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Abstract

Objectives - Exposure to biting ticks and insects on DoD lands puts military personnel at risk
of contracting arthropod-borne diseases, many of which can have debilitating complications.
However, because most North American vector-borne diseases are maintained in wildlife
reservoirs, disease transmission is often sensitive to environmental conditions, including
seasonality and global change. In addition, there is a lack of models that account for the
detailed mechanisms and differences among potential control methods. This makes it difficult
to predict when and where human disease will appear, and how it should be managed when it
does. Climate warming, in particular, can complicate predictive efforts, because it
compromises our ability to extrapolate from current conditions or ‘rules-of-thumb’ that have
been acquired over years of experience. One of the most important aspects in this regard is
phenology change — i.e., the change in the timing of plant and animal lifecycles. Shifting
phenologies are not only one of the earliest indicators of climate change. This can then affect
disease transmission, fundamentally altering disease dynamics, and impacting everything from
disease risk to management options.

Technical Approach - To aid in prediction of human disease risk, and to develop on-the-
ground management strategies for reducing disease spread, we developed modeling
frameworks that incorporate phenology and global change impacts on phenology as well as
novel model formulations that account for the specifics of different insecticide management
strategies. Our frameworks are broad enough to accommodate a range of different vectors
(mosquitos, ticks) and pathogens (virus, bacteria) and are general enough to apply to both well
studied diseases, and diseases that have not been as well characterized. For this reason, we
focused heavily on the mosquito side of control, where a handful of mosquitoes are responsible
for the majority of disease spread, including both common and rare diseases. Using our novel
models, we additionally developed a GUI that allows practitioners to input timeseries data on
mosquito abundances (e.g. from CDC light traps) and then outputs optimal timing of
management strategies. The underlying optimization scheme that we developed for this GUI is
broad and flexible, thus management decisions can be made based on the combination of
historically observed phenology, cost constraints, and efficacy of the chosen management
strategy. In addition, the GUI can be re-run at any point in the season, allowing land managers
to update their predictions partway through the year, allowing for incorporation of current year
conditions.

Results - Using a range of different modeling approaches, we developed a number of improved
models of vector-borne disease management. These models include pertinent mechanisms that
differentiate the mode of action of different management strategies, thereby improving all models of
vector-borne diseases. We also clearly delineated the difference between approximate, implicit
modeling of control, and accurate, mechanistically corrected explicit modeling of control,
highlighting when and where the former can be used in place of the latter. Next, we developed
models for two diseases — La Crosse Encephalitis and Zika — that have been detected in North
America. For the La Crosse Encephalitis model, we began extending results to include phenology,
which suggests that some of the observed increase in LAC may be a result of warming conditions. In
addition, these results provide a stark warning for the future. Finally, we examined some general
models of vector-borne disease systems, including vector and host populations, in the context of



changing phenology due to global change. These models suggest that Ry will depend on the various
perturbations to different vector and host populations, and that effects on dynamics may be complex
and non-intuitive, including the appearance of year-to-year cycles and chaos in vector-borne disease
outbreaks. Finally, we extended our phenologically explicit modeling to consider specific vectors
involved in the most notorious North American vector-borne diseases, including La Crosse, West
Nile Virus, and Eastern Equine Encephalitis. We are currently using these models, interfaced to a
genetic algorithm, to best predict the timing of management strategies, both under current conditions
and in the future. Finally, we capped our work off by developing a GUI that puts our complex
mathematical formulations under the cap, allowing management practitioners to input their data on
mosquito abundances, as well as their economic and social constrains in order to identify optimal
timing of larvicide and adulticide treatments based on their requirements and desires.

Benefits - Predictions from our modeling efforts identify some of the key management
mechanisms influencing disease transmission, as well as the relevant ecological processes
associated with disease spread. This information allows us to identify the system properties
that should be monitored to best predict disease, both now and in the future. Another key
contribution from our research is the first ODE epidemiology model for La Crosse Virus.
This is an emerging disease that is now one of the most commonly reported arbovirus
infections. Finally, application of optimal control to our phenologically explicit models and,
in particular, our highly parameterize vector models for Aedes, Culex and Culiseta enables
us to predict management strategies that successfully balance the competing needs of vector-
borne disease management on military installations. Ultimately we have transitioned our
modeling approaches to a GUI interface that can be used by practitioners based on their own
data and systems.



Objectives

Although we began this research with the single objective of developing a series of
models exploring the role of phenology on vector-borne diseases, in the course of studying these
models, we realized that the manner in which control strategies were incorporated had a
significant impact on model predictions. For this reason, we arrived at a second objective, which
was to better define the modeling of management schemes. This became a pre-goal to our
phenology work. Thus, our first objective was to improve model formulation of a variety of
different control options available to practitioners. This included models:

1. studying the role of personal protection and wavering accessibility;

2. contrasting area-wide ultra low volume (ULV) adulticide sprays, residual
adulticide barrier sprays, larval source reduction, and area-wide low volume (LV)
larvicide spray

3. selecting optimal combinations of barrier-spraying/larval source reduction and

aerial spraying when habitat includes hard to access regions.

For our second objective, specifically focused on disease spread, we had initially planned
to target a series of native North American diseases. However, after receiving funding, Zika was
introduced into the US. Thus, we spent some time exploring this new disease and it’s
implications for disease transmission in the US. For this reason, we ended up spending less time
on some of the anticipated specific native diseases. To counter this we covered a range of
broader models that can be applied to specific diseases within the context of phenology and
global change, leaving some detailed applications for a future date. In summary, then, our
objectives were as follows:

1. understand the spread and dynamics of Zika;

2. explore the role of phenology and phenology change on disease dynamics and the
ability of disease to spread (Ry) ;

3. develop specific predictions for the potential of future disease spread based on
detailed physiological or population level data of individual mosquito and host
species

4. create a GUI that enables improved practitioner decisions regarding the timing of
management actions, including under both current and future conditions.



BACKGROUND

Military personnel, who spend large amounts of time working and training outdoors,
routinely risk exposure to biting ticks and insects. Such species are host to a great diversity of
arthropod-borne diseases, many of which can have debilitating, long-term, and even life
threatening impacts on infected personnel. Consequently, the presence of such diseases, and the
interactions of their host arthropods with personnel in training areas, is a significant health
concern. For example, infections with tick-borne diseases, have occurred during military
training operations in New Jersey and Arkansas. Likewise, Lyme Disease (LD), a particularly
widespread tick-borne spirochete, has been increasing among both active and reserve service
members. Indeed, LD accounted for 70% of all zoonotic and vector-borne diseases reported by
the U.S. Air Force between 2000 and 2011.

Most vector-borne diseases that occur in North America are maintained in wildlife
reservoirs with humans as incidental or dead-end hosts. As a consequence, disease transmission
pathways are often complex and incompletely characterized. They can involve multiple chains
of infection through different host populations, different vector populations and different life-
stages, and can vary significantly in space and time as a result of environmental effects on host,
vector and disease biology. Even under stationary conditions, this can make it challenging to
predict where and when disease will appear in human populations. Under non-stationary
conditions, such as those associated with global change, prediction becomes even more difficult.
In particular, because different species and different life-stages can respond differently to altered
temperature and precipitation patterns, climate change can uncouple certain species or stage
interactions while reinforcing others. This is particularly true of phenology change, which is
both one of the earliest indicators of climate change, and also a key factor in governing temporal
overlap between populations.

Even when it is possible to predict when and where human disease will occur,
management of vector-borne diseases can still be difficult. In particular, the timing of
intervention strategies should not necessarily occur at the peak of disease risk. Rather,
intervention should occur prior to peak disease, at times corresponding to the presence of
sensitive targets or opportunities for transmission between key populations (e.g. nymphs and
larvae, vectors and hosts). It is often challenging to identify this optimal time for intervention,
which can depend strongly on the details of the system, as well as the mechanistic details of the
management approaches themselves. For this reason, optimal timing of intervention strategies
such that neither diseases nor their management interferes with land-use requirements is a
complex task that depends on the interplay between system characteristics and land-use
constraints.



PART 1: UNDERSTANDING PERSONAL PROTECTION

This work has been published and can be found at:

Demers, Jeffery, et al. "Dynamic modelling of personal protection control strategies for vector-
borne disease limits the role of diversity amplification." Journal of The Royal Society Interface
15.145 (2018): 20180166.

Background

The use of epidemiological modelling to study vector-borne diseases has a long history,
dating back over 50 years to the classic Ross—MacDonald model [1-3].Since then, there have
been numerous extensions and adaptations [4,5], including spatial dynamics [6], host
heterogeneity [7,8], seasonality [9], stochasticity[10] and control [11,12]. There has also been
some degree of debate regarding model formulation [13], such as the form of the biting rate and,
by extension, disease transmission [14,15]. Unfortunately, different assumptions regarding biting
rates can influence predictions for when and where a disease is capable of spreading, as well as
estimates of disease controllability.

Model assumptions regarding disease management can also strongly impact estimates of
disease controllability. This is particularly true of personal protection. Recently, Milleret al.[16]
used a model with two classes of hosts—a protected class and an unprotected class—to show
that, in contrast to predictions from simpler models [11,17-21], personal protection use by only
sub-portions of the host population can actually worsen an outbreak of a vector-borne disease.
This is a result of diversity amplification—an effect in vector-borne disease epidemiology which
relates increases in overall disease prevalence to increases in host diversity [22-26].
Amplification is a potential risk whenever vectors preferentially concentrate attacks on sub-
populations with high infection susceptibilities [26]. This occurs, for example, when partial
personal protection coverage causes mosquitoes to divert from protected individuals and focus
bites on unprotected individuals [16,27,28]. Diversion can lead to rapid disease spread within the
unprotected sub-population and, consequently, personal protection models which incorporate
vector diversion have the potential to display counterintuitive increases in disease severity
[16,26,28,29].

Many vector-borne disease models which use multiple host classes and, by extension,
potentially exhibit protection-induced diversity amplification (e.g. [16,26,28,29]) suffer from a
common shortcoming—assignment of individuals to protected and unprotected classes is
assumed static. Some models do allow for hosts who only intermittently apply personal
protection (such as hosts who sleep under bed nets only at night), but even in these cases,
assignments to sporadically protected and completely unprotected classes typically remain fixed
[28,29]. In reality, protection status is dynamic: people forget to apply repellent, run out of
repellent, wear down their bed nets, or grow weary of protection efforts and thus falter in
accessibility [30,31], and non-accessible individuals can potentially re-acquire protection or re-
adopt its use. This is particularly true if rigorous campaign initiatives are mounted in support of
personal protection use. Consequently, there exists a flux of hosts into and out of the protected
class, and this implies that mosquito focusing on unprotected individuals is actually more diffuse
than indicated by static protection class models. Furthermore, static protection classes necessitate
that control strategies, for example, the supplying protection or partaking in public service
announcements by a health agency, be incorporated into models as direct influences over the



proportions of the two host populations. More realistically, however, distribution constraints and
socio-economic factors which deter accessibility [30,31] severely limit controllability over the
actual number of protected individuals, and control efforts will instead have a direct influence
over the flux between the protected and unprotected classes. That is, the more health agencies do
to make available and encourage the use of personal protection, the more likely people are to
adopt and re-adopt personal protection.

We developed a methodology for modeling personal protection which accounts for flow
between protected and unprotected classes. Specifically, we build a model similar to that in
Milleret al.[16], but include movement between classes that we assume to be proportional to
control effort. We then studied the impact of movement between the protected and unprotected
classes assuming frequency-dependent (gonotrophic-limited) transmission, density-dependent
(search-limited) transmission and an intermediate scenario that necessitates a functional response
approach. We found that movement between classes and indeed, classes in general, do not matter
strongly in the density-dependent limit. However, for the other two scenarios, there is strong
divergence between our model, an analogous model with static protected and unprotected
classes, and a simpler personal protection model with a homogeneous host population. Whereas
our model predicts increased disease spread relative to the model with only a single class of
hosts, it predicts decreased disease spread relative to the model with fixed protected and
unprotected classes. From this model behaviour, we conclude that hosts’ propensity to move
between protected and unprotected classes can severely hamper a mosquito’s ability to focus
bites on anyone group of individuals, thus mitigating the potential for diversity amplification
effects. Consequently, our results indicate that, relative to our model, models with static
protection classes generally overestimate parameter ranges over which protection-induced
disease amplification will be a practical concern. This provides not only a strong theoretical
foundation for modelling methodology, but also a partial explanation for the disparity between
theoretical prediction of protection-induced diversity amplification and, to the best of our
knowledge, its apparent lack of observation in the field

Model Development

We began by carefully examining standard biting rate models. For a population of
humans of density N, homogeneously distributed throughout a unit area,V, we denote by fthe
average rate at which the human population is bitten by a single mosquito, also located within V.
Following Milleret al.[16], Yakob [41]and Antonovicset al.[42], we assume a Holling type-II
functional response [43—45] for f:

_ BpANy
f N 1+ THANh
(1.1)
where
™H =T+ BT
(1.2)



where 1/4 is defined as the average time taken per unit area by an actively searching mosquito to
locate a single human, and f3;, denotes the probability that a mosquito will deliver a successful
bite to a host once the target has been located and identified. The quantity 7, denotes the
handling time and is defined as the average time taken by a mosquito to identify, engage and
process the blood meal from a single human after the human has been located. The handling time
is written in terms of a pre- and post-bite handling time, denoted by 7, and 7, respectively.
Therandom search rate, 4, is associated with the long-range first phase of host location, and
depends on the size of the unit area V, the details of the carbon dioxide landscape as determined
by both human and non-human sources, and a range of species-specific and environmental
factors. The pre-bite handling time, 7, is the average time required to complete the short-ranged
second phase of the host seeking process, and should be on the order of minutes or, at most,
hours. The post-bite handling time, 7, is the gonotrophic cycle time, and is thus of the order of
days [35]. The type-II functional response’s capacity to account for gonotrophic, density and
behavioural limitations on biting rates allows a spectrum of disease transmission assumptions to
be modelled [16,41,42]. We were especially interested in the limits ANty > 1, and ANty < 1
corresponding to the so-called frequency-dependent and density-dependent limits, respectively
[14,15,42]:

By
frQ m
BrANy, ANpmTg < 1.

ANpmy > 1

(1.3)

In the frequency-dependent limit, host density is so large that the time spent by mosquitoes in the
long-range search phase is negligible compared to the handling time. Mosquitoes bite at a
constant rate determined primarily by the gonotrophic cycle time, ultimately resulting in disease
transmission assumptions equivalent to those of the Ross—MacDonald model [1-3],which was
the first and is arguably the most common framework for modelling vector-borne diseases. In the
density-dependent limit, host density is so low that mosquitoes spend the majority of their time
in the long-range search phase, and the gonotrophic cycle time is negligible by comparison.
Density dependence ultimately leads to mass-action disease transmission, which is another
common framework for vector-borne disease modelling [13,14].

Next, we turned our attention to modeling personal protection’s influence on biting rates through
modified values of the parameters appearing in equations (1.1) and (1.2). Bed nets and DEET
primarily influence the short-range, second host-seeking phase and, in particular, the pre-bite
handling time, 7, and the bite probability f3;,. However, regardless of the protective measure in
use, we expect the pre-bite handling time to remain of the order of minutes to hours, thus we
expect little change to 74,. Rather, the primary effect of personal protection is to alter f3;,
reducing this parameter to very small or nearly zero values. In most real disease control
scenarios, even when personal protection is made readily available, complete coverage over an
entire population is difficult to achieve. Consequently, blood-seeking mosquitoes will likely
encounter and attempt to acquire blood from both protected and unprotected humans. Following
Milleret al.[16], we define N, and N,, as distinct unprotected and protected host population
densities with associated functional responses:
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where the subscripts ‘u’ and ‘p’ denote quantities associated with the unprotected and protected
groups, respectively.

With a fully explicit model for personal protection, our next step was to identify the role of
control. In general, control makes protection more available or encourages its continued use.
Ulitmately, however, personal protection use is a dynamical phenomenon; DEET bottles run dry,
bed nets wear down, and accessibility waivers. Thus, individuals continually lose protection. The
more DEET and bed nets are made available and the more their use is encouraged, the more
people re-acquire access to personal protection and interest in its use. We thus chose to model
control as an effect on flow between protected and unprotected classes. Thus, from a control
perspective, personal protection acts similar to control schemes used for vaccination [47], albeit
with a much faster timescale for return to the unprotected class. We therefore chose to employ
the following minimal ODE system as a personal protection control model:

N u = YNp — kNy
Np = kNy — yNp.

(1.6)
where 1/k is the average time an unprotected individual remains unprotected before acquiring
personal protection, and 1/y is the average time a protected individual remains protected before
running out of DEET, having their bed-net fail, or wavering in accessibility. Increased control
effort may increase x by making additional resources available to unprotected individuals, or
may decrease y by encouraging continued accessibility among protected individuals. For time-
independent x and y, we found the following equilibrium unprotected and protected population
density levels:

e _ 7V
Ng = 2N }
e _ _K
Np—mNh,

(1.7)

where N, is the total density of both protected and unprotected humans. We refer to the model in
equation (1.6) as the ‘dynamic two-class model’.

