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Abstract 
Introduction & Objectives. Geomechanical properties of seafloor surface sediment layers affect 
the characterization, assessment, and management of submerged munitions sites in multiple 
aspects including: sinkage and burial of unexploded ordnances (UXO), exposure or capping of 
UXOs through sediment transport processes, and interpretation of remote sensing (e.g., acoustic 
and electromagnetic) surveying methods. Traditional methods of seafloor sampling or cone 
penetration testing (CPT) are either time- and cost-intensive or do not provide the required 
sensitivity to sample sediments in the uppermost surface accurately. Free fall penetrometers (FFP) 
have been introduced as a cost- and time-effective method to assess the geomechanical properties 
of seabed surface properties and have been specifically suggested for UXO characterization. The 
overarching goal of project MR 18-1233 is the development and proof of concept of an improved 
framework for the deployment and data analysis of a portable free fall penetrometer (PFFP) in 
stratified sediments to assist with a cost-effective and rapid characterization, monitoring, and 
management of submerged munitions sites.  

Technical Approach. The following research questions were identified as essential to achieve this 
goal: 1) What are the typical differences in geomechanical properties (such as sediment strength, 
erodibility, and permeability) between surficial seafloor layers in sandy and muddy environments, 
respectively? 2) Can key geomechanical properties for UXO site characterization be directly 
inferred from portable free fall penetrometer results? 3) Which potential uncertainties of current 
UXO site characterization and monitoring methods resulting from surficial seafloor stratification 
can be addressed by an advanced use of PFFP? The research strategy included field surveys in 
areas of varying sediment types and environmental conditions, laboratory testing (sedimentology 
and geomechanics), data analysis and correlation, and the development and proof of concept of a 
novel investigation framework. Seven main field sites were tested during this experiment and were 
complemented by additional measurements obtained through collaborative efforts.  

Key Results. The key findings of this project include: 1) Current methods of PFFP data analysis 
were improved and validated. It was found that undrained shear strength can be estimated from 
PFFP for muddy seafloor sediments and that friction angles and relative density can be derived 
from PFFP for sandy seafloor sediments. 2) Significant variations in geomechanical properties 
within uppermost seabed surface layers were identified even without significant changes in 
sediment type. The results even suggested that uppermost seabed surface layers may exhibit more 
suspension-like behavior than soil behavior depending on the water content. 3) The variability in 
geomechanical properties is of relevance to UXO site assessment and monitoring. 4) A novel PFFP 
deployment and analysis strategy was formulated that enables a rapid and cost-effective 
characterization of the upper meter of the seabed surface. 

Benefits. The results provide a new insight into effects of geomechanical seabed soil layers on the 
interpretation of remotely sensed UXO site monitoring methods and UXO risk assessment. The 
derived relationships improve PFFP data analysis and interpretation for geomechanical 
characterization of subaquatic sites. The developed PFFP deployment and analysis framework can 
provide rapid, site-specific insights into spatial and sediment-depth dependent variations in 
geomechanical properties. 
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Executive Summary 
Introduction 
Geomechanical properties of seafloor surface sediments and sediment layers affect the 
characterization, assessment, and management of submerged munitions sites in multiple aspects 
including: sinkage and burial of unexploded ordnances (UXO), exposure or capping of UXOs 
through sediment transport processes, and interpretation of remote sensing (e.g., acoustic and 
electromagnetic) surveying methods (Fig. E1). Traditional methods of seafloor sampling or cone 
penetration testing (CPT) are either time- and cost-intensive or do not provide the required 
sensitivity to sample sediments in the uppermost surface accurately (e.g., Blomqvist 1991; Lunne 
2012). Free fall penetrometers (FFP) have been introduced as a cost- and time-effective method to 
assess the geomechanical properties of seabed surface properties and have been specifically 
suggested for UXO characterization (Mulhearn 2002; Wilkens 2003; Richardson and Valent 2004; 
Stoll et al. 2007; Zhang et al. 2007; Abelev et al. 2009; Stark and Wever 2009). However, 
limitations in data analysis have been identified that still restrict the direct application of FFP for 
UXO site assessment (Stoll et al. 2007; Abelev et al. 2009; Stark and Wever 2009; Stark et al. 
2012; Chow et al. 2017). The overarching goal of project MR 18-1233 is the development and 
proof of concept of an improved framework for the deployment and data analysis of a portable 
free fall penetrometer (PFFP) in stratified sediments to assist with a cost-effective and rapid 
characterization, monitoring, and management of submerged munitions sites. The following 
research questions were identified essential to achieve this goal: 1) What are the typical differences 
in geomechanical properties (such as sediment strength, erodibility, and permeability) between 
surficial seafloor layers in sandy and muddy environments, respectively? 2) Can key 
geomechanical properties for unexploded ordnances (UXO) site characterization be directly 
inferred from portable free fall penetrometer results? 3) Which potential uncertainties of current 
UXO site characterization and monitoring methods resulting from surficial seafloor stratification 
can be addressed by an advanced use of portable free fall penetrometers? The research strategy 
included field surveys in areas of varying sediment types and environmental conditions, laboratory 

Figure E1. Conceptual sketch of potential issues for UXO site assessment and 
management associated with variations of geomechanical properties and layering of 

seafloor surface sediments. 
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testing (sedimentology and geomechanics), data analysis and correlation, and the development and 
proof of concept of a novel investigation framework.  

Objectives 
Sediment stratification at the uppermost surface of subaqueous sediments can vary in dimensions, 
physical characteristics, and behavior. The top layer often exhibits lower density and strength, and 
higher erodibility and mobility. This impacts munition deposition, burial depth, and stability, as 
well as most surveying methods, and can lead to significant issues with munition detection, 
monitoring, and munition site management (Fig. E1).  

