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Abstract 
 

Introduction and Objectives 
The means and extremes of surface air temperature and precipitation have changed significantly 
in the last 50 years, and may change more in the 21st Century.  These changes may be without an 
historical analogue, and this nonstationarity presents a challenge for DoD infrastructure planning 
and operations, wherein historical distributions are used as the basis for managing infrastructure 
and operations risk from flooding, drought, heat waves, and other weather phenomena. The 
objective of this proposal is to use a combination of climate models, observations, and analysis 
to develop robust, defensible projections of the range of distributions of temperature and 
precipitation that DoD infrastructure and operations will face.   

Technical Approach 
There are several important tools for the development of these projections: Global Circulation 
Models (GCMs) and downscaling. This investigation advanced the understanding of a 
framework to manage these challenges and then determined the proper approach(es) to 
translating the coarse and biased climate model projections into the fine-scale, calibrated 
projections.  This work used ~30 models from the Coupled Model Intercomparison Project – 
Phase 5 (CMIP5) downscaled with the Localized Constructed Analogues (LOCA) technique and 
developed regressed projections of 21st Century climate across the Conterminous United States.   

Results 
We found that a regression-based statistical framework can be employed to develop these 
projections but we also found that there are significant pitfalls that must be addressed before 
these projections can be confidently utilized by end-users.  There are a number of potentially 
significant physical mechanisms, including changes in snow and coast weather pattern shifts, 
which can violate stationarity assumptions, and a regression-based approach using statistically 
downscaled models would not capture these effects. Therefore, we find that it will be necessary 
to advance research that addresses these pitfalls by  (1) specifically testing stationarity 
assumptions inherent in statistical downscaling techniques, and (2) undertaking a set of 
intercomparisons between statistical and dynamical downscaling solutions to uncover and 
quantify the physical mechanisms that violate stationarity assumptions.  The results of these 
expanded research efforts can then serve as a basis projections from the upcoming CMIP 
exercises (e.g., CMIP6) to ensure that they are appropriate for the development of best available 
estimates for how temperature and precipitation projections may change over the 21st Century.  

Benefits 
The benefit of this research is identifying what additional, targeted information is needed to 
ensure that local risks to DoD infrastructure and operations are not underestimated due to known 
physical mechanisms that could be un- or under-represented in climate models.    
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Executive Summary 

Introduction 
 
According to Milly et al. (2008) and as quoted in the Climate Change Installation Adaptation and 
Resilience 2017 Report, “stationarity is dead,” and “In the new reality of non-stationarity, 
projections about climate must assume a constantly evolving basis.” But how does this translate 
practically to making critical infrastructure decisions?   
 
Large infrastructure decisions are made based on average temperature and precipitation, their 
variability, and extreme events, and such decisions may require many years of lead-time. General 
Circulation Models (GCMs), sometimes referred to as global climate models, can be a tool to 
assess changes in the large-scale distribution of temperature and precipitation as a function of 
future human activities, which are conventionally divided into discrete greenhouse gas emissions 
scenarios (van Vuuren et al, 2011). The range of global-scale temperature response to the forcing 
associated with a doubling of carbon dioxide is likely not more than 4.5 °C and has been 
established through a sustained focus on climate sensitivity (Charney et al, 1979; Knutti and 
Hegerl, 2008; Forster et al, 2016; Knutti et al, 2017).  The response of the Earth’s hydrological 
cycle as it adjusts to warming has also been studied, and gross features, such as the global 
hydrological cycle response to warming (Jeevanjee and Romps, 2018), the expansion of the 
troposphere (Lu et al, 2007; Hu et al, 2013), and shifts in the storm tracks (Yin, 2005; Bengtsson 
et al, 2006; Ulbrich et al, 2008), have been observed and have a strong theoretical basis.   
 
However, these models are also blunt tools for finer-scale questions: the numerical integration of 
the intricate computer program that represents a GCM must balance a number of competing 
factors including, but not limited to, top-of-atmosphere energy balance, large-scale circulation, 
cloud formation and dissipation, ocean dynamics, and earth system response (Mauritsen et al, 
2012; Hourdin et al, 2017; Schmidt et al, 2017).  Furthermore, model development often focuses 
on achieving unbiased assessments of mean temperature and precipitation at larger spatial-scales 
and long time-scales. Because regional variability in precipitation and precipitation change 
across models is quite broad (Pendergrass and Hartmann, 2014), it is not known a priori that a 
given model will produce skillful temperature and precipitation projections as they relate to DoD 
facilities.   
 
Nominally, model intercomparison projects serve to characterize the spread of model results 
associated with a given emissions scenario, but it has been recently recognized that navigating 
through the multi-model ensemble to understand the information contained in the ensemble’s 
projections must consider both model errors with respect to observations and the 
interdependence of models (Sanderson et al, 2015; Knutti et al, 2017; Sanderson et al, 2017; 
Eyring et al, 2019).  This navigation depends on the specific question being asked.  Model 
democracy, where each simulation is treated as independent and unbiased, has been found to be 
suboptimal, primarily owing to the fact that models have not been developed independently and 
may even have substantial similarities in their code bases (Sanderson et al, 2015).  Rather, it is 
essential that models being considered exhibit a level of skill with respect to regional metrics 
(Rupp et al, 2013).  Taking California as an example, only models that reproduce the correlation 
and variance of mean seasonal spatial patterns, amplitude of seasonal cycle, diurnal temperature 
range, annual- to decadal-scale variance, long-term persistence, and Western United States 
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regional precipitation teleconnections to El Niño Southern Oscillation (ENSO) are appropriate 
for hydroclimate studies, and only 10 of the 33 CMIP5 models exhibited skill with respect to this 
metric (Pierce et al, 2018; Thorne et al, 2018).  The 4th National Climate Assessment (NCA4) 
(USGCRP, 2017) adopted a model-weighting approach to produce, from the CMIP5 ensemble, 
regional-scale estimates of change in average temperature and precipitation.  The results broadly 
indicate high confidence in predicting more warming with the Representative Concentration 
Pathway  8.5 (RCP8.5) scenario than the RCP4.5 scenario across the Conterminous United States 
(CONUS), and, with less confidence, more variability in regional precipitation for both of these 
scenarios. 
 
At the same time, the Coupled Model Intercomparison Project - Phase 6 (CMIP6) is, as of this 
writing, in progress, with preliminary results coming online. At present, 151 modeling activities 
(one model running one set of experiments for one model intercomparison project constitutes an 
activity) have been reported to the Earth System Grid Federation (Cinquini et al, 2014) The 
contributing modeling centers are expected to produce between 20 and 40 Petabytes of climate 
model simulations as part of the CMIP6 exercise (Eyring et al, 2016).  This is far too voluminous 
for planning purposes, and therefore, there is a strong need to curate these results to determine 
ranges of conditions that are likely to be faced locally. A number of different experiments are 
contained within CMIP6, including the Shared Socioeconomic Pathways (O’Neill et al, 2014; 
O’Neill et al, 2017) that have close heritage with the Representative Concentration Pathways 
(van Vuuren et al, 2011) of CMIP5 (Taylor et al, 2012). Other experiments including the North-
American Coordinated Regional Downscaling Experiment (NA-CORDEX) (Giorgi et al, 2009; 
Jones et al, 2011; Mearns et al, 2012), the High Resolution Model Intercomparison Project 
(HighResMIP) (Haarsma et al, 2016), and the Vulnerability, Impacts, Adaptation, and Climate 
Services (VIACS) (Ruane et al, 2016) will yield simulations at the spatial resolution of interest to 
DoD facilities.  But again, it is expected that there will be many participating modeling centers in 
each of these intercomparison projects, and there is a need to determine how to interpret the 
range of results that arise thereof specifically in terms of DoD facility-level risk. 
 
It is critical that the climate change signals that are being captured by state-of-the-art climate 
models are translated to the local level and that the process of doing so especially does not 
underestimate the risks that climate change effects may have on local infrastructure.  
Unfortunately, raw climate model output can exhibit biases in temperature and precipitation at 
regional scales, and these biases will propagate in complex and potentially nonlinear ways into 
subsequent models and decision-making efforts (Christensen et al, 2008; Mearns et al, 2012; 
Sillmann et al, 2013).  To address this issue, one approach, while not without controversy (Ehret 
et al, 2012; Maraun 2012; Maraun 2013) is to bias-correct the raw GCM output based on 
historical observations (Gudmundsson et al, 2012; Teutschbein and Seibert, 2012; Teutschbein 
and Seibert, 2013; Pierce et al, 2015).  An additional and critical step involves downscaling to 
address the gross mismatch in the spatial resolution on which GCMs operate and the processes 
that impact the local-level.   
 
In November 2017, the SERDP Program released a Workshop Report entitled “Nonstationary 
Weather Patterns and Extreme Events” and found that “[improving] modeling and tools to 
develop, apply, and evaluate scenarios of multiple interacting stresses, including training in 
underlying assumptions and application of scenarios” and “[validating] current [downscaling] 
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methods, [developing] and [testing] new approaches, and [providing] guidance for different 
situations, locations, and variables” were among the greatest needs and opportunities for future 
research (Moss et al, 2018). 
 

 
 
Figure 1 shows a flow-chart that qualitatively produces DoD facility-level projections that 
balance historical observations with the relative change in the downscaled, bias-corrected model 
between future and historical simulations. 
 
Distributions of temperature and precipitation can be constructed based on one or more bias-
corrected, downscaled models results, but each step of this process must be critically evaluated, 
and several questions arise: 
 
● How should individual models and the ensemble of model results be handled to develop 

confidence intervals?   
● Can certain model results be trusted more than others? 
● When and where is it appropriate to use, in the course of developing future projections, 

downscaling techniques and bias-correction based on historical observations?  
 

Objectives 
 
This investigation, arising in response to RCSON-18-L2 “Quantifying the Effects of 
Environmental Nonstationarity at DoD Relevant Scales,” seeks to uncover the heterogeneous 
performance of the General Circulation Models (GCMs) with respect to nonstationarity of 
temperature and precipitation. The primary objective of this research is to build the foundation 
for a comprehensive determination of this risk by using historical observations to inform model 
projections of the statistical properties of temperature and precipitation, including 
nonstationarity, at regional scales in the Continental United States (CONUS).  
 
The research is therefore directly responsive to the research objective in RCSON-18-L2 of 
“Discernment of relationships (e.g., mean temperature and heat wave frequency or severity) as 
revealed in both historical observations and climate models with an emphasis on describing 
model heterogeneity. 

Figure 1: Flow-chart indicating how CMIP 
model projections are translated into model 
facility-level risk.  Adapted from Feldman et al, 
(Submitted 2019). 
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This research has been designed to lay the groundwork for tangible benefits to DoD by 
establishing a physical basis for clarity in (1) the risk that future changes in the distribution of 
temperature and precipitation that a single DoD facility may face for a set of plausible emissions 
scenarios and (2) the risk that multiple DoD facilities may face simultaneously in the future due 
to these scenarios. The research first focused on the use of traditional geostatistical techniques 
including spatiotemporal variography and kriging to blend historical data and GCM projections 
to examine the spatiotemporal behavior of temperature and precipitation over the CONUS in 
future emissions scenarios. 
 
As a corollary to this primary objective, we pursued a secondary objective: as per the needs 
expressed in RCSON-18-L2: we explored the assumptions inherent in pursuing a statistical 
approach to understanding the risks associated with nonstationarity, and whether physical 
modeling and understanding are needed to bringing clarity to understanding these risks under 
future climate change. 
 

Technical Approach 
 
The null hypothesis of this investigation was that the statistics of temperature and precipitation 
and their covariability in the CONUS on regional scales have been and will continue to be 
stationary.  This technical approach describes the methods that we used to test this hypothesis.  
At the start of the investigation, we pursued a purely statistical approach to this question.  That 
is, we sought to develop projections of changes in the distributions of temperature and 
precipitation based on a combination of model projections where the projections were weighted 
according to the model’s historical performance relative to observations.  
 
Pursuant to this strategy, we developed a multi-linear regression based on the three-dozen 
models from the Couple Model Intercomparison Project – Phase 5 (CMIP5) (Taylor et al 2012) 
archive that was downscaled using the Localized Constructed Analogues (LOCA) technique 
(Pierce et al, 2014).  We developed a regression approach of the historical model simulations by 
comparing those against a gridded hydrometeorological product (Livneh et al, 2013).  We 
derived biases as a function of quantile for each model and used this as a basis to develop a 
multi-linear regression.  As part of this process, we were able to develop exceedance 
probabilities for the projections based on a generalized extreme value (GEV) distribution. We 
also developed a number of techniques to manage potential numerical instabilities associated 
with the construction of these projections.  We present a flow-chart of this approach in Figure 2 
and describe them in detail in Feldman et al (2019, Submitted) and Tadić and Biraud (2019, 
Submitted).  We also developed a set of more advanced statistical techniques to manage potential 
changes in the spatiotemporal correlation in temperature and precipitation, through a copula-
based technique (Tadić and Biraud, 2019, Submitted).   
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Figure 2: Flow diagram of a regression-based analysis. (1) Input data (observational and model 
data) are first converted into empirical Probability Distribution Functions (PDFs) and 
Cumulative Distribution Functions (CDFs). (2) Multi-linear regression (MLR) coefficients are 
constructed to reconstruct observational CDFs using model CDFs. (3) Quantile Delta Mapping 
(Cannon et al, 2015) QDM is applied to develop future CDFs. (4) We apply Generalized 
Extreme Value (GEV) theory and examine change in the likelihood of extreme events. Finally, 
(5) copula theory is applied to assess whether climate change increases risk of simultaneous or 
collocated extreme events. From Tadić and Biraud (2019, Submitted). 

 
With the mechanics of what amounts to a pure statistically-based approach to developing 
projections to assess future changes for a given location and correlated risks for multiple 
locations, we sought to revisit key assumptions that were made in the course of constructing this 
statistical model. 
 
Based on key feedback at the SERDP Symposium from Dr. Linda Mearns of NCAR, and 
following the suggestions of Dr. Michael Wehner of LBNL, we recognized the importance of 
adopting a more cautious approach to performing analysis on a downscaled multi-model 
ensemble.  Specifically, we looked into the key assumptions underlying the approach that we 
took, including that models are independent and that the stationarity assumptions in downscaling 
techniques are tenable.  Through discussions with the co-performers on this proposal, it became 
clear that a careful intercomparison of different downscaling solutions provides information not 
just on the downscaling technique, but on the parent model as well. 
 
A deeper understanding of the strengths and weaknesses of the parent models and downscaling 
techniques, which can be informed by the intercomparison of different downscaling solutions, is 
needed, along with a robust test of stationarity assumptions in downscaling.  With a multi-
pronged approach to testing parent models and downscaling techniques, we can develop a 
rational basis for weighting or deweighting climate model projections and downscaling 
techniques.  Our original approach to developing projections represents a default set of 
assumptions regarding the a priori equality in the independence, uniqueness, and plausibility of 
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model projections and stationarity in statistical downscaling relationships between the 20th and 
21st Century.  We can test these assumptions and present an overview for doing so at the 
conclusion of this Executive Summary and present a detailed approach for accomplishing this at 
the conclusion of this Report.  

Results and Discussion 
 
Using the approach outlined in Figure 2, we first focused on the development of projections of 
daily precipitation and surface air temperature around two selected DoD facilities: Travis Air 
Force Base (TAFB) near Fairfield, California, and Fort Bragg (FBR) in North Carolina.  Below 
is a summary of average and extreme changes for these two locations.  The changes of mean 
temperature are not necessarily monotonic with time and with emissions scenario, though they 
are large, and the changes in mean precipitation are moderate. 
 

