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Abstract 

When an artillery round undergoes a low-order detonation during live-fire 
training or an unexploded ordnance clearance operation, up to 25% of the 
round’s energetic contents are scattered over a small, localized area, some-
times less than 100 m2. Training-range fate and transport models require 
an accurate representation of the particle-size characteristics of the mate-
rial left behind from low-order detonations.  

This study investigated using laser diffraction particle size analysis to 
characterize 26 samples collected from four low-order command-deto-
nated 81 mm mortar bodies filled with IMX-104. The refractive index of 
IMX-104 was estimated using an iterative recalculation technique on a 
Horiba LA-960 that yielded 1.845 0.01i. Of the 25 triplicate analyses con-
ducted using this value, 12 passed the USP <429> measurement standard 
with 9 of the remaining samples found to have had a reduction in particle 
size during analysis that caused artificially high coefficient of variance val-
ues. The cumulative percent of particle sizes determined by laser diffrac-
tion and sieve stack differed by 0%–21.9% (median = 0.2%–7.2%). In ad-
dition, the higher resolution results of the laser diffraction particle size 
analysis, especially for particles smaller than 0.5 mm, make it the pre-
ferred method of analysis. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

For the Department of Defense (DoD), sustaining military training ranges 
has become a major concern that requires a detailed understanding of the 
loading of munitions constituent residues on those ranges. In the past, dep-
osition of munitions constituents (i.e., energetic compounds such as 2,4,6-
Trinitrotoluene[TNT], Hexogen [RDX], Nitrotriazolone [NTO], 2,4-Di-
nitroanisole [DNAN], and others) on ranges was presumed to be predomi-
nantly from high-order detonations, as very few rounds were assumed to 
function improperly (Dauphin and Doyle 2000). Most training-range fate 
and transport models (i.e., SEPD, ProSAir, and TREECS*) assume this. 
However, subsequent research found that the most significant readily avail-
able source of munitions constituents on impact areas is from munitions 
that do not function properly, resulting in low-order (LO) detonations 
(Taylor et al. 2004; M. E. Walsh et al. 2008). Postdetonation particle char-
acteristic data are needed for LO detonation scenarios to inform and con-
strain models currently used to predict the loading and distribution of mu-
nitions constituents on military training ranges. 

Table 1 provides general bounds on munition order functioning by the ob-
served efficiency of explosive-filler-mass consumption during detonation 
and associated residues deposition. The U.S. Army Cold Regions Research 
and Engineering Laboratory (CRREL) and others developed these de-
scriptors over 20 years of field experimentation and testing through 
SERDP†-sponsored research projects on residues characterization (ER-
1155 [Pennington et al. 2006], ER-1481 [M. R. Walsh, Thiboutot, et al. 
2011], and ER-2219 [M. R. Walsh et al. 2017]). These bounds are based on 
both observations made in the field and measurements of postdetonation 
material, with the filler-mass consumption efficiencies largely based on 
conventional (i.e., Composition B and TNT) munitions (e.g., Jenkins et al. 
2002; Hewitt et al. 2005; M. R. Walsh, Walsh, Poulin, et al. 2011). High-
order detonations of insensitive munitions (IM) tend to have efficiencies 

                                                   
* Surface Explosives Particles Dispersion Model, Propagation of Shocks in Air, and Training Range Envi-

ronmental Evaluation and Characterization System 
† Strategic Environmental Research and Development Program 
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less than 99.99% (M. R. Walsh, Walsh, Ramsey, Taylor, et al. 2013; M. R. 
Walsh, Walsh, Ramsey, Brochu, et al. 2013; M. R. Walsh et al. 2018). 

TTable 1.  Detonation characterization descriptors based on conventional munitions. 

Descriptor  
Filler Mass 
CConsumed Munition State  

High-order detonation 99.99% or more Total fragmentation 

Low-order detonation 75% to 99.98% Substantial fragmentation with some large pieces 

Partial detonation 25% to 75% Little if any fragmentation with some large pieces 

Initiated dud <25% Fuze gone; intact round with some cracking at nose 
possible 

Noninitiated dud None Round intact, including fuze 

 
As high-order detonations typically produce small amounts of very small 
residual particles (e.g., Taylor et al. 2006) and duds are thought to be rela-
tively intact over decades (Chendorain et al. 2005), LO particles are most 
relevant to immediate range impacts because of relative mass deposition 
and availability for mobilization.  

The size, shape, spatial distribution, and total mass of particles resulting 
from LO detonations determine the kinetics and extent of energetic com-
pound dissolution (Taylor et al. 2015). Therefore, they also determine the 
strain placed on biological systems and the buffering capacity of soils in at-
tenuating the transport of these compounds to surface water and ground-
water. Experimental data on the particle characteristics for LO detonations 
are thus vital in accurately modeling the fate and transport of energetic 
compounds in conventional and IM high-explosives residues.  

Until recently, there was no reliable method of quantifying the particle size 
of energetics residues from different detonation scenarios or of realisti-
cally simulating a LO detonation. Currently the only technique readily 
available is sieve stack analysis, traditionally used for characterizing geo-
logic material, which relies on relatively coarse bin sizes, resulting in few 
data points. Headrick (2015) applied laser diffraction particle size analysis 
(LD-PSA) to energetic materials during the development and manufactur-
ing process but it has yet to be applied to postdetonation material. 
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1.2 Objectives 

The goal of this study was to validate the use of LD-PSA on LO particles 
composed of the IM formula IMX-104 by comparing the results to the con-
ventional sieve stack method. 

Specific research objectives were 

1. to estimate the Refractive Index (RI) of LO IMX-104 particles, 
2. to validate the RI using triplicate analyses of multiple samples, and 
3. to compare LD-PSA results to sieve stack data previously compiled for 

test samples. 

1.3 Approach 

In this study, we used previously collected LO particles from SERDP ER-
2219 to validate the use of LD-PSA as a technique for characterizing parti-
cle size. RI was determined through the use of the recalculation software 
on the Horiba LA-960 Laser Diffraction Particle Size Analyzer. This recal-
culation allowed us to vary the two components of the RI in an iterative 
recalculation process that reduced error when converting raw data to a 
particle-size distribution (PSD), commonly known as the R parameter 
(Horiba 2008a, 2008b, 2014). We then verified the chosen RI through 
triplicate analyses of multiple samples with the coefficient of variation be-
tween those analyses not exceeding the standard outlined in USP <429> 
(USP 2016).  

