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1.0 INTRODUCTION 

According to Milly et al. (2008) and as quoted in the Climate Change Installation Adaptation and 
Resilience 2017 Report, “stationarity is dead,” and “in the new reality of non-stationarity, 
projections about climate must assume a constantly evolving basis.” But how does this translate 
practically to making critical infrastructure decisions? 

Large infrastructure decisions are made based on average temperature and precipitation, their 
variability, and extreme events. Such decisions may also require many years of lead-time. General 
Circulation Models (GCMs), sometimes referred to as global climate models, can be a tool to 
assess changes in the large-scale distribution of temperature and precipitation as a function of 
future human activities, which are conventionally divided into discrete greenhouse gas emissions 
scenarios (van Vuuren et al, 2011). The range of global-scale temperature response to the forcing 
associated with a doubling of carbon dioxide is likely not more than 4.5 °C and has been 
established through a sustained focus on climate sensitivity (Charney et al, 1979; Knutti and 
Hegerl, 2008; Forster, 2016; Knutti et al, 2017). The response of the Earth’s hydrological cycle as 
it adjusts to warming has also been studied, and gross features, such as the global hydrological 
cycle response to warming (Jeevanjee and Romps, 2018), the expansion of the troposphere (Lu et 
al, 2007; Hu et al, 2013), and shifts in the storm tracks (Yin, 2005; Bengtsson et al, 2006; Ulbrich 
et al, 2008), have been observed and have a strong theoretical basis. 

These models are also blunt tools for finer-scale questions: the numerical integration of the intricate 
computer program that represents a GCM must balance a number of competing factors including, 
but not limited to, top-of-atmosphere energy balance, large-scale circulation, cloud formation and 
dissipation, ocean dynamics, and earth system response (Mauritsen et al, 2012; Hourdin et al, 2017; 
Schmidt et al, 2017). Furthermore, model development often focuses on achieving unbiased 
assessments of mean temperature and precipitation at larger spatial-scales and long time-scales. 
Because regional variability in precipitation and precipitation change across models is quite broad 
(Pendergrass and Hartmann, 2014), it is not known a priori that a given model will produce skillful 
temperature and precipitation projections as they relate to DoD facilities. 

Nominally, model intercomparison projects serve to characterize the spread of model results 
associated with a given emissions scenario, but it has been recently recognized that navigating 
through the multi-model ensemble to understand the information contained in the ensemble’s 
projections must consider both model errors with respect to observations and the interdependence 
of models (Sanderson et al, 2015; Knutti et al, 2017; Sanderson et al, 2017; Eyring et al, 2019). 
This navigation depends on the specific question being asked. Model democracy, where each 
simulation is treated as independent and unbiased, has been found to be suboptimal, primarily 
owing to the fact that models have not been developed independently and may even have 
substantial similarities in their code bases (Sanderson et al, 2015). Rather, it is essential that models 
being considered exhibit a level of skill with respect to regional metrics (Rupp et al, 2013). Taking 
California as an example, only models that reproduce the correlation and variance of mean 
seasonal spatial patterns, amplitude of seasonal cycle, diurnal temperature range, annual- to 
decadal-scale variance, long-term persistence, and Western United States regional precipitation 
teleconnections to El Niño Southern Oscillation are appropriate for hydroclimate studies, and only 
10 of the 33 Coupled Model Intercomparison Project – Phase 5 (CMIP5) models exhibited skill 
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with respect to this metric (Pierce et al, 2018; Thorne et al, 2018). The 4th National Climate 
Assessment (USGCRP, 2017) adopted a model-weighting approach to produce, from the CMIP5 
ensemble, regional-scale estimates of change in average temperature and precipitation. The results 
broadly indicate high confidence in predicting more warming with the Representative 
Concentration Pathway 8.5 (RCP8.5) scenario than the RCP4.5 scenario across the Conterminous 
United States (CONUS), and, with less confidence, more variability in regional precipitation for 
both of these scenarios. 

