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1. ABSTRACT 

Introduction and Objectives: The Department of Defense (DoD) recognizes the effects of 
climate change as a growing national security threat with potential impacts on critical military 
installations and operations. One of the anticipated effects of climate change is the increase in 
intensity and frequency of extreme precipitation and subsequent flood events. Adaptation to this 
change requires proper design and management of stormwater facilities using improved and 
updated characterization of the intensity-duration-frequency (IDF) of storms. The primary 
objective of this project is to revise and update storm and flood IDF relationships (or curves) for 
selected military installations by considering changes in the past and future storm and flood events, 
effect of snowmelt, and modeling and data uncertainties. Regional frequency analysis coupled with 
Bayesian uncertainty quantification were used to update rainfall IDF curves, which are then used 
by site-specific hydrologic models to develop runoff IDF curves that can be used to assess the 
vulnerability of military installations to flooding. The resulting rainfall and runoff IDF curves 
provide reliable, forward-looking, and spatially resolved characteristics of storm events and 
flooding risks for thorough review and update of the current stormwater design standards at the 
selected installations. An interactive web-based geographic information system (GIS) interface 
was developed, which contains tabulated and geo-referenced IDF data and figures.  

Technical Approach: The IDF curves – describing the probabilistic relationship between 
rainfall intensity, duration, and frequency (return period) – are commonly used for designing and 
managing hydrologic and hydraulic infrastructures. This project utilized statistical and modeling 
approaches to develop rainfall and runoff IDF curves that consider the potential changes in extreme 
precipitation and watershed, effects of snow on both extreme precipitation and runoff, modeling, 
and data uncertainties. A new framework was developed using (1) a modified L-moment algorithm 
to regionalize IDF curves and improve the representation of spatial variations of rainfall for various 
durations, (2) a Bayesian model averaging to quantify the uncertainty in the IDF curves resulting 
from the selection of probability distribution models and estimation of the model parameters, (3) 
a dynamic downscale and bias correction approaches to generate high-resolution spatial and 
temporal precipitation and temperature projections, 4) a recursive Bayesian analysis algorithm to 
update the IDF curves using recently observed and projected extreme precipitation, (5) a 
hydrologic, snowmelt and hydraulic models to develop the runoff IDF curves and directly assess 
flood risk, (6) an interactive web-based Geographic Information Systems (GIS) tool and a geo-
database to facilitate construction and an update to the rainfall and runoff IDF curves for any 
military installation and region of interest to DoD.  

Results: Small percentage (less than 20%) of stations exhibited statistically significant trends 
in historical precipitation extremes, while more than 50% of the stations show statistically 
significant positive trends when future precipitation projections (from two climate models and two 
emission scenarios) append the past data. Stationary and nonstationary IDF curves with 95% 
confidence intervals were developed and compared for rainfall durations from one-hour to 10-days 
and return periods from two years to 500 years for 13 military installations across the United States. 
The difference in IDF values range from a 25% decrease at Yuma Proving Ground to a 50% 
increase at Ft. Hood. When future precipitation is considered for the rainfall IDF curves, the storm 
magnitudes corresponding to longer durations increased for most of the installations with the 
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increase being higher for the installations located in the central and eastern parts of the country. 
While the trends for sub-daily storms are mixed, some of the installations (e.g., those located in 
the south and two in the southwest) showed a negative trend. Consequently, flooding risk may 
increase in the Midwest and Northwest, but decrease in the southern installations because of future 
storm trends. The snowmelt effect may change the season of annual maximum precipitation to 
early spring at Ft. Drum, leading up to a 22% and 25% increase in the 10-year and 100-year storm 
event magnitudes, respectively. A project website and web-based mapping tool 
(https://bogi.evs.anl.gov/dodewa/tool/index.html) were created to provide access to all the IDF 
results.  

Benefits: The report provides a qualitative assessment and scientific foundation to provide an 
understanding of flood vulnerability at selected military installations. This work contributes to the 
DoD’s larger goal of improving military readiness for future environmental conditions. 
Understanding how the intensity and frequency of extreme precipitation events are changing is 
important for regional risk assessments and adaptation planning. The study provides new 
understanding of how the frequency and intensity of storm and associated flooding risk may be 
affected by past and projected changes in extreme precipitation. All methodologies, datasets, and 
the interactive web-based GIS tool developed during the study will be provided to DoD for use in 
decision-making and planning exercises. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 
 
 
 
 

2. EXECUTIVE SUMMARY 
 

2.1. Introduction 

The increase in intensity and frequency of extreme weather events, likely due to a warming 
climate and an increase in the water holding capacity of the atmosphere, is expected to have 
adverse effects on critical military installations and operations unless these effects are incorporated 
into the planning, design, and operations of the military. The majority of military installations 
worldwide have already faced a rising threat from flooding that can be partly attributed to the 
increase in storm intensities and frequencies, and the inadequacy of stormwater infrastructures. A 
recent vulnerability assessment report by the DoD found that, in the United States alone, more than 
930 military sites (Figure 1) have been hit by floods in the past 30 years (DoD 2018). A similar 
report on the effects of a changing climate on military bases across the country found that two 
thirds of the 79 installations reviewed are vulnerable to flooding (DoD 2019). An estimated $5 
billion is needed to repair and rebuild two air force bases (Tyndall and Offutt) from storms and 
flood damage that occurred this year, underscoring the need for DoD to better plan and account 
for the risks posed by flooding and extreme weather. In response to this growing national security 
issue, Congress recently passed legislation directing the DoD to assess the flood risk and consider 
future environmental conditions in the design and modification of its military facilities.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Military sites affected by flooding from non-storm surge events over the past 30 years 
(adopted from DoD 2018) 
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 Adaptation to a rising flood risk starts with quantifying the changes in design storms and their 
associated impacts on hydrologic processes under a non-stationary and substantially uncertain 
future climate, and incorporating these changes into future engineering designs and planning. The 
design storm, often obtained from an intensity-duration-frequency (IDF) curve, needs to reflect 
the change in extreme rainfall patterns and the various sources of uncertainty involved in 
constructing the curves. Traditionally, stormwater and flood control infrastructure design relied on 
the stationarity of the hydroclimatic extremes (e.g., rainfall and streamflow) over the design life-
time of the infrastructure, lasting beyond 100 and 500 years. However, during the last century, 
more intense and frequent precipitation extremes have been observed in several regions resulting 
from either a warming climate or long-term climatic variations (Westra et al. 2013). Based on an 
ensemble of climate model projections and the basic physical relationship between atmospheric 
water vapor and storms, a warming climate is expected to further increase the intensity and 
frequency of precipitation extremes in the future (Sillmann et al. 2013). Consequently, the 
traditional IDF curves can substantially underestimate precipitation extremes and thus, may not be 
suitable for infrastructure design in a changing climate. For example, much of the drainage system 
installed over the last several decades used IDF curves that were outdated by as much as half a 
century, making the system potentially inadequate and vulnerable for flooding under strongly non-
stationary precipitation conditions (Mailhot and Duchesne 2010, Rosenberge et al. 2010). It is 
therefore critical to maintain the IDF curves so they are up-to-date and forward-looking to more 
accurately reflect the potential changes in rainfall extremes in engineering standards and designs.  

The IDF curves, which are commonly constructed using relatively limited records of 
precipitation extremes, are subjected to bias and uncertainties. The desired storm return periods 
for a project design usually exceed the record length, making extrapolation of the observed data 
essential to estimate the storm magnitude corresponding to higher return periods. The frequency 
analysis methodologies used to construct the IDF curves also contain uncertainties resulted from 
the choice of homogenous regions, probability distributions, and parameter estimations. In 
addition, there is a considerable level of uncertainty in climate model predictions of precipitation 
extremes at the required temporal and spatial resolutions for constructing the IDF curves. 
Consequently, uncertainty is inherent to the IDF curves and needs to be properly quantified for 
engineering design and risk assessment applications.  

The underlying assumption of using the IDF curves for designing stormwater and flood control 
structures is that there is a direct relationship between the design storms and design floods. But in 
reality, other watershed related factors or runoff response dynamics, not only precipitation, are 
important causes of floods. The assumption may be valid for regions where soil saturation and 
precipitation extreme are strongly coupled and for regions that are prone to flash floods (e.g., arid 
and high-slope regions). In these areas, the rainfall amount can be a reasonable indicator of the 
runoff generated from a given drainage. On the other hand, floods can be caused by non-extreme 
rainfall falling on saturated soil, as in the Mississippi River Basin, or by the melting of accumulated 
snow, as in the Rocky Mountains, or by rain on snow, as in the western United States (Berghuijs 
et al. 2016). Thus, the complexity of floods as a temporal and spatial aggregation of water over a 
landscape, in comparison to extreme precipitation, necessitates additional considerations other 
than simply applying the rainfall IDF curves.  
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2.2. Objectives  

The main objective of the project is to revise and update the storm and flood IDF curves for 
selected military installations by considering the changes in observed and future storm and flood 
events, effect of snowmelt, and modeling, and data uncertainties. The project involves six 
interrelated tasks.  

The objective for Task 1 is to update the current IDF curves using a regional frequency analysis 
and the most complete precipitation record available and future projections. The regionalization 
approach combines data from nearby climatologically similar stations to improve the accuracy of 
the IDF curves. Incorporation of future precipitation helps to better represent the effects of the 
changing climate.  

The objective for Task 2 is to quantify both the intra-model uncertainty (due to different 
probability distributions and climate simulations) and inter-model uncertainty (due to parameter 
estimation) associated with the estimation of the IDF values. Risk evaluation should account for 
these uncertainties to avoid under design of critical infrastructures dealing with flooding and storm.  

The objectives for Task 3 are to perform dynamic downscaling from General Circulation 
Models (GCMs) to better capture extremes associated with local topographic effects and 
convective patterns with the Weather Research and Forecasting (WRF) modeling tool, and develop 
a methodology that can identify and correct the biases in extreme precipitation projections.  

The objectives for Task 4 are to effectively update existing IDF curves whenever new 
precipitation records or projections are available. Instead of reconstructing the IDF curves to 
incorporate newly available data, a seamless updating approach is required to integrate available 
precipitation data on a frequent basis. In addition, the project would develop non-stationary IDF 
curves when the precipitation extreme exhibit significant trends.  

The objectives for Task 5 are to develop the runoff IDF curves by considering different site-
specific flood-causing mechanisms. The runoff IDF curves allow us to directly characterize the 
flooding risks and improve the design of stormwater and flood control structures. In addition, this 
task aims to incorporate snowmelt and accumulation into the IDF curves to better characterize the 
amount of rainfall that is available for runoff.  

The objective for Task 6 is to develop and implement an interactive web-based  GIS 
geodatabase and tool to provide convenient access to the study results for the 13 DoD installations 
highlighted in the study, particularly the rainfall and runoff IDF curves within their geographic 
context, under various climate scenarios. The design of the geodatabase and interface provides a 
framework that can be applied to other military installations or regions of interest. The web-based 
tool will aid in decision making and planning exercises, especially to assess the vulnerability of 
existing military installations to extreme rainfall and runoff events, and to adopt design codes for 
more resilient infrastructure that accounts for climate change.  

Moreover, the validity of the current IDF curves was assessed based on the changes in the 
magnitude and frequency of precipitation extremes under current and future storm conditions. The 
study provides data and information necessary for assessing the local flood risks at the installation 
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level and for design guidelines modification to make the installations more resilient to floods 
taking into consideration the impact of changing climatic conditions.  

2.3. Technical Approach  

Various statistical and modeling approaches were employed to evaluate, construct and update 
the IDF curves, quantify the uncertainty ranges, and incorporate future simulations of precipitation 
extremes and effects of snow accumulation and melt. The Mann Kendell and likelihood ratio test 
were used to evaluate linear and nonlinear trends in the magnitude and frequency of precipitation 
extremes. Regional frequency analysis coupled with Bayesian model averaging and parameter 
estimation methods were used to develop the IDF curves and associated uncertainty intervals. 
Nonstationary probability distributions with time-varying parameters were used to account for 
future precipitation and the effect of climate change on the IDF curves. Also, a Bayesian 
hierarchical method was developed for the frequent update of the IDF curves whenever new 
precipitation data is available.  

A dynamic downscale method using the WRF model was performed to generate high-
resolution spatial (12 km) and temporal (30 min) precipitation from climate model projections. 
The bias in the projections was corrected using a hybridized quantile mapping (HQM) method 
which was designed to correct extremes in the right tail of the precipitation distribution while 
preserving the long-term precipitation patterns projected by climate models. The  Hydrologic 
Modeling System (HEC-HMS) hydrological model, with Soil Moisture Accounting (SMA) 
method for rainfall excess simulation, was used to construct the runoff IDF curves from given 
rainfall IDF curves. The Utah Energy Balance (UEB) snowmelt model was applied to better 
understand the runoff behavior associated with snowmelt and rain‐on‐snow events; these effects 
were incorporated in the IDF curves. Finally, a project website and web-based GIS mapping tool 
was developed and populated with the study results for the planned geographic regions and climate 
scenarios.  

2.4. Results and Discussions  

The project provides updated IDF curves with 95% confidence intervals for rainfall durations 
from 1-hour to 10-day and return periods from 2 years to 500 years for 13 military installations 
across the United States. Unlike the traditional IDF curves, which heavily rely on observed (or 
historical) precipitation extremes and their stationarity in the future, the updated IDF curves 
represent the nonstationarity impacts of climate change and effects of snowmelt and accumulation. 
The curves were used to assess flooding risk under stationary and nonstationary climate conditions.  

For all the installations and storm durations (1hr – 10day) we have considered, the historical 
records of annual maximum precipitation showed no significant spatially consistent trends at either 
the station or regional levels. Approximately 10%-16% of stations showed statistically significant 
increasing trends, while only 4%-6% of stations showed decreasing trends in the past. None of the 
climatologically homogenous regions within our study sites showed significant trends. Relatively 
more stations in the Midwest (Ft. McCoy and Ft. Riley) and Northeast (Ft. Drum and Aberdeen 
Proving Ground) showed increasing trends, particularly for storms with daily and longer durations. 
However, when future precipitations are considered, considerably more stations (> 50%) showed 
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an increasing trend in storms with daily and longer durations while there was a decreasing trend 
in storms of sub-daily magnitude at the majority of installations. The differences are not clearly 
evident in the resulting trends from either the CCSM or GFDL climate models or the RCP 8.5 and 
4.5 emission scenarios. Compared to the trend in extreme precipitation of magnitude, relatively 
more weather stations (50%-90%) showed an increasing trend in the frequency of occurrence of 
daily extreme precipitation events (heaviest 1% daily precipitation).  

Comparing the stationary and nonstationary IDF values, the storm magnitudes corresponding 
to longer durations increased for most of the installations with the increase being higher for the 
installations located in the central and eastern parts of the country. For the installations in the south 
and southwest, the storm magnitudes with sub-daily durations have decreased while they have 
increased for storms of daily and longer durations.  