Portable free fall penetrometers (PFFPs) have been shown to be a cost-effective tool to 
characterize a munitions site. However, the calibration process previously used tends to blur 
interpretation of the data within seabed sediment strata. The key hypotheses of this project were: 

1. Seafloor surface layers can exhibit significant differences in geomechanical properties, 
impacting current UXO site surveying and monitoring, as well as UXO burial/exposure 
risk assessment. 

2. PFFP data analysis methods can be advanced to help to assess relevant geomechanical 
properties at UXO sites, and particularly at sites featuring surficial seabed stratification, in 
a rapid and cost-effective manner by complementing and supporting current 
methodologies. 

These research hypotheses are directly in line with one of the objectives of the Statement of 
Need (SON) MRSON-18-C1: the improvement of the current knowledge of environmental 
conditions, specifically, sediment characteristics, of underwater sites that impact the performance 
of sensors and systems to detect and classify buried and proud munitions. In this project, a novel 
investigation framework was developed and initially tested. This framework enables MR 
investigators to conduct a rapid and cost-effective PFFP site characterization of seafloor surface 
layering. This PFFP characterization provides information that helps assess potential uncertainties 
when using acoustic/visual seafloor inspection, that can be used to estimate munition burial depth 
at impact, and, therefore, that aids in assessment of risks of munition exposure or burial related to 
the sediment’s geomechanical behavior and layering. 
 
Technical Approach 
The research strategy of this project included four main parts: 1) The collection of a comprehensive 
set of field measurements and sediment sampling from locations of varying environmental 
conditions; 2) a detailed geotechnical and sedimentological characterization of sediments from all 
tested field sites based on laboratory testing; 3) data analysis and synthesis towards addressing the 
stated research questions and hypotheses; and 4) the development of a novel investigation 
framework using PFFP and a field demonstration. 
 Field testing sites included seven areas in the Pamunkey-York River tidal system (hereafter 
termed York River), which feeds into the Chesapeake Bay. Seafloor sediments were 
predominantly muddy at four of these sites and predominantly sandy at the remaining three sites. 
Salinity and flow conditions varied between most sites. These sites were chosen for their 
differences in environmental conditions while still being located conveniently close to each other. 
Additional data sets were integrated into this data base based on relevance to the project goals. 
They provided a wider range of environmental conditions. This included two additional sites in 
Virginia (Piankatank River and James River), Sydney Harbour, Nova Scotia, Canada, and sites in 
Delaware Bay. Most of these data collections were in collaboration with other SERDP 
investigators. Furthermore, some locations in the York River were revisited with diver support 
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based on feedback during the In-Progress Review meeting. All seven York sites were investigated 
using a consistent testing program with: more than 10 PFFP deployments per site using the PFFP 
BlueDrop; sediment sampling/coring using box coring, Ponar grab sampling, gravity coring 
(muddy sites), vibrocoring (sandy sites), and/or diver push cores for chosen sites; acoustic 
measurements using an acoustic Doppler current profiler (ADCP) for assessment of flow 
conditions, chirp sonar, and in some locations rotary side scan sonar imaging; and, conductivity-
temperature-depth (CTD) measurements. The BlueDrop PFFP was chosen for its ruggedness and 
suitability for deployment in most environmental conditions and its speed of deployment (about 1 
minute per deployment in coastal water depths). Additional sites featured at least 10 PFFP 
deployments, the collection of sediment samples, and some acoustic seabed surveying. 
 All sediment samples collected at the main sites of this project were analyzed in great detail 
through sedimentological (grain size, bulk density, organic content, X-ray imaging, and erodibility 
measurements) and geotechnical (friction angles, cohesion, undrained shear strength, state of 
consolidation, void ratios) laboratory testing. The cores enabled an analysis to a sediment depth 
equaling the penetration depth of the PFFP (~ 1 m). Depth intervals of 1 – 10 cm were subsampled 
and tested, with 1 cm increments typically being applied in the top 10 cm of the sediment cores. 
 The analysis and synthesis of the collected field and laboratory data was committed to 
answering the research questions stated, and by doing so, testing the project’s key hypotheses. 
Firstly, PFFP measurements were correlated to the geomechanical properties derived from the 
sediment sampling and laboratory testing, and those correlations were used towards the 
development of relationships to estimate geomechanical properties from PFFP measurements. 
Special attention was given to deriving undrained shear strength. Secondly, sediment properties 
were evaluated along vertical profiles into the bed with special attention to changes with sediment 
depth (layering). Finally, a discussion was provided regarding impacts on surveying and 
monitoring strategies that arise from the variations in geomechanical properties between the 
different layers and soil conditions. 
 This project concluded with the development of a novel investigation framework and 
strategy for utilizing PFFP for rapid and cost-efficient UXO site characterization. A strategy was 
developed based on the results from the previous tasks, and was demonstrated through a proof-of-
concept field study conducted in the Potomac River, Maryland, in 2019. 
 
