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Abstract 

 

Objective:  The objectives of this limited scope were to evaluate the effects of spatial scaling in 

computational fluid dynamics (CFD) based fire behavior models as relevant to changes in 

coarsening fuels inputs coupled with changes in wind speed and fuel moisture.  Decision making 

for prescribed fire planning is a challenge with the current portfolio of fire behavior modeling as 

characterization of fire behavior is generalized, coarse in scale, and has high uncertainty in 

estimates of smoke production that is critical to burn planning on DoD lands.  The approach 

described in this limited scope project leverages a new quick solving\cellular automata model, 

QUIC-FIRE, to begin testing assumptions of scale that could have impacts on how DoD managers 

utilize this emerging tool.  This was a “high-risk” project because there has been limited 

development of quantifiable high resolution fuels data until recently, the model at time of the 

proposal was still in the development stage, and the inclusion of highly realistic fuelbed 

simulations could improve characterization of intrinsic fuel properties (e.g. surface area to volume 

ratio and bulk density) that play critical roles in how CFD models propagate fire across  landscapes. 

 

Technical approach:  Improvements in the characterization of surface fuelbeds through the 

development of new methods of analyzing terrestrial and airborne laser scanning systems have 

advanced the discipline of fuels science.  We employ two modes of data from these systems, 

describing a new novel approach of fuels characterization using terrestrial laser scanning (TLS) 

estimates of porosity and surface area.  We also employ methods to use TLS–based fuels estimates 

to predict landscape scale fuels from airborne lidar scanning (ALS).  These data were used to test 

scaling effects of fuels, wind, and fuel moisture within the QUIC-FIRE model at two test sites, 

Pebble Hill Plantation in south Georgia and Eglin Air Force Base in Florida, USA. Multiple and 

ensemble simulations were compared between scales and environmental factors to evaluate 

optimal scales of fuels inputs.  Using diversity indices from information theory, this study sought 

to identify thresholds where no additional information is lost as scale coarsens.  Information loss 

is evaluated as a function of both inputs and fire behavior outputs. 

 

 

Results: Generation of fuels inputs from TLS and ALS data sources demonstrate that robust 

characterization of fine-scale fuel variables as bulk density can be integrated as inputs to CFD 

models.  The aggregation of these fuels input and subsequent modeling simulations describe 

information loss that indicates specific ranges of fuel scale that may be determined as the 

maximum threshold of scale for fuel characteristics. Scales that exceeded 20m voxel scale 

indicated that most or all of the information had been lost as compared to finer scales suggesting 

that there is limited advantage to using coarse scale data if understanding the impact of higher 

resolution fire model outputs as rate and shape of spread, energy release, and consumption are 

important metrics.  We also investigated the ability to improve and automate the characterization 

of three-dimensional fuelbeds using high fidelity plant and fuel particle models with an improved 

method to distribute pine litter across landscape that also includes model estimates of critical 

intrinsic fuel properties.   
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This limited scope project identifies several technical considerations and improvements for 

deriving, scaling, and assessing CFD modeled fire dynamics and effects.  The short duration of the 

project necessitated using existing “realistic” fuelbeds from TLS and ALS data, however there was 

uncertainty regarding fire spread as function of the model or fuels characterization.  We also 

identify that more work needs to be conducted in characterizing the fire energy outputs using 

spatial entropy as opposed to only a diversity index to better understand the links between input 

scale and expected outputs.  The ability to describe fuels through the simulated fuelbeds method 

unveiled multiple limitations for implementation based on complexity and resolution of the 

models.  Future research in this domain should focus on the trade-offs between resolution and 

efficiency of distribution and characterization of these fuel elements across large spatial domains. 

 

Benefits:  Improvements of CFD-based fire behavior models requires robust and scalable fuels 

inputs across DoD lands for better planning and monitoring of prescribed fire.  Remotely sensed 

data is the critical link characterizing fuels across DoD landscapes and the scales described in this 

project are useful to determining levels of data scale that will meet the needs of managers as they 

start employing CFD models in their strategic portfolio.  The results of this project also have 

impact in regards to sources of data that need to be available to manages and researchers alike.  

Generalized fuels representation from national repositories are two-dimensional and treat the 

surface fuels in homogenous categories, thus some level of finer-scale fuels are important to scale 

to larger landscape  scale datasets.
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Objective 

A seldom tested aspect of computational fluid dynamics (CFD) fire behavior models is the effect 

of model sensitivity to changes in scale of the fuel representation.  This issue of input scale is due 

in part to the lack of realistic representation of fine detail of heterogeneous fuels from remote 

sensing, as well as the computational cost of ensemble modeling required to explain the resulting 

changes in fire behavior. It is expected that as the scale of a three-dimensional voxel increases, the 

amount of information carried from one scale to the next reduces to the point of an information 

threshold (Altieri et al. 2017). From this point on, there is no discernable increase in information 

and we can then assume that there is an optimal maximum scale that exists for large-scale 

modeling.  The primary innovation of Altieri et al (2017) is that entropy can be decomposed into 

a term accounting for the role of space and a 

noise term summarizing the residual 

information (spatial mutual information and 

spatial residual entropy). The theme of 

information exchange frames our research, 

where tactical decisions of input scale from 

multiple data sources drive assumptions of 

expected fire behavior model outputs. 

For the purposes of this final report, we divide 

the themes into three divisions, 3D fuels 

inputs (Fig 1, green box), scaling (Fig. 1, 

yellow box), and fire behavior modeling.  To 

begin automating simulated fuelbeds across 

landscapes, we first improved the methods to 

describe bulk density of TLS characterization 

of fuelbeds by developing an expandable 

method.  We then tested the capabilities of the 

QUIC-fire model that may influence scale-fire 

behavior interactions, including: 1) scaling 

lanes of fuel, moisture, and wind and 2) 

opportunities to optimize workflow and 

simulation time that has direct benefit to 

managers whom will eventually have access to quick-solving fire behavior models.  While this 

report represented the findings of our limited scope efforts, we view this first step of sensitivity 

analyses to scales of fuels and weather inputs as a benchmark that will drive avenues of future 

research in the optimization and applicability of next generation fire behavior models.  We were 

also cognizant of this research being applicable to distill relevant conclusions that benefit DoD 

managers resulting in crosswalks from research to application that are based on sound data and 

methods (Table 1). A major focus of our research project was to determine the optimal 3D 

resolutions at which surface fuels characteristics effect fire behavior within a quick solving fire 

behavior model. Our initial assumptions were that derivative outputs (e.g., fire intensity) from the 

model would provide a diversity of information to explore the effects of changing resolutions.  

Ultimately, we found that the diversity index we used provided more information when used with 

the scales of the individual inputs as opposed to the outputs.   

3D Fuels Inputs 

Scaling 

Fire Modeling 

Surface Fuels TLS 

Surface\Crown 

Fuels ALS 

Simulated Litter 

Fuels 

Scaling Model 

Inputs 

Ensemble Runs 

with Scaling and 

Weather 

Figure 1. The primary themes of the study 

and the workflow of RC-19-1329 
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The demonstration of proof-of-concept regarding our proposed objectives were to identify the 

representation of inputs for optimal performance of QUIC-fire fire behavior modeling, 

quantification of fuel characteristics, differences in methods of 3D fuels characterization, and the 

use of information theory to determine scale optimization.  Meeting these objectives would reduce 

risk in developing a standard proposal by identifying limitations and opportunities between novel 

approaches to characterizing three-dimensional fuels and quick solving CFD fire behavior models. 

Table 1.  Examples of project outcomes and the applicability of these themes for both science and 

management uses. 

Project Activity Knowledge Acquired Applicability Future Uses 

TLS Generate unit\plot based 

highly resolved 

heterogeneous fuels 

Robust bulk density 

information for sampling 

fuels 

Sampling framework to 

improve fuels estimates 

for managers 

ALS Generates landscape fuel 

inputs for surface and 

crown (previously 

detailed in RC-2243) 

Landscape domains that 

provide structure metrics 

relevant to managers and 

affect fluid flow for 

models 

Baseline data used to 

produce inputs for 

modeling framework 

across DoD landscapes 

Simulated Fuels Supplemental fuels input 

when other 3D data are 

unavailable 

Development of a 

mechanistic\stochastic 

model to distribute fuels 

based on physical models 

of fuel particles 

Alternative baseline 

data used to produce 

inputs for modeling 

framework across DoD 

landscapes 

Scaling Identification of optimal 

scale of fuels inputs. 

Create optimized 3D fuels 

inputs for managers to 

efficiently model 

prescribed fire 

Testing of these scales 

in other forested 

ecosystems 

QUIC-Fire 

Ensemble Runs 

Rapid solving runs for a 

variety of environmental 

conditions and scales. 

Allows managers to test a 

range of conditions to 

assess optimal outcomes 

from prescribed fire 

application 

Testing of these 

ensembles across a 

wider array of forested 

ecosystems and 

integrate terrain effects 

 

Background 

Fire is a pervasive mechanism used to manage and maintain fire dependent ecosystems found on 

DoD installations and nationwide in both public and private lands.  Research from large-scale 

multi-discipline campaigns (e.g., RxCADRE) have produced inputs and potential validation data 

for CFD models (Ottmar et al. 2016).  Inputs, specifically fuels, have generally involved linking 

2D traditional fuels inventories with either remotely sensed data or as a representative fuel model 

that reports fuel properties as a range of expected fire behavior based on intrinsic fuel properties 

and bulk density.  These fuels outputs are typically reported at coarse grainsize due to either the 

resolution of the remotely sensed data used as an aggregation framework or based on the capacity 

of the fire behavior model ingesting these data. 