Once the RI of IMX-104 was estimated, the archived samples were ana-
lyzed by LD-PSA and the results compared to PSD data previously col-
lected by sieve stack analysis. 
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2 Methods 

2.1 March 2015 command-detonation testing and sampling 

The command-detonation testing that generated the LO detonation parti-
cles analyzed in this project was conducted in March 2015 for SERDP pro-
ject ER-2219 (M. R. Walsh et al. 2017). The original test objective was to 
determine the spatial distribution of residues following a LO detonation. 
The testing munitions consisted of excess 81 mm IMX-104 mortar bodies 
from manufacturing test runs and were issued with a supplemental charge 
and no fuze. The rounds used for testing were obtained by the Defence Re-
search and Development Canada–Valcartier from the Combat Capabilities 
Development Command Armaments Center (CCDC-AC), formerly the Ar-
maments Research, Development, and Engineering Center. Mortar bodies 
were threaded into 13 Mpa. 

2 by 2 cm thick aluminum plates and placed on 30 cm2 by 0.64 cm thick 
steel plates at detonation points on clean ice. The rounds were command 
detonated with a CRREL fuze simulator (CFS) with a booster charge of 
Composition C4 (C4) (M. R. Walsh, Walsh, and Hug 2011). The booster 
charge was placed in the base of the CFS and threaded into the nose of 
each round with the original supplemental charge removed (Figure 1).  

FFigure 1. An 81 mm IMX-104 mortar body with CFS and C4 booster load. 
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The testing varied the mass of C4 between 7 and 9 g to achieve the LO det-
onation outcome. Rounds were initiated by a blasting cap inserted through 
the nose of the CFS into the C4 booster charge at its base. Table 2 summa-
rizes the LO detonation tests carried out during the 2015 field campaign.   

TTable 2.  Low-order detonation tests from March 2015 with estimated detonation type. 
Adapted from M. R. Walsh et al. (2017). 

Test  Booster Load (C4)  Est. Detonation Type  Samples  

LO-1 9 g Low order Whole area swept and bagged 

LO-2 7 g Low order Picked particles and swept annuli 

LO-3 7 g Partial Detonation Picked particles and swept annuli 

LO-4 7 g Fuze only Picked up a few chunks 

LO-5 7 g Fuze only Picked up a few chunks 

LO-6 8 g Partial detonation Picked particles and swept annuli 

LO-7 8 g Low order Picked particles and swept annuli 

All detonations aside from Test LO-1 were conducted in pairs on two deto-
nation sites 64 m apart (center to center) and 10 m in diameter. Each deto-
nation site consisted of 1 m concentric rings that were measured out from 
the detonation point and marked with brightly colored paint (Figure 2).  

Figure 2.  Marking 1 m annuli around the detonation point. Rings were 
marked in alternating colors. 
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All samples were swept from the clean ice surface and collected into 38 × 
76 cm laboratory-clean polyethylene (PE) bags for future use. Test LO-1 
was conducted as an initial test of the detonation and sampling concept and 
was sampled in its entirety in one whole population sample as there were 
no particles greater than 1 mm apparent on visual inspection of the detona-
tion plume. For Tests LO-3, -6, and -7, the larger particles and finer residue 
were swept up from each annulus and put into separate PE bags noting the 
test detonation (e.g., LO-3) and the distance of the annulus from the point 
of detonation (e.g., 2–3 m). For LO-2, -3, -6, and -7, particles that were ob-
served beyond the 10 m sampling area were recorded with a GPS, sized and 
weighed in the field, and collected in plastic containers for further analysis 
at the field laboratory. Both LO-4 and LO-5 did not initiate the explosive 
filler and were catalogued as initiated duds. The particles that were ejected 
from these rounds were collected and placed in plastic containers. Follow-
ing sample collection, particles were extracted from the mixed particle and 
ice-fragment matrix in the laboratory by freeze-drying.  

2.2 Particle isolation 

When originally collected, LO particles in the samples were mixed with 
granular ice generated by the detonation of the rounds and needed to be 
freeze-dried to isolate the energetic material. This was done with a VirTis 
Freezemobile 12XL freeze-dryer (Figure 3).  

FFigure 3.  VirTis Freezemobile 12XL freeze-dryer loaded with 2015 
particle samples.  
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Samples were stored and prepared for freeze-drying in a 20°C cold room 
to avoid melting the ice matrix and potentially dissolving the IMX-104 
particles. Samples were split (as needed) and placed into secondary con-
tainment vessels, 8 oz glass jars, and topped with filter paper (Melitta 
M/N 629520 4- to 6-cup white unbleached paper basket-type filter, 

 μm pore size) and a ring cap (Figure 4). The Melitta coffee filter 
served as a secondary filter, in addition to the freeze-dryer vessel’s filter, to 
prevent the loss of fine material through suspension caused by the initia-
tion and release of vacuum pressure.  

FFigure 4.  Top-view of 8 oz jars filled with a split sample and topped 
with filters and ring caps 

 

Secondary containment vessels were then placed inside 600 mL VirTis 
freeze-drying bulbs and attached to the Freezemobile 12XL with rubber 
seals outfitted with an interior filter. The Freezemobile 12XL had a set 
condenser temperature of 75°C, and samples were left connected for at 
least 48 hours until all the ice fragments had sublimated into the collection 
chamber of the freeze-dryer (Figure 5). Once removed, samples were re-
combined into a single jar for sieve stack analysis. 
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FFigure 5. Detail view of VirTis Freezemobile 12XL with 2015 samples.

 

2.3 Sieve stack analysis 

Following freeze-drying and recombining, samples were sieved to deter-
mine size fractions. To keep the processing methodology consistent, the 
same sieve sizes used during field processing of samples, 9.51, 4.5, 2, 1, 
and 0.5 mm U.S. Standard brass sieves, were used to process samples in-
side of a fume hood in Hanover, New Hampshire (Figure 6a). To reduce 
the amount of fragmentation of energetic particles, sieves were shaken by 
hand as opposed to using a mechanical shaker. During this process, debris, 
including sticks, seeds, detonation cord plastic sheathing, and metal frag-
ments from the mortar bodies, was removed Figure 6b).  

Figure 6.  Sieve stack setup in the fume hood and the resulting particle-size 
fractions and debris. 
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Size fractions were massed and particle counts estimated by massing a 
subset of particles and back calculating by using the measured mass and 
the density of IMX-104. Samples were kept in their individual size frac-
tions and refrigerated until needed for further analysis.  

2.4 Estimation of refractive index 

For the purposes of this study, when we refer to the refractive index, we 
are actually referring to what is known as the complex refractive index 
(RI), which is defined by 

 = + , (1) 

where  

  = the complex refractive index;  
  = the real component indicating the phase velocity; 
  = the sqrt ( 1); and  
  = the extinction coefficient, also known as the imaginary 

component, which is associated with the absorption 
phenomena or opaqueness of the material (Horiba 2008a).  

