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 Abstract 
Objectives -  Exposure to biting ticks and insects on DoD lands puts military personnel at risk 
of contracting arthropod-borne diseases, many of which can have debilitating complications.  
However, because most North American vector-borne diseases are maintained in wildlife 
reservoirs, disease transmission is often sensitive to environmental conditions, including 
seasonality and global change.  In addition, there is a lack of models that account for the 
detailed mechanisms and differences among potential control methods.  This makes it difficult 
to predict when and where human disease will appear, and how it should be managed when it 
does.  Climate warming, in particular, can complicate predictive efforts, because it 
compromises our ability to extrapolate from current conditions or ‘rules-of-thumb’ that have 
been acquired over years of experience.  One of the most important aspects in this regard is 
phenology change – i.e., the change in the timing of plant and animal lifecycles.  Shifting 
phenologies are not only one of the earliest indicators of climate change.  This can then affect 
disease transmission, fundamentally altering disease dynamics, and impacting everything from 
disease risk to management options.   

Technical Approach -  To aid in prediction of human disease risk, and to develop on-the-
ground management strategies for reducing disease spread, we developed modeling 
frameworks that incorporate phenology and global change impacts on phenology as well as 
novel model formulations that account for the specifics of different insecticide management 
strategies. Our frameworks are broad enough to accommodate a range of different vectors 
(mosquitos, ticks) and pathogens (virus, bacteria) and are general enough to apply to both well 
studied diseases, and diseases that have not been as well characterized.  For this reason, we 
focused heavily on the mosquito side of control, where a handful of mosquitoes are responsible 
for the majority of disease spread, including both common and rare diseases.  Using our novel 
models, we additionally developed a GUI that allows practitioners to input timeseries data on 
mosquito abundances (e.g. from CDC light traps) and then outputs optimal timing of 
management strategies.  The underlying optimization scheme that we developed for this GUI is 
broad and flexible, thus management decisions can be made based on the combination of 
historically observed phenology, cost constraints, and efficacy of the chosen management 
strategy.  In addition, the GUI can be re-run at any point in the season, allowing land managers 
to update their predictions partway through the year, allowing for incorporation of current year 
conditions. 

Results -  Using a range of different modeling approaches, we developed a number of improved 
models of vector-borne disease management.  These models include pertinent mechanisms that 
differentiate the mode of action of different management strategies, thereby improving all models of 
vector-borne diseases.  We also clearly delineated the difference between approximate, implicit 
modeling of control, and accurate, mechanistically corrected explicit modeling of control, 
highlighting when and where the former can be used in place of the latter.  Next, we developed 
models for two diseases – La Crosse Encephalitis and Zika – that have been detected in North 
America.  For the La Crosse Encephalitis model, we began extending results to include phenology, 
which suggests that some of the observed increase in LAC may be a result of warming conditions.  In 
addition, these results provide a stark warning for the future.  Finally, we examined some general 
models of vector-borne disease systems, including vector and host populations, in the context of 
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changing phenology due to global change.  These models suggest that R0 will depend on the various 
perturbations to different vector and host populations, and that effects on dynamics may be complex 
and non-intuitive, including the appearance of year-to-year cycles and chaos in vector-borne disease 
outbreaks.  Finally, we extended our phenologically explicit modeling to consider specific vectors 
involved in the most notorious North American vector-borne diseases, including La Crosse, West 
Nile Virus, and Eastern Equine Encephalitis.  We are currently using these models, interfaced to a 
genetic algorithm, to best predict the timing of management strategies, both under current conditions 
and in the future.  Finally, we capped our work off by developing a GUI that puts our complex 
mathematical formulations under the cap, allowing management practitioners to input their data on 
mosquito abundances, as well as their economic and social constrains in order to identify optimal 
timing of larvicide and adulticide treatments based on their requirements and desires. 
 
Benefits -   Predictions from our modeling efforts identify some of the key management 
mechanisms influencing disease transmission, as well as the relevant ecological processes 
associated with disease spread.  This information allows us to identify the system properties 
that should be monitored to best predict disease, both now and in the future.  Another key 
contribution from our research is the first ODE epidemiology model for La Crosse Virus.  
This is an emerging disease that is now one of the most commonly reported arbovirus 
infections.  Finally, application of optimal control to our phenologically explicit models and, 
in particular, our highly parameterize vector models for Aedes, Culex and Culiseta enables 
us to predict management strategies that successfully balance the competing needs of vector-
borne disease management on military installations.  Ultimately we have transitioned our 
modeling approaches to a GUI interface that can be used by practitioners based on their own 
data and systems.   
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Objectives 
 
 Although we began this research with the single objective of developing a series of 
models exploring the role of phenology on vector-borne diseases, in the course of studying these 
models, we realized that the manner in which control strategies were incorporated had a 
significant impact on model predictions.  For this reason, we arrived at a second objective, which 
was to better define the modeling of management schemes.  This became a pre-goal to our 
phenology work.  Thus, our first objective was to improve model formulation of a variety of 
different control options available to practitioners.  This included models: 

1. studying the role of personal protection and wavering accessibility; 
2. contrasting area-wide ultra low volume (ULV) adulticide sprays, residual 

adulticide barrier sprays, larval source reduction, and area-wide low volume (LV) 
larvicide spray  

3. selecting optimal combinations of barrier-spraying/larval source reduction and 
aerial spraying when habitat includes hard to access regions.   

 For our second objective, specifically focused on disease spread, we had initially planned 
to target a series of native North American diseases.  However, after receiving funding, Zika was 
introduced into the US.  Thus, we spent some time exploring this new disease and it’s 
implications for disease transmission in the US.  For this reason, we ended up spending less time 
on some of the anticipated specific native diseases.  To counter this we covered a range of 
broader models that can be applied to specific diseases within the context of phenology and 
global change, leaving some detailed applications for a future date.  In summary, then, our 
objectives were as follows:  

1. understand the spread and dynamics of Zika;  
2. explore the role of phenology and phenology change on disease dynamics and the 

ability of disease to spread (R0) ;  
3. develop specific predictions for the potential of future disease spread based on 

detailed physiological or population level data of individual mosquito and host 
species  

4. create a GUI that enables improved practitioner decisions regarding the timing of 
management actions, including under both current and future conditions. 
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BACKGROUND 
 

Military personnel, who spend large amounts of time working and training outdoors, 
routinely risk exposure to biting ticks and insects. Such species are host to a great diversity of 
arthropod-borne diseases, many of which can have debilitating, long-term, and even life 
threatening impacts on infected personnel.  Consequently, the presence of such diseases, and the 
interactions of their host arthropods with personnel in training areas, is a significant health 
concern.  For example, infections with tick-borne diseases, have occurred during military 
training operations in New Jersey and Arkansas.  Likewise, Lyme Disease (LD), a particularly 
widespread tick-borne spirochete, has been increasing among both active and reserve service 
members.  Indeed, LD accounted for 70% of all zoonotic and vector-borne diseases reported by 
the U.S. Air Force between 2000 and 2011.   

Most vector-borne diseases that occur in North America are maintained in wildlife 
reservoirs with humans as incidental or dead-end hosts.  As a consequence, disease transmission 
pathways are often complex and incompletely characterized.  They can involve multiple chains 
of infection through different host populations, different vector populations and different life-
stages, and can vary significantly in space and time as a result of environmental effects on host, 
vector and disease biology.  Even under stationary conditions, this can make it challenging to 
predict where and when disease will appear in human populations.  Under non-stationary 
conditions, such as those associated with global change, prediction becomes even more difficult.  
In particular, because different species and different life-stages can respond differently to altered 
temperature and precipitation patterns, climate change can uncouple certain species or stage 
interactions while reinforcing others.  This is particularly true of phenology change, which is 
both one of the earliest indicators of climate change, and also a key factor in governing temporal 
overlap between populations.   

Even when it is possible to predict when and where human disease will occur, 
management of vector-borne diseases can still be difficult.  In particular, the timing of 
intervention strategies should not necessarily occur at the peak of disease risk.  Rather, 
intervention should occur prior to peak disease, at times corresponding to the presence of 
sensitive targets or opportunities for transmission between key populations (e.g. nymphs and 
larvae, vectors and hosts).  It is often challenging to identify this optimal time for intervention, 
which can depend strongly on the details of the system, as well as the mechanistic details of the 
management approaches themselves. For this reason, optimal timing of intervention strategies 
such that neither diseases nor their management interferes with land-use requirements is a 
complex task that depends on the interplay between system characteristics and land-use 
constraints.  
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PART 1:  UNDERSTANDING PERSONAL PROTECTION 
 

This work has been published and can be found at: 
Demers, Jeffery, et al. "Dynamic modelling of personal protection control strategies for vector-
borne disease limits the role of diversity amplification." Journal of The Royal Society Interface 
15.145 (2018): 20180166. 
 
Background 
 

The use of epidemiological modelling to study vector-borne diseases has a long history, 
dating back over 50 years to the classic Ross–MacDonald model [1–3].Since then, there have 
been numerous extensions and adaptations [4,5], including spatial dynamics [6], host 
heterogeneity [7,8], seasonality [9], stochasticity[10] and control [11,12]. There has also been 
some degree of debate regarding model formulation [13], such as the form of the biting rate and, 
by extension, disease transmission [14,15]. Unfortunately, different assumptions regarding biting 
rates can influence predictions for when and where a disease is capable of spreading, as well as 
estimates of disease controllability. 

Model assumptions regarding disease management can also strongly impact estimates of 
disease controllability. This is particularly true of personal protection. Recently, Milleret al.[16] 
used a model with two classes of hosts—a protected class and an unprotected class—to show 
that, in contrast to predictions from simpler models [11,17–21], personal protection use by only 
sub-portions of the host population can actually worsen an outbreak of a vector-borne disease.  
This is a result of diversity amplification—an effect in vector-borne disease epidemiology which 
relates increases in overall disease prevalence to increases in host diversity [22–26]. 
Amplification is a potential risk whenever vectors preferentially concentrate attacks on sub-
populations with high infection susceptibilities [26]. This occurs, for example, when partial 
personal protection coverage causes mosquitoes to divert from protected individuals and focus 
bites on unprotected individuals [16,27,28]. Diversion can lead to rapid disease spread within the 
unprotected sub-population and, consequently, personal protection models which incorporate 
vector diversion have the potential to display counterintuitive increases in disease severity 
[16,26,28,29]. 

Many vector-borne disease models which use multiple host classes and, by extension, 
potentially exhibit protection-induced diversity amplification (e.g. [16,26,28,29]) suffer from a 
common shortcoming—assignment of individuals to protected and unprotected classes is 
assumed static. Some models do allow for hosts who only intermittently apply personal 
protection (such as hosts who sleep under bed nets only at night), but even in these cases, 
assignments to sporadically protected and completely unprotected classes typically remain fixed 
[28,29]. In reality, protection status is dynamic: people forget to apply repellent, run out of 
repellent, wear down their bed nets, or grow weary of protection efforts and thus falter in 
accessibility [30,31], and non-accessible individuals can potentially re-acquire protection or re-
adopt its use. This is particularly true if rigorous campaign initiatives are mounted in support of 
personal protection use. Consequently, there exists a flux of hosts into and out of the protected 
class, and this implies that mosquito focusing on unprotected individuals is actually more diffuse 
than indicated by static protection class models. Furthermore, static protection classes necessitate 
that control strategies, for example, the supplying protection or partaking in public service 
announcements by a health agency, be incorporated into models as direct influences over the 
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proportions of the two host populations. More realistically, however, distribution constraints and 
socio-economic factors which deter accessibility [30,31] severely limit controllability over the 
actual number of protected individuals, and control efforts will instead have a direct influence 
over the flux between the protected and unprotected classes. That is, the more health agencies do 
to make available and encourage the use of personal protection, the more likely people are to 
adopt and re-adopt personal protection. 

We developed a methodology for modeling personal protection which accounts for flow 
between protected and unprotected classes. Specifically, we build a model similar to that in 
Milleret al.[16], but include movement between classes that we assume to be proportional to 
control effort. We then studied the impact of movement between the protected and unprotected 
classes assuming frequency-dependent (gonotrophic-limited) transmission, density-dependent 
(search-limited) transmission and an intermediate scenario that necessitates a functional response 
approach. We found that movement between classes and indeed, classes in general, do not matter 
strongly in the density-dependent limit. However, for the other two scenarios, there is strong 
divergence between our model, an analogous model with static protected and unprotected 
classes, and a simpler personal protection model with a homogeneous host population. Whereas 
our model predicts increased disease spread relative to the model with only a single class of 
hosts, it predicts decreased disease spread relative to the model with fixed protected and 
unprotected classes. From this model behaviour, we conclude that hosts’ propensity to move 
between protected and unprotected classes can severely hamper a mosquito’s ability to focus 
bites on anyone group of individuals, thus mitigating the potential for diversity amplification 
effects. Consequently, our results indicate that, relative to our model, models with static 
protection classes generally overestimate parameter ranges over which protection-induced 
disease amplification will be a practical concern. This provides not only a strong theoretical 
foundation for modelling methodology, but also a partial explanation for the disparity between 
theoretical prediction of protection-induced diversity amplification and, to the best of our 
knowledge, its apparent lack of observation in the field 

 
 

Model Development 
 

We began by carefully examining standard biting rate models.  For a population of 
humans of density Nh homogeneously distributed throughout a unit area,V, we denote by f the 
average rate at which the human population is bitten by a single mosquito, also located within V. 
Following Milleret al.[16], Yakob [41]and Antonovicset al.[42], we assume a Holling type-II 
functional response [43–45] for f:  

 

 
(1.1) 

where 

 
            (1.2) 
 

precise biological modes of action are still a subject of debate [40].
DEET applied to the skin provides effective protection for many
hours, so its efficacy likely results from a low volatile compound,
implicating a contact repellent or anti-feedant which cannot
interfere with the long-range search phase of the host-seeking
process. Both contact repellents and anti-feedants act by inducing
taste avoidance mechanisms in mosquitoes [39]; experiments
show that mosquitoes do not bite and are repelled within tens
of milliseconds after contact with a DEET-treated section of
human skin [38]. Thus, like bed nets, DEET interferes with the
second short-range phase of host-seeking by preventing biting
after a host has been located and identified.

2.2. Biting rate model
Ignoring personal protection for a moment, consider a popu-
lation of humans of density Nh homogeneously distributed
throughout a unit area, V. We denote by f the average rate at
which the human population is bitten by a single mosquito,
also located within V. Following Miller et al. [16], Yakob [41]
and Antonovics et al. [42], we assume a Holling type-II functional
response [43–45] for f :

f ¼ bbANh

1þ tHANh
, ð2:1Þ

where

tH ¼ t0 þ bbt: ð2:2Þ

In the above two formulae, A denotes the random search rate,
where 1/A is defined as the average time taken per unit area by
an actively searching mosquito to locate a single human, and bb

denotes the probability for a mosquito to deliver a successful
bite to a host once the target has been located and identified.
Note that bb generally differs from unity due to the human ability
to spot and avoid approaching mosquitoes, a mosquito’s capacity
to make mistakes and misidentify targets, and disruption from
random environmental factors. The quantity tH denotes the hand-
ling time and is defined as the average time taken by a mosquito
to identify, engage and process the blood meal from a single
human after the human has been located. The handling time is
written in terms of a pre- and post-bite handling time, denoted
by t0 and t, respectively, in equation (2.2).

The parameters A, t0 and t are each associated with a specific
phase of mosquito host-seeking and blood processing. The
random search rate, A, is associated with the long-range first
phase, and 1/A is therefore the average time per unit area a
mosquito spends exploring the CO2 landscape and investigating
non-human visual features while attempting to locate a unit den-
sity of humans. This term depends on the size of the unit area V,
the details of the carbon dioxide landscape as determined by
both human and non-human sources, and a range of species-
specific and environmental factors. The pre-bite handling time,
t0, is the average time required to complete the short-ranged
second phase of the host seeking process. Owing to the short-
ranged nature of this interaction mode, we expect t0 to be of
the order of minutes or, at most, hours. The post-bite handling
time, t, is the gonotrophic cycle time corresponding to the
third phase, and is thus of the order of days [35].

The type-II functional response’s capacity to account for
gonotrophic, density and behavioural limitations on biting
rates allows a spectrum of disease transmission assumptions to
be modelled [16,41,42]. We will be especially interested in the
limits ANhtH% 1 and ANhtH& 1, corresponding to the so-
called frequency-dependent and density-dependent limits,
respectively [14,15,42]:

f '
bb

tH
, ANhtH % 1

bbANh, ANhtH & 1:

8
<

: ð2:3Þ

In the frequency-dependent limit, host density is so large that the
time spent by mosquitoes in the long-range search phase is
negligible compared to the handling time. Mosquitoes bite at a
constant rate determined primarily by the gonotrophic cycle
time, ultimately resulting in disease transmission assumptions
equivalent to those of the Ross–MacDonald model [1–3],
which was the first and is arguably the most common framework
for modelling vector-borne diseases. In the density-dependent
limit, host density is so low that mosquitoes spend the majority
of their time in the long-range search phase, and the gonotrophic
cycle time is negligible by comparison. Density dependence
ultimately leads to mass-action disease transmission, which is
another a common framework for vector-borne disease
modelling [13,14].

2.3. Personal protection model
2.3.1. Existing personal protection models
Many existing vector-borne disease models that incorporate
personal protection can be classified into two categories. The
first considers separate protected and unprotected classes (e.g.
[16,26,28,46]). We will refer to these types of model as ‘static
two-class models’. In these models, differing control strategies
correspond to differing fractions of protected and unprotected
humans, but there is no notion of control strength and no poten-
tial for dynamic control strategies. These models do not allow
for movement between protected and unprotected classes, so a
person who is protected is always protected and a person who
is unprotected is always unprotected. Although one might
assume that this distinction is inconsequential, particularly
under equilibrium population conditions, we will show (see §3)
that, relative to our personal protection model, static two-class
models tend to underestimate the beneficial effects of personal
protection and overestimate the potential for protection-induced
diversity amplification.

Models of the second type assume a single, well-mixed
human population as opposed to distinct protected and unpro-
tected classes, and will hereafter be referred to as ‘one-class’
models (e.g. [11,17–21]). In these models, personal protection is
usually considered to be control variable which is incorporated
as an overall reduction in the mosquito biting rate, with the con-
trol strength corresponding to the per cent reduction in biting rate.
The virtue of one-class models is their simplicity and compatibil-
ity with dynamic and optimal control techniques. However, as
we will argue below, the interpretation of control strength as a
reduction in f is ecologically unfounded. Indeed, we will show
(see §3) doing so results in models that overestimate the beneficial
effects of personal protection, and thus the controllability of the
disease outbreak, relative to our personal protection model.