The advent of next generation fire behavior modeling has provided a significant opportunity to 

assess the fire effects that are driven by heterogeneous fuel matrices coupled with dynamic-

atmospheric feedbacks (Hilton et al. 2015; Linn et al. 2013). The framework of these 
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computational fluid dynamics-based (CFD) models have typically been clustered in the domain of 

Navier-Stokes based solutions to fluid flow coupled to a combustion model that requires large 

computational resources unavailable to a large user base.  As a result, these CFD models have 

erred towards physical accuracy and depiction of detail at the cost of speed or optimization.  The 

introduction of fast-solving 3D potential flow model with a cellular automata combustion code has 

created a paradigm of speed with marginal reductions in accuracy associated with full-physics-

based CFD models (Linn et al. 2020).  The advancement of the fast-solving model QUIC-fire 

model (Linn et al. 2020) provides a potential avenue for prescribed fire managers to test the effects 

of complex ignition patterns, a wide variety of dynamic ambient conditions (e.g., wind and 

moisture), and heterogeneous three dimensional fuel lattices. 

Three-dimensional fuels are the unifying element for CFD models.  These fuels inputs can be used 

to test the integration of heterogeneity to simulate fire behavior that then informs future fire effects.  

Recent advances in fuels science have improved estimation of bulk density by comparing in situ 

measured three-dimensional fuels (Hawley et al. 2019) with voxel based fuel metrics from TLS 

data demonstrating promising results for unit-wide fuels characterization (Rowell et al. 2020).  

This advancement in fuels science allows for the direct testing of heterogeneous fuels that are 

distinguished by fuel type.  As fire is a dynamic process driven by incongruities and variability in 

the fuelbed that are not typically captured in traditional fuels inventories, these new TLS-derived 

fuel metrics offer an opportunity compare spatial heterogeneity in innovative ways.  The separation 

of litter and grass from shrub dominated fuels allows for fine-grain assessments of fire spread and 

behavior that are tied directly between bulk density, fuel particle metrics, and fuel moisture.  These 

fuel advancements coupled with findings from information theory evaluations are expected to 

provide improvements to these emerging fire management tools that will benefit fire managers. 

Within the realm of prescribed fire planning, the dominant paradigm has been the use of western-

type wildfire inspired models that were designed to meet worst-case scenarios (Hiers et al. 2020). 

The focus on science investment for western wildfire has not benefited prescribed fire managers 

whom are tasked with increasingly complex regulatory constraints coupled with altered land use, 

novel fuels, and climate considerations that come with significant risk (McCullers 2013).  

Prescribed fire practitioners often rely on personal experience to safely meet resource objectives, 

yet the before-mentioned advances are key to providing a planning framework that demonstrates 

direct improvement for operational prediction that support decision-making, achieving objectives, 

and managing for smoke production (Waldrop and Goodrick 2012; Linn et al. 2020). Thus, 

evaluating multiscale characterization of vegetation structure is a fundamental inquiry into the 

resulting effects of prescribed fire (Hiers et al 2009; O’Brien et al. 2018), and requires 3D inputs 

and new modeling tools for evaluating mechanistic fire effects. 

The question of scale is paramount to successfully assessing the efficacy of prescribed fire, 

specifically in fire effects that are the result of manipulation of conditions (Myanishi and Johnson 

2001).  Prescribed fires are ignited in conditions that optimize fire behavior to maximize fire effects 

for specific management objectives and are constantly modified to not exceed desired outcomes 

(Hiers et al. 2020). For example, frequent intervals of prescribed fire are important for the 

management of threatened and endangered species as the Red-cockaded woodpecker (Walters et 

al. 2002). Yet, minimization of high intensity burns that limit cavity tree mortality are also critical 

to the management of this species.  In other prescribed fire systems there may be a different focus 

that potentially include the consumption of fuel, stand replacement, or modification of forest 

structure (Mitchell et al. 2009; Gallagher et al. 2017). The underlying principle of integrating the 
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proper scale of inputs with an ignition pattern and coupled atmospheric fire behavior models is to 

meet the objectives of a prescribed fire (Hiers et al. 2020).   

In a wildfire context, scale of fuel inputs is further challenged by the large scales of the wildfire 

incident, which now frequently exceed 10000-ha. The scale of fuel inputs that are required to 

resolve headfire that covers km/day are vastly different than that governing backing fire where 

most suppression crews work. Thus, understanding information optimization for emerging tools 

and 3D forest inputs is relevant to all aspect of fire behavior. This report seeks to answer these 

questions of scale of inputs. 

 

Methods and Materials 

3D Fuels Inputs 

A. Surface fuels from Terrestrial Laser Scanning 

For the laser scanning derived fuels portion of the study, the key objectives were to derive critical 

bulk density estimates from TLS data for surface fuels, generate a landscape estimate of fuel mass 

by increasing sample size of fuel observations to improve large domain fuels inputs for scale 

comparison, and produce a rational canopy fuels layer that affects fluid flow of air parcels that 

affect fire behavior in the model. We used a dataset collected as part of the Prescribed Fire 

Consortium experiments conducted at the Pebble Hill Plantation. Terrestrial laser scanning was 

conducted using a RIEGL VZ2000 to collect three-dimensional point clouds at ~5mm point 

spacing at 15m range.  The VZ2000 is a near infrared eye safe laser that is capable of scanning 

objects at up to 1000m. Laser scanner collection points were established on the four corners of the 

rectangular burn units, set back a minimum 2.5m from the unit edge. A single 360° scan was 

collected in the center of the burn unit.  Scan parameters were set to sample points at 0.023° 

frequency at a scan rate 550 kHz per scan.  Individual scans were geospatially located using the 

onboard GNSS L1 GPS receiver that automatically places all points into the desired spatial 

reference (UTM 16N, NAD83).  From these models to predict fuel mass were developed through 

comparison with in situ 3D clip plots (after Hawley et al 2019) that were collected coincidentally 

to the TLS data.  We initially used the methods described in Rowell (2017) to calculate fuel mass 

from the TLS data, a voxel occupancy approach that worked well at frequently burned longleaf 

pine sites at Eglin Air Force Base, Florida.  This method tallies occupied 10cm3 voxels from the 

TLS data by taking a selected 0.25m3 column and subdividing the volume into 250000 10 cm3 

cells.  Voxel cells that break a threshold of 10 laser points are considered occupied.  

Fuel porosity derived from TLS data is a metric similar in practice to packing ratio or as 

porosity as defined by Anderson (1969).  Packing ratio is defined as the fuel load of similar density 

divided by the fuelbed depth. This metric serves as an estimate of compactness that is critical to 

explaining how fire propagates through a porous medium. This compactness represents the 

expected movement of air that affects residence time and combustion intensity (Anderson 1969).  

The concept of porosity (Anderson 1969) or packing ratio (Rothermel 1972) are terms to describe 

fuelbed compactness. To replicate this concept, we evaluate the potential of a porosity metric using 

TLS, we use the definition of porosity as described in Anderson (1969): 

                                                          𝜆  = 1 −
𝑉1−𝑉2

𝜎𝑎𝑉2
                                                                   [1]   
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Where, porosity (𝜆,  𝑓𝑡3/ 𝑓𝑡2) is expressed as a function of fuel be volume (V1), fuel particle 

volume (V2), and fuel particle surface to area volume ratio (σ).  For our purposes, we distill the 

TLS model for porosity as a simple ratio of total available space in a 10cm3 voxel (1000cm3) with 

the occupied volume derived from the TLS data at 1cm3 voxel cells for the same voxel domain. 

We do not include a surface area to volume value for this study, as we are looking to identify 

metrics that can be directly obtained from the TLS. We expect that calculation of TLS-derived 

porosity would be well correlated with measured fuel mass. 

To test this hypothesis, we calculate TLS-based porosity using equation 1: 

                                                      𝜆  = 1 −
∑ 𝑂𝑉1𝑐𝑚

𝑉𝑜𝑙𝑢𝑚𝑒 10𝑐𝑚3                                                             [2] 

Where, porosity (𝜆) is the relative proportion of open space resulting from the occupied volume 

(OV) divided by the total volume of the 10cm3 voxel. This assumes that omission and 

commission errors are the same across voxels. We calculated this definition of fuelbed porosity 

for the 0-10 cm and 10-20 cm stratum only, as these strata represent where the highest proportion 

of compact fuels and fuel mass that typically occur in a frequently burned fuelbed (Rowell et al. 

2016). 