At the same time, the Coupled Model Intercomparison Project - Phase 6 (CMIP6) is, as of this 
writing, in progress, with preliminary results coming online. At present, 151 modeling activities 
(one model running one set of experiments for one model intercomparison project constitutes an 
activity) have been reported to the Earth System Grid Federation (Cinquini et al, 2014) The 
contributing modeling centers are expected to produce between 20 and 40 Petabytes of climate 
model simulations as part of the CMIP6 exercise (Eyring et al, 2016). This is far too voluminous 
for planning purposes, and therefore, there is a strong need to curate these results to determine 
ranges of conditions that are likely to be faced locally. A number of different experiments are 
contained within CMIP6, including the Shared Socioeconomic Pathways (O’Neill et al, 2014; 
O’Neill et al, 2017) that have close heritage with the Representative Concentration Pathways (van 
Vuuren et al, 2011) of CMIP5 (Taylor et al, 2012). Other experiments including the North- 
American Coordinated Regional Downscaling Experiment (Giorgi et al, 2009; Jones et al, 2011; 
Mearns et al, 2012), the High Resolution Model Intercomparison Project (HighResMIP) (Haarsma 
et al, 2016), and the Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) (Ruane et 
al, 2016) will yield simulations at the spatial resolution of interest to DoD facilities. It is expected 
that there will be many participating modeling centers in each of these intercomparison projects, 
and there is a need to determine how to interpret the range of results that arise thereof specifically 
in terms of DoD facility-level risk. 

It is critical that the climate change signals that are being captured by state-of-the-art climate 
models are translated to the local level and that the process of doing so does not underestimate 
the risks that climate change effects may have on local infrastructure. Unfortunately, raw climate 
model output can exhibit biases in temperature and precipitation at regional scales, and these biases 
will propagate in complex and potentially nonlinear ways into subsequent models and decision-
making efforts (Christensen et al, 2008; Mearns et al, 2012; Sillmann et al, 2013). To address this 
issue, one approach, while not without controversy (Ehret et al, 2012; Maraun 2012; Maraun 2013) 
is to bias-correct the raw GCM output based on historical observations (Gudmundsson et al, 2012; 
Teutschbein and Seibert, 2012; Teutschbein and Seibert, 2013; Pierce et al, 2015). An additional 
and critical step involves downscaling to address the gross mismatch in the spatial resolution on 
which GCMs operate and the processes that impact the local-level. 

In November 2017, SERDP released a Workshop Report entitled “Nonstationary Weather Patterns 
and Extreme Events” and found that “[improving] modeling and tools to develop, apply, and 
evaluate scenarios of multiple interacting stresses, including training in underlying assumptions 
and application of scenarios” and “[validating] current [downscaling] methods, [developing] and 
[testing] new approaches, and [providing] guidance for different situations, locations, and 
variables” were among the greatest needs and opportunities for future research (Moss et al, 2017). 
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Figure 1. Flow-chart Indicating How CMIP Model Projections Are Translated into 
Model Facility-level Risk.  

Adapted from Feldman et al, (Submitted 2019). 

Figure 1 shows a flow-chart that qualitatively produces DoD facility-level projections which 
balance historical observations with the relative change in the downscaled, bias-corrected model 
between future and historical simulations. 

Distributions of temperature and precipitation can be constructed based on one or more bias- 
corrected, downscaled models results, but each step of this process must be critically evaluated, 
and several questions arise: 

• How should individual models and the ensemble of model results be handled to develop 
confidence intervals? 

• Can certain model results be trusted more than others? 
• When and where is it appropriate to use, in the course of developing future projections, 

downscaling techniques and bias-correction based on historical observations? 

2.0 OBJECTIVES 

This investigation, arising in response to RCSON-18-L2 “Quantifying the Effects of 
Environmental Nonstationarity at DoD Relevant Scales,” seeks to uncover the heterogeneous 
performance of the GCMs with respect to nonstationarity of temperature and precipitation. The 
primary objective of this research is to build the foundation for a comprehensive determination of 
this risk by using historical observations to inform model projections of the statistical properties 
of temperature and precipitation, including nonstationarity, at regional scales in the CONUS. 

The research is therefore directly responsive to the research objective in RCSON-18-L2 of 
“Discernment of relationships (e.g., mean temperature and heat wave frequency or severity) as 
revealed in both historical observations and climate models with an emphasis on describing model 
heterogeneity. 