2.5. Implications for Future Research and Benefits  

Adaptation to a rising flood risk entails quantifying the changes in the characteristics of design 
storms and their associated impacts on hydrologic processes under a substantially uncertain future 
climate, and incorporating these changes into future engineering designs and planning. The results 
from our study sites across the United States provide improved and updated IDF curves that can 
be used to assess the flood risk posed by climate change and its uncertainty on military 
installations. The updated curves are expected to be used as a scientific basis for understanding the 
vulnerability of military installations to flooding and contribute to military resilience against the 
increasing flood trends. Despite the progresses so far, additional research is still needed to identify 
the level and nature of changes in hydroclimatological extremes, to represent those changes in our 
design standards and planning, and to provide an accurate assessment of the risks posed by severe 
storms and floods. There is also a research need to develop a readily available and easy-to-use tool 
and database to aid in decision making and planning exercises, especially to assess the 
vulnerability of existing military installations to extreme rainfall and runoff events, and to adopt 
design codes for more resilient infrastructure that accounts for climate change. The interactive 
web-based GIS tool from this project has the potential to meet this research need with the inclusion 
of more military sites into the database and incorporation of advances in the procedures involved 
for the development of IDF curves and the assessment of flood risk. 
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3. OBJECTIVE 

DoD and the Strategic Environmental Research and Development Program (SERDP) have 
identified a need to improve the characterization of extreme storms in order to assess the 
vulnerability of military installations for floods and to adopt design codes for a more resilient 
stormwater drainage system in view of climate change and uncertainties. The primary objective of 
this project is to develop and update the rainfall and runoff intensity-duration-frequency (IDF) 
curves and aid the design of stormwater infrastructure as part of the DoD’s broader effort of 
ensuring installations readiness to climate change and uncertainties. Specifically, the project aims 
to develop and test new methodologies for creating regionalized, adaptive, probabilistic rainfall 
and runoff IDF curves by incorporating uncertainties associated with models and data, regional 
variations of rainfall, and future climate change, and thereby improve understanding of the 
evolving flooding risk posed by climate change and variability on selected DoD installations. The 
study involves: 

1) examining the roles of climate change and uncertainty on IDF curves and related military 
installations through the use of both historical and projected rainfall data, 

2) developing a regionalization approach to improve the accuracy of the IDF curves through 
a better representation of the extreme precipitation spatial variations within a drainage area 
of interest,  

3) developing an adaptive methodology for probabilistic estimation of rainfall and runoff IDF 
curves that can also be dynamically adjusted to incorporate uncertainty and changes in 
current and future rainfall patterns, as well as newly acquired precipitation data,  

4) developing dynamic downscale and bias correction approaches, focusing on extreme 
precipitation, to generate high-resolution spatial and temporal precipitation projections,  

5) incorporating snowmelt as part of rainfall that potentially contributes to the flood hazard 
by using a physics-based snowmelt modeling approach to estimate snowpack and 
snowmelt timing and volume, 

6) developing an interactive web-based GIS modeling tool to facilitate construction and 
updating of rainfall and runoff IDF curves, data management, and model testing under 
different climate and modeling scenarios, and  

7) demonstrating the applicability of the methodologies and framework for 13 DoD military 
bases across different climatic and geographic regions. 

Also, the project aims to create a fundamental body of knowledge on the effects of climate 
change and uncertainties on extreme storms for various climate regions and conditions of interest 
to DoD. Such knowledge is critical for maintaining the IDF curves up-to-date and forward-looking 
so that the potential changes in rainfall extremes can be reflected in engineering standards and 
building codes for critical military infrastructures. The final products from the project include: (1) 
new and updated rainfall and runoff IDF curves with 95% confidence intervals for rainfall 
durations from 1-hour to 10-day and return periods from 2 years to 500 years for 13 military 
installations across the United States, (2) rainfall IDF curves with and without the effect of 
snowmelt and future climate, (3) dynamically downscaled and biased corrected 30-min and 3-km 
resolutions precipitation and temperature data from CCSM and GFDL models under RCP8.5 and 
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RCP 4.5 emission senarios, (4) assessment of risk posed by climate change and variability on 
existing stormwater drainages at the military installations, (5) an interactive web-based GIS tool 
containing tabulated and geo-referenced IDF curves data and figures, and (6) user manual prepared 
in collaboration with the other SERDP projects PIs to assist practitioners adopting nonstationary 
stormwater designs.  The updated rainfall IDF curves and the new runoff IDF curves from this 
project are expected to provide up-to-date and local design standards and guidelines for storm 
drainage and flood control structures. The web-based tool will aid in decision making and planning 
exercises, especially in assessing the vulnerability of existing military installations and adopting 
design codes for more resilient infrastructure in view of climate change. 

 

4. BACKGROUND 

Traditionally, water resources infrastructures are designed to handle a specific storm, also 
known as design storm, derived from historical rainfall Intensity–Duration–Frequency (IDF) 
curves that assume rainfall temporal and spatial patterns will remain unchanged in the future. The 
success of the designs thus depends not only on the accuracy of the IDF characterization of past 
extreme rainfall events and spatial variation, but also on the future stationarity of the events and 
proper representation of the different sources of uncertainty involved in developing the curves. 
However, consensus is growing that rainfall patterns, including frequency, intensity and spatial 
extent are changing and will continue to do so in the foreseeable future due to climate change, 
limiting the use of the standard IDF curves for designing reliable stormwater infrastructures under 
a changing climate. The IDF curves are subjected to various sources of uncertainty resulted from 
the relatively short-record length and poor-quality storm data, as well as the frequency analysis 
methodologies used to develop the curves.  The use of the curves as a standard design tool for 
stormwater management systems can also be limited for areas where snowmelt and antecedent soil 
moisture conditions play important role in generating flood.  

4.1. Nonstationarity in Extreme Precipitations and Implications on IDF Curves  

Recent analyses of past and future extreme precipitation in several regions of the world have 
shown the presence of non-stationarity resulting from either climate change or long-term climatic 
variations (Kunkel et al. 2010, Min et al. 2011, Westra et al. 2013, Zhang et al. 2013, Janssen et 
al. 2014, Wasko and Sharma, 2015, Fischer and Knutti 2015). In some cases, the extremes have 
exhibited significant positive trends despite decreases or no trends in mean and total annual 
precipitations (Groisman et al. 2005, Goswami et al. 2006, Easterling et al. 2017). Extensive data 
kept by NOAA on weather extremes since 1910 has shown an increasing trend, reaching more 
than 20%, in one-day extreme precipitation in the contiguous United States (Gleason et al. 2008). 
Percentage area experiencing precipitation extremes has also increased in the Northern 
Hemisphere regions over the past half-century (Dittus et al. 2015). Compared to the change in total 
annual precipitation, the increase in extreme precipitation indicates global consistency over the 
past century (Donat et al. 2016). The increasing trends in heavy precipitation are expected to 
continue in the future, with likely intensification in most parts of the world (Groisman et al. 2012, 
Kharin et al. 2013, Sillmann et al. 2013, Lehmann et al. 2015, Pfahl et al. 2017). Similar to the 
historical trends, the changes in future extreme precipitations are also expected to be relatively 
larger than the change in mean precipitation (Berg et al. 2013).  
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The current and future changes in precipitation extremes can have significant implications on 
the IDF curves and their applications for engineering designs and flood management, which both 
traditionally relied on the stationary patterns of extreme precipitation (Madsen et al. 2009, Willems 
et al. 2012, DeGaetano and Castellano 2017). Much of the drainage system installed in the last 
several decades use IDF curves that are outdated by as much as half a century, making the system 
potentially inadequate and vulnerable for flooding under non-stationary precipitation conditions 
(Nie et al. 2009, Rosenberg et al. 2010, Mailhot and Duchesne 2010, Kessler 2011). Allen and 
Ingram (2002) reported that climate change might have doubled the risk of the extremely wet 
weather that causes floods. In the United States alone, the Federal Emergency Management 
Agency (FEMA 2013) predicted that areas at risk of flooding will increase by 45% by 2100, largely 
due to the warming of climate. Cheng and AghaKouchak (2014) showed that under a non-
stationarity condition, the current IDF curves can substantially underestimate precipitation 
extremes and thus, they may not be suitable for infrastructure design in a changing climate. 
Demaria et al. (2017) found that the nonstationarity in extreme precipitation may increase the risk 
of failure of a hydraulic structure by 25% for a 100-year return period and a project life of 100 
years. Sarhadi and Soulis (2017) incorporated the impact of different nonstationarity conditions 
on the occurrence of extreme precipitation in the Great Lakes area and confirmed the 
underestimation of extreme precipitation under the stationary assumption.  It is thus critical for 
maintaining the IDF curves up-to-date and forward-looking so that the potential changes in rainfall 
extremes can be reflected accurately in engineering standards and codes. In order to incorporate 
effects of climate changes, the next generation IDF need to consider change in extreme events 
projected by climate models. We performed dynamical downscaling of GCM projections to better 
capture precipitation extremes associated with the local topographic effects and convective 
patterns with the Weather Research and Forecasting (WRF) modeling tool, and developed 
methodology that can identify and correct the biases that are potentially present in both the 
majority and extreme precipitation events. 

4.2. Uncertainty and Spatial Variability of IDF Curves  

The uncertainties involved in estimating IDF curves have also received growing research 
interest, particularly with anticipated climate change and uncertainty about potential impacts of 
future rainfall intensities and frequencies. The main uncertainties are associated with (1) the 
frequency analysis of extreme rainfall events as related to the choice of homogenous regions, 
frequency distribution, and parameter estimation methods (Hailegeorgis et al. 2013); (2) the 
climate model predictions of extreme rainfall events due to required temporal and spatial 
resolutions (Frei et al. 2006); and (3) the record size and measurement errors of historical rainfall 
data, particularly the extreme rainfall  (Coles et al. 2003, Huard et al. 2010). For instance, although 
several probability distributions might reasonably fit the observed or projected series of extreme 
rainfall data, the estimated quantiles might differ, because estimation of higher extreme quantiles 
is based on the upper tail of the probability distribution, which is known to be poorly represented 
in climate models. In addition, use of different parameter estimation methods for selected 
probability distribution might result in different quantile estimates, as each parameter estimation 
method has its own strengths and limitations.  

On the other hand, because of insufficient information associated with short rainfall series and 
sparsely distributed rainfall stations, Coles et al. (2003) and Huard et al. (2010) highlighted the 
importance of assessing uncertainties related to extreme rainfall estimates and propagating those 
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uncertainties in design decisions and risk assessment. Climate model projections are also subject 
to numerous uncertainties related to the models and emission scenarios. Frei et al. (2006) compared 
scenarios from six RCMs to examine for future change of precipitation extremes in Europe and 
noted considerable differences and uncertainties between model outputs estimating extreme 
rainfall events. As result of these recognitions, probabilistic IDF curves are getting increasing 
attention in order to incorporate uncertainty in its estimate of rainfall characteristics and their 
applications for designing hydraulic structures. Solaiman and Simonovic (2010), for instance, 
developed a multi-model, multi-scenarios approach to updating IDF curves for potential change 
and uncertainty in future climate. Huard et al. (2010) introduced a Bayesian approach for 
estimating the IDF curve from historical rainfall data. Our study extended these earlier efforts and 
develop an adaptive methodology based on recursive Bayesian estimation to incorporate the 
different uncertainties readily and reduce uncertainties associated with data size and spatial 
variations of rainfall through regional frequency analysis, which can allow use of both 
precipitation data from multiple related weather stations and recently acquired precipitation data 
in IDF curves.  

Another important research trend for improving the accuracy and applicability of IDF curves 
employs additional precipitation data from neighboring, climatologically similar sites and other 
relevant data, such as the Tropical Rainfall Measuring Mission (TRMM) radar data (Awadallah et 
al. 2011), through regional frequency analysis approaches (Hosking and Wallis 1997, Nadarajah 
2005, Raiford et al. 2007, Hailegeorgis et al. 2013). Developing IDF curves in general requires the 
availability of sufficient extreme precipitation data at sites of interest, especially for reliable 
estimation of rare events such as quantiles with large return periods. However, some regions may 
have no gauging sites or only a short period with observed records, or precipitation spatial 
variability might be too large to be represented by precipitation records from a single station. On 
the basis of regional frequency analysis for an ungauged drainage, Mikkelsen et al. (2005) showed 
that extreme rainfalls events are often very different spatially, even with minor physiographic 
differences. In such case, regional or pooled-frequency analysis combining data from 
climatological similar neighboring sites, based on L-moment (Hosking 1990) approaches for 
quantile estimations of extreme precipitation events, would be necessary to yield spatially 
representative IDF curves. Our study developed effective new methodologies for identifying 
adaptive homogenous regions representing potential variations in rainfall spatial patterns and 
coverage related to durations and climate change, as well as for updating the curves on the basis 
of gridded precipitation projections.  

4.3. Relationship between Rainfall and Runoff IDF Curves 

The importance of linking rainfall and runoff IDF curves was emphasized by Mailhot et al. 
(2007), Wright et al. (2014), and others, for achieving a more accurate view of potential impacts 
of storm events on drainage and hydrologic infrastructures. Linking the rainfall IDF curves with 
runoff IDF curves not only helps assess flood and severe storm impacts on military installations 
and other relevant structures directly, but it also accounts for human and drainage effects on 
rainfall-runoff curve generation. In theory, drainage infrastructures should be designed to handle 
some levels of flood frequency and peak runoff that are not necessarily related directly to rainfall 
events. However, in practice, the infrastructures are often designed for rainfall characteristics 
obtained from rainfall IDF curves, under the assumption that extreme rainfall characteristics are a 
direct representation of extreme runoff or flood characteristics. Depending on antecedent soil 
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moisture conditions, human interference, and drainage networks and characteristics (e.g., land 
cover, soil type, slope), there might not be a direct relationship between rainfall and flood 
frequency. To evaluate the effectiveness of green roofs for flood mitigation, Bengtsson (2005) 
constructed IDF curves for rainfall and runoff and showed that runoff with a 1.5-year return period 
corresponds to rain with a 0.4-year return period; the runoff IDF curve for the 0.5-year return 
period followed the rain IDF curve of a 0.1-year return period. Our study developed methodologies 
for generating runoff IDF curves from rainfall IDF curves based on the dominate flood generation 
mechanisms and using suitable rainfall-runoff models and GIS functionalities to characterize 
drainage areas associated with military installations.  