For fuels sampled above 10 cm, we calculated surface area within each occupied voxel. To 

estimate surface area of fuel elements at the 10 cm3 voxel domain, the points within each voxel 

were subset and recalculated using a 3D kernel density estimate via the kde3d function included 

in the misc3d package in R (Tierney 2015).  The kernel density function weights distributions of 

points to subsequently estimate better isosurfaces that can be used to predict surface area (Feng 

and Tierney 2008).  We used the vcgIsosurface function as part of the Rvcg package in R (Schlager 

2017) that represents constant densities of the kernel density function over the limits of the voxel 

domain.  This method used the marching cubes algorithm (Lorensen and Cline 1987), that created 

a surface through intersecting edges of a volume grid with a volume contour. Where edge 

intersections occur, a vertex was created. The surface area of the fuel element for the voxel domain 

was calculated using the vcgArea function within Rvcg, which calculates the surface of the 

triangular mesh from the isosurface. Methods to estimate fuel mass from TLS data have been 

presented in Rowell et al. (2016) and Rowell (2017,2020). TLS point clouds are integrated into a 

cohesive data set, normalized to height above ground by subtracting the minimum height, and are 

then imported into R where the are voxelized at a 10 cm3 voxel domain across the unit. Above-

ground biomass is estimated by using a Leave-One-Out-Cross-Validation linear models for the 

train function in the caret package  (Kuhn 2017) and made a function of the occupied volume of 

both pre and post fire point clouds. 

B. Surface and Crown Fuels from Airborne Laser Scanning 

To aggregate fuels from the fine-grain TLS estimates of fuels we utilized the TLS data as training 

data for multiple linear regression after Hudak et al. (2016).  In the before mentioned study, a 

model that The goal of this was to test if increasing the sample size of the selected a 3m radius 

area around each 1m x 1m plot were reduced to a series of statistical metrics to produce an 

optimized multiple linear regression to predict surface fuel mass.  These metrics are described in 

Hudak et al. (2016) and the model using nine metrics explained 44% of the variability of fuel mass.  

We replicated this approach by comparing occupied volume based models developed by 

comparing TLS data with the same two dimensional clip plots at Eglin Air Force Base (Rowell 
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2017).  We produced the ALS estimates of fuel mass by using adapted methods described in Hudak 

et al. 2016. ALS metrics considered in the predictive modeling included mean height, kurtosis, the 

return proportion from 0.0 to 0.05 m, mode of returns from 0.0 to 0.5 m, the return proportion from 

0.0 to 0.05 m, standard deviation of height for elevations between 0.05 to 0.15 m, standard 

deviation of height for elevations between 0.15 to 0.50 m, the coefficient of variation for heights 

between 0.15 to 0.50 m, standard deviation of height for elevations between 0.50 to 1 m, and 

standard deviation of height for elevations between 1 to 2 m. These ALS metrics were calculated 

using the CloudMetrics function of FUSION software (McGaughey 2014). TLS derived AGB 

were binned into training data at a 25m2 resolution to facilitate model development using the ALS 

data. This resolution matches the resolution used by Hudak et al.(2016) with the same ALS dataset. 

We employed a multiple linear model using the ‘lm’ function in R. Candidate ALS metrics were 

thinned to represent “best” regressions using the ‘regsubsets’ function in the ‘leaps’ package of R. 

The Akaike Information Criterion (AIC) statistic was used as the basis for choosing the best subset 

model. This method was used to generate landscape scale surface fuel mass for the EAFB L2F 

unit. 

Airborne laser scanner data were used alongside software applications described in Silva et al. 

(2016) to derive individual tree stem locations and attribute necessary parameters such as height 

and height to live crown (Rowell 2005). ALS returns a height and elevation map, from which tree 

stem locations can be derived by finding the local maxima of a smoothed height array, and the 

height assosciated with the local maxima is used as the tree height for that stem. Crown hull, 

defined as the outer shape of a tree crown when looked from a nadir perspective, is calculated by 

passing a filter over the gradient of the tree height model. Crown radius is then defined by using 

the square root of the area of the crown hull. Diameter at base height, which could be parametrized 

using tree height, has been set as a constant for simplicity since the model is not very sensitive to 

this variable. Height to live crown is calculated by taking the values for height at the hull of a stem, 

calculating the mean and standard deviation for these heights, and assigning the height to live 

crown as the mean minus one standard deviation. These tree inventory variables are all thats 

needed to populate a canopy and surface fuel domain using the methodology outlined in Linn et 

al. 2005. The fuel data was then used to run QUIC-Fire, but the surface fuels will be replaced by 

data measured with Terrestrial Laser Scans (TLS). 

 

Post fire mass estimates are similarly calculated from post fire scans. The output from the 

algorithm produced summarizations of fuel mass pre-strata allowing estimations of bulk density 

per strata.  These methods were used on the first meter of the fuels and aggregated up to a 0.5 x 

0.5 m horizontally and 0.1 m vertically and used as the surface fuels. Data was exported as a list 

and imported into Python, where the stitching of the surface and canopy fuels occurs.  

  

C. Simulated 3D Fuels 

The approach developed by Rowell et al. (2016) used a workflow that generated plant and fuel 

objects through parametric plant modeling software to a model space where all objects were 

assembled into a cohesive fuelbed.  Disadvantages to this approach were the non-automated 

process to produce the fuelbeds and the highly resolved and complex geometries of the objects 

that overloaded computing resources as domain space increased.  To address these issues, we 

integrated an improved workflow to reduce mesh complexity and introduce a method of 

distributing these fuel objects using combined mechanical and physical processes. 
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Pine needles were chosen as the first 3D fuel element to explore, as they are the most ubiquitous 

litter fuel in frequently burned pine ecosystems and have a simple geometry to consider. Once 

feasibility of the modeling practice was demonstrated, then litter fuels and shrubbery with more 

complex geometries (pinecones, ferns, etc.) can be modeled and their effects taken into account.  

Microscopic imagery of pine needle cross-sections from many species show that they have a 

geometry similar to a triangular prism (Fig. 2). Simplifying to a basic geometry adds advantages 

for the modeling of fuelbeds and subsequent voxelization of the pine needle models. Utilizing a 

triangular prism for the geometry allows for an analytical expression for the surface area to volume 

(SAV), that are directly comparable to laboratory measurements of SAV and extract needle 

dimensions for the 3D models that result in the same individual SAV. Secondly, a triangular prism 

only has five faces consisting of regular geometry shapes (3 rectangles and 2 equilateral triangles). 

These five faces provide a water-tight mesh which collision /rigid-body models require to help 

prevent intersections when objects make contact. More importantly since no further meshing is 

required we have a computationally efficient shape to model a large number of collisions. 

 

Figure 2. Pinus strobus pine-needle cross-section (A) and a triangular prism needle generated in 

Blender (B). 

 

 

 

  

 The SAV of a triangular prism can be written as: 

 

SAVTri=2L+43l                                                            [3] 

 

where L is the long side length of the prism and l is the short side length of the equilateral triangles 

at each end. Defining the length-to-width ratio LW=Ll we can get the expression:  

 

l=2+43LWSAV*LW                                                     [4] 

 

which gives the short length of the prism as a function of SAV and LW. Longleaf pine needle 

parameters from Nelson & Hiers (2008) were used with this expression to define the dimensions 

of the 3D needle models.  An SAV of 6071 m-1and LW of 100 results in l=1.1445mm and L=11.4cm 

(Fig. 3).  

A B 
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Blender (Blender.org), a free and open-source 3D graphics software, with a rigid body collision 

algorithm that was used to model the pine needle litter accumulation three-dimensionally.  Rigid 

body collision response is a necessity to simulate interaction among solid objects (Kavan 2003).  

These algorithms detect collisions and ensure non-penetration of rigid bodies.  These algorithms 

also exploit laws of classical mechanics to optimize speed at the cost of complete physical accuracy 

(Kavan 2003).  To model litter accumulation, we seeded 1m2 domains with three increments of 

needle objects (1000, 5000, 10000, 15000).  These objects were randomly distributed above the 

Figure 3. Curve showing triangular prism dimensions that satisfy an SAV of 6071 m-1. 

Figure 4. Final resting positions of 10,000 needles dropped with random heights and 

orientations produced by rigid body simulation in Blender. 
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ground plane accounting for position (x,y,z), azimuthal orientation, and elevation angle.  The pine 

needles are dropped from these heights and accelerate at the rate of gravity.  Needle objects collide 

with the ground plane and each other until deaccelerating to a still position.  The rigid body 

response function ensures that objects do not penetrate the surface plane or each other to produce 

a “realistic” distribution of needle on the ground plane (Fig. 4). The model then stores and exports 

the 3D vertex data of needles. 

 

A scaling factor was introduced due to the small size of the needles.  The smallest unit of length 

that can be handled within Blender is 1.73 mm, so all dimensions were scaled by a factor of 10.  Not 

only was this needed so the small side length of 1.15 mm could be represented correctly but this 

also removed an issue of needles intersecting through each other. A uniform distribution was 

sampled for (x,y) position over a 1 m x 1 m floor in a majority of runs.  Results from sampling a 

one-sided normal distribution are also shown. 

Post-Processing 
    The vertex data from the Blender simulation is voxelized into a uniform 3D cartesian grid.  Once 

a grid is defined, then the vertex data is rescaled back to desired lengths and each individual needle 

is partitioned into its corresponding voxel volumes.  Segmenting needles was done by taking the 

two center points from the triangular ends and segmenting that line wherever its crossed voxel 

walls. This allowed for the total needle volume in a voxel to be calculated.  The same process was 

used for each rectangular face on each needle so that surface area from needles could be accurately 

calculated in each voxel.  The voxel location of a triangular face was determined by their center 

point. Quantities of interest can now be calculated with the accumulated voxel values for surface 

area and volume. Voxel mass was calculated using a density of 508 kgm-3 for the needles (Hough 

and Albini 1978). Bulk density was calculated by summing all mass in each vertical column then 

dividing by the max needle height in the column. Porosity was calculated as: 

                                                      𝜆  = 1 −
∑ 𝑁𝑉𝑛𝑐𝑚

𝑉𝑉 𝑐𝑚3                                                              [5] 

Where, porosity (𝜆) is the relative proportion of open space resulting from the occupied needle 

volume (NV) for n cm within the cubic volume of a voxel.    Analysis of fuel heterogeneity within 

the voxel grid were determined for a range horizontal resolutions (1, 2, 4, 8, and 16 cm).  Voxel in 

the vertical heights were determined as a vertical resolution of two times the shortest length of a 

pine needle was used (2.289 mm). 

