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1.0 INTRODUCTION 

Contaminated sediments are commonly remediated by environmental dredging, which 
involves their removal and disposal to reduce environmental risks. However, sediment 
capping is sometimes preferred because it is less expensive and disruptive to the benthic 
environment. In passive capping, contaminated sediment is covered with a layer (cap) of 
clean, inert material such as sand, soil, or sediment to physically isolate the contaminants. In 
active capping, chemically reactive amendments are applied to the sediment surface to bind 
contaminants, thereby reducing pore water contaminant concentrations and bioavailability 
(Figure 1). 

 

Figure 1. Passive Cap (left) and Active Cap (right).  

Active caps incorporate chemically active materials that react with contaminants to reduce their 
bioavailability. 

Remediated sediments may be exposed to continued inputs from permitted discharges, 
upstream contaminated sites, or stormwater discharge resulting in recontamination that can 
slow or reverse recovery associated with remedial efforts. The recontamination of sediments 
can negate expensive remedial actions by producing a polluted habitat zone that overlies the 
remediated sediment (Figure 2). This is a challenge to all remedial approaches, but the severity 
of the problem may be affected by the type of remediation that has been undertaken. 
Contaminant influxes can degrade the benthic environment as contaminants accumulate in 
areas previously remediated by environmental dredging or conventional capping with inert 
materials such as sand. However, remedial effectiveness may persist in areas remediated by 
active capping with chemically active sequestering agents because these agents interact with 
incoming contaminants to reduce their bioavailability and toxicity. Remedial effectiveness can be 
further influenced by bioturbation, the physical disturbance, restructuring, and reworking of 
sediments by benthic organisms. Bioturbation can mix newly deposited contaminated sediment 
with underlying uncontaminated sediment, which may contribute to the release of contaminants 
from the newly deposited contaminated sediment or, conversely, to contaminant sequestration or 
dilution by burial in underlying clean sediment or active capping material. In the latter case, 
contaminants may react with sequestering agents to reduce their toxicity and bioavailability. 
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Figure 2. Remediated Sediments May Be Exposed to Contamination from 
Uncontrolled Point or Nonpoint Sources Resulting in Recontamination that Reverses 

Recovery. 

The project team’s research addressed the knowledge gap related to the effects of ongoing 
contamination on different sediment remediation technologies including active caps, passive 
caps, and sediment remediated by the removal of contaminants through environmental 
dredging (simulated by uncontaminated, uncapped sediment). None of these technologies have 
been evaluated for their effectiveness when confronted with ongoing contamination. 
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2.0 OBJECTIVES 

The objectives of this project were the following: 

1. Evaluate the effects of low-level metal influxes from uncontrolled sources on passive caps, 
active caps, and clean, uncapped sediment in a freshwater environment. 

2. Assess the effects of bioturbation on an incoming particulate contaminant load deposited 
over underlying clean sediment or active capping material. 

3. Develop numerical models for assessing the long-term effectiveness of remediated 
sediment subjected to recontamination. 

4. Improve understanding of the relationships among surface sediment recontamination, 
remediated contaminated sediments, and biological receptors. 
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3.0 TECHNICAL APPROACH 

The research objectives were addressed in three tasks: Task 1—Linkages between contaminant 
loading and recontamination of remediated sediments—flow through mesocosms with continuous 
metal influx, Task 2—Understanding relationships among remediation methods, low level influxes 
of contaminants, bioturbation, and effects on biological receptors, and Task 3—Development of 
numerical models for predicting long-term relationships between low level contaminant influxes 
and remediated sediments. 