To explore the effects of assuming dynamic personal protection, we next compared three
separate models. A ‘one-class model’, a ‘static two-class model’ and our ‘dynamic two-class



model’. Parameters were selected to make all three models as comparable as possible. For the
one-class model, we considered the following SIR system:

0 = —(L— S 1 L

. S
Ih = 1l + (1 - s)Bhfﬁ*;Iv,

Rh = Tlh, >

I
So=A—puSy — (1 — s)viﬁf;sv

. i
Iy = —pl, +(1— e)BVfN—hh S,

(1.8)

where Sy, I and R;, denote the susceptible, infectious and recovered host densities, respectively,
while S, and 7, denote the susceptible and infectious vector densities, respectively. A is the
mosquito recruitment rate, 1/u is the average mosquito life-span, r is the rate of host recovery, £,
is the vector to human transmission probability, f3,, is the human to vector transmission
probability, and ¢ is the control efficacy, which can vary between zero and one. Following [17—
19], we interpreted ¢ in terms of protection efficacy and the fraction of the population with

access to personal protection:
e = (1 — —Bbp> N—p
- 7
Bou/ Nh

where S, and B, are taken from the biting rate formulae equations (1.4) and (1.5) and are
defined as the probability for a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human population level, N,, is a
parameter, so for the sake of model comparison, we assumed that N, = N7, and thus can be
written in terms of x and y as in equation (1.7). Our model assumptions yielded the following
basic reproduction number:

BnBy Ny Bbp) K 12)(2
Roi \/ wNy \/l < B K+ v T

For the static two-class model, we divided the total host population into protected and
unprotected classes. The fraction in each class enters as a fixed parameter, with the two classes

(1.9)

(1.10)



summing to ;. The classes appear both directly in the model and also implicitly through f, and
/.- The static two-class equivalent to equation (1.8) is as follows:

. Su

Su - _BhfuN IV/
oo P
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Iy = —r1, + Byf il
u — u uN \2

Ip = —T’I + Bhfp p IV/
Ru =rly,
Rp =,

Sy = A—pS, Bv<fu pr)

Vs
(1.11)
where S, I, and R, denote densities of protected susceptible, infected and recovered humans,
while S,, 1, and R, are the equivalent densities of unprotected humans. Again, for the sake of
model comparison, we assumed that N, =Ny and N, = N7 so that the protected and
unprotected host densities could be written in terms of the parameters x and y. The resultant
basic reproduction number for the static two-class model is:

BhBVNV K+ Y
/~LNh r

Ry, =

S

fp+f]

K Y
(1.12)

For the dynamic tow-class model, we used the following SIR system:
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The resultant basic reproduction number for the dynamic two-class model is:
2 2
_ BBNy | k+y |5 2 (fptfu)
Ry = —t
uNL r+k+vy|k vy r
(1.14)

where f, and f, are evaluated at the equilibrium protected and unprotected population values. For
the sake of comparison, we also considered the limit of no protection, which yields the following

basic reproduction number:
Ny [ f?
Ry . [BBN [P
/.LNh r

Equations (1.10), (1.12) and (1.14) constituted our primary results, which we then interpreted in
order to develop an understanding of how dynamism in personal protection might impact
predictions of disease spread.

(1.15)

11



Model Comparisons

Figures 1.1-1.3 show predicted values of R for three different rates of return to the unprotected
class (1/y= 15 days, 9 months, and 5 years), representing timescales for using up a bottle of
DEET (15 days) through to loss/degradation of a bed net (5 years). All three figures show that,
relative to both two-class models, the one-class model overestimates disease controllability.
One-class models do best and, indeed, are most similar to other curves, in the density-dependent
limit (figures 1,1a, 1.2a and 1.3a). Outside of the density-dependent limit, however, the one-
class model tends to severely overestimate controllability relative to either two-class model.
Specifically, the one-class model always predicts a monotonic decrease in the scaled R as a
function of k, whereas both two-class models become non-monotonic outside of the density-
dependent limit. The difference in model behaviour is due to the homogeneous population
assumption implicit in the one-class model’s formulation—this simplifying assumption prohibits
the one-class model from accounting for increases in disease transmission which stem from
focused mosquito attacks on unprotected sub-populations [16].
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Figure 1.1  Dependencies of Ry on DEET (1/y= 15 days) control strength for the dynamic
two-class model (blue), static two-class model (red) and one-class model(green). Corresponding
equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models
display diversity amplification at control strengths where respective scaled R, curves rise above
the grey Ro=1 line. Large suppressions in amplification severity and occurrence range are
indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent
infection AN,=0.1 d”',(b) moderate infection AN,=1.0 d”',(c) frequency-dependent infection
AN,;=10.0 d'and (d) frequency-dependent infection (wide view).
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Figures 1.1-1.3 also indicate that, relative to our dynamic two-class model, the static two-class
model generally underestimates disease controllability and overestimates diversity amplification.
More specifically, diversity amplification is indicated whenever scaled Ry curves exceed unity.
Whereas strong amplification is apparent in the static two-class model, particularly under the
frequency-dependent limit in figures 1.1d, 1.2d and 1.3d, it is much less severe in the dynamic
two-class model, and indeed, even disappears in figure 1.1b. In addition to reduced amplification
strength, the dynamic two-class model also predicts large reductions in the parameter ranges over

which amplification can occur, particularly under the frequency-dependent limit in figures 1.1d,
and 1.2d.
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Figure 1.2 Dependencies of Ry on intermediate protection (1/y =9 months) control strength for
the dynamic two-class model (blue), static two-class model (red)and one-class model (green).
Corresponding equilibrium proportions of protected hosts are given by the dashed black curve.
Large suppressions in amplification severity and occurrence range are indicated by vertical and
horizontal purple arrows, respectively, in (d). (a) Density-dependent infection AN;=0.1 d',(b)
moderate infection AN;=1.0 d”',(c) frequency-dependent infection AN,=10.0 d'and (d)
frequency-dependent infection (wide view).
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Figure 1.3 Dependencies of Ry on bed net (1/y =5 years) control strength for the dynamic two-
class model (blue), static two-class model (red)and one-class model (green). Corresponding
equilibrium proportions of protected hosts are given by the dashed black curve. Large
suppressions in amplification severity and occurrence range are indicated by vertical and
horizontal purple arrows, respectively, in (d). (a) Density-dependent infection AN;=0.1 d',(b)
moderate infection AN;=1.0 d”',(c) frequency-dependent infection AN,=10.0 d'and (d)
frequency-dependent infection (wide view).

Figure 4 illustrates the reductions in amplification severity and parameter range as explicit
functions of AN). The decrease in minimum control strength required for amplification
suppression in the dynamic two-class model relative to the static two-class model indicates
reduction in amplification range, and the decrease in maximum scaled R, in the dynamic two-
class model relative to the static two-class model indicates reduction in amplification severity.
Diversity amplification ultimately results from mosquitoes’ propensity to focus bites on
preferred hosts [16,26], and so our results in figures 1.1-1.4 indicate that the movement of
people between protected and unprotected classes can severely hinder mosquitoes’ tendencies to
focus attacks on unprotected human sub-populations, even when host population levels are in
equilibrium and the flux between classes is rather small. This observation, together with the one-
class model’s inability to account for diversity amplification, indicates that dynamic protection
status will generally result in outbreak characteristics lying somewhere between the one-class
and static two-class model behaviour.
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Figure 1.4 Illustrations of amplification range and strength reduction as functions of AN, using
the dynamic two-class model (blue), static two-class model (red) and one-class model (green).
The minimum control strength for amplification suppression is the value of control strength x*
such that scaled Ry exceeds unity for all control strengths k € [0, k*]. The maximum scaled R is
the value of scaled Ry at the peak of amodel’s R, versus k curve for a given value of AN;,. (a)
Amplifaction range reduction 1/y=15 days, (b) amplifaction severity reduction 1/y=15 days, (c)
amplifaction range reduction 1/y=9months, (d) amplifaction severityreduction 1/y=9 months, (e)
amplifaction range reduction 1/y=5 years and (f) amplifaction severity reduction 1/y=5 years.
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Figures 1.1-1.3 differ in their values of 1/y—that is, the average amount of time that an
individual who transitions into the protected class will remain in the protected class. Whenl/y is
small (figure 1.1), our dynamic two-class model is more similar to the one-class model and less
similar to the static two-class model. By contrast, when 1/y is large (figure 1.3), our dynamic
two-class model is more similar to the static two-class model and less similar to the one-class
model. The explanation is relatively straightforward. In the limit of rapid transitions between
classes, the distinction between protected and unprotected classes disappears, as people
‘instantaneously’ transition from one class to the other, with no dwell time in either class. In this
case, our model behaves very much like the one-class model, where mosquitoes see an average
level of protection for any given person, rather than two separate classes of people. At the
opposite extreme, in the limit of slow class transitions, the flux between classes becomes
insignificant. In this case, an average person remains protected or unprotected for such a long
time that, at least on the timescale of disease dynamics, there are, in essence, two distinct host
sub-populations, which is the assumption of the static two-class model. To the extent that x and y
are finite and non-zero, our model is important in providing estimates for disease spread and
controllability at intermediate scenarios between the one-and static two-class models.

Summary and Conclusions

We introduced a dynamic two-class model to describe vector-borne disease systems
incorporating hosts who use personal protection measures. The effects of personal protection
usage at the level of individual hosts are captured by functional response biting rates, and the
effects of large-scale personal protection campaigns at the community level are captured through
flows between protected and unprotected classes. Class flow can severely reduce amplification in
both severity and range of occurrence, relative to predictions from existing static two-class
models. This, along with the natural propensity of humans to discontinue and re-adopt protection
use, offers potential explanation for the lack of observed protection-induced amplification in the
field, despite predictions implied by existing models. Static two-class models can fail because
they do not acknowledge the fundamental difference between genuinely distinct host species and
protected versus unprotected individuals: species type is fixed, while protection status is not. Our
dynamic two-class model combines the desirable features of one-class models (dynamic control)
and static two-class models(host variability) to provide an ecologically sound methodology for
modelling personal protection distribution as a community-wide dynamic control strategy in
vector-borne disease systems.
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PART 2: UNDERSTANDING DIFFERENT MANAGEMENT STRATEGIES

This work has been submitted, and can be found at: Demers, Jeffery, et al. "Implicit versus
explicit control strategies in models for vector-borne disease epidemiology." bioRxiv (2019):
753475.

Background

Health and government agencies throughout the world regularly implement large-scale
mosquito management strategies, such as area-wide adulticide and larvicide spray programs.
These programs form an important line of defense against the proliferation of vector-borne
diseases like malaria, dengue, and ZIKA [1]. Unfortunately, they also come with monetary costs,
potential environmental impacts, and societal concerns. Given these constraints, mathematical
models can serve as important tools for predicting the effects of control efforts and optimizing
control efficacies and costs. Indeed, the efficacies of adult and larval control measures have been
assessed and optimized using both simple, deterministic epidemic models[2, 3, 4, 5] and
complex disease models with features such as stochasticity [6,7], seasonality[8,9,10,11], host
heterogeneity [11,12,13,14], and spatial structure [6,7,13].

To assess the effects and efficacy of real-world vector management strategies using a
mathematical model, a modeler must first select a scheme by which the control’s influence will
be incorporated into the model’s structure or behavior. One common choice is to simply infer the
effects of control by analyzing changes in model behavior under variations in model parameters
relative to their natural values [2,4,5,6,9,12,13,14,15,16,17,18,19]. For example, in many vector-
borne disease models, the effects of adulticide on outbreak severity are inferred through the
responses of important threshold quantities like the basic reproduction number [20, 21] to
increases in vector death rates, while the effects of larvicides are inferred through the analogous
responses to increases in larval death rates or decreases in vector emergence rates [14, 15,17,18].
Models of this class incorporate control only implicitly through it’s overall gross effects on
model parameters. A second, more complicated method for incorporating control into vector-
borne disease models is to directly model the effects of control on vector populations or
environmental parameters [3,7,8,9,10,11,22]. For example, an area-wide adulticide spray could
be modeled as a sudden, direct decrease in the adult vector population at the time of application.
Likewise, larval habitat reduction could be modeled as a sudden, direct decrease and subsequent
recovery in larval carrying capacity. Models of this class incorporate control explicitly through
it’s specific and direct effects on the vector population.

Explicit and implicit control models complement one another in their strengths and
weaknesses. Explicit controls translate directly into real-world actions, thus can better capture
the specifics of different management schemes on mechanisms of vector control. This approach,
however, requires knowledge of the biological interactions between disease vectors and control
measures, and often introduces non-autonomous dynamics as a result of a real-world control’s
time-dependent efficacy and discontinuous actuation. Consequently, explicit controls increase
model complexity. The inherent time-dependence of explicit control is particularly problematic
for model analysis, as non-autonomous dynamics severely obfuscate definition and calculation of
the basic reproduction number [22, 23, 24]. Implicit controls, on the other hand, introduce no
additional complexity into underlying disease models. The greater analytical tractability of
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implicit control facilitates model analysis, including the use of optimal control theory to predict
potentially time-dependent variations in model parameters which optimally balance disease
severity with control costs [2,4,5,12,14,25]. However, these models cannot incorporate the
details of different management strategies. This makes them less relevant to on-the-ground
management decision-making. These deficits obstruct researchers’ ability to systematically and
reliably apply modeling results as guides for designing real-world disease management
strategies, thus defeating one of the motivating purposes for incorporating control into disease
models.

To overcome issues with standard implicit control models, we formally defined the
notion of implicit control as an approximation for the average effects of explicit control.
Working within the framework of a simple ordinary differential equation (ODE) population
model, we proposed mathematical formulations for the implicit control approximations of
common adult and larval population control techniques in terms of their measurable, real-world
explicit control properties. Specifically, we focused on mosquitoes as disease vectors and
considered control strategies for area-wide ultra low volume(ULV) adulticide sprays, residual
adulticide barrier sprays, larval source reduction, and area-wide low volume (LV) larvicide
spray. Although our proposed framework is intuitive and straightforward, our work highlights
the subtle biological and mathematical consequences which can emerge when implicit control is
formally defined as an approximation of more realistic, explicit controls. In particular, our work
clarifies, biologically and mathematically, the conditions under which implicit control can
accurately capture the average effects of explicit control. Our work represents a step towards
making epidemiological modeling a more readily applicable tool for guiding real-world disease
management decisions.

Model Development
We began with the following, basic ODE model for a well-mixed adult vector population

evolving under natural, uncontrolled conditions within some spatially and temporally
homogeneous area:

X0(t) = —uPXO(t) + A,

(2.1)
where Xj(¢) denotes the size of the vector population under natural conditions at time ¢, A
denotes the natural vector emergence rate, and x denotes the natural per capita vector death rate.
Given an initial population Xo(#') at time ¢/, Eq. (1) implies the following population at a later
time #:

(2.2)
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where the second line indicates relaxation to the natural equilibrium value 4¢/i in the longtime
limit.

Implicit control is typically incorporated into disease models through variations in model
parameters, specifically the vector emergence and death rates in the case of Eq. (2.1). In most
implicit control modeling studies which use Eq. (2.1), adulticide control measures are
incorporated as an increase in vector death rate, and various larval control measures like
larvicide sprays and larval source reduction are incorporated as a decrease in vector emergence
rate [2,5, 12,15]. We chose to follow this standard and seemingly reasonable convention, with a
key goal being to clarify its conditions of validity and its degree of accuracy. Letting 4'(f) denote
the modified death rate under the action of implicitly modeled adulticide:

pl(t) = u(1++'(1)
o
1= pl(t)’
(2.3)
where y'(f) € [0,00) is the possibly time-dependent fractional increase in vector death rate, and

p'(f) € [0,1) is defined by

pI (t) — 71 (t)
L+1(t)
(2.4)
The modified emergence rate under the action of larval control is then 4'(¢), where
Al(t) = A(1-d'(1)),
(2.5)

where ¢'(¢) €[0,1] is the possibly time-dependent fractional decrease in vector emergence rate
due to the action larval control measures. Letting X'(¢) denote the vector population modeled at
the implicit level, adulticide and larval control modify Eq. (2.1) as follows:

XIt) = —p'@OX'(t)+ A ).

(2.6)
Importantly, the time-dependencies in y'(£),0'(7), and ¢'(¢) are solely reflections of time-dependent
variations in implementation strategies. For our analysis, we focused on the simplest case -
constant control strengths which correspond to fixed implementation strategies. By fixed
implementation strategy, we mean real-world control protocols whose defining properties, such
as application schedule and volume of pesticide released per application, do not vary over time.
At constant control strengths j', p', and ¢', the vector population under adulticide control relaxes
to the following equilibrium:
AO
X't = ——— (1=
0= u%1+vﬂ( )
A 1 I
= G(=r)(-d).

s 2.7)
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To model explicit control strategies, we focused on four different control methods: area-wide
ultra low volume (ULV) adulticide sprays, residual adulticide barrier sprays, larval source
reduction, and area-wide low volume (LV) larvicide spray. For ULV, spray remains in the air
and actively kills over a negligible timeperiod in comparison to natural mosquito average life-
times (which are typically on the order of weeks [1]). Since the natural mosquito life-time is the
characteristic time-scale over which the ODE population model in Eq. (2.1) responds to changes,
we therefore chose to model ULV adulticide spray as an instantaneous impulsive fractional
decrease in mosquito population at the time of application. For an impulse applied at time ¢, we
let X*(+—) be the population level just before the impulse, X"(¢+) be the population level just after
the impulse, and p* € [0,1] be the percent population knockdown per application, such that

XP(h) = XP)(1 - ).

(2.8)
After the impulse, the vector population recovers according to Eq. (2.2)
0

A
E _ Eii— B\, —uls _—uYs
XP(t+s) = XE@#)(1—pPe +u°<1 e )

(2.9)
where s>0.