 
TAFB 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) (delta) 
Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 +0.1 +1.1 +0.2 +1.1 
2050 -0.0 +2.0 +0.0 +1.9 
2100 -0.1 +2.2 +0.0 +2.7 

 
Table 1: Changes in average daily precipitation and maximum daily surface temperature values 
(future-past) for TAFB for three future periods centered around years 2020, 2050 and 2100, 
derived from bias-corrected future projections using MLR and past observations, for two 
emission scenarios (RCP4.5 and RCP8.5). 

 
FBR 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) (delta) 
Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 -0.5 +0.9 -0.3 +0.1 
2050 -0.4 +1.2 -0.3 +1.5 
2100 -0.5 +1.6 -0.4 +2.2 

 
Table 2: Changes in average daily precipitation and maximum daily surface temperature values 
(future-past) for FBR for three future periods centered around years 2020, 2050 and 2100, 
derived from bias-corrected future projections using MLR and past observations, for two 
emission scenarios (RCP4.5 and RCP8.5). 

Additionally, we can use this approach to develop estimates of changes in extreme values of 
precipitation and daily maximum temperature in the 21st Century and associated confidence 
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intervals using GEV parameter estimates.  These changes are a function of emissions scenario, 
which becomes a large driver of the divergence in estimates by the end of the 21st Century 
(Hawkins and Sutton, 2009). 
 
 TAFB FBR 

 Precipitation (mm/day) 
(95% CI) Tmax (K) (95% CI) 

Precipitation 
(mm/day) (95% 
CI) 

Tmax (K) (95% 
CI) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 
2005-
2035 1.09 (0-16.5) 2.77 

(0-20) 
4.35 (0-
21.4) 

4.63 (0-
21.5) 

0.30 
(0-10) 

0.47 
(0-8) 

7.58 (0-
35.5) 

1.86 (0-
26) 

2035–
2065 0.20 (0-11) 1.87 

(0-17) 
11.35 
(0-31.1) 

11.63 
(0-31.5) 

0.23 
(0-9) 

0.33 
(0-8) 

11.83 
(0-38) 

17.65 
(0-
41.5) 

2085–
2115 0.06  (0-10) 2.97 

(0-19) 
13.60 
(0-33.4) 

22.45 
(0.7-
42.5) 

0.21 
(0-9) 

0.25 
(0-9) 

19.98 
(0-45) 

31.04 
(0-
52.5) 

 
Table 3: The ratio of probability of the extreme event in the future that corresponded to p<0.01 
in the past, and its probability for three future periods (centered around years 2020, 2050 and 
2100), for both TAFB and FBR locations under two emission scenarios, based on GEV 
distribution. The uncertainty is reported as 95% Confidence Intervals (CI). 

	
Figure 3: Change in 20-year daily return value of maximum surface air temperature and 
precipitation based on the MLR approach across the CONUS for two emissions scenarios from 
1985-2015 to 2070-2100 . 
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This analysis can be extended to develop distributions across the CONUS.  We summarize these 
results by showing the change in the 20-year daily return value of maximum daily temperature 
and precipitation in Figure 3. 
	
This approach provides projections, but the steps shown in Figure 1 need to be approached 
cautiously.  In	point	of	fact,	seemingly	straightforward	tasks,	such	as	the	development	of	
gridded	historical	data	from	a	discrete	set	of	weather	station	observations,	can	introduce	
biases.		Co-Performers	Risser	and	O’Brien	recently	published	a	paper	showing	that	gridding	
observations	will	tend	to	underestimate	extreme	precipitation	because	that	precipitation	
varies	spatially,	and	averaging	high	and	low	precipitation	data	will	dampen	extremes	
(Risser	et	al,	2019a).		A	better	approach	is	to	use	station	data	to	estimate	extreme	
precipitation	statistics	and	develop	spatial	modeling	to	produce	gridded	observational	
products.	
 

 
Figure 4: Differences between LOCA-WRF and WRF projections for historical and future April 
maximum temperature (panels a and b, respectively) and for historical and future annual mean 
precipitation (panels c and d, respectively). Unit for (a) and (b) is degrees C.  Unit for (c) and 
(d) is millimeters per day. The mean absolute error (MAE) is reported in the upper right margin 
of each panel.  From Walton et al, JAMC, In Review. 

Additionally, recent work by Walton et al, (JAMC, In Review), as shown in Figure 4, indicates 
that the regression approach is suboptimal.  An intercomparison of different downscaling 
solutions across California for historical and future simulations reveals a divergence that only 
appears later in the 21st Century.  A closer look reveals that the dynamically-downscaled solution 
is qualitatively and quantitatively different from the statistical downscaling solution.  The reason 
that the historical performance of the statistical downscaling solution does not translate well into 
future performance requires careful analysis.  Walton et al, (JAMC, In Review) conducted this 
analysis and found that, for California, the downscaling methodology itself is only a symptom of 
a larger problem.  The primary driver for the divergence in downscaling solutions in future 
projections is that the parent model does not capture changes in snow cover well, which greatly 
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impact temperatures, and does not capture changes in North American Monsoon dynamics, 
which affects Southeastern California. 
 
These findings show that the blind development of regression solutions based on historical biases 
is suboptimal, because the historical biases of some models are not directly translatable to future 
biases.  Rather, it is the process representations of snow albedo and monsoons that must be 
considered in the development of projections.  It is precisely this nonstationarity that RCSON-
18-L2 seeks to address head on.  The suboptimal performance of MLR-based projections, where 
the regression is based on the univariate performance of the models in the historical record, is 
only revealed with the intercomparison of dynamical and statistical downscaling solution.   
 

Implications for Future Research and Benefits 
This research has explored the landscape of developing projections of surface air temperature 
and precipitation at the DoD facility level from an ensemble of downscaled climate model 
projections.  The research has shown that this very landscape is not easily navigated because the 
climate models have representation errors in the processes that can lead to nonstationarity and 
statistical downscaling solutions are constructed explicitly with a stationarity assumption that has 
not been tested. 
 
The primary benefit to the DoD of this seed project’s research is to detail the scale of the work 
that is needed to address in a comprehensive fashion specific research tasks that go beyond a 
purely statistical approach to developing climate model projections from an ensemble of model 
results to provide insight into the models with which the DoD should have increased or 
diminished confidence.  The challenges of using downscaled projections for infrastructure and 
operations planning should not be underestimated, because they are generally completely opaque 
to the end-user.  These end-users can easily have either too much or too little confidence in the 
model projections.   For the former case, the provision of a set of numbers, and even error bars, 
that can be fed into end-user models is a straightforward exercise, but the danger here is that 
those numbers can be misleading if they do not consider the processes that break stationarity. 
 
For the latter case, the esoteric nature of climate models and downscaling can preclude their 
adoption even though it is very likely that long-term shifts in surface air temperature and 
precipitation distributions will occur.  In this situation, planning exercises either use historical 
data, that does not include nonstationarity, or use generic information on increased variability as 
a placeholder for a deeper understanding of the risks associated with climate change, and this 
generic information may or may not be relevant to a specific location. 
 
Fortunately, there are tractable solutions to these challenges.  Focused research efforts that 
develop a deeper understanding of the processes that “break” stationarity and evaluate model 
projections accordingly are needed.  Additionally, it is critical that the researchers engaged in 
developing climate model projections bridge the communication divide between the modeling 
community and end-users so that they have the appropriate level of confidence in these 
projections.  Ultimately, end-users need to understand the challenges and opportunities with 
using climate model projections for infrastructure and operations planning and so that they can 
utilize model projections judiciously.  It is incumbent on those with knowledge and expertise in 
climate model projections to guide the utilization of these data for end-users.  
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Full Report 

 
Objective 
 
This investigation, arising in response to RCSON-18-L2 “Quantifying the Effects of 
Environmental Nonstationarity at DoD Relevant Scales,” seeks to uncover the heterogeneous 
performance of the General Circulation Models (GCMs) with respect to nonstationarity of 
temperature and precipitation. The primary objective of this research is to build the foundation 
for a comprehensive determination of this risk by using historical observations to inform model 
projections of the statistical properties of temperature and precipitation, including 
nonstationarity, at regional scales in the Continental United States (CONUS).  
 
The research is therefore directly responsive to the research objective in RCSON-18-L2 of 
“Discernment of relationships (e.g., mean temperature and heat wave frequency or severity) as 
revealed in both historical observations and climate models with an emphasis on describing 
model heterogeneity. 
 
This research has been designed to lay the groundwork for tangible benefits to DoD by 
establishing a physical basis for clarity in (1) the risk that future changes in the distribution of 
temperature and precipitation that a single DoD facility may face for a set of plausible emissions 
scenarios and (2) the risk that multiple DoD facilities may face simultaneously in the future due 
to these scenarios. The research first focused on the use of traditional geostatistical techniques 
including spatiotemporal variography and kriging to blend historical data and GCM projections 
to examine the spatiotemporal behavior of temperature and precipitation over the CONUS in 
future emissions scenarios. 
 
As a corollary to this primary objective, we pursued a secondary objective: as per the needs 
expressed in RCSON-18-L2: we explored the assumptions inherent in pursuing a statistical 
approach to understanding the risks associated with nonstationarity, and whether physical 
modeling and understanding are needed to bringing clarity to understanding these risks under 
future climate change. 
 

Background 
 
According to Milly et al. (2008) and as quoted in the Climate Change Installation Adaptation and 
Resilience 2017 Report, “stationarity is dead,” and “In the new reality of non-stationarity, 
projections about climate must assume a constantly evolving basis.” But how does this translate 
practically to making critical infrastructure decisions?   
 
Large infrastructure decisions are made based on average temperature and precipitation, their 
variability, and extreme events, and such decisions may require many years of lead-time. 
Already, there are significant changes to the distributions of temperature and precipitation that 
have been observed.  These have been recently summarized in the 4th National Climate 
Assessment and are shown in Figure 5. 
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Figure 5: Left panel: Observed change for 1986–2016 (relative to 1901–1960 for the contiguous 
United States and 1925–1960 for Alaska, Hawai‘i, Puerto Rico, and the U.S. Virgin Islands) as 
adapted from Vose et al, 2017 for the 4th National Climate Assessment.  Right panel: same as left 
but for observed precipitation changes for the period 1986–2015 (relative to 1901–1960 for the 
contiguous United States and 1925–1960 for Alaska, Hawai‘i, Puerto Rico, and the U.S. Virgin 
Islands as adapted from Easterling et al, 2017 for the 4th National Climate Assessment. 

It is expected that these observed changes will not necessarily persist in the 21st Century, as long 
term shifts in the Earth’s climate system become more pronounced and the effects that result 
across the United States, particularly for the critical societal variables of surface air temperature 
and precipitation, shift further. Projections for the 21st Century have uncertainty due to natural 
variability, model performance, and human activities. By the end of the 21st Century, that 
uncertainty in human contributions dominates the uncertainty in projections (Hawkins and 
Sutton, 2009).   

 
Figure 6: The fraction of total variance in decadal mean surface air temperature predictions 
explained by the three components of total uncertainty is shown for the lower 48 states (similar 
results are seen for Hawai’i and Alaska, not shown). Orange regions represent human or 
scenario uncertainty, blue regions represent model uncertainty, and green regions represent the 
internal variability component.  Adapted from Hawkins and Sutton, (2009). 
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Despite	this	uncertainty,	regional	patterns	of	projected	change	in	temperature	and	
precipitation	have	been	developed	for	the	21st	Century.	
	
Figure	7	shows	a	summary	of	these	changes	for	surface	air	temperature	and	highlights	how	
warming	becomes	more	severe	as	the	21st	Century	progresses,	and	how	the	higher	
emissions	scenario,	as	detailed	in	the	Representative	Concentration	Pathway	8.5	(RCP8.5)	
(Van	Vuuren	et	al,	2011),	which	roughly	represents	business-as-usual	conditions,	leads	to	
greater	warming	than	the	Representation	Concentration	Pathway	4.5	(RCP4.5)	emissions	
scenario.	
	

 
Figure 7: Annual average temperatures across North America are projected to increase, with 
proportionally greater changes at higher as compared to lower latitudes, and under a higher 
scenario (RCP8.5, right) as compared to a lower one (RCP4.5, left). This figure shows projected 
differences in annual average temperature for mid-century (2036–2065, middle) and end-of-
century (2070–2099, bottom) relative to the near-present (1986–2015). Adapted from Vose et al. 
2017 for the for the 4th National Climate Assessment. 
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The	patterns	of	projected	precipitation	change	across	the	United	States	are	expected	to	be	
more	spatially	variable	and,	because	they	arise	due	to	very	different	processes	from	surface	
air	temperature,	there	is	greater	uncertainty	in	these	projections.	
	

	
	

Figure 8: Projected precipitation changes vary by region and season. In the future, under the 
higher scenario (RCP8.5), the northern United States, including Alaska, is projected to receive 
more precipitation, especially in the winter and spring by the period 2070–2099 (relative to 
1986–2015). Parts of the southwestern United States are projected to receive less precipitation 
in the winter and spring. Areas with red dots show where projected changes are large compared 
to natural variations; areas that are hatched show where changes are small and relatively 
insignificant. As adapted from Easterling et al. (2017) for the 4th National Climate Assessment. 

	
These changes can be difficult to predict, most especially since they are without an historical 
analogue.  Therefore, the scientific community must rely on detailed computer models for 
developing predictions of change.  General Circulation Models (GCMs), sometimes referred to 
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as global climate models, are one such widely-utilized tool for developing changes in the large-
scale distribution of temperature and precipitation as a function of future human activities, which 
are conventionally divided into discrete greenhouse gas emissions scenarios (van Vuuren et al, 
2011). The primary rationale for using GCMs is that they are physics-based, and therefore 
describe long term shifts in the Earth’s climate system that are without an historical analogue.  
From these models, we can deduce the range of global-scale temperature response to the forcing 
associated with a doubling of carbon dioxide is likely not more than 4.5 °C, which has been 
established through a sustained focus on climate sensitivity (Charney et al, 1979; Knutti and 
Hegerl, 2008; Forster et al, 2016; Knutti et al, 2017).  The response of the Earth’s hydrological 
cycle as it adjusts to warming has also been studied with GCMs, and gross features, such as the 
global hydrological cycle response to warming (Jeevanjee and Romps, 2018), the expansion of 
the troposphere (Lu et al, 2007; Hu et al, 2013), and shifts in the storm tracks (Yin, 2005; 
Bengtsson et al, 2006; Ulbrich et al, 2008), have been observed and have a strong theoretical 
basis.  GCMs physically model these features and so confidence in large-scale projections can be 
achieved. 
 
However, these models are also blunt tools for finer-scale questions.  These models cannot span 
the spatial and temporal scales of the processes that interact to control the Earth’s climate 
system, which, in the former case, range from the micrometer-scale for cloud droplet formation 
to scales of tens of thousands of kilometers for global-scale circulation patterns, and in the latter 
case, range from sub-second for cloud formation, precipitation, and radiation processes, to at 
least one thousand years for the equilibration of the climate system.  Furthermore, the numerical 
integration of the intricate computer program that represents a GCM must balance a number of 
competing factors including, but not limited to, top-of-atmosphere energy balance, large-scale 
circulation, cloud formation and dissipation, ocean dynamics, and earth system response 
(Mauritsen et al, 2012; Hourdin et al, 2017; Schmidt et al, 2017). The balance that the developers 
must achieve is often referred to as model calibration or tuning.  Model development and 
calibration often focus on achieving unbiased assessments of mean temperature and precipitation 
at larger spatial-scales and long time-scales. Because regional variability in precipitation and 
precipitation change across models is quite broad (Pendergrass and Hartmann, 2014), it is not 
known a priori that a given model will produce skillful temperature and precipitation projections 
as they relate to DoD facilities.  Additionally, as we will show, it is also not known a priori 
whether models have the right process representations such that skillful model performance over 
the historical record relative to observations is necessarily indicative of skillful model 
performance for future projections. 
 
