate believable precipitation events over the PNW and California. We found that the WRF 
output creates a more consistent field of precipitation and temperature measurements than those 
found from observational data, which suffer from gauge density particularly in mountainous 
regions. We then use our temperature and precipitation grids as input for the VIC hydrologic 
model, which gives us resulting variables of interest such as SWE. We focused on three 
subregions along the coastal western US: the north Cascades, south Cascades, and Sierra Nevada 
ranges. Further, we define the cold season as being November to March - the time period in 
which the bulk of SWE is accumulated. We found that more landfalling ARs occur in the 
northern subregions, the Cascades, but in general AR events vary temporally as well as spatially, 
i.e. at different landfalling latitudes. We also considered the effect ARs have on snowpack, as 
some events will increase SWE while other decrease SWE and found that the timing and the 
elevation must be considered. Most positive SWE changes occur in January at an elevation band 
of 2000 - 2500 meters for the Sierra Nevada and at lower elevations of 1000 to 2000 meters for 
the Cascades. In Figure 4, we show the relationship between the month in which a landfalling 
AR occurred and the latitude at which it fell. The spatial patterns across the three regions and 
different elevation bands are shown in Figure 5, and the relationship between duration and AR 
event is shown in Figure 6. The Sierra Nevada region saw on average nearly twice the increase in 
January than the Cascades.  
 
 
 
 
 



10 
 

Figure 4: reproduced from Eldardiry et al., 2019. Fraction of AR dates from all dates producing 
the upper 10th percentile of daily precipitation for each latitudinal band by cold season month 
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Figure 5: reproduced from Eldardiry et al., 2019. Average of upper 10th percentile positive and 
negative changes in daily SWE during the upper 10th percentile of daily precipitation on AR 
dates by winter month.  

 
 
 
 
Figure 6: reproduced from Eldardiry et al., 2019. (left) The 1-day AR precipitation depths and 
frequencies by AR landfalling latitude (return periods are indicated by different 
colors). (right) As in the left panel, but for 3-day totals. 
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We found that landfalling ARS within the Sierra Nevada subregion resulted in higher 
precipitation than the other subregions despite the fact that there were fewer landfalling ARs. Of 
the landfalling ARs, those having the highest impact on extreme precipitation events happened in 
January and February. Similarly, the largest increases in SWE associated with ARs also occurs in 
January, with again, the Sierra Nevada being the most affected. We found that decreases in SWE 
associated with ARs also occur in the cold months and that high AR-related snowmelt can 
explain early snowmelt, major flooding events, and increase in rain-on-snow conditions. These 
results are shown in Figure 7.  
 
Figure 7: reproduced from Eldardiry et al., 2019. Daily precipitation associated with AR dates 
during dry and wet years in three mountainous subregions (North Cascades, South Cascades, and 
Sierra Nevada). On each box, the central mark indicates the median depth, and the bottom and 
top edges of the box indicate the 25th and 75th percentiles (or interquartile range), respectively. 
 

 
 
 
 In comparing wet versus dry years, we found that wet years are more numerous than dry 
years and produce heavier precipitation as well as increases in SWE for the Sierra Nevada 
region. For the Cascades, the conditions of wet versus dry produce more similar results, although 
the number of ARs is lower during dry years. Further, for the Cascades region, we found that 
most AR extreme precipitation events are correlated with warm AR dates. These warm events 
saw not only extreme precipitation events but also were the catalyst for higher snowmelt rates.  
 