Results and Discussion 

a) Correlate PFFP measurements with geomechanical properties and the development of 
relationships 

PFFP featuring a simplicity and ruggedness to be deployed rapidly in varying environmental 
conditions and from different types of deployment platforms often offer only measurements of 
acceleration and pore pressure with time. Based on existing literature, it was hypothesized that a 
better correlation between geomechanical properties and PFFP measurements can be achieved if 
the data analysis strategy is adjusted to different soil types. More specifically, it is suggested to 
differentiate between cohesionless, cohesive, and mixed sediments. It is expected that mixed 
sediments will collapse towards an either cohesionless or cohesive behavior depending on the 
specific mixtures. Therefore, special attention was given to the cohesionless and cohesive 
sediments. From further literature review, it was determined that for cohesionless sediment, a 
correlation to friction angle and relative density should be sought, where friction angle is expected 
to be related to erosional parameters and relative density is expressing porosity (Fig. E2). For 
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cohesive sediments, it is proposed to estimate undrained shear strength, which is expected to be 
related to bulk density which, in turn, is related to erosional parameters as well as porosity (Fig. 
E2).  
 The collected data set allowed a significant step towards a confident derivation of 
undrained shear strength from the acceleration measurements. The conceptual method, as 
suggested by, e.g., Dayal and Allen (1973), Aubeny and Shi (2006), or Stoll et al. (2007), was 
tested. This method includes the following major steps: 1) Derive the total resistance force from 
the measured deceleration during impact and the known buoyant weight of the probe using 
Newton’s Law; 2) Calculate the associated stress from the resistance force using the projected 
surface area of the nose cone of the probe; 3) Apply a strain rate correction to simulate the stresses 
for a chosen constant penetration velocity (usually 2 cm/s in line with standard CPT testing; Lunne 
et al. 2012); and 4) Apply an empirical cone factor to account for the shearing principle of using a 
conical penetrator. Different strain rate correction methods were tested, and strain rate and cone 
factor correction factors were determined iteratively based on comparison to laboratory vane shear 
results. The results suggested that the undrained shear strength can be successfully determined 
from the PFFP results with cone factors in ranges as reported by other studies before (e.g., Aubeny 
and Shi 2006). Strain rate effects were found approximately negligible. Therefore, it was tested if 

Figure E2. Flow chart providing overview over theoretical and empirical relationships 
between geomechanical properties and PFFP measurements based on literature. 
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similarly agreeable estimates of undrained shear strength could be derived when omitting the strain 
rate correction (Fig. E3). The results confirmed that no strain rate correction is needed for this type 
of PFFP for muddy sediments with an undrained shear strength of 1-10 kPa, simplifying the data 
processing method by omitting the need to estimate one of two empirical factors. It was also found 
that a cone factor of 𝑁𝑁𝑘𝑘=12 represents a good first estimate with 𝑁𝑁𝑘𝑘 varying in a similar range and 
with similar behavior as for traditional CPT. A conference paper (Kiptoo et al. 2019), a conference 
presentation at the Ocean Sciences Meeting (Kiptoo et al. 2020), and a journal manuscript (Kiptoo 
et al., in preparation a) resulted from these findings.  

A significant mismatch between the undrained shear strength determined by the PFFP and 
the vane shear was noted in the uppermost sediment layers (undrained shear strength 𝑠𝑠𝑢𝑢 ≲ 1.5 
kPa). The vane shear appeared unable to record the softness of the seabed sediments as suggested 
by the PFFP. This was further confirmed through the extraction of diver push cores, as well as the 
analysis of water content and bulk density in which these sediments were found to have water 
contents above the liquid limit, suggesting a liquid-like response and no plastic behavior. The issue 
was further investigated using rheological testing of the samples. Preliminary results suggest that 
these top layers can be better described by their rheological behavior than through traditional soil 
behavior (i.e., viscosity could be reported from the penetrometer results). A presentation at the 

Figure E3. Estimated undrained shear strength from PFFP profiles without application 
of strain rate correction for ten muddy sites. Vane shear results are shown as dots. 

(Kiptoo et al., in prep. a) 
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Ocean Sciences Meeting (Stark et al. 2020) and a journal manuscript (Kiptoo et al., in preparation 
b) resulted from this. 

In line with the variations in undrained shear strength measured at the different sites (Fig. 
E3), differences in erodibility, sedimentology, and other geomechnical properties were observed, 
enabling the testing, and if needed, adjustment of existing correlations that were previously 
identified from the literature (Fig. E2). A journal manuscript is in preparation based on these results 
(Stark et al., in preparation). PFFP tests at sandy sites were analyzed based on the method 
suggested by Albatal et al. (2020) and achieved agreeable results regarding friction angles and 
relative density. 

b) Differences in geomechanical properties of different seafloor surface layers 
The PFFP results identified significant variations in undrained shear strength (Fig. E3), friction 
angle, and relative density with sediment depth within the upper meter of the seabed surface. Such 
differences were so severe in some cases that top layers (sediment depth ≤ 10-30 cm) may be better 
described in terms of rheology (i.e., plastic or liquid flow) rather than soil behavior (with shear 
strength). This observation was also confirmed from carefully extracted diver cores and box cores. 
Furthermore, related geomechanical properties such as erodibility and porosity varied as well with 
the observed variations in undrained shear strength, friction angle, and relative density. Neither 
gravity cores nor vibrocores were able to sample the soft seabed surface. It follows that seafloor 
surface layers can exhibit significant differences in geomechanical properties, impacting current 
UXO site surveying and monitoring, as well as UXO burial/exposure risk assessment (hypothesis 
1).  

c) Impact on current surveying and monitoring methods 
Undrained shear strength varied significantly within the uppermost meter of the seabed surface. 
This impacts directly UXO stability and burial. Particularly, the soft seabed surface sediments (𝑠𝑠𝑢𝑢 
< 2 kPa) will unlikely be able to support a UXO, leading to sinking towards deeper sediment 
depths. Similarly, differences were noted in erodibility, leading to potentially strong variations 
regarding scour or capping through sediment transport processes. By ignoring the differences in 
these properties at the seabed surface, sinking will likely be underestimated, and scour and capping 
may be predicted incorrectly. Variations in soil porosity, water content, and bulk density were 
related to the PFFP measurements and also showed significant variations for the different sites and 
with sediment depth. This means that assuming a constant porosity for a certain general sediment 
types with depth or just by soil type will lead to biased interpretations of acoustic penetration depth 
and backscatter in the interpretation of acoustic surveying tools.  