 

Scaling for Fire Behavior Modeling 

A. Scaling Laser Scanning Inputs 
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Scaling for both the Pebble Hill and EAFB study site integrated a combination of both TLS and 

ALS fuel metrics described in preceding sections of the report. For the TLS data collected at the 

Pebble Hill site, values of bulk density are reported as grams per 0.25m3 and are described in three 

modes of fuel type, litter, grass forb, and shrub dominated.  These bulk density values are voxels 

that can be directly imported into the QUIC-fire environment, though certain considerations need 

to be addressed before these data were imported into the fire behavior model grid space (Fig. 5). 

Primary issues described are the requirement for the three-dimmensional lattice to be rotated to 

cardinal directions for the model to produce fire behavior simulations and correcting for any 

incogruities with the dataset.  Data incongruities included missing data that required 

reconstructung the missing data in a method that did not arbitrarily introduce structures that were 

inconsistant with populated grid cells.. The original data was also slightly rotated, and the most 

straightforward fixes such as cropping the entire domain into zones with just data are not 

applicable. A rotational adjustment was applied to the TLS-based bulk density dataset to integrate 

these data with a larger model space need to produce “realistic” fluid flow outside of the burn 

environment. Several interpolation schemes were tested, including spline interpolation schemes of 

multiple orders. These methods overestimate bulk density in situations of high gradients and would 

not maintain the representative statistics of the original dataset (Fig. 6). The simplest method 

implemented was a closest neighbor interpolation, which was suitable for both continuous and 

categorical data, giving reasonably similar results for minimum, maximum, and mean as the 

original dataset.  

Figure 5: TLS bulk density data as imported into Python. Rotation and cleared out cells are 

clearly visible 
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 Image reconstruction methods used in remote sensing applications have been built to use neural 

networks to reproduce data (Zhang et al. 2018), but have not been implemented for this paper. 

Future work might include such reconstruction efforts. Figure 7, shows the model ready dataset.   

 

The sampling domain for which we have surface fuel data is too small to run QUIC-Fire 

simulations. With a domain size of 50 x 95 m, and a resolution for QUIC-Fire of 2m, the 

computational domain would be 25 cells long which would lead to edge effects being visible even 

for a short initial fireline. For these reasons, further methods to extend the domain to a larger area 

were proposed (Fig. 8). The first method attempted was to recursively mirror the original domain 

into a larger area. This approach ended up introducing large scale structure since the original 

surface fuel domain had much higher fuel density on the left side of the domain. Mirroring the 

original domain led to a large area of low fuel density. To avoid large scale structure, the second 

Figure 6: Height distributions for surface fuel data. a) Original dataset before rotation, and 

after implementation of b) low order spline interpolation scheme, and c) closest neighbor 

interpolation. 

Figure 7: Height distributions for surface fuel data. a) Original dataset before rotation, and 

after implementation of b) low order spline interpolation scheme, and c) closest neighbor 

interpolation. 
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method was to fill the entire domain by randomly selecting 10x10 m patches from the original 

domain, randomly rotating and placeing patches within the domain. The center of the larger 

domain is then replaced using the original domain. This was problematic since small scale structure 

was not maintained. For example if there is a tree on the edge of the selected 10x10 patch, for 

which some of the trees and biomass were outside of it, this would not be included in the new 

domain. This resulted in physically impossible situations of floating fuel. The third method to 

populate the larger domain was to use ALS estimated tree inventory data from the stem detetection 

algorithm from methods described in (Silva et al 2016) to populate a much larger domain with 

trees and employ a generalizedgrass and litter model for thesurface fuel data with the voxelized 

information. This method mantained small and large scale structure and was deemed appropriate 

since an accurrate tree representation was more valuable for the outside of the TLS domain since 

canopy cover will influence the effective wind speed on the TLS domain, while surface fuels will 

not affect it.  
 

Using the TLS data, voxel occupancy is the predictor of the fuel height for each horizontal cell. 

Categorization of fuel type was estimated using heigh threshholds form the field data, where grass, 

litter or shrub fuel types represent gradient of heights. Fuels under 10 cm were considered litter, 

above 10cm but less than 30 cm was considered grass, and anything above 30 cm is categorized 

as shrubs. This logic was determined based on evaluation of the 3D clip plots collected at the site 

to parameterize bulk density model. While this does not affect bulk density estimates since those 

are provided by TLS, it is used to assign fuel moisture content according to environmental 

conditions. Aggregating to different scales is done by averaging over the appropriate resolution 

and setting that result to all the cells over which the averaging took place. So, if the resolution that 

will be used will be 4m, the TLS data is first aggregated up to 2m3 cells and then averages are 

taking on a 2x2 cell basis (4x4 m) and assigned to all the cells that were averaged. If the amount 

of computational cells does not divide evenly by the averaging length, then the remainder is 

averaged on a smaller resolution at the edge of the domain. Since the edge of the domain is not 

expected to burn due to edge effects, this is considered an acceptable practice. Figure 9, shows the 

results of averaging over different resolutions.  It is important to note that averaging occurs at the 

same scale at every height (z-layer) of the computational domain including the midstory and 

canopy fuels. Averaging over the canopy fuels means that there will generally be a higher canopy 

cover, which will reduce the effective wind speed at the surface. Not averaging the canopy fuels 

Figure 8: Methods used to populate an exterior domain. a) Mirroring original domain, b) 

using random patches from original domain to populate new domain, and c) using tree 

inventory data for extended domain. 
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would however not translate to testing out the whole horizontal spatial heterogeneity but just the 

surface fuel heterogeneity. Future work might address this concerns by looking at results of 

averaging (or not) layers above the surface fuel. The final step to process fuels is the addition of 

fuel breaks around the TLS domain. An example of the finalized computational domain at a 2m 

resolution is shown in figure 10. 
 

 

The fire behavior modeling component seeks to evaluate the sensitivity of the model predictions 

as the level of detail in the fuels data increases under different environmental conditions. The 

differences in environmental conditions are represented by the fuel moisture content and mean 

wind speed at 10m and are expected to have large impacts on fire behavior and effects. Fuel 

moisture scenarios will range from 4%, 8% and 16% for grass fuel moisture conditions for the dry, 

moderate and moist scenarios, while litter will have a range of 10%, 15%, and 20%, and shrubs 

will be set permanently at 100%. Wind scenarios will have wind speeds of 3, 6 and 12 miles-per-

hour for the low, medium, and high cases, specified at 10m above ground. These scenarios were 

chosen since the range will be representative of typical conditions for both operational prescribed 

burns in southeastern pine woodlands. Fuels were aggregated at these scales of resolution: 2m, 

4m, 8m, 16m, 32m and a single characteristic plot. Input variables are all stated in Table 2. For the 

Pebble Hill site, QUIC-Fire was run in an ensemble fashion, with 50 runs for each combination of 

resolution and environmental condition, in order to leverage the stochastic methods used to 

calculate fire spread and get a better understanding of the variance on fire behavior effects for each 

run. Due to the amount of computing time required to run on a larger domain (EAB runs are on a 

Figure 9: Effects of averaging the full domain at different resolutions. a) 1m, b) 4m, c) 16m. 

 

Figure 10: Finalized computational domain at a 2m resolution. 
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1.5 x 2 km domain, as opposed to 200x200m shown in Figure 10), ensemble runs were limited to 

a single strip head fire for the EAFB site, where a single seeded run for each environmental 

condition and resolution level will be used for the analysis section. Ignition is done by lighting two 

lines 15m downwind from the fuel break going in opposite directions perpendicular to the wind 

direction, extending down to the end of the TLS domain. 

 

For each run, a suite of fire behavior metrics were calculated to characterize the evolving fire 

behavior. Maximal downward spread is calculated by measuring the farthest downwind cell where 

fuel has been consumed. Rate of spread is then calculated by measuring the rate of change of the 

maximal downward spread. Rate of spread is a valuable metric for fire practitioners and is highly 

connected to the wind speed felt at the surface, and as such a normalized rate of spread can be 

calculated by dividing the rate of spread by the wind speed. This will be a way of normalizing runs 

with different wind conditions. Percent fuel consumption is calculated for the surface and canopy 

fuels. Surface fuels are defined as being in the first layer of fuel and canopy fuels are defined as 

everything above that first layer. While further separation and classification of fuels could be done 

by including midstory fuels, or by analyzing consumption on a per layer basis, since our fuels data 

has been created by different methods for surface and tree data it seems appropriate to analyze 

them within those limits too. Canopy consumption is then normalized by the surface fuel 

consumption. Burned area is calculated as the percentage of cells within the computational domain 

that have had its fuel partially or fully consumed. Perimeter length is calculated by creating a 

binary image of the surface fuels in the computational domain depending on if fuel has been 

consumed there or not, and then counting the amount of cells that are both ‘burnt’ and have an 

immediate neighbor that is unburnt. The ratio between these two measures is the reduced area, 

which measures how close to a circle a shape is. For fire behavior, this metric will measure how 

evenly outward a fire is spreading. Using the burned area, we can create two more important 

Table 2: Input Variable List for QUIC-fire simulations. 