In spite of these challenges, the climate modeling community has undertaken the development  
first-order estimates of model uncertainty, developed an ongoing series of model 
intercomparison projects, which fall under the umbrella of the Coupled Model Intercomparison 
Project (CMIP).  CMIP phases recognize the heavy level of parameterization that is necessary to 
construct global models that span the range of temporal and spatial scales that are climate-
relevant.  The original international, widely-utilized CMIP phase was CMIP3 (Meehl et al, 
2007), which informed the Fourth Assessment Report (AR4) of the Intergovernmental Panel on 
Climate Change (IPCC). CMIP5 represented the next major international effort and was 
completed around 2014 (Taylor et al, 2012), with simulations supporting the Fifth Assessment 
Report (AR5) of the IPCC.  Most recently, CMIP6 (Eyring et al, 2016) represents the current 
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major international effort that provides modeling support to the Sixth Assessment Report (AR6) 
of the IPCC. These exercises are designed to simultaneously serve several different purposes 
including (1) establishing a range of emergent properties such as globally-averaged surface air 
temperature for participating models, (2) testing model sensitivities to different configurations, 
and (3) understanding earth system processes.  A number of different experiments are contained 
within CMIP6, including the Shared Socioeconomic Pathways (O’Neill et al, 2014; O’Neill et al, 
2017) that have close heritage with the Representative Concentration Pathways (van Vuuren et 
al, 2011) of CMIP5 (Taylor et al, 2012) and represent efforts to develop projections for the 21st 
Century, rather than testing model sensitivities.  For the purposes of this investigation, there are 
three key experiments in CMIP6 that seek a better understanding of model resolution, 
downscaling, vulnerabilities and impacts.  These include the North-American Coordinated 
Regional Downscaling Experiment (NA-CORDEX) (Giorgi et al, 2009; Jones et al, 2011; 
Mearns et al, 2012), the High Resolution Model Intercomparison Project (HighResMIP) 
(Haarsma et al, 2016), and the Vulnerability, Impacts, Adaptation, and Climate Services 
(VIACS) (Ruane et al, 2016).   
 
At present, 151 modeling activities (one model running one set of experiments for one model 
intercomparison project constitutes an activity) have been reported to the Earth System Grid 
Federation (Cinquini et al, 2014) for CMIP6. The contributing modeling centers are expected to 
produce between 20 and 40 Petabytes of climate model simulations as part of the CMIP6 
exercise (Eyring et al, 2016).  This is far too voluminous for planning purposes, and therefore, 
there is a strong need to curate these results to determine ranges of conditions that are likely to be 
faced locally. it is expected that there will be many participating modeling centers in each of 
these intercomparison projects, and there is a need to determine how to interpret the range of 
results that arise thereof specifically in terms of DoD facility-level risk. 
 
Nominally, model intercomparison projects serve to characterize the spread of model results 
associated with a given emissions scenario, but it has been recently recognized that navigating 
through the multi-model ensemble to understand the information contained in the ensemble’s 
projections must consider both model errors with respect to observations and the 
interdependence of models (Sanderson et al, 2015; Knutti et al, 2017; Sanderson et al, 2017; 
Eyring et al, 2019).  This navigation depends on the specific question being asked.  Model 
democracy, where each simulation is treated as independent and unbiased, has been found to be 
suboptimal, primarily owing to the fact that models have not been developed independently and 
may even have substantial similarities in their code bases (Sanderson et al, 2015).  Rather, it is 
essential that models being considered exhibit a level of skill with respect to regional metrics 
(Rupp et al, 2013).  Taking California as an example, only models that reproduce the correlation 
and variance of mean seasonal spatial patterns, amplitude of seasonal cycle, diurnal temperature 
range, annual- to decadal-scale variance, long-term persistence, and Western United States 
regional precipitation teleconnections to El Niño Southern Oscillation (ENSO) are appropriate 
for hydroclimate studies, and only 10 of the 33 CMIP5 models exhibited skill with respect to this 
metric (Pierce et al, 2018; Thorne et al, 2018).  The 4th National Climate Assessment (NCA4) 
(USGCRP, 2017) adopted a model-weighting approach to produce, from the CMIP5 ensemble, 
regional-scale estimates of change in average temperature and precipitation.  The results broadly 
indicate high confidence in predicting more warming with the Representative Concentration 
Pathway  8.5 (RCP8.5) scenario than the RCP4.5 scenario across the Conterminous United States 
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(CONUS), and, with less confidence, more variability in regional precipitation for both of these 
scenarios. 
 
It is critical that the climate change signals that are being captured by state-of-the-art climate 
models are translated to the local level and that the process of doing so especially does not 
underestimate the risks that climate change effects may have on local infrastructure.  
Unfortunately, raw climate model output can exhibit biases in temperature and precipitation at 
regional scales, and these biases will propagate in complex and potentially nonlinear ways into 
subsequent models and decision-making efforts (Christensen et al, 2008; Mearns et al, 2012; 
Sillmann et al, 2013).  To address this issue, one approach, while not without controversy (Ehret 
et al, 2012; Maraun 2012; Maraun 2013) is to bias-correct the raw GCM output based on 
historical observations (Gudmundsson et al, 2012; Teutschbein and Seibert, 2012; Teutschbein 
and Seibert, 2013; Pierce et al, 2015).  
 
An additional and critical step involves downscaling to address the gross mismatch in the spatial 
resolution on which GCMs operate and the processes that impact the local-level.  In order to 
manage the computational expense of running a GCM over the temporal and spatial range of 
experiments in the phases of CMIP (e.g., CMIP3, CMIP5, CMIP6), the spatial resolution of these 
models is on the order of 100 km.  As shown in Figure 9, significant information may be 
destroyed with coarse resolution simulations, particularly over complex terrain. 
 

 
Figure 9: Annual precipitation in California and Nevada (inches) in the CNRM-CM5 model with 
a resolution of 100 mile (left), and after using a statistical model to account for the effects of 
topography at a 3.6 mile resolution (right). The global model only has a few grid cells over the 
entire state of California, so does not resolve the coastal mountain ranges, interior valley, or 
Sierra Nevada Mountains on the border with Nevada. The precipitation field in the right panel, 
by contrast, captures the wet conditions on the west slopes of the mountains, and the dry, rain 
shadow region to the east of the mountains. The vertical scale has been exaggerated for clarity, 
and by the same amount in both panels.  From the 4th National Climate Assessment. 

Downscaling	techniques	have	been	developed	to	provide	spatial	details	of	how	climate	
differences	and	variability	impact,	in	particular,	hydrology,	since	the	coarse	data	from	
regional	projections	of	the	climate	model	provide	little	actionable	information	for	impacts	
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on	watersheds	and	rivers.		There	are	a	wide	variety	of	downscaling	techniques	and	they	
can	be	divided	conceptually	into	two	categories:	dynamical	and	statistical.		With	the	former	
method,	detailed,	high-resolution	process	modeling	is	used	to	represent	the	influence	of	
topography,	atmospheric	processes,	and	land-atmosphere	interactions	at	a	level	of	detail	
that	is	much	greater	than	is	represented	in	GCMs.		These	nominally	incorporate	physics	and	
translate	the	regional	features	of	the	parent	GCM	to	the	local	level.		Dynamical	methods	
have	two	primary	disadvantages,	however:	(1)	they	are	quite	computationally	expensive,	
to	the	point	of	being	generally	infeasible	for	multi-model	ensembles,	and	(2)	the	process	
models	still	do	not	resolve	all	of	the	relevant	physics	and	themselves	have	
parameterizations	that,	while	testable,	are	generally	used	without	validation.		They	can	
easily	exhibit	biases	relative	to	observations	that	may	or	may	not	have	bearing	on	future	
downscaled	projections.	
	
Statistical	methods	are	built	from	observed	relationships	between	the	coarse	and	fine	scale.		
These	are	computationally	efficient	and,	because	they	are	based	on	observations,	exhibit	
negligible	error	during	the	observational	record.		Their	disadvantage	lies	in	the	assumption	
of	stationarity	and	cannot	directly	incorporate	climate	change	signals	that	may	violate	this	
assumption	under	climate	change	conditions.	
	
There	are	a	number	of	other	strategies	for	achieving	higher-resolution	projections	
including	variable-resolution	modeling	which	has	the	advantage	over	dynamical	methods	
of	having	consistency	with	the	parent	model	and	conservation	of	energy,	mass,	and	
momentum	fluxes	at	the	interfaces	between	the	region	of	interest	and	its	circumscribed	
area.	
 
In addition to the need for downscaling of GCM projections, the role of local and regional biases 
must be directly addressed.  As shown in Figures 10 and 11, downscaled models agree with 
observations only at spatial scales larger than the CONUS, and, as a corollary to this, exhibit 
first-order biases relative to observationally-derived datasets. 
 
These patterns indicate that, to first order, biases in model calculations over the historical period 
could preclude meaningful future analysis.  There are several different approaches to handling 
biases and they must be considered within the context of making future projections.  First, model 
results for a given grid-box can be bias-corrected (i.e., adjusted) by a univariate value determined 
by that model’s average historical performance relative to observational products.  Second, 
model results can be adjusted by a multivariate value derived for a model’s historical 
performance relative to observational products for a given quantile.   Regardless of the historical 
bias-correction, it is an open question regarding an appropriate approach for translating the 
historical bias into future projections. 
 
The result of these analysis indicate bias, but it is also quite critical to recognize that models are 
not necessarily independent of each other.  They share many parameterizations, which is 
reasonable where they are physics-based, but is problematic where models essentially share 
errors.  This can potentially challenge the construction of model weights, since weighting that 
does not consider model independence can produce biased results by inadvertently 
overweighting a given parameterization.  The widely-utilized strategy of Sanderson et al (2015) 
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focuses on developing weights based on historical model performance and historical model 
independence (derived through estimates of error correlation). Figure 12 illustrates this point. At 
the same time, it is not known a priori (and therefore must be shown) that model independence, 
which is generally assessed during the historical record, has implications for model 
independence for future projections  Furthermore, the nonlinearities of model parameterization 
interactions within a GCM can greatly complicate efforts to weight models by a combination of 
performance and independence (Francis Zwiers, Pers. Comm., 2019) and would suggest that 
less-presumptive, model-democratic approah is warranted. 
 

 

 
Figure 10: Top panel: historical performance of models in the change in 20-year daily maximum 
temperature return value between 1980-2005 and 1950-1979 as derived from the Livneh 
hydrometeorological datasets (Livneh et al, 2013) and return values derived from a Type-I GEV 
distribution.  Bottom panel: corresponding changes in the 20-year daily maximum temperature 
return value from 8 CMIP5 models performing a historical simulation extending through 2005. 

 
 

 
Figure 11: Top panel: historical performance of models in the change in 20-year daily 
precipitation return value between 1980-2005 and 1950-1979 as derived from the Livneh 
hydrometeorological datasets (Livneh et al, 2013) and return values derived from a Type-I GEV 
distribution.  Bottom panel: corresponding changes in the 20-year daily maximum temperature 
return value from 8 CMIP5 models performing a historical simulation extending through 2005. 
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Figure 12: Scatterplot of model skill and independence.  Note that the upper-right quadrant, 
indicating high-skill and high-independence, is unoccupied.  Skillful models are correlated and 
not independent while unskilled models are more independent. By extension, there should be 
reduced confidence in the latter models.  From Eyring et al (2019). 

 
Given this fraught landscape, in November 2017, the SERDP Program released a Workshop 
Report entitled “Nonstationary Weather Patterns and Extreme Events” and found that 
“[improving] modeling and tools to develop, apply, and evaluate scenarios of multiple 
interacting stresses, including training in underlying assumptions and application of scenarios” 
and “[validating] current [downscaling] methods, [developing] and [testing] new approaches, and 
[providing] guidance for different situations, locations, and variables” were among the greatest 
needs and opportunities for future research (Moss et al, 2018). 
 
Distributions of temperature and precipitation can be constructed based on one or more bias-
corrected, downscaled models results, but each step of this process must be critically evaluated, 
and several questions arise: 
 
● How should individual models and the ensemble of model results be handled to develop 

confidence intervals?   
● Can certain model results be trusted more than others? 
● When and where is it appropriate to use, in the course of developing future projections, 

downscaling techniques and bias-correction based on historical observations?  
 
Through this investigation, we seek to shed light on optimal approaches to developing 
temperature and precipitation distributions for end-users in spite of the myriad challenges and 
questions that exist. 
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Materials and Methods 
 

Conceptual Framework 
The challenges associated with the landscape of developing downscaled projections motivates 
the construction of a rational conceptual framework to which research activities can be mapped 
and ultimately contribute.  Figure 13 presents such a framework through a process-chain that 
yields DoD facility-level projections that balance the information contained in historical 
observations with the information provided by a climate model: the relative change in the 
downscaled, bias-corrected model between future and historical simulations.  This process-chain 
describes a rational framework for ingesting climate model simulations and observations, 
comparing the two, developing bias corrections and then ultimately producing projections.   
 
At a high level, this framework seeks to manage and balance the information contained in 
historical observations, historical climate model runs, and future climate model projections.  As 
shown in the upper-right of Figure 13, the framework relies on the long-term data records that 
are obtained from discrete weather stations.  These data provide surface air temperature and 
precipitation information.  There are numerous instances of issues with these data, ranging from 
outages to biases, but they do provide long-term data records, and since they are based on 
observations, are necessarily borne of all of the relevant physical mechanisms that lead to the 
observed temperature and precipitation patterns.  Statistical distributions can be constructed from 
these data to estimate long return-value events (e.g., the 50-year return value in daily temperature 
or precipitation).  Because these observational data are discrete, however, they must be gridded 
in order to be compared against model simulations.  The latter is generally quite coarse in spatial 
resolution, so downscaling techniques, which balance the coarse information and constraints 
provided by the model with the spatial resolution needed for measurement model 
intercomparison, is needed.  Even with the downscaling, the historical biases must be corrected 
for the results to have utility for end users.  Additionally, the development of future projections 
must address the unlikelihood that historical simulations will exhibit biases but future, 
uncorrected projections will not.   

 

 
Figure 13: Flow-chart indicating how CMIP model projections are translated into model 
facility-level risk.  Adapted from Feldman et al, JWRPM (Submitted 2019). 
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The specific implementation of this generic framework, and the issues that must be addressed as 
part of that implementation, are the focus of this investigation. The details of each step and how 
the different steps interact matter and must be evaluated critically to ensure, most especially, that 
biases are not introduced in the course of developing these projections. 
 

Observational Datasets and Gridding 
In point of fact, a seemingly straightforward part of the process chain in Figure 13 involves the 
development of observational products from discrete weather station data records.  Figure 14 
shows the distribution of these stations across the CONUS. 
 

 
 

Figure 14: Station networks include the daily Global Historical Climatology Network (GHCN-
D), Remote Automatic Weather Stations (RAWS) network, and the Snowpack Telemetry 
(SNOTEL) network.  There are 14,087 stations in total. Each station has ≥5 years of raw data 
for each month. Boundaries represent US climate divisions. From Oyler et al, 2016. 

 
A number of different gridded products have been developed for these purposes that incorporate 
spatial statistics to develop gridding, with the Livneh et al, (2013) dataset being widely-utilized 
for hydrometeorological analyses.  Nevertheless, the use of historical precipitation observations 
to characterize model biases during their historical simulations is surprisingly non-trivial.  The 
principal reason for the need for caution is that precipitation is fractal (Lovejoy and Mandelbrot, 
1985).  Consequently, the act of gridding existing observationally-based precipitation datasets 
reduces the magnitudes of extremes: the gridding process effectively spreads localized extremes 
over multiple grid cells.  The spatial correlation patterns of extreme precipitation events are 
anisotropic and vary seasonally across the CONUS, as shown in Figure 15. As a result, existing 
precipitation datasets, again derived from observations, exhibit disagreement about which 
observed events are actually extreme (Timmermans et al., 2018).  The work of Risser et al. 
(2019a) shows that reversing the analysis process — analyzing the statistics of extreme 
precipitation prior to gridding, and then gridding the parameters of the analysis — can increase 
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20-year daily precipitation return values over CONUS by over 30 mm compared to existing 
datasets, as shown in the scatterplots of Figure 16.  
 