d) Novel PFFP data analysis and deployment framework for PFFP site assessment 
PFFP deployments were performed along gridded transects to cover a previously unsampled river 
bed area in the Potomac River near Blossom Point, MD. Within less than 12 hours, the PFFP 
deployments and initial analysis were carried out. The latter suggested the presence of four 
different sediment type groups in the tested area. The four groups were confirmed by sediment 
sampling and laboratory analysis (Kiptoo et al. 2019) and were also distinguishable regarding chirp 
sonar backscatter intensity (Jaber et al., submitted). Therefore, the PFFP deployment framework 
was found successful regarding a rapid and cost-efficient seafloor surface (< 1 m) assessment 
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targeting geomechanical properties and stratification. The relationships identified in this study 
enable the derivation of geomechanical properties relevant to UXO site surveying, monitoring, 
and assessment. The results suggested that remote sensing techniques would likely benefit from 
calibration using the geomechanical seabed profiles. Therefore, key hypothesis 2 of this project 
(see section 2) was confirmed: PFFP data analysis methods can be advanced to help to assess 
relevant geomechanical properties at UXO sites, and particularly sites featuring surficial seabed 
stratification, in a rapid and cost-effective manner by complementing and supporting current 
methodologies. 

Implications for Future Research and Benefits 
The key findings of this project include: 
• Current methods of PFFP data analysis were improved and validated. It was found that 

undrained shear strength can be estimated from PFFP for muddy seafloor sediments and that 
friction angles and relative density can be derived from PFFP for sandy seafloor sediments. 

• Significant variations in geomechanical properties within uppermost seabed surface layers 
were identified even without significant changes in sediment type. The results suggested that 
uppermost seabed surface layers may exhibit more fluid-like behavior than soil behavior 
depending on the water content. 

• The variability in geomechanical properties is of relevance to UXO site assessment and 
monitoring. 

• A novel PFFP deployment and analysis strategy was formulated that enables a rapid and cost-
effective characterization of the upper meter of the seabed surface. 

The PFFP analysis strategy derived from this project is summarized in Figure E4. This considers 
that the PFFP raw data includes acceleration/deceleration measurements and possibly pore 

Figure E4. Flow chart of  proposed PFFP data analysis framework. Solid arrows refer 
to high confidence relationship. Dashed arrows refer to available relations with need for 

further improvement regarding broader grain size distributions. The resulting 
properties can be further related as shown in Figure E2. 
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pressure measurements in line with the PFFP used in this study as well as modern PFFP 
capabilities. Furthermore, it is assumed that general information on soil type are available from 
geological maps or pre-existing data, sediment samples, and/or can be inferred from remote 
sensing techniques and/or PFFP data. Mulukutla et al. (2011) introduced the firmness factor 
derived from PFFP data and demonstrated its correlation to sediment types. Albatal and Stark 
(2017) proposed a combined use of deceleration and pore pressure data collected by a PFFP to 
assess general sediment type. Key categories for the recommended PFFP data analysis are 
cohesionless (i.e., sand & fine gravel with negligible amounts of fines) and cohesive sediments 
including clays, muds, and mixed grain sizes that exhibit a cohesive soil behavior.  

Chow et al. (2018) and White et al. (2018) provided a theoretical approach supported by controlled 
laboratory tests and validation from synthetic PFFP deployments to derive friction angles and 
relative density of sands from PFFP. Albatal (2018) and Albatal et al. (2020) demonstrated how 
friction angles and relative density of sands can be derived directly from PFFP data. The same 
approach was also successfully tested using data collected within this project. However, the 
validation of these methods has been limited to fine to medium quartz sands so far. It is expected 
that calibration factors may vary with coarser sediments, different grain shapes, and mineralogy. 

Cohesive sediments require further distinction: normally to overconsolidated muds, highly organic 
and bioturbated muds, and very soft muds with high water contents at or beyond the liquid limit. 
Stark and Wever (2009) as well as Albatal & Stark (2017) suggest pathways to distinguish these 
groups from PFFP data. Kiptoo (2020) and Kiptoo et al. (in prep.) provide detailed guidelines to 
derive undrained shear strengths of very soft muds with water contents at or beyond the liquid 
limit. Additionally, Mumtaz and Stark (2020) provide a pathway to estimate the coefficient of 
consolidation from PFFP pore pressure recordings for very soft muds. For normally to 
overconsolidated muds, multiple approaches to derive undrained shear strength for PFFP have 
been presented in the literature. Issues arise associated with a broad variety of grain size 
distributions. This has not been discussed beyond a clear dependence of the measurements on grain 
size distributions (i.e., fines content versus sand content) (e.g., Stark et al. 2017). Little knowledge 
is available to-date regarding how to address high contents of organics, bioturbation, or other 
effects from benthic organisms. 

The framework summarized in Figure E4 offers soil-specific pathways for PFFP data analysis with 
options of using PFFP data only or integrating data available from soil sampling or other geological 
information. Geotechnical parameters as listed as results of PFFP data analysis (Fig. E4 bottom 
line) can be used for further assessment of relevant parameters for remote sensing or erosional 
processes (e.g., Fig. E2). 