4.4. Effect of Snow Melt and Accumulation on IDF Curves 

There have been tremendous studies on precipitation IDF, but no past studies have accounted 
for the contribution from snow melt and accumulation to the IDF estimates. Snowmelt, especially, 
the rain on snowmelt events are the most extreme precipitation driven events producing the 
extreme floods (Jones and Perkins, 2010; Cohen et al. 2015). It is a common feature in various 
parts of the US, and plays a significant role in generating high streamflows and flooding (Marks 
et al., 1998; McCabe et al., 2007; Surfleet and Tullos, 2013). One example of worst rain on snow 
event is the January 1996 flooding across much of the mid-Atlantic and northeast United States. 
The rapid snowmelt of an unusually deep snowpack and intense rainfall combined to cause 
catastrophic flooding, which was responsible for as many as 30 deaths and $1.5 billion in damage 
(Anderson and Larson 1996). We have developed the IDF curves with direct consideration of 
intense precipitation over the snowmelt, and quantify the effects of snowmelt. 

Finally, the rainfall predictions and associated uncertainties from different climate models and 
emission scenarios will be compiled and made readily available through our web-based GIS tool 
to facilitate application of the proposed methodologies in assessing the effects of regionalization, 
climate change, and uncertainty on rainfall and runoff IDF curves for areas of particular interest 
to DoD, as well as to make necessary adjustment to the curves. 

 

5. MATERIALS AND METHODS 

5.1. Study Sites  

Thirteen military installations that are located in different climatology and geographic regions 
of the United States were used as study sites (Figure 2 and Table 1). The annual precipitations vary 
from 3.4 inches for Yuma to 65.02 inches for Keesler. Some of the installations have experienced 
severe flooding in the past. Camp Pendleton was affected by the flash flood in 1993, causing more 
than $100 million in damage. Fort Riley was impacted by the “Great Flood” in 1951, leaving some 
regions under 8 feet of water. Fort Irwin experienced 18 inches of the flash flood in 2013, 
damaging buildings and roads, and disrupting training and other critical activities for more than 
weeks. The floods due to Hurricane Katrina in 2005 and Hurricane Gustav in 2008 caused 
substantial infrastructural damages in Keesler Air Force Base. The Eglin Air Force Base is 
identified by the SERDP (2013) study as one of the coastal military facilities that will likely 
experience significant changes to environmental resources and human-made infrastructure due to 
shoreline retreat, increased flooding, and erosion. We updated the rainfall IDF curves and 
developed runoff IDF curves for each of these installations, taking into consideration the spatial 
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variation of precipitation in the associated drainage areas and the impacts of future climate change 
and uncertainty. 

5.2. Data Sources 

The project used 15-minute, hourly, and daily precipitation measurements obtained from 
various sources (Table 1). The daily data for most of the sites were obtained from the National 
Climatic Data Center’s (NCDC) Global Historical Climatology Network (GHCN), Global 
Summary of the Day (GSOD), and the Natural Resources Conservation Service’s SNOTEL 
database. The hourly data were obtained from the U.S. Hourly Precipitation Data (DSI-3240) and 
Integrated Surface Global Hourly Data (DSI-3505), while the 15-minute data were obtained from 
the U.S. 15 Minute Precipitation Data (DSI-3260), which are both archived at the NCDC. 
Additional local and regional data sources such as AgWeatherNet (for 15-minute precipitations) 
and 14th Weather Squadron (for hourly precipitation) were used. 

 
 

 
Figure 2. The locations of the HUC-6 watersheds associated with the 13 military installations. 

The background color map is the 30-year average annual precipitation obtained from the PRISM 
Climate Group, Oregon State U. 
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Table 1. Basic characteristics of the 13 military installations and the precipitation datasets used 
for the project. The watersheds located close to each other are combined for the regional frequency 
analysis. 

 
Installation  Drainage 

area 

( 	ha) 

Annual Rain 
(Snow), in 

Elevation 
AMSL (ft) 

Disruptive 
Floods 

Daily 
Stations 
(GHCN & 
GSOD) 

Hourly 
Stations (DSI‐
3240 & DSI‐

3505) 

15‐min 
Stations 
(DSI‐3260) 

Lewis McChord  3.01  49.8 (7.6)  322    557  130  115 

Camp Pendleton  5.86  11.1  78  1993, 2010   
727 

 
247 

 
227 Fort Irwin  6.20  15.2 (8.2)  2,454  2013, 2010 

Yuma PG  4.44  3.4  4,144   

Fort Riley  11.64  35.7 (17.6)  1,063  1951, 1993  872  303  297 

Fort Hood  9.14  36.8 (0.6)  1,015  2016  1051  377  289 

Cannon AFB  3.78  18.5 (11.1)  4,295   

Keesler AFB  13.05  65.02  33  2005, 2008  788  314  276 

Eglin AFB  3.84  65.3  87   

Fort Drum  2.21  36.0 (78.5)  144    1517  254  244 

Aberdeen PG  6.53  41.8 (20.2)  57   

Fort McCoy  4.32  32.3 (44.4)  838    408  150  138 

Homestead ARB  5.21  62.4  7  2012  132  254  51 

 
In order to further evaluate the trend and non-stationarity in extreme precipitation using a 

relatively long record data (about 100 years), few representative stations around the 13 military 
installations were selected to aggregate the precipitation data when there is no single station with 
a long record close to the military installations. Figures 3 and 4, respectively, show the locations 
of the stations and the aggregated AMS. These data were also used to study the possible correlation 
between annual maximum precipitation and the large-scale climatological variabilities, such as the 
Pacific decadal oscillation (PDO) and the North Atlantic Oscillation (NAO) 



15 
 

 

 
Figure 3. Locations of the weather stations and record ranges used to develop the long-term 

precipitation data for the trend analysis of extreme storms. The highlighted regions are the military 
installations.     

 
 

133 year (1878-2018) 109 year (1896-2018) 

124 year (1894-2018) 

93 year (1904-2018) 

117 year (1898-2014) 114 year (1904-2018) 

121 year (1895-2018) 113 year (1897-2018) 113 year (1894-2018) 

121 year (1894-2018) 123 year (1894-2018) 102 year (1911-2018) 
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Figure 4. Long-term daily precipitation data that were developed by combining data from 
neighboring stations. The recent records were used when there were data overlaps  

 

5.3. Data Screening for Measurement Errors 

Stations with minimum 20 years and 15 years record lengths were selected for the daily and 
hourly datasets. The record for a particular year was removed when the record coverage for the 
same year was less than 90% for daily or less than 70% for hourly and 15-minute data. In order to 
screen the data for potential measurement errors and outliers, we have conducted the discordancy 
test based on Hosking and Wallis (1997) for all the AMS series at each installation. The L-
moments and their ratios were estimated for the AMS after normalizing them by the average annual 
precipitations. The L-moment ratios from each precipitation station are then compared to the 
regionally average L-moment ratios to determine the discordancy measure (D) and identify 
statistically unrelated stations within the study area. Hosking and Wallis (1997) suggested a critical 
value of D to be 3 for a station within a region contains more than 15 member stations. Figure 5 
shows the discordant stations for the 1-day AMS in Lewis-McChord, Fort Irwin, Camp Pendleton 
and Yuma PG. The AMS data from those stations with higher discordancy measures were further 
examined to determine the sources of the discordancy. If the likely reason for a higher D value 
was measurement errors, the associated annual maximum precipitation would be replaced by the 
next maximum value during the same year. Figure 6 shows the 1-day AMS for three discordant 
stations (D > 3), indicating some of the discordances were resulted from possible measurement 
errors and removed from the daily data.  

In addition to assisting in identifying abnormalities in the AMS, the discordancy measure can 
aid in identifying homogeneous regions. If a station is discordant in a particular region, it could be 
moved to another region, which may have relatively similar L-moment ratios. This is discussed 
further later in the section related to the identification of homogeneous regions.  
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Figure 5. Stations with daily precipitation records showing discordant stations (D >= 3) in the 
large red dots. 

 

 

Figure 6. The AMS (inches) for stations which are considered to be discordant (D > 3), 
indicating the presence of potential measurement errors. 

5.4. Data Analysis for Trends, Correlation and Change in Variance 

In addition to identifying the potential measurement errors, the AMS for each station and 
duration was evaluated for the presence of trend, correlation, and change in inter-annual variance. 
Like most statistical analyses, frequency analysis requires the data to be stationary and 
independent. The Mann–Kendall statistics (Z) (Mann 1945, Kendall 1975), which uses the Z-test 
and less affected by outliers in data, was applied to evaluate the stationarity and presence of a 
linear trend in the AMS. When | | > , the null hypothesis of no trend can be rejected, and the 
data is considered to have a significant trend.  is 1.96 for the 95% confidence level or 5% 
significance level. The Breusch–Godfrey test (Breusch 1978, Godfrey 1978) was used to detect 
serial correlations up to third order in the AMS. The test is more general than the commonly used 
methods, likes the Durbin–Watson statistic, which is only valid for testing the possibility of a first-
order autocorrelation. The Levene test (Levene, 1960) was used to test for homogeneity of variance 

A
M

S 

Years 
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in the AMS at the 5% significance level. The test has been proven to be less sensitive to non-
normality in data than some other commonly used tests. The test evaluates whether two sub-
samples in a given population have equal or different variances. In our case, we have divided the 
AMS to four sub-samples and evaluated the change in variances. Both tests were performed for 
precipitation data from individual weather stations and from combined stations within 
climatologically similar regions. Since the project used a regional frequency analysis, the results 
from the regional tests were used to decide a stationary or non-stationary or transform the data for 
developing the IDF curves.   

 

5.5. Identification of Homogeneous Regions   

Rainfall frequency analysis to develop an IDF curves uses precipitation measurements 
obtained from either a single weather station (also called at-site frequency analysis) or a group of 
weather stations which have statistically similar characteristics of extreme rainfalls (also called 
regional frequency analysis). In this project, regional frequency analysis (RFA) was used to 
develop the rainfall IDF curves. The approach combines the data from a cluster of similar sites 
often called homogeneous region or pooling group to improve the reliability of the precipitation 
quantiles estimates at any site in the group (Wallis et al, 2007). The homogeneous regions for each 
storm duration were identified using, first, the location information of the weather stations 
(latitude, longitude and elevation) and mean annual precipitation. The initial regions were then 
evaluated and adjusted to determine the homogeneous regions based on the discordancy test of the 
AMS from the stations within the initial regions. Figure 7 summarizes these procedures. 

 

 

 

 

 

 

 

 

 

 

Figure 7. The procedure to identify climatologically homogeneous regions.  

 

The Fuzzy C-Means (FCM) clustering approach (Dunn 1974) was used to identify the 
initial regions. The FCM algorithm is similar to the K-means algorithm except that instead of 
assigning each site to only one cluster, the degree of membership is provided to each site based on 
the likelihood of the site to belong to different clusters. For example, a site near to the edge of a 
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cluster may belong to the given cluster to a lesser degree than sites close to the center of the cluster 
(Figure 7). The FCM algorithm involves (1) forming an initial set of k groups randomly, (2) 
estimating the centroid of each group and the membership values for each station, (3) creating a 
new cluster by connecting each site with the closest centroid, (4) recalculating the centroids for 
the new clusters, and (5) repeating step 3 and 4 until convergence or a minimum total intra-cluster 
variance (distance or squared error objective function) given in equation 1 below is achieved 
(Ayvaza et al. 2007).  

		 	 | |  (1) 

where  is the standardized vector of the th station’s attributes (lat/long, elevation and mean 
precipitation),  is the centroid of cluster , 	is the total number of cluster,  is total number of 
stations,  is the degree of membership of  to be in cluster k and computed using:  

		 	
1

∑
| |

 
(2) 

During the iteration, the membership  and the cluster centers  will be adjusted. After 
convergence, each station is assigned to the cluster for which it has the highest degree of 
membership.  

The initial regions obtained from the clustering analysis may not necessarily contain 
weather stations with similar statistical characteristics of the extreme precipitations. In order to 
have similar or homogeneous regions, the initial regions were adjusted based on the homogeneity 
test developed by Hosking and Wallis (1997). The test compares the observed dispersion of the L-
moments among stations within a region with the theoretical dispersion limit for a homogeneous 
region with an equal number of stations and record lengths as the observed data. The following 
equation was used to compute the dispersion in L-moments from the observed data:  

∑
∑

 (3) 

where   and 	are the regional average L-moment ratio and the L-moment ratio for station , 
respectively,  is the sample size at station i, and   is the number of stations in a region. The 
theoretical L-moment ratios were computed by randomly generating datasets with an equal number 
of stations and record lengths as the observed data from the Kappa distribution, which was fitted 
to the regional average L-moment ratios. 1,000 datasets or realizations were generated using the 
Monte Carlo approach. The mean ( ) and the standard deviation ( ) of the dispersions are 
computed from the realizations and used to determine the homogeneity test statistics (H) as follow: 
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 (4) 

According to Hosking and Wallis (1997), a region is considered to be “acceptably homogeneous” 
if H<1 and “definitely heterogeneous” if H≥2. In this project, the critical value of H was considered 
to be 2 due to the additional variability in the precipitation measurement.  If an initial region failed 
to be homogeneous (i.e., H>2), the region will be revised by removing stations with higher 
discordance (D) values and replacing them with other stations until the region become 
homogeneous. The membership information from the FCM clustering was used to assist moving 
stations from one region to the other during the adjustment of the initial regions to the 
homogeneous regions. 

5.6. Regional Probability Distributions 

Once the homogeneous regions were identified and validated, the proper probability 
distribution models for each region were determined using the L-moment ratio diagram (Figure 
8a) and the following Z-statistics ( ) for the goodness-of-fit measures (Hosking and Wallis 
1997): 

 (5) 

where,  is regional average L-kurtosis (L-Ck),  is theoretical L-Ck for the fitted probability 
distribution. The realizations from the Kappa distribution, which were used for the homogeneity 
test, were used again to determine the mean ( ) and standard deviation ( ) of the difference 
between  and L-Ck for each realization. Five commonly used probability distributions namely 
Generalized extreme value (GEV), Generalized Pareto (GP), Generalized logistic (GLO), 
Generalized normal (GNO) and Pearson type-3 (PE3) were used to fit the combined AMS for a 
given region. The distribution was considered acceptable at 90% confidence level when the 
| | 	 	1.64. When none of the above distributions met this criterion, the four parameter Kappa 
distribution was used. 

 

 

 

 

 

 

 

 

 L‐ Skewness	

L‐
K
ur
to
si
s	

Return	Period	(years)	

A
nn
ua
l	M
ax
	P
re
ci
pi
ta
ti
on
	(
in
)	



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.7. Bayesian Model Averaging  

Instead of selecting a single best-fitted probability distribution, in this project, we selected all 
the distributions that satisfy the Z-statistics goodness-of-fit criterion. The precipitation quantile 
estimates from these distributions were combined using the Bayesian Model Averaging approach 
(BMA) (Hoeting et al., 1999; Raftery et al., 2005). As demonstrated in the Figure 8c, besides its 
intuitive convenience, there is a theoretical justification for averaging competent models (in our 
case probability distributions) to provide improved estimates of the precipitation quantiles or the 
IDF curves. The figure shows that the combined models perform better than any of the individual 
component models as long as we use independent and above average performing models 
(Dietterich, 2000). In addition, even though the individual model performances are nearly 
equivalent for the fitting datasets (Figure 8a), the selection of a single model can result in 
significant errors when they are applied to extrapolate the extreme precipitations for a longer return 
period (Figure 8b).    