The selection of an RI in the Horiba LA-960 software is known as an RI 
kernel and is made up of both the real and imaginary components. To ana-
lyze the IMX-104 particles by LD-PSA, the two components of the RI, n 
and k, needed to be determined either through literature research or opti-
cal measurement. We found no published values for the RI of IMX-104 for 
the wavelengths of light used during LD-PSA, so we needed to estimate the 
RI components by using the Horiba LA-960 software. Even though pub-
lished values of RI were not available for the wavelengths of interest, Palka 
and Szala (2016) did measure the RI of melt-cast IMX-104 samples 
through time domain spectroscopy. They found that for frequencies rang-
ing from 0.1 to 3 THz, bulk IMX-104 samples had calculated refractive in-
dices ranging from approximately 2.1 to 1.85. Although the frequency at 
which Palka and Szala investigated IMX-104 would correspond to a much 
larger wavelength than those utilized in LD-PSA, we could use the range of 
RI values they calculated as a reference point for our estimation of the RI. 

The Horiba software includes a calculation that quantifies the quality of 
raw data and resulting PSD for a selected RI kernel. This measure of qual-
ity is given by the residual R parameter defined by 
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 R =  1 1( ) | ( )|, (2)

where  

  = the number of detectors used for the calculation;  
  = the measured scattered light at each channel of the detector; 

and  
 ( ) = the calculated scattered light at each detector, based on the RI 

kernel used and the PSD (Horiba 2008b).  

By systematically varying each component and zeroing in on the lowest R 
parameter, the error of the resulting calculation can be reduced and the 
most appropriate RI components chosen for the “unknown” material. To 
confirm the RI as being appropriate for the material, we ran the test sam-
ples in triplicate and calculated a coefficient of variance (CV) for each trip-
licate set. Confirmation of the estimated RI used the CV metric for D10, 
D50, and D90 (i.e., diameters at which 10%, 50%, and 90% of particles are 
smaller) of 15%, 10%, and 15%, respectively, following the USP <429> 
standard for light diffraction methods of particle size (USP 2016).  

2.5 Laser diffraction particle size analysis 

Following estimation of the RI components for IMX-104, the Horiba LA-
960 was used to process the archived LO particles from LO-2, -3, -6, 
and -7. To allow recovery of sample material, a Nilfisk 118EXP explosion-
proof vacuum was attached to the system. The suction flow of the 118EXP 
was reduced to the same settings as the original Nilfisk GM 80 factory set-
tings with the use of a variable speed controller. Samples were first sieved 
so that the size fraction greater than 2 mm was removed to avoid clogging 
the intake and flow cell of the instrument. An initial sample mass was 
taken and the sample loaded into the sample chute for analysis. Samples 
were run on automatic feeder settings with the forced air pressure set to 
0.32 MPa and sample data acquisition times set to 50000 (50 seconds). A 
low forced air pressure setting was used to avoid breaking particles during 
the analysis process. For most samples (>~3 g), it was necessary to con-
duct multiple analyses for all material to pass through the analyzer. Fol-
lowing sample analysis, the filter of the Nilfisk 118EXP was shaken out 
into the stainless steel collection chamber, and the sample was recovered 
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using static-free brushes. Samples were run in triplicate, and the instru-
ment was cleaned after triplicate analyses by running Ottawa sand through 
the analyzer to avoid cross contamination between samples.  

Following analysis, each sample had multiple output data files with volu-
metric PSDs that were averaged to produce the compiled PSD for each 
sample. The sieve stack process creates a PSD based on mass, and the LD-
PSA methodology creates a PSD based on sample volume. Since the mate-
rial being analyzed in this case was uniform in density, there was no need 
to convert between mass and volume distributions (Horiba 2005). Both 
PSDs and percent cumulative results of each analyzed sample were used 
for comparison.  
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3 Results and Discussion 

3.1 Sieve stack analysis 

The total mass of particles was calculated after freeze-drying and was 
used to calculate detonation efficiency (Table 3). The detonation results 
are based on recovered particles and observations made of round frag-
mentation. In the case of LO-7, we classified this round as a LO detona-
tion and not a partial detonation because the round was substantially 
fragmented and recovered residues were close to the LO range of values 
given in Table 1.   

TTable 3.  Detonation results from low-order detonation tests, March 2015. Adapted 
from M. R. Walsh et al. (2017). 

Test  Booster (C4)  Result  Recovered Residuesa Overall Efficiencyb 

LO-1 9 g Low order 20% 80% 

LO-2 7 g Partial detonation 30% 20%d 

LO-3 7 g Low order 6%e 94% 

LO-4 7 g Dud (fuze only) 2%c 0.9% 

LO-5 7 g Dud (fuze only) 7%c 0.9% 

LO-6 8 g Partial detonation 27%c 20%d 

LO-7 8 g Low order 31% 69% 
a Percent of original mass recovered as particles. 
b For partial detonations, filler in the round is estimated. For duds, only booster charge (fuze) detonated. 
c Particles recovered only outside the body of the round. Total energetics remaining is in the 99% range. 
d Estimate based on recovered residues plus estimate of remaining explosive filler in the round. 
e Includes estimate of residues in samples lost during desiccation process. 

Of the seven rounds detonated during the March 2015 tests, only three 
rounds, LO-1, -3, and -7, detonated LO and two, LO-2 and -6, were partial 
detonations. As noted earlier, LO-4 and -5 were initiated duds; and the 
material from LO-1 was swept, melted, and analyzed by HPLC. Therefore, 
the detonation material investigated for this study was from LO-2, -3, -6, 
and -7. Because of the varying efficiencies, we present the partial and LO 
results separately.  

3.1.1  Low-order detonations 

The majority of particles from LO-3 and -7 were less than 0.5 mm in size. 
For LO-3, this accounts for 50.8% of the freeze-dried sample, 9.6 g of the 
total 18.8 g sample mass. For LO-7, 58.1% of the total sample mass was 
less than 0.5 mm, 83.6 g of the 143.9 g sample. It is important to note that 
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although the total masses differ by an order of magnitude, the majority of 
the deposited particles for both detonations are less than 0.5 mm in size. 
Table 4 and Table 5 give the results. No corrections were made to the data 
for the samples from LO-3 that were compromised (3, 4, and 5 m annuli) 
during the freeze-drying process. 

TTable 4.  Distribution statistics for LO-3 and -7 based on sieve size. 