Remaining research questions resulting from this work are related to effects of biogenic processes 
on geomechanical seabed properties, the actual correlation of geomechanical properties to remote 
sensing techniques, the assessment of seabed liquefaction from wave forcing, and the integration 
of geomechanical properties into UXO site risk assessment. Furthermore, the proposed framework 
is currently limited by a lack of calibration and validation for diverse cohesionless sediments, 
mixed grain size distributions, and organic and bioturbated muds.  
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Objective 
Sediment stratification at the uppermost surface of subaqueous sediments can vary in dimensions, 
physical characteristics, and behavior. The top layer often exhibits lower density and strength, and 
higher erodibility and mobility. This impacts munition deposition, burial depth, and stability, as 
well as most surveying methods, and can lead to significant issues with munition detection, 
monitoring, and munition site management (Fig. 1).  

Portable free fall penetrometers (PFFPs) have been shown to be a cost-effective tool to 
characterize a munitions site. However, the calibration process previously used tends to blur 
interpretation of the data within seabed sediment strata. The key hypotheses of this project were: 

1. Seafloor surface layers can exhibit significant differences in geomechanical properties, 
impacting current UXO site surveying and monitoring, as well as UXO burial/exposure 
risk assessment. 

2. PFFP data analysis methods can be advanced to help to assess relevant geomechanical 
properties at UXO sites, and particularly at sites featuring surficial seabed stratification, in 
a rapid and cost-effective manner by complementing and supporting current 
methodologies. 

These research hypotheses are directly in line with one of the objectives of the Statement of 
Need (SON) MRSON-18-C1: the improvement of the current knowledge of environmental 
conditions, specifically, sediment characteristics, of underwater sites that impact the performance 
of sensors and systems to detect and classify buried and proud munitions. In this project, a novel 
investigation framework was developed and initially tested. This framework enables MR 
investigators to conduct a rapid and cost-effective PFFP site characterization of seafloor surface 
layering. This PFFP characterization provides information that helps assess potential uncertainties 
when using acoustic/visual seafloor inspection, that can be used to estimate munition burial depth 
at impact, and, therefore, that aids in assessment of risks of munition exposure or burial related to 
the sediment’s geomechanical behavior and layering. 
 

Figure 1. Conceptual sketch of potential issues for UXO site assessment and 
management associated with variations of geomechanical properties and layering of 

seafloor surface sediments. 
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Background 
Sediment layers in the uppermost seafloor may be associated with mobile strata, which are 
generally involved in the local sediment dynamics (e.g., Flores and Sleath 1998), armoring, or 
selective transport (e.g., Dietrich et al. 1989), as well as freshly deposited sediments (e.g., 
Woodruff et al. 2001). The uppermost seafloor layer may also be altered by benthic lifeforms, 
creating possibly stiff layers, or loosening up sediments through burrowing and other activities 
(e.g., Boudreau and Jorgensen 2001). Additionally, biogeochemical or geochemical processes may 
alter sediment properties, being well reflected in the complex effect of organic matter on sediment 
strength (e.g., Ekwue 1990). The resulting changes in the sediment properties in the uppermost 
seafloor layers impact sediment transport, rates of scour, sediment strength, as well as acoustic 
penetration into the sediment (Stoll 1977; Sumer et al. 1992; Terzaghi et al. 1996; Van Rijn 2007). 
Thus, it can be hypothesized that geomechanical properties can vary significantly in the uppermost 
seabed surface sediments, and that this affects current UXO site characterization, monitoring, and 
risk assessment.  
 Portable free fall penetrometers have been utilized as a cost- and time-effective technique 
to investigate, and characterize seafloor surface sediments (Dayal and Allen 1973; Chari et al. 
1981; Dayal 1981; Aubeny and Shi 2006; Stoll et al. 2007; Stark and Wever 2009). PFFPs have 
also been investigated as a tool for sediment characterization for mine burial prediction (Preston 
et al. 1999; Mulhearn 2002; Abelev et al. 2009). Stark and Wever (2009) compared the 
penetrometer deceleration-sediment depth profiles to sediment cores, and they were able to 
correlate different gradients of penetrometer deceleration to layers of different sediments, organic 
content, as well as to traces of gas in the sediment. Stark et al. (2014) found a distinct difference 
in PFFP profiles associated with tube worm activity. Stark and Kopf (2011) documented that the 
formation of a soft mobile sediment top layer associated with wave forcing in a wave channel was 
reflected in PFFP results, and Stark et al. (2011) concluded that tidal currents impact the formation 
and geotechnical appearance of a soft sediment top layer. Stark and Ghose Hajra (2016) 
demonstrated that laboratory settling and consolidation experiments are not reflective of the in-
situ seafloor stratification, and that this can lead to potential issues for all applications relying on 
a proper characterization of seafloor surface sediments. Lucking et al. (2017) observed a 
correlation between sediment grain size, strength, and bulk density to the sediment resistance force 
acting against a PFFP and the recorded pore pressure signature. Bilici et al. (2019) documented 
the relation between PFFP results and sediment erodibility measurements. Nevertheless, no 
consistent data base of co-located PFFP data, physical sediment sampling for detailed geotechnical 
and sedimentological sediment characterization, and environmental data has been assembled yet 
that covers a sufficient variability of different environmental conditions and sediment types to 
develop a rapid PFFP survey and data analysis framework to enhance the use of PFFP for UXO 
site characterization and management.  