The BMA combines model predictions using weights computed based on their posterior 
performances. The mathematical formulation of BMA is:    

| , | , , 	 |  (6) 

where | ,  is the predictive probability of the extreme precipitation intensity 	for a given 
duration and return period ( ) based on the consensus of  models,  is the observed AMS data, 

| , , 	is the prediction by model  while |  is the posterior model performance 
used to weight the model prediction. The BMA is implemented using Bayes factor (Hoeting et al., 
1999), which allows the direct use of the Z-statistics values as priors to the averaging. The 

c) Figure 8. a) the L-moment ratio diagram to 
select the probability distributions (lines) based 
on the closeness of the lines to the regional 
average L-Skewness and L-Kurtosis (black dot), 
b) the probability distributions fitting to the 
observed IDF data, c) the probabilities of 
success for a single (x-axis) and combined (y-
axis) binomial distributions using 4 above-
average performing (probability of success is 
greater than 0.5) distributions out of 7 total 
distributions and 2 distributions out of 3 total 
distributions. For example, combining two 

binominal distributions with each having 0.7 probability of success will improve their combined 
probability of success to 0.8.   
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procedure is detailed in Liang et al. (2011) and briefly outlined as follows. Under the Bayes factor 
approach, the model posterior |  is estimated using the following formulation: 

| 	  (7) 

where  and  are priors for models  and , respectively,  is the Bayes factor that 
measures the relative likelihood of the two models and computed using: 

	
|
|

 (8) 

The priors of the models  were estimated based on the Z-statistics values, while the 
likelihoods |  were estimated based on fitting errors of the models to the IDF dataset. In 
comparison to other multi-model averaging techniques, BMA has several favorable features, 
including the relative ease of its computational implementation, its ability to incorporate additional 
information as a prior and providing interpretable weights. The BMA in this project was built on 
the results of L-moment based RFA by using all models (probability distributions) that are ranked 
by the Z-statistics. In this regard, the approach preserves the benefits of the L-moment approach. 
Several model performance measures were employed to evaluate the BMA and the individual 
models. These include the Taylor diagram (Taylor 2001), which is composed of the correlation 
coefficient, standard deviation, and centered root mean square errors; the modified Anderson‐
Darling metric (Ahmad et al. 1988); and the bootstrap analysis.  

5.8. Bayesian Parameter Estimations 

The Bayesian approach was used to estimate the posterior distribution of the parameters 
| , 	for a given probability distribution model  and AMS data  using:   

| ,
| , |
| , |

 

 

(9) 

where: |  is the prior distribution of the parameters, | ,  is the likelihood distribution 
which measures the likelihood that the observed AMS data ( ) come from the given distribution 
model  with parameters	 . Since the integral in the above equation is difficult to solve 
analytically, Markov Chain Monte Carlo (MCMC) simulation using Metropolis-Hasting algorithm 
was used to generate a set of parameters that were used to compute the likelihood and the 
normalized factor (the denominator in Eq. 9). For an efficient implementation of the Metropolis-
Hastings algorithm, a multivariate normal distribution was used as a proposal distribution (Reis 
and Stedinger, 2005). The variances of the proposal distribution were tuned using a trial-error 
method to get reasonable acceptance rate, which represents a percentage of times a new sampled 
data is accepted. A high acceptance rate indicates poor mixing of the chain while a low acceptance 
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rate means rejecting too many candidate samples resulting in an inefficient algorithm. Based on 
recommendations by Roberts et al. (1994) and Gamerman (1997), the acceptance rate in this 
project was kept approximately 0.3. After computing the posterior distribution of the model 
parameters, the posterior distribution of extreme precipitation quantiles | , ,  for a given 
model , return period T and AMS data D was computed by marginalizing the model prediction 

| , , ,  over the posterior distributions of the parameters as follow: 

| , , | , , , | ,  (10) 

The above integral was solved using the MCMC approach by sampling from the posterior 
distributions of the parameters | , 	and using those parameters in the model  to predict 
the extreme precipitation quantiles | , , , .    

5.9. Dynamic Downscaling of Future Extreme Precipitation 

Several previous studies have indicated that the general circulation models (GCMs) at spatial 
resolution of 50 km or greater cannot resolve convective patterns that lead to extreme events, such 
as extreme precipitation (Solomon et al., 2007; Kundzewicz, et al., 2007; Christensen and 
Christensen, 2003; Fowler, et al., 2007; IPCC, 2007). The statistical downscaling also has a limited 
ability to delineate storm events governed by local weather conditions, such as the convective 
thunderstorm, without physical process resolved at a fine resolution. In order to capture future 
extreme storms, we used dynamically downscaled projections that provide the only reasonable 
method for representing small-scale physical processes and is able to include orographic effects, 
land-sea contrast, and land surface characteristics (Christensen and Christensen, 2007). This 
approach is better suited to extreme value analysis at the catchment scale, making them particularly 
useful for local climate impact studies for extreme storm events (Teutschbein and Seibert, 2012). 

A regional-scale dynamically downscaled model was developed at a spatial resolution of 12 
km covering CONUS by using the Weather Research and Forecasting (WRF) modeling tool. The 
WRF model considers the regional/local topography, land surface processes, detailed cloud 
physics, and radiative transfer schemes (Giorgi et al., 2012). These attributes facilitate modeling 
of the localized advection processes that govern the magnitude of extreme precipitation events. 
The WRF output may result in increased inter-annual variability (Mo et al. 2005) and precipitation 
intensity (Roads et al., 2003) compared to the results from GCMs. The three sets of output data 
from GCMs available from CMIP5 include NCAR’s Community Climate System Model version 
4 (CCSM4) emission RCPs 4.5 and 8.5 (Gent et al., 2011).and NOAA’s Geophysical Fluid 
Dynamics Laboratory Earth System Model (GFDL-ESM2G) emission RCP 8.5 (Taylor et al. 
2012).   

The domain of WRF regional climate model (WRF-RCM) for dynamic downscaling has 
approximately 4.28 million grid cells (450 × 340 × 28) with high spatial resolution of 12 km and 
temporal resolution of 30 minutes (Kotamarthi et al. 2016). Total simulations of 180 years, 
including 30 historical years (1975-2004) and 30 future years (2035–2064), were conducted to 
downscale CCSM4 and GFDL-ESM2G output under RCPs 4.5 and 8.5. The simulations were 
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performed on the National Energy Research Scientific Computing Center (NERSC) cluster (Cori 
and Edison). The dynamic downscaling has relatively high computation time and took about 
800,000 core hours. 

The precipitation and temperature output are saved every 30 min. Six near-surface variables, 
including water vapor mixing ratio, surface pressure, zonal and meridional wind, short/long wave 
heat flux, are saved every hour, other large-scale variables, and vertical profiles are saved every 6 
hours. The historical data in 1975-2004 were used for extensive bias correction as discussed in the 
following section. 

5.10. Bias Correction of the Downscaled Extreme Precipitations 

In order to incorporate the dynamically downloaded climate projections into the development 
of IDF curves, the future projections from the WRF model need to be evaluated for any potential 
biases prior to the IDF development. The main objective is to identify and correct the biases that 
are potentially present in both the majority and extreme precipitation events. Two steps are 
considered. First, we aimed to develop a bias correction methodology that is effective for 
correcting biases in both the extremes and the majority of future precipitations, and that could 
capture the changes seen in the WRF model projections between the historical and future periods. 
Second, we developed a method for incorporating the effects of the changing climate on extreme 
precipitation into the extreme distribution and IDF curves.  

Despite the high resolution (12-km) of the dynamically downscaled data from the WRF model, 
the degree of bias in the precipitation output is still significant enough that its direct use in climate 
impact studies is precluded (Ehret et al., 2012). To account for and correct the unrealistic 
magnitude of precipitation seen in the model projections, we use a post-processing step of bias 
correction. The bias corrected projection data is then used to develop IDF curves and therefore 
may have a large impact on the final results of the project, making it a crucial step in the data 
preparation process for this project. 

Many bias correction methods exist, but most fall into one of a few categories: linear scaling, 
local intensity scaling, delta-change, and quantile mapping (Themeßl, et al., 2011; Watanabe, et 
al., 2012; Lafon et al., 2013; Teutchsbein and Seibert, 2012). Review papers in recent years have 
identified quantile mapping, which corrects for errors in the shape of the distribution, as superior 
to other methods because of its ability to correct biases in the higher moments of the climate 
variable distribution (Teutchsbein and Seibert, 2012; Chen, 2015; Gudmundsson, et al., 2012; 
Watanabe,et al.,  2012; Themeßl, et al., 2011). However, only a small subset of these studies has 
demonstrated success in correcting the right tail of the precipitation distribution, while almost all 
assume stationarity between the past and future climate.  

In this project, we evaluated the existing most promising quantile mapping methods, such as 
the quantile delta mapping (QDM) (Cannon et al. 2015), modified quantile mapping (MQM) (Li 
et al. 2010; Wang and Chen 2014), and equidistant quantile mapping (EQM) (Srivastav et al. 2014) 
and identified a further improvement by introducing new method, hybridized quantile mapping 
(HQM). The detailed comparisons and improvements are documented in a separate manuscript 
submitted for publication (Jared et al., 2019). The HQM technique is designed to correct extremes 
in the right tail of the precipitation distribution while considering non-stationarity of the climate 
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conditions and preserving the long-term climate change signals in the extremes projected by RCM 
output so that the data can be reliably used in an IDF study. The proposed method corrects the 
quantiles with a modified MQM method (Wang and Chen, 2014) and the extremes separately with 
EQM method using extreme value theory. The study also aims to develop next generation IDF 
curves with non-stationary extreme value analysis using HQM-corrected climate change 
projections.    

A long-term gridded observation dataset of 4km resolution and daily time step was obtained 
from PRISM Climate Group (Di Luzio, 2008) for the historical period (1981-2004) and spatially 
interpolated to the WRF RCM grid spacing. These data are generated using climatalogically-aided 
interpolation, which allows the long-term average climate to inform the spatial pattern of climatic 
conditions for a given day.  

A general process of bias correction with HQM is illustrated in Figure 9, in which extreme 
values were corrected separately from the values in lower percentiles. The upper 1% of values (i.e. 
points over threshold, or POT) were isolated from the observed, historical model, and future model 
precipitation. The lower 99% of values (i.e. points under threshold, or PUT) were further split into 
four subsets by seasons for each of observed, historical model, and future model datasets, and each 
subset corrected according to the equation 

∗
, ,

, ,

 (11) 

where  are the model future PUT for a given seasonal subset, ,  is the empirical CDF 

function for the model future PUT, and ,  and ,  are the inverse empirical CDF 

functions for the observed and model historical PUT, respectively. The  is the corrected PUT 
precipitation for a given season. 

Similarly, the POT are corrected according to the equation 

∗
, ,

, ,

 (12) 

 

where  is the model future POT, ,  is the Generalized Pareto (GP) CDF function for 

the model future POT, and ,  and ,  are the inverse GP CDF functions for the observed 
and model historical POT, respectively. The  is the corrected POT precipitation. 

In addition, the number of rain days is also adjusted for each of the PUT seasonal subsets 
according to the equation 

∗
/
/

 (13) 
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where  is the number of rain days we expect in the corrected precipitation distribution, , 

, and  are the number of rain days in the modeled future, observed, and modeled 
historical time series respectively, and  and  are the total number of days in the observed 
and modeled historical time series respectively. We expect 	  in all cases since RCM 
data tends to overestimate the number of rain days. 

The  seasonal subsets are linearly interpolated to the length of each season’s  value. 
As noted above, 	  for all seasons, so each interpolated  is then augmented to the 

length of  by adding the appropriate number of zero precipitation days. Each resulting time 

series is finally reordered according to the dates of the season’s original . Therefore, the 

largest value of each season’s  assumes the same date as the largest value of the same season’s 
, the second largest value of each season’s  assumes the same date as the second 

largest value of the same season’s , and so on. Each value of the  assumes the same 

date as it’s corresponding  value, resulting in an ordered and bias corrected future modeled 
precipitation time series. 

Potential outliers in the corrected data are identified by isolating the largest precipitation value 
in each year and calculating an upper threshold limit equal to mean+2.563*sd of the annual 
maximums. Any values above that limit are removed from the data. Daily corrected data is 
temporally downscaled to hourly by distributing each 24-hour total according to the same 
proportions as seen in each 24-hour period of the model future data. For example, it rained 1 inch 
in the first hour of December 1st, 2035, and ½ inch in the second hour for a total of 1 ½  inches in 
that day. If the corrected 24-hour total on that day is ¾ inch, the corrected first hour becomes ¾ * 
1/1 ½  = ½ inch and the corrected second hour becomes ¾ * ½ / 1 ½ = ¼ inch.  

Finally, corrected hourly data is interpolated to station locations using a simple IDW algorithm. 
The interpolated corrected hourly data at each station are representative of realistic precipitation 
values at the station level because using a high-resolution observational data set (4km) serves to 
further spatially downscale the area-averaged RCM output to the local-level resolution of a climate 
station. We found that correcting the 12km RCM with 4km PRISM data produces precipitation 
magnitudes very close to that seen in the original station data (Figure 10). 
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Figure 9. Process of HQM bias correction, in which extreme values were corrected separately 
from the values in lower percentiles. 

 

Figure 10. Comparison of annual maximum series (inches) from the WRF-RCM precipitations 
corrected by HQM method with PRISM data and observed precipitation at sample stations. 
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5.11. Updating the IDF Curves for the Future and Recently Observed Rainfall Data 

We incorporated the potential change in extreme precipitation over time using either the 
recursive Bayesian approach in the absence of significant trends or adopt non-stationary extreme 
value distributions in which the location parameter is allowed to vary with time.  

5.11.1. Bayesian Update of the IDF Curves  

The Bayesian parameter estimation method described above has the flexibility to update 
the estimated posterior distributions of the parameters for a given model when new rainfall data 
are available. In this case, the posterior parameter distribution obtained from historical rainfall data 
( | ,  in Eq. 9) will be used as prior, while the new rainfall data together with the 
historical data ( , ) will be used for the likelihood | ,  calculation and to 
recursively update the parameters posterior distributions and the associated the IDF curves as 
shown in equation below (Figure 11). The procedure will be repeated whenever new rainfall data 
are available. 