Task 1 evaluated linkages between dissolved contaminant loading and recontamination of 
remediated sediments. Subtask 1.1 of Task 1, Dissolved Metal Influx, employed flow-through 
mesocosms to simulate recontamination by an inflow of dissolved contaminants. The setup included 
30 flow-through mesocosms (20 x 41 x 43 cm) representing 10 treatments including uncapped 
sediment and different cap compositions and thicknesses (2.5 or 5.0 cm) (Figure 3). Passive caps 
consisted of sand. There were five types of active caps: 1) apatite; 2) organoclay (MRM from 
CETCO); 3) activated carbon; 4) silty clay sediment; and 5) a mixture of apatite, activated carbon, 
and organoclay (referred to as MAAC or MC). A single reservoir supplied a continuous inflow of 
spike solution with 0.5 mg L-1 each of arsenic (As), chromium (Cr), cadmium (Cd), cobalt (Co), 
copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) to each mesocosm. 
Pore water samplers composed of fine mesh screens were buried in the mesocosm sediments. 
Dissolved oxygen, temperature, electrical conductivity, pH, turbidity, and calcium hardness were 
measured in surface waters. Total and dissolved metals in surface and pore water were measured by 
inductively coupled plasma-mass spectrometry (ICP-MS). Annelid worms, Lumbriculus variegatus, 
held in plastic screened cages within the sediments of the mesocosms for 10 days were weighed in 
aggregate before and after exposure to assess mortality, then analyzed by ICP-MS to assess element 
bioaccumulation. Diffusive gradients in thin films (DGT) sediment probes were deployed for 24 h 
to measure potentially bioavailable metals at different depths within the caps and sediment of each 
mesocosm, and sediment cores were taken to measure sediment pH. 

Subtask 1.2 of Task 1, Low-level Dissolved Metal Influx and Metal Interactions, used the 
experiment setup described for Subtask 1.1 to assess the effects of low level Cu influxes, alone 
and in the presence of other contaminants, on different remediation methods. Competitive 
interactions among metals may exist at sites with co-occurring contaminants. Experiment I 
included Cu with other metals, and Experiment II included only Cu. Treatments in both 
experiments included uncapped sediment and sediment capped with 2.5 cm of 75% apatite, 5% 
activated carbon, and 20% MRM organoclay. Experimental methods were as in Task 1. 

 
Figure 3. Experimental Mesocosms. 
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Task 2 investigated how bioturbation affected the recontamination of uncapped clean sediments 
(simulating dredged sediment) and sediment remediated by apatite caps. Contaminated sediment 
was deposited directly over the remediated sediment to simulate the influx of contaminants bound 
to particulates. There were 12 mesocosms divided into four groups: apatite caps with bioturbation, 
apatite caps without bioturbation, uncapped sediment with bioturbation, and uncapped sediment 
without bioturbation. Contaminated sediment was manually added to produce a 1.5 cm thick top 
layer over a bottom layer of uncontaminated sediment or uncontaminated sediment with an 
overlying apatite cap. Levels of Cu, As, Ni, and Cd in the contaminated sediment were typical of 
polluted sediments; levels of Zn, and Pb were above those in the uncontaminated layer. The 
bioturbating organisms, Asian clams Corbicula fluminea, burrowed to a depth of about 2.5 cm and 
remained in the mesocosms for 28 days. Other experimental methods were as described previously. 

Task 3 evaluated the long-term effectiveness of remedial methods through modeling that 
synthesized results from Task 1. It developed numerical models for the prediction of long-term 
relationships among low level influxes of metals and remediated sediments, thereby providing a 
basis for the selection of remediation strategies that exhibit long-term effectiveness in the face of 
ongoing contaminant influxes. 
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4.0 RESULTS AND DISCUSSION 

Task 1, Subtask 1.1 

The concentrations of most elements in surface water remained significantly lower in 
mesocosms with apatite and mixed amendment active caps than mesocosms with passive caps 
(sand) or uncapped sediment. By the end of the 2520 h experiment, average Cd concentrations 
in surface water were 100 μg L−1 in the mesocosms with active caps compared with 300 μg 
L−1in mesocosms with passive caps, and 500 μg L−1 in control mesocosms (Figure 4). Like 
Cd, average dissolved Zn increased over time in the control mesocosms and mesocosms with 
passive caps, reaching 500 μg L−1 in the former and nearly 200 μg L−1 in the latter, but 
remained under 10 μg L−1 in most active cap treatments (Figure 4). Similar results were 
observed for other elements, especially divalent metals. 