 

4 

This research has been designed to lay the groundwork for tangible benefits to DoD by establishing 
a physical basis for clarity in (1) the risk that future changes in the distribution of temperature and 
precipitation that a single DoD facility may face for a set of plausible emissions scenarios and (2) 
the risk that multiple DoD facilities may face simultaneously in the future due to these scenarios. 
The research first focused on the use of traditional geostatistical techniques including 
spatiotemporal variography and kriging to blend historical data and GCM projections to examine 
the spatiotemporal behavior of temperature and precipitation over the CONUS in future emissions 
scenarios. 

As a corollary to this primary objective, we pursued a secondary objective. As per the needs 
expressed in RCSON-18-L2, we explored the assumptions inherent in pursuing a statistical 
approach to understanding the risks associated with nonstationarity and whether physical modeling 
and understanding are needed to bringing clarity to interpreting these risks under future climate 
change. 

3.0 TECHNICAL APPROACH 

The null hypothesis of this investigation was that the statistics of temperature and precipitation 
and their covariability in CONUS on regional scales have been and will continue to be stationary. 
At the start of the investigation, the research team pursued a purely statistical approach to this 
question. That is, the research team sought to develop projections of changes in the distributions 
of temperature and precipitation based on a combination of model projections where the 
projections were weighted according to the model’s historical performance relative to 
observations. 

Pursuant to this strategy, the research team developed a multi-linear regression based on the three-
dozen models from the Couple Model Intercomparison Project – Phase 5 (CMIP5) (Taylor et al 
2012) archive that was downscaled using the Localized Constructed Analogues (LOCA) technique 
(Pierce et al, 2014). The research team developed a regression approach of the historical model 
simulations by comparing those against a gridded hydrometeorological product (Livneh et al, 
2013). Biases were derived as a function of quantile for each model and this was used as a basis 
to develop a multi-linear regression. As part of this process, the research team were able to develop 
exceedance probabilities for the projections based on a generalized extreme value (GEV) 
distribution. A number of techniques were also developed to manage potential numerical 
instabilities associated with the construction of these projections. A flow-chart of this approach is 
displayed in Figure 2 and described in further detail in Feldman et al (2019, Submitted) and Tadić 
and Biraud (2019, Submitted). The research team also developed a set of more advanced statistical 
techniques to manage potential changes in the spatiotemporal correlation in temperature and 
precipitation, through a copula-based technique (Tadić and Biraud, 2019, Submitted). 
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Figure 2. Flow Diagram of a Regression-based Analysis.  

(1) Input data (observational and model data) are first converted into empirical Probability Distribution 
Functions and Cumulative Distribution Functions (CDFs). (2) Multi-linear regression (MLR) coefficients 

are constructed to reconstruct observational CDFs using model CDFs. (3) Quantile Delta Mapping 
(Cannon et al, 2015) Quantile Delta Mapping is applied to develop future CDFs. (4) We apply GEV 

theory and examine change in the likelihood of extreme events. Finally, (5) copula theory is applied to 
assess whether climate change increases risk of simultaneous or collocated extreme events. From Tadić 

and Biraud (2019, Submitted). 

With the mechanics of what amounts to a pure statistically-based approach to developing 
projections to assess future changes for a given location and correlated risks for multiple locations, 
the research team sought to revisit key assumptions that were made in the course of constructing 
this statistical model. Based on key feedback at the SERDP Symposium from Dr. Linda Mearns 
of the National Center for Atmospheric Research (NCAR), and following the suggestions of Dr. 
Michael Wehner of Lawrence Berkley National Lab, the research team recognized the importance 
of adopting a more cautious approach to performing analysis on a downscaled multi-model 
ensemble. Specifically, key assumptions underlying the approach were assessed, including that 
models are independent and that the stationarity assumptions in downscaling techniques are 
tenable. Through discussions with the co-performers on this proposal, it became clear that a careful 
intercomparison of different downscaling solutions provides information not just on the 
downscaling technique, but on the parent model as well. 

A deeper understanding of the strengths and weaknesses of the parent models and downscaling 
techniques, which can be informed by the intercomparison of different downscaling solutions, is 
needed, along with a robust test of stationarity assumptions in downscaling. With a multi-pronged 
approach to testing parent models and downscaling techniques, a rational basis for weighting or 
deweighting climate model projections and downscaling techniques can be developed. The research 
team’s original approach to developing projections represents a default set of assumptions regarding 
the a priori equality in the independence, uniqueness, and plausibility of model projections  
and stationarity in statistical downscaling relationships between the 20th and 21st Century.  
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These assumptions can be tested and an overview for doing so is in the conclusion of the Executive 
Summary. A detailed approach for accomplishing this is found at the conclusion of this report. 