 

| ,
| , | ,
| , |

 (14) 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 11. The Bayesian procedure to update the IDF curves using recently available 
precipitation data.   
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5.11.2. Non-stationary IDF Curves 

Following the extreme value theory (Coles 2001; Katz et al. 2002), the generalized extreme 
value (GEV) distribution was used to evaluate and develop the non-stationarity IDF curves. For 
annual maximum precipitation series (X) under a no-trend assumption, the GEV model (M0) can 
be formalized as follow: 

 : 	~	 , ,  15 

where the location ( ), scale(σ), and shape (ξ) are considered to be constant overtime. For the non-
stationary case (i.e. independent but non-identically distributed random values), the type of 
distribution is commonly assumed to remain the same over time, while the distribution parameters 
vary as a function of time or other explanatory variables (also known as covariates) which also 
may vary with time. Consequently, the stationary distributions can be easily extended to 
nonstationary distributions (M1) whose parameters are not constant but change as a function of a 
covariate (e.g., Coles 2001, Strupczewski and Kaczmarek 2001, Katz et al. 2002, Ouarda and El-
Adlouni, 2011; Renard et al. 2006; Renard et al. 2013, Sugahara et al. 2009, Cheng et al. 2014). 
In this project, the location parameter was changed as a linear function of various covariances 
including time to develop the nonstationary GEV model (M1): 

 : 	~	 , ,   16 

Where: 	
 

where c is the covariate and the slope parameter  represents the trend or the level of non-
stationarity. The covariate was selected by comparing the performance of the stationary and non-
stationary GEV distributions using the different covariates.   

The return period is typically defined as the waiting time for a given storm to be exceeded for 
the first time (Olsen et al. 1998). For stationary events, the probability of a particular storm event 
(or return level) to be exceeded is the same for all years, leading to a constant average return period 
which is calculated as the inverse of the probability of exceedance. There is thus a one-to-one 
relationship between return period and return level for stationary events (Cooley 2013). While for 
the non-stationarity events, the return period of a given storm event and the corresponding 
probability of exceedance vary as a function of time and/or covariates. Consequently, the return 
period is not only dependent on the return level but also affected by the time used for the analysis. 
For nonstationary events with an increasing trend, the probability of exceedance is initially low 
but increases over the years. Determining the return periods for practical engineering design is, in 
fact, the main challenge in adopting the nonstationary frequency analysis as both the return periods 
and levels changes depending on the time of the analysis and even more challenging if the return 
periods vary with other covariates. 

In order to get a one-to-one relationship between return periods and return levels under a 
nonstationary condition for constructing the IDF curves, Cooley (2013) and Salas and Obeysekera 
(2014) extended the average return period concept from stationary cases to non-stationary cases. 
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We have adopted those methodologies to determine the return period and level under nonstationary 
extreme precipitations.  

 

Figure 12. Schematic representation of the return levels and periods (probability of exceedances) 
for stationary and nonstationary frequency analysis (adopted from Salas and Obeysekera, 2014).    

As shown in Figure 12 above, the exceedance probability  for any particular (or design) storm 
 remains constant year to year for the stationary case. Assuming that the annual maximum 

precipitations X are independent. The waiting time required for the storm event 	to be exceeded 
for the first time is a random variable that can be described using a geometric distribution. The 
expected value of the waiting time, which is also known as the return period , is computed using: 

 1
1

 17 

Furthermore, the variance of the return period is . These are well known statistics to 

characterize return periods for a stationary and independent annual maximum series.  

Cooley (2013) and Salas and Obeysekera (2014) have extended the above relationships for 
non-stationary cases where unlike to the stationary case, the probability of exceedance vary with 
time. For an increasing trend, the probability of exceedance  also increases over time. Similar to 
the stationary case, under independent extreme precipitation time series, the waiting time required 
for the storm event 	to be exceeded for the first time is a random variable that can be described 
using a geometric distribution. The expected time for the first exceedance (or return period T) is 
computed using: 

 1 1  18 

The above equation can be used to estimate the return period  for nonstationary conditions with 
increasing trend. If the trend is negative, the return period can be calculated using: 

 1  19 
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where  is exceedance probability at ,  is the year at which 	 	1	or the year that the 
design storm will definitely be exceeded. This condition is possible when we have increasing trend 
in annual maximum precipitation that leads to increasing probability of exceedance with a potential 
to reach one. The return periods from stationary (Equation 3) and nonstationary (Equations 4 and 
5) can be directly compared to assess the impact of non-stationarity on IDF curves and associated 
engineering design and flooding risk. Alternatively, the average return period is computed using 
different quantiles to estimate the corresponding distribution parameter, μ(t) and (t). For example, 
Cheng et al (2014) used median of μ(t) to determine the “effective” return level for the year 
corresponding to the midpoint of the historical time series. For the low risk design, the 95 
percentiles of the μ(t) values is used. The effective return period can also be used if covariates 
other than time were used to represent the nonstationarity in the IDF curves.     

For nonstationary condition, the risk of failure of the hydraulic structure having design life n 
was determined using: (Salas and Obeysekera 2014) 

 
1 1 1  
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The above equation can be reduced to the well-known equation of the risk of failure, 1
1 , for stationary condition with a constant p value. 

5.12. Runoff IDF Curves 

Even though the design risk levels for flooding and stormwater infrastructures are often defined 
through the return period and associated intensity of heavy rainfall events, the actual probabilities 
of occurrence of flooding and associated risk levels for design and operation of infrastructures are 
directly related to runoff, which are also strongly depends on drainage characteristics, including 
land cover, soil type, topography, and river network. However, due to the lack of historical and 
future streamflow data for flood frequency analysis at or near most drainage sites, it is a common 
practice to directly estimate the design flood (maximum discharge or volume of stream for a given 
return period) based on storm frequency analysis and the resulted rainfall IDF curves. Such 
analysis assumes a direct relationship between storms and floods with, for example, a 10-year 
rainfall expected to produce a 10-year flood. However, in reality, a storm is just one factor among 
the many other hydrological and metrological factors that can affect the peak flow and hydrograph. 
Consequently, a heavy storm does not necessarily always lead to flooding or a flood events with 
the same frequency. This is evident by the observed difference in the seasonality of heavy storms 
and floods in most regions (see details in the result section).  

The watershed, storm and flood data were analyzed in order to identify the underlying causes 
of historical floods at and near the 13 military installations. The results from the analysis will be 
used to guide the use of the rainfall IDF curves for flood frequency analysis and flood mapping. If 
a given installation is often affected by flash floods, the storm information from the rainfall IDF 
curves can be directly used, without the need for soil moisture condition information, to estimate 
the associated flood. The commonly applied Rational Method or the Hydrologic Engineering 
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Center – Hydrologic Modeling System (HEC-HMS) model (USACE 2010) with the SCS runoff 
estimation method can be used to simulate flash floods. On the other hand, for those installations 
that are commonly affected by the riverine floods and floods caused by storm over saturated soil 
or snowmelt, the storm information from the rainfall IDF curves is not sufficient to estimate the 
level of floods. Physically based hydrologic model, such as HEC-HMS with Soil Moisture 
Accounting (SMA), are needed to take into account the antecedent soil moisture. The accuracy of 
the flood frequency analysis and the resulted runoff IDF curves will be evaluated based on the 
runoff IDF curves developed from streamflow measurements.  

The HEC-HMS model uses a design storm (or rainfall intensity and duration for a given return 
period) derived from the rainfall IDF curves along with a readily available watershed data (e.g. 
soil, land cover, and digital elevation map) to estimate the runoff hydrograph. The model was 
chosen for this project due to its ability (1) to simulate the peak discharge and hydrograph from 
multiple spatially and temporally varying storm events in a large basin with various drainage 
characteristics, (2) to simulate the effects of snowmelt and accumulation on the hydrograph, (3) to 
compute runoff and flood routing using a variety of modeling options. The Hydrologic 
Engineering Center – River Analysis System (HEC-RAS) will use the estimated hydrograph from 
the HEC-HMS model and information related the channel cross-sections to estimate the floodplain 
inundation. Finally, the Storm Water Management Model (SWMM) will be coupled with the HEC-
HMS model to assess the capacity of existing stormwater drainage system at the military 
installations and provide recommendations.    

5.13. Snowmelt Modeling 

Runoff from snowmelt and rainfall over snow cover is associated with a significant flood 
hazard in many parts of the United States. Although this significant effect of snow on flooding, 
the existing rainfall IDF curves and the runoff frequency analysis often fail to consider effects of 
snowpack, snowmelt, timing, and coincidence with heavy rainfall.  

In this project, we used the Utah Energy Balance (UEB) snowmelt model (Tarboton et al. 1995; 
Mahat and Tarboton 2012) to understand better the runoff behavior associated with snowmelt and 
rain‐on‐snow events. The UEB is a process‐based model that accounts for exchanges of air 
temperature, fluxes of energy due to incoming and outgoing short‐ and long‐wave radiation, 
thermal or heat conduction, evaporation and condensation, and horizontal heat transport to 
calculate snow accumulation and snowmelt. The UEB model was driven by air temperature, 
precipitation, wind speed, humidity, and radiation inputs at an hourly time scale. The model output 
of snow water equivalent (SWE: the amount of water contained within the snowpack if it were all 
melted without evaporation) was compared with the observed SWE for multiple locations in each 
of sites where observed SWE data were available. The comparison showed that the modeled SWE 
agreed with the observed SWE, indicating its ability to capture the snowmelt processes. The hourly 
snowmelt projections from the UEB model was combined with precipitation to form the total 
amount of water that contributes to the surface runoff. The combined datasets were used to re-
extract annual maximum series for developing IDF curves. 

UEB has been used in various hydrological studies including estimating snow and glacier melt 
in the high Himalayas (Brown et al., 2014), analyzing potential climate change impacts in 
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Sacramento/San Joaquin watershed (Knowles and Cayan, 2002), and assessing the surface 
meteorological variables most critical for snowmelt (Raleigh et al., 2008).  See Tarboton et al., 
1995 or Mahat & Tarbotan, 2012; 2013 and Mahat et al., 2013 for detailed description and 
functionality of the UEB model.  

5.14. Geodatabase and Web-based GIS Tool 

A Geographic Information System (GIS) geodatabase was developed, and populated with the 
study results for the planned geographic regions and climate scenarios, and a project website and 
web-based mapping tool were created to provide access to the results. In preparation for populating 
the geodatabase, IDF analysis results were stored in data files for each combination of site location, 
station or grid, historical or future projected, and rainfall or rainfall with snow melting. These files 
are also downloadable from the project website at the request. Python code parsed data files and 
loaded the IDF data into PostGIS, an open source spatial database built on PostgreSQL. Each 
station and grid cell had the IDF stored as a multi-dimensional array for efficient data access. 

An associated web-based GIS tool was also developed to provide an accessible and easily 
understandable way to access results. The interface includes menu-based selection of which results 
to display, a map panel displaying the results in their geographic context, and a graph and table 
panel to display IDF data. To provide context for the mapping tool, a project website was 
developed with a brief project summary, description of the web-based tool with a link to launch it, 
a news section with announcements about project activities, help content for the tool, and links to 
download IDF data files this report, and related manuscripts from this project.  

A number of open-source software components were used to build the system to provide the 
needed functionality without licensing costs. These components include the Ubuntu/Linux 
operating system, PostgreSQL and PostGIS for geospatial data management, GeoServer for web-
based geospatial visualization and data access services, and OpenLayers for map display and 
interaction in the browser. To facilitate use of the web-based application and provide contextual 
information, the site will include instructive text and brief videos, descriptions of the methodology, 
and other supporting information as needed. After the site has been launched and the proposed 
project schedule is completed, related programmatic activities can provide for continued hosting 
and maintenance of the site into the future. 

 

6. RESULTS AND DISCUSSION 

6.1. Trends in Magnitude and Frequency of Extreme Precipitations 

We have conducted trend analysis using annual maximum precipitation data from all the stations 
located near the installations and with more than 30 years complete records and using representative 
long-term precipitations data obtained by combining data from nearby stations. In the first case, the 
Mann Kendall (MK) test was used to evaluate trends at each station, while in the second case the 
likelihood ratio between stationary probability distributions and non-stationary probability 
distributions, with linear trend in the location parameters, were used to evaluate long-term trends 
and non-stationary in the annual maximum precipitation. The results from the MK test are 
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presented in this section, while the results from the likelihood ratio test are discussed in section 
6.8. 

The percentage of stations showing significant trends in the annual maximum precipitations 
with durations ranging from 1-hour to 10-day are shown in Figure 13. Relatively more stations 
(10%-16%) showed increasing trend than decreasing trend (4%-6%) in the past, particularly those 
stations located in the Midwest (Ft. McCoy and Ft. Riley) and Northeast (Ft. Drum and Aberdeen 
PG). The increasing trend is relatively higher for daily and longer durations storms with some 
exception for the southern installations and Lewis McChord, which show more stations with 
increasing trends in sub-daily storms. Relative to the other installations, Ft. McCoy has 
experienced more increasing trends in daily and longer durations storms.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Percentage of stations showing statistically significant increasing and decreasing 
trends in the annual maximum precipitations using the past data  

The future projections based on the CCSM and GFDL models under RCP 8.5 scenario showed 
an overall increasing trend in daily and longer durations storms while a decreasing trend in sub-
daily storms magnitudes at majority of the installations (Figure 14). The only exceptions are the 
southwestern installations and Homestead ARB, where most of the stations showed decreasing 
trends for all durations of the storms. Similar trends (i.e., increasing trend in long durations storm 
and decreasing trends in short durations storm) were observed under the RCP 4.5 emission 
scenario. The decreasing trend in sub-daily storm magnitude is consistent for all the installations 
and emission scenarios we have considered, with close to 100% of stations in the southern 
installations showing significantly decreasing trend in the future. Compared to the observed 
changes in storm magnitudes over the past century, large number of stations showed significantly 
increasing trends for daily and longer durations storms while decreasing trends for sub-daily 
durations storm under both the RCP 8.5 and 4.5 scenarios. These likely future trends in annual 
maximum precipitations underscore the need for non-stationary frequency analysis to represent 
the effects of climate change on IDF curves and corresponding engineering applications.       

 

Historical 
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Figure 14. Percentage of stations showing statistically significant increasing and decreasing trends 
in the annual maximum precipitations using the combined past and future data. 
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Figure 15. Percentage of stations showing statistically significant increasing and decreasing 
trends in the number of heaviest (1%) daily precipitation. 

 

In addition to the annual maximum precipitation, we have used the daily precipitation that has 
a 1% chance to occur on any given day to examine the potential trend in storm frequency (Figure 
15). In the past, more stations (4%-20%) showed increasing trend in the frequency of the 1% 
precipitations, while relatively few stations (1%-6%) showed decreasing trends in the frequency 
of the 1% precipitations. For instant, 20% of the stations in Ft. McCoy area showed increased trend 
in the frequency compared to about only 1% of the stations which showed a decreasing trend. The 
increasing trend in the storm frequency is expected to be more pronounced and consistent across 
all the installations and climate model projections in the future, with about 50% to 90% of the 
stations showing increased frequency of storm. Despite this observed increasing and decreasing 
trends at some of the stations, regionalized historical precipitation data didn’t show significant 
trends. 

