Understanding Shipboard Oil/Water Emulsions Using Macro- and Micro-scale Flows

WP18-1031

Cari Dutcher
University of Minnesota

December 11, 2020
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
</table>

4. TITLE AND SUBTITLE

Understanding Shipboard Oil/Water Emulsions Using Macro- and Micro-scale Flows

5. AUTHOR(S)

Cari Dutcher

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Minnesota, Twin Cities
111 Church St. SE
111 Mechanical Engineering
Minneapolis, MN 55455

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Strategic Environmental Research and Development Program (SERDP)
4800 Mark Center Drive, Suite 16F16
Alexandria, VA 22350-3605

8. PERFORMING ORGANIZATION REPORT NUMBER

WP18-1031

10. SPONSOR/MONITOR'S ACRONYM(S)

SERDP

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

WP18-1031

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project directly addresses the objectives of the statement of Need (SON), including the "fundamental knowledge base" of the "generation, stabilization and worsening" of shipboard oil/water emulsion. This work explores the factors including "shear/mixing, salinity, interfacial tension, and water/oil/surfactant ratios" that influences the emulsion dynamics at both micro- and macro- scale.

15. SUBJECT TERMS

Shipboard Oil/Water Emulsions, Macro- and Micro-scale Flows

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASS</td>
<td>UNCLASS</td>
<td>UNCLASS</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

UNCLASS

18. NUMBER OF PAGES

34

19. NAME OF RESPONSIBLE PERSON

Cari Dutcher

19b. TELEPHONE NUMBER (Include area code)

612-624-0428

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18
Project Team

- Cari Dutcher (PI, University of Minnesota)
- Yun Chen (Postdoc, University of Minnesota)
- Thomas Neumiller (Graduate student, University of Minnesota)
- Vishal Panwar (Graduate student, University of Minnesota)
Background

- This project was initiated in 2018
- This project directly addresses the objectives of the statement of Need (SON), including the "fundamental knowledge base" of the "generation, stabilization and worsening" of shipboard oil/water emulsion.
- This work explores the factors including "shear/mixing, salinity, interfacial tension, and water/oil/surfactant ratios" that influences the emulsion dynamics at both micro- and macro-scale.
Technical Objective

• Provide an understanding of the generation, stabilization, and worsening of shipboard oil/water emulsions in the presence of complex hydrodynamic fields with varied chemical conditions.

• Explore emulsion governing factors, including shear/mixing, interfacial tension, water/oil/surfactant ratios, salinity, and size distribution, in complementary macro- and micro-scale tasks.

Shipboard water must be < 15ppm oil to be discharged overboard

Bilge water is a complex emulsion with oils, fuels, solids, soaps, and solvents
Task 1: Microscale Droplet using Microfluidics

- Single Droplet Measurements
 - Objective 1 – Device Treatment
- Single Droplet Measurements
 - Objective 2 – Dynamic IFT
 - Objective 3 – Characterization of Surfactants
- Droplet-Droplet Measurements
 - Objective 4 – Stokes Trap
- Follow-on WP19-1407

Task 2: Macroscale Taylor-Couette Flows

- Bulk Emulsion Stabilization Measurement
 - Objective 1 – Static Stability Test
 - Objective 2 – Steady-shear Viscosity
- Taylor-Couette Cell Emulsion Stabilization Test
 - Objective 3 – Pre-prepared
 - Objective 4 – In Situ
Results-Task 1
Objective 1 Surface Treatment of Microfluidic Devices

Method 1: Device is treated in 20 W plasma for 15 min prior to use.

Method 2: Device is treated in 100 W plasma, with high continuous oxygen flow, for 10 min, and is stored in DI water under vacuum for 7 days prior to use.

Key Result
• Successful generation of microscale oil-in-water droplets for IFT measurements.
Results-Task 1
Objective 2 Dynamic IFT of Microscale Droplet using Microfluidics

Motivation
- Micrometer sized droplets are particularly challenging to separate in bilgewater.
- Interfacial Tension (IFT) is directly related to how easy it is to coalesce/cream and separate oil from water.

