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Abstract
Empirical dynamic modeling (EDM) is an emerging non-parametric framework for modeling nonlinear 
dynamic systems. EDM is based on the mathematical theory of reconstructing attractor manifolds 
from time series data (Takens 1981). The rEDM package collects several EDM methods, including 
simplex projection (Sugihara and May 1990), S-map (Sugihara 1994), multivariate embeddings (Dixon 
et al. 1999), convergent cross mapping (Sugihara et al. 2012), and multiview embedding (Ye and 
Sugihara 2016). Here, we introduce the basic underlying theory, and describe the functionality of the 
rEDM, using examples from both model simulations and real data.

Introduction
Many scientific fields use models as approximations of reality and for various purposes (e.g. testing 
hypotheses regarding mechanisms or processes, explaining past observations, predicting future 
outcomes). In most cases these models are based on hypothesized parametric equations; however 
explicit equations can be impractical when the exact mechanisms are unknown or too complex to be 
characterized with existing datasets. Empirical models, which infer patterns and associations from 
the data (instead of using hypothesized equations), represent an alternative and highly flexible 
approach. Here, we review the theoretical background for empirical dynamic modeling (EDM) and the 
functionality of the rEDM package, which are intended for nonlinear dynamic systems that can prove 
problematic for traditional modeling approaches.

The basic goal underlying EDM is to reconstruct the behavior of dynamic systems using time series 
data. This approach is based on mathematical theory developed initially by (Takens 1981), and 
subsequently expanded (Casdagli et al. 1991, Sauer et al. 1991, Deyle and Sugihara 2011). Because 
these methods operate with minimal assumptions, they are particularly suitable for studying systems 
that exhibit non-equilibrium dynamics and nonlinear state-dependent behavior (i.e. where 
interactions change over time and as a function of the system state).
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Installation

The rEDM package can be obtained in two main ways. The standard version of the package can be
obtained through CRAN (the Comprehensive R Archive Network): https://cran.r-project.org
/package=rEDM:

install.packages("rEDM")

However, the most recent version is available on GitHub: https://github.com/ha0ye/rEDM, and can
be installed using the install_github() function in the devtools package.

devtools::install_github("ha0ye/rEDM")

Empirical Dynamic Modeling

Time Series as Observations of a Dynamic System

The essential concept is that time series can be viewed as projections of the behavior of a dynamic
system. Here, only a few modest assumptions are required. First, the system state can be described
as a point in a high-dimensional space. The axes of this space can be thought of as fundamental
state variables; in an ecosystem, these variables might correspond to population abundances,
resources, or environmental conditions. Second, the system state changes through time following a
set of deterministic rules. In other words, the behavior of the system is not completely stochastic.

Consequently, it is possible to project the system state onto one of the coordinate axes and obtain
the value of the corresponding state variable. Sequential projections over time will thus produce a
time series for that variable. For example, in Figure 1, the states of the canonical Lorenz Attractor
(Lorenz 1963) are projected to the -axis, creating a time series of variable .

time

x

z

y

Figure 1: Time Series Projection from the Lorenz Attractor

x x
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In simple cases, each time series will represent a different state variable. However, more generally,
each time series is an observation function of the system state, and may be a function of several
different state variables.

Attractor Reconstruction / Takens’ Theorem

The goal of EDM is to reconstruct the system dynamics from time series data. Because time series
are sequential observations of the system behavior, information about the rules that govern system
behavior (i.e. the system dynamics) is therefore encoded in the data. Takens’ Theorem (Takens 1981)
provides a way to recover this information using just a single time series. Although the system
behavior is nominally determined by a high-dimensional state space, we can substitute lags of a time
series for any unknown or unobserved variables. For example, instead of representing the system
state of the Lorenz Attractor using , , and , we can instead use an embedding that consists of 
lags of :

x
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Figure 2: Attractor Reconstruction from 3 Lagged Coordinates

By Takens’ Theorem (Takens 1981), if sufficient lags are used, the reconstruction is a diffeomorphism
of the original system. In other words, reconstructed states will map one-to-one to actual system
states, and nearby points in the reconstruction will correspond to similar system states. Figure 2
shows a reconstruction of the Lorenz attractor where the reconstructed system state is comprised of
3 lags of variable . There is a clear visual correspondence between the reconstruction and the
original Lorenz attractor.

There are many applications for using this approach to recover system dynamics from time series.
For example, empirical models can be used for forecasting (Sugihara and May 1990), to understand
nonlinear behavior (Sugihara 1994), or to uncover mechanism (Dixon et al. 1999). Recent work
describes how EDM can be used to identify causal interactions, by testing whether two time series
are observed from the same system (Sugihara et al. 2012). In the next section, we demonstrate how
the rEDM software package can be used to accomplish these tasks.

EDM Examples

x y z E
x

= ( , , … , )xt xt xt−τ xt−(E−1)τ

x
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Nearest Neighbor Forecasting using Simplex Projection

As mentioned previously, if enough lags are used, the reconstruction will map one-to-one to the
original attractor. However, if the number of lags is insufficient (i.e. the embedding dimension is too
small), then the reconstruction will have singularities – points that actually correspond to different
system states, but which overlap in the reconstruction. When this occurs, the reconstruction will fail
to distinguish between different trajectories, and forecast performance will suffer. Thus, prediction
skill can be used as an indicator for the optimal embedding dimension.

In the following example, we demonstrate how to select the embedding dimension. We use a nearest
neighbor forecasting method, Simplex Projection (Sugihara and May 1990), to produce forecasts,
and examine prediction skill, computed as the correlation between observed and predicted values.

Example

In this example, time series come from a simulation of the tent map that exhibits chaotic behavior.
The tent map is a discrete-time dynamic system, where a sequence, , on the interval  is
iterated according to:

In rEDM, a sample time series of the first-differenced values can be found in dataset tentmap_del.

We begin by loading the rEDM package:

library(rEDM)

Then, we can load the tentmap data:

data(tentmap_del) 
str(tentmap_del)

##  num [1:999] -0.0992 -0.6013 0.7998 -0.7944 0.798 ...

We can see that the data consists of a single vector, containing the raw first-differences values of .
Because the simplex() function can accept a single vector as the input time series, no further
processing of the data is required.

ts <- tentmap_del 
lib <- c(1, 100) 
pred <- c(201, 500)

We begin by initializing the lib and pred variables. These variables define the portions of the data
that will be used to create the reconstruction. lib corresponds to the “training” portion of the data,

xt [0, 1]

= {xt+1
2xt

2(1 − )xt

<xt
1
2

≥xt
1
2

xt
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on which nearest neighbors can be identified; and pred corresponds to the “test” portion of the data,
on which 1-step ahead forecasts will be made. Here, the first 100 points (positions 1 to 100) in the
time series constitute the “library set”, and 300 points (positions 201 to 500) constitute the
“prediction set”.

The remaining arguments will be left at their default values (see section for details). For the simplex()
function, this means that the embedding dimension, , will range from  to .

Note that if the code detects any overlap in the lib and pred, it will prevent a vector from becoming its
own neighbor by enabling leave-one-out cross-validation and outputting a warning message.

simplex_output <- simplex(ts, lib, pred) 
str(simplex_output)

## 'data.frame':    10 obs. of  16 variables:
##  $ E : int  1 2 3 4 5 6 7 8 9 10
##  $ tau : num  1 1 1 1 1 1 1 1 1 1
##  $ tp : num  1 1 1 1 1 1 1 1 1 1
##  $ nn : num  2 3 4 5 6 7 8 9 10 11
##  $ num_pred : num  299 298 297 296 295 294 293 292 291 290
##  $ rho : num  0.847 0.962 0.942 0.91 0.874 ...
##  $ mae : num  0.207 0.102 0.138 0.19 0.235 ...
##  $ rmse : num  0.392 0.187 0.236 0.291 0.334 ...
##  $ perc : num  0.853 0.906 0.899 0.885 0.824 ...
##  $ p_val : num  2.59e-102 4.99e-253 4.65e-199 1.54e-151 2.59e-118 ...
##  $ const_pred_num_pred: num  299 298 297 296 295 294 293 292 291 290
##  $ const_pred_rho     : num  -0.668 -0.671 -0.671 -0.673 -0.671 ...
##  $ const_pred_mae     : num  1.02 1.02 1.02 1.02 1.01 ...
##  $ const_pred_rmse    : num  1.25 1.25 1.26 1.26 1.25 ...
##  $ const_pred_perc    : num  0.341 0.339 0.337 0.338 0.339 ...
##  $ const_p_val : num  1 1 1 1 1 1 1 1 1 1

The output is a data frame with columns for each of the model parameters and forecast statistics,
and rows for each separate model (i.e. different parameter combinations). For Simplex Projection, the
model parameters are E, embedding dimension; tau, time lag between successive dimensions; tp,
time to prediction; and nn, number of nearest neighbors (see section for a detailed description). The
forecast statistics are num_pred, the number of predictions made; rho, Pearson’s correlation
coefficient between predictions and observations; mae, mean absolute error of predictions; rmse, root
mean squared error of predictions; perc, the percent of predictions that are the same sign as
observations; and p_val, the p-value for rho being significantly greater than 0, using Fisher’s
transformation (Fisher 1915). For the purpose of comparison, the last 6 columns give those same
forecast statistics, but for a naive constant predictor (where the 1-step ahead forecast is the current
value) over the same set of predictions.