The spatial details of the location of these biases are also revealing and are shown in Figure 17: 
widely-used gridded precipitation datasets, such as from Livneh et al, (2013), are biased low 
throughout much of the CONUS, with the West Coast and the Southeast exhibiting the greatest 
low biases, while over the Rocky Mountains, the 20-year daily precipitation return values are 
biased high by over 30 mm.  This implies that the procedures for gridding extreme precipitation 
depend on location and source of precipitation.  The contrast in the sign of the extreme 
precipitation bias between high-altitude complex terrain and the rest of the CONUS suggests that 
further caution is needed to develop robust precipitation products against which models can be 
compared, and that the meaning of model precipitation within a grid box must be specified, 
especially in complex terrain. 
 
This result also points to the need to ensure that bias-correction is, itself, unbiased, since 
projections of future precipitation are generally derived from utilizing the relative change in 
precipitation (Hempel et al, 2013). 
 

	
Figure 15: Directional spatial length-scale for the location intercept 𝜇0(𝐬) of a Type-I GEV 
distribution for each season, estimated empirically from the data. The ellipses are a heuristic 
representation of the magnitude and direction of spatial dependence in 𝜇0(𝐬). From Risser et al 
(2019a). 
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Figure 16: Seasonal density scatter plots of return values, with quantities from the Livneh data 
product on the x-axis and corresponding quantities from GHCN station data analysis on the y-
axis. The red line indicates the 45° line. From Risser et al (2019a). 

 

 
Figure 17: Map of the difference between 20-year daily precipitation return value when 
extremes are preserved in the gridding process.  Red indicates bilinear gridding overestimates 
extreme precipitation, while blue indicates underestimation.  From Risser et al, (2019a). 

Needless	to	say,	the	other	steps	in	the	process-chain	described	in	Figure	13	need	to	be	
carefully	evaluated.		For	the	first	part	of	this	investigation,	we	took	a	series	of	steps	to	
understand	the	challenges	associated	with	the	rest	of	that	process-chain.		We	started	this	
effort	by	developing	projections	based	on	a	straightforward	statistical	framework	using	
regression	principles.		The	purpose	for	that	effort	is	to	determine	what,	if	any,	numerical	
challenges	arise	from	the	development	of	such	a	framework	for	the	construction	of	
projections	of	means	and	extremes	of	temperature	and	precipitation,	as	well	as	
determining	how	correlations	change.		These	challenges	would	preclude	the	development	
of	useful	downscaled	projections	for	end-users,	but	the	lack	of	such	challenges	should	not	
be	taken	as	an	indication	that	a	regression-based	approach	is	warranted.		Rather,	the	
regression-based	approach	can	reveal	the	general	challenges	and	opportunities	with	
developing	a	single	projection	from	a	multi-model	ensemble.	
	

Statistical Analysis Approach 
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A diagram showing the steps required to project changes in the distributions of temperature and 
precipitation at a given location is shown in Figure 18.  There are several steps shown in this 
figure:  first, probability distribution functions (PDFs) and cumulative distribution functions 
(CDFs) are constructed from a set of downscaled climate model simulations over the historical 
record.  By comparing these projections against PDFs and CDFs from gridded observational 
datasets, we construct a set of multi-linear regression (MLR) coefficients.  We then develop bias-
correction estimates for the historical model runs for each quantile for each GCM.  Finally, we 
use a form of quantile mapping (QM) called quantile delta mapping (QDM) (Cannon et al, 
2015), which scales the value of a given quantile of observed temperature by the difference or 
observed precipitation by the ratio of the future modeled to historical modeled quantile. 
 

 
Figure 18: Flow diagram of a regression-based analysis. (1) Input data (observational and 
model data) are first converted into empirical Probability Distribution Functions (PDFs) and 
Cumulative Distribution Functions (CDFs). (2) Multi-linear regression (MLR) coefficients are 
constructed to reconstruct observational CDFs using model CDFs. (3) Quantile Delta Mapping 
(Cannon et al, 2015) QDM is applied to develop future CDFs. (4) We apply Generalized 
Extreme Value (GEV) theory and examine change in the likelihood of extreme events. Finally, 
(5) copula theory is applied to assess whether climate change increases risk of simultaneous or 
collocated extreme events. From Tadić and Biraud (2019, Submitted). 

As part of this framework, we used generalized extreme value (GEV) theory (see Coles, 2001, 
for detailed information) to model the smallest or largest value among a large set of independent, 
identically distributed, random values representing measurements or observations. The 
generalized extreme value distribution combines three simpler distributions (Gumbel, Fréchet 
and Weibull) into a single form, allowing a continuous range of possible shapes that includes all 
three of the simpler distributions. Extreme Value Theorem (Rudin, 1976) states that a GEV 
distribution is the only possible limit distribution of properly normalized maxima of a sequence 
of independent and identically distributed random variables. In practice, modeling a GEV 
distribution of extreme events assumes taking block maxima (or minima) and fitting the GEV 
distribution to data.  
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In this study, a natural choice of the block size is one year to avoid aliasing first-order seasonal 
cycle signals into the analysis, so we use annual extremes (“block maxima”) of Tmax and 
precipitation over 30-year-wide windows for the reference baseline period (1985-2015), and for 
future periods centered around years 2020, 2050 and 2100 for both emission scenarios, and then 
fit GEV distributions to the resulting subset of data. Then we estimate probabilities for resulting 
extreme values that exceed chosen thresholds. 
 
Copulas are functions that capture the dependence structure of joint distribution functions and 
provide a way to model dependencies among variables (Charpentier et al., 2007; Schmidt, 2007). 
The basic requirement for modeling copulas is having uniform marginal probability distributions 
of the variables whose dependency is modeled. This requires prior transformation of the original 
data into new entities that we will refer to as pseudo-observations throughout this paper. 
Modeling copulas is partially based on Sklar’s theorem (Sklar, 1959), which states that if the 
marginal distributions for all variables whose modeled dependence structures are continuous 
random variables, then their dependence structures (copulas) are unique. Notice that Tmax and 
(non-zero) precipitation represent continuous random variables, and thus fulfill the requirements 
for modeling using copulas.  
 
Copulas, like common PDFs and CDFs, can be modeled using parametric or non-parametric 
approaches. The empirical copula can be thought of as an estimate of the underlying dependency 
structure of the data, unconstrained by any a priori models of how the data interact with each 
other.  In this study we choose a non-parametric approach and model dependency structures 
using empirical copulas, due to potentially complex dependency structures. As shown below, this 
assumption is warranted. 
 
We first create pseudo-observations using a rank-based approach. Then we estimate copula 
density directly from data using kernel methods. Specifically, we use beta kernels (Chen, 1999, 
Brown and Chen, 1999). Both the beta kernel and the copula have a bounded support on the 
interval [0,1], which eliminates boundary bias. In addition, the beta kernel changes shape with 
respect to the input, even if the kernel density estimation bandwidth remains the same, and thus 
can be viewed as an adaptive kernel density estimation approach. Finally, Charpentier et al., 
2007 and Chen, 1999 showed that the variance of the estimator decreases with increase of the 
sample size. 
 
We estimate the empirical copula densities using 0.03 kernel bandwidth and estimate density at 
100 equal-spaced points on the [0,1] interval for both modeled variables. After copula density is 
estimated, we sample copulas using a Monte-Carlo approach, generate numerous pseudo-
observational pairs, and then subject them to further statistical analysis. 
 
Intercomparison of Downscaling Solutions 
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In addition to this statistical framework for developing projections based on historical model 
performance, we also engaged with colleagues at UCLA who have developed a series of 
downscaling intercomparisons, to provide deeper insight into when statistical methods are and 
are not appropriate. 
 
This downscaling research builds on two prior studies that compared statistical and dynamical 
downscaling products over California. First, (Pierce et al. 2012) used three Regional Climate 
Models (RCMs) and two statistical techniques (bias correction with constructed analogues 
(BCCA) and bias correction with spatial disaggregation (BCSD)) to downscale temperature and 
precipitation from 16 GCMs for a total of 45 runs. Not all dynamical and statistical methods 
were applied to each GCM. Downscaled temperature projections were similar between statistical 
and dynamical techniques, with all runs resolving the pattern of reduced warming along the 
California coastline. Larger differences between downscaling techniques were seen in the 
precipitation changes, particularly on a seasonal basis. For instance, regional-scale features like 
the North American monsoon can be amplified in dynamical downscaled runs. Statistical 
methods, on the other hand, largely inherited the coarse-scale representation of the monsoonal 
features in their downscaled runs. Second, Walton et al. (2017) compared end-of-century 
snowpack-related temperature changes over California’s Sierra Nevada between a dynamically 
downscaled run and two statistical downscaling techniques (BCSD and BCCA, as in (Pierce et 
al. 2012). It was found that BCSD and BCCA largely do not capture the snow albedo feedback, 
and consequently underestimate warming amplification in regions of the Sierra Nevada that 
experience significant snowpack loss.  The regional dynamical model simulated a sharper 
warming gradient between coastal and inland regions compared to statistical techniques, 
particularly during the summertime.   
 
As the previous studies indicate, dynamical and statistical downscaling techniques can produce 
different solutions in key areas, such as mountainous watersheds important to the western U.S. 
water supply. Two principal reasons could explain these differences. First, the statistical and 
dynamical models could be operating relative to different base climatologies. A statistical model 
is typically trained on historical observations, while an RCM evolves its own climatology that is 
often different from observations due to errors or biases, potentially in either the model or 
observations. We refer to this source of divergence between statistical and dynamical model 
projections as a “training data” difference. Second, the statistical model may differ from a 
dynamical model in simulating relationships between coarse and fine spatial scales and how 
those relationships change in the future. An example of the different assumptions in the 
dynamical versus statistical models is the interplay of local warming and snowpack (i.e., 
simulating the snow albedo feedback with physical equations versus empirical relationships). 
Differences of this second type are independent of the training data and are referred to as a 
“model relationship” difference.   
  
The typical evaluation of statistical versus dynamical downscaling is to compare RCM output 
(which has its own climatology) to a statistical model trained on gridded observations. This 
approach conflates the two sources of dynamical/statistical model divergence into the final 
comparison. Thus, it is unclear from many previous studies whether dynamical and statistical 
outputs differ more because the training dataset used for the statistical model does not match the 
RCM climatology or because the downscaling techniques themselves produce different 
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responses to a changing climate. This study seeks to distinguish between these sources of 
divergence between RCM and statistically downscaled results by using RCM output from an 
historical simulation as a training dataset to a statistical model (similar to the “perfect model” 
approach, e.g. Dixon et al. 2016). Specifically, we compare three downscaled datasets over the 
Sierra Nevada to examine differences based on training data and differences based on model 
relationships. The datasets are (1) dynamically downscaled results from the Weather Research 
and Forecast (WRF) model, a state-of-the-art RCM; (2) statistically downscaled results using 
Localized Constructed Analogs (LOCA), a state-of-the-art statistical model, trained on historical 
WRF output, which is termed “LOCA-WRF”; and (3) statistically downscaled results using 
LOCA, this time trained on the (Livneh et al. 2013, 2015) station-based gridded observational 
dataset, which is termed “LOCA-Livneh”. By comparing downscaled projected future results 
from WRF and LOCA-WRF, we remove the effect of differences between the training dataset 
and WRF climatology, and isolate disagreements due to different downscaling procedures 
between WRF and LOCA. On the other hand, comparing LOCA-WRF and LOCA-Livneh 
isolates differences due to the choice of the training dataset’s climatology (WRF versus Livneh) 
in the statistical model.   
 
For the work discussed here that colleagues at UCLA performed, three downscaled climate 
datasets are compared in this study and each of them use the North   
American Regional Reanalysis (NARR, Mesinger et al. 2006) as their coarse-scale forcing 
dataset. NARR (https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html) has a spatial 
resolution of 32 km and contains 3-hourly outputs of roughly 40 land-surface and atmospheric 
variables simulated for observed conditions from January 1979 to near current day. Precipitation 
in NARR, including over the Western US, was shown to be significantly improved compared to 
other reanalyses such as NCEP-DOE and ERA-40 (Bukovsky and Karoly 2009).   
 
 

Dynamical Downscaling: WRF 
 
A “pseudo-global warming” approach (Schär et al. 1996; Rasmussen et al. 2011; Sato et al. 
2007) is used to dynamically downscale a future climate over California. First, a 1991-2000 
historical simulation of observed conditions is performed by forcing WRF with boundary and 
initial conditions from NARR. Then, a 2091-2100 future climate is simulated by perturbing 
1991-2000 NARR boundary conditions with large-scale end-of-century changes (2081-2100 
minus 1981-2000) from the CNRM-CM5 model obtained from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) archive under the Representative Concentration 
Pathway 8.5 (RCP8.5). Specifically, monthly climatological perturbations to temperature, 
specific humidity, winds, and geopotential height throughout the atmospheric column are applied 
to the NARR boundary conditions that force WRF for the future run. In this downscaling 
framework, natural variability between 2091-2100 and 1991-2000 is identical, but 
synoptic events entering WRF’s outermost domain freely evolve in this perturbed, warmer 
climate.   
 
For the dynamical downscaling of the historical NARR and future NARR + delta-CNRM-CM5 
runs we use WRF version 3.5 (Skamarock et al. 2008). Two nested domains of 27 and 9 km 
resolution are used to resolve the fine-scale topography and local climate processes over 
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California for the historical and for the future simulations. Spectral nudging of temperature, 
winds, and geopotential heights is applied to the 27 km domain to help limit model drift away 
from the forcing data. The WRF configuration that best simulated precipitation and snowpack 
over this region included the Noah land surface model with multi-parameterizations (Niu et al. 
2011), the Thompson microphysics scheme (Thompson et al. 2008), the Dudhia shortwave 
radiation scheme (Dudhia 1989), the Rapid Radiative Transfer Model (RRTM) longwave 
radiation scheme (Mlawer et al. 1997), the Mellor-Yamada and Nakanishi-Niino (MYNN) level-
2.5 surface and boundary layer scheme (Nakanishi and Niino 2004), and the original Kain-
Fritsch cumulus convection scheme (Kain and Michael Fritsch 1990). Additional details on the 
model configuration can be found in (Schwartz et al. 2017; Walton et al. 2017). 
 

Statistical Downscaling: LOCA-WRF and LOCA-Livneh   
 
Localized Constructed Analogs (LOCA; Pierce et al. 2014) is a statistical downscaling approach 
designed to improve spatial and temporal characteristics of downscaled fields compared to 
previous constructed analog-based techniques. Previous analog-based techniques have their roots 
in weather forecasting efforts: The basic idea was to first find a historical day (the “analog day”) 
that best matches current conditions, then take the forecast as the time period immediately 
following the analog days. One problem with this approach is the difficulty of finding a suitable 
analog day, given the immense degrees of freedom in the atmosphere. As originally described by 
van den Dool (1994), constructed analogs ameliorate this problem by forming the weighted 
average of multiple close-matching historical days to “construct” a best-fit analog day. The 
forecast is then the same-weighted average of days subsequent to all the selected historical 
analog days.   
 