By contrast to ULV adulticide, residual barrier sprays have a long-lasting killing effect. To
model this within the context of the dynamics of Eq. (2.1), we assumed that residual barrier

sprays instantaneously increase the death rate by a fraction y* € [0,00) above the natural mosquito
death rate, which then decays exponentially at rate 5" € (0,00). For an impulse applied at time ¢,
we thus have
pEE) = (1+95),
(2.10)
pPt+s) = pf (1 + vEe‘”E5> :

(2.11)
where, again, s>0. The term x"y" is the average rate at which a mosquito will contact and die
from a pesticide treated surface just after application, and the exponential decay exp[—#"1]
models the natural evaporation, breakdown and, consequently, decreasing concentration of
poison on the landing surfaces. Assuming a single impulse applied at time #, an initial population
X(f), evolves according to the following population dynamics

d
d—XE(t +5) = —pP(t + ) XE(t 4 5) + A°,
S

(2.12)

with corresponding solution

E _ yE _ 0. ER (4 B
X%(t+s) = X (t)expl s — 7y > (1 e >]
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,uo E y ,LLO E g
+ exp {—uos — 7= <1 — e 3)} AO/ ds’ exp {uos’ +nP = (1 —e )]
Ui 0 n
E A
= X7(t)g(s) + EQ(S)I(S%

(2.13)
where
10 E
g(s) = exp l—ﬂos -y (1 —e" )} ,
n
(2.14)
s /io E o
I(s) = / ds’u® exp {uos' +7E—E <1 —e )}
0 Ui
) (2.15)
0 0 0\ 12 0 0 0
H EH BH " B BH  _pEs EH
= zexp |7V |V F F{——,v—e”w—],
U { nE] ( nE) n” P n?
(2.16)
where s >0 and /" denotes the doubly incomplete gamma function
[[a, z0,21] = / dtt* et
20
(2.17)

Larval source reduction causes a decrease in the larval carrying capacity. In our simple
population model in Eq. (2.1), the mosquito emergence rate is interpreted as proportional to the
larval carrying capacity, so we chose to model the effects of larval source reduction by assuming
an impulsive reduction in the mosquito emergence rate, which we denote by 4%(¢). Specifically,
we assumed that larval source reduction occurs instantaneously and decreases the emergence rate

by a fraction ¢ € [0,1]. We then assumed that this effect decays exponentially at a rate
VvF € (0,00). For an impulse applied at time ¢, we have

AE(t+) = AO(1—oP),
(2.18)
AE<t + S) — AO (1 _ O'E€7VE5> ,

(2.19)
where s >0. The term ¢” represents the fraction of larval carrying capacity eliminated, and the
exponential decay factor models a spontaneous reappearance of available receptacles (due to
residents’ non-accessibility, rainfall into containers like bromeliads that are non-removable, etc.).
The numerical values of ¢ and v" can vary widely depending on the specifics of the area being
modeled and are be difficult to determine via field studies [30]. However, we generally expect
1/V" to be on the order of days to weeks in residential areas with sufficient levels or rainfall and
varying levels of accessibility. Applying Egs. (2.18) and (2.19) to a population of mosquitoes
X5(f), we have
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CXE( ) = —pOXE( 4 )+ AR+ s),

(2.20)
with solution
E E 0 AO 0 AO 0 E
XE(ts) = XP@e™s 4 g (L= ) = o (e - ).

(2.21)
For LV larvicide control, we proposed a simple step function model. Though admittedly more of
an approximation than our other models, this was the best approach within the context of the
study, and it facilitated analytical calculations, which were critical for model interpretation.
Specifically, we set o~ € [0,1] to be the fraction of larval habitat containers able to be reached by
LV larvicide spray during an area-wide application, and we approximated the larvicide’s effect
by assuming that the treated containers become uninhabitable and support no larvae for the
efficacy time 1/v" € (0,00), effectively reducing the larval carrying capacity by a factor 1-¢".
Experimental data suggest 1/v" to be on the order of several weeks, while 6" will vary based on
the specific environmental features of the area being modeled [30,34]. After the efficacy time
1", the larval carrying capacity is assumed to return to its natural value. For a single impulse of
control applied at time #, our LV larvicide model gives the following functional form for A"

AN(1—0oF) s<%

AF(t+5) =
A° ,,LE < s.
(2.22)
The resulting population dynamics are given by the following solution:
e XP(t)e ™ + 21 — o") (1 - 6_”08> s< L
+s) = .

XP(t)e s 4 2—2 (1 el ] (e 1)) L <s.

(2.23)

To relate implicit control strategies to explicit control strategies that capture more mechanistic
detail, we specifically focused on periodic control schemes. Within this type of system, we
defined ‘overall average’ reduction to mean the reduction in vector population size averaged
over time, and we demanded that an explicit protocols’ application schedule yield constant time-
averaged populations when the averaging sample time approaches infinity. Formally, this
allowed us to define the time-independent implicit adulticide control strength as

11/t
I JE  E _ : 5
p(v,m aTy) = 1—711_{20W?/to ds X (s),

(2.24)
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where X*(f) evolves under the action of either ULV adulticide spray or residual barrier adulticide
spray,t, is the period of the application protocol, and #j is an arbitrary constant. Likewise, our
definition of ‘overall average’ allowed us to define the time-independent larvicide control
strength as

. 11"
ol (c® vE 1) = 1 —Tlgr;owf/t() ds X(s),

(2.25)
where X*(7) evolves under the action of either larval source reduction or LV larvicide spray, 7, is
the period of the application protocol, and fy is an arbitrary constant. Equation 2.24 defines a
manifold in p’'—p®—#" —1, space (as does Eq. (25) analogously). If the defining properties ot ",
and 7, are assumed to be time-dependent in reflection of a time-dependent implementation
strategy, there will exist a corresponding trajectory traced on the pl—pE—;yE—ry manifold, and this
trajectory will endow a time-dependence to p’. Thus, time-dependent implicit controls inherit
their time-dependencies from the time-dependencies in the defining properties of the underlying
explicit controls.

In addition to single control mechanisms, we also considered joint control strategies
involving two or more methods. To define joint control strategies involving only adulticide, we
considered ULV adulticide spray and residual barrier spray applied with parameters y*;,5"1,7.;
and y*,, #*,, and rf, respectively. This yielded a vector population X*(7) with the joint implicit
control strength given by

1 1 [
1(E :
PO s Tus W2 o123 Ta) = 1 _TIEEOAO—/MT/tO ds X" (s).
(2.26)
Similarly, for combinations of larvicide controls, we were able to express the joint implicit
control strength by

1 1 /"
ol (oF vE 1,08 VE 1y,) = 1— %EEOAO—/M]?/% ds X¥(s).
(2.27)

The potential for synergistic effects, however, became problematic when both adulticide and
larval control protocols were considered simultaneously. This synergy called into question the
validity of implicit modeling in general. To deal with this, we derived a general expression to
demonstrate synergistic effects in combing adulticide and larvicide and to demonstrate their
contribution to the average population reduction. Our approach involved a combination of
Floquet and Fourier analysis.

Specifically, we considered the simple vector dynamics model from Eq. (2.1), subject to
multiple explicit adulticide and larvicide control schemes.

XP() = —pP(0)XP(t) + AP (1),

(2.28)
This allowed us to write the following general expressions
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pP )y = p® (14 fut))
(2.29)
AB(t) = A(1—=fa(t)),

(2.30)
where f,(7) € [0,0) results from some combination of periodically applied residual barrier spray

and ULV spray, and where f4(¢) € [0,1] results from some combination of larval source reduction

and LV larvicide spray. We assumed that f,(¢) and f;(¢) have periods 7, and 7, respectively, and
that the periods were commensurable, meaning that

mTy = MATA = Te,

(2.31)
where 7. is a larger combined period and m, and m, are positive integers with greatest common
divisor unity, implying that X“(¢) evolves periodically with period . in the long-time limit.

Applying a Floquet transform to the periodically driven linear ODE with periodic
coefficients in Eq. (2.28), followed by a Fourier transform and then an inverse Floquet transform,
yielded a set of closed form expressions for the Fourier modes of the periodic solution, with the
zeroth mode giving the time-averaged solution. From this, we defined the following pertinent
terms.

M = Ti mdtuE(t)
= MO (1 + <fu>m) J
(2.32)
P(t) = exp {Mt—/tdt’uE(t’)l
0
— e 0 _,,0 ! / N
= ep{u <fﬂ>7'ut N/Odtfu@)}
(2.33)
Qt) = P~
= exp |:—/J,O <fﬂ>mt+,u0/0 dt’fu(t/)}.
(2.34)

where M is the time-averaged death rate, P(7) is the Floquet operator, and Q(7) is the reverse
Floquet operator. Once X“(¢) has relaxed into its long-time periodic orbit, we can define the
following Fourier decompositions
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XE(t) — i XHGQMHTLC

P(t) = i P’
Q(t) _ Z Qne%rin%
AE (t) _ i AneZWin% ’

(2.35-2.38)
where i denotes the imaginary unit and the summations are over all positive and negative
integers. The long-time average of X"(7) is given by its zeroth order Fourier mode:

o

Y. — PkakfmAjA ‘
0o - : : M — 2mik Mmug:
j,k:—OO T

(2.39)
Through examination of several limits, we were able to decompose the actions of adulticide and
larvicide in Eq. (2.39) into distinct synergistic and non-synergistic contributions.

A° N PQ gy
Xo = _0(1_‘71)<1_P1)+ Z —%%A]Am#ja
p jh—ee M50
(2.40)
where
ol = (fa),,
Ao
(2.41)

is the implicit larval control strength as defined in Egs. (2.25) and (2.27), written in terms of the
zero Fourier mode of the corresponding explicit larval protocol, while

[o¢]
L | Pk
p= M 2nik
k=—co uY uOTy

(2.42)
is the implicit adulticide strength defined in Egs. (2.24) and (2.26), written in terms of the
adulticide Floquet-Fourier modes. Eq. (4.40) to the implicitly controlled equilibrium population
reduction in Eq. (4.7), we were able to determine that implicit control modeling accounts for
precisely the non-synergistic effects between larval controls and adulticides, and that implicit
control accurately describes the average effects of explicit control when the synergistic term in
Eq. (4.40) are negligible. To determine the importance of synergistic effects, we then examined
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their magnitude as a function of relative timing shifts between adulticide and larval controls or
phenological emergence rate oscillations by calculating the synergy factor S, defined as

PrQ_k—my; —2mimy,j ==
> N 2mik Amuje i

Jk=—o0 T

Ni—ohi—-p)

(2.43)
where z denotes the lag of the larval protocol relative to the adulticide protocol. The synergy
factor S can take on both positive and negative values; negative S values indicate beneficial
synergistic effects which reduce the average vector population below the level suggested by
implicitly modeled controls, while positive values indicate counter productive synergistic effects
which increase the average vector population.

Model Analysis
We first considered the relationship between explicitly modeled ULV and implicit control

models. Repeated use of Eq. (2.9), averaged over a period, gives the following expression for
the explicit vector population

g A0 e 1 — e '
<X >TM tooo 10 1- 1— (1 — pB)erm 0
It pF)e 1OTy

(2.44)
Relating this to the corresponding implicit control scheme gives the following
I p¥ 1— e '
R R
(2.45)

Figure 2.1 shows a density plot indicating the strength of p’ as a function of p” and z,.
Comparison of the explicit control dynamics with corresponding implicit control dynamics is
additional whon in Fig. 2.2. Figurel indicates that strong implicit control strength occurs only for
short periods 7, and high percent knockdowns p”. From Fig.2, we see that the implicit control
dynamics more closely match the explicit control dynamics for short application periods and low
percent knockdowns. The Floquet quantities for ULV are additionally found as

M = uo—@,
(2.46)

Py = (1-pP)" 5
(2.47)
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(t mod 74)

Q) = (1-p57"

(2.48)
with the Fourier modes given by
1 T ot
P, = — [ dte®™-P(t)
Tu Jo
1
= P -,
In [17,;13] — 2min
(2.49)
1 T o
Qu = — [ dte™™ Q)
Tu Jo
_ o p° 1
1—pP [1—1PE] + 27in
(2.50)

0 0.2 0.4 0.6 0.8 1.0

o

Figure 2.1  Density plot indicating the magnitude of the implicit control strength p’ as a
function of the explicit control parameters p* and 7., Where 1/uy= 2 weeks. The color scale
indicates the value of p’.

27



Mosquito Population Mosquito Population
100 100
et | e | | 1

= 1= =

80 80

60 60
40 40
20 20
“““““““““““““““ Days L Dy
0 20 40 60 80 100 0 20 40 60 80 100
(a) p¥ =.10,7, = 3 days (b) p¥ = .10,7, = 15 days
Mosquito Population Mosquito Population
100 100

80 80

" RAANNN
ST

(c) p¥ = .80,7, = 3 days (d) p¥ = 80,7, = 15 days
Figure 2.2  Time evolution of a population of 100 mosquitoes under ULV adulticide spray
applied beginning at = 0, where 1/u,= 2 weeks and X*(0) = 4y/u/= 100. Explicit control
dynamics are represented by the blue curves, and the red curves give the corresponding implicit
control approximation.
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Second, we considered the relationship between explicitly modeled residual barrier spray and
implicit control models. Repeated use of Eq. (2.13), averaged over a period, gives the following
expression for the explicit vector population

Ag 1 [T I
x5y, = 2L [T g(s)1(s) + gl LT
notooo g T, o 1— 9<Tu)
(2.51)
Again, relating this result to the implicit control model gives
1o 9(mu) 1 (1)
I Iz M
po=1—— ds |g(s)I(s) + g(s)——--1.
[()() @
(2.52)

Eq. (2.52) does not simplify to a closed form analytic expression and must be evaluated
numerically. Density plots indicating values for p' are given in Fig. 2.3, and a comparison of
explicitly controlled dynamics and the corresponding implicitly controlled dynamics under
residual barrier spray is given in Fig. 2.4. From Fig. 2.3, it is clear that weak implicit control
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strength occurs only for very small explicit control efficacies y* and long application periods Ty
Comparing to Fig. 2.1, it is also clear that residual barrier spray has weak implicit control
strengths p’ over a much smaller parameter range than does ULV adulticide spray. Figure 2.4
indicates that the implicit control approximation most closely matches explicit control dynamics
for shorter application periods. The Floquet quantities for residual barrier spray are additionally

found as
1—e "
)

77E7-,u
(2.53)
1 — e—nE(tmodTu) 1 — e_nETu
P(t) = —~E 1 (t mod —
(¥ exp[ Vi (fmodr,) ( n¥(t mod,) nET, ’
(2.54)
1 — e—nE(tmodTM) 1— e—nETH
t) = E19(tmod -
Q( ) exXp [’7 /’L ( mo T/—L) ( nE(tmOdTu) UETM )
(2.55)
with the Fourier modes given by
1 T —2min-t-
P, = — [ dte WPt
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(2.57)

where I is the doubly incomplete gamma function, and we adopt the convention that complex
numbers are written with their phase angles within the interval (—m,x].
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Figure 2.3  Density plots indicating the magnitude of implicit residual barrier spray control
strength p’ as a function of the explicit control parameters y*, #*, and 1., Wwhere 1/u5=2weeks.
The color scale indicates the value of p'.
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Figure 2.4  Time evolution of a population of 100 mosquitoes under residual barrier
sprayadulticide applied at /= 0, where 1/up= 2 weeks, X(0) = Ay/u/= 100, and 1/7"= 12 days.
Explicit control dynamics are represented by the blue curve, and the red curve gives the
corresponding implicit control approximation.

We next considered the combined effect of both adulticide strategies. When both residual barrier
spray and ULV adulticide spray are applied with periods 7,; and z,,,, respectively, with an overall
combined period 7, such that

MATyy = M2Tpy = Ty,

(2.58)
then the overall implicit control can be written in terms of the Floquet-Fourier modes as follows
00 o) 1 1 5 o
pI = 1—- Z Z 1Q klkaQ—kQ
(f >T (f > ‘
n=—co  k=—oo 14 =gt -
m1k1+m2k2:n w
— Z Z Pl 1. P2 2 o 2ilkatia) 7
n=—oo ki,k 1+ A >71 + <f2>72 _ 2min
- 3R2,71,J2=—0C 0
T’lllkzlilWZZk‘Q =n W T
mij1+majo=—n
n#F—k1,jeF—k2
(2.59)

Unfortunately, we were unable to reduce either the synergistic or non-synergistic components of
Eq. (2.59) to simple analytical expressions. To overcome this challenge, we hypothesized the
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following relationship between joint and individual implicit controls, and then examined
deviations from this simple combination model
pIH - 11— (1- P{)(l - Pé)
1—pip}

?

(2.60)
Fig. 2.5 shows values of p as a function of ULV percent knockdown and timing offset between
ULV and residual barrier spray. Figure 2.6 shows the relative differences between p’ and p™. In
general, we found that p’ is most sensitive to variances in z when 7; is an integer multiple of z;,
which is indicative of a resonance phenomenon. For all application periods considered, we found
the magnitude of(p"'—p")/p' to be at most a little over .01, thus our simple additive model in Eq.
(2.60) was quite accurate.
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Figure 2.5  Contour plots indicating the implicit population reduction p’ for combined ULV
adulticide and residual barrier spray as a function of the explicit ULV fractional knockdown p”
and timing offset z for various values of the ULV period zu,, assuming a natural vector lifetime
of 14 days. Residual barrier spray is applied with a period 7,,= 30 days, assuming »*=20 and
1/5"= 12 days.
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Figure 2.6  Contour plots indicating the relative difference between p’ and p™ for combined
ULV adulticide and weakly efficacious residual barrier spray as a function of the explicit ULV
fractional knockdown p” and timing offset z for various values of the ULV period 7,2, assuming a
natural vector lifetime of 14 days. Residual barrier spray is applied with a period 7,,= 30 days,
assuming y°= 20 and 1/5°= 12 days. The white dashed line indicates the contour p'=p"”".

We next focused on larval source reduction. For periodic controls applied continuously with
period 7,4 beginning at time 7= 0, the larval emergence rate is given by

AE(t) — A0 (1 . O,Ee—uE(tmod'rA)> ’

(2.61)
with Fourier modes
1 [™
A, = — dt A5 (1),
TA 0

(2.62)
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which gives

E
A (1= P52 =0

A, = ™
" UET
AGF LT s
(2.63)
Ultimately, this yields the following expression for implicit larval control:
1 _ el/ETA
I _ _E
7 = vETy
(2.64)

Density plots indicating the values of ¢” are shown in Fig. 2.7, and a comparison of the explicitly
controlled dynamics to the corresponding implicitly controlled dynamics are given in Fig. 2.8.
Overall, we found that larval source reduction had strong implicit control strength ¢’ only for
application periods 7, shorter than the decay time 1/v", and that the implicit dynamics better
agproximate the explicit dynamics for shorter application periods and smaller explicit efficacies
a.
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Figure 2.7  Density plots indicating the magnitude of implicit larval source reduction control
strength ¢’ as a function of the explicit control parameters o°, v*, and z,. The color scale indicates
the value of ¢'.
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Figure 2.8  Time evolution of a population 100 mosquitoes under larval source reduction
control applied at /= 0, where 1/u5= 2 weeks, X*(0) = Ay/u= 100, and 1/v"= 20 days. Explicit
control dynamics are represented by the blue curve, and the red curve gives the corresponding
implicit control approximation.