In this case, there are 10 separate models (one for each value of E), so we can plot E against rho (the
correlation between observed and predicted values) to determine the optimal embedding dimension
(i.e. the number of dimensions for which the reconstructed attractor is best unfolded, producing the
highest forecast skill).

E 1 10
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par(mar = cc(4, 4, 1, 1), mgp = cc(2.5, 1, 0)) # set up margins for plotting
plot(simplex_output$E, simplex_output$rho, type = "l",  

xlab = "Embedding Dimension (E)", ylab = "Forecast Skill (rho)")

Here, we observe that forecast skill peaks at , indicating that the dynamics of our data are
unfolded best in 2 dimensions. Note that this optimal value does not have to correspond to the
dimensionality of the original system. The forecast skill will be affected by factors such as
observational noise, process error, and time series length, and so it is more useful to think of the
embedding dimension as a practical measure that is dependent on properties of the data.

Prediction Decay

An important property of many natural systems is that nearby trajectories eventually diverge over
time (i.e. “deterministic chaos” – the “butterfly effect”). In essence, this means that while short-term
prediction is often possible, information about the state of the system is continually lost over time,
hindering long-term prediction. We can demonstrate this effect by examining how prediction skill
changes as we increase the tp argument, the “time to prediction”, the number of time steps into the
future that forecasts are made.

Example

Using the same data and the simplex() function, we supply a range for the tp argument and fix the
embedding dimension to the value determined previously ( ):

simplex_output <- simplex(ts, lib, pred, E = 2, tp = 1:10)

E = 2

E = 2
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As above, the returned object is a data frame, so we can examine prediction decay by plotting
forecast skill (rho) against the time to prediction (tp).

plot(simplex_output$tp, simplex_output$rho, type = "l",
xlab = "Time to Prediction (tp)", ylab = "Forecast Skill (rho)")

Because the parameters for the tent map fall in the region for chaotic behavior, there is a noticeable
decline in forecast skill as tp increases.

Identifying Nonlinearity

One concern is that time series may show predictability even if they are purely stochastic, because
they have temporal autocorrelation (i.e. similar to autocorrelated red noise). We can distinguish
between red noise and nonlinear deterministic behavior by using S-maps as described in (Sugihara
1994).
In contrast to the nearest-neighbor interpolation of simplex projection, the S-map forecasting
method (Sugihara 1994) fits local linear maps to forecast from the reconstructed state space. Here,
“local” means that the map can be different at different locations in the reconstructed state space.
With S-maps, the nonlinear tuning parameter, , determines the strength of the weighting when
fitting the local linear map. For example, when , all points always receive equal weighting. In
other words, the local linear map does not change, and will be identical to a global linear map –
equivalent to fitting an autoregressive model to the data. In contrast, when , nearby points
receive larger weights, allowing the local linear map to vary in state-space and accommodate
nonlinear behavior (see the vignette “rEDM-algorithms” for more details).
Consequently, if the time series are sampled from autoregressive red noise, then there will be no
improvement to forecast skill when . In fact, it is likely that the linear model ( ) produces
the best forecasts, because it uses all the data for constructing the global linear map, thereby

θ
θ = 0

θ > 0

θ > 0 θ = 0
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reducing the effects of observational noise. Thus, increases in forecast skill when  is indicative
of nonlinear dynamics; allowing the local linear map to vary in state-space produces a better
description of state-dependent behavior.

Example

The S-map method is implemented as the function s_map() in the rEDM package. Following from
the previous example, we again use the tent map time series, and set E = 2 based on the results
from simplex projection. Note that we allow many of the arguments to take on default values (e.g.,
tau = 1, tp = 1). If we had changed these for simplex projection, we would want to propagate them
here. The default values for the nonlinear tuning parameter, theta, range from 0 to 8, and are suitable
for our purposes.

Note also, that the default value for num_neighbors is 0. When using S-maps to test for nonlinear
behavior, we want to use all points in the reconstruction, and allow theta to control the weighting
assigned to individual points. By using 0 for this argument (an otherwise nonsensical value), the
program will use all nearest neighbors.

smap_output <- s_map(ts, lib, pred, E = 2)

Again, the results are a data frame with columns for each of the model parameters and forecast
statistics, with rows for each run of the model. In this case, there is one run for each value of theta,
so we can simply plot theta against rho:

plot(smap_output$theta, smap_output$rho, type = "l",
xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)")

Here, we can see that forecast skill substantially improves as theta increases, indicating the
presence of nonlinear dynamics. Typically, we would expect forecast skill to begin to decrease at

θ > 0
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high values of theta, because the local linear map will overfit to the nearest points. However,
because the example data are observed without any noise, we continue to get a better
approximation to the true function with higher theta.

By simulating the addition of a small amount of observational noise, a rho vs. theta plot more typical
of real data can be achieved:

ts_err <- ts + rnorm(length(ts), sd = sd(ts) * 0.2) 
smap_output_err <- s_map(ts_err, lib, pred, E = 2)
plot(smap_output_err$theta, smap_output_err$rho, type = "l",

xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)")

Generalized Takens’ Theorem

In addition to creating an attractor from lags of one time series, it is possible to combine different
time series, if they are all observed from the same system (Sauer et al. 1991, Deyle and Sugihara
2011). The practical reality of complex dynamics, finite, noisy data, and stochastic drivers means that
“multivariate” reconstructions can often be a better description than “univariate” reconstructions.

In rEDM, the block_lnlp() function generalizes the simplex() and s_map() functions:
reconstructions can be formed from any set of coordinates, and forecasts are made using either of
the two methods.

The data format for block_lnlp() is a matrix or data frame, where each column is a separate time
series, and each row is a temporal “slice” of the data comprised of simultaneous observations. A
reconstruction is defined by specifying which columns to use as coordinates (the columns argument)
and which column is to be forecast (the target_column argument). If lagged copies of a time series
are desired as coordinates, they need to be pre-computed as separate columns in the input (e.g. via
the make_block() function).
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Example

We begin by loading an example dataset from a coupled 3-species model system.

data(block_3sp) 
str(block_3sp)

## 'data.frame':    200 obs. of  10 variables:
##  $ time : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ x_t  : num  -0.742 1.245 -1.918 -0.962 1.332 ...
##  $ x_t-1: num  NA -0.742 1.245 -1.918 -0.962 ...
##  $ x_t-2: num  NA NA -0.742 1.245 -1.918 ...
##  $ y_t  : num  -1.268 1.489 -0.113 -1.107 2.385 ...
##  $ y_t-1: num  NA -1.268 1.489 -0.113 -1.107 ...
##  $ y_t-2: num  NA NA -1.268 1.489 -0.113 ...
##  $ z_t  : num  -1.864 -0.482 1.535 -1.493 -1.119 ...
##  $ z_t-1: num  NA -1.864 -0.482 1.535 -1.493 ...
##  $ z_t-2: num  NA NA -1.864 -0.482 1.535 ...

Here, the block_3sp variable is a 10-column data frame with 1 column for time, and 3 columns for
each of the variables (unlagged: , lag-1: , and lag-2: ). Note that the lagged columns
begin with NA values because there are no observations of the variables for times . The vectors
that include NA values are excluded if that specific value is needed for computation (see section for
more details).