2.3.2. Incorporating personal protection into biting rates
We model personal protection’s influence on biting rates through
modified values of the parameters appearing in equations (2.1)
and (2.2). Because bed nets and DEET influence neither
the long-range search phase nor the gonotrophic cycle phase,
the search rate A and post-bite handling time t will be unaffected
by personal protection use; personal protection’s disruption of
the short-range, second host-seeking phase affects only the pre-
bite handling time t0 and the bite probability bb. Protection
measures may extend or shorten the pre-bite handling time
depending on if they confuse or induce aversion, respectively.
The repellent properties of insecticide-treated nets are uncertain
[36], and it is currently unknown whether DEET confuses or
induces aversion [40]. Regardless of the protective measure
in use, we expect the pre-bite handling time to remain of the
order of minutes to at most hours, so personal protection’s influ-
ence on t0 will correspond to relatively small changes in the
numerical value for f. Personal protection causes relatively
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precise biological modes of action are still a subject of debate [40].
DEET applied to the skin provides effective protection for many
hours, so its efficacy likely results from a low volatile compound,
implicating a contact repellent or anti-feedant which cannot
interfere with the long-range search phase of the host-seeking
process. Both contact repellents and anti-feedants act by inducing
taste avoidance mechanisms in mosquitoes [39]; experiments
show that mosquitoes do not bite and are repelled within tens
of milliseconds after contact with a DEET-treated section of
human skin [38]. Thus, like bed nets, DEET interferes with the
second short-range phase of host-seeking by preventing biting
after a host has been located and identified.

2.2. Biting rate model
Ignoring personal protection for a moment, consider a popu-
lation of humans of density Nh homogeneously distributed
throughout a unit area, V. We denote by f the average rate at
which the human population is bitten by a single mosquito,
also located within V. Following Miller et al. [16], Yakob [41]
and Antonovics et al. [42], we assume a Holling type-II functional
response [43–45] for f :

f ¼ bbANh

1þ tHANh
, ð2:1Þ

where

tH ¼ t0 þ bbt: ð2:2Þ

In the above two formulae, A denotes the random search rate,
where 1/A is defined as the average time taken per unit area by
an actively searching mosquito to locate a single human, and bb

denotes the probability for a mosquito to deliver a successful
bite to a host once the target has been located and identified.
Note that bb generally differs from unity due to the human ability
to spot and avoid approaching mosquitoes, a mosquito’s capacity
to make mistakes and misidentify targets, and disruption from
random environmental factors. The quantity tH denotes the hand-
ling time and is defined as the average time taken by a mosquito
to identify, engage and process the blood meal from a single
human after the human has been located. The handling time is
written in terms of a pre- and post-bite handling time, denoted
by t0 and t, respectively, in equation (2.2).

The parameters A, t0 and t are each associated with a specific
phase of mosquito host-seeking and blood processing. The
random search rate, A, is associated with the long-range first
phase, and 1/A is therefore the average time per unit area a
mosquito spends exploring the CO2 landscape and investigating
non-human visual features while attempting to locate a unit den-
sity of humans. This term depends on the size of the unit area V,
the details of the carbon dioxide landscape as determined by
both human and non-human sources, and a range of species-
specific and environmental factors. The pre-bite handling time,
t0, is the average time required to complete the short-ranged
second phase of the host seeking process. Owing to the short-
ranged nature of this interaction mode, we expect t0 to be of
the order of minutes or, at most, hours. The post-bite handling
time, t, is the gonotrophic cycle time corresponding to the
third phase, and is thus of the order of days [35].

The type-II functional response’s capacity to account for
gonotrophic, density and behavioural limitations on biting
rates allows a spectrum of disease transmission assumptions to
be modelled [16,41,42]. We will be especially interested in the
limits ANhtH% 1 and ANhtH& 1, corresponding to the so-
called frequency-dependent and density-dependent limits,
respectively [14,15,42]:
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tH
, ANhtH % 1

bbANh, ANhtH & 1:
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In the frequency-dependent limit, host density is so large that the
time spent by mosquitoes in the long-range search phase is
negligible compared to the handling time. Mosquitoes bite at a
constant rate determined primarily by the gonotrophic cycle
time, ultimately resulting in disease transmission assumptions
equivalent to those of the Ross–MacDonald model [1–3],
which was the first and is arguably the most common framework
for modelling vector-borne diseases. In the density-dependent
limit, host density is so low that mosquitoes spend the majority
of their time in the long-range search phase, and the gonotrophic
cycle time is negligible by comparison. Density dependence
ultimately leads to mass-action disease transmission, which is
another a common framework for vector-borne disease
modelling [13,14].

2.3. Personal protection model
2.3.1. Existing personal protection models
Many existing vector-borne disease models that incorporate
personal protection can be classified into two categories. The
first considers separate protected and unprotected classes (e.g.
[16,26,28,46]). We will refer to these types of model as ‘static
two-class models’. In these models, differing control strategies
correspond to differing fractions of protected and unprotected
humans, but there is no notion of control strength and no poten-
tial for dynamic control strategies. These models do not allow
for movement between protected and unprotected classes, so a
person who is protected is always protected and a person who
is unprotected is always unprotected. Although one might
assume that this distinction is inconsequential, particularly
under equilibrium population conditions, we will show (see §3)
that, relative to our personal protection model, static two-class
models tend to underestimate the beneficial effects of personal
protection and overestimate the potential for protection-induced
diversity amplification.

Models of the second type assume a single, well-mixed
human population as opposed to distinct protected and unpro-
tected classes, and will hereafter be referred to as ‘one-class’
models (e.g. [11,17–21]). In these models, personal protection is
usually considered to be control variable which is incorporated
as an overall reduction in the mosquito biting rate, with the con-
trol strength corresponding to the per cent reduction in biting rate.
The virtue of one-class models is their simplicity and compatibil-
ity with dynamic and optimal control techniques. However, as
we will argue below, the interpretation of control strength as a
reduction in f is ecologically unfounded. Indeed, we will show
(see §3) doing so results in models that overestimate the beneficial
effects of personal protection, and thus the controllability of the
disease outbreak, relative to our personal protection model.

2.3.2. Incorporating personal protection into biting rates
We model personal protection’s influence on biting rates through
modified values of the parameters appearing in equations (2.1)
and (2.2). Because bed nets and DEET influence neither
the long-range search phase nor the gonotrophic cycle phase,
the search rate A and post-bite handling time t will be unaffected
by personal protection use; personal protection’s disruption of
the short-range, second host-seeking phase affects only the pre-
bite handling time t0 and the bite probability bb. Protection
measures may extend or shorten the pre-bite handling time
depending on if they confuse or induce aversion, respectively.
The repellent properties of insecticide-treated nets are uncertain
[36], and it is currently unknown whether DEET confuses or
induces aversion [40]. Regardless of the protective measure
in use, we expect the pre-bite handling time to remain of the
order of minutes to at most hours, so personal protection’s influ-
ence on t0 will correspond to relatively small changes in the
numerical value for f. Personal protection causes relatively
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where 1/A is defined as the average time taken per unit area by an actively searching mosquito to 
locate a single human, and !! denotes the probability that a mosquito will deliver a successful 
bite to a host once the target has been located and identified. The quantity !! denotes the 
handling time and is defined as the average time taken by a mosquito to identify, engage and 
process the blood meal from a single human after the human has been located. The handling time 
is written in terms of a pre- and post-bite handling time, denoted by !! and !, respectively. 
Therandom search rate, A, is associated with the long-range first phase of host location, and 
depends on the size of the unit area V, the details of the carbon dioxide landscape as determined 
by both human and non-human sources, and a range of species-specific and environmental 
factors. The pre-bite handling time, !!, is the average time required to complete the short-ranged 
second phase of the host seeking process, and should be on the order of minutes or, at most, 
hours. The post-bite handling time, !, is the gonotrophic cycle time, and is thus of the order of 
days [35]. The type-II functional response’s capacity to account for gonotrophic, density and 
behavioural limitations on biting rates allows a spectrum of disease transmission assumptions to 
be modelled [16,41,42]. We were especially interested in the limits !!!!! ≫ 1, and !!!!! ≪ 1 
corresponding to the so-called frequency-dependent and density-dependent limits, respectively 
[14,15,42]: 

 

 
(1.3) 

 
In the frequency-dependent limit, host density is so large that the time spent by mosquitoes in the 
long-range search phase is negligible compared to the handling time. Mosquitoes bite at a 
constant rate determined primarily by the gonotrophic cycle time, ultimately resulting in disease 
transmission assumptions equivalent to those of the Ross–MacDonald model [1–3],which was 
the first and is arguably the most common framework for modelling vector-borne diseases. In the 
density-dependent limit, host density is so low that mosquitoes spend the majority of their time 
in the long-range search phase, and the gonotrophic cycle time is negligible by comparison. 
Density dependence ultimately leads to mass-action disease transmission, which is another 
common framework for vector-borne disease modelling [13,14]. 
 
Next, we turned our attention to modeling personal protection’s influence on biting rates through 
modified values of the parameters appearing in equations (1.1) and (1.2). Bed nets and DEET 
primarily influence the short-range, second host-seeking phase and, in particular, the pre-bite 
handling time, !!, and the bite probability !!. However, regardless of the protective measure in 
use, we expect the pre-bite handling time to remain of the order of minutes to hours, thus we 
expect little change to !!.  Rather, the primary effect of personal protection is to alter !!, 
reducing this parameter to very small or nearly zero values.  In most real disease control 
scenarios, even when personal protection is made readily available, complete coverage over an 
entire population is difficult to achieve. Consequently, blood-seeking mosquitoes will likely 
encounter and attempt to acquire blood from both protected and unprotected humans. Following 
Milleret al.[16], we define !! and !! as distinct unprotected and protected host population 
densities with associated functional responses: 

precise biological modes of action are still a subject of debate [40].
DEET applied to the skin provides effective protection for many
hours, so its efficacy likely results from a low volatile compound,
implicating a contact repellent or anti-feedant which cannot
interfere with the long-range search phase of the host-seeking
process. Both contact repellents and anti-feedants act by inducing
taste avoidance mechanisms in mosquitoes [39]; experiments
show that mosquitoes do not bite and are repelled within tens
of milliseconds after contact with a DEET-treated section of
human skin [38]. Thus, like bed nets, DEET interferes with the
second short-range phase of host-seeking by preventing biting
after a host has been located and identified.

2.2. Biting rate model
Ignoring personal protection for a moment, consider a popu-
lation of humans of density Nh homogeneously distributed
throughout a unit area, V. We denote by f the average rate at
which the human population is bitten by a single mosquito,
also located within V. Following Miller et al. [16], Yakob [41]
and Antonovics et al. [42], we assume a Holling type-II functional
response [43–45] for f :

f ¼ bbANh

1þ tHANh
, ð2:1Þ

where

tH ¼ t0 þ bbt: ð2:2Þ

In the above two formulae, A denotes the random search rate,
where 1/A is defined as the average time taken per unit area by
an actively searching mosquito to locate a single human, and bb

denotes the probability for a mosquito to deliver a successful
bite to a host once the target has been located and identified.
Note that bb generally differs from unity due to the human ability
to spot and avoid approaching mosquitoes, a mosquito’s capacity
to make mistakes and misidentify targets, and disruption from
random environmental factors. The quantity tH denotes the hand-
ling time and is defined as the average time taken by a mosquito
to identify, engage and process the blood meal from a single
human after the human has been located. The handling time is
written in terms of a pre- and post-bite handling time, denoted
by t0 and t, respectively, in equation (2.2).

The parameters A, t0 and t are each associated with a specific
phase of mosquito host-seeking and blood processing. The
random search rate, A, is associated with the long-range first
phase, and 1/A is therefore the average time per unit area a
mosquito spends exploring the CO2 landscape and investigating
non-human visual features while attempting to locate a unit den-
sity of humans. This term depends on the size of the unit area V,
the details of the carbon dioxide landscape as determined by
both human and non-human sources, and a range of species-
specific and environmental factors. The pre-bite handling time,
t0, is the average time required to complete the short-ranged
second phase of the host seeking process. Owing to the short-
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The type-II functional response’s capacity to account for
gonotrophic, density and behavioural limitations on biting
rates allows a spectrum of disease transmission assumptions to
be modelled [16,41,42]. We will be especially interested in the
limits ANhtH% 1 and ANhtH& 1, corresponding to the so-
called frequency-dependent and density-dependent limits,
respectively [14,15,42]:

f '
bb

tH
, ANhtH % 1

bbANh, ANhtH & 1:

8
<

: ð2:3Þ

In the frequency-dependent limit, host density is so large that the
time spent by mosquitoes in the long-range search phase is
negligible compared to the handling time. Mosquitoes bite at a
constant rate determined primarily by the gonotrophic cycle
time, ultimately resulting in disease transmission assumptions
equivalent to those of the Ross–MacDonald model [1–3],
which was the first and is arguably the most common framework
for modelling vector-borne diseases. In the density-dependent
limit, host density is so low that mosquitoes spend the majority
of their time in the long-range search phase, and the gonotrophic
cycle time is negligible by comparison. Density dependence
ultimately leads to mass-action disease transmission, which is
another a common framework for vector-borne disease
modelling [13,14].

2.3. Personal protection model
2.3.1. Existing personal protection models
Many existing vector-borne disease models that incorporate
personal protection can be classified into two categories. The
first considers separate protected and unprotected classes (e.g.
[16,26,28,46]). We will refer to these types of model as ‘static
two-class models’. In these models, differing control strategies
correspond to differing fractions of protected and unprotected
humans, but there is no notion of control strength and no poten-
tial for dynamic control strategies. These models do not allow
for movement between protected and unprotected classes, so a
person who is protected is always protected and a person who
is unprotected is always unprotected. Although one might
assume that this distinction is inconsequential, particularly
under equilibrium population conditions, we will show (see §3)
that, relative to our personal protection model, static two-class
models tend to underestimate the beneficial effects of personal
protection and overestimate the potential for protection-induced
diversity amplification.

Models of the second type assume a single, well-mixed
human population as opposed to distinct protected and unpro-
tected classes, and will hereafter be referred to as ‘one-class’
models (e.g. [11,17–21]). In these models, personal protection is
usually considered to be control variable which is incorporated
as an overall reduction in the mosquito biting rate, with the con-
trol strength corresponding to the per cent reduction in biting rate.
The virtue of one-class models is their simplicity and compatibil-
ity with dynamic and optimal control techniques. However, as
we will argue below, the interpretation of control strength as a
reduction in f is ecologically unfounded. Indeed, we will show
(see §3) doing so results in models that overestimate the beneficial
effects of personal protection, and thus the controllability of the
disease outbreak, relative to our personal protection model.

2.3.2. Incorporating personal protection into biting rates
We model personal protection’s influence on biting rates through
modified values of the parameters appearing in equations (2.1)
and (2.2). Because bed nets and DEET influence neither
the long-range search phase nor the gonotrophic cycle phase,
the search rate A and post-bite handling time t will be unaffected
by personal protection use; personal protection’s disruption of
the short-range, second host-seeking phase affects only the pre-
bite handling time t0 and the bite probability bb. Protection
measures may extend or shorten the pre-bite handling time
depending on if they confuse or induce aversion, respectively.
The repellent properties of insecticide-treated nets are uncertain
[36], and it is currently unknown whether DEET confuses or
induces aversion [40]. Regardless of the protective measure
in use, we expect the pre-bite handling time to remain of the
order of minutes to at most hours, so personal protection’s influ-
ence on t0 will correspond to relatively small changes in the
numerical value for f. Personal protection causes relatively
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            (1.4) 

 
            (1.5) 
 
where the subscripts ‘u’ and ‘p’ denote quantities associated with the unprotected and protected 
groups, respectively. 
 
With a fully explicit model for personal protection, our next step was to identify the role of 
control.  In general, control makes protection more available or encourages its continued use.  
Ulitmately, however, personal protection use is a dynamical phenomenon; DEET bottles run dry, 
bed nets wear down, and accessibility waivers. Thus, individuals continually lose protection. The 
more DEET and bed nets are made available and the more their use is encouraged, the more 
people re-acquire access to personal protection and interest in its use. We thus chose to model 
control as an effect on flow between protected and unprotected classes. Thus, from a control 
perspective, personal protection acts similar to control schemes used for vaccination [47], albeit 
with a much faster timescale for return to the unprotected class.  We therefore chose to employ 
the following minimal ODE system as a personal protection control model: 
 

 
            (1.6) 
where 1/κ is the average time an unprotected individual remains unprotected before acquiring 
personal protection, and 1/γ is the average time a protected individual remains protected before 
running out of DEET, having their bed-net fail, or wavering in accessibility. Increased control 
effort may increase κ by making additional resources available to unprotected individuals, or 
may decrease γ by encouraging continued accessibility among protected individuals. For time-
independent κ and γ, we found the following equilibrium unprotected and protected population 
density levels: 

 
            (1.7) 
 
where Nh is the total density of both protected and unprotected humans. We refer to the model in 
equation (1.6) as the ‘dynamic two-class model’.  
 
To explore the effects of assuming dynamic personal protection, we next compared three 
separate models.  A ‘one-class model’, a ‘static two-class model’ and our ‘dynamic two-class 

large reductions in f through its effect on the bite probability bb:
mosquitoes are almost instantly repelled and do not bite after
making contact with DEET-coated skin, and mosquitoes can
only penetrate bed nets and bite when rips or tears are present,
so proper bed net and/or DEET use will reduce bb and, by
extension, f, possibly to very small or nearly zero values.

In most real disease control scenarios, even when personal
protection is made readily available, complete coverage over an
entire population is difficult to achieve. Consequently, blood-
seeking mosquitoes will likely encounter and attempt to acquire
blood from both protected and unprotected humans. As dis-
cussed in Miller et al. [16], this is analogous to a predator–prey
system consisting of two distinct prey species whose interactions
with the predator species warrant distinct models. Following
Miller et al. [16], we define Nu and Np as distinct unprotected
and protected host population densities with associated
functional responses

fu ¼
bbuANu

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
! "

ANp

ð2:4Þ

and

fp ¼
bbpANp

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
! "

ANp

, ð2:5Þ

where the subscripts ‘u’ and ‘p’ denote quantities associated with
the unprotected and protected groups, respectively.

Throughout this paper, disease models will be constructed
under the assumptions that protection strategies have no effect
on mosquito health, so they will be unable to account for the
killing ability of insecticide treated bed nets. These effects can
be modelled by modifying the mosquito death rate to make it
an increasing function of fp [16]. Because we will be primarily
interested in the basic behaviour comparisons between simple
models, we only consider untreated nets and assume that protec-
tion measures have no influence over the mosquito death rate.

2.3.3. Incorporating personal protection into control models
We now turn to modelling personal protection as a disease
control strategy operated and implemented by some health
agency. Our goal is to construct a model which will allow us to
assess the effectiveness of various, possibly time-dependent,
control strategies in terms of the ‘control strength’ or ‘control
effort’ exerted by the implementing agency. In the case of per-
sonal protection, ‘control strength’ corresponds to the number
of bed nets or DEET bottles made available and effectively distrib-
uted to the public, as well as any public service announcements
that encourage their use. Here, we face an immediate obstacle
in that there is nowhere in our biting rate expressions (see
equations (2.4) and (2.5)) for such a term to appear. Indeed, the
search rates, handling times and bite probabilities appearing in
fu and fp are determined solely by the ecology of the mosquito–
human interaction and the biology of personal protection’s
action on mosquitoes. Consequently, these parameters are unre-
lated to the amount of personal protection made available to a
population or the degree of effort spent encouraging its use.