 
 

 

Figure 4. Average Surface Water Concentrations of Dissolved Cd and Zn in Mesocosms 
with Active Caps, Passive Caps, and Controls (i.e., Multiple Element Spike Solution). 
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Average percent survival of Lumbriculus was higher in mesocosms with active caps (65-80%) than 
mesocosms with uncapped sediment and sand caps (0-10%). Higher water hardness in the active 
cap mesocosm likely contributed to this higher survival because the acute toxicity of many metals 
diminishes as hardness increases. Whole-body concentrations of most metals in surviving 
Lumbriculus differed significantly among mesocosms, with lower concentrations in mesocosms 
with active caps (Figure 5). Although all active caps reduced metal uptake, there were differences 
among cap types, with the most effective caps varying among metals. 

 

Figure 5. Lumbriculus Metal Concentrations Among Sediment Treatments for 
Cd and Cr (BG=Background, AC=Activated Carbon, SC=Silty Clay Cap, A-

1=Apatite Cap, MRM=Organoclay MRM Cap, MC=Mixture of Active 
Amendments, and SED=Untreated Sediment.  

Means connected by the same line are not significantly different at p < 0.05. 

The bioavailable pool of metals assessed by sediment DGT was lower in apatite caps, MC caps, 
and sediment treated with activated carbon than in passive sand caps, silty clay caps, and uncapped 
sediment. Pearson correlations between metal concentrations in Lumbriculus and DGT metal 
concentrations in the top 2.5 cm of sediment or cap were generally strong (up to 0.98) and 
significant (p< 0.05) for all metals except zinc (example for Co in Figure 6). These results 
indicated that metal concentrations in Lumbriculus were the result of uptake from the surrounding 
sediment or cap and possibly overlying water and the bioavailable pool of metals was lower in 
mesocosms with active caps than mesocosms with uncapped sediment or passive caps. 

Task 1, Subtask 1.2 

This task investigated the effects of Cu influxes on sediment remediated by different treatments, 
alone and in the presence of other elements to investigate potential competitive interactions 
between Cu and co-occurring contaminants. The behavior of Cu was generally similar in 
Experiments I (multiple metals) and II (Cu only); i.e., surface water Cu concentrations were higher 
in mesocosms with passive sand caps or uncapped sediment than mesocosms with apatite and 
mixed amendment caps. However, slightly lower surface water concentrations of Cu in 
Experiment I than II were visible after 528 h in mesocosms with mixed amendment caps, likely 
because Cd and Zn precipitated Cu and lowered average total Cu concentrations. The most 
effective amendment for controlling metal influxes in Experiment I was apatite, which reduced 
concentrations of Pb, Cu, Cd, As, and Zn by 96, 90, 89, 76, and 63%, respectively. 
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DGT water probes showed that concentrations of potentially bioavailable Cu, Cd and Pb were 
lower (p < 0.05) in apatite, activated carbon, and MC treatments than in the control and passive 
sand cap treatments. However, there were no significant differences in DGT Cu concentrations 
between Experiments I and II for mesocosms with MC caps indicating that the presence of other 
elements did not influence the effectiveness of MC caps for remediating Cu. Cu concentrations in 
Lumbriculus were significantly higher in mesocosms with untreated sediment than with active caps 
and related to element concentrations in sediment measured by DGT probes (Figure 7). 

Although Cu uptake by Lumbriculus (indicated by tissue concentrations) differed little between 
Experiments I and II, the toxicity of Cu mixed with other elements (indicated by mortality) was 
greater than the toxicity of Cu alone in treatments with uncapped sediment (Figure 8). This was 
not observed in treatments with mixed amendment active caps indicating that active caps can 
protect remediated sediments by reducing metal toxicity in ongoing contamination by multiple 
metals (Figure 8). 

 

Figure 6. Graph A Depicts Co Concentrations (μg kg−1) Measured by Sediment DGT 
Probes (CDGT) in Cap Materials and Sediment Beneath the Cap (Layer A, 0–2.5 cm; Layer 

B, 2.5–5.0 cm; Layer C, 5–7.5 cm).  
Treatments include uncapped sediment (SED), sediment with passive sand caps (S-1=2.5 cm thick cap 

and S-2=5 cm thick cap) and sediment with active caps (apatite=A-1; silty clay=SC; activated carbon= 
AC; organoclay=MRM; mixture of active amendments=MC). Graph B depicts Pearson correlations 

between metal concentrations in Lumbriculus and metal concentrations in sediment measured by DGT. 