6.2. Climatological Homogeneous Regions 

The purpose of this task is to form groups of stations that have climatologically 
homogeneity condition, whereby, apart from station-specific scale factors, the extreme 
precipitations at stations within a homogeneous region can be characterized by identical frequency 
distributions. The grouping of stations involves two main steps: (1) identifying initial regions 
based on site characteristics such as latitude, longitude, elevation, and mean annual precipitation, 
and (2) refining the regions by moving around discordant stations from one region to another till 
all the regions satisfies the homogeneity statistics (H statistics). In this project, instead of 
deterministic initial grouping, which assumes a given station to belong to a region 100% and does 
not belong to any other regions, stochastic initial grouping that assumes a given station to belong 
to a various region with certain probabilities, were prepared using a fuzzy clustering technique. 
The probability information is critical during the refinement of the regions since it effectively and 
automatically guides the movement of discordant stations. In addition, unlike other similar studies, 
the regionalization was conducted for each storm duration considered, allowing for delineation of 
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different regions for different durations of the storms. Figure 16 shows the final regions for one-
day extreme precipitations in regions near to the 13 military installations. The figures show that 
the one day storms are more localized in the interior regions of the US (e.g. Fort Riley, Fort Hood 
and Cannon AFB), while they are more spread in the coastal regions of the US (Lewis-McChord, 
Camp Pendleton and Homestead AFB). This is expected based on the common metrological 
drivers responsible for major storms in the different parts of the US. The extreme storms in the 
Midwest and the southern US are often associated with convective thunderstorm which impacts 
relatively small areas, while the coastal regions are affected by frontal storms and hurricane that 
can affect relatively wider areas.      
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Figure 16. Homogeneous regions for the one-day extreme precipitations in the 13 military 

installations. 
 

6.3. Regional Probability Distributions  

In the standard regional frequency analysis, a single frequency distribution is fitted to the data 
from several sites in a homogeneous region. Because the “true” distribution of extreme rainfall is 
not known, a distribution must be chosen that not only provides a good fit to the data but will also 
yield robust and accurate quantile estimates for each site in the region. In order to accomplish this 
modeling objection and incorporate uncertainty in selecting a distribution into the estimated 
quantiles, we have adopted a Bayesian Model Averaging approach which allows selecting multiple 
appropriate distributions that fit the data reasonably well. The bar graphs in Figure 17 showed the 
multiple distributions selected for each duration and region. The y-axis represents the number of 
homogeneous regions that use a given combinations of distributions. For example, for the 1-day 
storm events in the Lewis-McChord area: (1) we have identified 24 homogeneous regions of which 
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GLO is rank 1 distribution for the 2 regions while GEV is rank 1 for 18 regions; (2) out of the 24 
regions, only 16 regions have second or rank 2 distributions that met the Z-statistics criteria for 
selecting candidate distributions, while for the remaining 8 regions only a single distribution met 
the criteria and the BMA was not required for those regions; (3) out of the 24 regions only 6 regions 
have a third or rank 3 distributions for the BMA application. Overall, the GEV distribution was 
identified as the most suitable distribution to describe the extreme precipitations at both 
installations. 
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Figure 17. Percentage of the top three best-fit distributions based on the Z-statistics for 

different climatologically homogeneous regions and storm duration from 1 to 10 days. 

6.4. Parameter Estimation 

Bayesian parameter estimation method was used to estimate the parameters of the selected 
distributions. To demonstrate the parameter uncertainties and their effect on the precipitation 
frequency analysis, we have included Figures 18 and 19 which show the estimated parameters and 
associated uncertainty ranges on the estimate IDF curves, respectively. The figures reveal the need 
for not only estimating the optimal parameters values, but also quantifying the associated 
uncertainties. Even if the IDF curve results using the optimal parameters might fail to capture the 
highest extreme precipitations, the estimated parameter and model uncertainty confidence intervals 
are able to encompass those precipitations events, providing reliable ranges of the precipitation 
estimates. 
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Figure 18. The posterior distributions of the GLO and GEV distributions used to describe the 

daily storms for a homogeneous region near Lewis-McChord. The red vertical lines in the 
parameter distributions indicate the maximum a posterior estimate (MAP) which is also commonly 
referred as the optimum value of a parameter. The MAP values were used for developing the IDF 
curves while the rest of the parameter values were used for the confidence intervals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. The IDF curve and associated 95% confidence intervals for one day storms for a 

weather station near to the Lewis-McChord. The different confidence intervals in the figure are 
related to parameter and distribution selection uncertainties. 
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6.5. Stationary IDF Curves 

The rainfall IDF curves covering storm durations from 1-hour to 10-day and return periods 
from 2-year to 500-year were developed for all the installations using currently available (or 
historical) precipitation records. Figure 20 shows the IDF curves for representative weather 
stations at each installation. As is typical with IDF curves, the precipitation amounts, express in 
inch, are highest at longer averaging durations. For both installations, the variations in the 
precipitation amounts as a function of return periods are smaller for shorter durations than longer 
durations, indicating the relatively minor role of return periods play on engineering designs that 
handles precipitations with shorter durations. As discussed earlier, the station-based IDF curves 
were derived by multiplying the regional IDF curves using station specific scaling factors. Bilinear 
interpolations were used to get monotonic IDF curves. For all the other weather stations and 
different IDF curve formats (e.g. precipitation vs frequency or duration), as well as for the actual 
data, please refer to the project website (https://bogi.evs.anl.gov/dodewa/tool/index.html).  

 

 
 

Figure 20. Stationary IDF curves for representative stations corresponding to the military 
installations.  
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Figure 21 illustrates the IDF curves and associated confidence interval representing the 
uncertainties related to model selection and estimation of their parameters. The project website 
provides the IDF curves and the corresponding confidence intervals for all the weather stations 
and return periods. Overall, the resulted mean IDF curves, derived from expected values of the 
posterior distributions, are in good agreement with both the NOAA and observed IDF values (not 
show here). The IDF curves available from the NOAA involve fitting a representative distribution 
to observed historical extreme precipitation, while in our case, a Bayesian approach was used to 
construct the IDF curves by combining different distributions. For some of the installations, such 
as Fort Drum and Fort McCoy, the IDF values from this project tend to match the observed values 
better than the NOAA estimates. As expected, the uncertainty range is wider for the IDF curves 
corresponding to higher return periods than lower return periods.  

 

Figure 21. Stationary IDF curves for 5-yr and 100-yr return periods and associated 95% 
confidence intervals considering parameter and model uncertainties. The dots are the estimates 
from the NOAA Atlas for comparison. 

6.6. Downscaled and Bias-Corrected Climate Projections 

The bias correction method, HQM, developed in this project represents an improvement by 
correcting extreme precipitations (top 1%) with extreme value theory and precipitations below 
99% with modified quantile mapping. The performance evaluation suggest it improves both annual 

(i
nc
he
s)
	



45 
 

maximum series based on corrected top 1 % precipitations and mean seasonal or monthly values 
from corrected 99% precipitations. Figure 22 shows the mean of the annual maximums (in.) at 
each grid cell for each watershed based on observed, uncorrected CCSM 8.5 RCM, and corrected 
CCSM 8.5 RCM data. The bias corrected mean of the annual maximums series is consistent with 
the observed AMS. In addition, bias corrected AMS also preserves the signals of change in extreme 
precipitation projected in the WRF-RCM from historical to future periods as shown in Figure 22. 
The percent difference (%) in the mean annual maximum from historical (1975-2004) to future 
(2035-2064) period is consistent and well maintained before and after bias corrections.   

The bias correction for the majority precipitation (99%) is also performed well. Figure 23 
shows mean monthly total precipitations of observed, molded, and bias corrected modeled datasets 
over the same historical period (1981-2004). The significant deviation of the modeled monthly 
precipitation from the observed data was corrected successfully and the corrected precipitations 
are well agreed with the observed data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Comparison of mean annual maximum series (AMS) of observed, modeled 
(uncorrected), and bias-corrected precipitations (CCSM 8.5 WRF-RCM data) at six military bases. 
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The bias-corrected mean AMS agrees well with observed values at most of grids. The percent 
difference (%) in the mean annual maximum from historical (1975-2004) to future (2035-2064) 
periods for the uncorrected and corrected CCSM 8.5 WRF-RCM data. The change in AMS from 
historic to future projected in the model is well preserved after bias corrections. 

 

Figure 23. Mean monthly total precipitations for observed (red-OBS), modeled (green-MOD), and 
HQM bias-corrected (blue-HQM) datasets in 1981-2004 for sites located in six climate regions.  
While the MOD data varies significantly from the observed data in several regions, HQM 
correction is able to improve the seasonal pattern of the data, shown in close overlap between red 
and blue lines. 

6.7. Bayesian Update of IDF Curves  

The Bayesian approach was tested to update the IDF curves whenever new precipitation 
records are available. The approach assumes that the underlying probability distribution remains 
the same while the distribution parameters might change when the new precipitation data is 
incorporated to update the IDF curves. This assumption is reasonable for frequent update of the 
IDF curves and when no major change or shift in storm patterns are expected due to the 
assimilation of the new data. Figure 24 illustrates the effectiveness of the Bayesian data 
assimilation to update the IDF curves developed using precipitation data prior to 1990 by 
precipitation data post 1990. As shown in the figure, the resulted IDF curves from the data 
assimilation were comparable with the IDF curves developed using the entire data. The updating 
method, thus, can be used to effectively incorporate new observational data without the need to 
reconstructed completely new IDF curves. Furthermore, the updated curves compared to the 
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original curves provide insight on the recent changes in storm patterns and on the IDF curves. The 
upward shift in the IDF curves for Eglin, Keesler, Homestead, and Drum indicate the recent 
increase in the annual maximum daily precipitation post 1990, while the downward shift for 
Cannon, Irwin, and Yuma indicate the decrease in the annual maximum daily precipitation post 
1990. The changes are more noticeable for severe storms or storms with higher return periods.  

 

 

Figure 24. Bayesian update of the IDF curves for daily annual maximum precipitation using 
recently (post 1990) observed data. 

6.8. Nonstationary IDF Curves 

The influence of the different covariates on extreme precipitation is expected to vary from 
region to region. Thus, identifying those covariates which contribute to the nonstationarity patterns 
of the extreme precipitations at a given location is an important part of the nonstationary frequency 
analysis (e.g. Merz et al. 2012). We have considered time, annual precipitation, average minimum 
and maximum temperature and large-scale climate variability as covariates. The role of the 
different covariates on annual maximum precipitation were evaluated by comparing the 
performances of stationary and nonstationary GEV models with the location parameters being 
linearly related to the covariates (Figure 25). Using yearly precipitation as a covariate significantly 
improved the stationary GEV model for all the sites. On the other hand, the commonly used time 
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covariate has improved the stationary models for only two installations (Ft. Riley and Ft. Irwin). 
Except for the MEI, which improved the stationary models at four installations, the other large-
scale climate variability showed little impact on the annual maximum precipitation. When the past 
and future data were combined, using the time covariates improved the stationary models for five 
installations. The annual average minimum and maximum temperatures have no significant 
relation with the annual maximum precipitation.  

 

Figure 25. The influence of different covariates on the annual maximum precipitation. The 
circle represents the likelihood ratio between nonstationary and stationary GEV models, with red 
circle showing significant effect. 

 

Figure 26 shows percentage difference between the stationary IDF curve using only the past 
precipitation record and nonstationary IDF values using the combined past and future precipitation 
data and time as a covariate. The CCSM model under RCP 8.5 was used for the future precipitation 
projection. The IDF values corresponding to longer durations increased for most of the 
installations with the increase being higher for the installations located in central and eastern part 
of the country. For the installations in the south and southwest, the nonstationary IDF values 
corresponding to sub-daily durations have decreased while they have increased for daily and longer 
durations. Alternatively, the impacts of non-stationarity storms could be posed as a design 
problem, in which case either the risk of failure or the return period is evaluated to compute the 
design flood capacity. Assuming that initially a project is designed to handle a certain amount of 
storm (design quantile) and return period, the exceedance probability with respect to this initial 
design quantile will increase (or decrease) with time due to the non-stationarity of the probability 
distribution. As a result, the frequency of the occurrences of exceeding the design quantile and 
causing failure will also increase (or decrease) with time. Such information is useful for planners 
and managers of infrastructure to assess the vulnerability of existing infrastructure under 
nonstationary storm conditions.  
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Figure 26. Comparison of the IDF curves with and without consideration of the future 
precipitation projections (CCSM, RCP 8.5) 

 

The return periods from stationary (Equation 3) and nonstationary (Equations 4 and 5) can be 
directly compared to assess the impact of non-stationarity on IDF curves and associated 
engineering design and flooding risk. The impacts of the future precipitation and the associated 
non-stationarity vary from installation to installation. Figure 27 compares the return periods for 
one-day annual maximum precipitation with the stationary return periods estimated using only the 
past precipitation while the nonstationary return periods considered the past and future 
precipitation (CCSM and RCP 8.5). The future precipitation has relatively minor impacts on one-
day return periods of annual maximum precipitation at Ft. McChord, Fort. Cannon, Ft. Kessler, 
Aberdeen and Homestead. The return periods increased for Camp Pendleton, Ft. Irwin, Yuma PG, 
but decreased for Ft. Hood, Eglin AFB, Ft. Riley, Ft. McCoy, Ft. Drum when the future 
precipitation was considered. For example, at Camp Pendleton, the one-day annual maximum 
precipitation with 75-year return period can have about 140-year return period in the future, 
leading to reduced risk of flooding under future climate condition. On the other hand, at Ft. McCoy 
and Eglin AFB, the 75-year storm become a 60-year storm when the future projection is 
considered, causing an increase in flooding risk. The impacts of nonstationarity are larger for 
infrastructures designed to handle storms with higher return periods. As a consequence, if a project 
in Ft. McCoy or Eglin AFB is to have, for example, a 100-year level of protection under 
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nonstationary conditions over the life of the facility, the initial design may have to be much larger. 
The opposite is true for large projects in Camp Pendleton and Yuma Proving Ground.    

The risk of failure under nonstationary conditions was also illustrated using Figure 28. The 
dashed-lines in the figure show the risk for the stationary condition, whereas the solid lines are the 
risk for the nonstationary conditions using Eq. (10). For any given value of project design life time 
the risk under nonstationary conditions is bigger than that for stationary conditions when the solid 
line is above the dashed lines (e.g., Ft. Riley and Ft. McCoy). The risk increase due to 
nonstationarity is larger for higher return periods or project designed to handle larger storms. For 
example, for Ft. Riley, the 50-yr structures (blue lines) have 62% and 75% risk of failure (or 21% 
increase) during the 50-yr project life for stationary and nonstationary conditions, respectively. 
Consequently, if the risk of failure is to be maintained as in the stationary case, the infrastructures 
may have to be designed for a much higher return period or initial level of protection under 
nonstationarity. 