Chapter 4 – Rain-on-snow events 
 
 Rain-on-snow events are events where liquid precipitation falls on a pre-existing 
snowpack and are related to extreme precipitation events and increased runoff and flooding 
events by decreasing the temperature of the snowpack and priming it for earlier melt onset.  ROS 
can also trigger avalanches if the structural strength of the snowpack is sufficiently reduced. 
Studies up to now had snowmelt and rainfall contribute to ROS runoff without being able to 
quantify the contributions of one or the other separately; they also tend to be event based and 
area specific. We use NCEP-NCAR data, downscaled by WRF, and the VIC model to examine 
and give an estimate as to the role of ROS on extreme flood events. Specifically, we aimed to 
find how much ROS contribute to flood runoff versus other snow processes and other energy 
changes. We addressed spatial patterns over the CONUS but particularly in the western mountain 
ranges. Further, we considered how ROS contribution to runoff may change under warming 
climates which we simulate by adding a uniform 2-degree Celsius temperature increase. We use 
this delta-warming scenario, where other forcing variables remain the same, instead of using 
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downscaled projections from climate models because we found the changes in precipitation 
especially as well as some temporal and spatial patterns of in temperature changes were highly 
variable between models.  
 We applied the VIC hydrological model to quantify various aspects of the snow mass and 
energy balance processes which includes transfers via the atmosphere, snow accumulation on 
overlying vegetation, underlying snowpack conditions, sublimation from the vegetation canopy 
as well as the underpack, and vegetation related interception. The VIC model parameterization is 
the same as what is used in a previous study (Livneh et al. 2015). We created hourly simulations 
for the time period of 1950 to 2013 and found these parameters simulate snow and streamflow 
well as compared to observations. For observations, we used a network of 300 streamflow 
gauges which had a long record length of 50 years. We also compared our simulations to the 
Sierra Nevada SWE analysis data set (Margulis et al., 2016) which is a high-resolution gridded 
dataset which take into account Landsat observations. Then we compared 100-year flood 
magnitude estimates from the three different sets of data (our simulated data, the observation 
data, and the SNSR data) as well as the cumulative distribution function of the AMS extracted 
from streamflow data and found good agreement between datasets.  
 We examine the ratio between the number of large ROS days and large runoff days 
across the CONUS. The areas most susceptible to feeling effects of ROS include the mountain 
ranges along the Western, Upper Midwest, Northwest CONUS and the Appalachian ranges. The 
PNW is the most impacted by ROS with the greatest frequency of ROS events due to the area’s 
relationship with orographic rainfall and deep snowbanks. This spatial pattern is shown in Figure 
8. Through the setup and use of the VIC hydrological model, we are also able to find the 
fractional contribution to ROS runoff from rainfall and from snowmelt separately. We found that 
snowmelt largely dominates large ROS events in the Rockies, Northeast, and Upper Midwest - 
regions with fairly mild rainfall magnitude and frequency and have a later water year than what 
constitutes of the water year in the West coast. On the other hand, along the West Coast, we 
found that rainfall accounts for up to 70% of the large ROS events due to being coastal areas 
impacted by ARs, which magnify orographic rainfall and lead to intense rainfall events. These 
results are shown in Figure 9.  
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Figure 8: reproduced from Li et al., 2019. Fractional contribution of the number of large and 
extreme ROS days to the number of (a) total large runoff days, (b) total extreme runoff days, (c) 
total large runoff, (d) total extreme runoff. The white areas in the maps have mean annual 
maximum snow water equivalent less than 20 mm and are excluded in the analysis. 
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Figure 9: reproduced from Li et al., 2019. Fractional contribution to the large and extreme ROS 
runoff from rainfall and snowmelt. (a) and (b) show the ratio of the rainfall and snowmelt from 
the large ROS days (i.e., the ROS days in the 200 large runoff days) to the total large ROS runoff 
(i.e., the total runoff from the large ROS days), respectively. (c) and (d) show the ratio of the 
rainfall and snowmelt from the extreme ROS days (i.e., the ROS days in the 20 extreme runoff 
days) to the total extreme ROS runoff (i.e., the total runoff from the extreme ROS days), 
respectively. White areas in the maps have mean annual maximum snow water equivalent less 
than 20mm and are excluded from the analysis. 
 

 
 
 In a warmer future, we found through simulations that ROS events will increase at high-
elevation bands of the mountains (>2000 m) and will decrease if lower than that band. As a result 
of their elevation profiles, ROS events will have less impact over the Midwest and much of the 
eastern US. However, the change of ROS frequency will be critical in managing water resources 
along the West coast; when using the same precipitation forcings, future changes of runoff 
contributions from ROS to extreme floods will be paramount. Our model results cannot be used 
for planning or prediction purposes but show that the impact of ROS in the West coast is 
sensitive to changes in temperature. Changes in fractional ROS runoff contributions in this warm 
scenario are shown in Figure 10.  
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Figure 10: reproduced from Li et al., 2019. Change in the ratio of total runoff during large ROS 
days (left) and extreme ROS days (right) to total runoff from the 200 large (or extreme) runoff 
days. White areas have historical mean annual maximum snow water equivalent less than 20 mm 
and are excluded in the analysis 
 