Hidalgo et al. (2008) and Maurer and Hidalgo (2007) adapted this constructed analog weather 
forecasting approach to spatially downscale a GCM. Daily temperature or precipitation patterns 
from historical observations (the “training data”) are a key component of a statistical 
downscaling process and are emphasized in their work. The training data are first coarsened to 
the GCM’s grid and used to bias-correct the GCM data via quantile mapping. After bias-
correction, the N (typically 30) GCM-grid observed days that best match the GCM day being 
downscaled are identified. Optimal weights are computed such that the weighted average of the 
N GCM-grid observed days minimizes the RMSE difference between the GCM day being 
downscaled and the weighted average of the observed days. Finally, the same weights are used to 
form the weighted average of the N observed days on the original fine-scale observational grid, 
producing the downscaled result. This approach has three key drawbacks (Pierce et al. 2014): 1) 
extreme days are muted due to the use of the weighted average of N source days, a process that 
tends to damp extremes; 2) related to the first drawback, the weighted average of N source days’ 
over the domain smoothens the spatial structure, so for example, resulting precipitation fields 
produce unrealistic drizzle; and 3) the solution is domain-sensitive with larger errors as the 
domain size increases, since the GCM and coarsened observations are matched over the entire 
domain.   
 
LOCA (Pierce et al. 2014) improves on these earlier constructed analog downscaling methods 
using a multi-scale matching approach. First, the N best-fit coarsened observed days are chosen 
only in the region that is positively correlated with the fine-resolution grid cell being downscaled 
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to, rather than over the entire domain. This makes the approach insensitive to domain extent for 
large domains. Then, the single one of the N days that best matches conditions in a 1-degree by 
1-degree box around the grid cell being downscaled to is selected as the analog. This approach 
means that the final downscaled result is consistent with the coarse GCM field on both the 
synoptic and local (1-degree box) scales. Also, using a single day rather than averaging multiple 
days to produce the final result means that extreme events are not suppressed, spatial structure is 
not artificially smoothed and extraneous drizzle is not generated. LOCA also uses quantile 
mapping bias correction over the historical period. But future changes are handled by applying 
the GCM’s predicted changes factors by quantile, additively for temperature and multiplicatively 
for precipitation. This preserves the GCM predicted future change in the downscaled output, 
unlike quantile mapping applied to future projections (Pierce et al. 2014). For example, if the 
GCM projections indicate that median (50th percentile) precipitation increases by 5%, but 
extreme (95th percentile) precipitation increases by 15%, then the future bias-corrected median 
precipitation is 5% larger than the historical median precipitation, while the future bias corrected 
95th percentile precipitation is 15% larger than the historical 95th percentile value.   
  
LOCA requires a coarse-grid representation of the variable being downscaled. These data are 
produced by GCMs, but it would not be appropriate to use them here directly, given the need to 
compare LOCA to the pseudo-global warming approach described above. The pseudo-global 
warming approach does not produce a coarse-resolution representation of the precipitation or 
temperature field to be downscaled by LOCA either, since the future WRF simulation is driven 
by adding CNRM-CM5’s monthly atmospheric perturbations to the NARR historical time 
sequence at the domain’s boundaries. To produce coarse-resolution data in a way that is 
consistent with the LOCA approach and also to produce LOCA output that can be sensibly 
compared with the pseudo-global-warming output, we applied the CNRM-CM5 projected 
climate change factors, evaluated by quantile, to the NARR historical values analyzed onto each 
grid point on the coarse grid. The climate change factors were additive for temperature and 
multiplicative for precipitation. This process mimics the bias correction procedure in LOCA as 
described above (Pierce et al., 2015). It also produces a coarse resolution precipitation field that 
includes the CNRM-CM5-predicted future climate changes to be downscaled subsequently with 
LOCA. These data are referred to as “bias corrected NARR” in the following sections.   
 

Results and Discussion 
 

Focus on TAFB and FBR (Tadić and Biraud, JAMC, Submitted) 
 
From the purely statistical regression-based framework as described above, the primary result 
and achievement is that we demonstrated the numerical stability and scope of the statistical tools 
that are needed to develop projections of temperature and precipitation from a multi-model 
ensemble at the DoD-facility level.  As described above, the ability to do this represents a 
necessary, but not sufficient condition for the development of robust projections of change at the 
facility level. 
 
Using the approach outlined in Figure 18, we first focused on the development of projections of 
daily precipitation and surface air temperature around two selected DoD facilities: Travis Air 
Force Base (TAFB) near Fairfield, California, and Fort Bragg (FBR) in North Carolina.  Below 
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is a summary of average and extreme changes for these two locations.   Summaries of the 
changes in average precipitation and maximum daily surface temperature for 3 separate 30-year 
periods centered around 2020, 2050, and 2100 for the two facilities are shown in Tables 4 and 5. 
The changes of mean temperature are not necessarily monotonic with time and with emissions 
scenario, though they are large, and the changes in mean precipitation are moderate. 
 

 
TAFB 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) (delta) 
Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 +0.1 +1.1 +0.2 +1.1 
2050 -0.0 +2.0 +0.0 +1.9 
2100 -0.1 +2.2 +0.0 +2.7 

 
Table 4: Changes in average daily precipitation and maximum daily surface temperature values 
(future-past) for TAFB for three future periods centered around years 2020, 2050 and 2100, 
derived from bias-corrected future projections using MLR and past observations, for two 
emission scenarios (RCP4.5 and RCP8.5). 

 

 
FBR 
RCP45 RCP85 

Year 
(centered 
around) 

Precipitation 
(mm/day) 
(delta) 

Tmax (K) (delta) 
Precipitation 
(mm/day) 
(delta) 

Tmax (K) 
(delta) 

2020 -0.5 +0.9 -0.3 +0.1 
2050 -0.4 +1.2 -0.3 +1.5 
2100 -0.5 +1.6 -0.4 +2.2 

 
Table 5: Changes in average daily precipitation and maximum daily surface temperature values 
(future-past) for FBR for three future periods centered around years 2020, 2050 and 2100, 
derived from bias-corrected future projections using MLR and past observations, for two 
emission scenarios (RCP4.5 and RCP8.5). 

 
Additionally, we can use this approach to develop estimates of changes in extreme values of 
precipitation and daily maximum temperature in the 21st Century and associated confidence 
intervals using GEV parameter estimates.  These changes are a function of emissions scenario, 
which becomes a large driver of the divergence in estimates by the end of the 21st Century 
(Hawkins and Sutton, 2009).   
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 TAFB FBR 

 Precipitation (mm/day) 
(95% CI) Tmax (K) (95% CI) 

Precipitation 
(mm/day) (95% 
CI) 

Tmax (K) (95% 
CI) 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 
2005-
2035 1.09 (0-16.5) 2.77 

(0-20) 
4.35 (0-
21.4) 

4.63 (0-
21.5) 

0.30 
(0-10) 

0.47 
(0-8) 

7.58 (0-
35.5) 

1.86 (0-
26) 

2035–
2065 0.20 (0-11) 1.87 

(0-17) 
11.35 
(0-31.1) 

11.63 
(0-31.5) 

0.23 
(0-9) 

0.33 
(0-8) 

11.83 
(0-38) 

17.65 
(0-
41.5) 

2085–
2115 0.06  (0-10) 2.97 

(0-19) 
13.60 
(0-33.4) 

22.45 
(0.7-
42.5) 

0.21 
(0-9) 

0.25 
(0-9) 

19.98 
(0-45) 

31.04 
(0-
52.5) 

 
Table 6: The ratio of probability of the extreme event in the future that corresponded to p<0.01 
in the past, and its probability for three future periods (centered around years 2020, 2050 and 
2100), for both AFB and FBR locations under two emission scenarios, based on GEV 
distribution. The uncertainty is reported as 95% Confidence Intervals (CI). 
 
   RCP45 RCP85 
 Year 

(centered 
around) 

Exceedance 
Probability 

Precipitation 
(mm/day) 
(95% CI) 

Tmax (K) 
(95% CI) 

Precipitation 
(mm/day) 
(95% CI) 

Tmax (K) 
(95% CI) 

TAFB 

2020 

P (0.05) 73.8 (45.7-
137.8) 

318.2 
(316.1-
321.8) 

80.2 (47.7-
159.5) 

318.2 (316.2-
321.6) 

P (0.02) 83.0 (47.5-
185.5) 

318.9 
(316.3-
324.1) 

92.7 (50.0-
227.8) 

319.0 (316.4-
323.6) 

P (0.01) 89.1 (48.4-
229.2) 

319.4 
(316.4-
325.9) 

101.7 (51.2-
295.5) 

319.5 (316.6-
325.2) 

2050 

P (0.05) 67.3 (44.3-
109.1) 

319.1 
(317.0-
322.6) 

76.5 (46.2-
138.0) 

319.1 (317.0-
322.5) 

P (0.02) 74.7 (46.5-
135.1) 

319.8 
(317.3-
324.9) 

87.6 (49.9-
183.3) 

319.9 (317.3-
324.5) 

P (0.01) 79.5 (47.6-
155.9) 

320.3 
(317.4-
326.6) 

95.2 (50.4-
223.6) 

320.3 (317.4-
325.9) 

2100 
P (0.05) 66.0 (43.4-

103.2) 

319.3 
(317.2-
322.7) 

80.45 (46.4-
155.8) 

319.9 (317.8-
323.2) 

P (0.02) 72.8 (45.7- 320.1 94.3 (49.5- 320.6 (318.1-
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123.5) (317.5-
324.9) 

219.4) 325.0) 

P (0.01) 77.0 (46.9-
138.5) 

320.6 
(317.7-
326.6) 

104.3 (51.1-
280.1) 

321.0 (318.2-
326.4) 

 
Table 7: Exceedance probabilities and confidence intervals at TAFB as a function of emissions 
scenario for different 30-year intervals centered around 2020, 2050, and 2100 for daily 
maximum surface air temperature and precipitation. 
 
 
 

Year 
(centered 
around) 

Exceedance 
Probability 

Precipitation 
(mm/day) 
(95% CI) 

Tmax (K) 
(95% CI) 

Precipitation 
(mm/day) 
(95% CI) 

Tmax (K) 
(95% CI) 

FBR 

2020 

P (0.05) 95.8 (65.9-
140.6) 

314.5 
(312.4-
318.5) 

91.3 (64.1-
136.3) 

313.9 
(311.7-
317.8) 

P (0.02) 105.6 (69.9-
164.4) 

314.9 
(312.4-
320.0) 

103.2 (68.4-
168.8) 

314.3 
(311.8-
319.5) 

P (0.01) 111.6 (72.1-
181.4) 

315.0 
(312.5-
321.1) 

111.4 (71.0-
195.6) 

314.5 
(311.8-
320.6) 

2050 

P (0.05) 93.5 (63.4-
134.7) 

314.9 
(312.7-
318.7) 

92.5 (65.1-
134.8) 

315.3 
(313.1-
319.1) 

P (0.02) 103.4 (69.6-
157.5) 

315.3 
(312.8-
320.2) 

103.1 (69.4-
161.4) 

315.8 
(313.3-
320.8) 

P (0.01) 109.6 (72.0-
173.8) 

315.5 
(312.9-
321.3) 

110.1 (71.8-
181.8) 

316.1 
(313.3-
322.0) 

2100 

P (0.05) 94.6 (66.4-
135.5) 

315.3 
(313.1-
319.4) 

93.0 (65.3-
134.2) 

315.9 
(313.7-
319.8) 

P (0.02) 104.1 (70.5-
157.1) 

315.7 
(313.2-
321.1) 

103.2 (69.6-
158.0) 

316.4 
(313.9-
321.4) 

P (0.01) 109.9 (72.8-
172.2) 

315.9 
(313.2-
322.2) 

109.6 (72.0-
175.4) 

316.6 
(313.9-
322.5) 

 
Table 8: Exceedance probabilities and confidence intervals at FBR as a function of emissions 
scenario for different 30-year intervals centered around 2020, 2050, and 2100 for daily 
maximum surface air temperature and precipitation. 
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In Table 6, we present what is often refered to as a risk-ratio, which is the ratio of the probability 
that a specific extreme event (in terms of temperature or precipitation absolute value) will occur 
in future periods as compared to its probability of occurring under present conditions.  This table 
indicates that the extremes of temperature and precipitation are becoming more extreme and 
provides confidence intervals on these risk-ratios which, themselves are quite broad.  
Meanwhile, Tables 7 and 8 show exceedence probabilities and their associated ranges to provide 
concrete, numbers for planning purposes. 
  
We can develop detailed information about the shifts statistical distributions of surface air 
temperature and precipitation.  Figure 20 shows the shift in surface air temperature from the 
period centered around 2000 to the period centered around 2050 for TAFB for the RCP4.5 and 
RCP8.5 emissions scenarios. 
 

 

 
Figure 19: Sample CDFs for precipitation (a-b) and PDFs for Tmax (c-d) for the TAFB location, 
comparing the 2035–2065 period to the baseline period. The changes in central tendency and 
distribution are apparent for Tmax, and less apparent for precipitation. From Tadić and Biraud 
(2019, Submitted) 

 
The development of this framework also indicates the numerical robustness of a regression-based 
approach.  Figure 20 shows the variability in MLR coefficients for the CMIP5 models that 
informed the MLR development, but, in spite of this, Figure 21 indicates that the actual historical 
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CDF derived from observations can be reconstructed from the regression coefficients with 
negligible error.  This is a necessary, but not sufficient condition, for skill in an MLR projection: 
it must not incur error simply from the regression itself. 

 
Figure 20: MLR β coefficients (and intercepts) (a-b) obtained by reconstructing observational 
precipitation and Tmax CDF using 32 model outputs downscaled by LOCA, for the 1985–2011 
period.  From Tadić and Biraud (2019, Submitted). 

 

  
Figure 21: (a-b) CDF of the reconstructed observational precipitation and Tmax CDF using 32 
model outputs downscaled by LOCA, for the 1985–2011 period.  (a-b) Show the CDF of 
reconstructed Tmax from 32 model the excellent fit between observational and reconstructed 
CDFs for precipitation (c) and Tmax (d). From Tadić and Biraud (2019, Submitted). 
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Figure 22: (a) GEV PDF for annual precipitation maximum values for 2035–2065, TAFB, under 
RCP4.5 emission scenario, (b) GEV PDF for annual Tmax maximum values for 2035–2065, 
TAFB, under RCP4.5 emission scenario, (c) GEV PDF for annual precipitation maximum values 
for 2035–2065, FBR, under RCP4.5 emission scenario, and (d) GEV PDF for annual Tmax 
maximum values for 2035–2065, FBR, under RCP4.5 emission scenario. From Tadić and Biraud 
(2019, Submitted). 

Given the numerical stability of the regression-based approach, we can use GEV theory to 
develop highly-detailed projections of the distributions of temperature and precipitation, which 
are shown in Figure 22.  These graphs form the basis of the confidence intervals for TAFB and 
FBR shown in Table 6. 
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Figure 23: (a) Marginal and joint distribution of observations of Tmax at TAFB and FBR during 
1985–2011 period. (b) 2D histogram shown in tile format. (c) Marginal and joint distributions of 
Tmax pseudo-observations, prepared as input to copula-modeling. (d) Fitted empirical copula. 
From Tadić and Biraud (2019, Submitted). 

	
Furthermore, the use of copulas, as described above, presents a formal framework for 
understanding correlated shifts in means and extremes of surface air temperature and 
precipitation.  They can even be used for different variables, such as correlations of extreme 
temperature and precipitation. While the TAFB and FBR facilities are geographically distant 
from each other and generally not meteorologically related, we show the results of the copula 
analysis in Figure 23-26.  These figures not only show the lack of correlation in extremes 
between the two sites, as expected, but also show the level of detail and analysis that can be 
applied to understand how facility-level risks may be correlated in the future, especially for DoD 
facilities that are more geographically proximal.	
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Figure 24: (a) Marginal and joint distribution of precipitation observations at TAFB and FBR 
during 1985–2011 period. (b) 2D histogram shown in tile format. (c) Marginal and joint 
distributions of precipitation pseudo-observations, prepared as input to copula-modeling. (d) 
Fitted empirical copula. From Tadić and Biraud (2019, Submitted). 