Input Variable Value 

Moisture – Grass - Low 4% 

Moisture – Grass – Moderate 8% 

Moisture – Grass – High 16% 

Moisture – Litter - Low 10% 

Moisture – Litter – Moderate 15% 

Moisture – Litter – High 20% 

Moisture – Shrub – All Conditions 100% 

Wind Speed – Low 3 mph 

Wind Speed – Moderate 6 mph 

Wind Speed – High 12 mph 

Aggregation Levels 2m – 4m – 8m -16m -32m – Single 
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metrics: its rate of change over time is the rate of growth, while doing a similar approach at the 

square root of the burned area gives the bulk rate of spread. The bulk rate of spread is meant to 

represent the average rate of spread of the fire, and can be expressed as a ratio with the rate of 

spread to represent how much of the fire is represented by the head fire, as opposed to the backing 

and flanking sections of the fire. These metrics are important for different reasons and all aim to 

represent different aspects of fire behavior.  

 

Shannon’s diversity index was used to measure the level of homogeneity in both the fuel input 

data and the fuel consumption data output. Shannon’s diversity index is calculated by classifying 

data into selected categories and calculating the evenness of proportions across those categories 

and is used in data science as a measure of the information content being placed into the model 

and the output of the model.  

 

𝐻 =
𝑛𝑙𝑜𝑔(𝑛)−∑ 𝑓𝑖𝑙𝑜𝑔(𝑓𝑖)𝑘

𝑖=1 𝑛

𝑛
                                                                     [6] 

 

Where k and n denote the number of groups and the total count, fi the vector of frequencies (count) 

Shannon diversity. If fi=0, then the fi log(fi) term is set to 0. Two different category systems were 

selected for the fuel input model and one category system for the output. Fuel density was 

classified by taking the minimum and the maximum at the 2m resolution level and making 20 

categories between those two. Fuel moisture was classified by making three categories depending 

on fuel height, since the fuel height dictated the fuel moisture. It was then a measure of evenness 

between grass, litter, and shrub moisture contents. Output fuel density was classified with a simple 

Figure 11: Fuel density at six different scales of resolution. 
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burnt/unburnt dichotomy. The initial fuel density (Fig. 11) and fuel moisture (Fig. 12) for different 

levels of resolution were compared using Shannon’s diversity index. 

 

Results and Discussion 

A. Surface fuels from Terrestrial Laser Scanning 

Rowell (2017) demonstrated strong relationships between occupied volume and fuel mass 

measured by two-dimensional clip plots explaining 84% of the variability of surface fuel mass in 

frequently burned longleaf forested sites and 71% of the variability for non-forested grass and 

shrub matrices found on and near the EAFB B-70 range.  This method was replicated for the Pebble 

Hill Plantation dataset, where occupied volume explained 44% of the variability of fuel mass in 

the surface fuelbed (Fig. 13A).  This approach did not adequately match measured fuel mass at the 

wiregrass landscape and shrub dominated units.  New methods for developing 3D fuel inputs from 

TLS were developed as a result, specifically a novel adaptation of Andersen’s porosity metric from 

at a 10cm3 voxel scale and a mesh wrapping protocol that derives surface area of elements within 

each 10cm3 voxel cells.  The models developed represent the bulk density of fuels (grams cm3), 

where regression model coefficients and errors are described in Table 3.  TLS derived maximum 

porosity (0-10cm and 10-20 cm strata) for a multiple linear regression explained 89% of the 

variability of the 0-10cm strata fuel bulk density (Fig. 13B) that accounts for the largest proportion 

of fuel mass in the surface fuelbed of frequently burned southern pine forests (Rowell et al. 2016).  

Mesh derived surface area for fuel strata above 10 cm in height performed well as a predictor of 

mass, where the model explained 69% of the variability of surface fuel mass in grass\forb 

dominated sites (Fig. 13C) and 52% of the variability in shrub dominated sites (Fig. 13D).   

Figure 12: Fuel moisture at six different scales of resolution. 



17 
 

From the outset of this project, the expectation that studies conducted at EAFB as part of the 

RxCADRE experiments would be transposable to other landscapes in the southeastern United 

States.  The initial comparisons with both the TLS and the 3D voxel sampling protocol derived 

occupied volume demonstrated (Fig. 13E) an underestimation of mass as compared to occupied 

volume which we attribute to two possible reasons: 1) a higher proportion of downed woody debris 

due to higher overstory stocking densities and 2) the longer fire interval at Pebble hill.  The use of 

the porosity metric appears to improve estimates of mass, even when coarse woody material is 

Figure 13.  Occupied volume based predictions of bulk density from 3D clip plots (A) and 

TLS data (B). Bulk density estimates from the porosity multiple linear model (C), bulk 

density  estimates from surface area of meshes for grass\forb (D) and shrub (E) sites. 

A B 

C D 

E 
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present, which represents an advancement in the science. The implications of re-evaluating the 

way we predict fuels using TLS data demonstrated value for both SERDP project RC-19-1329 and 

RC-19-1064.  The approach detailed as part of this project has generated what we believe is a 

robust and replicable approach that not only improves upon the TLS research documented in 

Rowell (2017) and SERDP project RC-2243. Additionally, we report fuel mass as bulk density, 

which is the direct metric used in both HIGRAD/FIRETEC and QUIC-fire.  

 

Table 3. Linear regression model coefficients predicting pre-fire fuel mass from porosity, surface 

area, and a combined model integrating the two estimates. 

 

 

B. Surface and Crown Fuels from Airborne Laser Scanning 

To aggregate fuels from the fine-grain TLS estimates of fuels we utilized the TLS data as training 

data for multiple linear regression after Hudak et al. (2016).  In the before mentioned study, a 

model that The goal of this was to test if increasing the sample size of the selected a 3m radius 

area around each 1m x 1m plot were reduced to a series of statistical metrics to produce an 

optimized multiple linear regression to predict surface fuel mass.  These metrics are described in 

Hudak et al. (2016) and the model using nine metrics explained 44% of the variability of fuel mass.  

This approach replicated by comparing occupied volume based models developed by comparing 

TLS data with the same two dimensional clip plots at Eglin Air Force Base (Rowell 2017) with 

prediction improvements by 30%.   

Predictor Estimate Std. 

Error 

t-value Pr(>|t|) Significance 

All 0-10 cm Biomass 

(Intercept) 457.8 33.5 13.65 3.1e-08 *** 

Porosity   0-10 

Porosity 10-20 

-213.6 

-196.2 

55.0 

40.5 

-3.89 

-4.85 

0.00254 

0.00051 

** 

*** 

All Strata Biomass (Above 10cm) 

(Intercept) 0.718 1.566 0.46 0.65  

Surface Area 1.353 0.203 6.68 3.9e-09 *** 

Total Biomass (Combined Model) 

(Intercept) 38.765 16.446 2.35 0.0362 * 

Combined Predictions 0.740 0.066 11.174 1.07e-07 *** 

Statistical significance for p-value:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Though the results of the surface fuels reported here are previously reported in Rowell (2017) and 

O’Brien (2017), this project marks the first use of the hierarchical sampling framework described 

as part of the RC-19-1064 proposal.  The integration of richer remotely sensed fine-scale data as 

the source of training for increasingly coarser data. This has broader implications in regard to the 

information theory results presented in the fire behavior modeling portion of the study.  We 

hypothesize that the finer starting grain of the TLS estimates of fuel mass and fuel type 

classification carry more information as resolution coarsens, suggesting that there should be 

investments to carry the diversity of fine-scale information to the initial coarse scales of ALS-

derived surface fuel mass and type.   

 

C. Simulated 3D Fuels 

The 3D modeling of a pine needle litter layer is certainly feasible using current 3D modeling 

software.  Detailed height maps (Fig. 14) can be generated in minutes, along with mass (Fig. 15), 

voxelized SAV (Fig. 16), and porosity (Fig. 17). In regards to fuel heterogeneity, even using a 

random uniform distribution to seed the needles in space and orientation, the rigid collision 

algorithm allowed for some variability to be added to the simulated litter fuelbed. This is equally 

compelling, as all the needle objects in the simulation are identical. Though we did not directly 

compare synthetic fuel heights against measured fuelbed metrics for this study, Rowell et al (2016) 

demonstrated that near identical object types in a Blender environment yielded Pearson 

correlations ranging from 0.75 to 0.94 when comparing simulated fuels with measured fuelbed 

height. In this same study, needle fuel mass calculated as a function of the surface area of each 

object demonstrated high correlation (r=0.86) between simulated needle and dry weight fuel mass.  