 
 
 
 
Conclusions and Implications for Future Research/Implementation 
 
 In our work, we examined how different facets of global warming would affect three 
different hydrological processes and how these changes could lead to changes in future flood 
risk. For extreme precipitation events, we discussed the 10-year and 100-year design storms in 
the context of extreme value theory. We introduced a time-varying parameter into the mean of 
the data and ran Monte Carlo simulations to find the misapplication of either the S-GEV or NS-
GEV distribution with regards to the environment will vary depending on the data CV, skewness, 
record length, and time. The application of the S-GEV is associated with lower variance but 
increasing bias with time, resulting in increasing error in time. The application of the NS-GEV is 
associated with increased variance due to the inclusion of a fourth parameter, but possibly lower 
bias with time as the NS-GEV is more capable of adjusting to model a S-GEV environment than 
vice versa (the S-GEV model cannot adapt for a NS-GEV environment). We found that for short 
record lengths of thirty years, while the NS-GEV can sometimes recreate near-stationary 
conditions, the increase in variance offsets any possible decreases in bias. When the record 
length is at fifty years, we find the tradeoff between variance and bias is more closely matched. 
The particulars of which misapplication is “better” – i.e. results in lower nRMSE – depends on 
the data characteristics such as CV, skewness, and amount of nonstationarity present in the NS-
GEV environment, and time. For very low amounts of nonstationarity present, the S-GEV is still 
preferred for short-term usage. However, as the time (i.e. lifespan) increases or as the amount of 
nonstationarity (NSI) increases, the NS-GEV is more favorable. If the record length is 
exceptionally long, such as 100 years, the application of the S-GEV is only preferred for the very 
early years of a project’s lifespan. As time increases, the nRMSE associated with the 
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misapplication of the S-GEV is larger than that of the NS-GEV. Ultimately, deciding which 
model of the GEV distribution to apply to an AMS with an unknown stationary assumption, 
should take into particular consideration the record length available as well as the project 
lifespan required. To a smaller degree, the decision will be based on the data CV and skewness.  