Columns can be referred to using either numerical indices or the column names. If numerical indices
are used, block_lnlp has an option to indicate that the first column is actually a time index. When
first_column_time is set to TRUE, a value of 1 for target_column will point to the first data column in
the data frame.

lib <- c(1, NROW(block_3sp))
pred <- c(1, NROW(block_3sp))

cols <- c(1, 2, 4)
target <- 1

block_lnlp_output <- block_lnlp(block_3sp, lib = lib, pred = pred,
columns = cols, target_column = target,
stats_only = FALSE, first_column_time = TRUE, 
silent = TRUE)

We can also refer to columns by the column names. This ignores the first_column_time argument
when referring to columns, but does use the time column to label predictions:

block_lnlp_output_2 <- block_lnlp(block_3sp, lib = lib, pred = pred,
columns = c("x_t", "x_t-1", "y_t"), target_column =

t t − 1 t − 2
t < 1
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"x_t",
stats_only = FALSE, first_column_time = TRUE, 
silent = TRUE)

# test for equality
stopifnot(identical(block_lnlp_output, block_lnlp_output_2))

Note that the default value for the tp argument is 1, indicating that predictions are 1-step ahead
(i.e. using each row of the columns variables to predict the subsequent row of the target_column
variable). In some cases, the data may be formatted to have the predicted variable aligned in the
same row (but in a different column), and tp should be set to 0.

str(block_lnlp_output)

## 'data.frame':    1 obs. of  16 variables:
##  $ embedding : chr "1, 2, 4"
##  $ tp : num 1
##  $ nn : num 4
##  $ num_pred : num 198
##  $ rho : num 0.875
##  $ mae : num 0.32
##  $ rmse : num 0.43
##  $ perc : num 0.889
##  $ p_val : num 6.83e-80
##  $ const_pred_num_pred: num 198
##  $ const_pred_rho     : num -0.539
##  $ const_pred_mae     : num 1.31
##  $ const_pred_rmse    : num 1.55
##  $ const_pred_perc    : num 0.394
##  $ const_p_val : num 1
##  $ model_output       :List of 1
##   ..$ :'data.frame': 200 obs. of  4 variables:
##   .. ..$ time    : num  2 3 4 5 6 7 8 9 10 11 ...
##   .. ..$ obs     : num  1.245 -1.918 -0.962 1.332 -0.817 ...
##   .. ..$ pred    : num  NaN -1.226 -0.657 0.872 -1.59 ...
##   .. ..$ pred_var: num  NaN 0.328 0.522 0.236 0.244 ...
##   ..- attr(*, "class")= chr "AsIs"

By setting stats_only to FALSE, the output also includes the observed and predicted values in a list
column (model_output). Unlike other columns, which are vectors of simple types (e.g. numeric,
character), the model_output column is a list of length 1, whose single element is a data frame of the
observed and predicted values. If we had run multiple models, the model_output column would be a
list of multiple data frames (one data frame of observed and predicted values for each model).

To compare the observed and predicted values, we want to pull out the appropriate columns:

list_of_model_predictions <- block_lnlp_output$model_output
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first_data_frame_of_predictions <- list_of_model_predictions[[1]]

observed <- first_data_frame_of_predictions$obs
predicted <- first_data_frame_of_predictions$pred

We can compare predicted vs. observed in a square plot with a 1:1 line.

plot_range <- range(c(observed, predicted), na.rm = TRUE)
plot(observed, predicted, xlim = plot_range, ylim = plot_range,

xlab = "Observed", ylab = "Predicted", asp = 1)
abline(a = 0, b = 1, lty = 2, col = "blue")

S-map Coefficients

As described in (Deyle et al. 2016), the S-map coefficients from the appropriate multivariate
embedding can be interpreted as dynamic, time-varying interaction strengths. We demonstrate this
approach for the same 3-species simulation as above, using x, y, and z as the coordinates to predict
x.

data(block_3sp)
lib <- c(1, 100)
pred <- c(101, 200)

cols <- c("x_t", "y_t", "z_t")
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target <- "x_t"

block_smap_output <- block_lnlp(block_3sp, lib = lib, pred = pred,
columns = cols, target_column = target, 
method = "s-map", theta = 2, 
stats_only = FALSE, first_column_time = TRUE, 
save_smap_coefficients = TRUE, silent = TRUE)

The smap_coefficients column of the output is a list-column where each element is a data frame of
the S-map coefficients for that model. Since we just have one model, we just want the first element
of that list. The result is a data frame with 200 rows (for each prediction) and 4 columns (for each of
the 3 predictors and a constant).

smap_coeffs <- block_smap_output$smap_coefficients[[1]] 
str(smap_coeffs)

## 'data.frame':    100 obs. of  4 variables:
##  $ c_1: num  -1.561 0.394 -1.112 -0.801 -1.487 ...
##  $ c_2: num  -0.2263 0.0216 -0.164 0.0315 -0.1408 ...
##  $ c_3: num  -0.34154 0.12711 -0.22768 0.03366 0.00995 ...
##  $ c_0: num  0.63 0.668 0.397 0.388 0.555 ...

Here, we plot the time series for the observed and predicted values of x and the inferred interactions
(s-map coefficients) for the influence of x, y, and z.

predictions <- block_smap_output$model_output[[1]]
t <- predictions$time

par(mfrow=(c(4,1)))
plot(t, predictions$obs, type = "l", col = "black", ylab = "x", xlab = "")
lines(t, predictions$pred, lty = 2)

plot(t, smap_coeffs[, 1], type = "l", col = "red", ylab = "effect of x", xlab = "")
plot(t, smap_coeffs[, 2], type = "l", col = "blue", ylab = "effect of y", xlab = "")
plot(t, smap_coeffs[, 3], type = "l", col = "magenta", ylab = "effect of z", xlab =
"")
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Gaussian Process

An alternative approach to using Simplex Projection or S-maps is to use Gaussian Processes (GP). In
the rEDM package, the equivalent function to the univariate simplex() and s_map() is tde_gp() (for
“Time Delay Embedding using Gaussian Processes”“) and the equivalent function to the general
block_lnlp() is block_gp().

Note that the arguments are slightly different: the GP formulation includes hyperparameters for fitting
to the data (phi, v_e, and eta). These can be set directly, or fit over the points in the lib portion of
the data. In addition, the GP specifies not only pointwise error estimates for the predicted points, but
also the covariance between them. In other words, the uncertainty for nearby points, in the state-
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space of the reconstructed attractor, is correlated. Setting save_covariance_matrix = TRUE will also
return the full covariance matrix for the predicted points in the output of these functions. For more
details, please see the documentation for tde_gp() and block_gp().

We repeat the above example, but using block_gp() instead of block_lnlp().

data(block_3sp)
lib <- c(1, NROW(block_3sp))
pred <- c(1, NROW(block_3sp))
cols <- c(1, 2, 4)
target <- 1

block_gp_output <- block_gp(block_3sp, lib = lib, pred = pred,
columns = cols, target_column = target,
stats_only = FALSE, first_column_time = TRUE, 
silent = TRUE)

str(block_gp_output)

## 'data.frame':    1 obs. of  13 variables:
##  $ embedding   : Factor w/ 1 level "1, 2, 4": 1
##  $ tp : num 1
##  $ phi : num 0.289
##  $ v_e : num -2.03
##  $ eta : num 2.01
##  $ fit_params  : logi TRUE
##  $ num_pred    : num 198
##  $ rho : num 0.949
##  $ mae : num 0.214
##  $ rmse : num 0.281
##  $ perc : num 0.924
##  $ p_val       : num 2.15e-142
##  $ model_output:List of 1
##   ..$ :'data.frame': 198 obs. of  4 variables:
##   .. ..$ time    : num  3 4 5 6 7 8 9 10 11 12 ...
##   .. ..$ obs     : num  -1.918 -0.962 1.332 -0.817 0.744 ...
##   .. ..$ pred    : num  -1.376 -0.888 1.063 -1.097 0.959 ...
##   .. ..$ pred_var: num  0.114 0.112 0.128 0.147 0.107 ...
##   ..- attr(*, "class")= chr "AsIs"

The output is nearly identical to that of block_lnlp(), but with slightly different columns - the GP
hyperparameters are included instead of the number of neighbors and theta parameters.

To compare the observed and predicted values, we can again use the data frame from the
model_output column:

gp_predictions <- block_gp_output$model_output[[1]]
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plot_range <- range(c(gp_predictions$obs, gp_predictions$pred), na.rm = TRUE)
plot(gp_predictions$obs, gp_predictions$pred, xlim = plot_range, ylim = plot_range,

xlab = "Observed", ylab = "Predicted", asp = 1, pch = 3)
abline(a = 0, b = 1, lty = 2, col = "blue")

Multiview Embedding

The generality of Takens’ Theorem means that in situations with multivariate time series, there can
often be many different, valid attractor reconstructions. As described in (Ye and Sugihara 2016),
combining these different models can result in improved forecasts.