Chen & Dutcher, Soft Matter (2020)
Results-Task 1

Objective 2 Dynamic IFT of Microscale Droplet using Microfluidics

\[D(x) = \frac{d_{\text{major}}(x) - d_{\text{minor}}(x)}{d_{\text{major}}(x) + d_{\text{minor}}(x)} \]

\[\alpha = \frac{(2\hat{\eta}+3)(19\hat{\eta}+16)}{40(\hat{\eta}+1)} \quad \hat{\eta} = \frac{\eta_d}{\eta_c} \]

\(a_0 \): equilibrium droplet radius
\(u \): velocity of droplet
\(\dot{\varepsilon} \): extension rate \((\dot{\varepsilon} = du/dx)\)

\(\alpha \eta_c \left(\frac{5}{2\hat{\eta}+3} \dot{\varepsilon}(x) - u(x) \frac{\partial D(x)}{\partial x} \right) = \frac{D(x)}{a_0} \)

\(\gamma \): interfacial tension

G. I. Taylor 1934, Hudson et. al 2005
Task 1 Results

Objective 2 Completed dynamic IFT experiments

Key Results:

- Decay in IFT of microscale droplets much faster than macroscale droplets (i.e., microscale droplets are more stable)
- Phase does not matter for millimeter drops. Large drops area always diffusion-limited (~15 s for both phases).
- Phase does matter for microscale droplets. Both diffusion and adsorption timescales important (0.065 s for outer phase; 0.38 s for inner phase)

Chen & Dutcher, Soft Matter (2020)
Results-Task 1
Objective 3 Characterization of Surfactant

Max surfactant surface coverage, \(\Gamma_\infty \)
(Close to CMC)

\[
\Gamma_\infty = -\frac{1}{nRT} \left(\frac{\partial \gamma}{\partial \ln C} \right)_T
\]
(Gibbs Equation)

Equilibrium constant, \(\kappa \)

\[
\frac{\Gamma_{eq}}{\Gamma_\infty} = \frac{\kappa C}{1 + \kappa C} \gamma = \gamma_0 + nRT \Gamma_\infty \ln \left(1 + \frac{\kappa C}{\kappa C + 1} \right)
\]
(Langmuir Isotherm)

\[
\frac{\Gamma_{eq}}{\Gamma_\infty} = \frac{\kappa C}{e^{K\Gamma_{eq}/\Gamma_\infty} + \kappa C}
\]
(Frumkin Isotherm, for surfactant interaction)

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>Detergent Mix</th>
<th>AES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_w) (g/mol)</td>
<td>300</td>
<td>420</td>
</tr>
<tr>
<td>(\Gamma_\infty) (mol/m²)</td>
<td>1.52×10⁻⁶</td>
<td>2.53×10⁻⁶</td>
</tr>
<tr>
<td>(\kappa) (m³/mol)</td>
<td>380</td>
<td>904</td>
</tr>
<tr>
<td>CMC (mol/m³)</td>
<td>(50 ppm)</td>
<td>(25 ppm)</td>
</tr>
<tr>
<td>(D_{C<CMC}) (m²/s)</td>
<td>3.2×10⁻¹¹</td>
<td>1.9×10⁻¹⁰</td>
</tr>
</tbody>
</table>

Surfactant Diffusivity, \(D \)

\[
\gamma - \gamma_{eq} \approx \frac{RT\Gamma_{eq}^2}{C} \sqrt{\frac{\pi}{4Dt}}
\]

Langmuir constant \(\kappa \): Affinity for the interface

\(\kappa \) \(10^0 \) \(10^1 \) \(10^2 \) \(10^3 \) \(10^4 \)

CTAB, STS \(C_{10} \)DMPO, Decanol \(C_{10} \)EO₄ TritonX-100, TritonX-165

Chen & Dutcher, Soft Matter (2020)
Results-Task 1
Objective 3 Characterization of Surfactant