 

Materials & Methods 
The research strategy of this project included four main parts: 1) The collection of a comprehensive 
set of field measurements and sediment sampling from locations of varying environmental 
conditions; 2) a detailed geotechnical and sedimentological characterization of sediments from all 
tested field sites based on laboratory testing; 3) data analysis and synthesis towards addressing the 
stated research questions and hypotheses; and 4) the development of a novel investigation 
framework using PFFP and a field demonstration. 
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 Field testing sites included seven areas in the Pamunkey-York River tidal system (hereafter 
termed York River), which feeds into the Chesapeake Bay. Seafloor sediments were 
predominantly muddy at four of these sites and predominantly sandy at the remaining three sites. 
Salinity and flow conditions varied between most sites. These sites were chosen for their 
differences in environmental conditions while still being located conveniently close to each other. 
Additional data sets were integrated into this data base based on relevance to the project goals. 
They provided a wider range of environmental conditions. This included two additional sites in 
Virginia (Piankatank River and James River), Sydney Harbour, Nova Scotia, Canada, and sites in 
Delaware Bay. Most of these data collections were in collaboration with other SERDP 
investigators. Furthermore, some locations in the York River were revisited with diver support 
based on feedback during the In-Progress Review meeting. All seven York sites were investigated 
using a consistent testing program with: more than 10 PFFP deployments per site using the PFFP 
BlueDrop; sediment sampling/coring using box coring, Ponar grab sampling, gravity coring 
(muddy sites), vibrocoring (sandy sites), and/or diver push cores for chosen sites; acoustic 
measurements using an acoustic Doppler current profiler (ADCP) for assessment of flow 
conditions, chirp sonar, and in some locations rotary side scan sonar imaging; and, conductivity-
temperature-depth (CTD) measurements. The BlueDrop PFFP was chosen for its ruggedness and 
suitability for deployment in most environmental conditions and its speed of deployment (about 1 
minute per deployment in coastal water depths). Additional sites featured at least 10 PFFP 
deployments, the collection of sediment samples, and some acoustic seabed surveying. 
 All sediment samples collected at the main sites of this project were analyzed in great detail 
through sedimentological (grain size, bulk density, organic content, X-ray imaging, and erodibility 
measurements) and geotechnical (friction angles, cohesion, undrained shear strength, state of 
consolidation, void ratios) laboratory testing. The cores enabled an analysis to a sediment depth 
equaling the penetration depth of the PFFP (~ 1 m). Depth intervals of 1 – 10 cm were subsampled 
and tested, with 1 cm increments typically being applied in the top 10 cm of the sediment cores. 
 The analysis and synthesis of the collected field and laboratory data was committed to 
answering the research questions stated in the previous section, and by doing so, testing the 
project’s key hypotheses. Firstly, PFFP measurements were correlated to the geomechanical 
properties derived from the sediment sampling and laboratory testing, and those correlations were 
used towards the development of relationships to estimate geomechanical properties from PFFP 
measurements. Special attention was given to deriving undrained shear strength. Secondly, 
sediment properties were evaluated along vertical profiles into the bed with special attention to 
changes with sediment depth (layering). Finally, a discussion was provided regarding impacts on 
surveying and monitoring strategies that arise from the variations in geomechanical properties 
between the different layers and soil conditions. 
 This project concluded with the development of a novel investigation framework and 
strategy for utilizing PFFP for rapid and cost-efficient UXO site characterization. A strategy was 
developed based on the results from the previous tasks, and was demonstrated through a proof-of-
concept field study conducted in the Potomac River, Maryland, in 2019. 
 Results have been dissiminated to the research community through multiple conference 
papers and presentations in 2019 and 2020, and refereed journal contributions are in preparation 
(see appendix B). Project updates have been disseminated to the public through the PI’s blog as 
well as Twitter contributions. 
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Results & Discussion 
a) Correlate PFFP measurements with geomechanical properties and the development of 

relationships 
PFFP featuring a simplicity and ruggedness to be deployed rapidly in varying environmental 
conditions and from different types of deployment platforms often offer only measurements of 
acceleration and pore pressure with time. Based on existing literature, it was hypothesized that a 
better correlation between geomechanical properties and PFFP measurements can be achieved if 
the data analysis strategy is adjusted to different sediment types. More specifically, it is suggested 
to differentiate between cohesionless, cohesive, and mixed sediments. It is expected that mixed 
sediments will collapse towards an either cohesionless or cohesive behavior depending on the 
specific mixtures. Therefore, special attention was given to the cohesionless and cohesive 
sediments. From further literature review, it was determined that for cohesionless sediment, a 
correlation to friction angle and relative density should be sought, where friction angle is expected 
to be related to erosional parameters and relative density is expressing porosity (Fig. 2). For 
cohesive sediments, it is proposed to estimate undrained shear strength, which is expected to be 
related to bulk density which, in turn, is related to erosional parameters as well as porosity (Fig. 
2).  

Figure 2. Flow chart providing overview over theoretical and empirical relationships 
between geomechanical properties and PFFP measurements based on literature. 
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 The collected data set allowed a significant step towards a confident derivation of 
undrained shear strength from the acceleration measurements. The conceptual method, as 
suggested by, e.g., Dayal and Allen (1973), Aubeny and Shi (2006), or Stoll et al. (2007), was 
tested. This method includes the following major steps: 1) Derive the total resistance force from 
the measured deceleration during impact and the known buoyant weight of the probe using 
Newton’s Law; 2) Calculate the associated stress from the resistance force using the projected 
surface area of the nose cone of the probe; 3) Apply a strain rate correction to simulate the stresses 
for a chosen constant penetration velocity (usually 2 cm/s in line with standard CPT testing; Lunne 
et al. 2012); and 4) Apply an empirical cone factor to account for the shearing principle of using a 
conical penetrator. Different strain rate correction methods were tested, and strain rate and cone 
factor correction factors were determined iteratively based on comparison to laboratory vane shear 
results (Fig. 3). The results suggested that the undrained shear strength could be successfully 
determined from the PFFP results with cone factors in ranges as reported by other studies before 
(e.g., Aubeny and Shi 2006). Strain rate effects were found approximately negligible. Therefore, 
it was tested if similarly agreeable estimates of undrained shear strength could be derived when 
omitting the strain rate correction (Fig. 4). The results confirmed that no strain rate correction is 
needed for this type of PFFP for muddy sediments with an undrained shear strength of 1-10 kPa, 
simplifying the data processing method by omitting the need to estimate one of two empirical 
factors. It was also found that a cone factor of 𝑁𝑁𝑘𝑘=12 represents a good first estimate with 𝑁𝑁𝑘𝑘 
varying in a similar range and with similar behavior as for traditional CPT. A conference paper 
(Kiptoo et al. 2019), a conference presentation at the Ocean Sciences Meeting (Kiptoo et al. 2020), 
and a journal manuscript (Kiptoo et al., in preparation a) resulted from these findings.  