Sieve Size 
((mm) 

LO--3  LO--7  

Percent of 
TTotal 

Total in Bin 
((g) 

Percent of 
TTotal 

Total in Bin 
((g) 

>9.5 0% 0 0% 0 

4.75–9.5 0% 0 0% 0 

2–4.75 2.6% 0.5 2.4% 3.5 

1–2 24.3% 4.6 16.0% 23.0 

0.5–1 22.2% 4.2 23.5% 33.8 

<0.5 50.8% 9.6 58.1% 83.6 

Total  100%  18.9  100%  1433.9 

 
Table 5.  Distribution statistics for LO-3 and -7 based on annuli distance. 

Annulus 
Distance (m)  

LO--3  LO--7  

Percent of 
TTotal 

Total in Bin 
((g) 

Percent of 
TTotal 

Total in Bin 
((g) 

0–2 14.3% 2.7 7.4% 10.6 

2–3 16.9% 3.2 16.7% 24.0 

3–4 * * 13.8% 19.8 

4–5 * * 15.1% 21.7 

5–6 * * 11.3% 16.3 

6–7 25.9% 4.9 12.2% 17.5 

7–8 14.8% 2.8 8.6% 12.4 

8–9 10.6% 2.0 9.7% 14.0 

9–10 17.5% 3.3 5.3% 7.6 

Total 100%% 18.9 100% 1433.9 

* Particles for these annuli were lost for LO-3 during the freeze-drying process when the 
samples melted due to a filter blockage. 

3.1.2  Partial detonations 

The majority of particles from LO-2 and -6 were also found to be less than 
0.5 mm in size. For LO-2, this accounts for 63.0% of the freeze-dried sam-
ple, 195.1 g of the total 309.5 g sample mass. For LO-6, 58.6% of the total 
sample mass, or 30.3 g of the 51.7 g sample, was found to be less than 
0.5 mm. As was found with LO-3 and -7, even though these two samples 
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differ in mass by one order of magnitude, the majority of the deposited 
particles from the freeze-dried portion are less than 0.5 mm in size. Table 
6 and Table 7 show these results.  

TTable 6.  Distribution statistics for LO-2 and -6 based on sieve size. 

Sieve Size 
((mm) 

LO--2  LO--6  

Percent of 
TTotal 

Total in Bin 
((g) 

Percent of 
TTotal 

Total in Bin 
((g) 

>9.5 0% 0 0% 0 

4.75–9.5 0% 0 0.2% 0.1 

2–4.75 2.1% 6.6 2.5% 1.3 

1–2 13.8% 42.8 10.3% 5.3 

0.5–1 21.0% 65.0 28.4% 14.7 

<0.5 63.0% 195.1 58.6% 30.3 

Total  100%  309.55 100%  511.7 

 
Table 7.  Distribution statistics for LO-2 and -6 based on annuli distance. 

Annulus 
Distance (m)  

LO--2  LO--6  

Percent of 
TTotal 

Total in Bin 
((g) 

Percent of 
TTotal 

Total in Bin 
((g) 

0–1 35.7% 110.4 
46.5% 24.1 

1–2 8.0% 24.8 

2–3 16.1% 49.9 16.0% 8.3 

3–4 16.5% 51.2 13.5% 7.0 

4–5 6.7% 20.7 12.5% 6.5 

5–6 4.1% 12.6 3.9% 2.0 

6–7 3.6% 11.1 5.8% 3.0 

7–8 2.7% 8.5 1.7% 0.9 

8–9 3.8% 11.7 0% 0 

9–10 2.8% 8.6 0% 0 

Total 100% 309.55 100% 511.7 

 

3.2 Estimation of refractive index using the Horiba LA-960 

The first step of estimating the RI for IMX-104 was to analyze a sample on 
the Horiba LA-960 and then to recalculate the results with new RI kernels, 
varying both the real and imaginary components. We chose LO-2 0–2 m 
for this estimation, referred to as LO-2 for the rest of this section. Initially, 
LO-2 was recalculated with a real component of 1, 2, 3, 4, and 5 and imagi-
nary components for each of 0.01, 0.1, 1, 5, and 10 (equation 1). These 
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were used to evaluate the real and imaginary components over a wide 
range of values. By doing so, the investigative window was narrowed by 
finding the lowest nonzero R parameters in this range. Table 8 summa-
rizes the results of this first step.     

TTable 8.  Summary of R parameter data for step one of the RI estimation for 
LO-2 particle analysis. 

Real 
CComponent 

( )  

Immaginary 
Component 

(( )  R  Parameter  

Real 
CComponent 

( )  

Imaginary 
CComponent 

( )  R  Parameter  

1 0.01 0.11569 4 0.01 0.047424 

1 0.1 0 4 0.1 0 

1 1 0.047717 4 1 0.048143 

1 5 0 4 5 0 

1 10 0 4 10 0 

2 0.01 0.04565 5 0.01 0.047566 

2 0.1 0.046937 5 0.1 0 

2 1 0.047897 5 1 0.047994 

2 5 0 5 5 0 

2 10 0 5 10 0 

3 0.01 0.047127    
3 0.1 0    
3 1 0.048306    
3 5 0    
3 10 0    

 
As seen in Table 8, the lowest nonzero R parameters were returned for an 
imaginary component of 1 and 0.1. The lowest R parameter corresponding 
to imaginary components of 1 and 0.1 were for real components with val-
ues of 1 and 2, respectively. These values are near or in the original win-
dow targeted for investigation based on Palka and Szala (2016), which pro-
vided further support for these determined values. The second step of this 
investigation was to estimate the imaginary component by recalculating 
the original LO-2 particle-size dataset with fixed real component values of 
1 and 2. For each of these real component values, the imaginary compo-
nent values for each were varied from 0.95 to 0.99 and 0 to 0.07, respec-
tively. The imaginary components were varied in increments of 0.01. Fig-
ure 7 and Figure 8 show the results. 
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FFigure 7.  Parameters for RI 1 and imaginary components ranging from 0.95 to 0.99. 

 

Figure 8.  R parameters for RI 2 and imaginary components ranging from 0 to 0.6 (0.7 is not 
shown because it returned a value of 0). 
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0.01 and recalculate the R parameter for a range of real component values 
from 1.5 to 2.5 in increments of 0.05. The results of this recalculation deter-
mine the RI to the second decimal place (Figure 9 and Figure 10).   

FFigure 9.  R parameters for RI of 1.5–2.5 with a fixed imaginary component of 0.01. 