4.0 RESULTS AND DISCUSSION 

Using the approach outlined in Figure 2, the research team first focused on the development of 
projections of daily precipitation and surface air temperature around two selected DoD facilities: 
Travis Air Force Base (TAFB) near Fairfield, California, and Fort Bragg (FBR) in North Carolina. 
Below is a summary of average and extreme changes for these two locations. The changes of mean 
temperature are not necessarily monotonic with time and emissions, though they are large, and the 
changes in mean precipitation are moderate. 

Table 1. Changes in Average Daily Precipitation and Maximum Daily Surface 
Temperature Values (Future-Past) for TAFB for Three Future Periods Centered Around 
Years 2020, 2050 and 2100, Derived from Bias-corrected Future Projections Using MLR 

and Past Observations, for Two Emission Scenarios (RCP4.5 and RCP8.5). 

 TAFB 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) (delta) Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 +0.1 +1.1 +0.2 +1.1 
2050 -0.0 +2.0 +0.0 +1.9 
2100 -0.1 +2.2 +0.0 +2.7 

 

Table 2. Changes in Average Daily Precipitation and Maximum Daily Surface 
Temperature Values (Future-Past) for FBR for Three Future Periods Centered Around 
Years 2020, 2050 and 2100, Derived from Bias-corrected Future Projections Using MLR 

and Past Observations, for Two Emission Scenarios (RCP4.5 and RCP8.5). 

 FBR 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

 
Tmax (K) (delta) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 -0.5 +0.9 -0.3 +0.1 
2050 -0.4 +1.2 -0.3 +1.5 
2100 -0.5 +1.6 -0.4 +2.2 

 
This approach can be used to develop estimates of changes in extreme values of precipitation and 
daily maximum temperature in the 21st Century and associated confidence intervals using GEV 
parameter estimates. These changes are a function of emissions scenario, which becomes a large 
driver of the divergence in estimates by the end of the 21st Century (Hawkins and Sutton, 2009). 
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Table 3. The Ratio of Probability of the Extreme Event in the Future that 
Corresponded to p<0.01 in the Past, and Its Probability for Three Future Periods 

(Centered around years 2020, 2050 and 2100), for Both TAFB and FBR Locations Under 
Two Emission Scenarios, Based on GEV Distribution.  

The uncertainty is reported as 95% Confidence Intervals (CI). 

 TAFB FBR 
 Precipitation (mm/day) 

(95% CI) 

 
Tmax (K) (95% CI) 

Precipitation 
(mm/day)  
(95% CI) 

Tmax (K) 
(95% CI) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 
2005- 
2035 

1.09 (0-16.5) 2.77 (0-20) 4.35  
(0-21.4) 

4.63  
(0-21.5) 

0.30  
(0-10) 

0.47 
(0-8) 

7.58 (0-
35.5) 

1.86  
(0-26) 

2035– 
2065 

0.20 (0-11) 1.87 (0-17) 11.35 
(0-31.1) 

11.63 
(0-31.5) 

0.23 
(0-9) 

0.33 
(0-8) 

11.83 
(0-38) 

17.65 
(0-41.5) 

2085– 
2115 

0.06 (0-10) 2.97 (0-19) 13.60 
(0-33.4) 

22.45 
(0.7-42.5) 

0.21 
(0-9) 

0.25 
(0-9) 

19.98 
(0-45) 

31.04 
(0-52.5) 

 
 

Figure 3. Change in 20-year Daily Return Value of Maximum Surface Air 
Temperature and Precipitation Based on the MLR Approach Across the CONUS for Two 

Emissions Scenarios from 1985-2015 to 2070-2100. 

This analysis can be extended to develop distributions across the CONUS. We summarize these 
results by showing the change in the 20-year daily return value of maximum daily temperature and 
precipitation in Figure 3. 
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This approach provides projections, but the steps shown in Figure 1 need to be approached 
cautiously. In point of fact, seemingly straightforward tasks, such as the development of gridded 
historical data from a discrete set of weather station observations, can introduce biases. Co-
Performers Risser and O’Brien recently published a paper showing that gridding observations will 
tend to underestimate extreme precipitation because that precipitation varies spatially, and 
averaging high and low precipitation data will dampen extremes (Risser et al, 2019a). A better 
approach is to use station data to estimate extreme precipitation statistics and develop spatial 
modeling to produce gridded observational products. 