What control strength does do is to make more protection
available or encourage its continued use and thus, at least in
theory, allows for a larger protected class relative to the unpro-
tected population. Naively, it might seem that such an effect
could be introduced into the functional responses, fu and fp,
through changes in Nu and Np. Such a formulation, however,
would be unwise, because personal protection use is, ultimately,
a dynamical phenomenon; DEET bottles run dry, bed nets wear
down, and compliance waivers. Thus, individuals continually
lose protection. However, the more DEET and bed nets are
made available and the more their use is encouraged, the more

people will re-acquire access to personal protection and interest
in its use. Incorporation of personal protection control in
vector-borne disease modelling thus necessitates a flow between
protected and unprotected classes. This observation is central to
our work—control strength has a direct influence over the
average amount of time individuals remain unprotected while
either failing to comply with government suggestions, or else
waiting to acquire personal protection that has run out. Said dif-
ferently, control strength should enter dynamic models as a
direct influence over the average flow rates between the pro-
tected and unprotected class. Thus, from a control perspective,
personal protection acts similar to control schemes used for
vaccination [47], albeit with a much faster timescale for return
to the unprotected class.

We employ the following minimal ODE system as a personal
protection control model:

_Nu ¼ gNp % kNu

and _Np ¼ kNu % gNp:

)

ð2:6Þ

Here, 1/k is the average time an unprotected individual remains
unprotected before acquiring personal protection, and 1/g is the
average time a protected individual remains protected before
running out of DEET, having their bed-net fail, or wavering in
compliance. Increased control effort may increase k by making
additional resources available to unprotected individuals, or
may decrease g by encouraging continued compliance among
protected individuals. For simplicity, we will consider control
over resource distribution only and will hereafter refer to k as
the ‘control strength’. For time-independent k and g, we find
the following equilibrium unprotected and protected population
density levels, denoted Ne

u and Ne
p, respectively:

Ne
u ¼

g
gþk Nh

and Ne
p ¼ k

gþk Nh,

#
ð2:7Þ

where Nh is the total density of both protected and unprotected
humans. For the remainder of the paper, we will refer to the
model in equation (2.6) as the ‘dynamic two-class model’. This
simple ODE model implicitly assumes the waiting times within
the two classes to be exponentially distributed. Although not
entirely realistic, this assumption is consistent with the simple
classes of SIR models to be studied in §2.4, and the model’s sim-
plicity facilitates derivation of the associated analytic formulae.
Deviations from the exponential assumption generally yield
intractable delay differential equations [15]. Our mathematical
analysis will be focused solely on equilibrium conditions, and
we expect the effects of delay dynamics to be most important
when systems are driven out of equilibrium, so non-exponential
waiting times will not be considered in this paper.

2.4. SIR epidemic model basic reproduction numbers
To assess the impact of host flow on model behaviour, we com-
pare our dynamic two-class model to analogous static two-class
and one-class models in a simple SIR epidemic setting. Model
predictions for outbreak severity, controllability and protection-
induced amplification will be compared by means of the basic
reproduction number—an outbreak threshold quantity which
quantifies per generation disease growth rates [15]. Basic repro-
duction numbers are calculated using the next-generation
matrix method [48,49].

2.4.1. One-class model
The one-class model does not differentiate between protected
and unprotected humans, but instead considers them together
as one well-mixed population. For such a model, we cannot
use the unprotected and protected biting rate formulas given in
equations (2.4) and (2.5), but instead must use the biting rate
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large reductions in f through its effect on the bite probability bb:
mosquitoes are almost instantly repelled and do not bite after
making contact with DEET-coated skin, and mosquitoes can
only penetrate bed nets and bite when rips or tears are present,
so proper bed net and/or DEET use will reduce bb and, by
extension, f, possibly to very small or nearly zero values.

In most real disease control scenarios, even when personal
protection is made readily available, complete coverage over an
entire population is difficult to achieve. Consequently, blood-
seeking mosquitoes will likely encounter and attempt to acquire
blood from both protected and unprotected humans. As dis-
cussed in Miller et al. [16], this is analogous to a predator–prey
system consisting of two distinct prey species whose interactions
with the predator species warrant distinct models. Following
Miller et al. [16], we define Nu and Np as distinct unprotected
and protected host population densities with associated
functional responses
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where the subscripts ‘u’ and ‘p’ denote quantities associated with
the unprotected and protected groups, respectively.

Throughout this paper, disease models will be constructed
under the assumptions that protection strategies have no effect
on mosquito health, so they will be unable to account for the
killing ability of insecticide treated bed nets. These effects can
be modelled by modifying the mosquito death rate to make it
an increasing function of fp [16]. Because we will be primarily
interested in the basic behaviour comparisons between simple
models, we only consider untreated nets and assume that protec-
tion measures have no influence over the mosquito death rate.

2.3.3. Incorporating personal protection into control models
We now turn to modelling personal protection as a disease
control strategy operated and implemented by some health
agency. Our goal is to construct a model which will allow us to
assess the effectiveness of various, possibly time-dependent,
control strategies in terms of the ‘control strength’ or ‘control
effort’ exerted by the implementing agency. In the case of per-
sonal protection, ‘control strength’ corresponds to the number
of bed nets or DEET bottles made available and effectively distrib-
uted to the public, as well as any public service announcements
that encourage their use. Here, we face an immediate obstacle
in that there is nowhere in our biting rate expressions (see
equations (2.4) and (2.5)) for such a term to appear. Indeed, the
search rates, handling times and bite probabilities appearing in
fu and fp are determined solely by the ecology of the mosquito–
human interaction and the biology of personal protection’s
action on mosquitoes. Consequently, these parameters are unre-
lated to the amount of personal protection made available to a
population or the degree of effort spent encouraging its use.

What control strength does do is to make more protection
available or encourage its continued use and thus, at least in
theory, allows for a larger protected class relative to the unpro-
tected population. Naively, it might seem that such an effect
could be introduced into the functional responses, fu and fp,
through changes in Nu and Np. Such a formulation, however,
would be unwise, because personal protection use is, ultimately,
a dynamical phenomenon; DEET bottles run dry, bed nets wear
down, and compliance waivers. Thus, individuals continually
lose protection. However, the more DEET and bed nets are
made available and the more their use is encouraged, the more

people will re-acquire access to personal protection and interest
in its use. Incorporation of personal protection control in
vector-borne disease modelling thus necessitates a flow between
protected and unprotected classes. This observation is central to
our work—control strength has a direct influence over the
average amount of time individuals remain unprotected while
either failing to comply with government suggestions, or else
waiting to acquire personal protection that has run out. Said dif-
ferently, control strength should enter dynamic models as a
direct influence over the average flow rates between the pro-
tected and unprotected class. Thus, from a control perspective,
personal protection acts similar to control schemes used for
vaccination [47], albeit with a much faster timescale for return
to the unprotected class.

We employ the following minimal ODE system as a personal
protection control model:

_Nu ¼ gNp % kNu

and _Np ¼ kNu % gNp:

)

ð2:6Þ

Here, 1/k is the average time an unprotected individual remains
unprotected before acquiring personal protection, and 1/g is the
average time a protected individual remains protected before
running out of DEET, having their bed-net fail, or wavering in
compliance. Increased control effort may increase k by making
additional resources available to unprotected individuals, or
may decrease g by encouraging continued compliance among
protected individuals. For simplicity, we will consider control
over resource distribution only and will hereafter refer to k as
the ‘control strength’. For time-independent k and g, we find
the following equilibrium unprotected and protected population
density levels, denoted Ne

u and Ne
p, respectively:

Ne
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gþk Nh

and Ne
p ¼ k

gþk Nh,

#
ð2:7Þ

where Nh is the total density of both protected and unprotected
humans. For the remainder of the paper, we will refer to the
model in equation (2.6) as the ‘dynamic two-class model’. This
simple ODE model implicitly assumes the waiting times within
the two classes to be exponentially distributed. Although not
entirely realistic, this assumption is consistent with the simple
classes of SIR models to be studied in §2.4, and the model’s sim-
plicity facilitates derivation of the associated analytic formulae.
Deviations from the exponential assumption generally yield
intractable delay differential equations [15]. Our mathematical
analysis will be focused solely on equilibrium conditions, and
we expect the effects of delay dynamics to be most important
when systems are driven out of equilibrium, so non-exponential
waiting times will not be considered in this paper.

2.4. SIR epidemic model basic reproduction numbers
To assess the impact of host flow on model behaviour, we com-
pare our dynamic two-class model to analogous static two-class
and one-class models in a simple SIR epidemic setting. Model
predictions for outbreak severity, controllability and protection-
induced amplification will be compared by means of the basic
reproduction number—an outbreak threshold quantity which
quantifies per generation disease growth rates [15]. Basic repro-
duction numbers are calculated using the next-generation
matrix method [48,49].

2.4.1. One-class model
The one-class model does not differentiate between protected
and unprotected humans, but instead considers them together
as one well-mixed population. For such a model, we cannot
use the unprotected and protected biting rate formulas given in
equations (2.4) and (2.5), but instead must use the biting rate
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large reductions in f through its effect on the bite probability bb:
mosquitoes are almost instantly repelled and do not bite after
making contact with DEET-coated skin, and mosquitoes can
only penetrate bed nets and bite when rips or tears are present,
so proper bed net and/or DEET use will reduce bb and, by
extension, f, possibly to very small or nearly zero values.

In most real disease control scenarios, even when personal
protection is made readily available, complete coverage over an
entire population is difficult to achieve. Consequently, blood-
seeking mosquitoes will likely encounter and attempt to acquire
blood from both protected and unprotected humans. As dis-
cussed in Miller et al. [16], this is analogous to a predator–prey
system consisting of two distinct prey species whose interactions
with the predator species warrant distinct models. Following
Miller et al. [16], we define Nu and Np as distinct unprotected
and protected host population densities with associated
functional responses
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where the subscripts ‘u’ and ‘p’ denote quantities associated with
the unprotected and protected groups, respectively.

Throughout this paper, disease models will be constructed
under the assumptions that protection strategies have no effect
on mosquito health, so they will be unable to account for the
killing ability of insecticide treated bed nets. These effects can
be modelled by modifying the mosquito death rate to make it
an increasing function of fp [16]. Because we will be primarily
interested in the basic behaviour comparisons between simple
models, we only consider untreated nets and assume that protec-
tion measures have no influence over the mosquito death rate.

2.3.3. Incorporating personal protection into control models
We now turn to modelling personal protection as a disease
control strategy operated and implemented by some health
agency. Our goal is to construct a model which will allow us to
assess the effectiveness of various, possibly time-dependent,
control strategies in terms of the ‘control strength’ or ‘control
effort’ exerted by the implementing agency. In the case of per-
sonal protection, ‘control strength’ corresponds to the number
of bed nets or DEET bottles made available and effectively distrib-
uted to the public, as well as any public service announcements
that encourage their use. Here, we face an immediate obstacle
in that there is nowhere in our biting rate expressions (see
equations (2.4) and (2.5)) for such a term to appear. Indeed, the
search rates, handling times and bite probabilities appearing in
fu and fp are determined solely by the ecology of the mosquito–
human interaction and the biology of personal protection’s
action on mosquitoes. Consequently, these parameters are unre-
lated to the amount of personal protection made available to a
population or the degree of effort spent encouraging its use.

What control strength does do is to make more protection
available or encourage its continued use and thus, at least in
theory, allows for a larger protected class relative to the unpro-
tected population. Naively, it might seem that such an effect
could be introduced into the functional responses, fu and fp,
through changes in Nu and Np. Such a formulation, however,
would be unwise, because personal protection use is, ultimately,
a dynamical phenomenon; DEET bottles run dry, bed nets wear
down, and compliance waivers. Thus, individuals continually
lose protection. However, the more DEET and bed nets are
made available and the more their use is encouraged, the more

people will re-acquire access to personal protection and interest
in its use. Incorporation of personal protection control in
vector-borne disease modelling thus necessitates a flow between
protected and unprotected classes. This observation is central to
our work—control strength has a direct influence over the
average amount of time individuals remain unprotected while
either failing to comply with government suggestions, or else
waiting to acquire personal protection that has run out. Said dif-
ferently, control strength should enter dynamic models as a
direct influence over the average flow rates between the pro-
tected and unprotected class. Thus, from a control perspective,
personal protection acts similar to control schemes used for
vaccination [47], albeit with a much faster timescale for return
to the unprotected class.

We employ the following minimal ODE system as a personal
protection control model:

_Nu ¼ gNp % kNu

and _Np ¼ kNu % gNp:

)

ð2:6Þ

Here, 1/k is the average time an unprotected individual remains
unprotected before acquiring personal protection, and 1/g is the
average time a protected individual remains protected before
running out of DEET, having their bed-net fail, or wavering in
compliance. Increased control effort may increase k by making
additional resources available to unprotected individuals, or
may decrease g by encouraging continued compliance among
protected individuals. For simplicity, we will consider control
over resource distribution only and will hereafter refer to k as
the ‘control strength’. For time-independent k and g, we find
the following equilibrium unprotected and protected population
density levels, denoted Ne

u and Ne
p, respectively:

Ne
u ¼

g
gþk Nh

and Ne
p ¼ k

gþk Nh,

#
ð2:7Þ

where Nh is the total density of both protected and unprotected
humans. For the remainder of the paper, we will refer to the
model in equation (2.6) as the ‘dynamic two-class model’. This
simple ODE model implicitly assumes the waiting times within
the two classes to be exponentially distributed. Although not
entirely realistic, this assumption is consistent with the simple
classes of SIR models to be studied in §2.4, and the model’s sim-
plicity facilitates derivation of the associated analytic formulae.
Deviations from the exponential assumption generally yield
intractable delay differential equations [15]. Our mathematical
analysis will be focused solely on equilibrium conditions, and
we expect the effects of delay dynamics to be most important
when systems are driven out of equilibrium, so non-exponential
waiting times will not be considered in this paper.

2.4. SIR epidemic model basic reproduction numbers
To assess the impact of host flow on model behaviour, we com-
pare our dynamic two-class model to analogous static two-class
and one-class models in a simple SIR epidemic setting. Model
predictions for outbreak severity, controllability and protection-
induced amplification will be compared by means of the basic
reproduction number—an outbreak threshold quantity which
quantifies per generation disease growth rates [15]. Basic repro-
duction numbers are calculated using the next-generation
matrix method [48,49].

2.4.1. One-class model
The one-class model does not differentiate between protected
and unprotected humans, but instead considers them together
as one well-mixed population. For such a model, we cannot
use the unprotected and protected biting rate formulas given in
equations (2.4) and (2.5), but instead must use the biting rate
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bbuANu

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
! "

ANp

ð2:4Þ
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bbpANp

1þ t0u þ bbutð ÞANu þ t0p þ bbpt
! "

ANp

, ð2:5Þ
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either failing to comply with government suggestions, or else
waiting to acquire personal protection that has run out. Said dif-
ferently, control strength should enter dynamic models as a
direct influence over the average flow rates between the pro-
tected and unprotected class. Thus, from a control perspective,
personal protection acts similar to control schemes used for
vaccination [47], albeit with a much faster timescale for return
to the unprotected class.
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protection control model:
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may decrease g by encouraging continued compliance among
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over resource distribution only and will hereafter refer to k as
the ‘control strength’. For time-independent k and g, we find
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where Nh is the total density of both protected and unprotected
humans. For the remainder of the paper, we will refer to the
model in equation (2.6) as the ‘dynamic two-class model’. This
simple ODE model implicitly assumes the waiting times within
the two classes to be exponentially distributed. Although not
entirely realistic, this assumption is consistent with the simple
classes of SIR models to be studied in §2.4, and the model’s sim-
plicity facilitates derivation of the associated analytic formulae.
Deviations from the exponential assumption generally yield
intractable delay differential equations [15]. Our mathematical
analysis will be focused solely on equilibrium conditions, and
we expect the effects of delay dynamics to be most important
when systems are driven out of equilibrium, so non-exponential
waiting times will not be considered in this paper.

2.4. SIR epidemic model basic reproduction numbers
To assess the impact of host flow on model behaviour, we com-
pare our dynamic two-class model to analogous static two-class
and one-class models in a simple SIR epidemic setting. Model
predictions for outbreak severity, controllability and protection-
induced amplification will be compared by means of the basic
reproduction number—an outbreak threshold quantity which
quantifies per generation disease growth rates [15]. Basic repro-
duction numbers are calculated using the next-generation
matrix method [48,49].

2.4.1. One-class model
The one-class model does not differentiate between protected
and unprotected humans, but instead considers them together
as one well-mixed population. For such a model, we cannot
use the unprotected and protected biting rate formulas given in
equations (2.4) and (2.5), but instead must use the biting rate
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model’.  Parameters were selected to make all three models as comparable as possible.  For the 
one-class model, we considered the following SIR system: 
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where Sh, Ih and Rh denote the susceptible, infectious and recovered host densities, respectively, 
while Sv and Iv denote the susceptible and infectious vector densities, respectively. Λ is the 
mosquito recruitment rate, 1/µ is the average mosquito life-span, r is the rate of host recovery, !! 
is the vector to human transmission probability, !! is the human to vector transmission 
probability, and ! is the control efficacy, which can vary between zero and one. Following [17–
19], we interpreted ! in terms of protection efficacy and the fraction of the population with 
access to personal protection: 
 

 
            (1.9) 
 
where !!" and !!" are taken from the biting rate formulae equations (1.4) and (1.5) and are 
defined as the probability for a mosquito to bite an unprotected or protected host, respectively, 
after locating and identifying the target. The protected human population level, Np, is a 
parameter, so for the sake of model comparison, we assumed that !! = !!!, and thus can be 
written in terms of κ and γ as in equation (1.7). Our model assumptions yielded the following 
basic reproduction number: 
 

 
            (1.10) 
For the static two-class model, we divided the total host population into protected and 
unprotected classes. The fraction in each class enters as a fixed parameter, with the two classes 

f given in equation (2.1). For the sake of model comparison, we
assume that the host-seeking parameters A, t0, t and bb appear-
ing in f are numerically equivalent to the corresponding
parameters appearing in the unprotected biting rate fu. We
consider the following one-class SIR model:

_Sh ¼ "(1" 1)bhf
Sh

Nh
Iv,

_Ih ¼ "rIh þ (1" 1)bhf
Sh

Nh
Iv,

_Rh ¼ rIh,

_Sv ¼ L" mSv " (1" 1)bvf
Ih

Nh
Sv

and _Iv ¼ "mIv þ (1" 1)bvf
Ih

Nh
Sv,

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

ð2:8Þ

where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
personal protection:

1 ¼ 1"
bbp

bbu

! "
Np

Nh
, ð2:9Þ

where bbu and bbp are taken from the biting rate formulae
equations (2.4) and (2.5) and are defined as the probability for
a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human
population level, Np, is a parameter, so for the sake of model
comparison, we will assume that Np ¼ Ne

p, and thus can be writ-
ten in terms of k and g as in equation (2.7). Our model
assumptions yield the following basic reproduction number:

R01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" 1"
bbp

bbu

! "
k

kþ g

$ %2 f2

r

s

: ð2:10Þ

2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:

_Su ¼ "bhfu
Su

Nu
Iv,

_Sp ¼ "bhfp
Sp

Np
Iv,

_Iu ¼ "rIu þ bhfu
Su

Nu
Iv,

_Ip ¼ "rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ rIu,

_Rp ¼ rIp,

_Sv ¼ L" mSv " bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv

and _Iv ¼ "mIv þ bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv,

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:11Þ

where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is

R02s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

r
f2
p

k
þ f2

u
g

" #vuut : ð2:12Þ

2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:

_Su ¼ "kSu þ gSp " bhfu
Su

Nu
Iv,

_Sp ¼ kSu " gSp " bhfp
Sp

Np
Iv,

_Iu ¼ "kIu þ gIp " rIu þ bhfu
Su

Nu
Iv,

_Ip ¼ kIu " gIp " rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ "kRu þ gRp þ rIu,