SAV is an important fuel metric in CFD fire behavior modeling as this metric is associated with 

shape parameters (disk or cylinder) and is inversely proportional to the thickness of characterized 

fuel particles (Morvan and Lamorlette, 2014).  Experimental observation fire demonstrate that 

fuels with a length scale less than 6mm account for 90% of the consumption in the flaming zone 

(Morvan and Dupuy, 2004).  In CFD models generic SAV values are represented for large 

relatively homogenous surface fuel beds. SAV describes the receptivity of a particle to exogenous 

heat and moisture as a proxy of potential combustion (Marino et al. 2012).  Using spatially explicit 

and highly resolved representations of SAV through simulation (Fig. 18) provides descriptions of 

SAV distributions vertically through the fuelbed.  in this manner distributions for voxelized SAV 

and mass could be made allowing for possibly more sophisticated subgrid creeping fire-spread 

models. 3D modeling of this sort allows for a fuel bed to be probed without disturbance and 

whatever resolution desired.  This methodology could be used to supply better parameterizations 

to high fidelity fire spread models. Ultimately one could use 3D models for other litter objects, 

build complex synthetic litter beds, then determine distribution parameters based off species 

percentages.  Soft body interactions are needed to properly model the collection of litter fuels in 

shrubbery and other mid story fuels as well as the compression of needles under their own 

weight.  Moving to another 3D modeling code such as Chrono, which is better parallelized and has 

more control in collision parameters, would be almost necessary to build more real-world fuel 

beds.  
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Figure 14.  Height maps of the needle accumulation for 1000, 5000, 10000, and 15000 

needles.  
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Figure 15.  Plots showing the effect of coarsening on fuel heterogeneity for the needle litter 

from 15 thousand needles.  Vertically integrated fuel mass per cell is plotted.  Heterogeneity is 

diminished once cell sizes are larger than L.  
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Figure 16. Plot showing voxel-averaged SAV from the 5,000 needle case. SAV is averaged 

across  y position for the mid height value of the each layer (zmid) and  shaded with the standard 

deviation.  This figure shows that averaged SAV decreases with height from the floor suggesting 

that needles are packed closer together near the ground. 

 

 

Figure 17. Histograms of the voxelized SAV for the 10k and 15k needle stacks. A similar 

shape is seen in both histograms but the higher needle count shows a broader distribution. This 

further supports the idea that needles are compacting together with higher needle counts, 

raising the mean SAV of the litter. 
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Figure 18. Histograms of the voxelized porosities for the 10k and 15k needle stacks. No 

significant difference is seen between the two histograms which suggests the higher SAV seen 

from increased needle count may just be a statistical effect.  In other words, higher needle counts 

increase the chance of a falling needle filling an opening in the litter stack but does not mean a 

change in litter structure after a certain point. 

  

D. Ensemble QUIC-Fire behavior simulations small domain 

A total of 2700 runs were performed using a laptop with 8 cores requiring almost 72 hours to run, 

demonstrating the relative efficiency of the QUIC-fire model. For each combination of 

environmental condition and resolution level, 50 runs were done for the initial Pebble Hill 

simulation. Fire behavior results showed distinct variation between environmental conditions and 

fuel resolution scales, with moisture level conditions having the least influence, and resolution 

scale having the highest (Fig 19).  

 

Within-run variability was highly sensitive to all three main input variables: moisture level, wind 

speed, and level of resolution, with low levels of moisture, large scale of resolution and high wind 

speeds leading to highly variable behavior. Both burned area at end time (Fig 19a), and when 

looking at the max rate of growth (Fig 19b). Note that in these plots, single characteristic runs 

have a scale of resolution of 64m. For the burned area, at low wind speeds, the mean does not 

change drastically going from high to low resolution, but the variance does increase. Moderate and 

high wind speed conditions show significant changes on the mean and variance for burned area, 

with high resolution showing lower variance and higher burned area. Higher wind conditions show 

expectedly higher burned area, but also show much higher difference in the means depending on 

the resolution than in the low wind condition. These are also accompanied with a much higher 

variance than in high resolution conditions. Large levels of variation are expected in high wind 

conditions since there is larger uncertainty where the fire could spread.  Large mean differences 

for different resolution levels on high wind speed cases was an unexpected result, since the 

expectations were that the fire behavior model would be more sensitive to resolution levels at 

marginal levels of fire behavior (i.e. low wind, high moisture conditions). Another unexpected 

result was a different fire behavior being observed at moderate levels of resolution, in particular 
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the 8m run, which showed higher variance for multiple metrics and a large dip for burned area 

over both low and high resolution. 

 

The maximum rate of growth provides some clarity. In low moisture conditions, the mean is not 

significantly different for different resolution levels, but the variance is significantly higher. For 

all moisture and wind conditions, small resolution scale led to much lower variance. In high wind 

conditions, all moisture conditions have these same characteristics.  Coupling the large difference 

in burned area for high wind conditions with a relatively similar max rate of growth indicates that 

low levels of resolution have much flashier fires, with large amounts of growth coming on bursts 

of intense fire behavior, while high levels of resolution tend to have much more stable predictable 

fire behavior. This is a similarly surprising behavior since lower levels of resolutions are 

essentially homogeneous grass, where we don’t expect high levels of variance, but rather a 

constant burning fire.  The same change in behavior for the 8m run is also visible in the max rate 

of growth with a large dip being present at that scale. An example of the min, median, and max 

burned density scenarios for the high wind, low resolution, low moisture condition burns are 

Figure 19: Ensemble run results for classic fire behavior metrics. Ensemble run results for a) 

burned area (m2) at simulation end time (t=400 s), b) max rate of growth (m2/s) and c) max 

rate of spread (m/s). Error bars are calculated by using the 90th percentile. 

A 

B 

C 
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shown in Figure 20 and comparisons of these same conditions over all resolutions is shown in 

Figure 21. 

  

Two of the proposed metrics were meant to capture behavior that was more sporadic and relied on 

flashing fire over a constant growth. Reduced area, and the ratio between rate of spread and bulk 

rate of spread were calculated for each run. These new metrics are hard to interpret given the small 

effect of the input variables on the metrics, coupled with a large variance associated with several 

environmental conditions.  

 

The reduced area should be lower for fragmented fire and should be higher for a constant 

spreading fire in all directions under a low wind (Fig. 22) . Flashing fire would show up as a dip 

in that curve. A sharp increase for the reduced area when moving from 2m to 4m to 8m resolution 

was the only common trait across all environmental conditions and it’s likely related to the max 

rate of growth showing a dip for those same conditions as well. Since the fire was less prone to 

large bursts of fire behavior, it was likely a marginal fire. Variance for this variable was markedly 

higher for high moisture conditions, where highly fragmented fires were the norm and increasingly 

marginal fire behavior was expected. 

 

 

 

 

 

 

Figure 20: Fuel consumption variety at simulation end time. Fuel density at simulation end 

time for the a) min, b) median, and c) max of burned case scenario for a low resolution, high 

wind, low moisture run. 
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  Figure 21: Fire behavior at different levels of fuel resolution. Fuel density at the surface 

level for a low wind / low moisture condition for a) 2m, b) 4m, c) 8m, d) 16m, e) 32m, and f) 

single characteristic. 

A 

B 

C 

D 

E 

F 
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Max ROS/BROS is meant to represent how much of the fire spread is going in the forward as 

opposed to the lateral and backward spread (Fig. 23). These was hard to interpret but varied mostly 

with wind speed, with moisture content and resolution level having little to no effect on it. Runs 

where it did vary, as with moderate wind speeds had large variance associated with it which made 

it harder to interpret. This metric was found insufficient and provided little to no information on 

fire behavior, even for cases where high levels of difference were expected.  

 

An important metric that measured fire behavior spread was the normalized canopy 

consumption. Shown in Figure 24, canopy consumption was much higher for low levels of 

resolution, where the scales of aggregation were large enough that averaging canopy fuels led to a 

continuous layer of low-density fuel. Due to the nature of aggregating at every vertical layer, the 

high-resolution runs had a much lower canopy cover, and as such had a higher wind speed felt at 

the surface. It also meant that sustaining a crown fire was much more accessible for low resolution 

runs, since once a single cell exhibited torching, the low fuel density in the contiguous cells led to 

a relatively small amounts of moisture needed to be removed in order to ignite that next cell, and 

since there were no significant gaps in the crown, the crown fire could sustain itself with little help 

from a surface fire. This led to high normalized canopy consumption, while low resolutions have 

low levels even if they are igniting canopies.  

 

Figure 21: Ensemble run results for the max RoS/BRoS for all conditions. Error bars are 

calculated by using the 90th percentile from the ensemble runs. X-axis represents the scale 

at which the fuels were aggregated prior to the run starting. 

Figure 22: Ensemble run results for the reduced area. Error bars are calculated by using the 

90th percentile from the ensemble runs. X-axis represents the scale at which the fuels were 

aggregated prior to the run starting. 
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The uncertainty created by different canopy covers and the effects it might as possible explanations 

for differences inspired a set of similar runs where the aggregation occurred only in the surface 

levels. This is justified since for the methodology presented here, the information required for 

surface and canopy layers come from different components of instrumentation.  Due to time 

limitations, ensemble runs were not possible, but results for a single run for each permutation of 

environmental condition and resolution level for burned area, max area growth, and normalized 

canopy consumption are shown in Figure 25. The high variability seen on the runs where all 

vertical layers are horizontally aggregated indicate that these results are only preliminary but are 

nonetheless important to understand the causes between the large differences in resolution levels 

through environmental conditions. 

 

 Burned area and max rate of growth are much more sensitive to wind conditions, with low wind 

conditions being markedly lower for a surface level averaging than for a full domain averaging, 

but higher wind speed conditions having generally higher burned area. This is particularly true for 

larger scales of resolution, where a full canopy cover could slow down the winds felt at the surface 

considerably, leading to much smaller burned areas. A larger parameter sweep for wind speeds 

would be interesting since there is a large shift in behavior from moderate to high wind conditions. 