Here, we demonstrate this idea using the multiview() function and with the same dataset as above.
multiview() operates by constructing all possible embeddings of dimension E, with lag up to
max_lag (and excluding embeddings that don’t have at least one coordinate with 0 time lag). These
embeddings are ranked by forecast skill (rho) over the lib portion of the data. The individual
forecasts for the top k embeddings are then averaged together.

data("block_3sp")
block <- block_3sp[, c(2, 5, 8)] # use only the unlagged time series

lib <- c(1, floor(NROW(block_3sp) / 2))
pred <- c(floor(NROW(block_3sp) / 2) + 1, NROW(block_3sp))

# multiple values for `k` can be provided, 
#   "sqrt" uses floor(sqrt(m)), where m is the number of embeddings
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k_list <- c(1, 3, "sqrt", "all")

multiview_output <- multiview(block, lib = lib, pred = pred,
E = 3, max_lag = 3, 
k = k_list, target_column = 1, 
stats_only = FALSE, 
save_lagged_block = TRUE, 
silent = TRUE)

str(multiview_output, max.level = 1)

## 'data.frame':    4 obs. of  14 variables:
##  $ E : num  3 3 3 3
##  $ tau : num  1 1 1 1
##  $ tp : num  1 1 1 1
##  $ nn : num  4 4 4 4
##  $ k : num  1 3 8 64
##  $ num_pred    : num  99 99 99 99
##  $ rho : num  0.846 0.902 0.908 0.851
##  $ mae : num  0.351 0.272 0.259 0.373
##  $ rmse : num  0.459 0.354 0.34 0.469
##  $ perc : num  0.848 0.899 0.939 0.919
##  $ p_val       : num  2.00e-34 2.96e-48 2.26e-50 3.12e-35
##  $ model_output:List of 4
##   ..- attr(*, "class")= chr "AsIs"
##  $ lagged_block:List of 4
##   ..- attr(*, "class")= chr "AsIs"
##  $ embeddings  :List of 4

Note that the output has information about 3 models, since we specified 3 different values for k.
Here, lagged_block gives the block that includes lags constructed for multiview embedding, and
embeddings gives the list of the embeddings that were averaged together for each model.
Again, we can compare the observed and predicted values using the data frame from the
model_output column:

for (i in 1:4){

    predictions <- multiview_output$model_output[[i]]

    plot_range <- range(c(predictions$obs, predictions$pred), na.rm = TRUE)
plot(predictions$obs, predictions$pred, xlim = plot_range, ylim = plot_range,

xlab = "Observed", ylab = "Predicted", asp = 1, 
main = paste0(multiview_output$k[i], " embeddings"))

abline(a = 0, b = 1, lty = 2, col = "blue")
}
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Causality Inference and Cross Mapping

One of the corollaries to Takens’ Theorem is that multiple reconstructions not only map to the original
system, but also to each other. Consider two variables,  and  that interact in a dynamic system.
The univariate reconstructions based on lags of  ( ) or  ( ) are each capable of uniquely
identifying system states. Thus, the reconstructed states of  map to reconstructed states of .
This suggests a way to test whether  and  interact in the same system, by testing for a mapping
between  and . Practically this is done by testing the predictive skill for the mapping from 
to  and from  to .

## [1] "Figure  3: Cross Mapping Between Reconstructions of the Lorenz Attractor"
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Cross Mapping Between Reconstructions of the Lorenz Attractor

Furthermore, in the case of unidirectional causality, e.g.  causes , but  does not cause , we
would only expect cross mapping to be successful in one direction. Somewhat counterintuitively, if a
causal variable ( ) leaves a signature on the affected variable ( ), then it is possible to map from 
to , but not vice-versa.

In essence,  must have complete information about , which means it must include information
about all its causes, including . However, because  behaves independently of , the reconstruction

 may be missing information about , preventing a complete cross mapping from  to .

To be more precise, although  has incomplete information about , it does have a causal influence
on , and there will likely be some predictive skill in the mapping from  to . However, this will be
limited to the statistical association between  and  and will generally not improve with more data.

In contrast, the mapping from  to  is expected to become complete with more data. This
convergence is a critical property for inferring causality, and can be tested by measuring the cross
mapping skill when using different amounts of data to reconstruct . For a more detailed
description of using cross mapping to infer causation, see (Sugihara et al. 2012, Ye et al. (2015)).

Convergent Cross Mapping (CCM)

In rEDM, convergent cross mapping is implemented as the ccm() function, which provides a wrapper
to compute cross map skill for different subsamples of the data. In the following example, we
reproduce the analysis from (Sugihara et al. 2012) to identify causality between anchovy landings in
California and Newport Pier sea-surface temperature. For this example, we use the previously
identified embedding dimension of E = 3.

To identify convergence, we compute cross-map skill (Pearson’s correlation,  between observed
and predicted values) over many random subsamples of the time series. The lib_sizes argument
specifies the size of the library set, and num_samples specifies the number of subsamples generated
at each library size. random_libs and replace specify how the subsamples will be generated. Here,
setting both to TRUE enables random sampling with replacement.
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data(sardine_anchovy_sst)
anchovy_xmap_sst <- ccm(sardine_anchovy_sst, E = 3,

lib_column = "anchovy", target_column = "np_sst",
lib_sizes = seq(10, 80, by = 10), num_samples = 100,
random_libs = TRUE, replace = TRUE, silent = TRUE)

sst_xmap_anchovy <- ccm(sardine_anchovy_sst, E = 3,
lib_column = "np_sst", target_column = "anchovy",
lib_sizes = seq(10, 80, by = 10), num_samples = 100,
random_libs = TRUE, replace = TRUE, silent = TRUE)

str(anchovy_xmap_sst)

## 'data.frame':    800 obs. of  11 variables:
##  $ E : num  3 3 3 3 3 3 3 3 3 3 ...
##  $ tau : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ tp : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ nn : num  4 4 4 4 4 4 4 4 4 4 ...
##  $ lib_column   : Factor w/ 1 level "anchovy": 1 1 1 1 1 1 1 1 1 1 ...
##  $ target_column: Factor w/ 1 level "np_sst": 1 1 1 1 1 1 1 1 1 1 ...
##  $ lib_size     : num  10 10 10 10 10 10 10 10 10 10 ...
##  $ num_pred     : num  76 76 76 76 76 76 76 76 76 76 ...
##  $ rho : num  -0.0968 0.1168 0.0706 0.0563 -0.0235 ...
##  $ mae : num  0.875 0.837 0.842 0.921 0.961 ...
##  $ rmse : num  1.1 1.06 1.05 1.14 1.24 ...

The output is a data frame with statistics for each model run (in this case, 100 models at each of 8
library sizes). To interpret the results, we aggregate the cross map performance at each library size
using the ccm_means() function, which computes a mean value at each unique lib_size. Because
average cross map skill less than 0 means there is no prediction skill, (predictions should not be
anticorrelated with observations), we set negative values to 0 when plotting.

a_xmap_t_means <- ccm_means(anchovy_xmap_sst)
t_xmap_a_means <- ccm_means(sst_xmap_anchovy)

plot(a_xmap_t_means$lib_size, pmax(0, a_xmap_t_means$rho), type = "l", col = "red",
xlab = "Library Size", ylab = "Cross Map Skill (rho)", ylim = c(0, 0.25))

lines(t_xmap_a_means$lib_size, pmax(0, t_xmap_a_means$rho), col = "blue") 
legend(x = "topleft", legend = c("anchovy xmap SST", "SST xmap anchovy"),

col = c("red", "blue"), lwd = 1, bty = "n", inset = 0.02, cex = 0.8)
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Time Delays with CCM

By default, the ccm() function identifies a causal effect of  on  by computing a mapping between
lagged-coordinate vectors of the affected variable, , and the simultaneous value of the causal
variable, :

where .

However, tp is an argument to ccm(), and accepts both positive and negative values. This allows us
to determine the value of tp that produces the best mapping for . This is, to a first approximation,
the time delay by which information about  is encoded in the time series of (see Ye et al. 2015 for
more information).

Note that negative values of tp ( ) correspond to estimating the past values of  using the
reconstructed states of . This suggests that the dynamical signal appears first in  and later in ,
and is consistent with  causing , because causes must precede effects.

If there is no causation in the reverse direction (i.e.  does not cause ), then the reconstructed
states of  should best predict future values of  and we would expect CCM skill in the opposite
direction:

would be highest at a positive value of tp ( ).

In general, this presumes that the time series are sampled frequently enough such that the causal
effect occurs over more than one observation in time. If causation is synchronous, or nearly so given
the data, then the optimal value of tp may be  in both directions.
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Example

First, we use time series of Paramecium and Didinium from the classical predator-prey experiment:

data(paramecium_didinium) 
str(paramecium_didinium)

## 'data.frame':    71 obs. of  3 variables:
##  $ time      : num  0 0.52 1.01 1.54 2.04 2.51 3 3.46 3.97 4.5 ...
##  $ paramecium: num  15.7 53.6 73.3 93.9 115.4 ...
##  $ didinium  : num  5.76 9.05 17.26 41.97 55.97 ...