_Rp ¼ kRu " gRp þ rIp,

_Sv ¼ L" mSv " bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv

and _Iv ¼ "mIv þ bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:13Þ

For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is

R02d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

rþ kþ g

f2
p

k
þ f2

u
g
þ

fp þ fu
& '2

r

" #vuut , ð2:14Þ

where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
personal protection:
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where bbu and bbp are taken from the biting rate formulae
equations (2.4) and (2.5) and are defined as the probability for
a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human
population level, Np, is a parameter, so for the sake of model
comparison, we will assume that Np ¼ Ne
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne
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u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
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2.4.3. Dynamic two-class model
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:
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This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
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equations (2.4) and (2.5) and are defined as the probability for
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is

R02s ¼
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2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:
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Su

Nu
Iv,

_Ip ¼ kIu " gIp " rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ "kRu þ gRp þ rIu,

_Rp ¼ kRu " gRp þ rIp,
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is

R02d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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summing to Nh. The classes appear both directly in the model and also implicitly through fp and 
fu. The static two-class equivalent to equation (1.8) is as follows: 
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where Sp, Ip and Rp denote densities of protected susceptible, infected and recovered humans, 
while Su, Iu and Ru are the equivalent densities of unprotected humans. Again, for the sake of 
model comparison, we assumed that !! = !!! and !! = !!! so that the protected and 
unprotected host densities could be written in terms of the parameters κ and γ. The resultant 
basic reproduction number for the static two-class model is: 
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For the dynamic tow-class model, we used the following SIR system: 

f given in equation (2.1). For the sake of model comparison, we
assume that the host-seeking parameters A, t0, t and bb appear-
ing in f are numerically equivalent to the corresponding
parameters appearing in the unprotected biting rate fu. We
consider the following one-class SIR model:

_Sh ¼ "(1" 1)bhf
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
personal protection:

1 ¼ 1"
bbp

bbu

! "
Np

Nh
, ð2:9Þ

where bbu and bbp are taken from the biting rate formulae
equations (2.4) and (2.5) and are defined as the probability for
a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human
population level, Np, is a parameter, so for the sake of model
comparison, we will assume that Np ¼ Ne

p, and thus can be writ-
ten in terms of k and g as in equation (2.7). Our model
assumptions yield the following basic reproduction number:
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
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is as follows:
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is
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2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is

R02d ¼
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bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

rþ kþ g

f2
p

k
þ f2

u
g
þ

fp þ fu
& '2

r

" #vuut , ð2:14Þ

where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
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tection efficacy and the fraction of the population with access to
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where bbu and bbp are taken from the biting rate formulae
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:

_Su ¼ "bhfu
Su

Nu
Iv,

_Sp ¼ "bhfp
Sp

Np
Iv,

_Iu ¼ "rIu þ bhfu
Su

Nu
Iv,

_Ip ¼ "rIp þ bhfp
Sp

Np
Iv,

_Ru ¼ rIu,

_Rp ¼ rIp,

_Sv ¼ L" mSv " bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv

and _Iv ¼ "mIv þ bv fu
Iu

Nu
þ fp

Ip

Np

! "
Sv,

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:11Þ

where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is

R02s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is

R02d ¼
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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The resultant basic reproduction number for the dynamic two-class model is: 
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where fp and fu are evaluated at the equilibrium protected and unprotected population values.  For 
the sake of comparison, we also considered the limit of no protection, which yields the following 
basic reproduction number: 

 
            (1.15) 
 
Equations (1.10), (1.12) and (1.14) constituted our primary results, which we then interpreted in 
order to develop an understanding of how dynamism in personal protection might impact 
predictions of disease spread. 
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
personal protection:
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where bbu and bbp are taken from the biting rate formulae
equations (2.4) and (2.5) and are defined as the probability for
a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human
population level, Np, is a parameter, so for the sake of model
comparison, we will assume that Np ¼ Ne

p, and thus can be writ-
ten in terms of k and g as in equation (2.7). Our model
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
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2.4.3. Dynamic two-class model
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:
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bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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susceptible and infectious vector densities, respectively. L is
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ten in terms of k and g as in equation (2.7). Our model
assumptions yield the following basic reproduction number:

R01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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mNh
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is

R02s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ g

r
f2
p

k
þ f2

u
g

" #vuut : ð2:12Þ

2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is

R02d ¼
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
f2

r

r
: ð2:15Þ

This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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f given in equation (2.1). For the sake of model comparison, we
assume that the host-seeking parameters A, t0, t and bb appear-
ing in f are numerically equivalent to the corresponding
parameters appearing in the unprotected biting rate fu. We
consider the following one-class SIR model:
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where Sh, Ih and Rh denote the susceptible, infectious and recov-
ered host densities, respectively, while Sv and Iv denote the
susceptible and infectious vector densities, respectively. L is
the mosquito recruitment rate, 1/m is the average mosquito life-
span, r is the rate of host recovery, bh is the vector to human
transmission probability, bv is the human to vector transmission
probability, and 1 is the control efficacy, which can vary between
zero and one. Following [17–19], we interpret 1 in terms of pro-
tection efficacy and the fraction of the population with access to
personal protection:
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where bbu and bbp are taken from the biting rate formulae
equations (2.4) and (2.5) and are defined as the probability for
a mosquito to bite an unprotected or protected host, respectively,
after locating and identifying the target. The protected human
population level, Np, is a parameter, so for the sake of model
comparison, we will assume that Np ¼ Ne

p, and thus can be writ-
ten in terms of k and g as in equation (2.7). Our model
assumptions yield the following basic reproduction number:
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2.4.2. Static two-class model
In the static two-class model, we divide the total host population
into protected and unprotected classes. The fraction in each class
enters as a fixed parameter, with the two classes summing to Nh.
The classes appear both directly in the model and also implicitly
through fp and fu. The static two-class equivalent to equation (2.8)
is as follows:
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where Sp, Ip and Rp denote densities of protected susceptible,
infected and recovered humans, while Su, Iu and Ru are the
equivalent densities of unprotected humans, and all other par-
ameters and state variables are as defined previously. Again,
for the sake of model comparison, we assume that Np ¼ Ne

p

and Nu ¼ Ne
u so that the protected and unprotected host densities

can be written in terms of the parameters k and g as in
equation (2.7). This ensures that both the static and dynamic
two-class models yield the same protected and unprotected
population values at equilibrium. The resultant basic reproduction
number for the static two-class model is
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2.4.3. Dynamic two-class model
Using the minimal control model in equation (2.6), we consider
the following dynamic two-class SIR model:
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For a constant control strength k and equilibrium protected
and unprotected human population values as given in
equation (2.7), the basic reproduction number for the dynamic
two-class model is
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where fp and fu are evaluated at the equilibrium protected and
unprotected population values.

Note that in the limit of no personal protection, that is g! 1
with k finite, all three basic reproduction numbers R01,R02s and
R02d reduce to the following expression, which we denote R00:

R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhbvNv

mNh

s ffiffiffiffiffi
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This expression follows by noting that, in the absence of per-
sonal protection, Np and fp vanish, while Nu goes to Nh and f
thus goes to fu, provided that the parameters in f are taken to
be equivalent to those in fu. Estimated values for R00 have
ranged, for example, between 2 and 103 for dengue outbreaks
in Brazil and between 1.8 and 14.8 for recent Zika outbreaks
throughout the world, although it should be cautioned that
numerical estimates for R00 calculated from mathematical
models depend sensitively on model structure and method of
calculation [50].
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Model Comparisons 
 
Figures 1.1–1.3 show predicted values of R0 for three different rates of return to the unprotected 
class (1/γ = 15 days, 9 months, and 5 years), representing timescales for using up a bottle of 
DEET (15 days) through to loss/degradation of a bed net (5 years). All three figures show that, 
relative to both two-class models, the one-class model overestimates disease controllability.  
One-class models do best and, indeed, are most similar to other curves, in the density-dependent 
limit (figures 1,1a, 1.2a and 1.3a).  Outside of the density-dependent limit, however, the one-
class model tends to severely overestimate controllability relative to either two-class model. 
Specifically, the one-class model always predicts a monotonic decrease in the scaled R0 as a 
function of κ, whereas both two-class models become non-monotonic outside of the density-
dependent limit. The difference in model behaviour is due to the homogeneous population 
assumption implicit in the one-class model’s formulation—this simplifying assumption prohibits 
the one-class model from accounting for increases in disease transmission which stem from 
focused mosquito attacks on unprotected sub-populations [16].  
 

 
Figure 1.1 Dependencies of R0 on DEET (1/γ = 15 days) control strength for the dynamic 
two-class model (blue), static two-class model (red) and one-class model(green). Corresponding 
equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models 
display diversity amplification at control strengths where respective scaled R0 curves rise above 
the grey R0=1 line. Large suppressions in amplification severity and occurrence range are 
indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent 
infection ANh=0.1 d-1,(b) moderate infection ANh=1.0 d-1,(c) frequency-dependent infection 
ANh=10.0 d-1and (d) frequency-dependent infection (wide view). 
 

3. Results
We now present numerical results for the reproduction
numbers given in §2.4 as functions of the control strength,
k. Because we are interested in basic model behaviour, we
focus on the simplest case of bbu ¼ 1 and bbp ¼ 0, meaning
that once found and identified, unprotected humans are
always bitten while protected humans are never bitten.
Although we are uncertain as to whether DEET or bed net
use will increase or decrease the pre-bite handling time, we
expect this parameter to remain small compared to gono-
trophic timescales, so we simply set the protected and
unprotected pre-bite handling times to be equal. Based on
wind tunnel experiments showing that the source location
and landing process take mosquitoes of the order of minutes
to complete in laboratory settings (e.g. [33]), as well as the
authors’ own anecdotal experiences of being bitten after
standing outdoors for only a few minutes, we estimate the
pre-bite handling time to be 15 min. From Foster & Eischen
[35], we estimate the post-bite handling time to be 3 days.
We examine a variety of protection measures by considering
the cases 1/g ¼ 15 days, 9 months and 5 years. The 5-year
lifetime corresponds to bed net durability estimated from
Briet et al. [51], while the 15-day lifetime is an estimate for
how long it takes the average person to exhaust a bottle of
DEET, assuming frequent use. The nine-month lifetime is
simply an intermediate case, though it is likely that, in the
absence of a rigorous anti-disease campaign, compliance fails
on a months-long timescale. Likewise, to test a variety of com-
monly modelled infection scenarios, we consider the cases
ANh ¼ 10.0, ANh ¼ 0.1 and ANh ¼ 1.0 in units of inverse
days. These correspond to limits that are commensurate

with frequency-dependent, density-dependent and inter-
mediate infection rates [14,15,42], respectively. With ANh

held fixed, the terms bh, bv, Nv, Nh and m are free parameters
which appear only together as an overall multiplicative
factor. Because we are interested in relative differences in
model predictions within each protection scenario, we
adjust this multiplicative factor such that R00 scales to unity
for each parameter setting, and the resulting basic reproduc-
tion numbers will be referred to as ‘scaled R0’. The only
remaining free parameter is the average human recovery
time 1/r, which we set to two weeks—somewhere between
the long infectious periods of diseases like malaria, and the
shorter infectious periods of most viral vector-borne diseases.
Human infectious periods of one week and six months yield
plots qualitatively similar to those displayed in figures 1–3
and are given as electronic supplementary material.

4. Discussion
4.1. Model comparison
Figures 1–3 all show that relative to both two-class models,
the one-class model overestimates disease controllability.
Note, however, that the one-class model does not always
give a poor approximation to the two-class models; indeed,
all curves are fairly similar in the density-dependent limit
in figures 1a, 2a and 3a. It is possible that, by defining the con-
trol efficacy, 1, in the one-class model as equal to the fraction
of protected humans in the two-class models, we have made
an unfair comparison, giving an unrealistic overestimate of
control efficacy. If this is true, then 1 would be more properly
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Figure 1. Dependencies of R0 on DEET (1/g ¼ 15 days) control strength for the dynamic two-class model (blue), static two-class model (red) and one-class model
(green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models display diversity amplification at control
strengths where respective scaled R0 curves rise above the grey R0 ¼ 1 line. Large suppressions in amplification severity and occurrence range are indicated by
vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh ¼ 0.1 d21, (b) moderate infection ANh ¼ 1.0 d21, (c) frequency-
dependent infection ANh ¼ 10.0 d21 and (d ) frequency-dependent infection (wide view).
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Figures 1.1–1.3 also indicate that, relative to our dynamic two-class model, the static two-class 
model generally underestimates disease controllability and overestimates diversity amplification. 
More specifically, diversity amplification is indicated whenever scaled R0 curves exceed unity. 
Whereas strong amplification is apparent in the static two-class model, particularly under the 
frequency-dependent limit in figures 1.1d, 1.2d and 1.3d, it is much less severe in the dynamic 
two-class model, and indeed, even disappears in figure 1.1b. In addition to reduced amplification 
strength, the dynamic two-class model also predicts large reductions in the parameter ranges over 
which amplification can occur, particularly under the frequency-dependent limit in figures 1.1d, 
and 1.2d.  
 

 
Figure 1.2  Dependencies of R0 on intermediate protection (1/γ = 9 months) control strength for 
the dynamic two-class model (blue), static two-class model (red)and one-class model (green). 
Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. 
Large suppressions in amplification severity and occurrence range are indicated by vertical and 
horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh=0.1 d-1,(b) 
moderate infection ANh=1.0 d-1,(c) frequency-dependent infection ANh=10.0 d-1and (d) 
frequency-dependent infection (wide view). 
 

defined as proportional to the fraction of protected humans,
with the proportionality constant less than unity. In this
case, the curves for the dynamic two-class model and the

one-class model in figures 1a, 2a and 3a would be in even
closer agreement. Outside of the density-dependent limit,
however, the one-class model tends to severely overestimate

0 0.05 0.10 0.15 0.20 0.25 0.30

0 0.05 0.10 0.15 0.20 0.25 0.30

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0 0.05 0.10 0.15 0.20 0.25 0.30

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k = control strength (d–1) k = control strength (d–1)

(b)(a)

(c) (d )

sc
al

ed
 R

0
sc

al
ed

 R
0

Figure 2. Dependencies of R0 on intermediate protection (1/g ¼ 9 months) control strength for the dynamic two-class model (blue), static two-class model (red)
and one-class model (green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Large suppressions in amplification
severity and occurrence range are indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh ¼ 0.1 d21, (b)
moderate infection ANh ¼ 1.0 d21, (c) frequency-dependent infection ANh ¼ 10.0 d21 and (d ) frequency-dependent infection (wide view).
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Figure 3. Dependencies of R0 on bed net (1/g ¼ 5 years) control strength for the dynamic two-class model (blue), static two-class model (red) and one-class
model (green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Suppressions in amplification severity and occurrence
range are indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh ¼ 0.1 d21, (b) moderate infection ANh ¼ 1.0 d21,
(c) frequency-dependent infection ANh ¼ 10.0 and (d ) frequency-dependent infection (wide view).
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Figure 1.3  Dependencies of R0 on bed net (1/γ = 5 years) control strength for the dynamic two-
class model (blue), static two-class model (red)and one-class model (green). Corresponding 
equilibrium proportions of protected hosts are given by the dashed black curve. Large 
suppressions in amplification severity and occurrence range are indicated by vertical and 
horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh=0.1 d-1,(b) 
moderate infection ANh=1.0 d-1,(c) frequency-dependent infection ANh=10.0 d-1and (d) 
frequency-dependent infection (wide view). 
 
 
Figure 4 illustrates the reductions in amplification severity and parameter range as explicit 
functions of ANh. The decrease in minimum control strength required for amplification 
suppression in the dynamic two-class model relative to the static two-class model indicates 
reduction in amplification range, and the decrease in maximum scaled R0 in the dynamic two-
class model relative to the static two-class model indicates reduction in amplification severity.  
Diversity amplification ultimately results from mosquitoes’ propensity to focus bites on 
preferred hosts [16,26], and so our results in figures 1.1–1.4 indicate that the movement of 
people between protected and unprotected classes can severely hinder mosquitoes’ tendencies to 
focus attacks on unprotected human sub-populations, even when host population levels are in 
equilibrium and the flux between classes is rather small. This observation, together with the one-
class model’s inability to account for diversity amplification, indicates that dynamic protection 
status will generally result in outbreak characteristics lying somewhere between the one-class 
and static two-class model behaviour. 
 
 
 

defined as proportional to the fraction of protected humans,
with the proportionality constant less than unity. In this
case, the curves for the dynamic two-class model and the
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however, the one-class model tends to severely overestimate
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and one-class model (green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Large suppressions in amplification
severity and occurrence range are indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh ¼ 0.1 d21, (b)
moderate infection ANh ¼ 1.0 d21, (c) frequency-dependent infection ANh ¼ 10.0 d21 and (d ) frequency-dependent infection (wide view).
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Figure 3. Dependencies of R0 on bed net (1/g ¼ 5 years) control strength for the dynamic two-class model (blue), static two-class model (red) and one-class
model (green). Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Suppressions in amplification severity and occurrence
range are indicated by vertical and horizontal purple arrows, respectively, in (d). (a) Density-dependent infection ANh ¼ 0.1 d21, (b) moderate infection ANh ¼ 1.0 d21,
(c) frequency-dependent infection ANh ¼ 10.0 and (d ) frequency-dependent infection (wide view).
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Figure 1.4  Illustrations of amplification range and strength reduction as functions of ANh using 
the dynamic two-class model (blue), static two-class model (red) and one-class model (green). 
The minimum control strength for amplification suppression is the value of control strength κ* 
such that scaled R0 exceeds unity for all control strengths κ ∈ [0, κ*]. The maximum scaled R0 is 
the value of scaled R0 at the peak of amodel’s R0 versus κ curve for a given value of ANh. (a) 
Amplifaction range reduction 1/γ=15 days, (b) amplifaction severity reduction 1/γ=15 days, (c) 
amplifaction range reduction 1/γ=9months, (d) amplifaction severityreduction 1/γ=9 months, (e) 
amplifaction range reduction 1/γ=5 years and (f) amplifaction severity reduction 1/γ=5 years. 
 

controllability relative to either two-class model, and no
amount of re-scaling of 1 can bring the reproduction
number curves into agreement. Specifically, the one-class
model always predicts a monotonic decrease in the scaled
R0 as a function of k, whereas both two-class models
become non-monotonic outside of the density-dependent
limit. The difference in model behaviour is due to the homo-
geneous population assumption implicit in the one-class
model’s formulation—this simplifying assumption prohibits
the one-class model from accounting for increases in disease
transmission which stem from focused mosquito attacks on
unprotected sub-populations [16].