Adsorption rate \((k_{\text{ads}}) \) and desorption rate \((k_{\text{des}}) \) from Langmuir’s equation

\[
\frac{\Gamma(t)}{\Gamma_\infty} = \frac{\Gamma_{\text{eq}}}{\Gamma_\infty} \left(1 - \exp\left(-\frac{t}{\tau}\right)\right)
\]

\[
\tau = \frac{1}{k_{\text{des}}} \frac{1}{1 + \kappa C}
\]

\[
\kappa = \frac{k_{\text{ads}}}{k_{\text{des}}}
\]

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>Detergent Mix</th>
<th>AES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (mol/m³)</td>
<td>0.0887 (25 ppm)</td>
<td>0.354 (100 ppm)</td>
</tr>
<tr>
<td>(k_{\text{ads}}) (m³/mol · s)</td>
<td>Inner</td>
<td>55</td>
</tr>
<tr>
<td>(k_{\text{des}}) (1/s)</td>
<td>Outer</td>
<td>0.14</td>
</tr>
<tr>
<td>(k_{\text{ads}}) (m³/mol · s)</td>
<td>inner</td>
<td>299</td>
</tr>
<tr>
<td>(k_{\text{des}}) (1/s)</td>
<td>outer</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Key Results

- Phase matters: \(k_{\text{ads}} \) is smaller when the surfactant is inside the drop, suggesting larger energy barrier due to curvature.
- CMC matters: \(k_{\text{ads}} \) is larger for detergent mix when C < CMC.

Chen & Dutcher, Soft Matter (2020)
Task 1 Results

Objective 3 Characterization of the surfactant cleaners

<table>
<thead>
<tr>
<th>Surfactant</th>
<th>M_w (g/mol)</th>
<th>CMC (ppm)</th>
<th>Γ_{∞} (mol/m²)</th>
<th>κ (m³/mol)</th>
<th>K</th>
<th>D (m²/s)</th>
<th>k_{ads} (m³/mol·s)</th>
<th>k_{des} (s⁻¹)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detergent Mix</td>
<td>300</td>
<td>50</td>
<td>1.52×10^{-6}</td>
<td>380</td>
<td>-</td>
<td>3.19×10^{-11}</td>
<td>299.1</td>
<td>0.78</td>
<td>Anionic</td>
</tr>
<tr>
<td>AES</td>
<td>420</td>
<td>25</td>
<td>2.53×10^{-6}</td>
<td>904</td>
<td>-</td>
<td>1.9×10^{-10}</td>
<td>220.7</td>
<td>0.24</td>
<td>Anionic</td>
</tr>
<tr>
<td>TritonX-100</td>
<td>625</td>
<td>350</td>
<td>1.64×10^{-6}</td>
<td>1.41×10^5</td>
<td>1.152</td>
<td>6.28×10^{-11}</td>
<td>42.548</td>
<td>2.3×10^{-3}</td>
<td>Non-ionic</td>
</tr>
<tr>
<td>SDS</td>
<td>288</td>
<td>4500</td>
<td>2.81×10^{-6}</td>
<td>104.98</td>
<td>3.618</td>
<td>2.45×10^{-11}</td>
<td>53.8</td>
<td>2.7</td>
<td>Anionic</td>
</tr>
<tr>
<td>Type 1</td>
<td>617</td>
<td>110</td>
<td>1.88×10^{-6}</td>
<td>1.19×10^5</td>
<td>0.3947</td>
<td>1.04×10^{-10}</td>
<td>31.83</td>
<td></td>
<td>Non-ionic</td>
</tr>
<tr>
<td>Solid Surge</td>
<td>214</td>
<td>420</td>
<td>1.04×10^{-6}</td>
<td>4.04×10^6</td>
<td>0.3587</td>
<td>3.40×10^{-12}</td>
<td>5.59</td>
<td>2.68</td>
<td>Non-ionic</td>
</tr>
<tr>
<td>PRC</td>
<td>293</td>
<td>7300</td>
<td>1.005×10^{-6}</td>
<td>2.10×10^6</td>
<td>1.341</td>
<td>9.50×10^{-14}</td>
<td>1.73</td>
<td>2.80</td>
<td>Non-ionic + Anionic</td>
</tr>
</tbody>
</table>