We next setup the cross mapping runs we want to do:

vars <- names(paramecium_didinium)[2:3] # c("paramecium", "didinium") # 

generate all combinations of lib_column, target_column, tp
params <- expand.grid(lib_column = vars,

target_column = vars,
tp = -10:10)

# throw out cases where lib == target
params <- params[params$lib_column != params$target_column, ]

For the embedding dimension, we use E = 3, which is optimal or very close to optimal for both
variables. In other cases, the E would be set to the best univariate embedding dimension for each
lib_column variable:

params$E <- 3

We can determine the optimal values of tp by testing different values, and using as much data as
possible in order to obtain the cleanest signal:

output <- do.call(rbind, lapply(seq_len(NROW(params)), function(i) {
ccm(paramecium_didinium, E = params$E[i],

lib_sizes = NROW(paramecium_didinium), random_libs = FALSE,
lib_column = params$lib_column[i],
target_column = params$target_column[i],
tp = params$tp[i], silent = TRUE)

}))

Add an additional column to the output for the direction of the cross mapping, and then plot the
results:

output$direction <- paste(output$lib_column, "xmap to\n", output$target_column)
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library(ggplot2)
time_delay_ccm_fig <- ggplot(output, aes(x = tp, y = rho, color = direction)) +

geom_line() + theme_bw()

print(time_delay_ccm_fig)

As expected for this simple predator-prey system, we see evidence for causation in both directions
(cross map skill, rho, peaks for negative tp). Using cross map skill as a proxy for interaction strength
(under the assumption that all else is equal, which is reasonable for this laboratory experiment), it
looks like the causal interaction is equally strong in both directions. We further note that the
estimated time delay for the effect of predators (Didinium) on prey (Paramecium) is fast (  for
“paramecium xmap to didinium”) compared to the effect of prey on predators (  for “didinium
xmap to paramecium”). This is consistent with the ecological interpretation that changes in predator
abundance affect prey abundance quickly, while there is a lag in the response of predator abundance
to changes in prey abundance.

Real Data Examples

Community Productivity and Invasibility

The data presented here are part of Experiment 120, the “Big Biodiversity” experiment at Cedar
Creek LTER (Tilman et al. 1997). The full data and metadata are available at
https://www.cedarcreek.umn.edu/research/data. This experiment is the longest running randomized
test for the effects of plant diversity on ecosystem functions. Plots were established in 1994 and
planted with 1, 2, 4, 8, or 16 species, and are sampled annually for above-ground plant biomass. The
most well-known result from the experiment is that the number of planted species has strong

tp = −1
tp = −4
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positive effects on above-ground biomass production. However, because the diversity treatments are
weeded annually to prevent non-planted species from establishing (i.e. species richness is not
allowed to vary dynamically), this well-known result does not lend itself to EDM.

Instead, we focus on a different set of published results from the experiment: interactions between
primary productivity, soil nitrate, and invasion rates. Increased biomass is associated with decreases
in soil nitrate levels and decreases in invasion success (Fargione and Tilman 2005). A posited
mechanism is that increased primary productivity leads to decreased soil nitrate, which in turn
reduces resources available to invaders. In order to increase sample size, we combine data from the
treatments with 16 planted species, which have almost identical planted compositions and follow
similar dynamics. We then analyze these different plots together as spatial replicates, similar to
(Hsieh et al. 2008, Clark et al. 2015).

data(e120_invnit16) 
str(e120_invnit16)

## 'data.frame':    238 obs. of  7 variables:
##  $ Exp : int  120 120 120 120 120 120 120 120 120 120 ...
##  $ Year : int  1996 1997 1998 1999 2001 2002 1996 1997 1998 1999 ...
##  $ Plot : int  9 9 9 9 9 9 27 27 27 27 ...
##  $ AbvBioAnnProd   : num  182 266 259 324 282 ...
##  $ noh020tot       : num  0.1217 0.0643 0.0948 0.0579 0.0294 ...
##  $ invrichness     : int  14 10 12 9 3 4 14 7 6 6 ...
##  $ SummerPrecip.mm.: num  448 446 356 488 357 ...

The columns in the dataset e120_invnit16 are as follows: Exp indicates the experiment code, Year
shows the sampling time; Plot describes plot identity; AbvBioAnnProd shows annual above-ground
productivity of planted species, in g/m ; noh020tot shows soil nitrate levels in the top 20 cm of soil,
measured in g/kg soil; invrichness shows species richness of unplanted species in the plot
(i.e. weeds); SummerPrecip.mm. shows precipitation annual from May to August measured in mm.

Preparing the Data

The data come from multiple plots, meaning that we first need to construct a single composite time
series. We begin by normalizing each time series to mean zero and standard deviation one. This
facilitates mixing multiple spatial replicates in a single analysis in EDM.

normalize <- function(x, ...) {(x - mean(x, ...))/sd(x, ...)}

# separate time column from data
vars <- c("AbvBioAnnProd", "noh020tot", "invrichness", "SummerPrecip.mm.")
composite_ts <- e120_invnit16[, vars]

# normalize each time series within a plot
data_by_plot <- split(composite_ts, e120_invnit16$Plot)
normalized_data <- lapply(data_by_plot, function(df) sapply(df, normalize))
composite_ts <- cbind(Year = e120_invnit16$Year,

2

μ
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data.frame(do.call(rbind, normalized_data)))

To prevent lagged vectors from being constructed that span separate plots, we need to create an
appropriate index variable to identify different segments. We can then assess the predictive skill of
EDM by using cross-validation and selecting random subsets of plots to use for the library and
prediction sets.

segments_end <- cumsum(sapply(data_by_plot, NROW))
segments_begin <- c(1, segments_end[-length(segments_end)] + 1)
segments <- cbind(segments_begin, segments_end)

# Choose random segments for prediction
set.seed(2312)
rndlib <- sample(1:NROW(segments), floor(NROW(segments) * 0.75))
composite_lib <- segments[rndlib, ]
composite_pred <- segments[-rndlib, ]

Because precipitation is measured for the site and is identical across all the plots, we want to avoid
duplication of the data. However, this means that the time series for precipitation is just 7 points,
which is too short to characterize any dynamics. Thus, we exclude it from the following simplex and
S-map analysis.

precip_ts <- unique(e120_invnit16[, c("Year", "SummerPrecip.mm.")])
precip_ts <- precip_ts[order(precip_ts$Year), ]
NROW(precip_ts)

## [1] 7

Quantifying predictability and nonlinearity

We first use the rEDM function, simplex() to identify the best embedding dimension for biomass,
nitrate, and invader richness.

vars <- c("AbvBioAnnProd", "noh020tot", "invrichness")
simplex_out <- lapply(vars, 

function(var) {
simplex(composite_ts[, c("Year", var)], E = 2:4, 

lib = composite_lib, pred = composite_pred)
})

names(simplex_out) <- vars

par(mfrow = c(2, 2))
for (var in names(simplex_out))
{

plot(simplex_out[[var]]$E, simplex_out[[var]]$rho, type = "l", 
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xlab = "Embedding Dimension (E)", ylab = "Forecast Skill (rho)", 
main = var)

}

best_E <- sapply(simplex_out, function(df) {df$E[which.max(df$rho)]})
best_E

## AbvBioAnnProd     noh020tot   invrichness 
##             4 3             3

Note that for two variables (aboveground biomass and invader richness), the best embedding
dimension is also the maximum that we test. These results suggest that the dynamics could be high-
dimensional, or that our results might be biased because of the limited time series length for each
segment. Collecting longer time series would be beneficial to enable better predictions and more
clearly distinguish between these possibilities.

Using these values for the embedding dimension, we can identify nonlinearity using the s_map()
function:

smap_out <- lapply(vars, 
function(var) {

s_map(composite_ts[, c("Year", var)], E = best_E[var], 
lib = composite_lib, pred = composite_pred)

})
names(smap_out) <- names(simplex_out)

par(mfrow = c(2, 2))
for (var in names(smap_out))
{
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plot(smap_out[[var]]$theta, smap_out[[var]]$rho, type = "l", 
xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)", 
main = var)

}

Note that aboveground biomass and invader richness suggest nonlinear dynamics in the data
(because of the initial increase in forecast skill for theta > 0, followed by a gradual drop-off).
However, the monotonic decrease in rho for theta > 0 for noh020tot suggests that soil nitrate levels
may have only linear dynamics.