Figures 1–3 also indicate that, relative to our dynamic
two-class model, the static two-class model generally

underestimates disease controllability and overestimates
diversity amplification. More specifically, diversity amplifica-
tion is indicated whenever scaled R0 curves exceed unity.
Whereas strong amplification is apparent in the static two-
class model, particularly under the frequency-dependent
limit in figures 1d, 2d and 3d, it is much less severe in the
dynamic two-class model, and indeed, even disappears in
figure 1b. In addition to reduced amplification strength, the
dynamic two-class model also predicts large reductions in
the parameter ranges over which amplification can occur, par-
ticularly under the frequency-dependent limit in figures 1d and
2d. Figure 4 illustrates the reductions in amplification severity
and parameter range as explicit functions of ANh. The decrease
in minimum control strength required for amplification
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Figure 4. Illustrations of amplification range and strength reduction as functions of ANh using the dynamic two-class model (blue), static two-class model (red) and one-
class model (green). The minimum control strength for amplification suppression is the value of control strength k* such that scaled R0 exceeds unity for all control
strengths k [ [0, k*]. The maximum scaled R0 is the value of scaled R0 at the peak of a model’s R0 versus k curve for a given value of ANh. (a) Amplifaction
range reduction 1/g ¼ 15 days, (b) amplifaction severity reduction 1/g ¼ 15 days, (c) amplifaction range reduction 1/g ¼ 9 months, (d ) amplifaction severity
reduction 1/g ¼ 9 months, (e) amplifaction range reduction 1/g ¼ 5 years and (f ) amplifaction severity reduction 1/g ¼ 5 years.
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Figures 1.1–1.3 differ in their values of 1/γ—that is, the average amount of time that an 
individual who transitions into the protected class will remain in the protected class. When1/γ is 
small (figure 1.1), our dynamic two-class model is more similar to the one-class model and less 
similar to the static two-class model. By contrast, when 1/γ is large (figure 1.3), our dynamic 
two-class model is more similar to the static two-class model and less similar to the one-class 
model. The explanation is relatively straightforward. In the limit of rapid transitions between 
classes, the distinction between protected and unprotected classes disappears, as people 
‘instantaneously’ transition from one class to the other, with no dwell time in either class. In this 
case, our model behaves very much like the one-class model, where mosquitoes see an average 
level of protection for any given person, rather than two separate classes of people. At the 
opposite extreme, in the limit of slow class transitions, the flux between classes becomes 
insignificant. In this case, an average person remains protected or unprotected for such a long 
time that, at least on the timescale of disease dynamics, there are, in essence, two distinct host 
sub-populations, which is the assumption of the static two-class model. To the extent that κ and γ 
are finite and non-zero, our model is important in providing estimates for disease spread and 
controllability at intermediate scenarios between the one-and static two-class models.  
 
Summary and Conclusions 
 
We introduced a dynamic two-class model to describe vector-borne disease systems 
incorporating hosts who use personal protection measures. The effects of personal protection 
usage at the level of individual hosts are captured by functional response biting rates, and the 
effects of large-scale personal protection campaigns at the community level are captured through 
flows between protected and unprotected classes. Class flow can severely reduce amplification in 
both severity and range of occurrence, relative to predictions from existing static two-class 
models. This, along with the natural propensity of humans to discontinue and re-adopt protection 
use, offers potential explanation for the lack of observed protection-induced amplification in the 
field, despite predictions implied by existing models. Static two-class models can fail because 
they do not acknowledge the fundamental difference between genuinely distinct host species and 
protected versus unprotected individuals: species type is fixed, while protection status is not. Our 
dynamic two-class model combines the desirable features of one-class models (dynamic control) 
and static two-class models(host variability) to provide an ecologically sound methodology for 
modelling personal protection distribution as a community-wide dynamic control strategy in 
vector-borne disease systems. 
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PART 2: UNDERSTANDING DIFFERENT MANAGEMENT STRATEGIES 

 
This work has been submitted, and can be found at:  Demers, Jeffery, et al. "Implicit versus 
explicit control strategies in models for vector-borne disease epidemiology." bioRxiv (2019): 
753475. 
 
Background 
 

Health and government agencies throughout the world regularly implement large-scale 
mosquito management strategies, such as area-wide adulticide and larvicide spray programs. 
These programs form an important line of defense against the proliferation of vector-borne 
diseases like malaria, dengue, and ZIKA [1]. Unfortunately, they also come with monetary costs, 
potential environmental impacts, and societal concerns. Given these constraints, mathematical 
models can serve as important tools for predicting the effects of control efforts and optimizing 
control efficacies and costs. Indeed, the efficacies of adult and larval control measures have been 
assessed and optimized using both simple, deterministic epidemic models[2, 3, 4, 5] and 
complex disease models with features such as stochasticity [6,7], seasonality[8,9,10,11], host 
heterogeneity [11,12,13,14], and spatial structure [6,7,13]. 

To assess the effects and efficacy of real-world vector management strategies using a 
mathematical model, a modeler must first select a scheme by which the control’s influence will 
be incorporated into the model’s structure or behavior. One common choice is to simply infer the 
effects of control by analyzing changes in model behavior under variations in model parameters 
relative to their natural values [2,4,5,6,9,12,13,14,15,16,17,18,19]. For example, in many vector-
borne disease models, the effects of adulticide on outbreak severity are inferred through the 
responses of important threshold quantities like the basic reproduction number [20, 21] to 
increases in vector death rates, while the effects of larvicides are inferred through the analogous 
responses to increases in larval death rates or decreases in vector emergence rates [14, 15,17,18]. 
Models of this class incorporate control only implicitly through it’s overall gross effects on 
model parameters. A second, more complicated method for incorporating control into vector-
borne disease models is to directly model the effects of control on vector populations or 
environmental parameters [3,7,8,9,10,11,22]. For example, an area-wide adulticide spray could 
be modeled as a sudden, direct decrease in the adult vector population at the time of application. 
Likewise, larval habitat reduction could be modeled as a sudden, direct decrease and subsequent 
recovery in larval carrying capacity. Models of this class incorporate control explicitly through 
it’s specific and direct effects on the vector population. 

Explicit and implicit control models complement one another in their strengths and 
weaknesses. Explicit controls translate directly into real-world actions, thus can better capture 
the specifics of different management schemes on mechanisms of vector control.  This approach, 
however, requires knowledge of the biological interactions between disease vectors and control 
measures, and often introduces non-autonomous dynamics as a result of a real-world control’s 
time-dependent efficacy and discontinuous actuation. Consequently, explicit controls increase 
model complexity. The inherent time-dependence of explicit control is particularly problematic 
for model analysis, as non-autonomous dynamics severely obfuscate definition and calculation of 
the basic reproduction number [22, 23, 24]. Implicit controls, on the other hand, introduce no 
additional complexity into underlying disease models. The greater analytical tractability of 
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implicit control facilitates model analysis, including the use of optimal control theory to predict 
potentially time-dependent variations in model parameters which optimally balance disease 
severity with control costs [2,4,5,12,14,25]. However, these models cannot incorporate the 
details of different management strategies.  This makes them less relevant to on-the-ground 
management decision-making.  These deficits obstruct researchers’ ability to systematically and 
reliably apply modeling results as guides for designing real-world disease management 
strategies, thus defeating one of the motivating purposes for incorporating control into disease 
models. 

To overcome issues with standard implicit control models, we formally defined the 
notion of implicit control as an approximation for the average effects of explicit control. 
Working within the framework of a simple ordinary differential equation (ODE) population 
model, we proposed mathematical formulations for the implicit control approximations of 
common adult and larval population control techniques in terms of their measurable, real-world 
explicit control properties. Specifically, we focused on mosquitoes as disease vectors and 
considered control strategies for area-wide ultra low volume(ULV) adulticide sprays, residual 
adulticide barrier sprays, larval source reduction, and area-wide low volume (LV) larvicide 
spray. Although our proposed framework is intuitive and straightforward, our work highlights 
the subtle biological and mathematical consequences which can emerge when implicit control is 
formally defined as an approximation of more realistic, explicit controls. In particular, our work 
clarifies, biologically and mathematically, the conditions under which implicit control can 
accurately capture the average effects of explicit control. Our work represents a step towards 
making epidemiological modeling a more readily applicable tool for guiding real-world disease 
management decisions. 
 
Model Development 
 
We began with the following, basic ODE model for a well-mixed adult vector population 
evolving under natural, uncontrolled conditions within some spatially and temporally 
homogeneous area: 
 

 
            (2.1) 
where X0(t) denotes the size of the vector population under natural conditions at time t, Λ0 
denotes the natural vector emergence rate, and µ0 denotes the natural per capita vector death rate. 
Given an initial population X0(t′) at time t′, Eq. (1) implies the following population at a later 
time t: 
 

 
            (2.2) 
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e↵ects between control seasonal e↵ects. In Secs. 5 and 6 and we we discuss overall results,

applications, and conclusions.

2 Methods
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Ẋ0(t) = �µ0X0(t) + ⇤0, (1)

where X0(t) denotes the size of the vector population under natural conditions at time t,

⇤0 denotes the natural vector emergence rate, and µ0 denotes the natural per capita vector

death rate. In Eq. (1) and throughout the rest of this paper, overdots denote derivatives with

respect to time, and the superscript ‘0’ denotes reference values for the natural, uncontrolled

population. Given an initial population X0(t0) at time t0, Eq. (1) implies the following

population at a later time t:
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⇤0
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1� e�µ0

(t�t0)
⌘

(2)

=
t!1

⇤0

µ0

.

where the second line indicates relaxation to the natural equilibrium value ⇤0/µ0 in the long

time limit.

The population model in Eq. (1) is used in a wide array of vector-borne disease models,

from simplest Ross-MacDonald models [5] to large complex compartmental models featur-
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where the second line indicates relaxation to the natural equilibrium value Λ0/µ0 in the longtime 
limit. 

Implicit control is typically incorporated into disease models through variations in model 
parameters, specifically the vector emergence and death rates in the case of Eq. (2.1). In most 
implicit control modeling studies which use Eq. (2.1), adulticide control measures are 
incorporated as an increase in vector death rate, and various larval control measures like 
larvicide sprays and larval source reduction are incorporated as a decrease in vector emergence 
rate [2,5, 12,15].  We chose to follow this standard and seemingly reasonable convention,  with a 
key goal being to clarify its conditions of validity and its degree of accuracy.  Letting µI(t) denote 
the modified death rate under the action of implicitly modeled adulticide: 

 
(2.3) 

where γI(t)�[0,∞) is the possibly time-dependent fractional increase in vector death rate, and 
ρI(t)�[0,1) is defined by 

 
(2.4) 

The modified emergence rate under the action of larval control is then ΛI(t), where 

 
(2.5) 

where σI(t)�[0,1] is the possibly time-dependent fractional decrease in vector emergence rate 
due to the action larval control measures. Letting XI(t) denote the vector population modeled at 
the implicit level, adulticide and larval control modify Eq. (2.1) as follows: 

 
(2.6) 

Importantly, the time-dependencies in γI(t),ρI(t), and σI(t) are solely reflections of time-dependent 
variations in implementation strategies. For our analysis, we focused on the simplest case - 
constant control strengths which correspond to fixed implementation strategies. By fixed 
implementation strategy, we mean real-world control protocols whose defining properties, such 
as application schedule and volume of pesticide released per application, do not vary over time. 
At constant control strengths γI, ρI, and σI, the vector population under adulticide control relaxes 
to the following equilibrium: 

   (2.7) 

larval source reduction are incorporated as a decrease in vector emergence rate [2, 5, 12, 15].

We will follow this standard and seemingly reasonable convention, and in Sec. 3, we will

clarify its conditions of validity and its degree of accuracy.

Throughout this paper, we use the superscript ‘I’ to denote quantities in reference to

the implicitly controlled population dynamics. Letting µI(t) denote the modified death rate

under the action of implicitly modeled adulticide, we write

µI(t) = µ0

�

1 + �I(t)
�

(3)

=
µ0

1� ⇢I(t)
,

where �I(t) 2 [0,1) is the possibly time-dependent fractional increase in vector death rate,

and ⇢I(t) 2 [0, 1) is defined by

⇢I(t) =
�I(t)

1 + �I(t)
. (4)

We will use �I and ⇢I interchangeably based on convenience and refer to both as ‘adulticide

control strength’ throughout the rest of this paper. The modified emergence rate under the

action of larval control will be denoted by ⇤I(t), and we write

⇤I(t) = ⇤0(1� �I(t)), (5)

where �I(t) 2 [0, 1] is the possibly time-dependent fractional decrease in vector emergence

rate due to the action larval control measures, and will be referred to as ‘larval control

strength’ throughout the rest of this paper. Letting XI(t) denote the vector population

modeled at the implicit level, adulticide and larval control modify Eq. (1) as follows:

ẊI(t) = �µI(t)XI(t) + ⇤I(t). (6)
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ẊI(t) = �µI(t)XI(t) + ⇤I(t). (6)

7

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 
larval source reduction are incorporated as a decrease in vector emergence rate [2, 5, 12, 15].

We will follow this standard and seemingly reasonable convention, and in Sec. 3, we will

clarify its conditions of validity and its degree of accuracy.

Throughout this paper, we use the superscript ‘I’ to denote quantities in reference to

the implicitly controlled population dynamics. Letting µI(t) denote the modified death rate

under the action of implicitly modeled adulticide, we write

µI(t) = µ0

�

1 + �I(t)
�

(3)

=
µ0

1� ⇢I(t)
,

where �I(t) 2 [0,1) is the possibly time-dependent fractional increase in vector death rate,

and ⇢I(t) 2 [0, 1) is defined by

⇢I(t) =
�I(t)

1 + �I(t)
. (4)

We will use �I and ⇢I interchangeably based on convenience and refer to both as ‘adulticide

control strength’ throughout the rest of this paper. The modified emergence rate under the

action of larval control will be denoted by ⇤I(t), and we write

⇤I(t) = ⇤0(1� �I(t)), (5)

where �I(t) 2 [0, 1] is the possibly time-dependent fractional decrease in vector emergence

rate due to the action larval control measures, and will be referred to as ‘larval control

strength’ throughout the rest of this paper. Letting XI(t) denote the vector population

modeled at the implicit level, adulticide and larval control modify Eq. (1) as follows:
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We again emphasize that the time-dependencies in �I(t), ⇢I(t), and �I(t) are solely re-

flections of time-dependent variations in implementation strategies. We will be particularly

interested in the simplest case - constant control strengths which correspond to fixed imple-

mentation strategies. By fixed implementation strategy, we mean real-world control protocols

whose defining properties, such as application schedule and volume of pesticide released per

application, do not vary over time. At constant control strengths �I , ⇢I , and �I , the vector

population under adulticide control relaxes to the following equilibrium:

XI(t) =
t!1

⇤0

µ0 (1 + �I)

�

1� �I
�

(7)

=
⇤0

µ0

�

1� ⇢I
� �

1� �I
�

.

2.3 Explicitly controlled population dynamics

To incorporate explicit control into Eq. (1), one must select specific real-world and the

details of their biological interactions with a specific vector population must be assumed.

In this paper, we focus on mosquitoes as disease-vectors and consider four specific control

strategies employed regularly by public health agencies. We use the superscript ‘E’ to denote

quantities in reference to explicitly controlled populations dynamics.

2.3.1 Area-wide ULV adulticide spray

Area-wide ultra-low volume (ULV) adulticide sprays consist of chemical insecticides such

as Naled and Malathion dispensed at ultra-low volumes (on the order of three ounces per

acre) over large areas in the form of aerosol droplets by truck or plane [30, 31]. Droplets

kill airborne vectors upon contact. Droplet size is set to maximize the amount time droplets

spend suspended in the air, which tends to be on the order of minutes to, at most, an hour

[30, 31]. The percent knockdown in the vector population per application can vary widely

between close to 0% and close to 100%, depending on the species of mosquito, number air-

borne while the poison remains suspended, and environmental features that either inhibit
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To model explicit control strategies, we focused on four different control methods:  area-wide 
ultra low volume (ULV) adulticide sprays, residual adulticide barrier sprays, larval source 
reduction, and area-wide low volume (LV) larvicide spray.  For ULV, spray remains in the air 
and actively kills over a negligible timeperiod in comparison to natural mosquito average life-
times (which are typically on the order of weeks [1]).  Since the natural mosquito life-time is the 
characteristic time-scale over which the ODE population model in Eq. (2.1) responds to changes, 
we therefore chose to model ULV adulticide spray as an instantaneous impulsive fractional 
decrease in mosquito population at the time of application. For an impulse applied at time t, we 
let XE(t−) be the population level just before the impulse, XE(t+) be the population level just after 
the impulse, and ρE�[0,1] be the percent population knockdown per application, such that 

 
(2.8) 

After the impulse, the vector population recovers according to Eq. (2.2) 

 
(2.9) 

where s>0. 
 
By contrast to ULV adulticide, residual barrier sprays have a long-lasting killing effect.  To 
model this within the context of the dynamics of Eq. (2.1), we assumed that residual barrier 
sprays instantaneously increase the death rate by a fraction γE�[0,∞) above the natural mosquito 
death rate, which then decays exponentially at rate ηE�(0,∞). For an impulse applied at time t, 
we thus have 

 
(2.10) 

 
            (2.11) 
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pesticide dispersal or provide protective cover [30, 31]. Canonical wisdom from the field

suggests that ULV adulticides are relatively ine↵ective in controlling diurnal mosquitoes in

urban areas. Such mosquitoes more likely to be at rest under cover during typical evening

and early morning spraying times [30].

The amount of time over which ULV spray remains in the air and actively kills is negligible

in comparison to natural mosquito average life-times (which are typically on the order of

weeks [1]), and the natural mosquito life-time is the characteristic time-scale over which the

ODE population model in Eq. (1) responds to changes. We therefore model ULV adulticide

spray as an instantaneous impulsive fractional decrease in mosquito population at the time

of application. For an impulse applied at time t, let XE(t�) denote the population level just

before the impulse, let XE(t+) denote the population level just after the impulse, and let

⇢E 2 [0, 1] denote the percent population knockdown per application, such that

XE(t+) = XE(t�)(1� ⇢E). (8)

After the impulse, the vector population recovers according to Eq. (2):

XE(t+ s) = XE(t�)(1� ⇢E)e�µ0s +
⇤0

µ0

⇣

1� e�µ0s
⌘

, (9)

where s > 0.

2.3.2 Residual barrier adulticide spray

Adulticide residual barrier control consists of pyrethroids sprays, such as bifenthrin and

lambda-cyhalothrin, applied to vegetation, containers, and other potential landing surfaces

close to ground. These sprays quickly kill adult mosquitoes upon contact and continue to

kill for several weeks after the initial application [30, 32, 33]. Thus, residual barrier sprays

provide a long-lasting adult vector control method in comparison to ULV adulticide spray.

Residual barrier sprays are typically applied in residential areas by individuals using hand-
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held equipment with tanks or backpacks, and the corresponding labor and time constraints,

as well as citizens’ potential unwillingness to give back yard access to government employees

in residential areas, limit the amount of pesticides that can be applied in an area [30].