Task 2 

A layer of sediment contaminated with As, Cd, Cu, Ni, Pb, and Zn was deposited over clean 
sediment capped with apatite, and clean uncapped sediment to simulate influxes of particle- bound 
contaminants on sediments remediated by active capping and dredging. The bioturbating 
organism, Corbicula fluminea, was added to half of the mesocosm to assess the effects of 
bioturbation on remedial effectiveness as measured by metal fluxes to sediment pore water and 
surface water, the distribution of mobile contaminants in surface water and sediment measured by 
DGT, and contaminant bioaccumulation by Lumbriculus variegatus. 
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Figure 7. Regression of Cu in Lumbriculus on DGT Cu in Sediments (see Figure 
8 for Explanation of Legend). 

 

 

Figure 8. Lumbriculus Cu Concentrations (left) and Mortality (right) in 
Experiments I and II. 

Experiment I (multiple element): control with no sediment (C-MS), uncapped sediment (SED- 
MS), sediment with sand caps (SC-MS), sediment with apatite active caps (A-MS), sediment with 
mixed amendment active caps (MC-MS), and sediment treated in situ with activated carbon (AC-
MS). Experiment II (Cu only): control with no sediment (C-CuS), uncapped sediment (SED-CuS), 
sediment with mixed amendment active caps (MC-CuS), and background (BG). Means connected 

by the same line or indicated by the same letter are not significantly different (α=0.05). 
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Bioturbation strongly affected the vertical distribution of the layer of contaminated sediment, 
which was initially well-consolidated and distinct but thoroughly mixed with apatite and 
underlying sediment after 28 days of bioturbation (Figure 9). However, the metal sequestration 
capacity of the apatite caps was unaffected or improved by bioturbation for all elements except 
As, as shown by DGT metal concentrations in sediment and metal uptake by Lumbriculus (Cd 
example in Figure 10), probably because bioturbation mixed apatite with the incoming sediment 
thereby enhancing chemical sequestration of the metals. Effects with uncapped sediment were 
metal-specific including reductions in the bioavailable pool for Ni, Cd, and to a lesser extent, Pb, 
increases in the bioavailable pool for As and Cu, and little effect for Zn. It is likely that the 
reductions observed for some metals in uncapped sediment were the result of burial and dilution 
of the contaminated sediment combined with chemical processes such as sequestration by iron and 
other minerals in the clean sediment. These results show what can occur when newly dredged, 
uncapped sediment is challenged by a combination of recontamination and bioturbation. 

 
Figure 9. Before and After Bioturbation of Contaminated Sediment Deposited Over an 

Apatite Cap. 

 
Figure 10. A) Cadmium Concentrations Measured by DGT in the Sediment of 

Mesocosms with Untreated Sediment (SED) and with Apatite Active Caps (A).  

Three sediment layers are represented: surficial contaminated layer (CL), cap layer for mesocosms 
with cap (CAP), sediment layer beneath the cap or surficial layer (A), and deeper sediment (B). B) 

Mean element concentrations in Lumbriculus variegatus from experimental mesocosms with apatite 
caps (A) and uncapped sediment (SED) and bioturbation (B) or no bioturbation (NB). Means with 
different letters are significantly (p<0.05) different. Background concentrations in Lumbriculus 

(BG) are shown for comparison. Error bars are standard deviations. 
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Task 3 

The Sediment Flux Model (SFM) and Tableau Input Coupled Kinetic Equilibrium Transport 
(TICKET) model were evaluated and compared for their ability to represent metal transport and 
speciation in a capped environment. The SFM provides a robust representation of transport within 
the sediment bed and exchange processes between the bed and the water column. 

However, the representation of chemical dynamics is limited to equilibrium partitioning between 
the dissolved phase and the particulate organic fraction. In contrast, the TICKET model contains 
detailed algorithms for simulating metal speciation and precipitation via the tableau approach, but 
it has not been extensively used for modeling active cap performance. 