Multivariate Models

Our next step is to produce forecast models. Recall that biomass was best predicted using the
maximum number of available time lags. As such, it could be that adding additional information from
other variables will improve predictions. Specifically, we compare models that predict aboveground
biomass using lags of itself vs. models that also include precipitation as a predictor.
We can do this using the block_lnlp() function, but first we need to construct lags for each variable.
Here, we use the make_block() function, which automatically adds lags of the variables. However,
we also need to be careful, since the raw data combines observations from multiple plots. By
including the lib argument, we can indicate which parts of the time series correspond to different
segments, so that lags indicate unknown values correctly.

block_data <- make_block(composite_ts[, 2:5], t = composite_ts$Year, 
max_lag = 4, lib = segments)

str(block_data)

## 'data.frame':    238 obs. of  17 variables:
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##  $ time : num  1996 1997 1998 1999 2001 ...
##  $ AbvBioAnnProd     : num  -1.4518 -0.2581 -0.3576 0.5574 -0.0345 ...
##  $ AbvBioAnnProd_1   : num  NA -1.452 -0.258 -0.358 0.557 ...
##  $ AbvBioAnnProd_2   : num  NA NA -1.452 -0.258 -0.358 ...
##  $ AbvBioAnnProd_3   : num  NA NA NA -1.452 -0.258 ...
##  $ noh020tot : num  1.47099 -0.00364 0.77992 -0.16806 -0.90152 ...
##  $ noh020tot_1       : num  NA 1.47099 -0.00364 0.77992 -0.16806 ...
##  $ noh020tot_2       : num  NA NA 1.47099 -0.00364 0.77992 ...
##  $ noh020tot_3       : num  NA NA NA 1.47099 -0.00364 ...
##  $ invrichness       : num  1.2214 0.3054 0.7634 0.0763 -1.2977 ...
##  $ invrichness_1     : num  NA 1.2214 0.3054 0.7634 0.0763 ...
##  $ invrichness_2     : num  NA NA 1.221 0.305 0.763 ...
##  $ invrichness_3     : num  NA NA NA 1.221 0.305 ...
##  $ SummerPrecip.mm.  : num  0.299 0.265 -1.238 0.973 -1.225 ...
##  $ SummerPrecip.mm._1: num  NA 0.299 0.265 -1.238 0.973 ...
##  $ SummerPrecip.mm._2: num  NA NA 0.299 0.265 -1.238 ...
##  $ SummerPrecip.mm._3: num  NA NA NA 0.299 0.265 ...

Next, we run the models, being sure to set up predictor variables (the columns argument) and the
variable to be predicted (the target_column argument). By default, predictions are always for one
step ahead. Note that one model includes only lagged observations of biomass, and the other model
also includes precipitation:

AB_columns <- c("AbvBioAnnProd", "AbvBioAnnProd_1", "AbvBioAnnProd_2", 
"AbvBioAnnProd_3")
AB_output <- block_lnlp(block_data, lib = composite_lib, pred = composite_pred, 

columns = AB_columns, target_column = "AbvBioAnnProd", 
stats_only = FALSE)

Precip_columns <- c(AB_columns, "SummerPrecip.mm.")
Precip_output <- block_lnlp(block_data, lib = composite_lib, pred = composite_pred, 

columns = Precip_columns, target_column =
"AbvBioAnnProd", 

stats_only = FALSE)

We examine model performance by comparing predicted vs. observed values:

observed_AB <- AB_output$model_output[[1]]$obs
predicted_AB <- AB_output$model_output[[1]]$pred

observed_Precip <- Precip_output$model_output[[1]]$obs
predicted_Precip <- Precip_output$model_output[[1]]$pred

plot_range <- range(c(observed_AB, predicted_AB), na.rm = TRUE)
plot(observed_AB, predicted_AB, xlim = plot_range, ylim = plot_range, 

xlab = "Observed", ylab = "Predicted")
abline(a = 0, b = 1, lty = 2, col = "darkgrey", lwd = 2)
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abline(lm(predicted_AB ~ observed_AB), col = "black", lty = 3, lwd = 2)

points(observed_Precip, predicted_Precip, pch = 2, col = "red")
abline(lm(predicted_Precip ~ observed_Precip), col = "red", lty = 3, lwd = 2)

legend("bottom", legend = c(paste("(biomass alone) rho =", round(AB_output$rho, 2)), 
paste("(biomass and prec.) rho =", 

round(Precip_output$rho, 2))), 
lty = 3, lwd = 2, col = c("black", "red"), box.col = NA, xpd = TRUE)

There is a marked improvement in forecast skill when including precipitation as a predictor, and the
relationship between predicted and observed values falls closer to the 1:1 line (compare the red
dashed line to the black dashed line). However, there is still a great deal of variability in biomass that
is unexplained ( ).

Convergent Cross Mapping

Finally, we can apply CCM to test for pairwise causal links among variables. For each individual test,
we use the embedding dimension corresponding to the best embedding dimension of the variable
used for reconstruction (i.e. the putative affected process). Recall we are primarily interested in
testing whether the biomass of planted species or soil nitrogen concentration affects the dynamics
of invading species.

First, we examine the relationship between invader richness and soil nitrate level:

lib_sizes <- c(seq(5, 50, by = 5), seq(55, 230, by = 20))

= 0.16R2
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inv_xmap_no <- ccm(composite_ts, lib = segments, pred = segments, 
lib_column = "invrichness", target_column = "noh020tot", 
E = best_E["invrichness"], lib_sizes = lib_sizes, 
silent = TRUE)

no_xmap_inv <- ccm(composite_ts, lib = segments, pred = segments, 
lib_column = "noh020tot", target_column = "invrichness", 
E = best_E["noh020tot"], lib_sizes = lib_sizes, 
silent = TRUE)

inv_xmap_no_means <- ccm_means(inv_xmap_no)
no_xmap_inv_means <- ccm_means(no_xmap_inv)

plot(inv_xmap_no_means$lib_size, pmax(0, inv_xmap_no_means$rho), type = "l", 
xlab = "Library Size", ylab = "Cross Map Skill (rho)", 
col = "red", ylim = c(0, 0.15), lwd = 2)

lines(no_xmap_inv_means$lib_size, pmax(0, no_xmap_inv_means$rho), 
col = "blue", lwd = 2)

legend(x = "topleft", col = c("red", "blue"), lwd = 2, 
legend = c("Inv. Richness xmap Nitrate", "Nitrate xmap Inv. Richness"), 
inset = 0.02, bty = "n", cex = 0.8)

abline(h = 0, lty = 3)

And then repeat for the relationship between invader richness and biological productivity:

inv_xmap_abv <- ccm(composite_ts, lib = segments, pred = segments, 
lib_column = "invrichness", target_column = "AbvBioAnnProd", 
E = best_E["invrichness"], lib_sizes = lib_sizes, 
silent = TRUE)
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abv_xmap_inv <- ccm(composite_ts, lib = segments, pred = segments, 
lib_column = "AbvBioAnnProd", target_column = "invrichness", 
E = best_E["AbvBioAnnProd"], lib_sizes = lib_sizes, 
silent = TRUE)

inv_xmap_abv_means <- ccm_means(inv_xmap_abv)
abv_xmap_inv_means <- ccm_means(abv_xmap_inv)

plot(inv_xmap_abv_means$lib_size, pmax(0, inv_xmap_abv_means$rho), type = "l", 
xlab = "Library Size", ylab = "Cross Map Skill (rho)", 
col = "red", ylim = c(0, 0.4), lwd = 2)

lines(abv_xmap_inv_means$lib_size, pmax(0, abv_xmap_inv_means$rho),
col = "blue", lwd = 2)

legend(x = "topleft", col = c("red", "blue"), lwd = 2, 
legend = c("Inv. Richness xmap Total Biomass", 

"Total Biomass xmap Inv. Richness"), 
inset = 0.02, bty = "n", cex = 0.8)

abline(h = 0, lty = 3)

The first figure suggests that plot-level soil nitrate is causally forced by invader richness, while the
reverse is not true. This is plausible, as the planted compositions are quite similar among
experimental replicates, and fluctuations in soil nitrate may be largely indicative of minor variations
due to transient populations of invading species before they can be weeded out. Thus, the effect of
nitrate on invader richness may be minimal, if at all. However, recall from the S-map analysis that soil
nitrate dynamics also appear linear. As such, a more detailed look into the relationship between
nitrate and invader richness may be warranted, that also considers methods more appropriate for
linear systems, such as Granger Causality (Granger 1969).