To model the long-lasting e↵ects of residual barrier spray on the dynamics of Eq. (1), we

use an impulsive in the mosquito death rate, which we denote µE(t). This is in contrast to

the short-lasting dynamics of ULV adulticide, which is modeled as an impulse on the vector

population directly. More specifically, residual barrier control is assumed to instantaneously

increases the death rate by a fraction �E 2 [0,1) above the natural mosquito death rate,

and the e↵ect is assumed to decay exponentially at a rate ⌘E 2 (0,1). For an impulse

applied at time t, we thus have

µE(t+) = µ0

⇣

1 + �E
⌘

, (10)

µE(t+ s) = µ0

⇣

1 + �Ee�⌘Es
⌘

, (11)

where s > 0. The term µ0�E is the average rate at which a mosquito will contact and die

from a pesticide treated surface just after application, and the exponential decay exp
⇥

�⌘Et
⇤

models the natural evaporation and decreasing concentration of poison on the landing sur-

faces. Based on this interpretation, we expect �E to vary in proportion with the fraction of

landing surfaces within the control area that are able to be reachable and treatable by work-

ers. Based on the experiments in [32, 33], we expect �E to be on the order of one-hundred to

two-hundred in laboratory settings where mosquitoes are held in closed in containers with

most of the available landing surfaces coated in adulticide-treated vegetation. Under field

conditions, we expect �E to be much smaller, perhaps on the order of tens, due to the limited

number of reachable and treatable landing surfaces. Likewise, based on Refs. [32, 33] we

expect 1/⌘E to be on the order of a week to several weeks. These parameter values are

obtained in the supplementary material S1 by fitting our residual barrier spray model to the

data from the referenced experiments.
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Assuming a single impulse applied at time t, an initial population XE(t), evolves accord-

ing to the following population dynamics:

d

ds
XE(t+ s) = �µE(t+ s)XE(t+ s) + ⇤0, (12)

with corresponding solution

XE(t+ s) = XE(t) exp



�µ0s� �E µ0

⌘E

⇣

1� e�⌘Es
⌘

�

(13)

+ exp



�µ0s� �E µ0

⌘E

⇣

1� e�⌘Es
⌘

�

⇤0

Z s

0

ds0 exp



µ0s0 + ⌘E
µ0

⌘E

⇣

1� e�⌘Es0
⌘

�

= XE(t)g(s) +
⇤0

µ0

g(s)I(s),

where

g(s) = exp



�µ0s� �E µ0

⌘E

⇣

1� e�⌘Es
⌘

�

, (14)

I(s) =

Z s

0

ds0µ0 exp



µ0s0 + �E µ0

⌘E

⇣

1� e�⌘Es0
⌘

�

(15)

=
µ0

⌘E
exp



�E µ0

⌘E

�✓

�E µ0

⌘E

◆

µ0

⌘E

�



�µ0

⌘E
, �E µ0

⌘E
e�⌘Es, �E µ0

⌘E

�

, (16)

where s > 0 and � denotes the doubly incomplete gamma function:

� [a, z
0

, z
1

] =

Z z
1

z
0

dt ta�1e�t. (17)

Note that the quantity exp
h

��E µ0

⌘E

⇣

1� e�⌘Es
⌘i

gives the fraction of initial mosquitoes

surviving after time s, assuming no deaths due to natural causes. In the limit ⌘E ! 1,

�E ! 1, with �E/⌘E held fixed, XE develops a discontinuity at time t, and Eq. (13) reduces

to Eq. (9) for ⇢E = 1 � exp
h

��E µ0

⌘E

i

. We thus recover ULV adulticide spray as a residual
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where s >0 and Γ denotes the doubly incomplete gamma function 

 
(2.17) 

Larval source reduction causes a decrease in the larval carrying capacity. In our simple 
population model in Eq. (2.1), the mosquito emergence rate is interpreted as proportional to the 
larval carrying capacity, so we chose to model the effects of larval source reduction by assuming 
an impulsive reduction in the mosquito emergence rate, which we denote by ΛE(t). Specifically, 
we assumed that larval source reduction occurs instantaneously and decreases the emergence rate 
by a fraction σE�[0,1]. We then assumed that this effect decays exponentially at a rate 
νE�(0,∞). For an impulse applied at time t, we have 

 
(2.18) 
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where s >0. The term σE represents the fraction of larval carrying capacity eliminated, and the 
exponential decay factor models a spontaneous reappearance of available receptacles (due to 
residents’ non-accessibility, rainfall into containers like bromeliads that are non-removable, etc.). 
The numerical values of σE and νE can vary widely depending on the specifics of the area being 
modeled and are be difficult to determine via field studies [30]. However, we generally expect 
1/νE to be on the order of days to weeks in residential areas with sufficient levels or rainfall and 
varying levels of accessibility. Applying Eqs. (2.18) and (2.19) to a population of mosquitoes 
XE(t), we have 
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barrier spray limit.

2.3.3 Larval source reduction

Larval source reduction consists of government or health agency employees locating and

eliminating receptacles of standing water which can serve as larval habitats for container-

breeding mosquito species in residential areas [30]. Receptacles such as tires or other yard

trash can be removed, while other receptacles such as gardening buckets can be emptied

and turned upside down. Like residual barrier adulticide spray, the e�cacy of larval source

reduction is limited by residents’ compliance in allowing property access. E�cacy is further

limited by residents’ compliance in keeping yards container-free after site visits, and by the

presence of permanent receptacles that can not be eliminated.

Larval source reduction causes a decrease in the larval carrying capacity. In our simple

population model in Eq. (1), the mosquito emergence rate is interpreted as proportional to

the larval carrying capacity, so we model the e↵ects of larval source reduction by assuming an

impulsive reduction in the mosquito emergence rate, which we denote by ⇤E(t). Specifically,

larval source reduction is assumed to instantaneously decrease the emergence rate by a

fraction �E 2 [0, 1], and the e↵ect is assumed to decay exponentially at a rate ⌫E 2 (0,1).

For an impulse applied at time t, we have

⇤E(t+) = ⇤0

�

1� �E
�

, (18)

⇤E(t+ s) = ⇤0

⇣

1� �Ee�⌫Es
⌘

, (19)

where s > 0. The term �E represents the fraction of larval carrying capacity able to be

eliminated by workers, and the exponential decay factor models a spontaneous reappearance

of available receptacles (due to either residents’ non-compliance or natural causes) and their

subsequent refilling with water. The numerical values of �E and ⌫E can vary widely de-

pending on the specifics of the area being modeled and are be di�cult to determine via field
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(2.20) 

with solution 

 
(2.21) 

For LV larvicide control, we proposed a simple step function model.  Though admittedly more of 
an approximation than our other models, this was the best approach within the context of the 
study, and it facilitated analytical calculations, which were critical for model interpretation.  
Specifically, we set σE�[0,1] to be the fraction of larval habitat containers able to be reached by 
LV larvicide spray during an area-wide application, and we approximated the larvicide’s effect 
by assuming that the treated containers become uninhabitable and support no larvae for the 
efficacy time 1/νE�(0,∞), effectively reducing the larval carrying capacity by a factor 1−σE. 
Experimental data suggest 1/νE to be on the order of several weeks, while σE will vary based on 
the specific environmental features of the area being modeled [30,34]. After the efficacy time 
1/νE, the larval carrying capacity is assumed to return to its natural value. For a single impulse of 
control applied at time t, our LV larvicide model gives the following functional form for ΛE 

 
(2.22) 

The resulting population dynamics are given by the following solution: 

 
            (2.23) 
 
To relate implicit control strategies to explicit control strategies that capture more mechanistic 
detail, we specifically focused on periodic control schemes.  Within this type of system, we 
defined ‘overall average’ reduction to mean the reduction in vector population size averaged 
over time, and we demanded that an explicit protocols’ application schedule yield constant time-
averaged populations when the averaging sample time approaches infinity.  Formally, this 
allowed us to define the time-independent implicit adulticide control strength as 

 
(2.24) 

studies [30]. However, we can generally expect 1/⌫E to be on the order of days to weeks in

residential areas with su�cient levels or rainfall and varying levels of compliance. Applying

Eqs. (18) and (19) to a population of mosquitoes XE(t), we have

d

ds
XE(t+ s) = �µ0XE(t+ s) + ⇤E(t+ s), (20)

with solution

XE(t+ s) = XE(t)e�µ0s +
⇤0

µ0

⇣

1� e�µ0s
⌘

� �E ⇤0

⌫E � µ0

⇣

e�µ0s � e�⌫Es
⌘

. (21)

2.3.4 Area-wide LV larvicide spray

Area wide low-volume (LV) larvicide sprays most typically consists of liquefied or emul-

sified Bacillus thuringiensis israelensis (BTI) sprayed over large areas by truck or airplane

[30]. BTI is naturally occurring bacterium found in soils which that produces lethal toxins to

mosquito larvae that ingest them [30, 34]. After application, BTI can remain in containers

and actively inhibit larval population growth for up to several weeks [30, 34].

Based on the above description, the most natural model for LV larvicide spray is an

increased larval death rate for the larvae in the BTI treated containers. However, there is no

larval death rate in the simple ODE population model in Eq. (1), which assumes that the

larval death rate is a small and insignificant parameter (see Appendix 1 for details). We are

thus faced with the predicament that when the e↵ects of LV larvicide spray become strong

enough to have non-trivial e↵ects on the adult mosquito population, our model is no longer a

valid approximation of adult mosquito dynamics. In order to derive a biologically justifiable

model for LV larvicide control, a deeper analysis of the more complete non-linear model in

Appendix 1 is required - a task outside the scope of this paper.

Lacking a biologically justifiable model for LV larvicide control, we propose an simple

step function model which will facilitate analytical calculations in the work to follow. We
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let �E 2 [0, 1] represent the fraction of larval habitat containers able to be reached by LV

larvicide spray during an area-wide application, and we approximate the larvicide’s e↵ect by

assuming that the treated containers will become uninhabitable and support no larvae for

the e�cacy time 1/⌫E 2 (0,1), e↵ectively reducing the larval carrying capacity by a factor

1� �E. Experimental data suggest 1/⌫E to be on the order of several weeks, while �E will

vary based on the specific environmental features of the area being modeled [30, 34]. After

the e�cacy time 1/⌫E, the larval carrying capacity is assumed to return to its natural value.

For a single impulse of control applied at time t, our LV larvicide model gives the following

functional form for ⇤E:

⇤E(t+ s) =

8

>

>

<

>

>

:

⇤0(1� �E) s  1

⌫E

⇤0

1

⌫E
< s.

(22)

The resulting population dynamics are given as in Eq. (20), with solution

XE(t+ s) =

8

>

>

<

>

>

:

XE(t)e�µ0s + ⇤

0

µ0

(1� �E)
⇣

1� e�µ0s
⌘

s  1

⌫e

XE(t)e�µ0s + ⇤

0

µ0

✓

1� e�µ0s � �Ee�µ0s(e�
µ0

⌫E � 1)

◆

1

⌫e
< s.

(23)

2.4 The relationship between implicit and explicit control

The correspondence between explicit and implicit control will be defined mathematically

as functional dependencies of implicit control strengths on the defining properties (such as �E

and �E) of the underlying explicit controls which they represent. To define such functions,

we must ascribe a precise meaning to the notion of implicit control strength representing

the ‘average’ e↵ect of an underlying explicit control scheme. Our interpretation must be

logically consistent with the notion of a constant implicit control strength representing a

‘fixed implementation strategy’ explicit control protocol, and also respect the constraint

that a ‘fixed implementation strategy’ yields a constant ‘average’ population reduction in
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2.4 The relationship between implicit and explicit control

The correspondence between explicit and implicit control will be defined mathematically

as functional dependencies of implicit control strengths on the defining properties (such as �E
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the long-time limit in reflection of Eq. (7). The e↵ects of a single impulse of an explicit control

always decay away to zero at large times, so to achieve a non-zero population reduction in

the long-time limit, we must restrict our considerations to explicit controls which are applied

repeatedly and indefinitely. In this context, we interpret the notion of ‘fixed implementation

strategy’ to mean an explicit control protocol whose defining properties do not change in

time and whose application schedule follows from a fixed set of rules. For such an explicit

control protocol to give a constant ‘overall average’ population reduction in the long-time

limit, we define ‘overall average’ to mean an average over time, and we demand the protocols’

application schedules yield constant time-averaged populations when the averaging sample

time approaches infinity. Mathematically, such an application schedule could be determined

by, for example, a time-homogeneous stochastic process, a chaotic dynamical system evolving

over an attractor, or a periodic application schedule. Periodic application schedules are the

simplest to describe mathematically and are the most natural to communicate to disease

management agencies, so they will be the sole focus of this paper.

Formally, we define the time-independent implicit adulticide control strength as

⇢I(�E, ⌘E, ⌧µ) = 1� lim
T!1

1

⇤0/µ0

1

T

Z T

t
0

dsXE(s), (24)

where XE(t) evolves under the action of either ULV adulticide spray or residual barrier

adulticide spray, ⌧µ is the period of the application protocol, and t
0

is an arbitrary constant

(ULV adulticide spray control strength can be written in this functional form by recognizing

it as a residual barrier spray limit). Likewise, we define time-independent implicit larval

control as

�I(�E, ⌫E, ⌧
⇤

) = 1� lim
T!1

1

⇤0/µ0

1

T

Z T

t
0

dsXE(s), (25)

where XE(t) evolves under the action of either larval source reduction or LV larvicide spray,

⌧
⇤

is the period of the application protocol, and t
0

is an arbitrary constant. Regardless of
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where XE(t) evolves under the action of either ULV adulticide spray or residual barrier adulticide 
spray,τµ is the period of the application protocol, and t0 is an arbitrary constant. Likewise, our 
definition of ‘overall average’ allowed us to define the time-independent larvicide control 
strength as 

 
(2.25) 

where XE(t) evolves under the action of either larval source reduction or LV larvicide spray, τΛ is 
the period of the application protocol, and t0 is an arbitrary constant. Equation 2.24 defines a 
manifold in ρI−ρE−ηE−τµ space (as does Eq. (25) analogously). If the defining properties ρE, ηE, 
and τµ are assumed to be time-dependent in reflection of a time-dependent implementation 
strategy, there will exist a corresponding trajectory traced on the ρI−ρE−ηE−τµ manifold, and this 
trajectory will endow a time-dependence to ρI. Thus, time-dependent implicit controls inherit 
their time-dependencies from the time-dependencies in the defining properties of the underlying 
explicit controls. 
 In addition to single control mechanisms, we also considered joint control strategies 
involving two or more methods.  To define joint control strategies involving only adulticide, we 
considered ULV adulticide spray and residual barrier spray applied with parameters γE1,ηE

1,τµ1 
and γE2, ηE

2, and τµ2, respectively.  This yielded a vector population XE(t) with the joint implicit 
control strength given by 

 
(2.26) 

Similarly, for combinations of larvicide controls, we were able to express the joint implicit 
control strength by 

 
(2.27) 

The potential for synergistic effects, however, became problematic when both adulticide and 
larval control protocols were considered simultaneously.  This synergy called into question the 
validity of implicit modeling in general.  To deal with this, we derived a general expression to 
demonstrate synergistic effects in combing adulticide and larvicide and to demonstrate their 
contribution to the average population reduction.  Our approach involved a combination of 
Floquet and Fourier analysis.  
 Specifically, we considered the simple vector dynamics model from Eq. (2.1), subject to 
multiple explicit adulticide and larvicide control schemes. 

 
(2.28) 

This allowed us to write the following general expressions 
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vector population XE(t), we define the joint implicit control strength by
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Likewise, if both larval source reduction and LV larvicide are applied with parameters
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joint implicit control strength by
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The potential for synergistic e↵ects becomes problematic when both adulticide and larval

control protocols are applied simultaneously. If non-negligible synergistic e↵ects indeed are

present, then one is forced to choose which parameters the synergistic e↵ects modify at the

implicit level. There are an infinite number of conceivable choices; i. e. the synergistic e↵ect

can be accounted for at the implicit level in the increased death rate as in Eq. (3), in the

decreased emergence rate as in Eq. (5), or can be split in between the emergence rate and

death rate in an infinite number of ways. The di↵erent choices will yield di↵erent dynamics

for the implicit population evolution defined in Eq. (6), and there is no a priori justification

for selecting one choice over the others. Thus, if there exist non-negligible synergistic e↵ects

between adulticides and larval controls, the seemingly reasonable assumption that implicit

larval controls decrease vector emergence rates and implicit adulticide controls increase vector

death rates quoted in Sec. 2.2 is no longer certain. Likewise, the general utility of implicit

control modeling is of questionable validity. We now show the general existence of synergistic

e↵ects between adulticides and larval controls and derive an expression for their contribution

to the average population reduction by employing a combination of Floquet and Fourier

analysis.
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2.5 Floquet-Fourier decomposition

Consider the simple vector population model in Eq. (1), subject to a multitude of explicit

adulticide and larval control measures:

ẊE(t) = �µE(t)XE(t) + ⇤E(t), (28)

Generally, we can write

µE(t) = µ0 (1 + fµ(t)) (29)

⇤E(t) = ⇤0 (1� f
⇤

(t)) , (30)

where fµ(t) 2 [0,1) results from some combination of periodically applied residual barrier

spray and ULV spray (considered as a limit of residual barrier spray), and where f
⇤

(t) 2

[0, 1] results from some combination of larval source reduction and LV larvicide spray. We

assume that fµ(t) and f
⇤

(t) have periods ⌧µ and ⌧
⇤

, respectively, and that the periods are

commensurable, meaning that

mµ⌧µ = m
⇤

⌧
⇤

= ⌧c, (31)

where ⌧c is a larger combined period and mµ and m
⇤

are positive integers with greatest com-

mon divisor unity, implying that XE(t) evolves periodically with period ⌧c in the long-time

limit. Explicit protocols implemented by real world health agencies are likely to have appli-

cation periods defined in units of whole days, so the assumption of commensurable periods

is not particularly limiting in regards to practical applications. For convenience, will denote

the average of any periodic function f(t) over it’s period ⌧ by hfi⌧ .

To distinguish the influence of synergistic e↵ects from non-synergistic e↵ects on the time-

averaged solution to Eq. (28), we employ a combination of Floquet and Fourier analysis.

Floquet analysis is a dynamical systems tool used to decompose the time-evolution operator
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where fµ(t)�[0,∞) results from some combination of periodically applied residual barrier spray 
and ULV spray, and where fΛ(t)�[0,1] results from some combination of larval source reduction 
and LV larvicide spray. We assumed that fµ(t) and fΛ(t) have periods τµ and τΛ, respectively, and 
that the periods were commensurable, meaning that 
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where τc is a larger combined period and mµ and mΛ are positive integers with greatest common 
divisor unity, implying that XE(t) evolves periodically with period τc in the long-time limit.  
 Applying a Floquet transform to the periodically driven linear ODE with periodic 
coefficients in Eq. (2.28), followed by a Fourier transform and then an inverse Floquet transform, 
yielded a set of closed form expressions for the Fourier modes of the periodic solution, with the 
zeroth mode giving the time-averaged solution.  From this, we defined the following pertinent 
terms.   
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where M is the time-averaged death rate, P(t) is the Floquet operator, and Q(t) is the reverse 
Floquet operator.  Once XE(t) has relaxed into its long-time periodic orbit, we can define the 
following Fourier decompositions 
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of a homogeneous linear ODE with periodic coe�cients into a complete set of periodically

varying basis vectors whose directions are either contracting, expanding, or neutral on av-

erage. This analysis also provides a time-dependent periodic change of coordinates (often

referred to as the Floquet transform) which transforms a homogeneous periodic ODE into a

homogeneous constant coe�cient ODE [35]. Applying such a transform to the periodically

driven linear ODE with periodic coe�cients in Eq. (28), followed by a Fourier transform and

then an inverse Floquet transform, yields a set of closed form expressions for the Fourier

modes of the periodic solution, with the zeroth mode giving the time-averaged solution.

Here, we define the necessary quantities and give the final result. The complete derivation

is given in Appendix 3.

We begin by defining the time-averaged death rate M and the Floquet operator P (t):

M =
1

⌧µ

Z ⌧µ

0

dt µE(t) (32)

= µ0

⇣

1 + hfµi⌧µ
⌘

,

P (t) = exp



Mt�
Z t

0

dt0µE(t0)

�

(33)

= exp



µ0 hfµi⌧µ t� µ0

Z t

0

dt0fµ(t
0)

�

.