The final single control that we considered was LV larvicide spray. For LV larvicide spray
applied periodically with period 7, beginning at time 7= 0, the larval emergence rate is given by
(

A1 —0oF) <&

AP(t) = A(1—0oF) 75> VLE,t mod 7, <

Tml —

A° TA>VLE,tmOdTA>

:ml _

\

(2.65)
The corresponding Fourier modes are given by
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While the expression for implicit control is given by
o¥ Th < ,,LE
P
of 1
m TA > E -
(2.67)

Thus, for application periods shorter than the efficacy time 1/v*, the implicit and explicit control
descriptions of periodic LV larvicide spray are equivalent, and all Fourier modes 4, vanish for
n=0. Figure 2.9 shows density plots indicating the values of ¢, and a comparison of the
explicitly controlled dynamics to the corresponding implicitly controlled dynamics is given in
Fig. 2.10. We find the parameter range over which LV larvicide spray has strong implicit control
strength to be larger than the parameter range over which larval source reduction has strong
implicit control strength. As well, we find that strong LV larvicide implicit control strength
requires at least moderate ¢” and an application period not much greater than the efficacy time
1/V". Finally, we find that the implicit dynamics most closely match the explicit dynamics for
small ¢* and small application periods.
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Figure 2.9  Density plots indicating the magnitude of implicit LV larvicide spray control
strength ¢’ as a function of the explicit control parameters o, v*, and 7,. The color scale indicates
the value of ¢/, and the dashed lines mark t= 1/~
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Figure 2.10 Time evolution of a population of 100 mosquitoes under larval source reduction
control applied at /= 0, where 1/u5= 2 weeks, X*(0) = Ay/u= 100, and 1/v"= 20 days. Explicit
control dynamics are represented by the blue curve, and the red curve gives the corresponding
implicit control approximation.

Because of model formulation, combination of larvicide controls was only possible for systems
where the two larvicide strategies operate on independent components of larval habitat. In this
case, the resulting model is fully additive, and requires no further analysis.

For combined adulticide and larvicide controls, the controls enter the population dynamics
independently at the implicit level, and Eq. (2.45) shows that the average vector population level
under the corresponding joint explicit controls is given by the implicit control population level
plus a synergistic correction term. To determine the importance of the synergistic correction, as
well as the effects of relative shifts in application timings, we considered explicit adulticide
protocols applied in conjunction with explicit larval control protocols, where we assumed a time
lag of z days in the larval protocols relative to the adulticide protocols. Contour plots indicating
the values ofSfor ULV adulticide with larval source reduction and residual barrier spray with
larval source reduction are shown in Figs. 2.11 and 2.12 respectively.
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Figure 2.11 Contour plots indicating the value of synergy factor S for combined ULV
adulticide and larval source reduction as a function of the explicit ULV fractional knockdown p*
and timing offset z for various values of the adulticide period 7,, assuming a natural vector
lifetime of 14 days. Larval source reduction is applied with a period z,= 30 days and 1/v*= 20
days. The white dashed lines indicate no synergy S= 0.
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Figure 2.12 Contour plots indicating the value of synergy factor S for combined residual
barrier spray larval source reduction as a function of the explicit residual barrier strength
knockdown y* and timing offset z for various values of the adulticide period 7,, assuming a
natural vector lifetime of 14 days and 1/7"= 12. Larval source reduction is applied with a period
/=30 days and 1/v*= 20 days. The white dashed lines indicate no synergy S= 0.

In keeping with the second objective of our work, and the primary objective of our initial
proposal, we also used our models to explore synergy between management and natural variation
in the mosquito population that results from phenology. Specifically, the value of S can be used
to determine under what conditions it is worthwhile to adjust the timing of regular adulticide
applications relative to seasonal oscillations to maximize beneficial synergy. As a specific,
illustrative example, we considered a sinusoidally oscillating vector emergence rate as a basic
model for seasonal or monthly fluctuations in rainfall or temperature. Letting /4, represent the
average emergence rate and 7, represent the oscillation period, we obtained the time-dependent

emergence rate A°(7) as
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AP(t) = A° {1 + 0¥ sin (M)} ,

TA

(2.68)
where z is a timing offset which sets the peak emergence rate to occur every z+ (k+ 1/4)z,4 days,
where k is any integer. Under a sinusoidal emergence rate and constant vector death rate 1, an
analytic expression for the periodic vector population can be found, and one can show that the
peak periodic vector population lags the peak emergence oscillation by a time
(z4/2m)arctan(2m/(pota)). The Fourier modes of the sinusoidal emergence rate are

(

A°, n=>0
_ 2miz
—%iAOJEe A, n=1
A, =
2miz
SiN%oFe n=-—1
0, n#0,1,—1.

\

(2.69)
If an adulticide is now applied with period 7, beginning at time /= 0 such that the combined
adulticide and emergence rate period is given by 7., the emergence rate oscillations will have
non-zero Fourier modes only for n= 0,£1, thus to have possible non-zero values of the synergy
factor S, we must have m,= 1, which implies that the adulticide application period must be
greater than or equal to z4:

TM:mATA:Tc,

(2.70)
where the integer m, gives the number of complete emergence rate oscillations occurring over an
adulticide application period. This result provides the following useful information for planning
control strategies: in order to leverage beneficial synergy between a sinusoidal emergence rate
and multiplea dulticide impulses of the same type applied over an oscillation period, the impulse
timings are required to be spaced non-uniformly in time. Figure 2.13 shows contour plots for the
values S under various parameters for ULV adulticide spray and various offsets z from seasonal
timing. Similar results can be derived for other management strategies. Figure 2.13 indicates
that for the short emergence oscillation period of 5 days, synergistic effects between ULV
adulticide and the oscillating emergence rate give a maximal population reduction when the
adulticide impulse is applied about 1.75 days after the peak emergence rate oscillation. At an
emergence oscillation period of 60 days, the maximally beneficial synergy occurs when the
adulticide impulse is applied about 10 days after the peak emergence oscillation. Synergistic
effects can provide beneficial increases at 10% to 20% reductions in the population relative to
the average population for both short and long application periods.
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Figure 2.13  Contour plots indicating the value of synergy factor S for ULV adulticide with
phenological oscillations as a function of the explicit ULV fractional knockdown p” and timing
offset z, assuming a natural vector lifetime of 14 days and ¢"= 1. The white dashed lines indicate
no synergy S= 0.

Figure 2.14 shows extensions to larger oscillations, including 365 day oscillations typical of
seasonal phenology.
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Figure 2.15 Plots indicating the timing of ULV adulticide application required for maximum
beneficial synergistic effects with phenological emergence rate oscillations, assuming a natural
vector lifetime of 14 days.

The central results of this section are thus stated as the following vector management
recommendations: to achieve maximally beneficial synergy between a ULV adulticde protocol
and a sinusoidal emergence rate, for a single application over an emergence period, apply the
impulse at time of the uncontrolled peak vector oscillation, and for multiple applications over an
emergence period, the optimal impulse timings will be spaced non-uniformly in time.

Summary and Conclusions

Optimal control theory provides a set of mathematical tools which, when applied to
vector-borne disease models, can be used to find control protocols for achieving a control
objective, such as Ry<1, which minimizes a cost of control, or to find control protocols which
optimally balance a disease cost with a cost of control. Due to the mathematical complexities
inherent to optimal control theory, optimal control problems for vector-borne disease models are
often formulated at the implicit level, where simplified numerical techniques are often possible
and analytical results are sometimes within reach. Unfortunately, real-world monetary costs of
control are defined in terms of explicit control properties like application frequency, so defining
realistic control costs in terms of implicit control strengths alone is a difficult task. Essentially, to
define a realistic cost function for implicit control strengths, one must determine the relationship
between implicit control strengths and explicit control properties. For this reason, we set a goal
to relate implicit and explicit control models.
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Specifically, we have clarified the previously vague relationship between implicit and
explicit control, and have shown that implicit control is an approximation representing the
overall average effects of infinitely repeated fixed-strategy explicit control protocols (such as
periodic application schedules), where over-all average means an average over time. Strong
synergistic effects between explicit adulticide and larval controls can invalidate implicit control
as a self-consistent modeling scheme, but we have shown synergistic effects to be negligible
precisely when implicit control can be considered an accurate approximation. Thus, the accuracy
and biological meaningfulness of implicit control go hand-in-hand.
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PART 3: UNDERSTANDING HETEROGENEITY IN CONTROL ACCESS

Background

The increased worldwide emergence and re-emergence of vector-borne diseases seen in recent
decades demands increasingly efficacious responses from health and government agencies for
the prevention of public health crises [1, 2, 3]. Strategies for managing these diseases typically
consist of regular, large-scale larvicide and adulticide application by airplanes and/or trucks,
combined with on-the-ground control efforts that require officials obtain access to areas where
mosquitoes are actively breeding in order to eliminate sources of standing water susceptible to
oviposition, as well as to applying larvicide and adulticide precisely and thoroughly.

Both aerial/truck and on-the-ground strategies have advantages and disad-vantages.
Aerial spraying can quickly provide blanket coverage to an entire region. However, adulticide
aerial spray is only effective against active mosquitoes who come into contact with short-lived
airborne insecticide plumes, so repeated frequent applications may be required to achieve
sufficient levels of control [15]. Repeated application of aerial adulticide can become costly and
promote insecticide resistance, and residents may be uncomfortable with planes flying overhead
frequently. Therefore, aerial spraying alone may not always be a viable strategy [3, 16]. With on-
the-ground control, a longer lasting, more effective residual barrier adulticide spray can be
applied to vegetation and other mosquito landing surfaces, and potential larval habitats (e.g.
receptacles for standing water) can be identified and removed. This approach, however, is
reported to be costly and time-consuming, and access to certain locations may be restricted by
vegetation (e.g., in forested areas, these may represent regions of thick underbrush or dense
swamp) or by resident accessibility (e.g., home owners may not allow officials into their yard, or
may not be home). This makes coverage of large-scale regions potentially difficult to achieve
[15]. The inaccessible locations within a broader region may be randomly dispersed or highly
clustered, for example due to social influences in urban settings, or larger extents of specific
habitats in natural settings, and the clustering of control access can influence overall control
efficacy [17]. Further, although accessible and inaccessible locations are spatially localized to
individual sites or clusters of sites, mosquito motion allows localized heterogeneous levels of
vector control to produce effects over larger, potentiality regional, spatial scales [17, 18].

Aerial spraying and on-the-ground control strategies provide a trade-off between small-
scale localized control efficacy and ease in achieving efficient large-scale region-wide control
coverage [15]. This trade-off, together with local social, political, and economic concerns, makes
the design and implementation of effective integrated vector management strategies a logistical
challenge [3, 16]. Given the complexities inherent to designing integrated vector management
programs, mathematical models are useful tools for analyzing and predicting the efficacy of
interventions strategies. Previous studies often incorporating additional controls such as
vaccination and personal protection, have used metapopulation models to incorporate individual
homogeneous patches of vector and host populations connected via a network structures
allowing host and/or vector movement between connected patches, and are natural candidates for
modelling disease systems with spatial heterogeneities at both large and small spatial scales.
Results from metapopulation models have shown that network connectivity generally allows
disease levels to persist in patches where they would otherwise face rapid extinction, which has
important implications for designing vector management strategies.

46



Model Development

We chose to model a larger region with variable accessibility as a two-dimensional lattice of N x
N square patches indexed by integers i, wherei € {1,2,..., N2 —1, N 2}, laid out as in Fig.
3.1. Each patch represents a physical area of size 1x1, and we assume N;; hosts reside in within
patch i. We posit that while present in the area, hosts spend the majority of their time in and
around their home patch (e.g., territory), and that the time spent traveling throughout the region
is negligible by comparison. Mosquitoes, on the other hand, move continually in a somewhat
random manner, and they may pass through many patches over the course of a lifetime
depending on the physical patch size; Aedes aegypti, for example, will disperse hundreds to
thousands of meters from their emergence site over the course of a lifetime [20]. Based on this
observation, we consider a simplified model in which mosquitoes are able to move between
neighboring patches while hosts remain fixed at their home patch.

1 2 3 | N-1 N
N+1 N+2 N+3 | 2N-1 2N
2N +1 2N +2 2N+3 | 3N-1 3N
(N2)N+1 | (N2)N+2 | (M-2)N+3 | ... (N-1)N-1 | (VN-1)N
(V-D)N+1 | (V-1)N+2 | (N-1)N+3 | . N2 e

Figure 3.1  Site indices and corresponding locations within the larger region

To capture mosquito movement, we let Niv(t) denote the distribution of mosquitoes at patch i at a

time ¢, and then modeled mosquito motion with a nearest neighbor random walk between
patches, assuming the following population dynamics

N2
NP(t) = A= NP () + ) (wig N () —w;i NP (1))
T
G.1)

where /1; denotes the mosquito emergence rate in patch i, y; denotes the per-capita mosquito
death rate in patch 7, and w; denotes the transition probability per unit time for an individual
mosquito to hop from patch j to patch i. We assumed that parameters can vary across the network
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due to control efforts. The probability per unit time for a mosquito to transition out of patch i,
denoted by w,, is then defined by

NQ
Wi = —E Wiis
j=1

j#i
(3.2)
and can be used to simplify the summation in Eq. (3.1)
. N2
NP(t) = A= NP+ wipNP(1).
j=1
(3.3)
Assuming unbiased nearest neighbor hopping with hopping rate w, we can write W, as
wij = —wLij,
(34)

where L, denotes the elements of an N 2 N2 Laplacian matrix associated with nearest neighbor

connectivity of our network. The equilibrium mosquito population distribution, whose value in

patch i we denote by N,¥, is given by the stationary solution to Eq. (3.3). This solution can be
written compactly in vector-matrix notation as

Nve = (MNz —l—wﬁ)_lA.

(34)
where N, and A denote N *- dimensional column vectors with components N,, and A,

respectively, and ., 1s the N2 xN2 diagonal matrix with entries along the diagonal given by ;.
To capture system dynamics, we selected the following SEIR model
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where S,,(9), E,(f), and I, (¢) are the number of susceptible, exposed and infected vectors in patch
i at time ¢ and S,,(?), E, (1), 1,,(¢) and R, () are the number of susceptible, exposed, infected and
recovered hosts in patch i at time . As we were primarily interested in the heterogeneities
introduced by access variability, we assumed the total number of hosts in each patch was a fixed
constant N”. Similarly, the per-bite host-to-vector and vector-to-host transmission probabilities,
Pv and Bh, respectively, the extrinsic and intrinsic incubation periods, 1/p, and 1/p,, respectively,
and the average host recovery time, 1/r, were all assumed to be patch-independent. We assumed
host birth and death rates were negligible over the time scale of interest and that all infectious
mosquitoes die before recovering.

To incorporate on-the-ground and adulticide aerial spray control strategies into this
model, we included patch-dependent, time-independent reductions and increases in vector
emergence and death rates, respectively. Controls incorporated in this manner are simple but
effective models for describing the effects of regularly repeated fixed strategy real-world
controls[21]. Under this modeling methodology, the optimal control protocols for reducing the
basic reproduction number are naturally phrased in terms of actionable control advice based on
real-world control parameters (see PART 2 above).

In the absence of control, we assumed homogeneous natural death and emergence rates,
denoted by u, and A,, respectively, in each patch throughout the region. Adulticide aerial spray
is an area-wide control assumed to cover the entire region equally, so we modeled this strategy
as a uniform increase in vector death rates at every site. On-the-ground control affects only the
‘accessible’ sites. We modeled this strategy as a uniform increase in vector death rate and
decrease in vector emergence rate in accessible/accessible sites only. We thus have three possible
assignments for the vector death rate in patch i:
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o,  No controls applied to system
Wi = un,  Controlled system, patch ¢ non-compliant
we,  Controlled system, patch ¢ compliant

And similarly, three possible assignments for vector birth rate in patch i

Ay, No controls applied to system

A = Apn,  Controlled system, patch ¢ non-compliant

Ac,  Controlled system, patch 4 compliant

Using the above model, we focused on predicting the basic reproduction number, R,,. Following
[23], the next generation matrix FV™' for our disease system in Eq. (3.5) can be written as the
following 4N? x 4N * matrix:

Fp-1 Oopr2 Oopr2 ’
FVy' FVy'
3.6)
where
pvpv]_ 2 + 2+w£71 Opr2
Pyl = (P12 + pin ) e )

Opr2 Tpr2

3.7
o Opr2 BULp? (P Lne + pine +wL) T (N?)TINES
22 —
5hb (L2 + wﬁ)ﬂ Op2

(3.8)

IfE,E, I, and I, exposed and infectious vectors and hosts are introduced as a perturbation to a
completely susceptible disease-free equilibrium state, the distribution of newly generated
exposed and infectious vectors is given by the next generation matrix’s action on the 4N*
dimensional column matrix ((E))" (E,)" (1)" (I,)" )" as follows:
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(3.9)

The eigenvalues A of the next generation matrix can be found by solving the following
characteristic equation:

0 = Det[Agpz —FV7!]

b, -1, _ ,
= AVDet )\21N2—ﬁ”bﬁh;p“ (2 +wl) ™ (PP Laz + ppz + wi) 1(N’L)_1Nj\’f2 .