  

 

Figure 27. Comparison of return periods for one-day annual maximum precipitation under 
stationary and nonstationary conditions. The red-lines are 45o degree lines representing similar 
return periods. When the dots are higher than the red-lines, they indicate increase in return periods 
(or decrease frequencies) due to the non-stationarity of the storms 
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Figure 28. Risk of infrastructure failure as a function of project life under stationary (solid lines) 
and nonstationary (dash lines) storm conditions. The higher solid lines compared to the dash-lines 
indicate increased risk due to storm non-stationarity (e.g. Ft. Hood, Ft. McCoy, and Ft. Riley) and 
vice versa. 

 
6.9. Runoff IDF Curves and Dominant Flood Causing Mechanisms 

We have conducted a variety of data analyses from both rainfall, runoff, and watershed 
perspectives in order to better understand the flood behaviors and the potential use of the rainfall 
IDF curves for flood frequency analysis at each installation. We first explored the seasonality of 
storms and floods for all the installation since the dominant flood-generating processes at a given 
location can be strongly linked to the time of the year that major floods occur. The underlying 
processes that control floods were evaluated from (1) rainfall perspective using two hypotheses 
relating storm events and the resulted floods based on Berghuijs et al (2016), (2) runoff perspective 
using the shape of hydrographs associated with annual maximum peak flow based on Bhaskar et 
al (2000), and (3) watershed perspective using the combined role of watershed land coverage, soil 
types and topography based on a methodology used by the National Weather Service (Smith, 
2003). 

 
6.9.1. Storm and Flood Seasons  
Analysis of the timing of annual maximum storm and annual peak flow events, based on 

representative rainfall and stream flow data from 1977 to 2017 for the 13 military installations, 
reveals some seasonality differences between the two events, highlighting the additional roles of 
other factors such as soil moisture conditions and snowmelt in causing the flooding events. The 
spider web Figure 29 shows the monthly occurrence of 1, 6, 12 and 24 hours annual maximum 
precipitations compared to the monthly occurrences of annual maximum peak flow and volume 
for some of the installations. For example, for the Lewis-McChord area, approximately 60% of 
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the maximum storms happened during November to January, while all the maximum peak flows 
occurred during December to March, with about 30% occurred in January. Despite 20% of the 
storms occurred in November, an annual maximum peak flow was not recorded during November. 
This can be because of the relatively dry soil moisture condition. On the other hand, even though 
there were not many storms during February and March, 20% and 15% of the annual maximum 
peak flows, respectively, occurred during these months. These may be explained by the saturated 
condition of the soil which can lead to major flood from relatively modest storm and the 
contribution of snowmelt. For Camp Pendleton, there is relatively a good match or overlap 
between the storm months and the peak flow months, which mostly happen during January. Given 
the region is arid, soil saturation is expected to be rare and thus the observed maximum peak flows 
are most likely a direct response to the maximum storm as in the case of flash floods. The 
maximum peak flows occurred thought out the year in Aberdeen PG without showing any apparent 
relationship with the maximum storms which mostly occurred during the summer months. The 
Fort McCoy area has three flood seasons or separate months which are not directly related with 
the summer maximum storm season. The flooding seasons in March and June are most likely 
related to snowmelt since only a few maximum storms happen during those months.  

Similar observations can be made for the rest of the installations. But one consistent finding 
for most of the installations (except Camp Pendleton) is that the flood events are poorly explained 
by rainfall characteristics alone, making direct usage of the rainfall IDF curves to estimate the 
flood frequency and design stormwater drainages difficult and unreliable. Identifying the relevant 
physical processes and variables that control flood also help in selecting the appropriate hydrologic 
models.  

A close look at the daily annual maximum precipitation and peak flow seasons in Figure 29 
also confirms the difference between the seasons. In the Ft. Drum area, the annual daily maximum 
rainfall happened over extended period, while the peak runoff occurred over a limited period. Such 
difference in storm and flood seasons may lead to overestimation of the flooding risk using the 
IDF curves directly since most of the annual maximum storms do not necessarily cause annual 
peak flow. Figure 30 illustrates the impacts of the seasons difference on IDF curves. Instead of 
picking annual maximum precipitation values independent of the flood season, in this case, the 
annual maximum precipitation values were drawn only during the entire flood period (left side 
panel of Figure 31) and during the 25%-50% quantiles flood period (right side panel of Figure 31). 
Overall, the impacts are significant for smaller return periods, but as the return period and duration 
increased the difference become smaller and the IDF value can serve as a good indicator of 
flooding risk. This is consistent to the expectation that major storms (or storms with larger return 
periods and longer durations) most likely lead to the annual maximum peak flow.    
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Figure 29. Seasonality of storms, peak flow and volume. The concentric circles are percentages 
of occurrence of storm, peak flow and volume within a specific month over the past 40 years 
(1977-2017).  
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Figure 30. The season difference between one-day annual maximum precipitation (orange 
boxplots) and annual peak flow (green boxplots).  

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31. Impacts of the seasons difference between annual maximum precipitation and annual 
peak flood on IDF values for ranges of durations and return periods. The IDF values in the left and 
right panels were computed using annual maximum rainfall values drawn from the entire flood 
season and from the 25%-75% quantile flood season, respectively. 

 

6.9.2. Flood Causing Mechanism: Rainfall Perspective 

The direct effects of rainfall on food events were tested using two hypotheses similar to those used 
by Berghuijs et al (2016). The first hypothesis is that flooding is caused by a single largest 
precipitation event, while the second hypothesis is that flooding is caused by a series of 
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precipitation events. In order to test these two hypotheses, we have used a combined daily 
precipitation data obtained from stations near to the installation and daily streamflow data from a 
representative USGS stream gauges (i.e., gauges located closed to the installations and on major 
river or creek passing through or adjacent to the installations). The daily streamflow and 
precipitation cover from 1977 to 2017 for all the stations. To test the first hypothesis, first we 
determined the dates associated with the annual maximum peak flow and checked whether the 
annual maximum precipitation in any given year happened within 10 days prior to the dates of the 
annual maximum peak flows. The selection of 10 days was based on our prior analysis of the flood 
lag-time in the watersheds associated with the military installations. As shown in Figure 32, more 
than 60% of the annual maximum peak flows occurred within 10 days after the annual maximum 
precipitations in the Camp Pendleton over the past 40 years (1977-2017). This suggests that the 
annual flooding in the Camp Pendleton mostly resulted from single largest annual precipitation 
event. Other installations, where the annual flooding is mostly related to single major storm event 
include Eglin AFB (50%), Keesler AFB (44%), Lewis-McChord (43%) and Ft McCoy (42%). In 
those areas, where there is a considerable correspondence between the storm and flood events, the 
result from rainfall IDF curves can be readily applied to estimate the magnitude and frequency of 
peak flows.  

To test the second hypothesis, we aggregated the 10-day precipitations prior to the annual 
maximum peak flow and compared them to the annual maximum 10-day precipitations. Compared 
to the single major storm, the largest precipitation events over 10-days did not cause the majority 
of the annual maximum peak flows. The largest percentage is for Ft Riley (20%), which means 
only 20% over the past 40 years that the annual maximum 10 days precipitation events caused the 
annual maximum peak flow.  

 
Figure 32. Percentage of direct link between single storm and multiple storm events with 
flooding events 
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6.9.3. Flood Causing Mechanism: Runoff Perspective  

The flooding events (annual maximum peak flows) at each installation were examined from a 
runoff perspective using a methodology developed by Bhaskar et al (2000). In the past, floods 
were commonly characterized by rainfall and limited effort was made to examine them directly 
from a runoff perspective. Using daily streamflow data from the USGS gauges located close to the 
military installations, we have generated the runoff hydrographs associated with the annual 
maximum peak flow. In order to have a consistent analysis among the installations, the streamflow 
measurements from 1977 to 2017 were used for all the installations, providing 40 runoff 
hydrographs corresponding to the annual maximum peak runoffs (Figure 33). The methodology 
uses the runoff hydrograph characteristics such as the rate of the rising limb, time to peak and 
magnitude of the peak to determine flash flood index. The average of the 40 hydrographs (shown 
as solid lines in Figure 33) was used for the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. The hydrographs corresponding to the annual maximum peak flows at the different 
military installations.  
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The flash flood index (RF in Table 2) was calculated based on the rising rate of the hydrograph 
(RK), the magnitude of the peak flow (RM) compared to long-term average flow and the flood 
response time or the time the flood takes to reach the peak (RT). The rising section of the 
hydrograph was assumed to be exponential, and computed using  where  is the 
initial discharge before the flood events start,  is the discharge close to the time to peak ( ),  
is time in days and  is the rising curve gradient ( ). Using the ,  and  provided in 
the table below, we first calculated the  values which were then converted to relative severity 
factors of  (RK) based on a tabular relationship provided by Bhaskar et al (2000). In the tabular 
relationship, the K value ranges from 0 to 35, while the RK values ranges from 1 to 7, with 1 being 
relatively flat hydrograph. Similarly, to determine the relative severity factors for the magnitude 
of peak flow (RM), first the flood magnitude ratio, , was computed using ⁄ , 
which is the ratio peak flow over long-term average flow. The ratio was then converted to RM 
using another tabular relationship from Bhaskar et al (2000). The RM can range from 1 to 16, with 
1 being the peak flow to be relatively close to the long-term average flow. The relative severity 
factor for the flood response time (RT) was computed using directly the time to peak ( ) and its 
tabular relationship with RT. The RT can range from 1 to 10, with 1 being the flood response time 
is more than a day. Since we have used daily datasets, the presented flash flood index values in 
Table 2 were not sufficiently resolved to characterize flood behaviors at sub-daily time step. We 
currently in the process of adopting the approach for the hourly dataset. Finally, the flash flood 
index (RF), shown in the last column of Table 2, was computed by adding the three relative 
severity factors. The RF value can range from 3 to 33, with higher values indicating the likelihood 
of the annual maximum peak flow was caused by the flash flood. 

 
Table 2. Flash flood index based on runoff hydrographs for the 13 military installations 

6.9.4. Flood Causing Mechanism: Watershed Perspective  

We have adopted the flash flood index (Smith 2003), which is commonly used by the National 
Weather Service (NWS) to predict occurrences of flash floods, to qualitatively assess the flash 
flood risk in the watershed associated to the military installation. The index was calculated by 
overlaying the land cover, slope and soil type/texture maps in the watershed. An index value of 1 

RK RM RT

Lewis 74.3 1.03 9024.1 9.59 3.64 2.08 1254.3 4143.36 0.6 7.2 87.4 1 1 1 3

Irwin 15.4 2.04 224.6 6.41 2.85 2.19 3.6 140.39 1.3 62.6 68.4 1 16 1 18

Pendleton 61.3 2.06 3774.5 6.44 2.94 1.53 66.3 1311.38 1.3 56.9 70.7 1 16 1 18

McCoy 52.9 1.7 638.2 7.8 3.45 1.35 161.5 367.6 0.4 4.0 82.8 1 1 1 3

Hood 46.3 1.49 5978.1 4.72 1.92 1.74 102 4107.92 1.4 58.6 46.2 1 13 1 15

Riley 54.3 1.82 17396.2 11.08 4.51 2.41 2464.1 10711.62 0.5 7.1 108.3 1 2 1 4

Drum 28.0 1.67 24210.3 11.85 6.33 3.82 4656.9 11918.9 0.3 5.2 152.0 1 1 1 3

Yuma 9.3 1.38 1675.2 7.62 3.8 4.35 394 1303.19 1.2 4.3 91.2 1 3 1 5

Keesler 141.0 1.9 4599.7 7.13 3.15 0.77 202.7 1781.33 1.0 22.7 75.7 3 3 1 7

Eglin 135.1 1.9 11352.2 8.03 3.15 1.65 1102.1 4021.9 0.7 10.3 75.6 1 3 1 5

Aberdeen 47.7 1.92 279900 10.4 4.62 3.3 40145.7 131027.5 0.5 7.0 111.0 1 1 1 3
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indicates a minimum flash flood risk, while an index of 10 indicates a maximum flash flood risk 
within the watershed. In general, areas with a higher slope, clay soil type, and sparse vegetation 
coverage are expected to have a higher potential for flash floods. As shown in Figure 34, the Lewis-
McChrod installation is located in the watershed section where there is less potential for flash 
floods caused by watershed characteristics, while on the other hand has the Camp Pendleton is 
located in area where there is considerable potential for the flash flood from the watershed 
perspective (Figure 34). Noted that this risk is solely from the watershed perspective and does not 
consider the soil moisture conditions, snowmelt effect and storm characteristics. We have also 
examined the 100-year return period flood maps obtained from Federal Emergency Management 
Agency (FEMA) to gain insight on the installation’s vulnerability to the floods. Despite the major 
historical floods recorded in the Camp Pendleton, the FEMA’s 100-year flood events were not 
identified in and around the installation. This makes the results from this project to be useful in 
better characterizing the flood vulnerability and adopting an appropriate stormwater management 
system. 

Figure 34. The 100-year FEMA flood maps (left) and flash flood index maps (right) for a 
watershed associated with Lewis-McChord and Camp Pendleton 
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6.10. Hydrologic Modeling for Flood Frequency Analysis  

A preliminary modeling effort was made to develop a hydrologic model balancing the event-
based simulation to utilize the rainfall information from IDF curves and continuous simulation to 
better represent the antecedent soil moisture content. The HEC-HMS model with Soil Moisture 
Accounting (SMA) approach provide the desired interface between event-based and continuous 
simulations. As discussed in the previous sections, direct translation of design storms obtained 
from the rainfall IDF curves to estimate peak runoff and volume is difficult because of the different 
flood causing mechanisms and effects of the soil moisture and snow conditions. For example, from 
our analysis which is also illustrated in Figure 35, we noticed that a large storm events during 
summer may result in relatively small peak flow and runoff volume in the Lewis-McChord region, 
while a relative mild storms not characterized by the IDF curves can result to major flooding event 
if those storms occurred during a winter season when the soil moisture is near saturation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35. Precipitation time series in the Clover Creek watershed in 2010 (top) and the 
associated discharge at the outlet of the watershed (bottom). The annual maximum storm, which 
occurred in September did not generate a significant flood events, while the storms in early 
January generated the maximum peak flow. These responses of the watershed might be attributed 
to the soil moisture condition before the storms.  