The max rate of growth across the board is much lower than for the full domain averaging 

indicating much more constant heading fires as opposed to the flashy fires that characterized the 

low resolution runs in moderate and high wind conditions. Normalized canopy consumption is 

expectedly down and has leveled off for runs making it wholly dependent on fuel moisture and 

wind speed, and not to the level of resolution. This is important to properly interpret probability 

of torching and existence of crown fires from fire behavior model runs. It’s important to notice 

that low wind conditions have higher normalized canopy consumption (Fig. 24), but it makes sense 

since the surface consumption would be much lower for these runs, making the first torching trees 

have a greater impact on the metric since it’s not weighed down as much by the rest of the surface 

fuel consumption. Figure 26 shows the fuel density for surface and crown fuel for two runs at 2m 

shows the fuel density for surface and crown fuel for two runs at 2m and 64m aggregation levels. 

Note that while torching does occur, a crown fire cannot be sustained on these conditions. 
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  Figure 24: Ensemble run results for the normalized canopy consumption. Error bars are 

calculated by using the 90th percentile from the ensemble runs. X-axis represents the scale at 

which the fuels were aggregated prior to the run starting. 

Figure 25. Results for surface fuel aggregation as opposed to aggregation of all vertical layers. 

Ensemble run results for a) burned area (m2) at simulation end time (t=400 s), b) max rate of 

growth (m2/s) and c) normalized canopy consumption () for all runs. Error bars are calculated by 

using the 90th percentile from the ensemble runs. In pink, cyan and lime green are shown the 

single run results for runs averaging only the surface fuels. 
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We can also look at the effect of adding more information into the system and the effect it has 

on fire behavior. We employed Shannon’s diversity index to assess information loss over 

coarsening of scales. Figure 27 shows how the diversity index changes for different scales of 

resolution for different categorization schemes. Two important facets to note are that the 

information change for fuel species is not significant, and information loss for the relevant 

categories of grass, shrub and represent a slow decay until the single characterization plot (64m 

resolution). Evaluating at these categories more closely, the litter category starts off at a low 

percentage and is quickly absorbed into the grass category. Due to the inherent structure in the 

system where shrubs had clumped together, not much more information is added by going from 

16m down to 2m resolution. The fuel density categories and information loss between scales 

change drastically across different scales of resolution. The diversity index for both the 32m run 

are significantly lower than those for high resolution, with 32m runs being concentrated on two 

contiguous categories. The fuel density is then shown not to vary too highly at these scales. 

However, there were large differences when going from 16-32m, and from 8-4m in resolution, 

which indicate that while the fuel height might not change drastically at these scales, the fuel 

density does. Also, important to note is that for the fuel species categorization, the diversity index 

increased for a 32m resolution compared to 16m resolution. This is likely due to the low number 

of categories (at that point, just grass and shrub). This led to the creation of another fuel moisture 

Figure 26. Surface and canopy consumption for a surface fuel aggregation. 

Surface fuel density at simulation end time for a) a 2m resolution run, c) a single 

characteristic run, and fraction canopy fuel remaining for b) 2m resolution run, d) 

single characteristic run. 
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category going on 5% percentiles from 0 to 1, from dead fuel moisture to live fuel moisture. This 

is shown in green in figure 27A, and tracked through different moisture conditions in figure 27B. 

This shows a similar trajectory to the initial fuel moisture categorization in terms of species, but 

also does not show the aberration from having too few categories. There was not much 

differentiation seen from the different moisture conditions, since the averaging occurs between 

relatively low moistures of dead fuel compared to live fuel regardless of the low moderate or high 

moisture condition.  

  

Using the diversity index on the output (Fig. 28) as a function of the detailed fuel moisture input 

diversity index.  Since different levels of resolution there are only two categories for the output 

diversity index, small changes from similar conditions aren’t as drastic as the effects coming from 

different levels of moisture or wind speeds. Another issue of only having two categories, is that 

it’s essentially undistinguishable to have a run where almost no fuel was burnt and almost all the 

fuel was burnt. Since the categories are weighed the same, these would appear completely the 

same, even for different levels of resolution. This can be seen when looking at the drastic change 

in behavior from low and moderate winds, to high wind scenario, where the high moisture content 

run goes from being the one with the lowest diversity index to the highest. This is because the low 

moisture run burns almost the entire domain, leaving little to no change and appearing as having 

lower diversity. 

 

  

 

Figure 28. Results of diversity index as output variable. Shannon diversity index for fuel 

density at simulation end time as a function of the detailed fuel moisture diversity index. 

Figure 27. Shannon diversity index for different categorization schemes 

A B 
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Statistical results show the complex interactions among environmental variables. All interactions 

were significant for burned area, all but one (interaction of resolution scale and moisture) were 

significant for max rate of growth but only the main effect of wind speed was significant for max 

rate of spread. Moisture level was the most significant predictor for burned area, since it modifies 

the amount of available flashy fuels within the computational domain. The interactions within 

variables for the burned area are all interesting. Resolution scale has a negative impact on burnt 

area but positive interactions with both moisture and wind speed, meaning that at higher levels of 

moisture and higher wind speed conditions, the resolution scale’s effect would be more 

pronounced. Max rate of growth expectedly depended pretty evenly on wind speed and moisture 

content, with scale of resolution being the least important main variable. The most surprising result 

is that the max rate of spread is only dependent on the wind speed. While this is an assumption 

commonly used in decision making tools, fire behavior metrics have usually moved past that 

simple dichotomy. Note that this does not mean that the fire will move the same distance over the 

simulation runtime, since this is just the max rate of spread.  

 The interaction between wind speed and moisture with resolution level was interesting and there 

was high likelihood that it was reflecting the dip for burned area for the 8m run. When observing 

the moisture levels of the fuels where the fireline is initiated moderate levels of resolution have a 

large number of cells being ignited near large high moisture blocks, which would inhibit the initial 

fire growth and have large effects for burned area downstream. At high levels of resolution, there 

are enough low moisture cells scattered around that the initial ignition can reliably find low 

moisture cells to ignite quickly and effectively. At low levels of resolution, the averaging over a 

larger number of cells lowers the moisture levels near the ignition lines enough to enable a strong 

head fire within those areas. To test out the effect that the position of the initial fire line could 

have, a series of ensemble runs were performed where the initial fire line was shifted 5m to the 

left and 5m to the right.   

To better elucidate the how changes in the resolution of the fuel information influence the fire 

simulation, the moisture content and wind speed cases were combined into a single data set using 

the Fosberg fire weather index (Fosberg 1978). The Fosberg fire weather index is a non-linear 

filter of meteorological data designed to provide a linear relationship between the combined 

weather inputs and wildland fire behavior by following the same principles as the flame length 

model of Byram (1959).  

Figure 29. Ensemble run results for maximal downwind spread (m). Error bars are calculated by 

using the 90th percentile from the ensemble runs. X-axis represents the scale at which the fuels 

were aggregated prior to the run starting. 
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Figure 30. Percent change in Shannon diversity index as a function of the scale of resolution of 

the fuel information for the 4 highest intensity fires from Table 4. 

Figure 30 shows how the information content as measured by the Shannon Diversity Index of the 

amount of energy released to the atmosphere changes as the resolution of the fuels change for the 

four highest values of the Fosberg fire weather index shown in Table 4. For the highest intensity 

fire little information is gained as the level of detail in the fuel input increased, but as intensity 

decreased more information from the fuels layer became evident in the fire’s simulated behavior. 

However, this trend did not continue for the lowest intensity fires from Table 4 (Figure 31). Instead 

the lower intensity fires exhibited similar information gains without a clear intensity-based pattern. 

Table 4. Fosberg Fire Weather Index values as a function of fuel moisture content and wind 

speed. 

 Wind Speed (m s-1) 

3 6 12 

%
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4 
2.89 5.78 11.56 

8 
2.54 5.09 10.18 

16 
1.07 2.13 4.26 

 

 

We hypothesize that this change in response is tied to the model’s inability to resolve the processes 

important for maintaining the fire at these low intensities. An example of one of these key 

processes is the generation of turbulence by buoyant motions associated with the flaming front. As 

the depth of the flaming front shrinks below the grid size of the fire model, the buoyant updrafts 

become poorly resolved and thus remove a source of turbulence that helps maintain the combustion 
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process. A second piece of this hypothesis is that the information gain we do see for these low 

intensity fires is tied to changes in the influence of vegetation drag resulting from increased detail 

in the fuels. The vegetative drag provides a source of turbulence that while not as strong as that of 

the fire’s buoyancy, is capable of maintaining the combustion process to some degree. As many 

prescribed fires tend to feature only limited amounts of head fire with much more of the spread 

occurring as a mixture of flanking and backing spread, how fire behavior models perform under 

these lower intensity conditions will be a determining factor in their ability to assist land managers 

in the prescribed fire planning process. 

Figure 31. Percent change in Shannon diversity index as a function of the scale of resolution of 

the fuel information for the 4 lowest intensity fires from Table 4. 

E. Ensemble QUIC-Fire behavior simulations large domain 

Using the diversity index for fuel density and fuel moisture categories on as a function of scale, 

two key trends are apparent.  As scale increases the heterogeneity or information associated with 

Figure 32.  Shannon diversity index for different categorization schemes (A) and categorization 

of available fuel moisture (B). 