The second figure indicates bidirectional forcing between invader richness and total biomass.
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Although we would normally expect  to continue to increase with library length, the decrease here is
not necessarily problematic. For the CCM analysis, we use a composite time series constructed from
multiple plots with no more than 7 time points each. Consequently, the larger library sizes represent
samples that contain multiple plots. The small decrease in  at larger library sizes may therefore
indicate heterogeneity in the causal effects among plots.

Overall, these results suggest that invader richness is influenced by the biomass of the planted
community, with a somewhat weaker effect in the opposite direction, but that nitrate is influenced by
invader dynamics without feedbacks. In contrast to existing hypotheses, this result indicates that in
plots planted with 16 species, the planted community biomass itself directly inhibits invasion
(e.g. through light limitation), rather than through an indirect effect on soil nitrate, as nitrate does not
appear to affect invader richness.

Apple-Blossom Thrips

Next, we re-examine the classic apple-blossom thrips (Thrips imaginis) time series from the Waite
Institute in Australia (Davidson and Andrewartha 1948a, 1948b). Seasonal outbreaks of Thrips were
observed to vary greatly in magnitude from year to year, with large outbreaks occurring
simultaneously across space. This led to the hypothesis that regional-scale climatic factors were
responsible for controlling the size of the seasonal outbreaks (what might now be called the Moran
effect (Moran 1953)).

data(thrips_block) 
str(thrips_block)

## 'data.frame':    81 obs. of  6 variables:
##  $ Year : int  1932 1932 1932 1932 1932 1932 1932 1932 1932 1933 ...
##  $ Month : int  4 5 6 7 8 9 10 11 12 1 ...
##  $ Thrips_imaginis: num  4.5 23.4 17.8 4.4 3.3 ...
##  $ maxT_degC      : num  19.2 19.1 14.3 13.8 14.6 17.6 17.4 23.3 24.3 24.8 ...
##  $ Rain_mm : num  140.1 53.7 134.1 89.9 92.2 ...
##  $ Season : num  -0.5 -0.866 -1 -0.866 -0.5 0 0.5 0.866 1 0.866 ...

The first data column, Thrips_imaginis, contains counts of Thrips imaginis obtained from the Global
Population Dynamics Database (GPDD) (NERC Centre for Population Biology 2010). maxT_degC is the
mean maximum daily temperature ( C) taken over each month and Rain_mm is the monthly rainfall
(mm), both from the Waite Institute. The final column, Season, is a simple annual sinusoid that peaks
in December (the Austral summer) and acts as an indicator of season.

First, we plot the data.

iso_date <- as.Date(paste0(thrips_block$Year, "-", thrips_block$Month, "-15"))
plot(iso_date, thrips_block$Thrips_imaginis, type = "l", col = "green", ylab =
"Thrips", xlab = "")
plot(iso_date, thrips_block$maxT_degC, type = "l", col = "red", ylab = "maxT (oC)", 
xlab = "")
plot(iso_date, thrips_block$Rain_mm, type = "l", col = "blue", ylab = "Rain (mm)", 
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xlab = "")
plot(iso_date, thrips_block$Season, type = "l", col = "magenta", ylab = "Season", 
xlab = "")
mtext("Year", side = 1, outer = TRUE, line = 1)

Note that all the time-series variables show marked seasonality.

Univariate Analysis

ts <- thrips_block$Thrips_imaginis
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lib <- c(1, length(ts))
pred <- c(1, length(ts))
simplex_output <- simplex(ts, lib, pred, silent = TRUE)

plot(simplex_output$E, simplex_output$rho, type = "l",
xlab = "Embedding Dimension (E)", ylab = "Forecast Skill (rho)")

While there is an initial peak in forecast skill at E = 4, the maximum  is at E = 8. This suggests that
4 and 8 are both practical embedding dimensions.

To test for nonlinearity, we again use S-maps, and test both E = 4 and E = 8 to verify that the result
is robust to the choice of embedding dimension.

smap_output <- list(s_map(ts, lib, pred, E = 4, silent = TRUE), 
s_map(ts, lib, pred, E = 8, silent = TRUE))

plot(smap_output[[1]]$theta, smap_output[[1]]$rho, type = "l", xlim = c(0, 4),
xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)")

plot(smap_output[[2]]$theta, smap_output[[2]]$rho, type = "l", xlim = c(0, 4),
xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)")

ρ
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The S-map results indicate nonlinearity in Thrips abundance, as the nonlinear models (theta > 0)
give substantially better predictions than the linear model (theta = 0). This suggests that, despite
the strong seasonal dynamics, the Thrips population might not simply track the environment. To look
more closely at the issue of seasonal drivers, we turn to convergent cross-mapping (CCM).

Seasonal Drivers

Recall that there is a two-part criterion for CCM to be a rigorous test of causality: (1) cross map
prediction skill is statistically significant when using the full time series as the library. (2) cross map
prediction skill demonstrates convergence – prediction skill increases as more of the time series is
used to reconstruct the attractor.

We first compute the cross map skill for each variable pair, using the full time series as the library. We
use E = 8 as it is the larger of the two values identified for Thrips abundance, and setting a fixed
value reduces the chance of overfitting when cross mapping between all variable pairs.

vars <- colnames(thrips_block[3:6])
n <- NROW(thrips_block)
ccm_rho_matrix <- matrix(NA, nrow = length(vars), ncol = length(vars),

dimnames = list(vars, vars))

for (ccm_from in vars)
{

for (ccm_to in vars[vars != ccm_from])
    {

out_temp <- ccm(thrips_block, E = 8,
lib_column = ccm_from, target_column = ccm_to,
lib_sizes = n, replace = FALSE, silent = TRUE)

ccm_rho_matrix[ccm_from, ccm_to] <- out_temp$rho
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    }
}

For comparison we compute the lagged cross-correlation, allowing lags of up to  months.

corr_matrix <- array(NA, dim = c(length(vars), length(vars)),
dimnames = list(vars, vars))

for (ccm_from in vars)
{

for (ccm_to in vars[vars != ccm_from])
    {

cf_temp <- ccf(thrips_block[, ccm_from], thrips_block[, ccm_to],
type = "correlation", lag.max = 6, plot = FALSE)$acf

corr_matrix[ccm_from, ccm_to] <- max(abs(cf_temp))
    }
}

head(ccm_rho_matrix)

## Thrips_imaginis maxT_degC Rain_mm Season
## Thrips_imaginis NA      0.92    0.51   0.96
## maxT_degC 0.60 NA    0.46   0.99
## Rain_mm 0.43      0.82      NA   0.78
## Season 0.56      0.96    0.39     NA

head(corr_matrix)

## Thrips_imaginis maxT_degC Rain_mm Season
## Thrips_imaginis NA      0.45    0.27   0.45
## maxT_degC 0.45 NA    0.59   0.95
## Rain_mm 0.27      0.59      NA   0.53
## Season 0.45      0.95    0.53     NA

Notice that the correlation between temperature and the seasonal indicator is extremely high. Thus, it
is not surprising that the cross map results are also strong for the relationship between the seasonal
variable and temperature, . This makes interpretation more complicated, because we have
to consider the possibility that cross mapping between temperature and Thrips abundance occurs
because of the shared seasonality. In other words, we may observe high cross mapping  between
two variables with a seasonal cycle, even if there is no underlying causal mechanism.

Convergent Cross-Mapping

With this in mind, we examine convergence in cross-map predictability, i.e. we compute rho as a

±6

ρ = 0.96

ρ
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function of library size L. We first look at Thrips and temperature.

thrips_xmap_maxT <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "Thrips_imaginis", target_column = "maxT_degC",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 
silent = TRUE)

maxT_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "maxT_degC", target_column = "Thrips_imaginis",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 

silent = TRUE)

ccm_out <- list(ccm_means(thrips_xmap_maxT), ccm_means(maxT_xmap_thrips))

The magnitude of the cross-correlation between Thrips and temperature is shown as a black dashed
line for comparison. We repeat the analysis for rainfall.

thrips_xmap_Rain <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "Thrips_imaginis", target_column = "Rain_mm",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 
silent = TRUE)

Rain_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "Rain_mm", target_column = "Thrips_imaginis",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 

silent = TRUE)

ccm_out <- list(ccm_means(thrips_xmap_Rain), ccm_means(Rain_xmap_thrips))
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Finally, we repeat for the deterministic seasonal cycle.

thrips_xmap_Season <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "Thrips_imaginis", target_column = "Season",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 
silent = TRUE)

Season_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE,
lib_column = "Season", target_column = "Thrips_imaginis",
lib_sizes = seq(10, 75, by = 5), num_samples = 300, 

silent = TRUE)

ccm_out <- list(ccm_means(thrips_xmap_Season), ccm_means(Season_xmap_thrips))
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The results show clear evidence of convergence for Thrips cross mapping the climatic variables, with
the cross map  at the maximum library size exceeding cross-correlation between the variables.