Commercial Surfactants

- **Type 1 Detergent** (MILSPEC: MIL-D-1691)
- **Solid Surge Plus** (Ecolab # 611905)
- **PRC Deck Cleaner** (Werth Sanitary Supply # 1100868)
Task 1 Results

Objective 3 Surfactant characterization in cleaner products

Key Results

- Microfluidic and pendant drop measurements for each systems at varied concentration (CMC and surface coverage), characterized diffusivity, surface affinity and adsorption rate.
Results-Task 1
Objective 4 Droplet Coalescence and Film Drainage Time

Advantages
• Micrometer sized droplets can be trapped and manipulated to directly visualize destabilization processes such as coalescence and creaming.
• Stokes Trap uses optimization algorithm to automate trapping to desired position (based on Shenoy et al. PNAS 2016).
Results-Task 1
Objective 4 Droplet Coalescence and Film Drainage Time

Key Result
• Coalescence readily observed for water in oil systems, applicable for dry bilge systems.
Results-Task 1
Objective 4 Droplet Coalescence and Film Drainage Time

Key Results
• Both cases for distilled water in LMO with 10 ppm and 100 ppm detergent mix in water show immediate coalescence when the droplets are in contact with each other.
• Film drainage time of droplet coalescence for distilled water in LMO with 50 ppm and 100 ppm commercial surfactant Type 1 in water are 1.48 s and 0.88 s, respectively.
Results-Task 1
Controlled coalescence and creaming

Key Results
- Coalescence of monodispersed droplets difficult for (o/w) systems.
- Creaming at interface more likely for wet bilge systems.

Chen, Narayan, Dutcher, Langmuir (2020)
Results - Task 2

Objective 1 Static Emulsion Stability Test

Stability tests: Phase separation; Turbidity change

Method

- Observe phase separation and decrease in turbidity with time/shear.
- Characterize bulk stability with changes in turbidity and size distributions.

\[T = A \exp\left(-\frac{t}{\lambda}\right) + T_\infty \]
Results-Task 2
Objective 1 Static Emulsion Stability Test

Key Results:
• Performed measurements with varied compositions of SERDP and mineral oils, AES and detergent mixes, and distilled (DI) and salt water.
• Found salt rapidly destabilized the systems, especially with mineral oil.
Results-Task 2
Objective 1 Static Emulsion Stability: varied oil content

Key Results
• Non-monotonic relationship for both: increase, followed by decrease, in stability.
• “Turnover” point when collision and/or surface-coverage effects dominate.
• “Turnover” point shifts to higher surfactant concentration for mineral oil, indicating surfactant surface coverage plays an especially important role for simple systems.
Results-Task 2
Objective 1 Static Emulsion Stability: varied surfactant content

Key Results
- Non-monotonic for the SERDP oil mix, but not for the simple mineral oil systems.
- SERDP oil mix forms spontaneous microemulsions, resulting in oil drops too small to be seen with turbidity measures; collaborating with Purdue University ongoing.
Results-Task 2
Objective 2 Steady-shear Emulsion Viscosity Measurement

Key Results
- Determined viscosity of the emulsions.
- Regions of constant viscosity are observed for low to moderate shear rates.
- The appearance of shear thickening at high shear rates is due to flow instabilities.
Results-Task 2
Objective 2 Steady-shear Emulsion Viscosity Measurement

Key Results
- Ran emulsions with SERDP oil mix (from 0.1% to 20%) and mineral oil, with both distilled and salt water
- Shear effect strong at 10% oil, weak below 5%.
- Larger droplets appear to coalesce/cream into oil phase, leaving higher % of small droplets in the system.
Results-Task 2
Objective 3 Pre-prepared Emulsion Stability in TC Flows

Advantages:
- Well characterized flows
- Tunable flow kinematics
- Direct visualization

Wilkinson & Dutcher, Rev. Sci. Instruments, 2017
Metaxas, Wilkinson, and Dutcher, Soft Matter, 2018
Wilkinson and Dutcher, JFM, 2018
Results-Task 2
Objective 3 Pre-prepared Emulsion Stability in TC Flows

Key Results

- Taylor-Couette flows destabilized the low-oil emulsions, shown by the decrease in droplets of size less than 10 micrometers and increase in droplets of size on the order of 100 micrometers.
- In contrast, traditional rheology did not destabilize the low-oil emulsions.
Results-Task 2
Objective 3 Pre-prepared Emulsion Stability in TC Flows

Key Results
- Ran SERDP oil mix and mineral oil, DI and salt water
- Destabilization at turbulent flow states, no observed with rotational rheometry up to 2000 1/s.
- Increase in larger droplets, and decrease in smaller drops.