(3.10)
Letting M denote the following matrix
b _ _
M= BB p! (e +wL) ™ ("L + v +wl) T (N?)TINRR,
(3.11)
the above characteristic equation can be written as
0 = AM'Det [Ny — M].
(3.12)
The corresponding eigenvectors of FV~! are determined by the relation
0 0
0 0
)\ =
v Bv%pv (pleQ +M/\/2 +w£)—1 (Nh)_lN;\)/eQIh
1" B (e +wl) T
(3.13)

while the eigenvalues of (FV_l)2 are given by the set {kzlk an eigenvalue of FV_l}, with corre-
sponding eigenvectors determined by
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where
M = ﬂ”bﬂhép” (P Ly + pne + wL) ™ (N")TINRE (pae +wl) ™"
r (3.15)

The matrices M and M have identical spectra, and we refer to them as the “second
generation” matrices. If a completely susceptible disease-free equilibrium state is
perturbed by the introduction of I” infectious vectors, the disease will first travel through
the susceptible host population, and those hosts who become infectious will pass the
disease to the suscep- tible vector population, ultimately resulting in a distribution MI" of
newly infectious vectors. Likewise, if I" infectious hosts are introduced as a perturbation
to a 100% susceptible disease-free equilibrium state, a distribution MI" of newly
infectious hosts will be generated as the disease passes through the susceptible vector
population. We use these second generation matrices to determine R by finding the
largest non-negative solutions to Eq. (3.12) and the corresponding worst case scenario
spatial distributions of infectious host and vectors by solving the following eigenvector
equations:

ReI" = MI"
21V . v
Kl = M (3.16)
We first considered the simplest scenario — a single, isolated patch. In this case, the SEIR model

in Eq. (3.5) reduces to a single-patch SEIR, making the characteristic equation trivial to solve.
For the single uncontrolled, non-accessible and accessible patches, R, is given, respectively, by

b b v 1 A
ROO — v_ Rh___ p 7}70
T po Pu t+ o N g
b b Pv 1 AN
R — v_Rh_—_ I
o \/ﬂ 7"6 BN o+ N NP py

b b Do 1 AC
R — v_pgh_~— Y @~ =
- \/ﬁ ey Ly

(3.17)

Further analysis showed that these are also the values of R, for the special case of a region with
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multiple patches where all patches are identical (e.g., all uncontrolled, all non-accessible or all
accessible).

Next, we considered what we termed the ‘infinitely fast hopping limit’, wherein ® — .
For this, we utilized the methods of Tien et al. outlined in [25]. This allowed us to obtain the
following expression for R,

b b p° 1 (A)
Ry = v_gh— — =
? W \/ﬂ o (1) p¥ + () N7 ()
(3.18)
Finally, we considered the other extreme, which we termed the ‘infinitely slow hopping limit’,

with w = 0. In this case, all patches decouple, meaning that R, is given by the worst possible
scenario of any single patch, and thus

h___ [Qv_ i
mﬁx{\/ﬂ T N Mi}

Roo, Uncontrolled system

Ro(o)

Ron, Less than 100% compliant

Roc, 100% compliant.

(3.19)

From the limits above, we next considered finite hopping rates. For the case of slow but non-
zero hopping, we analyzed our system using degenerate perturbation theory. Although
perturbation results for R,were complicated, they indicated that, for a given set of accessible and
non-accessible control efficacies and a given neighborhood accessibility structure, the reduction
in R, induced by small non-zero mosquito hopping (e.g. the value of OR0) is determined by the
larger and most tightly clustered non-accessible patches.

To model control within our heterogeneous patch system, we used the results from PART
2 (see above). This involves repeated application at a fixed rate. When this is the case, it is
reasonable to expect the associated cost of control to be roughly proportional to the application
frequency. On-the-ground control requires small teams of government or health agency
employees to visit every site in the region so that they may access the location and implement
residual barrier spray and larval source reduction. This requires a greater numbers of man-hours
to deliver in regions with high rates of access. We therefore assume the following daily cost of
control C which depends linearly on the application frequencies f, and f,:

Cc = CAfAJr(CDCerCDN(l*f))fD-
(3.20)

In the above equation, cA is the cost per application of adulticide aerial spray applied to the
entire region, cDC is the cost for applying on-the-ground control to a 100-patch region at 100%
accessibility, cDN is the labor cost for applying on-the-ground control to a 100-patch
neighborhood at 0% accessibility, and f is the fraction of accessible sites in the region.

We consider the following control problem: for combined aerial spray and on-the-ground
control strategies, aerial spray only, and on-the-ground control only, find the application
frequencies fA and fD which suppress outbreak potential by reducing R( to unity while
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minimizing the cost of control C, subject to fA fD € [0, 1 day_l]. The bounds O <fA,fD =<1

day_1 limit control applications to occur at a rate of at most once per day. Even if unlimited
resources were available, societal and logistical concerns would likely prohibit government or
health agency employees from applying pesticides and invading yards more than once per day.

Model Analysis

IEEEmeT
=

"k Fracten complant

Figure 3.1  (a) Single-site basic reproduction number values as a function of the relative
controlled death rate pi/pQ and relative controlled emergence rate Ai/AQ. These values also
represent the homogeneous system basic reproduction numbers when pj and Aj are uniform
across the neighborhood, as well as the no-hopping basic reproduction numbers when pj and Aj
are the non-accessible death and emergence rates. Control efficacy increases along the pi/p(Q axis
and decreases along the Ai/A( axis. The case of no control is represented by the upper left
corner where R() = 1.89, and the red line indicates R(Q = 1. Control efficacy for non-accessible
sites is represented along the top of the plot where Aj = AQ. (b) Infinitely fast hopping basic
reproduction number values as a function of percent accessibility. The dotted black line
represents the uncontrolled value RQoo = 1.89, and the different color curves represent varying
degrees of control efficacy in accessible and non-accessible sites. Blue represents strong
accessible efficacy and weak non-accessible efficacy, orange represents moderate accessible
efficacy and weak non-accessible efficacy, green represents strong accessible efficacy and
moderate non-accessible efficacy, and red represents moderate accessible efficacy and moderate
non-accessible efficacy.

Fig. 3.1 shows numerical simulation results for the analytic expressions for R, derived for
infinitely slow hopping, infinitely fast hopping, and homogeneous systems. Figure 3.1a
represents the single-site, homogeneous system, and no-hopping R, values as a function of
relative adulticide efficacy u/u, and relative larval source reduction efficacy A1,//1,. For the case
of a single site, u; and /1, represent the site’s controlled death and emergence rates, and for the
case of a homogeneous system, y; and /1, represent the controlled death and emergence rates,
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which are uniform over the entire system. For an inhomogeneous system, Fig. 3.1a represents the

AR
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C. I P'
D.'NN

E.

Figure 3.2  Various possible arrangements of varying sizes of non-compliant blocks. The
shading within a particular configuration indicates the distributions of the unperturbed

eigenvectors Ih(o) and IV(O) as determined by first order perturbation analysis when that

configuration is the unique configuration which determines OR( in a region. Any configuration
of size one through six can be obtained from one of the pictured configurations through a number
of bending symmetry operations.
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Figure 3.3  Basic reproduction number perturbation (scaled by %) as functions of & induced
by the non-accessbile blocks pictured in Fig. 3.2. In Fig. 3.3a, line A represents a single non-
compliant site, line B represents a block of two non-compliant sites, line C represents a block of
three non-compliant sites, lines D, E, and F represent different configurations of blocks of four
non-compliant sites, and lines G, H, I, and J represent different blocks of five non-compliant
sites. All lines in Fig. 3.3b represent different blocks of six non-compliant sites. In both plots, the

solid black vertical line & = 5/3 is the largest value of  achievable when p" = p0, and
corresponds to the case of no control in non-accessible sites and strongly efficacious control
control in accessible sites. The dotted vertical line § = 1.5 corresponds to the maximum possible

value of £ in the limit of strongly efficacious non-compliant control uN /p¥ — o
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no-hopping basic reproduction number when u; and /1, represent non-accessible death and
emergence rates. We assume that non-accessible sites are only subject to an adulticide spray
which does not decrease vector emergence rates below their natural value, so the relevant values
of R, are given along the top of Fig. 3.1a. In general we see that R, decreases as u/u, increases
from zero to infinity, and that R, increases as /1,//1, increases from zero to one, thus implying
that R, generally decreases with increasing control efficacy. The red line in Fig. 3.1a represents
R, =1 so parameter values to the right of and below this line will effectively suppress outbreak
potential for our model parameters in a single-site system, homogeneous system, or no-hopping
system. The case of no control is given in the upper left-hand corner of Fig. 3.1a, where R, =
1.89. Figure 3.1b shows the infinite hopping basic reproduction number RQoo as a function of
percent accessible patches, assuming various accessible and non-accessible control efficacies. At
zero percent accessible, on-the-ground control has no effect on the system, so the corresponding
RO values in Fig. 3.1b represent aerial control only and are equivalent to the homogeneous
system R() values. In general, RO decreases as a function of percent accessible, and it decreases
more rapidly when the relative efficacy of accessible control to non-accessible control is larger.

Figures 3.2 and 3.3 summarize our results for the perturbation analysis for small non-zero
hopping rates. Specifically, Fig. 3.2 shows a number of clustering arrangements for non-
accessible blocks of sizes one through six sites. In Fig. 3.3, we plot the corresponding values of
ORO0/» induced by those non-accessible blocks as a function of § (the relative efficacy of
accessible versus non-accessible control), assuming that the blocks pictured are completely
surrounded by accessible sites. If more than one non-accessible configuration in Fig. 3.2 is
present in a region, the corresponding values of ORO indicated by Fig. 3.3 will represent
candidate ORO values, and the actual value of OR0 will be determined by the block with the
largest candidate. The shading within any one particular configuration in Fig. 3.2 shows the
distributions of the unperturbed eigenvectors 7,(0) and /,(0) as determined by first order
perturbation analysis when that configuration gives the unique largest candidate OR, value in a
region. For a given configuration, we see that 7,(0) and /,(0) tend to peak and decay away from
the sites with the fewest number of connections to the configuration border.

Fig. 3.4 shows optimized control results for the cases of no mosquito hopping, infinitely
fast mosquito hopping, and homogeneous systems (at any hopping rate). These correspond to the
special cases where we can find analytic expressions for R, that do not depend on the spatial
distribution of accessible plots. In the no hopping limit, we find that, unless the system is 100%
accessible, the optimal control action is to apply only aerial spray about once every 4.80 days at
a cost of about $5.02 per day on average. At 100% accessibility, the optimal control action is to
apply only on-the-ground control about once every 4.5 months at a cost of about $3.08 per day
on average. Finding that on-the-ground control is never recommended below 100% accessibility
reflects the fact that, at a hopping rate of zero, the basic reproduction number is determined
solely by the non-accessible sites. For homogeneous systems, R, is independent of hopping rate,
and therefore for any w, the optimal control action for a 100% accessible system is on-the-
ground only control applied about once every 4.5 months, while the optimal control action for a
100% non-accessible system is aerial spray only control applied about once every 4.80 days. In
the infinitely fast hopping limit, we find that below about 4.58% accessibility, the optimal
control action is aerial spray only control applied about once every 4.80 days. Above about
4.80% accessibility, the optimal control action is on-the-ground only control, with optimal
application frequencies decreasing as accessibility increases. At about 4.80% accessibility, on-
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the-ground control must be applied about once every 19.5 days at a cost of about $4.74 per day
on average. The on-the-ground only daily cost and application frequency reduce to $3.08 per day
and about once every 4.5 months, respectively, as percent accessibility approaches 100%. We
thus see that only within a narrow accessibility interval (4.58%, 4.80%) does optimal control
require combined aerial spray and on-the-door strategies. In this interval, the combined controls
are applied less frequently than they would be if they were used on their own.
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Figure 34  Optimal costs and application frequencies in the infinite hopping w — < limit as
functions of percent accessibility. For the special cases of 100% and 0% accessibility, the above
optimal costs and application frequencies are equivalent to the optimal costs and application
frequencies for a homogeneous region at any hopping rate. In Fig. 3.4a, the blue curve is the
optimal costs for combined aerial spray and on-the-ground strategies, while the green and black
curves are the optimal costs for on-the-ground only control and aerial only control, respectively.
The crossover points in the zoomed-in inset show the cut-off accessibility levels, beyond which
combined control strategies or on-the-ground only control becomes more cost effective than
aerial only control. In Fig.3.4b, the blue and the red curves are the optimal aerial and on-the-
ground application frequencies, respectively, for combined control strategies, while the green
and black curves are the optimal application frequencies for on-the-ground only control and
aerial only control, respectively. The optimal on-the-ground only costs increase linearly between
0% and about 2.1% accessibility in Fig. 3.4a, and the optimal on-the-ground only frequencies are
equal to 1 day™.

Figures 3.5 and 3.6 show the effects of finite hopping rates on optimal control.
Specifically, they show optimized costs and applications frequencies as functions of hopping rate
for specific clustered and dispersed 20% and 60% accessible distributions under both periodic
and reflecting boundary conditions. for a given accessibility level, the different boundary
conditions yield negligible differences in optimized cost and frequency curves for the clustered
configurations, and yield qualitatively and numerically similar curves for the dispersed
configurations. Generally, the periodic boundary systems are slightly cheaper to control than the
corresponding reflecting boundary systems, and require slightly less frequent control
applications. Figures 3.5 and 3.6 also show that, unlike boundary conditions, accessibility
clustering can have a strong effect on optimal controls. Clustered systems are much more
expensive to control than the corresponding dispersed systems, and they require much more
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Figure 3.5  Optimal controls and application frequencies for the 20% accessibility dispersed
and clustered distributions in Fig. 3.5f, where white squares indicate compliant sites, and red
squares indicate non-compliant sites. Blue and red curves correspond to the dispersed
distribution under periodic and reflecting boundary conditions, respectively. The differences in
costs and frequencies between reflecting and periodic boundary conditions is negligible for the
clustered distributions, and the green curves in the figures correspond to the clustered
distribution under either reflecting or periodic boundaries (these curves coincide). The black line
in Figs. 3.5a, 3.5b, and 3.5d corresponds to aerial spray control only (e.g. used without on-the-
ground control). The crossover points in the zoomed-in inset in Fig. 3.5d are the cut-off hopping
rates beyond which on-the-ground control alone becomes more cost-effective than aerial
spraying alone.
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Figure 3.6 Optimal controls and application frequencies for the 60% accessibility dispersed and
clustered distributions in Fig. 3.6f, where white squares indicate compliant sites, and red squares
indicate non-compliant sites. Blue and red curves correspond to the dispersed distribution under
periodic and reflecting boundary conditions, respectively. The differences in costs and
frequencies between reflecting and periodic boundary conditions is negligible for the clustered
distributions, and the green curves in the figures correspond to the clustered distribution under
either reflecting or periodic boundaries (these curves coincide). The black line in Figs. 3.6a, 3.6b
and 3.6d corresponds to aerial spray control only (e.g. used without on-the-ground control). The
crossover points in the zoomed-in inset in Fig. 3.6d are the cut-off hopping rates beyond which
on-the-ground only control becomes more cost-effective than aerial spray only control.
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frequent control applications. Further, Figs. 3.5 and 3.6 show that as hopping rates increase,
optimized control becomes cheaper and needs to be applied less often, and that for small hopping
rates, the optimal control action is to apply aerial only control about once every 4.80 days.
Focusing on any one configuration and boundary condition, we see that as the hopping rate
increases away from zero, there exists a threshold hopping rate where the optimal control action
transitions from an aerial spray only strategy to a combined aerial spray and on-the-ground
strategy. At even larger hopping rates, we find a second threshold where the optimal control
action transitions from a combined control strategy to an on-the-ground only control strategy.
For the clustered 20% accessibility distribution in Fig. 3.5, under either boundary condition,
optimal control action calls for combined strategies for hopping rates w € (6.20u,, 10.5u,). For
hopping rates below and above this interval, optimal control action calls for aerial spray only and
on-the-ground only, respectively. The corresponding intervals for the dispersed 20% accessibility
distribution are given by (1.30u,, 1.90u,) under periodic boundary conditions and (1.70u,),
2.30u,) under reflecting boundary conditions. For the 60% accessibility distributions in Fig. 3.6,
the corresponding intervals are given by (1.65u,,3.18u,) for the clustered distribution under
either boundary condition, (0.175u,,0.475u,) for the dispersed distribution under periodic
boundary conditions, and (0.200.,,0.650¢,) for the dispersed distribution under reflecting
boundary conditions.

Figures 3.7 and 3.8 show the results of our randomized on-the-ground only control
analysis. Generally, we see that for a given level of clustering, controllability increases with
hopping rate, and that control costs and application frequencies decrease on average. Likewise,
for a given hopping rate, the more dispersed distributions tend to be more controllable and
cheaper to control than the clustered distribution. In Fig. 3.7, we see that for a given hopping rate
and level of clustering, there exists a region of low accessibility where average costs increase
linearly with percent accessible and the corresponding average application frequencies are equal
to 1day™". This accessible region corresponds to the region in 3.8 where nearly all generated
configurations for that hopping rate and clustering level are uncontrollable. As accessibility
levels increase beyond this region, average costs and average frequencies quickly drop as more
and more of the generated configurations become controllable. For each hopping rate and
clustering level in Fig. 3.8, we note the existence of an accessible controllability interval. At
accessibility levels below the controllability interval, no generated configurations are
controllable, and at accessibility above the interval, all generated configurations are controllable.
Within the interval, a non-zero fraction of the generated configurations are controllable. We also
note the existence of a accessibility cost-effectiveness interval. At accessibility levels below the
cost-effectiveness interval, no generated configurations are cheaper to control than with aerial
spray only control, and at accessibility levels above the interval, all generated configurations are
cheaper to control than with aerial spray only control. The controllability and cost-effectiveness
intervals are given, respectively, by (7%,12%) and (10%,16%) for w = 5.0u, dispersed,
(13%,26%) and (17%,37%) for o = 5.0u, clustered, (23%.,49%) and (29% ,62%) for o = 1.0u,
dispersed, (56%,81%) and (60% ,89%) for w = 1.0y, clustered, (42%, 81%) and (52%, 89%) for
w = 0.5y, dispersed, and (79%, 92%) and (92%, 95%) for w = 0.5u, clustered.
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Average cost: Door-to-door control only 1o Average cost: Door-to-door control only (zoomed in)
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Figure 3.7 On-the-ground only control costs, application frequencies, and application periods
required to bring R, to unity (or as low as possible when the system is uncontrollable) as a
function of percent accessibility. Blue, red, and green curves correspond to the hopping rates w =
Suy, ® = u,, and w = 0.5u,, respectively. For each value of percent accessibility and hopping
rate, we average over 200 random neighborhood accessibility configurations that are either
highly clustered (dashed curves) or randomly dispersed (solid curves), assuming periodic
boundary conditions. The crossover points in the zoomed-in plot in Fig. 3.7b indicate cut-off
accessibility levels beyond which on-the-ground only control becomes more cost-effective than
aerial only control on average. Figures 3.7c and 13.7d represent the same information; we
display both application period and application frequency for visual clarity.
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Controllabllity and cost-effectiveness:
Door-to-door control only
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Figure 3.8 Shown here are the fraction of neighborhood configurations that can be controlled
with on-the-ground control alone as a function of percent accessibility, as well as the fraction of
configurations that are more cost-effective to be controlled with on-the-ground control compared
to aerial spraying. Results are shown for three values of the vector hopping rate: Blue, red, and
green curves correspond to the hopping rates w = Su,,, ® = u,, and o = 0.54,, respectively. For
each value of percent accessibility and hopping rate, we average over 200 random regional
accessibility configurations which are either highly clustered or randomly dispersed, assuming
periodic boundary conditions. Solid curves represent the fractions of randomly dispersed
configurations that are controllable with on-the-ground control, and the neighboring dotted
curves represent the fractions of randomly dispersed configurations that are both controllable and
cost-effective (e.g. those that are both controllable and cheaper to control with on-the-ground
control than with aerial spray). The dashed curves represent the fractions of highly clustered
configurations that are controllable, and the neighboring dashed-dotted curves represent the
fractions of highly clustered configurations that are both controllable and cost-effective.