However, we are still left with the conundrum that temperature and to a lesser extent, rainfall, are
easily predicted from the seasonal cycle. In other words, the cross map results could be an artifact of
shared seasonal forcing. Indeed, note that the pattern of results is similar for cross mapping
betweenThrips and an artificial indicator of the season in the figure above.

We can distinguish a true causal effect from shared seasonal forcing and a true causal effect by
using a reasonable null model and testing if cross map skill obtained for maxT_degC and Rain_mm is
significantly beyond what would be explained by the null model that has the same degree of shared
seasonality. This hypothesis is readily tested using randomization tests based on surrogate data. The
idea here is to generate surrogate time series with the same degree of shared seasonality. Cross
mapping between the time series of actualThrips abundance and the surrogates for climatic time
series thus generates a null distribution for , against which the actual cross map  value can be
compared.

Seasonal Surrogate Test

We use the make_surrogate_data() function to generate surrogate time series. Note that we select
method = "seasonal" to produce surrogate time series with the same seasonal pattern, but with the
anomalies shuffled. The T_period argument specifies the period for the seasonal signal; we use the
12 as the data are monthly and the seasonality is annual.

Next, we compute cross mapping between the true abundance and these surrogate environmental
variables.

num_surr <- 1000
surr_maxT <- make_surrogate_data(thrips_block$maxT_degC, method = "seasonal",

T_period = 12, num_surr = num_surr)
surr_Rain <- make_surrogate_data(thrips_block$Rain_mm, method = "seasonal",

ρ

ρ ρ

39 of 44



T_period = 12, num_surr = num_surr)

ccm_rho_surr <- data.frame(maxT = numeric(num_surr), Rain = numeric(num_surr))

for (i in 1:num_surr) {
    ccm_rho_surr$maxT[i] <- ccm(cbind(thrips_block$Thrips_imaginis, surr_maxT[,i]),

E = 8, lib_column = 1, target_column = 2,
lib_sizes = NROW(thrips_block), replace = FALSE, 
silent = TRUE)$rho

    ccm_rho_surr$Rain[i] <- ccm(cbind(thrips_block$Thrips_imaginis, surr_Rain[,i]),
E = 8, lib_column = 1, target_column = 2,
lib_sizes = NROW(thrips_block), replace = FALSE, 
silent = TRUE)$rho

}

These cross map values form a null distribution. We can then estimate a  value for rejecting the null
hypothesis that cross map  is driven by the mutual seasonality.

(sum(ccm_rho_matrix['Thrips_imaginis', 'Rain_mm'] < ccm_rho_surr$Rain) + 1) /
(length(ccm_rho_surr$Rain) + 1)

## [1] 0.046

(sum(ccm_rho_matrix['Thrips_imaginis', 'maxT_degC'] < ccm_rho_surr$maxT) + 1) /
(length(ccm_rho_surr$maxT) + 1)

## [1] 0.16

In both cases, the cross map skill that we measure for the real time series is better than the median
expectation under the null hypothesis. For rainfall, the effect is significant based on the common
threshold of . Howover, cross mapping betweenThrips abundance and temperature is non-
significant, which could be due to the high correlation between maximum daily temperature and the
seasonal cycle. In other words, the actual time series for maxT_degC is already strongly periodic, and
it is difficult to detect a causal signal on top of the seasonal cycle. Using higher frequency data or
spatially resolved replicates (e.g. local temperature and local population counts) could help to
enhance detectability under such circumstances.

Technical Details

Data Input

The rEDM functions are designed to accept data in common R data formats, namely vectors,

p
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matrices, and data frames. Depending on the specific function, one or the other data type is
preferred. Please see the documentation associated with individual functions for more details.

Missing data can be recorded using either of the standard NA or NaN values. The program will
automatically ignore such missing values when appropriate. For instance, simplex projection will not
select nearest neighbors if any of the state vector coordinates is missing or if the corresponding
target value is missing.

Note that when there is no observed target value, it is still possible to make a prediction if the
corresponding predictors have no missing values. Thus, it is possible to use the software to forecast
from an observed state into an unobserved future. This can be done by substituting NA or NaN for
unknown future values. However, be aware that the performance metrics are computed in a way that
ignore suchs predictions (since there is nothing to compare against). Thus, the forecast statistics
(e.g., rho, MAE, RMSE) may be computed based on fewer predictions than those actually made by the
software.

General Parameters

Many of the functions in rEDM are designed around the same prediction engine, and so share many
of the same parameters. Please see the documentation associated with individual functions to verify
which parameters are applicable as well as the default values (which can change from function to
function)

lib
a 2-column matrix (or 2-element vector) where each row specifies the portions of the time
series to use for attractor reconstruction (i.e., which reconstructed states can be selected as
nearest neighbors)
e.g., (1, n) specifies that the first n rows (from 1 to n) of data are a contiguous time series
block, each point of which can be used to construct state vectors
by default, lib uses the entire input as a single contiguous segment
pred
(same format as lib, but specifes the portions of the time series to make predictions for)
norm_type
"L2 norm" (default) or "L1 norm": specifies which distance metric to use when doing
calculations
"L2 norm" is the standard Euclidean distance, where the distance between a vector

 and  is computed as
.

"L1 norm" is the Manhattan norm (also known as taxicab distance), where the distance
between a vector  and  is computed as

.
"P norm" is the generalization of the L1 and L2 norms which adds a parameter  as the
exponent: the distance between a vector  and  is
computed as .
P
the exponent for the “P norm” (and otherwise ignored)
E
the embedding dimension to use for time delay embedding
tau

x = ( , , … , )x1 x2 xn y = ( , , … , )y1 y2 yn
( − + ( − + ⋯ + ( −x1 y1)2 x2 y2)2 xn yn)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

x = ( , , … , )x1 x2 xn y = ( , , … , )y1 y2 yn
| − | + | − | + ⋯ + | − |x1 y1 x2 y2 xn yn

P
x = ( , , … , )x1 x2 xn y = ( , , … , )y1 y2 yn

(( − + ( − + ⋯ + ( − )x1 y1)P x2 y2)P xn yn)P 1/P
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the lag to use for time delay embedding
by default, tau is set to 1
tp
the prediction horizon (how many steps ahead to make forecasts)
negative values will also work
by default, tp is set to 1 for forecasting functions, and 0 for cross mapping
num_neighbors
the number of neighbors to use
"e+1", "E+1", "e + 1", and "E + 1" will all peg this parameter to be E+1 for each run
values less than 1 will use all possible neighbors
theta
the nonlinear tuning parameter (for use with S-maps) that adjusts how distance is factored into
computation of the local linear map (0 corresponds to a globally linear map, while values
greater than 0 correspond to nonlinear models where the local linear map changes as a
function of state-space)
stats_only
TRUE (default) or FALSE: specifies whether the output should just contain statistics of the
predictions, or also contain all the predictions that were made
the predictions are included as a list-column in the output if enabled
exclusion_radius
exclusion_radius sets the threshold whereby all vectors with time indices too close to the
predictee will be excluded from being considered nearest neighbors
e.g., 1 means that vectors must have an associated time index more than 1 away from
potential nearest neighbors
by default, exclusion_radius is set to NULL (turning this filtering off)
epsilon
epsilon sets the threshold whereby all vectors with distance too far away from the predictee
will be excluded from being considered nearest neighbors
e.g., 2 means that vectors must have be within a distance of 2 from potential nearest
neighbors
by default, epsilon is set to NULL (turning this filtering off)
silent
TRUE or FALSE (default): specifies whether to suppress warning messages from being printed to
the R console
save_smap_coefficients
TRUE or FALSE (default): specifies whether to include a data frame of S-map coefficients with
the output
(note that setting this to TRUE forces the full output as if stats_only = FALSE)
the s-map coefficeints are included as a list-column in the output if enabled

The Gaussian Process based functions, (tde_gp() and block_gp()), have a few additional
parameters specific to the GP methods:

phi
the length-scale parameter (how wiggly the function is in state-space)
v_e
the noise-variance parameter (the variance of noise on top of the outputs of the GP)
eta
the signal-variance parameter (the variance of the deterministic skeleton of the GP)
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fit_params
TRUE (default) or FALSE: specifies whether to fit the above parameters over the lib portion of
the data, or use the parameters as given
save_covariance_matrix
TRUE or FALSE (default): specifies whether to include a matrix for the covariance between
predictions
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