 

The HEC-HMS model was developed for the Clover Creek watershed (Figure 36), which 
contains a large portion of the McChord AFB near Seattle, to simulate the daily annual flow at the 
watershed outlet. The model was developed and calibrated based on rainfall and discharge data 
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from 1996 during which the watershed experienced a historical. Developing the model to simulate 
flow conditions for the entire year, instead of the flow condition in response to a specific storm 
event, allows to properly account for the soil moisture condition. The model was then validate 
based on a typical flood year 2010, which was also used to simulate the design storms obtained 
from the rainfall IDF curves and generate the runoff IDF curves. The calibration and validation 
results are provided in Figure 37, demonstrating the model ability to represent the rainfall/runoff 
process adequately. The validated model and the 2010 rainfall condition that caused the annual 
maximum peak flow was then replaced by the design storms obtained from the IDF curves to 
develop the runoff IDF curves shown in Figure 38. The runoff IDF curves show that the return 
period for the 1996 flood was over 100 years, while the 2014 annual maximum peak flow has 
about 5 years return period. The relative leveling of the IDF curves after 60hr indicates the time of 
concentration of the watershed is around 60hr. These results will be further validated by comparing 
them with the results obtained from the frequency analysis of the observed discharged. 

 

 

Figure 36. Location map for the Clover Creek and the McChord AFB south of Seattle. The 
Creek pass underneath the runway using culverts. 
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Figure 37. HEC-HMS calibration and validation results for the annual simulations compared 

to the observed discharge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38. The runoff IDF curves for the Clover Creek watershed at its outlet, which is located 
near to the runway in McChord AFB.  

6.11. Snowmelt Modeling and Incorporation to the Rainfall IDF Curves  

We have performed snowmelt modeling using the UEB tool for four out of 13 military bases 
that are likely affected by the snow accumulation and melt. Those sites are Aberdeen PG (APG), 
Ft. Drum (FD), Ft. McCoy (FM), and Lewis McChord (LM). The hourly snowmelt projections 
from the UEB model was combined with precipitation to form the time series of the total amount 
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of water, namely rainfall + snowmelt time series. The annual maximum series can be extracted 
from rainfall + snowmelt data for each station.  

The annual maximum series provide a base for developing IDFs. Figure 39 shows changes in 
annual maximum series between precipitations without considering snowmelt and rainfall + 
snowmelt for Fort Drum as an example. The statistics about mean, low and upper quantiles, 
minimum and maximum, and some outliers for the site were based on precipitation data and 
snowmelt model output for all available locations. Although there are some variation, in general, 
the mean and the range between first and third quantiles are greater for rainfall + snowmelt annual 
maximums than those of precipitation.  

In order to further identify the causes of the difference in annual maximum series, we evaluate 
changes in annual maximums from precipitation to rainfall + snowmelt each year for most of 
locations. We found basically two scenarios as shown in Figure 40. In scenario 1, the precipitation 
records from NOAA often represent snowfall or both snowfall and rainfall as temperature is near 
or below zero Celsius. The UEB snowmelt model will determine what amount of precipitation is 
considered as snow based on temperature at hourly step. As an example, in 1971 at station 
USC00304912, the annual maximum of 68 mm precipitation was actually contributing as snow to 
the snowpack (SWE). The maximum liquid (rainfall plus snowmelt) of that year was 32 mm in 
August. The scenario 1 suggests a decrease in annual maximum from 68 mm to 32 mm for 1971 
(Figure 40a). In scenario 2, an increase in liquid water (rainfall plus snowmelt) is observed for 
annual maximums. For example, in 1978, a rainfall and snowmelt event were occurred due to 
warm weather in March. The liquid water (rainfall + snowmelt) is 95 mm, which is much higher 
than annual maximum precipitation record of 55 mm as rain in September. Scenario 2 represent a 
case for increased annual maximums. For most of locations, scenario 2 occurs more often than 
scenario 1 as indicated by statistical measures at Ft. Drum (Figure 39).  However, at Lewis 
McChord, changes in AMS are more associated with scenario 1 than scenario 2, resulting in 
decrease in AMS. 

Changes in AMS based on output from the UEB snowmelt modeling will significantly affect 
the IDF results. For most of scenario 2 cases, increased AMS (mean, quantile range, minimum and 
maximum, and outliers) will result in higher IDF values as shown in Figure 41. At Ft. Drum site, 
the average of rainfall + snowmelt for 1 day duration among 31 locations increases by 22% for 10-
year event, 24% for 50-year event, and 25 % for 100-year event (Figure 41a, b, and c). For scenario 
1 cases, IDF values are reduced due to decreased AMS predicted from the snowmelt model. Those 
cases occurred more at Lewis McChord site. 
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Figure 39. Comparison of annual maximum series determined based on precipitation records and 
rainfall plus snowmelt predicted by snowmelt modeling at all stations for Fort Drum site. The 
statistical measures include mean (marker for each station and line to link among stations), first 
and third quantiles as shown as the bottom and top of the box, minimum and maximum as shown 
by the vertical line, and dots that are identified as outliers (1.5 times of interquartile range).      
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Figure 40. Effects of snow and snowmelt on annual maximum series determination 
(USC00304912). Scenario 1 (a): precipitation overestimates water available for runoff during 
frozen days. Scenario 2 (b): precipitation underestimates water available for runoff from rain and 
snowmelt in warm days with snowpack on ground. 
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Figure 41. Comparison of IDF values between precipitation and rainfall + snowmelt for 31 
locations at Fort Drum, specifically 1-day precipitation and rainfall + snowmelt for 10-year (a), 
50-year (b) and 100-year (c) events.     

6.12. Interactive Web-based GIS Interface 

The project website (Figure 42) provides brief project summary; description of the web-based 
tool with a link to launch it; identification of the project team and sponsor; news section with 
announcements about project activities, help content for the tool, a link to request the underlying 
data, this report, and published manuscripts. After the web-based tool is launched, users select a 
category and dataset combination, and a site from the menus at the top of the map panel. The map 
is zoomed to the project location, and grid and station overlays are added for the chosen category 



66 
 

and dataset. Clicking a station or grid cell on the map highlights the location and populates the 
results panel with an IDF curve of the results. Other features within the map panel include 
interactive zooming and panning; turning overlays on and off; and changing the base map between 
street, shaded, topographic, and other options. Within the results panel the IDF axes can be 
changed; subsets of frequencies or durations can be turned on and off; and lowest, best, and highest 
estimates can be displayed. There is also a table view listing the values in tabular form, and an 
export button allows a spreadsheet of the values to be downloaded. The web-based tool interface 
is shown in Figure 43 with an example session showing the Fort Lewis - McChord Air Force Base 
location on the left panel with a station northeast of the site selected, and the right panel showing 
frequency IDF curves from 2 to 500 years by precipitation depth in mm and duration in hours and 
days. 

Compared to traditional workstation databases and software, this hosting system with a web-
based interface is more efficient to host, maintain, and update. It provides access to users through 
free software they usually already have, through an interface they can implement without 
significant training. To familiarize users with the tool, a webinar will be presented and a recording 
will be available on the project website. Other help content will include a brief training video with 
a description of the project, overview of the website, and instructions for the tool interface to 
facilitate understanding the project and how to use the web-based tool. 
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Figure 42. Project Website (https://bogi.evs.anl.gov/dodewa/tool/index.html ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



68 
 

 
 

Figure 43. Web-based mapping tool, showing the Fort Lewis - McChord Air Force Base vicinity 
on the left panel with a station northeast of the site selected, and an IDF curve on the right panel. 
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7. CONCLUSION AND IMPLICATIONS FOR FUTURE 
RESEARCH/IMPLMENTATION  

 

Trends in Extreme Precipitations.  

We have conducted trend analyses using all the stations near to our study installations and 
containing more than 30 years complete records, and using representative long-term precipitations data 
obtained by combining data from nearby stations. For all the installations and storm durations (1hr – 
10day) we have considered, the historical records of annual maximum precipitations showed no 
spatially consistent significant trends at both station and regional levels. Approximately 10%-16% of 
stations showed statistically significant increasing trends, while only 4%-6% of stations showed 
decreasing trends in the past. None of the climatologically homogenous regions (e.g. Figure 16) 
showed significant trends. Relatively more stations in the Midwest (Ft. McCoy and Ft Riley) and 
Northeast (Ft. Drum and Aberdeen PG) showed increasing trends, particularly for daily and longer 
durations storms. However, when the future precipitations are considered, considerably more stations 
(> 50%) showed increasing trend in daily and longer durations storms while a decreasing trend in sub-
daily storms magnitudes at the majority of installations. The differences are not clearly evident in the 
resulted trends from either the CCSM and GFDL climate models or the RCP 8.5 and 4.5 emission 
scenarios. Compared to the trend in magnitude of extreme precipitation, relatively more weather 
stations (50%-90%) showed increasing trend in the frequency of occurrence of daily extreme 
precipitation events (heaviest 1% daily precipitation). 

These likely future changes in annual maximum precipitations underscore the need for non-
stationary frequency analysis to represent the effects of climate change on IDF curves and 
corresponding engineering applications. More research is needed to rigorously identify and attribute 
trend and non-stationarity in storms. This is particularly important given the difficulty of distinguishing 
between low-frequency climate variability and long-term trend with the limited available precipitation 
records. In fact, identification of nonstationary precipitation patterns and their significance for the 
engineering analyses have been the primary challenge in adopting the concept of non-stationarity in 
the IDF curves. The ongoing progress in big data science and advance in data mining and pattern 
recognition methodologies, such as deep learning, have the potential to capture complex trends and 
their causal relationships with other variables. Only two climate models are considered in this study 
due to the high computational demand of the dynamic downscaling method. Evaluation of climate 
change impacts on storm events will benefit from incorporation of more climate models.  

Stationary and Nonstationary IDF curves 

Rainfall IDF curves covering storm durations from 1-hour to 10-day and return periods from 
2-year to 500-year were developed for various military installations in the United States based on 
past precipitation records and multi-model prediction of future precipitation (2035-2064). IDF 
curves are widely used in infrastructure design and risk assessment, and the curves from this study 
have potential application in adapting infrastructure design and risk assessment to incorporate 
projected changes in extreme precipitation. Nonstationary IDF curves were developed by allowing 
the location parameters of the distributions to vary with time. The likelihood ratio test, which 
compares the performance of stationary and nonstationary distributions, indicates the potential 
presence systematic trends and the inadequacy of the traditional stationary IDF curves to represent 
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the combined past and future precipitation extremes. The likelihood ratio was also used to evaluate 
the potential roles of other climatological phenomena on storm dynamics. The storms from a few 
installations were affect by large-scale climate variability, such as MEI and NAO, while the storms 
from all the 13 installations were affected by annual average rainfall. However, due to the 
challenge of applying the return period concept to develop the IDF curves when the distribution is 
a function of annual average rainfall, in this study we only consider time as a covariate (or 
distributions as a function of time). Future research utilizing the annual mean rainfall in 
combination with time as covariates may further improve the IDF characterization of the combined 
past and future precipitation extremes. 

Comparing the stationary and nonstationary IDF values, the storm magnitudes corresponding 
to longer durations increased for most of the installations with the increase being higher for the 
installations located in central and eastern part of the country. For the installations in the south 
and southwest, the storm magnitudes with sub-daily durations have decreased while they have 
increased for daily and longer durations.  

Dynamic Downscaling and Bias-Corrected Future Climate Extreme Projections 

Dynamical downscaling with WRF-RCM at high spatial and temporal resolutions of 12 km and 30 
minutes provides a reasonable method for capturing extreme storm events that likely represent small-
scale physical processes and is able to include orographic effects, land-sea contrast, and land surface 
characteristics. This approach is better suited to extreme value analysis for IDF curves determination. 
However, the computational need is very high for 180 year simulations.  

This project evaluated most promising quantile mapping methods and developed the HQM bias 
correction method and data processing tool that correct extreme precipitations (top 1%) with extreme 
value theory and precipitations below 99% with modified quantile mapping. The performance 
evaluations indicate that this approach (1) improves the annual maximum series that is the base for 
IDF determination, (2) preserves the signals of future change projected by the WRF-RCM model, and 
(3) corrects seasonal variation for lower quantile precipitations. The multiple comparisons also suggest 
that bias correction is important before incorporating future projections into IDF determination and 
different bias methods will significantly affect IDF values. 

Snow and Snowmelt Effects IDF Curves 

The snowmelt modeling with UEB modeling tool identified two scenarios that will affect AMS. In 
Scenario 1, NOAA’s precipitation records may represent snow contributing to snowpack instead of 
liquid water during winter at freezing temperature, resulting in decreased AMS. In Scenario 2, rain on 
snow under the warmer temperature in early spring could significantly increase amount of liquid water 
as rainfall + snowmelt instead of precipitation only. The snowmelt effect may change annual maximum 
from other seasons to early spring, which is found more often at Fort Drum site. The increased AMS 
results in higher IDF by average 22 % for 10-year event, 24 % for 50-year event, and 25% for 100-
year event over 31 locations at Fort Drum. However, reduced IDFs were found more at Lewis McChord 
site.      

The results of snowmelt modeling confirmed that the current IDF methodology significantly 
underestimated IDF values for Scenario 2 cases and overestimated for Scenario 1 cases. It is important 
to incorporate the processes of snowpack and snowmelt into the development IDF.     
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Runoff IDF curves 

Both rainfall, runoff, and watershed data (land cover, slope and soil type) were analyzed to identify 
the underlying processes that are responsible for major flooding events in the 13 military installations. 
The results from the analyses were used to determine the hydrologic modeling approach suitable for 
the flood frequency analysis. The runoff IDF curves were constructed for some of our study sites using 
the HEC-HMS hydrological model with the Soil Moisture Accounting (SMA) method for simulating 
the rainfall excess. This approach allows using the rainfall IDF curves and reasonably account the soil 
moisture condition for estimating the corresponding runoff. Future research is needed to translate the 
information obtained from rainfall IDF curves (e.g. design storms) for the estimation the corresponding 
runoff and flood risks. One of the remaining challenges to estimate the runoff IDF values from the 
given rainfall IDF values is representation of soil moisture condition in the event-based hydrologic 
model approach.   

Interactive Web-based GIS Interface and Geodatabase 

We expect the web-based tool and project website to be engaging, intuitive, and understandable 
for planners at DoD bases, and other stakeholders. Similar results for new locations can readily be 
added to the database and system, or other related data or tools could be added as enhancements. The 
existing project website and tool can continue to be hosted after the current project schedule is complete 
with a modest budget to address software security updates and other needed activities, or they can be 
deactivated and an archive made available for future reference. The mapping tool can also evolve to 
serve more militaries bases with more information through ESTCP demonstrations in the upcoming 
years. 
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9. APPENDICES 
 

a. Supporting Data: 

 

All the IDF results (figures and tabulated data) for historical precipitation data, combined 
historical and future precipitation data, IDF values with snow effect, and uncertainty ranges can 
be accessed and downloaded for our 13 military installations from the project website: 
https://bogi.evs.anl.gov/dodewa/tool/index.html.  
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