Overall, our findings indicate that the cost-optimal on-the-ground and area-wide aerial
spray application frequencies required for reducing R, to unity are influenced by the rate of
mosquito motion, the level of on-the-ground accessibility, as well as the degree of accessibility
clustering. The manner in which these factors influence the optimal choice between on-the-
ground control only, aerial spray control only, and a combined integrated vector management
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strategy is a central result of this work. At low levels of accessibility, on-the-ground control
alone can not control the system unless the mosquito hopping rate is sufficiently large.
Mathematically, this effect arises from the fact that the system-wide R, is determined by an
infectious vector population which is distributed in and around the larger more clustered non-
accessible blocks of sites. In this sense, on-the-ground control can only reduce the system-wide
R, when the infectious vectors originating in the non-compliant blocks have sufficient mobility
such that they spend enough time in accessible sites to feel the effects of strong accessible
control. This explains why a greater level of clustering of non-accessible sites is more difficult to
control than a dispersed distribution of non-accessible sites; vectors existing in an extremely
deep block of non-accessibility require an extreme amount of mobility in order to feel the effects
of on-the-ground control in accessible sites. However, even at infinitely fast mosquito motion,
under our model and control parameters, the system is uncontrollable under on-the-ground
control at accessibility levels below about 2%, regardless of accessibility clustering. Simply put,
even if the vector population is able to be essentially eliminated in accessible sites, such sites
must comprise about 2% of the total area, at minimum, in order to have any hope of on-the-
ground control alone preventing an epidemic outbreak. More realistically, at finite (potentially
small) hopping rates, much greater levels of accessibility are required for on-the-ground
controllability, especially if the accessibility distribution is highly clustered.

When a system is uncontrollable with on-the-ground control alone, control efforts must
be supplemented by area-wide spraying, and the combined action of on-the-ground control and
aerial spraying can potentially be more cost-effective than either strategy used alone. For a given
distribution of compliant sites, when hopping rates are far too slow for the system to be
controllable with on-the-ground control alone, the optimal action is to use only area-wide
spraying. In such cases, an inability to spray frequently due to societal concerns, budgetary
constraints, or resistance concerns is detrimental to disease control, and no amount of on-the-
ground control can make up for the deficit. As hopping rates approach the on-the-ground
controllability threshold from below, the optimal control action becomes to supplement aerial
spraying with on-the-ground control. Here, the disease is still uncontrollable under on-the-
ground only, so an inability to conduct frequent area-wide spraying is still detrimental to
outbreak prevention. However, mosquito motion is fast enough such that a non-trivial fraction of
infectious vectors originating in non-accessible sites will travel to accessible sites where they
experience the effects of on-the-ground control. As hopping rates continue to increase past the
on-the-ground controllability threshold, aerial spray is optimally applied less frequently, and on-
the-ground control is optimally applied more frequently. At these hopping rates, an inability to
conduct aerial spraying will not be detrimental to outbreak prevention, but will require sub-
optimal spending on on-the-ground efforts in order to control the system. At large enough
hopping rates, the system will not only be controllable under on-the-ground efforts alone, but
will also be much more cost effective under on-the-ground control alone than under aerial spray
alone. Here, the optimal control action is to apply only on-the-ground control.

Generally speaking, systems with lower levels of accessibility and greater levels of
clustering will have larger intervals of hopping rates where optimal control actions call for using
aerial spray, either alone or combined with on-the-ground efforts. Likewise, systems with
smaller hopping rates will have greater numbers of accessibility levels and randomly dispersed
distributions of compliant sites for which the optimal control action is to apply aerial spray only
in comparison to systems with faster hopping rates. For a given hopping rate, there will be a
greater number of highly clustered accessibility distributions for which the optimal control action
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is only aerial spray in comparison to more randomly dispersed accessibility distributions. As
shown in Fig. 3.8, the effects of accessibility clustering is diminished at larger hopping rates.
This follows from the notion that highly mobile vectors experience the effects of accessible and
non-accessible sites in a more averaged sense in correspondence to the fraction accessibility in
the region, where the actual spatial distributions of accessibility and non-accessibility become
increasingly irrelevant as w — .

It is important to note than even when a system is controllable under on-the-ground
control alone, using only on-the-ground control may not be more cost-effective than aerial spray
alone, despite on-the-ground’s higher control strength and lasting effects in accessible sites
relative to aerial spray. Specifically, Fig. 3.8 indicates that for a given hopping rate, the number
of accessibility configurations which are controllable under on-the-ground alone is smaller than
the number of configurations which are cost-effective under on-the-ground alone. The
differences between the number of configurations which are controllable and the number of
configurations which are cost-effective, however, tends to be small outside of the narrow
accessibility ranges where systems transition from always uncontrollable to always controllable.
On the other hand, Figs. 3.5 and 3.6 show that, for a given accessibility configuration, the range
of hopping rates over which the system is controllable is greater than the range of hopping rates
which are cost-effective, and that the differences between the two ranges are rather small. In any
event, we obtain the following ‘rules of thumb’ - when a system is in the range of uncontrollable
to almost controllable, the optimal control action is to apply only aerial spray; when a system is
in the range of almost controllable to controllable and slightly more cost-effective, the optimal
control action is to apply a combined aerial spray on-the-ground strategy; when a system is
controllable and in the range of slightly more to much more cost-effective, the optimal control
action is to apply on-the-ground control only.

Summary and Conclusions

Mosquito motion, door-to-door control compliance levels, and spatial clustering of
accessible sites play an important role in determining whether or not vector-borne disease can be
controlled by area-wide aerial spraying and/or on-the-ground control, as well as the most cost-
effective strategies for control in a regional scale system. We find that, in general, increased
mosquito motion, increased accessibility levels, and decreased accessibility clustering are all
beneficial for the efficacy of on-the-ground control efforts. We note the numerical results
presented here are all based on a disease-related parameter set representative of typical values
associated with vector-borne diseases such as Zika or dengue in North America. Our intent here
is not to provide specific control advice which can be responsibly applied directly in the field.
Rather, we have focused on providing mechanistic insight into the biological factors which
should, in conjunction with additional practical considerations that can not be reliably modeled,
be considered when designing a real-world integrated vector management strategy. Our specific
numerical results are most appropriate for use as a simplified baseline example case from which
one can build some mathematical intuition for control efficacy on regional scales.
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PART 4: LA CROSSE ENCEPHALITIS

This work has been published, and can be found at: Bewick, Sharon, et al. "Epidemiology of
La Crosse virus emergence, Appalachia Region, United States." Emerging infectious diseases
22.11 (2016): 1921.

Background

In recent years, several vector-borne diseases have re-emerged either at new locations or to new
levels in historic ranges. Commonly cited factors for re-emergence include evolution of novel
vector or pathogen strains (1), increased human mobility or disease spread by infected travelers,
decreased herd immunity (2), landscape change (3), climate change (4), and invasion of new
regions by competent disease vectors (5). Although continent-scale disease translocations are
almost always a result of human transport, pathogens that exhibit novel regional spread and/or
increased transmission in pre-existing locations are more difficult to explain. Such is the case
with La Crosse encephalitis (LAC), a mosquito-borne viral disease currently emerging in
Tennessee, North Carolina, Virginia, and West Virginia. With 30-180 cases of severe LAC
reported annually (6), and an estimated total disease incidence as high as 300,000 cases per year,
LAC is rapidly becoming a leading cause of encephalitis in the United States (7, 8). In severe
cases, LAC has lifelong neurologic consequences (6) and carries an estimated fatality rate of
0.5-1.9% (6, 9).

Previously, most LAC cases were associated with forested areas in the Midwest (10).
However, since the mid-1990s, the Appalachian region has emerged as a new and important
focus for the disease (8, 11-13). One potential explanation is the introduction of the invasive
Asian tiger mosquito (Aedes albopictus, henceforth the ‘tiger mosquito’) (14). Historically,
LAC was maintained through a cycle involving the eastern tree-hole mosquito (Ochlerotatus
triseriatus, henceforth the ‘tree-hole mosquito’) and three mammal species — eastern chipmunks
(Tamias striatus), grey squirrels (Sciurus carolinensis) and fox squirrels (Sciurus niger) (10, 15)
However, demonstrated laboratory competence (16, 17), isolation of LAC virus from field-
collected tiger mosquito pools (18), observation of LAC-positive tiger mosquitoes at sites with
human LAC infections (19), and the coincidental link between tiger mosquito invasion and the
emergence of LAC in Appalachia (11) indicate that the tiger mosquito may now be aiding in
LAC spread. Unfortunately, while these observations demonstrate the potential of the tiger
mosquito to influence LAC dynamics, this mosquito’s contribution to observed increases in LAC
transmission remains unclear.

One obstacle to identifying the role of the tiger mosquito in LAC emergence is our
limited understanding of how invasive species interact with native disease cycles and how this
affects disease transmission, both within natural reservoirs and to human hosts. Epidemiological
modeling is a powerful tool that has proven useful for understanding the outcomes of different
transmission pathways in other disease systems. To our knowledge, however, there are no
dynamic models for LAC, even for the case where the tree-hole mosquito is the only disease
vector. Here we develop a compartmental model (see Figure 4.1) for LAC. We use this model
to explore LAC dynamics in both the native and invaded systems and to assess the likelihood
that the Asian tiger mosquito is responsible for the emergence of LAC in Appalachia.
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Figure 4.1 Schematic illustrating transitions/interactions in our compartmental model.
Subscripts ‘1°, 2’ and ‘C’ are used to denote parameters and state variables for the tree-hole
mosquito, tiger mosquito and host populations. S, 7, E and R are used for susceptible, infected,
exposed and recovered classes. A discussion of parameters can be found at
(science.umd.edu/biology/faganlab/disease-ecology.html). Black boxes are used for infected
classes, grey boxes for exposed classes, and white boxes for susceptible/recovered classes. A
dotted line and grey shadow demark the subset of transitions/interactions that define the native
system prior to tiger mosquito invasion.

Model Development

We built three separate models: (i) a model where the tree-hole mosquito is the only LAC
vector, (the ‘Tree-hole Model’), (i1) a model where the tiger mosquito is the only LAC vector,
(the ‘Tiger Model’) and (iii) a model where both tree-hole and tiger mosquitoes simultaneously
serve as LAC vectors, (the ‘Tree-hole & Tiger Model’). (In model iii, either mosquito species
may be driven extinct through competitive exclusion; thus while both vectors are potentially
present, it is possible that only one persists). For all models, we assumed that the vertebrate host
was the eastern chipmunk. The basic dynamical system (see Figure 1) is as follows:
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Host(s):

o= e Aew byl (4.1.2)
= SC 2 1 Acm,jbjlu,; — hlc (4.1.b)
6% = h’C (4.1.0)
Vector(s):

Bl =4 H(Sw + (1= P2y )(Ky = Noj = B jemt @jeNLie) = WS (4.1.d)
% = BJ pilm,j(Kj = Nyj = ZZ=1,k¢i Ny i) — Wil (4.1.e)
d:?j — WjSL] AMC]b SM] Ne — WSy, (4.1.9)
d?:” Awmc,;bj SMJ ~ HjEmj — PjEwm, (4.1.g)
d% =Wl + PJ'EM.J' ~ Hiluj (4.1.h)

where for vector population j = 1 (tree-hole mosquitoes) or 2 (tiger mosquitoes) we consider
susceptible (S, ;) and infected (I, ;) female larvae (where the ‘larval stage’ includes both the egg
stage and the true larval stage), as well as susceptible (Sy,;), exposed (Ey ;) and infected (I, ;)
female adults. The total larval population of mosquito species j is givenby N, ; =S, ; + 1, j,
while the total adult population is given by Ny, j = Sy ; + Ep j + Iy, j. For hosts, we consider
susceptible (S¢), infected (I-) and recovered (R) classes. The total population of the host
species is given by N = S + I + R, where N, is defined as a model parameter.

Model Analysis

Figure 2 presents a Latin Hypercube Sampling analysis of Ry for each of our three
models. Interestingly, we find that sustained LAC transmission can occur in the majority of Tree-
hole Model scenarios (60%), but only in a small fraction of Tiger Model scenarios (3%). This is
surprising, because the average tiger mosquito population has approximately twice as many
biting females per hectare as does the average tree-hole mosquito population— a feature that
reflects both the higher larval carrying capacity and the faster larval maturation rate of tiger
mosquitoes versus tree-hole mosquitoes. Clearly, the numerical abundance of the tiger mosquito
does not compensate for its lower horizontal and vertical LAC transmission rates and its lower
biting rates on key host species.

Moving to the two-vector system, our results for the Tiger & Tree-hole Model indicate a
similar outcome — that the invasion of tiger mosquitoes into tree-hole mosquito populations
should reduce the fraction of scenarios (from 60% to 37%) where LAC transmission is viable.
Thus, instead of causing the emergence of new LAC foci, the invasion by tiger mosquitoes
should instead drive LAC out of regions where it could previously persist. This is again a
function of the poor intrinsic capability of tiger mosquitoes to serve as LAC vectors. It also
depends on asymmetric competition between tiger and tree-hole mosquitoes. For example,
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whereas 14% of parameter combinations yield tiger mosquitoes competitively excluding tree-
hole mosquitoes, the converse is true for only 0.03% of parameter combinations. Moreover,
even when tree-hole and tiger mosquitoes coexist, the tree-hole mosquito population suffers an
average 63% population reduction through interspecific competition. By contrast, interspecific
competition only reduces the tiger mosquito population by an average of 16%. Not surprisingly,
then, when both mosquito species are present, the vast majority (on average 78%) are tiger
mosquitoes. Because the tiger mosquito is the poorer of the two LAC vectors, its invasion

actually reduces the likelihood of LAC transmission.
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Figure 4.2 Histograms of Ry
values based on LHS analyses
with 10,000 randomly selected
parameter sets. In each panel, the
black vertical line at log(R¢ )=0
corresponds to the general
breakpoint between growing and
shrinking infection rates, and thus
represents the threshold for LAC
persistence. (a) the Tree-hole
Model, (b) the Tiger Model, and
(c) the Tree-hole & Tiger Model.



Figure 4.3 illustrates LHS results for an elasticity analysis of the four viral transmission
pathways in the Tree-hole & Tiger Model. In the majority of scenarios, the pathway that is most
important for disease spread is horizontal transmission by tree-hole mosquitoes. Vertical
transmission by tree-hole mosquitoes can also be important, but usually only in cases where the
role of tiger mosquitoes is minimal. For scenarios where tiger mosquitoes contribute to spread,
the important pathway is horizontal transmission either by tiger mosquitoes alone or else in
combination with horizontal transmission by tree-hole mosquitoes. By contrast, vertical
transmission by tiger mosquitoes is rarely important, and only matters in systems where
horizontal transmission by tiger mosquitoes is already the major mode of disease spread.

a. b.
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Figure 4.3 Two views of a quaternary plot showing the relative contributions to R_0 from (i)
horizontal transmission by tree-hole mosquitoes, (ii) vertical transmission by tree-hole
mosquitoes, (iii) horizontal transmission by tiger mosquitoes, and (iv) vertical transmission by
tiger mosquitoes. This figure plots only the 8602 replicates (out of 10000) wherein tiger and tree-
hole mosquitoes coexisted.

Table 1 outlines summary statistics for our dynamic analyses. Importantly, predictions
from dynamic models are similar to predictions for Ry (LAC transmission in 46% of scenarios)
and match many expectations from LAC systems. First, in both the native system (i.e., the Tree-
hole Model) and the invaded system (i.e., the Tree-hole & Tiger Model) host seroprevalence
rates should be remarkably high, approaching 100% towards the end of the season (mean
[median] end-of-season host seroprevalence rates of 89% [99%] in the Tree-hole Model and 84%
[97%] in the Tree-hole & Tiger Model). This is consistent with findings from Wisconsin where,
at least in high quality habitat, multiple surveys have demonstrated that antibody prevalence rates
in chipmunks can be well over 50%, often nearing 100% late in the season (15, 22). At the same
time, our model predicts very low numbers of LAC-positive mosquitoes, even in the native
system (mean [median] yearly averages of 2.0% [1.6%] for the Tree-hole Model). Again, this is
highly consistent with observed minimum field infection rates (MFIR) that range from 0.26/1000
to 12.5/1000 (13, 23-26). Interestingly, predicted infection rates in overwintering eggs are even
lower than rates of infection in adult populations (mean [median] end-of-season infection rates of
0.63% [0.49%] respectively for the Tree-hole Model.) This reflects the fact that transovarial
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Table 1. Summary statistics* for epidemiological metrics based on LHS analysis of the full dynamic model; all
metrics beyond the first row are only calculated for the subset of simulations that gave infected mosquitoes.