Establishing a nonstationary distribution function has direct implications for the 
construction of IDF and IDAF curves which civil engineers use to understand flood risk. 
Accurate flood risk assessment will include a time-varying parameter to reflect the changing 
climate we are experiencing now. Without this updated methodology, projects risk being 
inappropriately sized and lead to either increased expenses due to highly damaging floods or 
increased expenses in over-sizing a project, which has its own costs. Our work indicates that 
future work would benefit from looking at whether CV changes with time and how. The change 
in CV with time will affect the resulting error of design storms. More research is needed to better 
understand how to accurately reflect a nonstationary scale parameter (in addition to a 
nonstationary location parameter) which currently requires an incredibly long station record for 
meaningful results. Work could also be done to find more accurate measures of nonstationarity 
that lead to lower variance increases in the error. This is particularly important for stations with 
short record lengths. Further research could also be conducted as to how to include 
nonstationarity into the other mentioned distributions, such as Lognormal, logistic, Pearson III, 
and Gumbel.  
 ARs play an important role in the water cycle over the western US by influencing key 
hydrological processes such as SWE accumulation, snowmelt rates, and timing of peak SWE. 
Further, they are particularly important as drought busters. We found that landfalling ARs have 
different influences on precipitation depending on the location (latitude) and elevation at which 
they land. Landfalling ARs in the Sierra Nevada subregion of our study resulted in higher 
precipitation amounts despite fewer events than in the Cascade subregions. For all study areas, 
the most extreme events occur in January and February. Further, January sees the highest 
increase in SWE as related to AR events across all subregions. The Sierra Nevada sees higher 
snow accumulations than the Cascades. However, SWE decreases are also known to happen with 
AR events in other cold months and the resulting snowmelt can explain early snowmelt and 
increased chances of ROS conditions.  In the Sierra Nevada, ARSs during wet years are more 
frequent than dry years and also produce heavier precipitation and snow accumulation per event. 
For the Cascades, however, the amount of precipitation and snow accumulation are fairly equal. 
The number of AR events is more frequent in wet years than dry years for these subregions as 
well. Most AR extreme precipitation events in norther latitudes occur during warm AR dates and 
result in lower SWE accumulation, or higher snowmelt rates, which can significantly impact 
snowpack structure and strength. The Cascades are more susceptible to increased snowmelt rates 
with AR events than the Sierra Nevada.  
 A better understanding of ARs is essential to efficient water management in the western 
US. ARs affect flood events via increased snowmelt rates and can end drought conditions. 
Further work should be done first and foremost in increasing our ability to detect and forecast 
ARs. Research on ARs is fairly recent and our understanding of historical ARs is limited due to 
the dependency of AR characterization on variables that were difficult to measure in the past. 
The second main body of work needed for understanding the effects of landfalling ARs is in 
being able to characterize ARs by different aspects such as elevation, latitude, conditions such as 
being a warm year or a dry year. Our work found that these characteristics have noticeably 
different resulting impacts on precipitation and SWE. Other characteristics could be investigated 
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such as aspect and slope of the topography as related to the physical properties of the AR. 
Understanding spatial differences in AR characteristics will be key in developing better 
forecasting methods. More research should also be done on how the effects of ARs will change 
with global warming – snow melting rates are likely to increase; the timing of peak SWE is 
likely to shift to being earlier; and the snow-melt related runoff will be impacted as a result of 
these changes. Since snowmelt runoff is a key component of the water budget in the west, future 
work should be done for a more detailed understanding of the impacts of AR precipitation and 
runoff with global warming.  
 We characterized historical and future ROS conditions across the CONUS and found that 
the main regions impacted by ROS events are the major western mountain ranges, parts of the 
Upper Midwest and Northeast, as well as the lower Appalachian region. The contribution of 
ROS to extreme runoff in the western US has been at mid-elevation areas that we title the 
“significant influence zone”. In conducting a kind of sensitivity analysis, we found that this 
elevation band is likely to shift higher in the future with global warming, and the importance of 
ROS events will decrease in the eastern US and Midwest but will increase in importance along 
the western US. Presently, ROS occur mostly in the fall and winter along the coastal West and 
eastern US while they occur mostly in spring for the high mountains in the west. From our work, 
we also found that while a significant portion of large and extreme runoff events are related to 
ROS events, total runoff from ROS days account for only a modest part of the overall runoff. 
This indicates that most extreme rainfall is rather the result of intense rainfall or radiation-driven 
snowmelt even when ROS conditions are active. Net radiation dominates snowmelt on ROS days 
in the west while net radiation and turbulent heat flux dominates in the eastern US.  
 There is further work to be done on modeling how ROS will respond to global warming 
as predicted by GCMs and RCMs rather than from our sensitivity analysis to increases in 
temperature. Our delta warming method is simplified in some respects such as not considering 
any changes in precipitation with temperature changes. It is likely, however, that precipitation 
patterns, frequency, and intensity will change with global warming and the new inputs of 
precipitation for modeling the effects of ROS will be critical to a more accurate understanding of 
how ROS effects will change with time. Also, the change in timing of the ROS shifting to be 
earlier impacts characteristics of the snowpack. Further work should be done in understanding 
exactly how much these changes can impact snowpack accumulation and structural strength in 
particular, as these are key to predicting snowmelt related flooding events.   
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Appendices 
 
Supporting Data 
 
The NCEP–NCAR AR catalog:  
https://ucla.box.com/ARcatalog.  
 
The WRF downscaled reanalysis data: 
https://www.dropbox.com/home/Public/SERDP/Northwest. 
  
Livneh meteorological forcings:  
https://data.nodc.noaa.gov/thredds/catalog/nodc/archive/data/0129374/daily/catalog.html 
 
GAGES II data: 
https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml#stdorder  
 
SNSR SWE:  
https://margulis‐group.github.io/data/ 
 
USGS streamflow observations: 
https://waterdata.usgs.gov/nwis/uv/?referred_module=sw  
 
VIC hydrologic model: 
https://github.com/UW‐Hydro/VIC/releases/tag/VIC.4.2.d 
 
NEVA flood risk estimation scheme:  
http://amir.eng.uci.edu/neva.php 
 
We also uploaded all the data used to reproduce the results in this paper and other useful 
modeling outputs to a public repository (at https://doi.org/10.6084/m9.figshare.8244398). 
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