 

Figure 10.  Detail view of the lowest R parameter data for RI of 1.5–2.5 with a fixed imaginary 
component of 0.01. 
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As seen in Figure 10, the lowest R parameter value was found for a refrac-
tive index real component of 1.85. The fourth and final step determined 
the RI kernel to the third decimal place. Although for most applications 
the RI needs to be determined to the second decimal place only, we chose 
this approach based on consultation with the manufacturer of our ana-
lyzer. We accomplished this fourth step by performing a similar analysis as 
step three described above. The RI imaginary component was held con-
stant at 0.01, and the RI real component was varied from 1.800 to 1.905 by 
increments of 0.005. Figure 11 shows the results of this fourth step. 

FFigure 11.  Detail view of the lowest R parameter data for RI of 1.800–1.905 with a fixed 
imaginary component of 0.01. 
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TTable 9.  Summary of CV values calculated for triplicate 
runs of LO-2, -3, -6, and -7. 

Sample ID  

CV  

D10  D550 D90  

LO-2 0–1 ma - - - 
LO-2 1–2 m 23.9 18.9 18.1 

LO-2 2–3 m 5.1 12.1 8.9 

LO-2 3–4 m 13.7 9.9 6.9 

LO-2 4–5 m 30.7 11.0 8.0 

LO-2 5–6 m 43.7 12.7 12.1 

LO-2 6–7 m 7.5 3.5 7.9 

LO-2 7–8 m 15.2 21.0 18.8 

LO-2 8–9 m 21.4 12.1 5.1 

LO-2 9–10 m 12.8 18.4 3.9 

LO-3 Whole Populationb 2.1 0.5 1.1 

LO-6 0–2 m 23.1 14.2 9.7 

LO-6 2–3 m 36.7 22.9 10.6 

LO-6 3–4 m 8.9 2.8 2.7 

LO-6 4–5 m 3.4 1.7 1.9 

LO-6 5–6 & 7–8 mc 12.3 9.8 3.7 

LO-6 6–7 m 12.3 8.5 0.4 

LO-7 0–2 m 9.4 12.9 4.8 

LO-7 2–3 m 23.9 3.0 0.4 

LO-7 3–4 m 20.5 7.4 4.8 

LO-7 4–5 m 9.3 1.9 3.4 

LO-7 5–6 m 12.0 7.9 3.9 

LO-7 6–7 m 13.3 6.0 6.3 

LO-7 7–8 m 14.0 4.0 3.7 

LO-7 8–9 m 8.6 2.6 2.2 

LO-7 9–10 m 18.0 9.3 3.3 
a LO-2 0–1 m not judged against the CV standard as it was the sample used to 

estimate the RI kernel. 
b Annuli combined, not enough mass to run individually; does not include 3, 4, 

and 5 m samples. 
c Annuli combined, not enough mass to run individually. 

 

In Table 9, the majority of the samples that did not pass the CV standard, 
9 of 13, had increasing CV values with lower estimated particle-size diame-
ter. To better understand this phenomenon, the PSDs for each of the tripli-
cate runs were plotted together to examine changes in PSD with each suc-
cessive analysis (Figure 12; Appendix A and Appendix B).  
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FFigure 12. PSD plots of LO particle samples with the highest change in CV for D10 and D50.

Figure 12 depicts the PSD results of the four samples with the highest 
change in CV for D10 and D50. Although the shape of the PSD stays rela-
tively similar for each of the four samples, there is a marked change that 
can be observed on each plot for the finer-particle-size material (<200 μm). 
In this area, every plot, aside from LO-7 2–3 m, shows an increase from 
Run 1 to Runs 2 and 3 in the percentage of the sample by volume that is 
made up of this finer material. For sample LO-7 2–3 m, the change in PSD 
takes place on the largest peak of the plot, and the area under the Run 2 
and 3 curves increases the greatest to the left of the maximum value. Simi-
lar patterns are seen in the rest of the nonpassing samples, which are in-
cluded in Appendix A. These observations indicate that the sample is be-
coming finer with every successive run through the analyzer. This is most 
pronounced for sample LO-6 2–3 m, where the finer peak of the bimodal 
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plot grows with every successive run. This observation suggests that after 
the sample passes the flow cell, the material is breaking down as it travels 
through the vacuum hose and into the collection chamber of the Nilfisk 
118EXP. To further investigate this observation, we compiled the D10, D50, 
D90, and mean particle sizes for Runs 1, 2, and 3 for all CV analyses that 
did not pass the standard (Figures 13–16; Appendix A). 
 

FFigure 13.  Bar plot of LO-2 samples that did not pass the CV standard with a reduction in 
D10, D50, D90, and mean particle-size values. The full table of values is in Appendix A. 

 

Figure 14.  Bar plot of LO-2 samples that did not pass the CV standard with varying change in 
D10, D50, D90, and mean particle-size values. The full table of values is in Appendix A. 
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FFigure 15.  Bar plot of LO-6 samples that did not pass the CV standard with decreasing D10, 
D50, D90, and mean particle-size values. The full table of values is in Appendix A. 

 

Figure 16.  Bar Plot of LO-7 samples that did not pass the CV standard with varying change in 
D10, D50, D90, and mean particle size. The full table of values is in Appendix A. 
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with samples LO-2 7–8, 8–9, and 9–10 m and LO-7 2–3 m, which showed 
no consistent reduction in particle size. Of these four samples, only LO-2 
7–8 m did not have passing CV values for D10, D50, or D90 (Figure 14; 
Appendix A). Two of the remaining three samples, LO-2 9–10 m and LO-7 
2–3 m, had nonpassing CV values for D50 and D10, respectively. The re-
maining sample had nonpassing CV values for D10 and D50. These three 
samples all had passing CV values for D90, which means that the bulk of 
the material is largely unchanged. However, it is possible that the D90, 
representing a particle size for 90% of the sample, is unchanged overall 
but that the reduction in size of several large particles created material 
that skewed the values for D50 and D10. This effect could also be a factor 
in why some samples (e.g., LO-2 1–2 m and LO-7 0–2 and 3–4 m) had a 
reduction in D50 and D90 and increase in D10. This effect, however, 
would not explain the particle-size change in LO-2 7–8 m.  

Another factor that we are continuing to investigate is the potential holdo-
ver of material in the sample collection system that can potentially be 
mixed with subsequent samples. Without additional information, the exact 
reason for these four nonpassing samples cannot be fully understood. For 
this study, because of the passing CV values for half of the triplicate runs 
and the reduction in particle size observed in 9 of the remaining 13 sam-
ples, the estimated RI kernel of 1.845 0.01i was deemed suitable for con-
tinued analysis of IMX-104 particles in future studies. Because of the re-
duction in particle size observed during the estimation and validation of 
the RI kernel, only the Run 1 data from every sample are presented here 
and compared to the sieve stack results.  