 



	 46	

 

 

Figure 25: (a) Marginal and joint distribution of observations of non-zero precipitation and 
corresponding Tmax at TAFB, during 1985–2011 period. (b) 2D histogram shown in tile format. 
(c) Marginal and joint distributions of non-zero precipitation and Tmax pseudo-observations, 
prepared as input to copula modeling. (d) Fitted empirical copula. From Tadić and Biraud 
(2019, Submitted). 
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Figure 26: (a) Marginal and joint distribution of observations of non-zero precipitation and 
corresponding Tmax at FBR, during 1985–2011 period. (b) 2D histogram shown in tile format. (c) 
Marginal and joint distributions of non-zero precipitation and Tmax pseudo-observations, 
prepared as input to copula-modeling. (d) Fitted empirical copula. From Tadić and Biraud 
(2019, Submitted). 

	
In	addition	to	the	highly-detailed	results	shown	over	TAFB	and	FBR,	we	can	use	the	
regression-based	framework	to	develop	distributions	across	the	CONUS.		Figure	27	shows	a	
summary	of	those	results	by	indicating	the	change	in	extreme	surface	air	temperature	and	
precipitation	over	the	CONUS,	by	showing	the	change	in	the	20-year	daily	return	value	of	



	 48	

maximum	daily	surface	air	temperature	and	precipitation	as	derived	from	fitting	
parameters	to	a	Type-I	GEV	distribution.			This	figure	indicates	that	extreme	temperatures	
are	likely	to	increase	across	much	of	the	CONUS	and	will	be	exacerbated	with	higher	
emissions.		Extreme	precipitation	will	also	worsen	in	the	21st	Century	with	some	locations,	
especially	in	the	Southeastern	US,	facing	more	extreme	precipitation	events.	
	
 

	
Figure 27: Change in 20-year daily return value of maximum surface air temperature and 
precipitation based on the MLR approach across the CONUS for two emissions scenarios from 
1985-2015 to 2070-2100 . 

	

Model Projections for California (Feldman et al, JWRPM, Submitted) 
	
We	can	also	consider	focusing	on	a	specific	region	and	down-selecting	models	and	
downscaling	them	to	provide	practical	datasets	for	planning	in	the	face	of	climate	change.		
While	an	ensemble	of	climate	model	simulations	may	be	preferred,	the	range	in	emissions	
scenarios	(van	Vuuren	et	al.,	2011)	and	climate	model	responses	(Taylor	et	al.,	2012;	
Andrews	et	al.,	2012)	provide	far	too	many	simulations	for	the	purposes	of	water	planning	
exercises:	it	is	simply	infeasible	to	develop	water	plans	for	more	than	a	handful	of	datasets.	
This	challenge	was	recently	recognized,	and	preliminary	guidelines	were	developed	to	use	
a	limited	set	of	tailored	scenarios	to	represent	the	spectrum	of	climate	scenarios	optimally	
(Ntegeka	et	al,	2014).		
	
At	the	local	level,	practical	limitations	in	resources	and	technical	capacity	often	restrict	the	
ability	of	resource	management	agencies	to	evaluate	multiple	projections	of	future	
conditions.	To	complicate	matters	further,	climate	may	be	just	one	of	several	future	
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uncertainties	that	an	agency	may	need	to	address	(e.g.,	population	growth,	land	use	
patterns)	and	exploration	of	future	conditions	across	multiple	dimensions	of	uncertainty	
can	quickly	exceed	an	agency’s	capacity	or	resources.	In	order	to	simplify	these	analyses,	it	
is	often	useful	to	provide	a	more	limited	set	of	future	climate	conditions	upon	which	to	
bound	and	anchor	the	analysis.		
	
We	focus	here	on	California	because	it	presents	a	particular	challenge	in	that	the	state	
spans	a	vast	range	of	hydroclimates,	from	temperate	forests	in	the	north	to	arid	deserts	in	
the	southeast,	and	a	large	area	with	a	Mediterranean-type	climate	in	between.	Resource	
planners	must	consider	how	precipitation,	and	to	a	lesser	extent,	temperature,	will	change,	
especially	where	water	resources	are	the	result	of	a	dozen	or	fewer	synoptic	systems.		
	
In	response	to	these	water	resource	planning	needs	and	following	the	approach	indicated	
in	Ntegeka	et	al,	(2014),	we	develop	here	a	process	for	producing	the	temporal	distribution	
of	precipitation	in	California	at	hydroclimatically-relevant	spatial	scales	for	less	extreme,	
wetter	conditions	and	more	extreme,	drier	conditions,	and	discuss	how	the	results	are	used	
for	planning	purposes	across	the	State.	As	part	of	the	development	of	this	range,	we	
highlight	some	inherent	numerical	challenges,	indicates	the	resulting	range	in	water	
resources	that	these	projections	imply,	and	discuss	a	path	towards	reducing	the	
outstanding	sources	of	error	from	downscaling	and	bias	correction.	
	
Different	GCMs	perform	best	for	different	metrics,	and	when	multiple	metrics	were	
considered,	no	individual	model	emerged	as	the	“best”	model	for	California.	Recognizing	
the	need	for	multiple	GCMs,	as	well	as	the	requirement	for	a	smaller	set	of	simulations,	
CCTAG,	(2015)	performed	a	model	evaluation	effort	as	part	of	the	4th	California	Climate	
Assessment	(Thorne	et	al,	2018)	which	aimed	to	identify	a	smaller	set	of	GCMs	by	
removing	or	“culling”	the	models	that	did	not	perform	as	well	for	a	set	of	different	
evaluation	metrics.			This	approach	downselected	the	number	of	California-relevant	climate	
models	to	10:	ACCESS-1.0,	CCSM4,	CESM1-BGC,	CMCC-CMS,	CNRM-CM5,	CanESM2,	GFDL-
CM3,	HadGEM2-CC,	HadGEM2-ES	and	MIROC5.		The	output	from	these	models	from	both	
the	RCP4.5	and	RCP8.5	scenarios	has	been	used	to	construct	a	multi-model	ensemble,	but	
specific	scenarios	that	provide	a	range	is	also	needed.			
	
Two	cases	were	developed	for	use	in	these	programs	(CCTAG,	2015;	Pierce	et	al,	2018).		
The	first,	known	as	Wetter	Moderate-Warming	(WMW)	describes	a	future	for	California	
that	exhibits	moderate	warming	while	also	generally	receiving	more	precipitation.		The	
CNRM-CM5	model,	run	with	the	RCP4.5	emissions	scenario,	was	chosen	as	the	GCM/RCP	
projection	pair	because	this	projection	generally	exhibits	the	combination	of	least	warming	
and	largest	increase	in	precipitation	among	the	20	GCM/RCP	projection	pairs	in	the	
ensemble	chosen	by	CCTAG	(2015).	This	model	exhibits	a	mid-range	value	of	ECS	(3.25	
K/2xCO2)	(Andrews	et	al,	2012),	and	while	it	generally	exhibits	regional	biases,	the	model	
does	not	exhibit	precipitation	biases	in	California	relative	to	Global	Precipitation	
Climatology	Project	(GPCP)	observations	(Voldoire	et	al,	2013).	
	
The	second	case,	known	as	Drier	Extreme	Warming	(DEW)	exhibits	extreme	warming	
while	also	generally	receiving	less	precipitation.		The	HadGEM2-ES	model	[Jones	et	al,	
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2011a],	run	with	the	RCP8.5	scenario,	was	chosen	as	the	GCM/RCP	projection	pair	because	
this	projection	generally	exhibits	the	combination	of	most	warming	and	largest	decrease	in	
precipitation	among	the	20	GCM/RCP	projection	pairs	in	the	ensemble	chosen	by	CCTAG	
(2015).		This	model	exhibits	the	high	value	of	diagnosed	ECS	(4.69	K/2xCO2)	(Andrews	et	
al,	2012)	and	has	superior	performance	with	respect	to	precipitation	relative	to	historical	
observations	over	North	America	(Sheffield	et	al,	2013).		Together,	these	cases	help	
establish	a	nominal	range	of	conditions	that	state	and	local	planning	agencies	across	
California	can	use	(CCTAG,	2015).	
	

 
Figure 28: (a) Fractional change in precipitation for the DEW case for the 90th quantile between 
1980-2010 and 2056-2085. (b) Same as (a) but for the WMW case.  (c-d) Same as (a-b), 
respectively, but for the 99th quantile. (e-f) Same as (a-b), respectively but for the 99.9th quantile. 
From Feldman et al, JWRPM, Submitted. 
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Figure	28	shows	the	relative	change	in	annual	upper-quantile	daily	precipitation	for	DEW	
and	WMW	cases.	At	the	90th	quantile,	the	DEW	and	WMW	cases	lead	to	decreased	and	
increased	precipitation,	respectively,	while	for	the	99th	and	99.9th	quantiles,	both	cases	
show	significant	increases	even	while	the	DEW	case	indicates	more	extreme	coastal	
precipitation	while	the	WMW	case	indicates	increases	in	extreme	precipitation	in	southern	
California	and	the	Sierra	Nevada.	
	
There	is	an	apparent	need	to	use	climate	model	fields	to	develop	precipitation	projections	
in	order	to	estimate	water-resource	availability	in	the	future,	but,	at	a	high	level,	the	use	of	
raw	model	output	of	regional	and	local	precipitation	projections	associated	with	climate	
change	is	quite	challenging.		Many	models	are	unable	to	reproduce	both	low	and	high-order	
moments	of	observed	historical	distribution	of	precipitation	at	regional	spatial	scales	
(Christensen	et	al,	2008;	Mearns	et	al,	2012;	Sillmann	et	al,	2013).		
	
Figure	29	specifically	indicates	the	need	for	bias-correction.	We	compare	an	
observationally-derived	data	product	against	present-day	runs	from	the	DEW	and	WMW	
models.		The	panels	of	this	figure	indicate	that	both	models	are	biased	low	in	northwestern	
California	for	the	90th,	99th,	and	99.9th	quantiles,	and	the	models	are	biased	low	across	the	
Sierra	for	the	99th,	and	99.9th	quantiles.		In	particular,	these	panels	show	that	in	Northern	
California,	biases	in	downscaled	model	output	can	exceed	30	percent	of	the	total	
precipitation	value.	For	planning	purposes,	these	biases	must	be	addressed,	and	while	a	
univariate	bias-correction	does	not	address	the	source(s)	of	model	bias	or	how	they	
propagate	into	future	projections,	it	does	recognize	that	model	bias	exists	and	so	
adjustments	to	the	projections	must	be	made	in	order	to	account	for	this	bias	practically.	
	
This	motivates	a	hybridized	approach	wherein	statistical	information	derived	from	
present-day	observations	is	merged	with	climate-model	projections.		Historical	
observations	can	be	used	to	bias-correct	historical	climate-model	projections,	and,	while	
the	bias-correction	approach	is	controversial	(Ehret	et	al,	2012;	Maraun	2012;	Maraun	
2013),	it	has	been	shown	to	be	tenable	(Gudmundsson	et	al,	2012;	Teutschbein	and	Seibert,	
2012;	Teutschbein	and	Seibert,	2013).			
	
Since	the	spatiotemporal	distribution	of	precipitation	across	any	given	area	often	exhibits	
zero	absolute	values,	bias	correction	techniques	that	are	used	for	interval	values	(e.g.,	
temperature)	will	necessarily	lead	to	negative,	and	therefore	unphysical,	values.		To	
address	this	issue,	we	can	utilize	a	ratio	approach	to	bias	correction,	which	obviates	this	
apparent	problem.		By	using	a	ratio	to	scale	bias-corrected	precipitation,	we	avoid	the	
creation	of	an	artificially	continuous	spatiotemporal	precipitation	field	when	it	should	be	
discontinuous.		Additionally,	a	ratio	technique	may	be	able	to	preserve	the	relative	change	
contained	within	a	model	or	the	multi-model	ensemble	between	future	and	present-day	
precipitation.	
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Figure 29: (a) Map of the 90th quantile of daily total precipitation from the observationally-
derived dataset of Livneh et al, [2013]. (b) Difference between the HadGEM2-ES model run 
over the historical period (DEW) and the Livneh et al, [2013] dataset. (c) Same as (b) but 
showing the difference between the CNRM-CM5 model (WMW) and the Livneh et al, [2013] 
dataset.  (d-f) Same as (a-c) respectively but for the 99th quantile. (g-i) Same as (a-c) respectively 
but for the 99.9th quantile. From Feldman et al, JWRPM, Submitted. 

	
However,	if	appropriate	caution	is	not	exercised	in	this	process	chain,	the	bias-corrected,	
downscaled	projections	will	be	problematic,	especially	for	extreme	precipitation.		It	has	
been	recognized	that	traditional	quantile	mapping	(QM),	wherein	the	effects	of	climate	
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change	are	realized	by	scaling	the	historical	precipitation	cumulative	distribution	function	
by	the	ratio	of	the	mean	future	modeled	distribution	to	the	mean	historical	modeled	
distribution,	can	lead	to	artificial	corruption	where	the	mapped	precipitation	quantities	do	
not	reflect	the	parent	model’s	relative	change	in	precipitation	across	quantiles	(Hagemann	
et	al,	2011;	Themeßl	et	al,	2012;	Maraun,	2013;	Maurer	and	Pierce,	2014;	Cannon	et	al,	
2015).		An	example	of	the	artificial	corruption	that	can	arise	from	traditional	quantile	
mapping	is	shown	in	Table	9.		This	shows	that	QM,	by	not	preserving	the	relative	change	
across	quantiles,	produces	mean	seasonal	precipitation	changes	that	are	substantially	
overestimated,	including	by	hundreds	or	even	thousands	of	percent,	from	the	parent	
model.	
	

 
Table 9: Quantification of the bias in several California regions relative to the parent model 
when using traditional quantile mapping methods. From Feldman et al, JWRPM, Submitted.  
	
A	recently-developed	approach	called	Quantile	Delta	Mapping	(QDM)	is	designed,	in	
principle,	to	preserve	the	relative	model	change	in	bias-corrected	precipitation	across	all	
quantiles	(Cannon	et	al,	2015).	QDM	also	seeks	to	avoid	the	systematic	overestimation	of	
precipitation	that	arises	when	a	univariate	scaling	is	applied	to	perform	quantile	mapping,	
since	that	paper	found	that	QM	techniques	led	to	large	overestimates	of	precipitation	
relative	to	the	parent	model	near	Hudson	Bay,	Victoria	Island,	and	Ellesmere	Island	in	
Canada.	
	
QDM	represents	a	transfer	function,	and	it	can	be	used	to	map	model-projected	
precipitation	at	a	given	time	to	a	bias-corrected,	relative-change	preserving	value.		The	
approach	that	it	takes,	therefore,	is	first	to	determine	the	quantile	to	which	the	original	
model-projected	value	corresponds.	In	the	next	step,	the	relative	change	is	determined	
from	the	ratio	of	modeled	projected	precipitation	for	that	quantile	value	in	the	model-
projected	cumulative	distribution	function	(CDF)	to	the	modeled	historical	precipitation	for	
that	quantile	value	in	the	modeled	historical	CDF.	Finally,	the	historical	precipitation	from	
the	same	quantile	value	but	from	the	observed	historical	CDF	is	scaled	by	the	model	ratio.		
The functional form of this procedure operates on an individual grid box is as follows: 
 
𝑥!,! 𝑡 = 𝑥!:!,!:! 𝑡

!!,! !
!!,!
!! !!,! !

       (1) 
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where 𝑥!,! 𝑡  represents the bias-corrected future projection of precipitation at a given time, 
𝜏!,! 𝑡  represents the modeled quantile value of the model projected value from the model-
projected CDF, 𝐹!,!!!  represents the inverse CDF function of the modeled historical CDF, 𝑥!,! 𝑡  
represents the original model-projected precipitation value, and 𝑥!:!,!:! 𝑡  represents the 
observed precipitation value in the historical record corresponding to the historical observed 
CDF at quantile 𝜏!,! 𝑡 . 
 