Both systems:
0.1% SERDP oil mix;
100 ppm detergent mix
Results-Task 2
Objective 4 In-situ Emulsion Stability in TC Flows

Oil is injected into the water-surfactant solution in the TC cell though the injection ports.

The flow rate of the injection ports and time required for injection is determined by calibration curve.

Wilkinson & Dutcher, Rev. Sci. Instruments, 2017; Metaxas, Wilkinson, and Dutcher, Soft Matter, 2018; Wilkinson and Dutcher, J Fluid Mechanics, 2018
Results-Task 2
Objective 4 In-situ Emulsion Stability in TC Flows

Key Results

- Peak formed at the smaller droplet size in the solution and reduces with increasing mixing speed.
- A second peak at larger droplet size increases with higher mixing speeds.
- The formation of a peak at higher mixing speed shows the effects of droplet coalescence due to shear in the flow.
Next Steps

- The results of this work has laid the foundation of systematic studies of surfactant transport for both bilgewater and fire-fighting foam systems, in follow up grant SERDP WP19-1407.
Technology Transfer

Publications and Reports

Technology Transfer (Cont’d)

Presentations

- Dr. Yun Chen presented *Size dependent droplet interfacial tension and surfactant transport in oily bilgewater systems* at the American Physical Society - Division of Fluid Dynamics (APS – DFD) 72nd Annual Meeting, Seattle, WA, Nov 2019.

- Prof. Cari Dutcher gave an invited talk *Understanding Shipboard Oil/Water Emulsions Using Macro- and Micro-scale Flows* at Naval Research Laboratory, Chemistry Division, Washington DC, July 2019.

- Prof. Cari Dutcher gave an invited lecture *Droplet microfluidics for studying surfactant-rich interfaces: From atmospheric aerosols to bilgewater emulsions* for the ACS Colloids and Surface Science Symposium, Atlanta, GA, June 2019.
Technology Transfer (Cont’d)

Presentations (cont’d)

- Dr. Yun Chen presented poster *Size dependent droplet interfacial tension and surfactant transport in liquid-liquid system* at the Mathematical Fluids, Materials, and Biology Conference 2019 at the University of Michigan, Ann Arbor, MI.
- Dr. Yun Chen presented poster *Understanding Shipboard Oil/Water Emulsions Using Macro- and Micro-scale Flows* at the SERDP & ESTCP Symposium 2018, Washington, District of Columbia, USA.

Webinar and Training Short Course

- Prof. Cari Dutcher presented a webinar for the SERDP & ESTCP Webinar Series on waste reduction and treatment in Armed Forces vessels, June 2020.
- Prof. Cari Dutcher presented short course lectures on *Interfacial Rheology and Microfluidic Rheology* for the Rheological Measurements: Applications to Polymers, Suspensions, Processing, Minneapolis, MN, Aug 2018 and Aug 2020.
Key Points

- IFT was found to decay much faster when surfactant and water is in the outer phase and oil in the inner phase for *micro-scale* droplets, while the rate does not change significantly for *milli-scale* droplets.
- Equilibrium constant, κ, maximum surface coverage, Γ_∞, surfactant diffusivity, D, and adsorption/desorption rate constants of the surfactants were calculated and compared to other typical surfactants. Results provided to NSWCCD SERDP team collaborators.
- Non-monotonic relationships found for emulsion destabilization times with both *o:w ratio* and *surfactant concentration*, showing stabilization of emulsion depending on the amount of oil and surfactant due to competing factors.
- Emulsion destabilization was observed after the pre-prepared emulsion underwent the Taylor-Couette flow test. Changes in droplet size distributions and emulsion destabilization were observed for low oil content samples (0.1% oil).