Task 3 developed a modeling approach for forecasting long-term sediment conditions under different 
sediment treatment scenarios. It involved enhancing the SFM code by incorporating the tableau 
approach used in TICKET and other chemical equilibrium models into SFM producing a new 
framework, the SFM-TICKET, able to represent the speciation of metals and other chemicals while 
retaining the vertical transport capability of the SFM. The SFM-TICKET simulation of uncapped 
sediment reproduced both total and dissolved concentrations of the metals used in Task 1  
(Zn example in Figure 10). The SFM-TICKET simulation of capped sediment differed from the 
uncapped sediment simulation by representing a 2.5 cm apatite cap at the top of the sediment bed. 
Maximum total and dissolved concentrations of Cu, Cd, and Zn observed in the experimental 
mesocosms with active caps were also reproduced reasonably well by SFM-TICKET (Figure 11). 
These and other results showed that the integrated transport- equilibrium SFM-TICKET model 
can simulate the effect of pH on free metal activity, adsorption to representative sequestering 
components, and competition between metal and hardness cations for ligand binding sites. 

       

Figure 11. Time Series of Total Metal Concentrations in Surface Water Simulated by 
SFM-TICKET Model for Uncapped Sediment (left) and Apatite Cap (right). 
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5.0 IMPLICATIONS FOR FUTURE RESEARCH AND BENEFITS 

The project team used mesocosms to investigate the effects of continuing metal influxes over 
uncapped sediment and sediments remediated by different types of active and passive caps, 
investigated competitive interactions between Cu and other elements to better understand 
remedial processes when contaminants co-occur, and studied the effects of bioturbation on 
contaminated sediment deposited over underlying clean sediment and sediment remediated 
by active caps. The project team’s overarching hypothesis was that the sequestering agents in 
active caps can bind metals introduced from uncontrolled sources of ongoing contamination, 
thereby reducing their bioavailability and protecting underlying, previously remediated 
sediments from recontamination (Figure 12). In contrast, metals from ongoing sources have 
greater potential to contaminate passive caps and uncapped sediment remediated by 
environmental dredging. 

The project team’s results supported the preceding hypothesis. They showed that concentrations 
of most metals in surface waters were significantly lower in mesocosms with apatite caps, mixed 
amendment caps, and activated carbon treatments than mesocosms with passive sand caps and 
uncapped sediment. Survival was higher for Lumbriculus in mesocosms with active caps than 
passive caps or uncapped sediment, and whole-body concentrations of most metals were lower. 
Regressions of metal concentrations in Lumbriculus on metal concentrations in sediment or cap 
measured by DGT were generally strong and showed reduced metal bioavailability in active 
cap mesocosms. Similarly, sediment DGT probes showed that ongoing contamination increased 
bioavailable metals in the top layer of uncapped sediment but not sediment treated with active 
amendments. Comparing results between multi-metal experiments and Cu-only experiments 
showed that the ability of active caps to control Cu contamination was not affected by the 
presence of other elements. Lastly, the ability of apatite active caps to reduce the bioavailability 
of most metals in incoming contaminated sediment was unaffected or even enhanced by 
bioturbation, probably because bioturbation mixed apatite with the incoming sediment, thereby 
enhancing sequestration of the metals. In contrast, bioturbation reduced the bioavailable pool 
of some metals in contaminated sediment that was deposited over uncapped clean sediment but 
contributed to the release of others. 



 

14 

 

Figure 12. Conventional Methods of Remediating Contaminated Sediments May Be 
Inadequate for the Protection of Benthic Organisms when Ongoing Sources of 

Contamination Exist.  
However, sediment caps with chemically active sequestering agents can reduce the pool of 

bioavailable metals in ongoing contamination (red dots), reduce toxicity, and enhance remedial 
effectiveness. 

The remediation of contaminated sediments is an expensive process that can be negated by the 
continued influx of contaminants from uncontrolled sources. However, the results of this study 
indicate that apatite and other types of active amendments can protect remediated sediments by 
reducing the bioavailable pool of metals in ongoing sources of contamination. They also indicate 
that this ability is not affected by competitive interactions among elements nor by bioturbating 
organisms. This knowledge will contribute to more rigorous risk management that incorporates 
the resilience of remedies in the face of ongoing contamination into criteria for remedy selection. 
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