We created a centennial-length data record of daily precipitation, minimum, and maximum 
temperature that approximates the distribution of these variables under climate change 
conditions.  In order to be relevant for hydrological modeling and planning purposes, we produce 
these variables at 6-km spatial resolution across the state of California, and, to a limited extent, 
over the areas of neighboring states that drain into rivers in California.  There are a total or 
11,367 grid boxes that are analyzed and a total of 35,429 days spanning a historical record 
ranging from January 1, 1915 to December 31, 2011, or a future record covering a period of 
comparable length. 
 
We compare the results of traditional QM vs. a QDM approach in Figures 30-32, first to explore 
whether the relative change between historical and future precipitation in the model is captured 
by the mapping approach at different quantiles.  Figures 4 and 5 indicate that QM is not 
capturing the relative change in modeled precipitation at the 90th, 99th, and 99.9th quantiles.  
QDM is able to capture the relative change in modeled precipitation at the 90th and 99th quantiles, 
but is problematic for the 99.9th quantile, due in large part to the numerical resolution of the 
quantiles (see QDM Numerical Considerations section for details). 
 
The resulting 5-, 20-, and 50-year return values, derived from a parameter fit of the mapped 
precipitation on a Type-I Generalized Extreme Value Distribution, with QM and QDM 
approaches for the DEW case are shown in Figure 6.  This figure indicates modest differences 
between QDM and QM for the DEW case and approaches for 5-year return, but these differences 
grow more pronounced for the 20-year and 50-year return maps.  Similar behavior in return 
value maps, not shown, occur for the WMW case.  In general, we also find that QDM produces a 
greater contrast in return values at coastal locations and over complex terrain.  Finally, these 
results indicate that, while the DEW case is generally drier than the WMW case, even the drier 
future has very extreme wet events: the DEW case exhibits higher 50-year return values.   
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Figure 30: (a) Map of the difference in the relative change in precipitation in the 90th quantile of 
precipitation of QDM-derived precipitation for 2056-2085 and the observational record from 
1981-2010 and the relative change in precipitation in the LOCA-downscaled HadGEM2-ES 
model for the RCP8.5 scenario from 2056-2085 (DEW) and the historical scenario from 1981-
2010.  (b) Same as (a) but for QM-derived precipitation instead of QDM-derived precipitation. 
(c-d) Same as (a-b), respectively but for the 99th quantile. (e-f) Same as (a-b). respectively but for 
the 99.9th quantile. From Feldman et al, JWRPM, Submitted. 
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Figure 31: ) Map of the difference in the relative change in precipitation in the 90th quantile of 
precipitation of QDM-derived precipitation for 2056-2085 and the observational record from 
1981-2010 and the relative change in precipitation in the LOCA-downscaled CNRM-CM5 model 
for the RCP4.5 scenario from 2056-2085 (WMW) and the historical scenario from 1981-2010.  
(b) Same as (a) but for QM-derived precipitation instead of QDM-derived precipitation. (c-d) 
Same as (a-b), respectively but for the 99th quantile. (e-f) Same as (a-b). respectively but for the 
99.9th quantile. From Feldman et al, JWRPM, Submitted. 
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Figure 32: (a) Daily precipitation 5-year return value for the DEW case derived from QDM 
estimated from a parameter fit to a Type 1 Generalized Extreme Value Distribution. (b) 
Difference between (a) and the QM case.  (c-d) Same as (a-b), respectively, but for the daily 
precipitation 20-year return value.  (e-f) Same as (a-b), respectively, but for the daily 
precipitation 50-year return value. From Feldman et al, JWRPM, Submitted. 

 



	 58	

 

 
Figure 33: (a) Ratio of monthly-resolved precipitation quantiles between modeled future and 
modeled historical precipitation for sample grid box that exhibits an anomalously high 20-year 
return value. (b) Map of the 20-year daily precipitation return value for DEW conditions using 
QDM with no threshold for calculating the ratio of modeled future to modeled historical 
precipitation.  (c) Same as (b) but where all historically-modeled precipitation values below 0.01 
mm are mapped to exactly zero future precipitation. From Feldman et al, JWRPM, Submitted. 
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There are several numerical challenges that must be addressed in the practical implementation of 
QDM, however. First, the use of ratio-scaling to obtain mapped precipitation can lead to a 
numerical instability where the denominator scales differently from the numerator.  QDM 
requires the construction of empirical CDFs from observationally-gridded products (Livneh et al, 
2013) and downscaled climate model data (Pierce et al, 2014).  There are thresholds associated 
with each of these products below which precipitation is set to zero.  By simply calculating a 
ratio of the two CDFs, the mapped precipitation quantities can be severely distorted, but the 
distortion arises due to numerical instabilities in the small, but non-zero values of precipitation.  
Figure 33a shows that, especially for Mediterranean climates where the empirical CDF of 
precipitation has potentially very small values of precipitation at the lower quantiles, this 
numerical instability arises, and can lead to distortions in the mapped CDF.  Figure 33b shows 
with the very high 20-year return values of precipitation that are interspersed on the map of 
California.  This numerical instability can be managed simply by setting a threshold for when the 
QDM ratio for precipitation mapping should be set to zero.  Figure 33c shows a map of the 20-
year return values where the mapping ratio is set to zero when the historical modeled 
precipitation is less than 0.01 mm/day, wherein the high 20-year return values have been 
eliminated. This threshold is far below what is detectable from current instrumentation and has a 
negligible impact on hydrology, and so, as a practical matter, is recommended. 
 
The second numerical challenge arises where precipitation values in the downscaled historical 
model simulations exceed the maximum observed precipitation in the historical record. Under 
these conditions, QDM will scale the maximum observed precipitation value in the historical 
record by the ratio of future to historical precipitation for the maximum quantile.  This is what 
we do here, but we should note that could be problematic. There is no clear scaling limit (i.e., 
Clausius-Clapeyron) to extreme precipitation [Lenderink et al, 2017], and this remains an open 
issue that could create distortions in projections of extreme precipitation.  At the very least, the 
occurrence of such cases can be determined, and Figure 8a indicates a map of the number of 
occurrences based on a historical simulation from DEW from 1981-2010, showing that in there 
can be as many as 100 cases of off-scale precipitation mapping in grid cells across the state and 
most grid cells having at least 20 case of off-scale precipitation. 
   
The third numerical challenge faced in the creation of a QDM mapping approach pertains to a 
Mediterranean climate, where long-tailed precipitation distributions lead to large differences in 
precipitation values at the highest quantiles.  As a practical matter, the implementation of a QDM 
requires a numerical discretization of quantiles, but the choice of this discretization can matter.  
QDM for precipitation mapping across California is extremely computationally and memory-
intensive: an implementation wherein there are 1000 evenly-spaced quantiles requires 64 GB of 
memory to be run without disk-swapping.  Therefore, there is a trade-off between discretization 
error and memory in terms of resolving the structure of the upper-precipitation quantiles.  
Figures 34(b-d) show the difference between mapped precipitation between 1000 and 10000 
evenly-spaced quantiles, indicating that at the highest quantile, that an error of at least 5% can be 
incurred from discretization. 
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Figure 34: (a) Number of days during the 1981-2010 historical period where the downscaled 
CNRM-CM5 model exceeds the maximum daily precipitation value of the corresponding grid-
box from the Livneh et al, [2013] dataset.  (b) Difference in QDM-derived precipitation for 
WMW between 10000 and 1000 evenly-spaced quantiles for the 90th quantile.  (c) Same as (b) 
but for the 99th quantile. (d) Same as (b) but for the 99.9th quantile. From Feldman et al, 
JWRPM, Submitted. 

 
The QDM precipitation fields across the State of California for the DEW and WMW cases are 
used as inputs to a calibrated version of the Variable Infiltration Capacity (VIC) model.  The 
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VIC model has been used to simulate regional hydrology for historical and future conditions for 
California as well as many major basins in the United States. 
 
A version of the VIC Model has been configured at 1/16th degrees (approximately 6 km, or 3.75 
miles) spatial resolution throughout California. The data from Livneh et al. (2013) were used as a 
preliminary dataset in the VIC Model setup. Parameterization within the model is performed 
primarily through adjustments to parameters describing the rates of infiltration and base flow as a 
function of soil properties, as well as the soil layer depths. When simulating in water balance 
mode, as done for this California application, the model is driven by daily inputs of precipitation, 
maximum and minimum temperature, and wind speed. The model internally calculates additional 
meteorological forcings, such as short- and long-wave radiation, relative humidity, vapor 
pressure, and vapor pressure deficits. 
 
Five elevation bands are included for each 1/16th degree grid cell in the VIC Model to capture the 
precipitation and snow variability over the grid cell. In addition, the model includes a sub-daily 
(1-hour) computation to resolve transients in the snow model. The soil column is represented by 
three soil zones extending downward from the land surface to capture the vertical distribution of 
soil moisture. The land cover is represented by multiple vegetation types. 
 
Rainfall, snow, infiltration, evapotranspiration, runoff, soil moisture, and base flow are computed 
over each grid cell on a daily basis for the entire period of simulation. The VIC Model routing 
tool processes the individual cell runoff and base flow terms, and routes the flow to develop 
streamflow at various locations in the watershed. 
 
A streamflow routing network in the VIC Model at 1/16th degree was developed using ArcMap’s 
Flow Direction and Flow Accumulation tools. The Flow Direction tool first assigns the flow 
direction for each VIC Model grid cell to its steepest downslope neighbor. Prior to processing the 
VIC Model grid through this tool, a stream network shapefile was burned into the digital 
elevation model (DEM) to enhance the performance of the flow direction tool by increasing the 
slope toward the closest stream. The VIC Model also requires that flow from each grid cell be 
directed out of the cell and into another one, and is unable to process sinks. Sinks in the DEM 
were filled to accommodate this. The Flow Accumulation tool then creates a raster dataset of 
accumulated flow to each cell by accumulating the number of all upstream cells that flow into 
each downslope cell.  
 
Once the VIC Model grid is processed through these two tools, watershed delineations were 
determined based on downstream U.S. Geological Survey (USGS) gage locations and were 
compared to USGS watershed boundaries. Due to the topographic complexity of the high-
elevation regions and the coarseness of the VIC Model grid, adjustments were made to the model 
watershed delineations to more accurately align with USGS watershed boundary delineation.  
 
The out-of-the-box VIC Model had previously undergone only limited calibration for monthly 
streamflow for selected major river basins over the conterminous U.S. (Livneh et al., 2013). For 
this work here, further VIC Model calibration was performed for the 12 upper watershed 
locations in the Sacramento and San Joaquin River basins. The VIC Model was recalibrated for 
water years 1970-2003.  
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Figure 35: Results from the VIC model calibrated from historical streamflow data for California.  
Box-whisker plot of monthly unimpaired flows (in million acre-feet (MAF)) across four rivers in 
the Sacramento River basin. Light and dark blue correspond VIC output forced by QDM-derived 
temperature and precipitation, while light and dark red correspond to VIC output forced by QM 
temperature and precipitation.  Red corresponds to the multi-model average. 

	
Figure 36: Results from the VIC model calibrated from historical streamflow data for California.  
Box-whisker plot of monthly unimpaired flows (in million acre-feet) across four rivers in the San 
Joaquin River basin. Light and dark blue correspond VIC output forced by QDM-derived 
temperature and precipitation, while light and dark red correspond to VIC output forced by QM 
temperature and precipitation.  Red corresponds to the multi-model average. 
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Figure 37: Rainy-season precipitation forcing (inches) from the VIC model calibrated from 
historical streamflow data for California across four rivers in the Sacramento River basin. From 
Feldman et al, JWRPM, Submitted. 

	
	
Figure 38: Rainy-season precipitation forcing (inches) from the VIC model calibrated from 
historical streamflow data for California across four rivers in the San Joaquin River basin. 
From Feldman et al, JWRPM, Submitted. 
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Figure 39: April 1 snow-water equivalent (SWE) from the VIC model calibrated from historical 
streamflow data for California across four rivers in the Sacramento River basin. From Feldman 
et al, JWRPM, Submitted. 

	
	
Figure 40: April 1 snow-water equivalent (SWE) from the VIC model calibrated from historical 
streamflow data for California across four rivers in the San Joaquin River basin. From Feldman 
et al, JWRPM, Submitted. 
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Daily VIC Model simulations were performed from 1915 to 2011. The daily runoff and base 
flow simulated from each grid cell was routed to various river flow locations. For the simulations 
performed here, streamflow was routed throughout the Sacramento and San Joaquin River 
basins. It is important to note that VIC Model routed flows are considered naturalized in that 
they do not include effects of diversions, imports, storage, or other human management of the 
water resource.  
 
Even though the VIC Model is calibrated, the model bias still needs to be removed from the 
model outputs. These biases result from several factors, including spatial and temporal errors in 
gridded climate forcings, complex groundwater interactions, and other complexities normally 
inherent to VIC hydrologic model parameter calibration. In order to bias-correct VIC, a quantile 
mapping procedure was developed that used simulated and historical streamflows at each flow 
location to develop and rescale the CDF of streatmflow so that it is consistent with the annual 
scale. 
 
The results of the calibrated VIC model forced by QDM-derived precipitation for the multi-
model ensemble, the DEW, and WMW cases are shown in Figures 35-40.  These plots indicate 
approximately a 50% range in water resource availability between the DEW and WMW cases 
over the Sacramento and San Joaquin River basins.  While the middle panels show that the 
precipitation received by the WMW and DEW cases provides a bound for the multi-model 
ensemble, the lower panels indicate that that the multi-model ensemble predicts far more snow-
water equivalent than either the DEW and WMW cases.  This finding is largely a function of 
differences in elevation-dependent warming between these cases and the multi-model ensemble. 
 
	

A Deeper Exploration into Nonstationarity (Walton et al, JAMC, In Review) 
 
In spite of these detailed analyses for a set of DoD facilities, across the CONUS, and over 
California, our process chain still has not explored whether parent models and downscaling 
techniques are competent for handling no-analogue futures: can they actual capture the relevant 
nonstationarity.  Through an intercomparison of downscaling techniques, we can develop clues 
as to which physics that may or may not break stationarity are relevant. 
 
One	of	the	key	features	differentiating	dynamically	and	statistically	downscaled	
temperature	patterns	in	California	is	the	regional	imprint	of	snow	albedo	feedback	changes	
in	dynamically	downscaled	temperature	patterns	(Walton	et	al.	2017).	However,	we	do	not	
understand	yet	whether	the	deficiency	of	snow	albedo	feedback	effects	in	statistically	
downscaled	patterns	is	due	to	the	absence	of	the	feedback	in	gridded	observational	
products	used	to	train	the	statistical	model	(Walton	et	al.	2018)	or	whether	it	is	due	to	
differences	in	the	dynamical	versus	statistical	methods	themselves.	Thus,	our	first	objective	
in	this	section	is	to	compare	April	maximum	temperatures	across	the	downscaled	datasets.	
April	is	used	because	this	is	when	the	greatest	area	of	the	Sierra	Nevada	consistently	
experiences	snow	albedo	feedback	(Walton	et	al.,	2017).	Our	second	objective	is	to	evaluate	
how	annual	mean	precipitation	is	projected	to	change	according	to	the	dynamical	and	



	 66	

statistical	datasets.	These	comparisons	are	guided	by	the	following		questions:	How	much	
of	the	disagreement	between	dynamical	and	statistical	output	can	be	explained	by	different	
precipitation	magnitudes	in	the	historical	high-resolution	training	products		(WRF	vs.	
Livneh)?	Do	statistical	models	trained	on	RCM	output	agree	more	closely	with	future	
dynamical	output	than	statistical	models	trained	on	observational	products?			
	