A significant mismatch between the undrained shear strength determined by the PFFP and 
the vane shear was noted in the uppermost sediment layers (undrained shear strength 𝑠𝑠𝑢𝑢 ≲ 1.5 
kPa). The vane shear appeared unable to record the softness of the seabed sediments as suggested 

Figure 3. Undrained shear strength estimated from PFFP deployments at Indian Creek 
with a logarithmic (left) and power law strain rate correction (right). The different lines 
express results for different strain rate factors k and β, respectively, and for the shown 
cone factors 𝑵𝑵𝒌𝒌. The black dots indicate vane shear results. (Kiptoo et al., in prep. a) 
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by the PFFP. This was further confirmed through the extraction of diver push cores, as well as the 
analysis of water content and bulk density in which these sediments were found to have water 
contents above the liquid limit, suggesting a liquid-like response and no plastic behavior. The issue 
was further investigated using rheological testing of the samples. Preliminary results suggest that 
these top layers can be better described by their rheological behavior than through traditional soil 
behavior (i.e., viscosity could be reported from the penetrometer results). A presentation at the 
Ocean Sciences Meeting (Stark et al. 2020) and a journal manuscript (Kiptoo et al., in preparation 
b) resulted from this. 

In line with the variations in undrained shear strength measured at the different sites (Fig. 4), 
differences in erodibility, sedimentology, and other geomechnical properties were observed (Fig. 
5), enabling the testing, and if needed, adjustment of existing correlations that were previously 
identified from the literature (Figs. 2 and 6). A journal manuscript is in preparation based on these 
results (Stark et al., in preparation). PFFP tests at sandy sites were analyzed based on the method 
suggested by Albatal et al. (2020) and achieved agreeable results regarding friction angles and 
relative density. 

 

Figure 4. Estimated undrained shear strength from PFFP profiles without application 
of strain rate correction for ten muddy sites. Vane shear results are shown as dots. 

(Kiptoo et al., in prep. a) 
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b) Differences in geomechanical properties of different seafloor surface layers 

The PFFP results identified significant variations in undrained shear strength (Fig. 4), friction 
angle, and relative density with sediment depth within the upper meter of the seabed surface. Such 

Figure 5. Erodibility in terms of eroded mass per critical shear stress for sediment 
samples from the visited sites determined using a Gust microcosm apparatus. 

Figure 6. Porosity versus wet bulk density of muddy sediments from the York River 
and from the literature. 



17 
 

differences were so severe in some cases that top layers (sediment depth ≤ 10-30 cm) may be better 
described in terms of rheology (i.e., plastic or liquid flow) rather than soil behavior (with shear 
strength). This observation was also confirmed from carefully extracted diver cores and box cores 
(Fig. 7). Furthermore, related geomechanical properties such as erodibility and porosity varied as 
well with the observed variations in undrained shear strength, friction angle, and relative density 
(Figs. 5 and 6). Neither gravity cores nor vibrocores were able to sample the soft seabed surface. 
It follows that seafloor surface layers can exhibit significant differences in geomechanical 
properties, impacting current UXO site surveying and monitoring, as well as UXO burial/exposure 
risk assessment (hypothesis 1).  

c) Impact on current surveying and monitoring methods 

Undrained shear strength varied significantly within the uppermost meter of the seabed surface. 
This impacts directly UXO stability and burial. Particularly, the soft seabed surface sediments (𝑠𝑠𝑢𝑢 
< 2 kPa) will unlikely be able to support a UXO, leading to sinking towards deeper sediment 
depths. Similarly, differences were noted in erodibility, leading to potentially strong variations 
regarding scour or capping through sediment transport processes. By ignoring the differences in 
these properties at the seabed surface, sinking will likely be underestimated, and scour and capping 
may be predicted incorrectly. Variations in soil porosity, water content, and bulk density were 
related to the PFFP measurements and also showed significant variations for the different sites and 
with sediment depth. This means that assuming a constant porosity for a certain general sediment 
types with depth or just by soil type will lead to biased interpretations of acoustic penetration depth 
and backscatter in the interpretation of acoustic surveying tools.  

d) Novel PFFP data analysis and deployment framework for PFFP site assessment 

PFFP deployments were performed along gridded transects to cover a previously unsampled river 
bed area in the Potomac River near Blossom Point, MD. Within less than 12 hours, the PFFP 