We also define the reciprocal Floquet operator Q(t):

Q(t) = P (t)�1 (34)

= exp



�µ0 hfµi⌧µ t+ µ0

Z t

0

dt0fµ(t
0)

�

.

The above expressions imply that P (t) and Q(t) are periodic with period ⌧µ, and that

P (⌧µ) = Q(⌧µ) = 1. Assuming XE(t) to have relaxed into its long-time periodic orbit, we
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(2.35-2.38) 

where i denotes the imaginary unit and the summations are over all positive and negative 
integers. The long-time average of XE(t) is given by its zeroth order Fourier mode: 

 
(2.39) 

Through examination of several limits, we were able to decompose the actions of adulticide and 
larvicide in Eq. (2.39) into distinct synergistic and non-synergistic contributions. 

 
(2.40) 

where 

 
(2.41) 

is the implicit larval control strength as defined in Eqs. (2.25) and (2.27), written in terms of the 
zero Fourier mode of the corresponding explicit larval protocol, while  

 
(2.42) 

is the implicit adulticide strength defined in Eqs. (2.24) and (2.26), written in terms of the 
adulticide Floquet-Fourier modes.  Eq. (4.40) to the implicitly controlled equilibrium population 
reduction in Eq. (4.7), we were able to determine that implicit control modeling accounts for 
precisely the non-synergistic effects between larval controls and adulticides, and that implicit 
control accurately describes the average effects of explicit control when the synergistic term in 
Eq. (4.40) are negligible. To determine the importance of synergistic effects, we then examined 

define the following Fourier decompositions:

XE(t) =
1
X

n=�1
Xne

2⇡in t
⌧c (35)

P (t) =
1
X

n=�1
Pne

2⇡in t
⌧µ (36)

Q(t) =
1
X

n=�1
Qne

2⇡in t
⌧µ (37)

⇤E(t) =
1
X

n=�1
⇤ne

2⇡in t
⌧
⇤ , (38)

where i denotes the imaginary unit and the summations are over all positive and negative

integers. The long-time average of XE(t) is given by its zeroth order Fourier mode X
0

, and

in Appendix 3 we derive the following expression:

X
0

=
1
X

j,k=�1

PkQ�k�m
⇤

j

M � 2⇡ik
⌧µ

⇤mµj. (39)

We can interpret the terms making up the summation for X
0

through the following

observations. First, note that the zero mode of ⇤E(t) is the average over a period:

⇤
0

= ⇤0

�

1� hf
⇤

i⌧
⇤

�

. (40)

Second, if only larval controls are used, we have M = µ0, P (t) = Q(t) = 1, P
0

= Q
0

= 1,

and Pn = Qn = 0 for n 6= 0, and the expression for X
0

reduces to

X
0

=
⇤

0

µ0

(larval controls only) (41)

=
⇤0

µ0

�

1� hf
⇤

i⌧
⇤

�

.
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We thus see that the implicit larval control strength as defined in Eqs. (25) and (27) can be

written in terms of the zero Fourier mode of the corresponding explicit larval protocol:

�I = hf
⇤

i⌧
⇤

(42)

= 1� ⇤
0

⇤0

.

Next, note that if only adulticides are applied, we have ⇤
0

= ⇤0 and ⇤n = 0 for n 6= 0, and

the expression for X
0

reduces to

X
0

=
1
X

k=�1

PkQ�k

M � 2⇡ik
⌧µ

⇤0 (adulticide controls only). (43)

We thus see that the implicit adulticide strength defined in Eqs. (24) and (26) can be written

in terms of the adulticide Floquet-Fourier modes as follows:

⇢I = 1�
1
X

k=�1

PkQ�k

M
µ0

� 2⇡ik
µ0⌧µ

. (44)

With the above expressions for �I and ⇢I , we can separate the j = 0 term in the summation

in Eq. (39) to find

X
0

=
⇤0

µ0

(1� �I)(1� ⇢I) +
1
X

j,k=�1
j 6=0

PkQ�k�m
⇤

j

M � 2⇡ik
⌧µ

⇤mµj, (45)

where the summation is over all integers k and all non-zero integers j.

Equation (45) decomposes the action of combined larval and adulticide controls on the

average vector population into distinct synergistic and non-synergistic contributions. The

first term on the right hand side of Eq. (45) is the non-synergistic contribution which ac-

counts for only the average e↵ects of the individual adulticide and larval controls, while the

summation term accounts for synergistic contributions which are dependent on interactions

between the non-zero Fourier modes associated with the individual controls. Comparing
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We thus see that the implicit larval control strength as defined in Eqs. (25) and (27) can be

written in terms of the zero Fourier mode of the corresponding explicit larval protocol:

�I = hf
⇤
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(42)

= 1� ⇤
0

⇤0

.

Next, note that if only adulticides are applied, we have ⇤
0

= ⇤0 and ⇤n = 0 for n 6= 0, and

the expression for X
0

reduces to

X
0

=
1
X

k=�1

PkQ�k

M � 2⇡ik
⌧µ

⇤0 (adulticide controls only). (43)

We thus see that the implicit adulticide strength defined in Eqs. (24) and (26) can be written

in terms of the adulticide Floquet-Fourier modes as follows:

⇢I = 1�
1
X

k=�1

PkQ�k

M
µ0

� 2⇡ik
µ0⌧µ

. (44)

With the above expressions for �I and ⇢I , we can separate the j = 0 term in the summation

in Eq. (39) to find

X
0

=
⇤0

µ0

(1� �I)(1� ⇢I) +
1
X

j,k=�1
j 6=0

PkQ�k�m
⇤

j

M � 2⇡ik
⌧µ

⇤mµj, (45)

where the summation is over all integers k and all non-zero integers j.

Equation (45) decomposes the action of combined larval and adulticide controls on the

average vector population into distinct synergistic and non-synergistic contributions. The

first term on the right hand side of Eq. (45) is the non-synergistic contribution which ac-

counts for only the average e↵ects of the individual adulticide and larval controls, while the

summation term accounts for synergistic contributions which are dependent on interactions

between the non-zero Fourier modes associated with the individual controls. Comparing
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their magnitude as a function of relative timing shifts between adulticide and larval controls or 
phenological emergence rate oscillations by calculating the synergy factor S, defined as 

 
(2.43) 

where z denotes the lag of the larval protocol relative to the adulticide protocol. The synergy 
factor S can take on both positive and negative values; negative S values indicate beneficial 
synergistic effects which reduce the average vector population below the level suggested by 
implicitly modeled controls, while positive values indicate counter productive synergistic effects 
which increase the average vector population. 
 
Model Analysis 
 
We first considered the relationship between explicitly modeled ULV and implicit control 
models.  Repeated use of Eq. (2.9), averaged over a period, gives the following expression for 
the explicit vector population 

 
(2.44) 

Relating this to the corresponding implicit control scheme gives the following 

 
(2.45) 

Figure 2.1 shows a density plot indicating the strength of ρI as a function of ρE and τµ. 
Comparison of the explicit control dynamics with corresponding implicit control dynamics is 
additional whon in Fig. 2.2. Figure1 indicates that strong implicit control strength occurs only for 
short periods τµ and high percent knockdowns ρE. From Fig.2, we see that the implicit control 
dynamics more closely match the explicit control dynamics for short application periods and low 
percent knockdowns.  The Floquet quantities for ULV are additionally found as 

 
(2.46) 

 
(2.47) 
 

Eq. (45) to the implicitly controlled equilibrium population reduction in Eq. (7), we see that

implicit control modeling accounts for precisely the non-synergistic e↵ects between larval

controls and adulticides, and that implicit control accurately describes the average e↵ects of

explicit control when the synergistic term in Eq. (45) is negligible in magnitude in compari-

son the non-synergistic term. Note that if the timing of the larval control protocol is shifted

by a lag of z days relative to the adulticide protocol, each emergence rate Fourier mode ⇤n

will acquire a complex phase factor exp
h

�2⇡inz
⌧
⇤

i

, and any influence on the average popula-

tion level will be contained entirely in the synergistic term in Eq. (45). In Secs. 3.3 and 4,

we will evaluate the relative importance of synergistic e↵ects as a function of relative timing

shifts between adulticide and larval controls or phenological emergence rate oscillations by

calculating the synergy factor S, defined as

S =

1
P

j,k=�1
j 6=0

PkQ�k�m
⇤

j

M� 2⇡ik
⌧µ

⇤mµje
�2⇡imµj

z
⌧
⇤

⇤

0

µ0

(1� �I)(1� ⇢I)
, (46)

where z denotes the lag of the larval protocol relative to the adulticide protocol. The synergy

factor S can take on both positive and negative values; negative S values indicate beneficial

synergistic e↵ects which reduce the average vector population below the level suggested

by implicitly modeled controls, while positive values indicate counterproductive synergistic

e↵ects which increase the average vector population.

In the work to follow, we consider Floquet operators and explicit larval controls whose

Fourier modes are at most O(1/n) as n ! 1, so the infinite summations in Eq. (46) can be

truncated for numerical computations. This Fourier mode decay as a function of increasing

mode order implies that S will have the greatest potential to be appreciable when m
⇤

and

mµ are both close to unity. Small integer values for m
⇤

andmµ implies the individual periods

⌧
⇤

and ⌧µ to be comparable in magnitude such that that the overall combined period ⌧c is a

small integer multiple the individual periods, and so strong synergistic e↵ects are therefore

indicative of a resonance-like phenomena between adulticide and larval control oscillations.
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3 Results

We now apply apply our definitions of implicit control strength in Eqs. (24), (25), (26),

and (27) to derive expressions for individual and joint adulticide control strengths in Sec. 3.1

and individual and joint larval control strengths in Sec. 3.2. These expressions are given

in Eqs. (58), (49), (73), (77), (80), and (86), and they, along with the Floquet-Fourier

decomposition in Eq. (45), comprise the central mathematical results of our work. Also in

Secs. 3.1 and 3.2, we give expressions for the Floquet operators and Fourier modes associated

with individual adulticide and larval controls, and we utilize them in Sec. 3.3 to calculate

the synergy factor S for combined larval and adulticide control protocols.

3.1 Adulticide controls

3.1.1 ULV adulticide spray

Suppose that ULV adulticide impulses are applied periodically with period ⌧µ and percent

knockdown ⇢E beginning at t = 0. Making repeated use of Eq. (9) we find

XE(t) =
t!1

⇤0

µ0

0

@1� ⇢Ee�µ0

�

tmod ⌧µ

�

1� (1� ⇢E)e�µ0⌧µ

1

A . (47)

Averaging XE(t) over a period gives

⌦

XE
↵

⌧µ
=

t!1

⇤0

µ0

 

1� ⇢E

1� (1� ⇢E)e�µ0⌧µ

1� e�µ0⌧µ

µ0⌧µ

!

(48)

From the definition in Eq. (24), we find the following expression for the implicit control

strength ⇢I :

⇢I =
⇢E

1� (1� ⇢E)e�µ0⌧µ

1� e�µ0⌧µ

µ0⌧µ
. (49)
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A density plot indicating the strength of ⇢I as a function of ⇢E and ⌧µ is given in Fig. 1, and

comparison of the explicit control dynamics with corresponding implicit control dynamics is

given in Fig. 2. Figure 1 indicates that strong implicit control strength occurs only for short

periods ⌧µ and high percent knockdowns ⇢E. From Fig. 2, we see that the implicit control

dynamics more closely match the explicit control dynamics for short application periods and

low percent knockdowns.

The Floquet quantities M,P (t), and Q(t) can be obtained by applying the definitions in

Eqs. (32), (33), and (33) for a residual barrier spray, and then taking the ULV adulticide

limit �E ! 1, ⌘E ! 1, with 1� exp
h

�E µ0

⌘E

i

= ⇢E held fixed. We find

M = µ0 � ln(1� ⇢E)

⌧µ
, (50)

P (t) = (1� ⇢E)
1� (t mod ⌧µ)

⌧µ , (51)

and

Q(t) = (1� ⇢E)
�1+

(t mod ⌧µ)

⌧µ . (52)

The Fourier modes Pn and Qn are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e�2⇡in t
⌧ P (t) (53)

= ⇢E
1

ln
h

1

1�⇢E

i

� 2⇡in
,
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(2.48) 

with the Fourier modes given by 

 
(2.49) 

 
(2.50) 

 

 
Figure 2.1 Density plot indicating the magnitude of the implicit control strength ρI as a 
function of the explicit control parameters ρE and τµ, where 1/µ0= 2 weeks. The color scale 
indicates the value of ρI. 
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and

Qn =
1

⌧µ

Z ⌧µ

0

dt e�2⇡in t
⌧ Q(t) (54)

=
⇢E

1� ⇢E
1

ln
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Figure 2.2 Time evolution of a population of 100 mosquitoes under ULV adulticide spray 
applied beginning at t= 0, where 1/µ0= 2 weeks and XE(0) = Λ0/µ0= 100. Explicit control 
dynamics are represented by the blue curves, and the red curves give the corresponding implicit 
control approximation. 
 
 
Second, we considered the relationship between explicitly modeled residual barrier spray and 
implicit control models.  Repeated use of Eq. (2.13), averaged over a period, gives the following 
expression for the explicit vector population 

 
(2.51) 

Again, relating this result to the implicit control model gives 

 
(2.52) 

Eq. (2.52) does not simplify to a closed form analytic expression and must be evaluated 
numerically. Density plots indicating values for ρI are given in Fig. 2.3, and a comparison of 
explicitly controlled dynamics and the corresponding implicitly controlled dynamics under 
residual barrier spray is given in Fig. 2.4. From Fig. 2.3, it is clear that weak implicit control 
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Figure 2: Time evolution of a population of 100 mosquitoes under ULV adulticide spray
applied beginning at t = 0, where 1/µ0 = 2 weeks and XE(0) = ⇤0/µ0 = 100. Explicit con-
trol dynamics are represented by the blue curves, and the red curves give the corresponding
implicit control approximation.
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3.1.2 Residual barrier spray

Suppose that a residual barrier impulse is applied periodically with period ⌧µ beginning

at time t = 0. From Eqs. (10) and (11), we have

µE(t) = µ
0

✓

1 + �Ee�⌘E
�

tmod ⌧µ

�

◆

. (55)

The corresponding population evolution XE(t) can be found by making repeated use of

Eq. (13). In the long-time limit, we find

XE(t) =
t!1

⇤
0

µ
0

"

g
�

tmod ⌧µ
�

I
�

tmod ⌧µ
�

+ g
�

tmod ⌧µ
�I(⌧µ)g(⌧µ)

1� g(⌧µ)

#

, (56)

where g(s) and I(s) are defined in Eqs. (14) and (15), respectively. Averaging XE(t) over

the period ⌧µ yields the following expression

⌦

XE
↵

⌧µ
=

t!1

⇤
0

µ
0

1

⌧µ

Z ⌧µ

0

ds

"

g(s)I(s) + g(s)
g(⌧µ)I(⌧µ)

1� g(⌧µ)

#

. (57)

Applying the definition in Eq. (24), the above expression for
⌦

XE
↵

⌧µ
implies

⇢I = 1� 1

⌧µ

Z ⌧µ

0

ds

"

g(s)I(s) + g(s)
g(⌧µ)I(⌧µ)

1� g(⌧µ)

#

. (58)

The above integral does not simplify to a closed form analytic expression and must be

evaluated numerically. Density plots indicating values for ⇢I are given in Fig. 3, and a

comparison of explicitly controlled dynamics and the corresponding implicitly controlled

dynamics under residual barrier spray is given in Fig. 4. From Fig. 3, we see that weak

implicit control strength occurs only for very small explicit control e�cacies �E and long

application periods ⌧µ, and comparing to Fig. 1, we see that residual barrier spray has weak

implicit control strengths ⇢I over much smaller parameter range than does ULV adulticide

spray. Figure 4 indicates that the implicit control approximation most closely matches the
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where g(s) and I(s) are defined in Eqs. (14) and (15), respectively. Averaging XE(t) over

the period ⌧µ yields the following expression
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Applying the definition in Eq. (24), the above expression for
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The above integral does not simplify to a closed form analytic expression and must be

evaluated numerically. Density plots indicating values for ⇢I are given in Fig. 3, and a

comparison of explicitly controlled dynamics and the corresponding implicitly controlled

dynamics under residual barrier spray is given in Fig. 4. From Fig. 3, we see that weak

implicit control strength occurs only for very small explicit control e�cacies �E and long

application periods ⌧µ, and comparing to Fig. 1, we see that residual barrier spray has weak

implicit control strengths ⇢I over much smaller parameter range than does ULV adulticide

spray. Figure 4 indicates that the implicit control approximation most closely matches the
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strength occurs only for very small explicit control efficacies γE and long application periods τµ.  
Comparing to Fig. 2.1, it is also clear that residual barrier spray has weak implicit control 
strengths ρI over a much smaller parameter range than does ULV adulticide spray. Figure 2.4 
indicates that the implicit control approximation most closely matches explicit control dynamics 
for shorter application periods. The Floquet quantities for residual barrier spray are additionally 
found as 
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with the Fourier modes given by 
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where Γ is the doubly incomplete gamma function, and we adopt the convention that complex 
numbers are written with their phase angles within the interval (−π,π]. 
 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 

explicit control dynamics for shorter application periods.

Applying the definitions in Eqs. (32), (33), (34), we find the following expression for the

Floquet quantities for residual barrier spray:

M = µ0

 

1 + �E 1� e�⌘E⌧µ

⌘E⌧µ

!

, (59)

P (t) = exp

"

��Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (60)

and

Q(t) = exp

"

�Eµ0(tmod ⌧µ)

 

1� e�⌘E(tmod ⌧µ)

⌘E(tmod ⌧µ)
� 1� e�⌘E⌧µ

⌘E⌧µ

!#

, (61)

The corresponding Fourier modes of P (t) and Q(t) are given by

Pn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µP (t) (62)

=
e
��E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

+�E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

⇥ exp



i⇡

✓

1 + �E µ0

⌘E

◆

+
2⇡2n

⌘E⌧µ

�

�

"

2⇡in

⌘E⌧µ
� �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
,��E µ0

⌘E
,��E µ0

⌘E
e�⌘E⌧µ

#

,

and

Qn =
1

⌧µ

Z ⌧µ

0

dt e
�2⇡in t

⌧µQ(t) (63)

=
e
�E µ0

⌘E

⌘E⌧µ

✓

�E µ0

⌘E

◆� 2⇡in
⌘E⌧µ

��E µ0

⌘E
1�e⌘

E⌧µ

⌘E⌧µ

�

"

2⇡in

⌘E⌧µ
+ �E µ0

⌘E
1� e�⌘E⌧µ

⌘E⌧µ
, �E µ0

⌘E
e�⌘E⌧µ , �E µ0

⌘E

#

,

where � is the doubly incomplete gamma function, and we adopt the convention that complex

numbers are written with their phase angles within the interval (�⇡, ⇡]. In contrast to

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/753475doi: bioRxiv preprint first posted online Sep. 4, 2019; 



 

  30 

 
Figure 2.3 Density plots indicating the magnitude of implicit residual barrier spray control 
strength ρI as a function of the explicit control parameters γE, ηE, and τµ, where 1/µ0= 2weeks. 
The color scale indicates the value of ρI. 
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Figure 2.4 Time evolution of a population of 100 mosquitoes under residual barrier 
sprayadulticide applied at t= 0, where 1/µ0= 2 weeks, XE(0) = Λ0/µ0= 100, and 1/ηE= 12 days. 
Explicit control dynamics are represented by the blue curve, and the red curve gives the 
corresponding implicit control approximation. 
 