3.3 Laser diffraction particle size analysis 

A total of 26 samples were processed by LD-PSA using a Horiba LA-960. 
Figure 17 presents the compiled PSDs for LO-2, -3, -6, and -7; and Appen-
dix D analyzes each individually. Each sample took approximately 20 
minutes to process through the analyzer and to collect the material from 
the vacuum chamber for future analysis. Sample processing times in-
creased for samples of larger mass as they required additional runs to 
completely analyze all of the sample material. The largest tested sample 
was LO-2 0–1 m, which required 18 separate runs.  
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FFigure 17. PSDs for LO-2, -3, -6, and -7 as measured by the Horiba LA-960.

As seen in Figure 17 and Appendix D, the PSD of LO-2 is strongly bimodal 
in the 0–2 m annulus; and from 6 to 10 m, the particle distribution be-
comes increasingly bimodal with greater distance from the point of deto-
nation. The PSDs from 2–6 m for LO-2 consist of strong peaks that center 
over 1 mm in particle size. The PSD for the LO-3 whole population sample 
is a wide bimodal peak. The maximum value centers over approximately 
500 μm with the secondary peak centered around 80 μm. This agrees with 
the mass data from the sieve stack analysis, indicating the majority of the 
material is less than 500 μm. When examining the data from LO-6, there 
is a clear bimodal PSD for all annuli, which becomes stronger beyond 2 m 
from the point of detonation with a greater percentage of smaller particles. 
The PSD data from LO-7 are made up of broad peaks that skew to particle 
sizes less than 1 mm. The PSDs for all samples show good agreement with 
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one another and tend to be bimodal with peaks centering over roughly 
500–1000 μm and 50–100 μm. The bimodal nature of most samples 
raises an interesting question regarding the composition of different parti-
cle-size classes. Does the composition of a sample with a strong secondary 
peak differ in comparison to a sample with a weaker secondary peak or no 
secondary peak? As discussed in Dontsova et al. (2014), NTO crystals 
found in IMX-104 vary in size approximately 300–500 μm, and DNAN 
particles tend to abrade easily. It is possible that the primary peak is com-
posed of NTO crystals and intact particles of IMX-104 bulk composition 
and that the finer material is made up of abraded DNAN and finer RDX 
crystals. Although our study did not investigate this, the chemical compo-
sition of postdetonation LO particulate material warrants future research. 

3.4 Sieve stack and LD-PSA comparison 

To compare the sieve stack data to the LD-PSA data, we used the cumula-
tive percent of each dataset. Normally when comparing percent by mass 
and percent by volume of mixed materials, the mass percentage must be 
converted into percent by volume using the density of the material. When 
this comparison is made for mixed materials, this conversion can be diffi-
cult because of the varying density of the individual components of the 
material. However, when comparing these measures for a material of uni-
form density, as done here, the volume- and mass-based distributions are 
equal and can be directly compared without conversion (Horiba 2005). 
This allows the comparison of the sieve stack data, which is based on sam-
ple mass, to the LD-PSA data, which is based on sample volume. As pre-
sented in section 3.1, the sieve stack data covers a size range of less than 
0.5 mm to greater than 9.51 mm as opposed to the LD-PSA methodology, 
which measures material less than 2 mm only. It is important to note that 
the Horiba LA-960 can measure particles 5 mm and less; but this study 
analyzed material that passed through a 2 mm sieve only to avoid potential 
clogging of the flow cell by elongate particles. This means that, for compar-
ison, only the less than 0.5, 0.5–1, and 2 mm bin sizes from the sieve stack 
analyses will be compared to the LD-PSA results. Figure 18 shows from 
each detonation one sample that had the highest CV values for the LD-PSA 
triplicate analysis compared to its companion dataset from sieve stack 
analysis (Appendix C).  
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FFigure 18. Step graphs of the cumulative percent by mass of sieve stack data overlain by
cumulative percent by volume curves from LD-PSA from the same samples.

As seen in Figure 18 and the rest of the comparison plots in Appendix D, 
there is good visual agreement between the cumulative percent curve of 
the LD-PSA analysis and the step graph presenting the cumulative percent 
of the sieve stack analyses. The cumulative percent LD-PSA curve does 
overlap every step in bin size. When directly comparing the cumulative 
percentages for each relative bin size between the LD-PSA and sieve stack 
results, there was a maximum difference of 17.4% for less than 0.5 mm, 
21.9% for 0.5–1 mm, and 3.4% for 1–2 mm. There was an average differ-
ence of 7.7%, 7.8%, and 0.4% and median difference of 7.2%, 5.3%, and 
0.2% for each of the three bin sizes, respectively (Appendix E).  

Even though there is good agreement between these plots, it is also clear 
that the LD-PSA results are much more highly resolved. As mentioned in 
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section 3.3, the output results of the Horiba LA-960 are made up of 50 
data points covering the full measurement range of the instrument in dry 
analysis mode (0.1–5000 μm). Sample processing time is also an im-
portant factor when considering which methodology is most appropriate 
to use. When processing a sample by hand, it typically took 1–1.5 hours per 
sample to completely sieve, mass, and catalog each sample, compared to 
the 20 minutes it takes to run a sample through the laser diffraction parti-
cle size analyzer and recollect the material from the vacuum collection 
chamber. The LD-PSA methodology is easily the faster of the two methods 
when used alone. 
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4 Conclusions 

Based on our investigation of IMX-104 by using the Horiba LA-960, the ap-
propriate RI to be used for LD-PSA of IMX-104 at the wavelengths used in 
this analyzer is 1.845 (n) 0.01i (k). Triplicate analysis of 12 of 25 test sam-
ples passed the USP <429> standard for D10, D50, and D90 with CV values 
less than 15%, 10%, and 15%, respectively (USP 2016). Of the samples that 
did not pass the CV test, 9 of 13 were found to get finer with successive 
runs. This phenomenon was potentially caused by physical reduction in 
particle size that contributed to nonpassing CV values and not an incorrect 
estimation of RI. The observed sample “fining” during LD-PSA also has im-
plications for measurement precision of rerun, replicate samples. In this 
case, the most accurate PSD likely results from the first replicate. 