Figure 7. Stratification shown in X-ray imaging of a gravity core and a box core. Please 
note that intensity units between these cores should not be directly and quantitatively 

compared due to differences in core shape (round vs rectangular). 
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deployments and initial analysis were carried out. The latter suggested the presence of four 
different sediment type groups in the tested area. The four groups were confirmed by sediment 
sampling and laboratory analysis (Kiptoo et al. 2019) and were also distinguishable regarding chirp 
sonar backscatter intensity (Jaber et al., submitted). Therefore, the PFFP deployment framework 
was found successful regarding a rapid and cost-efficient seafloor surface (< 1 m) assessment 
targeting geomechanical properties and stratification. The relationships identified in this study 
enable the derivation of geomechanical properties relevant to UXO site surveying, monitoring, 
and assessment. The results suggested that remote sensing techniques would likely benefit from 
calibration using the geomechanical seabed profiles. Therefore, key hypothesis 2 of this project 
(see section 2) was confirmed: PFFP data analysis methods can be advanced to help to assess 
relevant geomechanical properties at UXO sites, and particularly sites featuring surficial seabed 
stratification, in a rapid and cost-effective manner by complementing and supporting current 
methodologies. 

Conclusions & Implications for Future Research/Implementation 

The key findings of this project include: 

• Current methods of PFFP data analysis were improved and validated. It was found that 
undrained shear strength can be estimated from PFFP for muddy seafloor sediments and that 
friction angles and relative density can be derived from PFFP for sandy seafloor sediments. 

• Significant variations in geomechanical properties within uppermost seabed surface layers 
were identified even without significant changes in sediment type. The results suggested that 
uppermost seabed surface layers may exhibit more fluid-like behavior than soil behavior 
depending on the water content. 

• The variability in geomechanical properties is of relevance to UXO site assessment and 
monitoring. 

• A novel PFFP deployment and analysis strategy was formulated that enables a rapid and cost-
effective characterization of the upper meter of the seabed surface. 

The PFFP analysis strategy derived from this project is summarized in Figure 8. This considers 
that the PFFP raw data includes acceleration/deceleration measurements and possibly pore 
pressure measurements in line with the PFFP used in this study as well as modern PFFP 
capabilities. Furthermore, it is assumed that general information on sediment type are available 
from geological maps or pre-existing data, soil samples, and/or can be inferred from remote 
sensing techniques and/or PFFP data. Mulukutla et al. (2011) introduced the firmness factor 
derived from PFFP data and demonstrated its correlation to soil types. Albatal and Stark (2017) 
proposed a combined use of deceleration and pore pressure data collected by a PFFP to assess 
general soil type. Key categories for the recommended PFFP data analysis are cohesionless (i.e., 
sand & fine gravel with negligible amounts of fines) and cohesive sediments including clays, 
muds, and mixed grain sizes that exhibit a cohesive soil behavior. Here, it should be noted that 
PFFP are generally not recommended for gravelly sites due to limited penetration depths. It should 
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also be noted that only fully saturated sediments are considered here. Those may include sediments 
with small gas contents that do not affect strength by introducing apparent cohesion.  

Chow et al. (2018) and White et al. (2018) provided a theoretical approach supported by controlled 
laboratory tests and validation from synthetic PFFP deployments to derive friction angles and 
relative density of sandy soils from PFFP. Albatal (2018) and Albatal et al. (2020) demonstrated 
how friction angles and relative density of sands can be derived directly from PFFP data. The same 
approach was also successfully tested using data collected within this project. However, the 
validation of these methods has been limited to fine to medium quartz sands so far. It is expected 
that calibration factors may vary with coarser sediments, different grain shapes, and mineralogy. 

Cohesive sediments require further distinction: normally to overconsolidated muds, highly organic 
and bioturbated muds, and very soft muds with high water contents at or beyond the liquid limit. 
Stark and Wever (2009) as well as Albatal & Stark (2017) suggest pathways to distinguish these 
groups from PFFP data. Kiptoo (2020) and Kiptoo et al. (in prep.) provide detailed guidelines to 
derive undrained shear strengths of very soft muds with water contents at or beyond the liquid 
limit. Additionally, Mumtaz and Stark (2020) provide a pathway to estimate the coefficient of 
consolidation from PFFP pore pressure recordings for very soft muds. For normally to 
overconsolidated muds, multiple approaches to derive undrained shear strength for PFFP have 
been presented in the literature. Issues arise associated with a broad variety of grain size 
distributions. This has not been discussed beyond a clear dependence of the measurements on grain 
size distributions (i.e., fines content versus sand content) (e.g., Stark et al. 2017). Little knowledge 
is available to-date regarding how to address high contents of organics, bioturbation, or other 
effects from benthic organisms. 

Figure 8. Flow chart of  proposed PFFP data analysis framework. Solid arrows refer to 
high confidence relationship. Dashed arrows refer to available relations with need for 

further improvement regarding broader grain size distributions. The resulting 
properties can be further related as shown in Figure 2. 
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The framework summarized in Figure 8 offers sediment-specific pathways for PFFP data analysis 
with options of using PFFP data only or integrating data available from sediment sampling or other 
geological information. Geotechnical parameters as listed as results of PFFP data analysis (Fig. 8 
bottom line) can be used for further assessment of relevant parameters for remote sensing or 
erosional processes (e.g., Fig. 2). 

Remaining research questions resulting from this work are related to effects of biogenic processes 
on geomechanical seabed properties, the actual correlation of geomechanical properties to remote 
sensing techniques, the assessment of seabed liquefaction during wave forcing, and the integration 
of geomechanical properties into UXO site risk assessment. This will require further data 
collection and analysis. Furthermore, the proposed framework is currently limited by a lack of 
calibration and validation for diverse cohesionless sediments, mixed grain size distributions, and 
organic and bioturbated muds. This will be improved from additional processing of data from this 
project, complementary data that becomes available, but will likely still need additional data 
collection. 
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