B A 
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the fuel density responds with an expected degradation (Fig. 30). Of interest is the response from 

the fuel moisture categorization which increases in diversity as scale coarsens from 2 to 4m voxel 

domains.  This result corresponds with the moderate and high moisture scenarios, where gains in 

heterogeneity are demonstrated at peak of 8m voxel scale in the moderate moisture scenario and 

16m voxel domains for the high moisture scenarios. The coarser scale of the EAFB input data and 

larger modeling domain (Fig. 31) confound the fuel moisture responses in the diversity index when 

compared with the Pebble Hill simulations.  The range of values from the diversity index are 

reduced versus the values from the fine-scale fuel metrics described in the Pebble Hill data set 

suggesting that there is a reduction in heterogeneity by estimating the fuel metrics at a 25m2 

grainsize.  This finding has implications that alternative methods of aggregation and estimation to 

landscape scales may be necessary to carry inherent variability to coarser scales.  

  

 

Conclusions and Implications for Future Research  

The ability to address scaling in the domain of both full physics-based and hybrid quick solving 

CFD models is a link to understanding tradeoffs for speed versus accuracy that are essential to 

prescribed fire managers.  The most fundamental input to inform scaling are the representation of 

fuels three-dimensionally.   

 

Optimal input scale: 

Our primary objective was to determine optimal scales for inputs that result in robust estimates of 

fire behavior important to fire managers on DoD lands.  The results of this research suggest that 

Figure 33.  The QUIC-fire simulations for the high moisture EAFB runs showing fuel density 

(A) and fuel moisture (B). 

A B 
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unsurprisingly fuels inputs are the primary driver of expected energy release when coupled with 

factors of fuel moisture and wind.   

The resolution of these fuels provide the highest levels of information when aggregated from the 

finest scale, in this instance TLS-derived bulk density.  These data encapsulate the best possible 

characterization and demonstrably lose information as a function of scale coarsening, but the cost 

of the loss of information in regards to fire intensity depends on the conditions of the fire.  Under 

conditions favorable to rapid growth and high intensity, the role of input scale is less important as 

wind, buoyant motion, and resulting flaming depth.  These conditions supersede the information 

of the fuels, suggesting that coarser scale data (8-20m voxels) are appropriate for fire that occurs 

under critical upper end thresholds.  Under more marginal conditions the scale of fuels is a critical 

driver of fire growth and behavior as a function of drag and therefore the finest resolution data are 

necessitated for these types of prescribed fire simulations.  The scales these types of fuels 

encompass are <1m to 2m voxel sizes and can be characterized in the subgrid processes of both 

HIGRAD\FIRETEC and QUIC-fire or other fine grain CFD models as the Wildland Fire 

Dynamics Simulator (WFDS). Between the contrast of both extremes, expectedly mid-range fire 

weather simulations would require inputs that fall within the 2-10m voxel domain for bulk density 

inputs accounting for drag effects and canopy interaction. 

Fuel type specificity and moisture categories are also important factors that tie to the ability for 

bulk density to engage in combustion.  With limited data regarding fuel type on the sites used in 

the simulation framework, we relied on a basic logic of three primary categories of litter, grass, 

and shrub.  Coarsening of these variables led to limited information loss ostensibly due to the small 

categorical groupings.  Whereas the fuel moisture categorization had twenty potential classes that 

encompassed both live and dead fuel moisture and produced a linear decay of information as scale 

coarsened. 

Knowledge Gaps 

To further explore this line of inquiry, we focused on the derivative products of both TLS and ALS 

data to parameterize our analysis of scale as a function of the diversity index.  We did not include 

information about spatial neighborhood effects.  Alitieri et al. (2017) describe ways to integrate 

spatial clustering and neighborhood metrics.  The additive element of spatial-based elements may 

also effect the information being conveyed through fire behavior outputs that could prove to be 

equally informative in regards to both voxel scale and neighborhood influence.  A missing element 

to all of these avenues is the comparative analysis of the range of the diversity index at each data 

and domain scale.  The diversity of variability for the Pebble Hill site was higher than that of the 

EAFB site.  In turn, we would hypothesize that the simulation outputs and the 3D voxel plots 

would exhibit higher diversity index values then the before mentioned data sets.  Thus, identifying 

those linkages between data scales is an obvious aspect of future investment.   

Future Research 

Future research should include the facets discussed in this section, specific investments to 

understand these scaling effects have significant impacts on numerous funded research programs 

through SERDP.  From this research we have identified a set of recommended future research 

themes, including; 
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Integration of an automated fuelbed simulator is the next step in the advancement of fuels 

characterization. A prototype environment that produces rational estimates of needle litter was 

produced as part of this project, but learning curve and adjustments to develop more automated 

and objective methods of simulation proved to require a more significant investment.  These 

simulations integrate not only three-dimensional bulk density estimates, but other intrinsic fuel 

properties (SAV, porosity, fuel type) that would add dynamic inputs to support CFD modeling 

initiatives. The key advantage of this research direction is the ability to generate robust estimates 

of fuels without the expense of remotely measuring the site with TLS or ALS systems and directly 

linking the simulations with readily available data such as aerial imagery to populate fuelbeds. The 

direct benefit of using of using fuelbed simulated objects is the detailed accounting of all features 

in the fuelbed, where effects of occlusion and inability to segment laser data into tenable fuel 

categories is eliminated.  Additionally, robust characterization of fuel characteristics would 

challenge existing assumptions within CFD models that already generalize fuels inputs to simplify 

combustion code embedded in the models. The products generated from the simulation space 

should also have a user design interface, where managers could easily assemble and arrange fuel 

objects to generate inputs to CFD models that could represent existing units, out of prescription 

units, or optimal condition units to test assumptions of prescribed fire simulations.  We have 

termed this concept “FUELScraft”, which could have direct linkages to three dimensional 

crown\tree simulation frameworks as STANDFIRE, and direct benefit to the 3D fuels 

characterization SERDP project (RC19-1064). 

In this project the changes in information in regards to fire outputs as energy to the atmosphere 

assumed generalized ignition and wind patterns with changes in scale driven primarily by fuel 

inputs. Simulated fire behavior responded to the increased information in the fuels layer, however 

the pattern of response warrants further investigation. As fire intensity decreased, the response to 

added fuel information increased up to an apparent threshold. Further study should investigate this 

threshold behavior with multiple models and various subgrid parameterizations to ascertain 

whether this behavior is universal to CFD-based models and can the behavior be overcome through 

improved representation of subgrid processes or is higher model resolution the only recourse. 

Behavior of these lower intensity fires is critical for a range of prescribed fire applications. To 

better management prescribed fires, land managers need practical tools capable of simulating fire 

behavior across a range of conditions, both high and low intensities, and these tools subsequently 

need to provide appropriate input to fire effects models for evaluating fire objectives. Improving 

our understanding of the behavior of CFD-based models at these lower limits of fire intensities is 

critical for determining their near-term practicality as a tool for land managers. 

 

Benefits 

The results of this research benefits DoD fire managers by providing an expected range of scales 

that affect spread and intensity of simulated fire using a quick solving CFD model.  This research 

also helps managers assess data needs that will better inform expected fire behavior that supports 

prescribed fire objectives across DoD and other federally managed lands, specifically in predicting 

fire for marginal burn prescriptions.   
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Appendix A-Supplemental Data 

A.1 Data Repository 

All fire behavior input data are being transferred to the United States Forest Service Data Archive 

(https://www.fs.usda.gov/rds/archive/).   

Table A.1. List of uploaded data files for the United States Forest Service Data Archive 

Name Format Resolutions Type 

Pebble Hill Plantation QUIC-fire; 

HIGRAD\FIRETEC 

Voxel GRID 

2m – 4m – 8m -16m -

32m – Single 

Bulk Density 

Pebble Hill Plantation QUIC-fire; 

HIGRAD\FIRETEC 

Voxel GRID 

2m – 4m – 8m -16m -

32m – Single 

Fuel Moisture 

EAFB-L2F QUIC-fire; 

HIGRAD\FIRETEC 

Voxel GRID 

2m – 4m – 8m -16m -

32m – 64m 

Bulk Density 

EAFB-L2F QUIC-fire; 

HIGRAD\FIRETEC 

Voxel GRID 

2m – 4m – 8m -16m -

32m – 64m 

Fuel Moisture 

 

 

A.2 EAFB Fire Simulations and Input Data 

A total of 54 runs were done using a laptop with 8 cores requiring almost 35 hours to run. Analysis 

scripts were then performed using Python and shell script commands taking another 2 hours. Due 

to the size of the domain and the overall length of the simulation being longer, ensemble runs. Fire 

behavior results showed distinct variation between environmental conditions and fuel resolution 

scales, with moisture level conditions having the least influence, and resolution scale having the 

highest. Results for fire behavior metrics are shown in Figure A.1 Fuel and moisture inputs for all 

scales are shown in Figure A.2. 

https://www.fs.usda.gov/rds/archive/
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Figure A.1: Fuel consumption at simulation end time for different resolutions for L2G Plot. Fuel 

resolution is a) 2m, b) 8m, c) 16m, d) 32m, e) 64m, f) single characteristic 
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Figure A.2: Finished computational domain for L2G Plot.
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Figure A.3: Fuelbed characteristics at different resolutions for L2G plot 
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Figure A.3: Continued  
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 Figure A.3: Continued 
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