The results of the LD-PSA analysis of both LO and partial detonations tend 
to be bimodal with peaks centering over approximately 500–1000 μm and 
50–100 μm. The results of LO-3 agree well with the sieve stack analysis, 
indicating that the majority of the material by volume is less than 500 μm. 
The results from LO-6 show high consistency of PSD shape for all samples, 
no matter the distance from the point of detonation. The most variability 
with distance from the point of detonation was observed in the data for 
LO-2, which was also the sample with the highest overall sampled mass.  

Although comparisons between PSDs measured through sieve stack and 
LD-PSA show general agreement, it is clear that LD-PSA results are more 
highly resolved. LD-PSA also provides a better understanding of size frac-
tions less than 1 mm where the difference between the two methods 
ranged from 0.1%–21.9%. In addition to this, reduced sample processing 
and analysis times make LD-PSA a more efficient method and therefore 
more cost effective when performing investigations with large sample 
counts. For samples with a range of particle sizes above 2 mm, sieve stack 
still has a role to play when characterizing large postdetonation particles.  

Our investigation brought to light the potential for sample fining during 
the LD-PSA process and reduction in larger particles causing an increase 
in CV values for smaller diameters. Variation in particle-size measure-
ments by LD-PSA that do not indicate fining also warrant further investi-
gation into potential causes for such variation. To avoid these situations 
during RI validation, we recommendation that, whenever possible, the RI 
of a material be determined through optical measurement or calculated 
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using optical properties of a material’s components. This can then be con-
firmed through the estimation process used in this study. However, when 
these options are not available, as was the case in this study, the process 
described here are reliable and efficient for processing materials with “un-
known” properties. By continuing to refine and apply this process for in-
sensitive and conventional energetic compounds, particle characteristics 
from LO detonations can be directly measured and incorporated into fate 
and transport models, creating more-accurate range management tools.  
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Appendix A: PSDs That Did Not Pass CV Test 

Note the increase in the percent by volume for the lower particle sizes with 
each successive run, a potential indicator of the diminution of the particles 
through the multiple-measurement process. 

FFigure A-1.  Full set of PSD plots of LO particle samples that did not pass the CV test. 
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FFigure A-1 (cont.). Full set of PSD plots of LO particle samples that did not pass the CV test.

 



ERDC/CRREL TR-20-3 35

FFigure A-1 (cont.). Full set of PSD plots of LO particle samples that did not pass the CV test.
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FFigure A-2.  Summary of D10, D50, D90, and mean particle size for all samples that did not 
pass the CV standard. 

Sample ID  D10  (μm)  D50  (μm)  D90  (μm)  Mean  (μm)  

LO-2 1–2 m Run1 237.9 754.8 1456.8 815.9 

LO-2 1–2 m Run2 131.7 538.5 1199.1 620.3 

LO-2 1–2 m Run3 176.4 497.2 928.5 533.6 

LO-2 2–3 m Run1 53.0 273.1 765.7 352.1 

LO-2 2–3 m Run2 49.4 220.1 638.6 288.5 

LO-2 2–3 m Run3 46.8 208.0 636.6 280.8 

LO-2 4–5 m Run1 116.0 513.4 1089.2 572.4 

LO-2 4–5 m Run2 106.7 469.8 1034.3 536.2 

LO-2 4–5 m Run3 52.2 391.5 897.1 443.7 

LO-2 5–6 m Run1 138.2 646.3 1305.4 703.3 

LO-2 5–6 m Run2 67.3 513.2 1036.2 544.3 

LO-2 5–6 m Run3 52.1 486.6 1004.4 517.3 

LO-2 7–8 m Run1 48.0 493.8 1086.7 530.0 

LO-2 7–8 m Run2 55.2 570.5 1280.8 625.9 

LO-2 7–8 m Run3 37.8 335.3 798.4 380.3 

LO-2 8–9 m Run1 41.7 350.6 1006.7 448.6 

LO-2 8–9 m Run2 51.4 424.2 1074.5 504.1 

LO-2 8–9 m Run3 29.9 319.4 949.6 415.0 

LO-2 9–10 m Run1 36.3 305.8 1034.4 437.9 

LO-2 9–10 m Run2 46.2 447.0 1093.9 514.4 

LO-2 9–10 m Run3 49.5 480.9 1137.7 543.3 

LO-6 0–2 m Run1 80.4 463.3 1061.9 530.7 

LO-6 0–2 m Run2 59.7 395.9 954.2 464.2 

LO-6 0–2 m Run3 45.6 326.3 836.9 394.0 

LO-6 2–3 m Run1 55.3 386.7 1003.6 468.4 

LO-6 2–3 m Run2 32.2 302.9 911.0 397.3 

LO-6 2–3 m Run3 23.2 216.8 771.6 318.5 

LO-7 0–2 m Run1 65.0 394.5 1070.2 495.9 

LO-7 0–2 m Run2 51.5 313.4 978.1 430.7 

LO-7 0–2 m Run3 59.1 295.0 961.5 417.6 

LO-7 2–3 m Run1 35.5 265.1 690.5 322.9 

LO-7 2–3 m Run2 58.3 276.5 696.7 336.7 

LO-7 2–3 m Run3 65.2 285.6 696.0 341.9 

LO-7 3–4 m Run1 77.7 458.3 981.0 507.7 

LO-7 3–4 m Run2 84.6 423.7 953.4 482.9 

LO-7 3–4 m Run3 50.8 381.6 874.9 431.9 

LO-7 9–10 m Run1 77.5 406.3 867.4 449.0 

LO-7 9–10 m Run2 69.7 354.9 937.4 442.8 

LO-7 9–10 m Run3 49.5 324.5 884.0 408.2 
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Appendix B: PSDs That Passes the Triplicate 
Analyses CV Standard for D10, D50, and 
D90 

Note the high degree of overlap between successive runs, indicating good 
repeatability for this analysis and RI kernel. 