That	being	said,	the	findings	shown	in	Figure	36	indicate	that	the	growth	in	errors	in	
downscaling	solutions	between	the	historical	record	and	the	end	of	the	21st	Century	
suggests	that	either	parent	models	or	downscaling	solutions	are	not	able	to	capture	
important	nonstationary	effects.	
	

 
Figure 41: Differences between LOCA-WRF and WRF projections for historical and future April 
maximum temperature (panels a and b, respectively) and for historical and future annual mean 
precipitation (panels c and d, respectively). Unit for (a) and (b) is degrees C.  Unit for (c) and 
(d) is millimeters per day. The mean absolute error (MAE) is reported in the upper right margin 
of each panel.  From Walton et al, JAMC, In Review. 

	
A	closer	analysis	of	the	downscaling	solutions	is	shown	in	Figures	37	and	38.	Figure	37	
shows	dramatic	differences	between	statistical	and	dynamical	downscaled	projections		of	
April	warming	by	the	end	of	the	century	(2091-2100	average	minus	1991-2000	average).	
We	first	focus	on	the	geographical	patterns	(panels	a,	b,	d,	e,	and	f).	Fig.	37a	and	37b	display	
changes	within	the	raw	GCM	and	the	bias	corrected	NARR.	The	bias	corrected	NARR	
incorporates	the	GCM-predicted	changes	via	the	bias	correction	process.	Together,	the	raw	
GCM	and	bias	corrected	NARR	comprise	the	large-scale	future	forcing	datasets	to	the	
dynamical	and	statistical	procedures.	Also	shown	are	the	downscaled	changes	according	to	
WRF	(Fig.	37b)	and	the	two	statistical	datasets,	LOCA-WRF	(Fig.	37e)	and	LOCA-Livneh	
(Fig.	37f).	Though	the	statewide	statistics	(minimum,	maximum,	and	average)	for	the	three	
downscaled	projections	(Figs.	37b,	e,	and	f)	are	similar,	their	spatial	patterns	are	not.	The	
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raw	GCM	and	bias	corrected	NARR	changes	(Figs.	37a	and	37d)	show	a	coastal	gradient,	
with	the	least	amount	of	warming	occurring	along	the	coast	that	gradually	increases	
moving	inland.	However,	the	inland	pattern	of	warming	is	inconsistent	with	California’s	
actual	topography	and	associated	regional	dynamics.	These	datasets	project	the	greatest	
amount	of	warming	(around	5-6°C)	in	northeastern	and	central	California	along	the	border	
with	Nevada.	This	location	of	enhanced	warming	reflects	the	GCM’s	overly	strong	snow	
albedo	feedback,	which	is	also	inaccurately	positioned	too	far	north	and	east	in	the	domain.	
The	erroneous	patterns	in	the	GCM	climate	change	signal	are	reproduced	by	LOCA,	and	
only	appear	to	be	interpolated	to	a	finer	grid.	This	is	true	even	when	LOCA	is	trained	on	
WRF	(Fig.	37e).			
	
WRF’s	downscaling	of	the	GCM	provides	a	notably	different	solution	than	LOCA	(Fig.	37b).	
In	this	case,	warming	patterns	over	the	Sierra	may	have	a	more	physically	defensible	
interpretation,	particularly	over	the	Sierra	Nevada.	The	physical	mechanisms	involved	can	
be	seen	more	clearly	by	viewing	the	elevation	gradients	of	warming	(Fig.	3c).	Within	the	
low-lying	coastal	zone	and	Central	Valley,	where	elevations	span	from	sea	level	to	roughly	
1000m,	WRF	projects	up	to	a	degree	more	of	warming	than	the	LOCA	projections.	This	may	
be	tied	to	declining	cloud	cover	in	WRF,	particularly	in	the	coastal	zone	of	southern	
California	that	is	already	observed	over	this	region	(Williams	et	al.	2015).	This	
phenomenon	is	very	unlikely	to	be	resolved	by	the	GCM.	LOCA	has	no	means	of	producing	
it	on	finer	scales	upon	downscaling,	ultimately	producing	a	weaker	coastal	warming	
gradient	in	LOCA	relative	to	WRF.			
	
Across	the	Sierra	Nevada,	where	elevations	extend	to	3500m,	WRF	projects	the	greatest	
amount	of	April	warming,	around	4°C,	along	a	narrow	elevational	band	near	2500	meters.	
Warming	then	gradually	decreases	to	below	3°C	for	elevations	above	2500	meters.	This	
gradient	at	least	partly	reflects	WRF’s	ability	to	simulate	the	snow	albedo	feedback	in	the	
Sierra	Nevada.	Historically,	the	freezing	line	in	April	tends	to	hover	around	2500	meters.	
Snowpack	along	or	just	higher	than	this	elevation	would	be	most	susceptible	to	losses	in	a	
future,	warmer	climate.	The	snowpack	losses	would	in	turn	amplify	warming	locally	at	
these	elevations.	At	the	same	time,	snowpack	above	the	2500	meter	freezing	line	would	
likely	remain	frozen	in	WRF.	Therefore	these	elevations	would	experience	less	warming	
than	mid-elevations.	These	physical	arguments		are	consistent	with	what	WRF	projects	in	
Fig.	37c:	maximum	warming	around	2500m	with	lesser	warming	at	higher	elevations.	
Recall	that	besides	spectral	nudging	of	select	variables	along	the	outermost	domain,	WRF	
only	receives	information	from	the	GCM	along	the	domain	boundaries.	This	makes	WRF	
largely	unaware	of	the	GCM’s	snow	albedo	feedback	located	in	the	interior	of	the	WRF	
domain.	WRF	instead	generates	its	own	climate	within	its	domain	and	adds	its	own	snow	
albedo	feedback,	which	in	this	case	aligns	with	our	physical	understanding	of	the	Sierra	
Nevada	system	and	is	more	accurate	than	the	feedback	contained	in	the	GCM.			
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Figure 42: End-of-century (2091-2100 average minus 1991-2000 average) changes in April 
maximum temperature according to (a) the raw GCM (CNRM-CM5), (b) WRF, (d) bias 
corrected NARR, (e) LOCA-WRF, and (f) LOCA-Livneh. The statewide average, minimum, and 
maximum for each downscaled dataset are reported in the upper right margin of those panels. 
Unit for each panel is °C. Panel (c) compares change in April maximum temperature versus 
elevation for each grid cell within the WRF (green line), LOCA-WRF (magenta line), and LOCA-
Livneh (blue line) projections. From Walton et al, JAMC, In Review. 

 
Figure 43: End-of-century (2091-2100 average minus 1991-2000 average) changes in annual 
mean precipitation according to (a) the raw GCM (CNRM-CM5), (b) WRF, (d) bias corrected 
NARR, (e) LOCA-WRF, and (f) LOCA-Livneh. The statewide average, minimum, and maximum 
for the downscaled products are reported in the upper right margin. Unit for each panel is 
percent. Panel (c) compares the change in annual mean precipitation versus elevation for each 
grid cell within the WRF (green line), LOCA-WRF (magenta line), and LOCA-Livneh (blue line) 
projections.  From Walton et al, JAMC, In Review. 
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LOCA's elevation patterns of warming simply reflect the GCM warming signal draped on a high 
resolution topography, since unlike WRF, LOCA imparts little local snow albedo feedback. 
LOCA instead inherits the erroneous GCM signal, rendering its downscaled solution with 
inaccurate strength and position of the feedback across the Sierra Nevada (i.e. regions of max 
warming). These spatial inaccuracies are reflected in LOCA’s elevational gradient of warming 
(Fig. 37c). LOCA projects amplified warming around, or just a bit below, 2500m (magenta and 
blue lines of Fig. 37c), but it fails to replicate the decline in warming for elevations above the 
freezing line. Again, this issue arises from the fact that LOCA only has higher warming at high 
elevations due to the smoothed and overly-strong snow albedo feedback inherited from the GCM 
(Walton et al. 2017); it adds no fine-scale information during its downscaling procedure. Overall, 
the results of Figure 37 indicate that LOCA - even when trained with historical WRF output - 
yields warming patterns that are physically inconsistent with the location and topography of the 
Sierra Nevada. Only the dynamical solution, which imparts its own snow albedo feedback, 
appropriately resolves the complex topographic-based warming signals over this domain.   
 
Dynamical and statistical projections of annual-mean precipitation changes also exhibit striking 
differences (Figure 38), with some features that are similar to statistical/dynamical downscaling 
differences found in Pierce et al. (2012). The raw GCM and bias corrected NARR datasets both 
project modest wettening up to 20-30% for much of the state. Slightly larger changes appear to   
be concentrated in the northern half of the state, with the exception of a few strongly positive 
grid cells in the far southeastern corner of California in the raw GCM case. In either case, there 
are not any obvious fine-scale imprints in this pattern beyond the larger-scale pattern of modestly 
wetter future conditions, especially in the northern half of the state (discussed further by (Neelin 
et al. 2013)).   
 
Both the dynamical and statistical projections show comparatively large relative increases over 
the dry parts of the domain, especially the Mojave Desert, the Coachella Valley and the Mojave 
and Imperial Valleys. The changes are much larger in WRF and are the result of small absolute 
changes occurring over a region with very low historical rainfall values, but may nonetheless be 
hydrologically significant. Since LOCA’s downscaled solution is tied to the GCM’s future 
change pattern, the results of Fig. 38 indicate that the GCM has a smaller relative increase in arid 
region precipitation than WRF does. Since larger precipitation increases in the extremes have a 
physical basis in basic thermodynamic arguments (Held and Soden 2006), the larger relative 
change seen in the arid regions may have a physical basis. In general, it is not clear whether 
WRF or LOCA’s future precipitation signal is more realistic or whether either can be relied on as 
a quantitative projection. The WRF signals are handicapped by the pseudo-global-warming 
methodology, which only imposes the mean GCM changes, rather than the GCM changes during 
the synoptic conditions producing precipitation. LOCA, whether trained by WRF or Livneh, is 
limited by the library of analogs in the historical climate, which may not fully represent future 
conditions, and inherits biases from the GCM. Still, some of the basic qualitative features seen in 
Fig. 38, such as the lee-side enhancement of the precipitation increase in WRF, and the larger 
relative increase in the arid deserts seen with both techniques, seem physically plausible.   
 
 
 



	 70	

Conclusions and Implications for Future Research 
 
The development of robust, defensible projections of temperature and precipitation patterns for 
the 21st Century at the spatial scales that are relevant and actionable for future infrastructure 
planning represents a far-reaching need for the DoD, and the RC18-1577 project made concrete 
progress towards addressing that need by defining a process chain that couples climate model 
projections to statistical, identifying the practical steps that are needed to develop these 
projections, and developing partnerships that can move forward with those practical steps. 
 
This research has explored the landscape of developing projections of surface air temperature 
and precipitation at the DoD facility level from an ensemble of downscaled climate model 
projections.  The research has shown that this very landscape is not easily navigated because the 
climate models have representation errors in the processes that can lead to nonstationarity and 
statistical downscaling solutions are constructed explicitly with a stationarity assumption that has 
not been tested. 
 
Fortunately, there are tractable solutions to these challenges.  Focused research efforts that 
develop a deeper understanding of the processes that “break” stationarity and evaluate model 
projections accordingly are needed.  Additionally, it is critical that the researchers engaged in 
developing climate model projections bridge the communication divide between the modeling 
community and end-users so that they have the appropriate level of confidence in these 
projections.  Ultimately, end-users need to understand the challenges and opportunities with 
using climate model projections for infrastructure and operations planning and so that they can 
utilize model projections judiciously.  It is incumbent on those with knowledge and expertise in 
climate model projections to guide the utilization of these data for end-users. 
 
Therefore, a targeted set of process studies, that follow the guidance of what was conducted in 
Walton et al, JAMC, In Review and discussed above, are needed to identify where parent models 
and statistical techniques are insufficient for developing temperature and precipitation 
projections.   
 
One such prime example related to coastal processes associated Marine Boundary Layer (MBL). 
Figure 39 indicates how changes in these processes can “break” stationarity.  Specifically, the 
marine boundary layer (MBL) plays a critical role in moderating surface air temperatures along 
the U.S. west coast during the summer season.  The extent to which the MBL penetrates inland is 
largely driven by a simple interaction between the height of the marine boundary layer and the 
local topography. 
 
Coastal mountains act as a barrier to further inland extent, and higher cloud [boundary layer] 
heights are required to penetrate further inland (Iacobellis and Cayan, 2013). The resolution of 
this process is substantially finer than a GCM, and either statistical or dynamical downscaling 
approaches could conceivably be employed.  However, there are two nonlinearities in the 
interaction between the MBL and surface temperatures that might lead to substantial differences 
between the two approaches. The first nonlinearity could arise due to long-term increases in 
MBL heights (e.g., due to weakening subsidence (Vecchi et al, 2007) or increased urbanization 
(Williams et al., 2015)): if MBL heights reach the height of local topography, then it would 
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become common for the MBL to overcome the topographic barrier.  This would represent a step-
change beyond which the MBL, and associated cooling effect, can penetrate much further inland 
than it can in the present climate.  The second nonlinearity could arise due to a long-term loss of 
MBL clouds (e.g., Clement et al., 2009), leading to increased surface insolation and temperatures 
(Iacobellis and Cayan, 2013). 
 

 
Figure 44: A diagram depicting the influence of MBL height on inland penetration of the MBL 
and MBL temperatures. 

 

	
Figure 45: Historical trends over coastal California (left) from Southern California and (right) 
from Northern California over the period 1970-2005 with topography overlain.  From Lebassi et 
al, 2009. 

 
Based on this, two process-based metrics for coastal temperature change can be developed that 
represent a necessary condition for a model to exhibit skill in, and for users to have confidence 
pertaining to, that model’s future projections. These metrics will both yield physical insight into 
the reasons that a given model needs to generally reproduce historically-observed trends in 
coastal and near-coastal temperatures (Lebassi et al. 2009; Potter, 2014) and highlight the 
(nonlinear) physical relationships between those two quantities, such that model performance 
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regarding these metrics is an indication that confidence can be placed in a model’s future 
projections. The first metric will be focused on evaluating the relationship between trends in 
coastal and inland temperatures and trends in nearby ocean temperatures (e.g., via a regression 
analysis or conditional probability distribution analysis, such as in O’Brien et al., 2012).  The 
second metric focuses on evaluating how changes in the frequency of marine air penetration 
events, based on the methodology of Wang and Ullrich (2018), relate to coastal/inland 
temperatures.  Both metrics utilize commonly-available, large scale variables as both input 
(ocean surface temperature for the former, surface wind and temperature for the latter) and 
output (surface temperature for both metrics. 
 
The primary benefit to the DoD of this seed project’s research is to detail the scale of the work 
that is needed to address in a comprehensive fashion specific research tasks that go beyond a 
purely statistical approach to developing climate model projections from an ensemble of model 
results to provide insight into the models with which the DoD should have increased or 
diminished confidence.  The challenges of using downscaled projections for infrastructure and 
operations planning should not be underestimated, because they are generally completely opaque 
to the end-user.  These end-users can easily have either too much or too little confidence in the 
model projections.   For the former case, the provision of a set of numbers, and even error bars, 
that can be fed into end-user models is a straightforward exercise, but the danger here is that 
those numbers can be misleading if they do not consider the processes that break stationarity. 
 
For the latter case, the esoteric nature of climate models and downscaling can preclude their 
adoption even though it is very likely that long-term shifts in surface air temperature and 
precipitation distributions will occur.  In this situation, planning exercises either use historical 
data, that does not include nonstationarity, or use generic information on increased variability as 
a placeholder for a deeper understanding of the risks associated with climate change, and this 
generic information may or may not be relevant to a specific location.  In order to fulfill the 
needs expressed in RCSON-18-L2, a deeper understanding on how to use models and 
downscaling to capture relevant nonstationarity is needed. Confidence in downscaled projections 
is of paramount importance for infrastructure and planning purposes.    
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