 

Figure 4. Differences Between Weather Research and Forecasting (WRF) and LOCA-
WRF Projections for Historical and Future April Maximum Temperature (Panels a and b, 

Respectively) and for Historical and Future Annual Mean Precipitation (Panels c and d, 
Respectively).  

Unit for (a) and (b) is degrees C. Unit for (c) and (d) is millimeters per day. The mean absolute error 
(MAE) is reported in the upper right margin of each panel. From Walton et al, JAMC, In Review. 

Additionally, recent work by Walton et al, (JAMC, In Review), as shown in Figure 4, indicates 
that the regression approach is suboptimal. An intercomparison of different downscaling solutions 
across California for historical and future simulations reveals a divergence that only appears later 
in the 21st Century. A closer look reveals that the dynamically-downscaled solution is qualitatively 
and quantitatively different from the statistical downscaling solution. The reason that the historical 
performance of the statistical downscaling solution does not translate well into future performance 
requires careful analysis. Walton et al, (JAMC, In Review) conducted this analysis and found that, 
for California, the downscaling methodology itself is only a symptom of a larger problem. The 
primary driver for the divergence in downscaling solutions in future projections is that the parent 
model does not capture changes in snow cover well, which greatly impact temperatures and does 
not capture changes in North American Monsoon dynamics, which affects Southeastern California. 

These findings show that the blind development of regression solutions based on historical biases is 
suboptimal, because the historical biases of some models are not directly translatable to future biases. 
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Rather, it is the process representations of snow albedo and monsoons that must be considered in 
the development of projections. It is precisely this nonstationarity that RCSON- 18-L2 seeks to 
address head on. The suboptimal performance of MLR-based projections, where the regression is 
based on the univariate performance of the models in the historical record, is only revealed with 
the intercomparison of dynamical and statistical downscaling solution. 

5.0 IMPLICATIONS FOR FUTURE RESEARCH AND BENEFITS 

This research explored the landscape of developing projections of surface air temperature and 
precipitation at the DoD-facility level from an ensemble of downscaled climate model projections. 
The research demonstrated that this landscape is not easily navigated because climate models have 
representation errors in the processes that can lead to nonstationarity and statistical downscaling 
solutions are constructed explicitly with a stationarity assumption that has not been tested. 

The primary benefit to DoD of this seed project’s research is to detail the scale of the work that is 
needed to address in a comprehensive fashion specific research tasks that go beyond a purely 
statistical approach to developing climate model projections from an ensemble of model results to 
provide insight into the models with which DoD should have increased or diminished confidence. 
The challenges of using downscaled projections for infrastructure and operations planning should 
not be underestimated, because they are generally completely opaque to the end-user. These end-
users can easily have either too much or too little confidence in the model projections. For the 
former case, the provision of a set of numbers, and even error bars, that can be fed into end-user 
models is a straightforward exercise, but the danger here is that those numbers can be misleading 
if they do not consider the processes that break stationarity. 

For the latter case, the esoteric nature of climate models and downscaling can preclude their 
adoption even though it is very likely that long-term shifts in surface air temperature and 
precipitation distributions will occur. In this situation, planning exercises either use historical data 
that do not include nonstationarity or generic information on increased variability as a placeholder 
for a deeper understanding of the risks associated with climate change which may or may not be 
relevant to a specific location. 

Fortunately, there are tractable solutions to these challenges. Focused research efforts which 
develop a deeper understanding of the processes that “break” stationarity and evaluate model 
projections accordingly are needed. Additionally, it is critical that the researchers engaged in 
developing climate model projections bridge the communication divide between the modeling 
community and end-users so that they have the appropriate level of confidence in these projections. 
Ultimately, end-users need to understand the challenges and opportunities with using climate 
model projections for infrastructure and operations planning and so that they can utilize model 
projections judiciously. It is incumbent on those with knowledge and expertise in climate model 
projections to guide the utilization of these data for end-users. 
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