Tree-hole . Tree-hole and Tiger
Model Tiger Model Model*

Parameter Sets with LAC Persistence 46% 0.20% 24%
End of Season Host Seroprevalence Rate

Mean 89% 79% 84%

Median 99% 88% 97%

Maximum 100% 100% 100%
Mid-Season Host Seroprevalence Rate

Mean 65% 12% 18%

Median 74% 8.9% 12%

Maximum 100% 38% 98%
Peak No. Infected Mosquitoes (ha™)

Mean 32 58 23

Median 22 50 16

Maximum 331 200 222
Peak Mosquito Infection Rate

Mean 4.5% 1.6% 1.9%

Median 3.5% 1.5% 1.3%

Maximum 27% 5.3% 15%
Average Mosquito Infection Rate

Mean 2.0% 0.44% 0.80%

Median 1.6% 0.33% 0.57%

Maximum 13% 1.8% 6.8%
Max. Human Transmission (mo'lperson'lha'l)

Mean 15 59 14

Median 8.6 40 7.9

Maximum 251 247 221
Timing of Peak Human Transmission

Mean 8/14 9/21 8/23

Median 8/10 9/28 8/21

Earliest 6/21 8/26 6/26

Latest 9/30%* 9/30%%* 9/30%**
End of Season Egg Infection Rates

Mean 0.63% 0.08% 0.28%

Median 0.49% 0.07% 0.20%

Maximum 5.0% 0.32% 2.2%

* We avoid reporting minimum values since these are likely to depend on the threshold that we selected for
determining disease persistence (see Appendix I'V).

**In these systems, the abundance of infected mosquitoes was still increasing at the end of the season. This
indicates that infection rates do not slow prior to the decline in mosquitoes at the end of the summer.
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transmission is less than 100% and that overwintering eggs are laid later in the season,
sometimes after peak LAC transmission has subsided. Again, predicted rates of egg infection
strongly agree with field data indicating that 0.29-0.6% of overwintering eggs from LAC
endemic sites yield LAC-positive larvae (26, 27). Finally, our predicted timing of peak human
disease risk is broadly consistent with observed human LAC cases that tend to occur in late
summer and early fall (8, 12).

What our dynamic model does not predict is any increase in LAC prevalence in the
invaded system (i.e., Tree-hole & Tiger Model) as compared to the native system (i.e., Tree-hole
Model). In fact, even in systems where LAC survives introduction of the tiger mosquito, the
tiger mosquito tends to dampen LAC transmission. In Table 1, for example, both the absolute
number of infected mosquitoes and the rate of mosquito infection are lower in the Tree-hole &
Tiger Model as compared to the Tree-hole Model. Consistent with mosquito infection rates, we
find that host seroprevalence rates are also lower when tiger mosquitoes are present.

Although the tiger mosquito is a poor amplifying vector for LAC, it may still increase human
LAC cases. Indeed, because this species is an aggressive human biter, it has the potential to
intensify the rate of disease transfer to human populations, albeit while simultaneously reducing
disease spread in wildlife reservoirs (i.e., it may act as a bridge vector). Table 1, however, shows
that this is not the case. Although tiger mosquito biting rates on humans (not shown) partially
compensate for lower rates of LAC transmission in wildlife reservoirs, this compensation is not
complete. Thus, human infections are still predicted to occur more commonly in the uninvaded
versus the invaded system.

Figure 4.4 summarizes our PRCC results for model parameters. In single-vector models
—1i.e., the Tree-hole Model (white) and the Tiger Model (black) — transmission rates, biting rates,
mosquito survival rates, mosquito population growth rates, mosquito maturation rates, mosquito
carrying capacity, and rates of LAC dissemination in mosquitoes are all positively correlated
with Ry. In contrast, rates of host recovery are negatively correlated with Ry, as is host
population size. Though this latter result is somewhat counterintuitive, it is well known for
systems with a saturating functional response (28).

In the two-vector model, most PRCC values are reduced, but maintain the same sign.
This reflects the similar effect but lower importance of either mosquito species individually
when both species are present. Not surprisingly, PRCC reductions are more severe for the tiger
mosquito, which is the less competent and thus less important vector in the two-vector system.
Although the majority of PRCC values merely exhibit reductions in the two-vector model,
several undergo more striking changes. First, both the tiger mosquito population growth rate and
the tiger mosquito carrying capacity switch from being positively correlated with Ry (strongly so
in the case of carrying capacity) in the Tiger Model to being negatively correlated with R_0 in
the Tree-hole & Tiger Model. This is because tiger mosquitoes are generally detrimental to LAC
spread in systems where the native vector is also present. Importantly, this conclusion accords
with our general finding that tiger mosquitoes should, if anything, reduce LAC transmission.
Second, the population growth rate of the tree-hole mosquito actually becomes more important
when tiger mosquitoes are present. This parameter is particularly important in the Tree-hole &
Tiger Model because it helps to influence the outcome of interspecific competition. Specifically,
high tree-hole mosquito growth rates give this species a fighting chance against the more
aggressive, generally more fecund tiger mosquito population.

While PRCC analysis can identify correlations between model parameters and disease
outcomes, large PRCC values additionally indicate model parameters that contribute a high
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degree of uncertainty to model predictions. In the Tree-hole & Tiger Model, the largest sources
of uncertainty in Ry are the survival rate of tree-hole mosquitoes, the biting rate of tree-hole
mosquitoes, and interspecific competition of tiger mosquitoes on tree-hole mosquitoes. In the
Tree-hole Model and the Tiger Model, the largest contributions to uncertainty are again survival
and biting rates, but also vector carrying capacities.

Parameters Parameters

chipmunk to mosquito transmission
mosquito to chipmunk transmission
adult mosquito survival

mosquito population growth rate
transovarial transmission

mosquito carrying capacity

larval maturation rate

adult biting rate

T

viral dissemination rate

:ompetition coefficient (on focal mosquito) | —

4 05 0 05 1 -1 05 0 05 1
PRCC PRCC

Chipmunk/Squirrel Parameters

chipmunk/squirrel recovery rate E
chipmunk/squirrel abundance LE

4 05 0 05 1
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Figure 4.4  Partial Rank Correlation Coefficients (PRCCs) for the effect of each model

parameter on the basic reproduction number, R_0, in the Tree-hole Model (white), the Tiger

Model (black) and the Tree-hole & Tiger Model (grey). Positive PRCC values indicate that Ry is

positively correlated with a specific parameter, whereas negative PRCC values indicate the

opposite.

Recently, we have begun to extend our La Crosse model to consider temperature dependent

effects associated with seasonality, and the impact that this has on control. Figure 4.5 shows
preliminary results assuming variable mosquito demographic parameters as a function of average

73



seasonal temperatures in the state of Ohio, along with optimal control results for the best timing
of larvicide and adulticide.

Optimal control of La Crosse Virus under a temperature variable environment

—o—Max
25+ ——Ave
500 Min
20 -
400
215:
g N
310 o 300
£
(]
E 5 200
0
100
-5+
L L L L L L L L L L 0% & o — Y v 3
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Temperature in Ohio RO with different temperature in Ohio
Ohio Ohio
—&—Mean Temperature 07 —o—Mean Temperature 0.9

20 -|—+ Without control 20 - |—+—Without control

—+—With control 06 ——Withcontrol | 0.8
0.7
015 05 % 215 8
2 3 K 065
3 & 2 g
8 042 2 058
£10 5 E10 0
- 2 = 049
c 034 ] °
© @ o k]
<. £ 25 03 E
0 0.2
0
0 0.1 0.1
0
0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Proportion of infected chipmunk with mean Proportion of infected mosquitoes with
temperature in Ohio mean temperature in Ohio

Ohio

—e— Mean Temperature
20 |—e—u
0.5

——uy,

o
o
kS

Mean Temperature
o
o
w
Controls

0.2

o

. . . 0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Optimal larviciding and adulticiding with mean
temperature in Ohio

Figure 4.5  Preliminary results for temperature dependent proportions of infected hosts and
vectors, along with instantaneous Ry as a function of season, and optimal larvicide and adulticide
treatment over the course of one year.

Figure 4.6 shows the potential effects of optimally timed control depending on yearly
temperatures over a 10°C range. Specifically, we find that less control is required at lower
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tempeartures, and that significantly greater reductions, particularly in infected hosts, can be
realized at lower temperatures.
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Figure 4.6 Preliminary results showing the number of infected hosts and vectors, as well as total
controls implemented at three different mean yearly temperatures. These results suggest that La
Crosse Encephalitis will become more costly and more difficult to control with increasing global
temperatures.

Conclusions and Summary

We developed what appears to be the first dynamic model for LAC. In contrast to
previous conclusions (29), our model suggests that LAC should be sustainable in 46-60% of
scenarios where the tree-hole mosquito serves as the sole vector. Interestingly, this still
indicates a sizeable number of scenarios where LAC transmission should not occur. One
interpretation is that LAC spread is only marginally favorable, and that small changes in system
characteristics, for example different mosquito or viral strains or environmental conditions, are
sufficient to initiate or suppress disease transmission. This could explain the patchy detection of
LAC across its native range (9), as well as the sudden appearance of LAC at sites where the
disease was previously absent.
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One factor that does not explain the emergence of novel LAC foci is the invasion of tiger
mosquitoes. In fact, we predict that the invasive tiger mosquito should actually reduce disease
transmission in both wildlife reservoirs and human populations (even accounting for the fact that
tiger mosquitoes are aggressive human biters). Thus the presence of the invasive tiger mosquito
is not sufficient to explain the dramatic increase in LAC cases observed in Appalachia (8, 11-13,
30, 31). Interestingly, the Midwest has not seen any increase in LAC prevalence since the tiger
mosquito’s arrival. Indeed, reported cases in the region have decreased (11) (see Appendix VII),
which is consistent with predictions from our model.

Increased warming temperatures, on the other hand, do appear to be detrimental in terms
of both the degree of LAC spread, as well as the cost of LAC control. This suggests that the
increasing prevalence of LAC in Appalachia may be driven by ongoing global change, and
suggests that further emphasis be placed on LAC control in the future.
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PART 5: ZIKA

This work has been published, and can be found at:
Agusto, Folashade B., S. Bewick, and W. F. Fagan. "Mathematical model of Zika virus with
vertical transmission." Infectious Disease Modelling 2.2 (2017): 244-267.

Agusto, F. B., S. Bewick, and W. F. Fagan. "Mathematical model for Zika virus dynamics with
sexual transmission route." Ecological Complexity 29 (2017): 61-81.

Bewick, Sharon, et al. "Zika virus: endemic versus epidemic dynamics and implications for
disease spread in the Americas." BioRxiv (2016): 041897.

Background

After being discovered in Ugandan forests in 1947 (1), Zika virus (ZIKV) remained a
relatively minor arboviral disease for 60 years (2). In 2007, however, an outbreak of ZIKV on
Yap Island (3) in the Pacific Ocean signaled spread of the virus beyond its historic range (2-4).
From Yap Island, ZIKV was transported to French Polynesia in 2013 (5) and then on to Brazil in
2014 (6-8). Once in Brazil, the virus took off, ‘spreading explosively’ (9) throughout both South
and Central America. By early 2016, for example, local transmission of ZIKV had been reported
in 20 countries and territories in the Americas (10). Initially, ZIKV was not viewed as a
significant public health threat. Indeed, with a negligible mortality rate and symptoms
resembling a mild form of dengue (DENV) (2), the ZIKV outbreak appeared to be more of a
nuisance than a public health emergency. In November 2015, however, alarms were raised about
a potential connection between ZIKV transmission and increasing rates of newborn
microcephaly (11).

In 2017, confirmation of the link between ZIKV and microcephaly was made. This, and
the >20-fold increase in microcephaly in regions of Brazil where ZIKV was spreading (12)
caused countries to take drastic precautionary action. The United States Centers for Disease
Control (CDC), for example, posted a travel alert recommending that pregnant women avoid
regions in the Caribbean and Latin America where ZIKV transmission is ongoing (13).
Meanwhile, public health officials in El Salvador and Colombia have suggested that women
delay pregnancy up to two years until ZIKV outbreaks can be controlled (14).

Like other viruses in the genus Flavivirus, for example DENV, West Nile Virus (WNV)
and Yellow Fever Virus (YFV), ZIKV is primarily spread by mosquitoes. For ZIKV, the main
vectors appear to be members of the genus Aedes (15), including the notorious Ae. aegypti. This
is of concern because Aedes species are widespread in warmer temperate and tropical regions
(16, 17). In addition, although chemical larvicides and adulticides are somewhat effective at
reducing certain Aedes populations, these mosquitoes can reproduce in very small containers of
standing water. This makes complete eradication difficult (18).

We considered three interesting features of ZIKV dynamics. First, we asked why a
correlation only recently emerging between prenatal exposure to ZIKV and microcephaly.
Second, we asked about the role of vertical transmission in ZIKV dynamics. Third, we asked
about the role of sexual transmission in ZIKV dynamics. This final question is interesting,
because ZIKYV is relatively unique among vector-borne diseases in terms of its ability for sexual
transmission.
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Model Development

To examine the question of the recent connection between ZIKV and microcephaly, we
considered the following age, sex and reproductive status model:

Humans (S-I-R):
Pre-reproductive females and males:
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Reproductive females (pregnant):
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Post-reproductive females and males:

: infection
maturation death
dSm —< > PBnb
at nxy(Sx + Sy) - nmSm - N, SmIv
] infection
maturation death recovery
dlm _ ’ ) Bnb
= ny(lx + Iy) — Nl + N Smly, — 1l
h
maturation death recovery
dRm _ ’ —_——— —
ek nxy(Rx + Ry) —NmBRm + 71l

where S, I and R are populations that are susceptible to, infected with, and recovered from (and
thus immune to) ZIKV, respectively, and subscripts on the state variables are: j for children, x
for reproductive-aged females that are not pregnant, p for reproductive-aged females that are
pregnant, y for males within the age range of reproductive females, and m for adults beyond
reproductive age (as based on female reproduction).

To examine the role of vertical transmission, we considered the following, somewhat more
simplified model:

Newly-Born Babies Adults
Ne(1 — qadAw—arfw—arRw) @ o
. . vy
A
Ap | w
\Q | E }
—fs - B l.lvv‘—\—wji
qallg Ay, i 1
o e )—>‘ 7 e 2B Hw, R L(l—p)O'W
C P)Op | B I — W e
o,
— B_.' Is — W Pow
q gy T 7y YB Yw | Hw
Y Yw
rqrlp Ry = | @ L
— R I__—:—_ ______ -+  Rw |
 — L B Hp Hyy +———v
arlp Ry Us o HEB s
lbm |— — — - —_- - - - = - 'wm

(1-nagrMgRy

Mosquitoes

Figure 5.1  Flow diagram for our vertical transmission model

with associated equations
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p(t) = mp — qamAw (t) — qmplw (t) — qrmgRw (t) — Ag(ly, Np)Sp(t) — (& + up)Sp(t)
Ep(t) = Ag(ly, Np)Sp(t) — (& + ap + up)Ep(t)

3(t) = qampAw (t) + (1 — p)ogEg(t) — (a + v + up)Ag(t)
Ig(t) = qimglw (t) + pogEp(t) — (a + yp + ug)Ip(t)
I)/BM(t) rqrmgRw (t) — (o + ug)lpm(t)
3(t) = (1 — 1)qrmgRw (t) + vpAp(t) + vplp(t) — (a + ug)Rp(t)
W(t) = aSp(t) — Aw Iy, Nw)Sw (t) — upw Sw (t)
w(t) = Aw Iy, Nw)Sw(t) — (ow + iy )Ew (t)
w(t) =1 =p)owEw(t) — (Yw + tw)Aw ()
w(t) = powEw(t) — (Yw + uw)lw(t)
T (t) = adppr (t) — i Iwm (t)
w(t) = aRp(t) + YywAw (t) + Ywlw(t) — pwRw (f)
v(t) =y — Av(Ap, Ip, Aw, Iw, N, Nw)Sy (t) — uy Sy (t)
Ey(t) = Av(A, Ip, Aw, Iw,Ng, Nw)Sy (t) — (uy + av)Ey(t)
Iy (t) = oyEy(t) — uyly(t).

(5.2)
with state variables defined as follows:

Description of the state variables and parameters of the Zika model (2.1).

Variable Description
Sg(t), Sw(t) Susceptible newly born babies and adults
EB t), Ew(t) Exposed newly born babies and adults
Ag(t), Aw (t) Asymptomatic newly born babies and adults
Ig(£), Iy () Symptomatic newly born without microcephaly and adults
Igni (t), Ty (t) Microcephalic newly born babies and adults
RB(t) Rw (t) Recovered newly born babies and adults
Sy(t) Susceptible female mosquitoes
Ey(t) Exposed female mosquitoes
Iy(t) Infected female mosquitoes
Parameter Description
g Birth rate newly born babies
p Fraction of adults and newly born babies who are asymptomatic
1-p Remaining fraction of adults and newly born babies who are infectious
a Maturation rate
T.qa,q1, qr Fractions of newly born babies who are infected and have microcephaly
1-r Remaining fraction of newly born babies who have microcephaly
Modification parameter
Bw, Bs Transmission probability per contact of adults and newly born babies
Pw PB Infectivity modification parameters in asymptomatic adults and newly born babies
aw,0p Progression rate of exposed adults and newly born babies
Yw, Y8 Recovery rate of asymptomatic and symptomatic adults and newly born babies
Hw, 4B Natural death rate of adults and newly born babies
Ty Recruitment rate of mosquitoes
By Transmission probability per contact of susceptible mosquitoes
by Mosquito biting rate
ay Progression rate of exposed mosquitoes
Ly Natural death rate of mosquitoes

To examine the role of sexual transmission, we again considered a somewhat simplified model,
as follows:
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Figure 5.2  Flow diagram for our sexual transmission model
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Description

Variable

SHt), Sm(t) Susceptible females and males

ER(t), Ep(t) Exposed females and males

IKt), In(t) Infected females and males

RH(t), Ry(t) Recovered females and males

SUt) Susceptible mosquitoes

EW(t) Exposed mosquitoes

It) Infected mosquitoes

Parameter

11y Recruitment rate of females and males

Cr, Cm, Heterosexual contact rate between females and males

Cw, Homosexual contact rate between males

Bu Transmission probability per contact of susceptible
humans with infected mosquitoes

OF, OM Progression rate of exposed females and males

Vi VM Recovery rate of females and males

LE Um Natural death rate of females and males

Ty Recruitment rate of mosquitoes

Br, Bu Transmission probability per contact of females and males

by Mosquito biting rate

Bv Transmission probability per contact of susceptible
mosquitoes with infected humans

oy Progression rate of exposed mosquitoes

Ly Natural death rate of mosquitoes

Model Analysis

Figure 5.3 shows the predicted number of women who will experience a ZIKV infection
during pregnancy as a function of the number of years since ZIKV arrival in a region based on
the dynamics in Eq. (5.1). Similar dynamics are observed for all but the most conservative
estimates of ZIKV transmission, suggesting that one third to one half of women who are or
become pregnant during the first year of a ZIKV outbreak will experience a ZIKV infection at
some point during their pregnancy. These results immediately explain the dramatic increase in
microcephaly rates in Brazil. Indeed, even if ZIKV crosses the placenta in only a small fraction
of infections, or only affects the fetus during the early stages of pregnancy, there will still be a
sizeable fraction of babies born with ZIKV complications.