FFigure B-1.  Full set of PSD plots of LO particle samples that passed the CV test. 
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FFigure B-1 (cont.). Full set of PSD plots of LO particle samples that passed the CV test.
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FFigure B-1 (cont.). Full set of PSD plots of LO particle samples that passed the CV test.
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Appendix C: LD-PSA and Sieve Stack Compari-
son Plots for All Samples  

FFigure C-1.  Cumulative percent by mass of sieve stack data overlain by cumulative percent by 
volume curves from LD-PSA for all samples analyzed. 
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FFigure C-1 (cont.). Cumulative percent by mass of sieve stack data overlain by cumulative
percent by volume curves from LD-PSA for all samples analyzed.
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FFigure C-1 (cont.). Cumulative percent by mass of sieve stack data overlain by cumulative
percent by volume curves from LD-PSA for all samples analyzed.
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FFigure C-1 (cont.). Cumulative percent by mass of sieve stack data overlain by cumulative
percent by volume curves from LD-PSA for all samples analyzed.
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FFigure C-1 (cont.). Cumulative percent by mass of sieve stack data overlain by cumulative
percent by volume curves from LD-PSA for all samples analyzed.
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Appendix D: PSD Plots for All Samples Sieved 
<2 mm 

FFigure D-1.  Particle size distributions for Run 1 of all samples analyzed. 
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FFigure D-1 (cont.). Particle size distributions for Run 1 of all samples analyzed.
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FFigure D-1 (cont.). Particle size distributions for Run 1 of all samples analyzed.
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FFigure D-1 (cont.). Particle size distributions for Run 1 of all samples analyzed.
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FFigure D-1 (cont.). Particle size distributions for Run 1 of all samples analyzed.
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Appendix E: Cumulative Percent Data 

TTable E-1.  Cumulative percent data from sieve stack and LD-PSA analysis of the same 
sample. LD-PSA data has been down selected by sieve bin size for direct comparison. 

Sample ID  <0.5  mm  0.5––1  mm  1––2  mm  

LO-2 0–1 m—Sieve 68.3 87.5 100.0 

LO-2 0–1 m—LD-PSA 55.7 83.8 99.4 

Difference  12.6  3.7  0.6  

LO-2 1–2 m—Sieve 42.1 75.6 100.0 

LO-2 1–2 m—LD-PSA 31.0 71.8 96.6 

Difference  11.1  3.8  3.4  

LO-2 2–3 m—Sieve 77.1 91.5 100.0 

LO-2 2–3 m—LD-PSA 77.2 95.9 100.0 

Difference  0.1  4.4  0.0  

LO-2 3–4 m—Sieve 78.1 93.8 100.0 

LO-2 3–4 m—LD-PSA 72.7 95.2 99.9 

Difference  5.4  1.4  0.1  

LO-2 4–5 m—Sieve 56.6 86.3 100.0 

LO-2 4–5 m—LD-PSA 50.2 86.7 99.5 

Difference  6.4  0.4  0.5  

LO-2 5–6 m—Sieve 38.0 76.3 100.0 

LO-2 5–6 m—LD-PSA 37.3 77.9 98.7 

Difference  0.6  1.5  1.3  

LO-2 6–7 m—Sieve 41.0 74.9 100.0 

LO-2 6–7 m—LD-PSA 49.3 81.2 98.7 

Difference  8.3  6.4  1.3  

LO-2 7–8 m—Sieve 37.8 64.8 100.0 

LO-2 7–8 m—LD-PSA 51.5 86.8 99.8 

Difference  13.7  21.9  0.2  

LO-2 8–9 m—Sieve 51.1 74.5 100.0 

LO-2 8–9 m—LD-PSA 63.3 90.3 99.9 

Difference  12.2  15.8  0.1  

LO-2 9–10 m—Sieve 51.1 74.7 100.0 

LO-2 9–10 m—LD-PSA 63.9 89.3 99.8 

Difference  12.9  14.6  0.2  

LO-3 Whole Population—Sieve 52.2 74.8 100.0 

LO-3 Whole Population—LD-PSA 69.6 91.6 99.8 

Difference  17.4  16.7  0.2  

LO-6 0–2 m—Sieve 59.5 89.5 100.0 

LO-6 0–2 m—LD-PSA 56.2 88.2 99.5 
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SSample ID  <<0.5  mmm  00.5––11  mmm  11––22  mmm  

DDifference  33.3  11.3  00.5  

LO-6 2–3 m—Sieve 58.0 84.8 100.0 

LO-6 2–3 m—LD-PSA 62.6 90.0 99.6 

DDifference  44.6  55.2  00.4  

LO-6 3–4 m—Sieve 60.9 84.5 100.0 

LO-6 3–4 m—LD-PSA 63.8 90.9 99.7 

DDifference  22.9  66.3  00.3  

LO-6 4–5 m—Sieve 63.9 90.5 100.0 

LO-6 4–5 m—LD-PSA 61.2 92.4 99.9 

DDifference  22.7  11.8  00.1  

LO-6 5–6 & 7–8 m—Sieve 49.3 88.9 100.0 

LO-6 5–6 & 7–8 m—LD-PSA 53.9 88.1 99.5 

DDifference  44.6  00.8  00.5  

LO-6 6–7 m—Sieve 63.2 95.6 100.0 

LO-6 6–7 m—LD-PSA 67.7 94.1 100.0 

DDifference  44.5  11.5  00.0  

LO-7 0–2 m—Sieve 61.5 80.2 100.0 

LO-7 0–2 m—LD-PSA 70.6 91.4 99.8 

DDifference  99.1  111.2  00.2  

LO-7 2–3 m—Sieve 83.7 94.2 100.0 

LO-7 2–3 m—LD-PSA 79.2 96.8 99.9 

DDifference  44.4  22.7  00.1  

LO-7 3–4 m—Sieve 63.4 88.9 100.0 

LO-7 3–4 m—LD-PSA 65.2 94.3 99.9 

DDifference  11.7  55.4  00.1  

LO-7 4–5 m—Sieve 47.8 83.5 100.0 

LO-7 4–5 m—LD-PSA 52.4 88.2 99.6 

DDifference  44.6  44.7  00.4  

LO-7 5–6 m—Sieve 48.7 81.7 100.0 

LO-7 5–6 m—LD-PSA 65.8 92.7 99.8 

DDifference  117.2  111.1  00.2  

LO-7 6–7 m—Sieve 52.6 78.6 100.0 

LO-7 6–7 m—LD-PSA 60.7 90.0 99.7 

DDifference  88.1  111.4  00.3  

LO-7 7–8 m—Sieve 56.3 78.8 100.0 

LO-7 7–8 m—LD-PSA 65.5 92.1 99.9 

DDifference  99.2  113.4  00.1  

LO-7 8–9 m—Sieve 55.7 78.1 100.0 

LO-7 8–9 m—LD-PSA 69.3 93.0 99.9 
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SSample ID  <<0.5  mmm  00.5––11  mmm  11––22  mmm  

DDifference  113.6  114.8  00.1  

LO-7 9–10 m—Sieve 54.0 73.7 100.0 

LO-7 9–10 m—LD-PSA 63.1 93.0 99.9 

DDifference  99.1  119.3  00.1  

Maximum Difference Cumulative % 17.4 21.9 3.4 

Minimum Difference Cumulative % 0.1 0.4 0.0 

Mean Difference Cumulative % 7.7 7.8 0.4 

Median Difference Cumulative % 7.2 5.3 0.2 
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