Figure 4 shows yearly prenatal exposures to ZIKV that would be expected in regions
where the virus has been endemic for many years (i.e., equilibrium exposure rates). Compared
to the 30-40% of pregnant women infected during the first year of a ZIKV epidemic (see Figure
5.3), predicted yearly exposures in regions where the disease is endemic are dramatically lower,
typically below 5 infections per 1000 births. This is slightly higher than the approximately 0.1
cases of microcephaly per 1000 live birth reported in most countries without ZIKV transmission
(28). However, 5 cases per 1000 births is our highest estimate, and further assumes that all
infected pregnancies suffer microcephaly complications. If ZIKV crosses the placenta in only a
fraction of these cases, or only affects the baby during certain stages of pregnancy, rates would
be much lower. Thus, based on our model predictions, it seems highly likely that ZIKV related
microcephaly could easily go undetected in systems with endemic ZIKV — even assuming high
surveillance rates. Together, Figures 3 and 4 explain why the relationship between ZIKV and
microcephaly was only detected once ZIKV emerged in new regions where it had not occurred
previously.
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Figure 5.3  Predicted ZIKV dynamics, showing the number of women who experience a

ZIKV infection during pregnancy as a function of the number of years since ZIKV arrival in the

country or region. The inset shows the total number of ZIKV cases during the first year of the

epidemic.
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Figure 5.4 Number of women who experience an active ZIKV infection at any point during
pregnancy (solid lines) and percentage of children (below reproductive age) that have acquired
ZIKV immunity (dotted lines) as a function of (A) mosquito biting rates, (B) mosquito
recruitment rates, and (C) mosquito life expectancy in a region with endemic disease (i.e., a
system at equilibrium). Results are shown for high (black), intermediate (dark grey), and low
(light grey) ZIKV transmission scenarios. Curves cross the x-axis at the threshold for disease
persistence (Ry = 1). The black arrows show the average values of the parameters under
consideration, and thus can be thought of as starting points for control.
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Figure 5.5 shows PRCC analysis of the ZIKV model with vertical transmission. Notably,
vertical transmission does not have a huge effect on the ability of ZIKV to spread. However, this
does not negate the importance of vertical transmission in driving microcephaly rates across
infants born during a ZIKV outbreak.

Qo
T
T

| N N N N B |

-1 —6.8 —6.6 —O.I4 —0.12 0 0.2 OI.4 d.6 Ol.8 1
Figure 5.5 PRCC values for the Zika model (5.2), using as response functions the basic

reproduction number RO.

Using our ZIKV model with vertical transmission, we thus considered a variety of control
schemes. Figure 5.6 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases
of microcephaly for three different levels of mosquito control.
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Figure 5.6 Simulation of the
Zika model (5.2) for various
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Figure 5.7 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases of

microcephaly for three different levels of personal protection use.
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Figure 5.8 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases of
microcephaly for three different levels of delayed pregnancy.
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Recognizing that delayed pregnancy is not always an option, this appears to be one of the best
mechanisms for preventing ZIKV associated microcephaly during an outbreak. This result is

consistent with our previous findings regarding microcephaly rates during the initial outbreak
versus subsequent outbreaks in a country where ZIKV has become endemic.

Using our ZIKV model with sexual transmission, we explore the role of risky sexual
behavior on ZIKV transmission and prevalence in male and female populations. Figure 5.9
shows how ZIKYV is more prevalent in the female population versus the male population when
heterosexual men have multiple female partners while homosexual males are monogamous. The
reverse, however, is true when heterosexual men are more likely to be monogamous versus
homosexual men.
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Figure 5.9 Simulation of the Zika model (5.3) as a function of time with different sexual contact
rates. (a) Setting the sexual contact rate Cp=0, Cp;=50, Cyp=2. (b) Setting the sexual contact rate
CF=O, CM1=2, CM2=80.

Summary and Conclusions

By exploring Zika using three different models, we found an explanation for observed increases
in microcephaly in regions where ZIKV has recently been introduced. We also identified
strategies for combatting ZIKV microcephaly, and characterized the degree to which sexual
behavior might impact the dynamics of ZIKV spread.
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PART 6: PHENOLOGY MODELS

Background

Phenology — the seasonal timing of plant and animal life-cycles — governs temporal
interactions of species across ecosystems. As such, it is an important driver of ecological
processes. With respect to pathogen exposure pathways, phenology can affect whether or not a
particular disease persists, the severity of disease spread and the timing of disease appearance in
susceptible populations. These factors, in turn, inform management decisions regarding the best
intervention strategies and when these should occur to optimally reduce disease risk.
Unfortunately, species phenologies are shifting as a result of climate change. Furthermore, shifts
in phenology, both across life-stages and among species, are occurring at different rates, altering
intra- and interspecific interactions. Because these interactions are critical to disease
transmission, disease dynamics may be particularly sensitive to phenology change. Although
there is a long history of vector-borne disease models in epidemiology, few account for species
phenology, and even fewer do so in the context of complex, multi-species interaction networks.

Several modeling papers have considered seasonality or phenology. Ding (11) used a
hybrid model with discrete ‘summer’ and ‘winter’ seasons to study the temporal dynamics of
ticks, mice and Lyme disease and the optimal timing of acaracide application for disease
management. Although two discrete seasons can only capture phenology in the broadest sense,
Ding’s work was a first step towards integrating multi-species interaction networks and
management strategies in a seasonal environment. In a more recent study, Thomas, et al. (12)
applied a similar, two season model to understand the impact of insecticide use to control WNV.
Their model included a temperature dependent delay-differential equation, and predicted that
spraying in the fall would be more effective than spraying in warmer months. Again, however,
the model did not include explicit phenology.

Even fewer modeling papers have considered the role of seasonality on the basic
reproduction number R, — a quantity that is often the focus of epidemiological models. In
particular extension of R, to seasonal systems is relatively recently, having only been developed
within the past few years. Thus, while Ry has been studied for systems with periodic vector
populations, the broader influences of phenology on persistence of vector-borne diseases remain
poorly known. A better understanding of the fundamental relationships between model
parameters, phenology and disease persistence could provide valuable insight into disease
ecology. This is particularly true for rare diseases that have not been extensively studied, but is
also true for more common diseases that are strongly affected by seasonality and therefore may
not be fully described by existing qualitative models that do not consider phenology.

Model Development

To explore the effect of seasonality in multi-species host and vector populations on the basic
reproduction number, Ry, we model a disease whose dynamics are described using a prototypical
SI, SIR, or SIRS-type compartmental ordinary differential equation (ODE) model, where 7;,(t)
and S;,(t), denote the infectious and susceptible population densities of the ith vector species,
respectively, and likewise for 7iA(t) and Sj(t) are the ith host species. Recovered classes, if
present, will be irrelevant in our mathematical analysis. The time evolution of the infectious
compartments are given by the following ODE’s:
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(6.1)
In Eq. (6.1), B"j denotes the probability of transmission from host type j to vector type i, and Bhij
denotes the probability of transmission from vector type j to host type i. The terms o(t)'; and
a(t)™; denote the rates at which infectious vectors and hosts exit the infectious classes. These rates
are expected to vary seasonally in conjunction with the host and vector populations. Specifically,
when population are “in-season” (meaning a times of large population density), infectious
individuals experience favorable environmental conditions and remain in the area for the
duration of the infection, so the corresponding exit rates are expected to be given by the natural
recovery rates (or the natural death rates when recovery times are much larger than the average
lifespans). When populations are “out-of-season” (meaning a times of negligible population
density), individuals quickly exit the area due to either migration or rapid death caused by
unfavorable environmental conditions, so the corresponding exit rates are expected to be much
larger than the in-season values.

To enable calculation of multi-species seasonal R, values, we assume simple pulsed

population models where population values are a fixed non-zero constant when in-season, and
are zero when out of season. Specifically:

NP, (t—2zY) mod T < 7¥
NP(t) =
0, otherwise
N NI (t—20) mod T < 7!
Ni'(t) =
0, otherwise

(6.2)
In Eq. (6.2), T is the length of the year, t;, is the length of the on-season for vector species i, z, is
the time of year at the on-season of which vector species i begins, and N, is the population level
reached by vector species i during the on-season. The corresponding terms for host populations
are defined analogously. Although biologically simplistic, these pulsed population models are
able to capture basic effects related to the relative timings of vector/host presence and absence.
Further, pulsed populations will require mathematics for calculating the periodic basic
reproduction number that are far more tractable than the mathematics under more realistic
population models.

The exit rates out of the infections classes are assumed to have the same timings as the
corresponding pulsed populations. When vector species i is in-season, the infectious recovery
time is assumed to be much larger the natural species lifetime, so the exit rate out of the
infectious class is assumed to be given by the natural death rate denoted by p,;. Out-of-season,
the exit rate of vector species i is denoted by viy, where yiy > [,i. We thus have

Q;

o) = pd, (t—=zY)mod T < 77
vy, otherwise.

(6.3)
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The host species are assumed to recover from infection over time scales much shorter than their
average lifetimes, so the in-season exit rates are taken to be natural recovery rates, denoted by rik
for host species i. The out-of-season exit rate is denoted yik for host species i, where yih > rih,
and we thus have

0 rh (t—2P) mod T < 7/
oy =
vy, otherwise.
(6.4)
Model Analysis

From the model defined in Egs. (6.1-6.4), it is possible to explore the effect of seasonality on the
basic reproduction Ry in multispecies seasonal models. Figure 6.1 shows the predicted value of
Ro as a function of the relative timing of host phenology to vector phenology for a disease system
involving a single vector and a single host for a range of different host and vector exit rates.
Importantly, we find that a slight offset results in a larger Ry, which is counterintuitive. Indeed,
one would inherently expect that perfectly aligned phenologies would be most conducive to
disease spread.

RO: One host one vector

3 T T T T T T T
—1/4"=12days, 1/+" = 14 days
05| = 1/4"=1/4" =7 days |
' 1/4"=1/4"=1day
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o
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0 1 - - 1 1 1 1
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host season timing offset z h (days)

Figure 6.1  Calculated values of Ryas a function of the phenology difference between host
and vector species
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Figure 6.2 extends Figure 6.1 by considering a system with 2 hosts and a single vector. Again,
the slight mismatch in phenology between host and vector species at the maximum value of Ryis
apparent in this somewhat more complex system.
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Figure 6.2 Calculated values of Ry as a function of the phenology difference between two hosts
and vector species

Figure 6.3 extends Figure 6.1 by considering a system with a single host and 2 vectors. As in
Figures 6.1 and 6.2, the mismatch in phenology between host and vector species at the maximum
value of Ry is apparent in this system as well.
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Figure 6.3 Calculated values of Ry as a function of the phenology difference between a host and
two vector species

In addition to an R, analysis, we used numerical simulations to explore the dynamics of a
similarly pulsed phenological model with a single host and vector species. This model is shown
in Figure 6.4, along with results for infected hosts as a function of phenological mismatch.
Interestingly, we found clear evidence of a bifurcation as a function of the mismatch in timing
between host and vector seasonal timing. In particular, changes in this mismatch can drive
disease from an endemic equilibrium to year-to-year oscillations in disease severity and even
into a chaotic regime, where there is no way to predict the level of disease from one year to the
next. This finding of changes in qualitative dynamics of a simple SIR type model based on the
seasonality of the host relative to the vector suggests that climate change may have a negative
and unpredictable effect on disease dynamics.
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Figure 6.4  Simple single vector single host model to explore the role of phenology on
disease dynamics.
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Figure 6.5  Orbit plots showing the average percent of hosts infected as a function of
phenology mismatch between the host and vector populations.

The above models are simple and generic, aiming to capture the effect of phenology without
becoming mired in the details of any specific system. However, we also explored more specific
models carefully parameterized to capture the temperature dependent life-histories of three
different genera of mosquito — Aedes, Culex and Culiseta. These three genera are responsible for
the majority of disease spread of North American mosquito-borne disease systems, for example
La Crosse Encephalitis, West Nile Virus and Eastern Equine Encephalitis respectively. For these
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species, we used data on larval development rates over five instars, along with estimates of adult
mortality as a function of temperature, and fecundity as a function of temperature to predict
changes in mosquito population dynamics throughout a season and also in the context of overall
global warming. Next, we interfaced these models to a genetic algorithm in order to predict the
optimal timing for larvicide and adulticide application to maximally reduce the mosquito
population while minimizing costs. Figure 6.6 shows an example output for Aedes aegypti
assuming mean seasonal temperatures in New Orleans under current conditions. Figure 6.7
shows the same output, but under the assumption of a season-wide increase in average
temperature of 3°C due to global warming.
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Figure 6.6 Mosquito larval and adult population abundances as a function over a season, but in
an unmanaged system (black) and under management (red) applying both larvicide and
adulticide. Total larvicide and adulticide costs for management were $4967 and $5078
respectively, with effort focused throughout the spring, summer and fall, particularly for
larvicide.
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Figure 6.6  Mosquito larval and adult population abundances as a function over a season, but
in an unmanaged system (black) and under management (red) applying both larvicide and
adulticide. Total larvicide and adulticide costs for management were $9934 and $1693
respectively, with effort focused more in the spring and fall.

Similar figures can be made for different locations, based on NOAA data on mean seasonal

temperatures, altered according to various climate change scenarios. Likewise, we can examine
each of the different mosquito species for which we have fully parameterized models.
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PART 7: GUI

As a final step towards bringing our work to its target audience, we developed a GUI that allows
vector management practitioners to input information on population abundances throughout the
year, and then use this information to predict the optimal timing of larvicide and adulticide
treatments based on the phenology of the vectors. Briefly, the GUI works by fitting a curve to
the inputted seasonal data, and then using this to parameterize an underlying vector dynamics
model. Figure 7.1 shows the basic user interface linking management personnel to the
admittedly complex mathematical models that we developed as part of the current grant.

Mosquito Control Resource Optimization

Instructions and Github Repo Provide Feedback ¥¥

Choose CSV or excel File Data Summary Mosquito Population Model Resouce Optimization Model

Browse... Culex.csv .
Overview

This project aims to make an accessible model for mosquito control resource optimization. The model uses data provided

by users to estimate the mosquito populations in the sampling area for the sampling timeperiod, and the optimal time to

Count Column apply a treatment or multiple treatments.

Upload complete.

count

Instructions
Date Column
dateCollected This application accepts CSV and excel files (.xls, .xIsx) as inputs. None of your data are stored long term on the Rshiny
servers. At the moment, only a single spreadsheet can be uploaded. If you have multiple years of data, please consolidate

Latitude Column to one spread sheet.

* Consistent date formats are required
e Example Data Sheet
Longitude Column * Provide Feedback ¥
* Minimum data requirements for model:
* Countdata
* Date Collected

User Inputs:
* Mosquito Life span in days
* Percent of poplation knocked down by treatment
* Number of treatments applied
* Number of days between treat

Figure 7.1 GUI interface aimed at aiding vector management practitioners in selecting the
optimal timing of larvicide and adulticide treatments to best balance vector reduction and
management costs.

Figure 7.2 shows a sample output of the fitted input data, that is then used to predict optimal
timing of management strategies based on historical phenology data. Figure 7.3 shows the
controlled versus uncontrolled population of mosquitoes predicted based on a particular set of
management criteria (estimated mosquito lifespan, allowable costs, etc.)

94



Mosquito Control Resource Optimization
Instructions and Github Repo Provide Feedback i

Choose CSV or excel File Getting Started Data Summary Resouce Optimization Model

Mosquito Lifespan in Days Mosquito Lifecycles Between Seasons
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Upload complete — —

Browse... Culex.csv

Count Column

count

Fitted Population Model Fitted Emergence Rate
{

Date Column
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50 50
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Figure 7.2 Sample fitted curves from the GUI
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Figure 7.3  Sample output illustrating the degree of vector reduction achievable by optimally
distributing management actions based on historical phenology data.
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CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH

Through a series of models, we have successfully improved the mechanistic detail
incorporated into control models, and clarified when simplifying assumptions are valid and
when they are not. We have additionally explored several interesting features of the
management landscape, including variation in accessibility to habitat patches for the purposes
of control. Using some of the insight gained from these models, we have developed new
models for specific diseases, as well as specific vectors (Culex, Aedes and Culiseta)
responsible for the majority of native North American vector-borne diseases. These models
allow us to understand how changing conditions due to global change might impact
everything from vector biology through to disease spread and disease dynamics. Finally, we
have incorporated many of our findings into a GUI that is aimed at direct application by
mosquito management practitioners based on relevant data collected on a regular basis (e.g.
adult counts in CDC light traps). This transitions our findings to the relevant audience, where
they can be broadly applied to improve management of vector-borne diseases.

In the future, we would like to extend our models to some of the more specific
diseases that we had initially anticipated modeling. We believe that this is still a highly valid
and important endeavor, and that our recent findings will improve our ability to tackle this
goal, ultimately increasing the accuracy and resolution with which we will be able to predict
vector-borne disease dynamics and vector-borne disease control, both now and in the future.
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