We next considered the combined effect of both adulticide strategies.  When both residual barrier 
spray and ULV adulticide spray are applied with periods τµ1 and τµ2, respectively, with an overall 
combined period τµ such that 

 
(2.58) 

then the overall implicit control can be written in terms of the Floquet-Fourier modes as follows 

 
(2.59) 

Unfortunately, we were unable to reduce either the synergistic or non-synergistic components of 
Eq. (2.59) to simple analytical expressions.  To overcome this challenge, we hypothesized the 

0 20 40 60 80 100
Days

20

40

60

80

100
Mosquito Population

(a) �E = 10, ⌧µ = 15 days

0 20 40 60 80 100
Days

20

40

60

80

100
Mosquito Population

(b) �E = 10, ⌧µ = 45 days

0 20 40 60 80 100
Days

20

40

60

80

100
Mosquito Population

(c) �E = 100, ⌧µ = 15 days

0 20 40 60 80 100
Days

20

40

60

80

100
Mosquito Population

(d) �E = 100, ⌧µ = 45 days

Figure 4: Time evolution of a population of 100 mosquitoes under residual barrier spray
adulticide applied at t = 0, where 1/µ0 = 2 weeks, XE(0) = ⇤0/µ0 = 100, and 1/⌘E = 12
days. Explicit control dynamics are represented by the blue curve, and the red curve gives
the corresponding implicit control approximation.
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3.1.3 Combined ULV adulticide and residual barrier spray

Suppose that both residual barrier spray and ULV adulticide spray are applied with

periods ⌧µ
1

and ⌧µ
2

, respectively, with an overall combined period ⌧µ such that

m
1

⌧µ
1

= m
2

⌧µ
2

= ⌧µ, (64)

for integersm
1

andm
2

with greatest common divisor unity. Residual barrier spray is assumed

to be applied beginning at time t = 0, while ULV spray is assumed to be applied with a

timing o↵set z. Let ⌘E
1

and �E
1

denote the explicit control parameters for the residual barrier

spray, and let µE
1

(t) denote the corresponding explicit death rate under only residual barrier

spray. Then:
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for convenience. Likewise, let ⇢E
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denote the explicit control parameters for the ULV adulticide spray, with
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and where Lim denotes the ULV limit (�E
2

! 1, ⌘E
2

! 1 with �E
2

µ0

⌘E
2

= � ln(1 � ⇢E
2

)

held fixed), �(...) denotes the Dirac delta function, and we define fµ
2

(t) = �(1/µ0) ln(1 �

⇢E
2

)
P1

n=0

�
�

t� (n⌧µ
2

+ z)
�

for convenience. We denote the implicitly controlled death rates

corresponding to the individual action of residual barrier spray and ULV spray by µI
1

and
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Equation (71) decomposes the joint implicit death rate into synergistic and non-synergistic

contributions from the joint action of the two adulticide controls; the first double summa-

tion in ⇢I is not influenced by the timing o↵set z and thus represents the non- synergistic

contribution, while the second double summation represents the synergistic contribution.

Unfortunately, neither contribution decomposes into a simple function of the individual im-

plicit control strengths ⇢I
1

and ⇢I
2

and the o↵set z, and a tractable analytic expression for

the joint implicit control strength ⇢I in terms of the individual strengths is out of reach.

However, based on Eq. (69), we hypothesize the following simple approximate expression:

�IH = �I
1

+ �I
2

, (72)

which implies

⇢IH = 1� (1� ⇢I
1

)(1� ⇢I
2

)

1� ⇢I
1

⇢I
2

, (73)

where the superscript IH indicates our hypothesized expression for implicit control strength.

To test the accuracy of Eqs. (72) and (73), we evaluate ⇢I numerically, calculate ⇢IH using

Eqs. (58) and (49) for ⇢I
1

and ⇢I
2

, respectively, and evaluate the relative di↵erence (⇢IH �

⇢I)/⇢I . The values of ⇢I under weakly e�cacious residual barrier spray are indicated in

Fig. 5, and the relative di↵erences between ⇢I and ⇢IH are indicated in Fig. 6. Corresponding

plots under strongly e�cacious residual barrier spray are visually similar to Figs. 5 and 6 and
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following relationship between joint and individual implicit controls, and then examined 
deviations from this simple combination model 

 
(2.60) 

Fig. 2.5 shows values of ρI as a function of ULV percent knockdown and timing offset between 
ULV and residual barrier spray.  Figure 2.6 shows the relative differences between ρI and ρIH.  In 
general, we found that ρI is most sensitive to variances in z when τ2 is an integer multiple of τ1, 
which is indicative of a resonance phenomenon. For all application periods considered, we found 
the magnitude of(ρIH−ρI)/ρI to be at most a little over .01, thus our simple additive model in Eq. 
(2.60) was quite accurate. 
 

 
Figure 2.5 Contour plots indicating the implicit population reduction ρI for combined ULV 
adulticide and residual barrier spray as a function of the explicit ULV fractional knockdown ρE 
and timing offset z for various values of the ULV period τµ1, assuming a natural vector lifetime 
of 14 days. Residual barrier spray is applied with a period τµ1= 30 days, assuming γE= 20 and 
1/ηE= 12 days.  
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Equation (71) decomposes the joint implicit death rate into synergistic and non-synergistic

contributions from the joint action of the two adulticide controls; the first double summa-

tion in ⇢I is not influenced by the timing o↵set z and thus represents the non- synergistic

contribution, while the second double summation represents the synergistic contribution.

Unfortunately, neither contribution decomposes into a simple function of the individual im-
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and ⇢I
2
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, respectively, and evaluate the relative di↵erence (⇢IH �

⇢I)/⇢I . The values of ⇢I under weakly e�cacious residual barrier spray are indicated in

Fig. 5, and the relative di↵erences between ⇢I and ⇢IH are indicated in Fig. 6. Corresponding

plots under strongly e�cacious residual barrier spray are visually similar to Figs. 5 and 6 and
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Figure 2.6 Contour plots indicating the relative difference between ρI and ρIH for combined 
ULV adulticide and weakly efficacious residual barrier spray as a function of the explicit ULV 
fractional knockdown ρE and timing offset z for various values of the ULV period τµ2, assuming a 
natural vector lifetime of 14 days. Residual barrier spray is applied with a period τµ1= 30 days, 
assuming γE= 20 and 1/ηE= 12 days. The white dashed line indicates the contour ρI=ρIH.  
 
We next focused on larval source reduction.  For periodic controls applied continuously with 
period τΛ beginning at time t= 0, the larval emergence rate is given by 

 
(2.61) 

with Fourier modes 

 
(2.62) 

3.2 Larval controls

3.2.1 Larval source reduction

For larval source reduction control applied periodically with period ⌧
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The corresponding Fourier modes are found by the formula
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Applying Eq. (42) we find,

�I = �E 1� e⌫
E⌧

⇤

⌫E⌧
⇤

. (77)

Density plots indicating the values of �E are given in Fig. 7, and a comparison of the

explicitly controlled dynamics to the corresponding implicitly controlled dynamics are given

in Fig. 8. We find that larval source reduction has strong implicit control strength �I only

for application periods ⌧
⇤

shorter than the decay time 1/⌫E, and that the implicit dynamics

better approximate the explicit dynamics for shorter application periods and smaller explicit

e�cacies �E.
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which gives 

 
(2.63) 

Ultimately, this yields the following expression for implicit larval control: 

 
            (2.64) 
Density plots indicating the values of σE are shown in Fig. 2.7, and a comparison of the explicitly 
controlled dynamics to the corresponding implicitly controlled dynamics are given in Fig. 2.8. 
Overall, we found that larval source reduction had strong implicit control strength σI only for 
application periods τΛ shorter than the decay time 1/νE, and that the implicit dynamics better 
approximate the explicit dynamics for shorter application periods and smaller explicit efficacies 
σE. 
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Figure 2.7 Density plots indicating the magnitude of implicit larval source reduction control 
strength σI as a function of the explicit control parameters σE, νE, and τΛ. The color scale indicates 
the value of σI. 
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Figure 2.8 Time evolution of a population 100 mosquitoes under larval source reduction 
control applied at t= 0, where 1/µ0= 2 weeks, XE(0) = Λ0/µ0= 100, and 1/νE= 20 days. Explicit 
control dynamics are represented by the blue curve, and the red curve gives the corresponding 
implicit control approximation. 
 
The final single control that we considered was LV larvicide spray.  For LV larvicide spray 
applied periodically with period τΛ beginning at time t= 0, the larval emergence rate is given by 

 
            (2.65) 
The corresponding Fourier modes are given by 
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Figure 8: Time evolution of a population 100 mosquitoes under larval source reduction
control applied at t = 0, where 1/µ0 = 2 weeks, XE(0) = ⇤0/µ0 = 100, and 1/⌫E = 20
days. Explicit control dynamics are represented by the blue curve, and the red curve gives
the corresponding implicit control approximation.
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3.2.2 LV larvicide spray

For LV larvicide spray applied periodically with period ⌧
⇤

beginning at time t = 0,

Eq. (22) implies
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and Eq. (42) thus gives
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We thus see that for application periods shorter than the e�cacy time 1/⌫E, the implicit

and explicit control descriptions of periodic LV larvicide spray are equivalent, and all Fourier

modes ⇤n vanish for n 6= 0. Density plots indicating the values of �E are given in Fig. 9, and

a comparison of the explicitly controlled dynamics to the corresponding implicitly controlled

dynamics are given in Fig. 10. We find the parameter range over which LV larvicide spray

has strong implicit control strength to be larger than the parameter range over which larval
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(2.66) 

While the expression for implicit control is given by 

 
(2.67) 

Thus, for application periods shorter than the efficacy time 1/νE, the implicit and explicit control 
descriptions of periodic LV larvicide spray are equivalent, and all Fourier modes Λn vanish for 
n≠0. Figure 2.9 shows density plots indicating the values of σE, and a comparison of the 
explicitly controlled dynamics to the corresponding implicitly controlled dynamics is given in 
Fig. 2.10. We find the parameter range over which LV larvicide spray has strong implicit control 
strength to be larger than the parameter range over which larval source reduction has strong 
implicit control strength. As well, we find that strong LV larvicide implicit control strength 
requires at least moderate σE and an application period not much greater than the efficacy time 
1/νE. Finally, we find that the implicit dynamics most closely match the explicit dynamics for 
small σE and small application periods. 
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The corresponding Fourier modes are given by
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We thus see that for application periods shorter than the e�cacy time 1/⌫E, the implicit

and explicit control descriptions of periodic LV larvicide spray are equivalent, and all Fourier

modes ⇤n vanish for n 6= 0. Density plots indicating the values of �E are given in Fig. 9, and

a comparison of the explicitly controlled dynamics to the corresponding implicitly controlled

dynamics are given in Fig. 10. We find the parameter range over which LV larvicide spray

has strong implicit control strength to be larger than the parameter range over which larval
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3.2.2 LV larvicide spray

For LV larvicide spray applied periodically with period ⌧
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We thus see that for application periods shorter than the e�cacy time 1/⌫E, the implicit

and explicit control descriptions of periodic LV larvicide spray are equivalent, and all Fourier

modes ⇤n vanish for n 6= 0. Density plots indicating the values of �E are given in Fig. 9, and

a comparison of the explicitly controlled dynamics to the corresponding implicitly controlled

dynamics are given in Fig. 10. We find the parameter range over which LV larvicide spray

has strong implicit control strength to be larger than the parameter range over which larval
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Figure 2.9 Density plots indicating the magnitude of implicit LV larvicide spray control 
strength σI as a function of the explicit control parameters σE, νE, and τΛ. The color scale indicates 
the value of σI, and the dashed lines mark τ= 1/νE. 



 

  39 

 
Figure 2.10 Time evolution of a population of 100 mosquitoes under larval source reduction 
control applied at t= 0, where 1/µ0= 2 weeks, XE(0) = Λ0/µ0= 100, and 1/νE= 20 days. Explicit 
control dynamics are represented by the blue curve, and the red curve gives the corresponding 
implicit control approximation. 
 
Because of model formulation, combination of larvicide controls was only possible for systems 
where the two larvicide strategies operate on independent components of larval habitat.  In this 
case, the resulting model is fully additive, and requires no further analysis. 
 
For combined adulticide and larvicide controls, the controls enter the population dynamics 
independently at the implicit level, and Eq. (2.45) shows that the average vector population level 
under the corresponding joint explicit controls is given by the implicit control population level 
plus a synergistic correction term. To determine the importance of the synergistic correction, as 
well as the effects of relative shifts in application timings, we considered explicit adulticide 
protocols applied in conjunction with explicit larval control protocols, where we assumed a time 
lag of z days in the larval protocols relative to the adulticide protocols. Contour plots indicating 
the values ofSfor ULV adulticide with larval source reduction and residual barrier spray with 
larval source reduction are shown in Figs. 2.11 and 2.12 respectively. 
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Figure 10: Time evolution of a population of 100 mosquitoes under larval source reduction
control applied at t = 0, where 1/µ0 = 2 weeks, XE(0) = ⇤0/µ0 = 100, and 1/⌫E = 20
days. Explicit control dynamics are represented by the blue curve, and the red curve gives
the corresponding implicit control approximation.
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Figure 2.11 Contour plots indicating the value of synergy factor S for combined ULV 
adulticide and larval source reduction as a function of the explicit ULV fractional knockdown ρE 
and timing offset z for various values of the adulticide period τµ, assuming a natural vector 
lifetime of 14 days. Larval source reduction is applied with a period τΛ= 30 days and 1/νE= 20 
days. The white dashed lines indicate no synergy S= 0.  
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Figure 2.12 Contour plots indicating the value of synergy factor S for combined residual 
barrier spray larval source reduction as a function of the explicit residual barrier strength 
knockdown γE and timing offset z for various values of the adulticide period τµ, assuming a 
natural vector lifetime of 14 days and 1/ηE= 12. Larval source reduction is applied with a period 
τΛ= 30 days and 1/νE= 20 days. The white dashed lines indicate no synergy S= 0. 
 
In keeping with the second objective of our work, and the primary objective of our initial 
proposal, we also used our models to explore synergy between management and natural variation 
in the mosquito population that results from phenology.  Specifically, the value of S can be used 
to determine under what conditions it is worthwhile to adjust the timing of regular adulticide 
applications relative to seasonal oscillations to maximize beneficial synergy. As a specific, 
illustrative example, we considered a sinusoidally oscillating vector emergence rate as a basic 
model for seasonal or monthly fluctuations in rainfall or temperature. Letting Λ0 represent the 
average emergence rate and τΛ represent the oscillation period, we obtained the time-dependent 
emergence rate ΛE(t) as 
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(2.68) 

where z is a timing offset which sets the peak emergence rate to occur every z+ (k+ 1/4)τΛ days, 
where k is any integer. Under a sinusoidal emergence rate and constant vector death rate µ0, an 
analytic expression for the periodic vector population can be found, and one can show that the 
peak periodic vector population lags the peak emergence oscillation by a time 
(τΛ/2π)arctan(2π/(µ0τΛ)). The Fourier modes of the sinusoidal emergence rate are 

 
(2.69) 

If an adulticide is now applied with period τµ beginning at time t= 0 such that the combined 
adulticide and emergence rate period is given by τc, the emergence rate oscillations will have 
non-zero Fourier modes only for n= 0,±1, thus to have possible non-zero values of the synergy 
factor S, we must have mµ= 1, which implies that the adulticide application period must be 
greater than or equal to τΛ: 

 
(2.70) 

where the integer mΛ gives the number of complete emergence rate oscillations occurring over an 
adulticide application period. This result provides the following useful information for planning 
control strategies: in order to leverage beneficial synergy between a sinusoidal emergence rate 
and multiplea dulticide impulses of the same type applied over an oscillation period, the impulse 
timings are required to be spaced non-uniformly in time.  Figure 2.13 shows contour plots for the 
values S under various parameters for ULV adulticide spray and various offsets z from seasonal 
timing.  Similar results can be derived for other management strategies.  Figure 2.13 indicates 
that for the short emergence oscillation period of 5 days, synergistic effects between ULV 
adulticide and the oscillating emergence rate give a maximal population reduction when the 
adulticide impulse is applied about 1.75 days after the peak emergence rate oscillation. At an 
emergence oscillation period of 60 days, the maximally beneficial synergy occurs when the 
adulticide impulse is applied about 10 days after the peak emergence oscillation.  Synergistic 
effects can provide beneficial increases at 10% to 20% reductions in the population relative to 
the average population for both short and long application periods. 

4 Phenology and control

The synergy factor S in Eq. (46) can be used to examine the influence of interactions

between control and phenology on the vector population levels. This, in turn, can be used to

inform the design of control protocols in a temporally varying environment. If, for example,

the vector emergence rate fluctuates periodically due to seasonal variations in rainfall or

temperature, one can view the fluctuations as a particular explicit larval control protocol.

In this case, the value of S can be used to determine under what conditions it is worthwhile

to adjust the timing of regular adulticide applications relative to the seasonal oscillations

to maximize beneficial synergy. As a specific, illustrative example, consider a sinusoidally

oscillating vector emergence rate as a basic model for seasonal or monthly fluctuations in

rainfall or temperature. Letting ⇤0 represent the average emergence rate and ⌧
⇤

represent

the oscillation period, we write the oscillating emergence rate ⇤E(t) as
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where z is a timing o↵set which sets the peak emergence rate to occur every z+ (k+1/4)⌧
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4 Phenology and control

The synergy factor S in Eq. (46) can be used to examine the influence of interactions

between control and phenology on the vector population levels. This, in turn, can be used to

inform the design of control protocols in a temporally varying environment. If, for example,

the vector emergence rate fluctuates periodically due to seasonal variations in rainfall or

temperature, one can view the fluctuations as a particular explicit larval control protocol.

In this case, the value of S can be used to determine under what conditions it is worthwhile

to adjust the timing of regular adulticide applications relative to the seasonal oscillations

to maximize beneficial synergy. As a specific, illustrative example, consider a sinusoidally

oscillating vector emergence rate as a basic model for seasonal or monthly fluctuations in

rainfall or temperature. Letting ⇤0 represent the average emergence rate and ⌧
⇤

represent

the oscillation period, we write the oscillating emergence rate ⇤E(t) as

⇤E(t) = ⇤0
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where z is a timing o↵set which sets the peak emergence rate to occur every z+ (k+1/4)⌧
⇤

days, where k is any integer. Under a sinusoidal emergence rate and constant vector death
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Note that on its own, the oscillating emergence rate has no influence on the average vector

population, so it will have no influence at the implicit level when it is the only periodically

varying parameter, and consequently, we must have �I = 0.

Suppose that an adulticide is now applied with period ⌧µ beginning at time t = 0 such

that the combined adulticide and emergence rate period is given by ⌧c. The emergence rate

oscillations have non-zero Fourier modes only for n = 0,±1, to have possible non-zero values

of the synergy factor S defined in Eq. (46), we must have mµ = 1, which implies that the

adulticide application period must be greater than or equal to ⌧
⇤

:

⌧µ = m
⇤

⌧
⇤

= ⌧c, (91)

where the integerm
⇤

gives the number of complete emergence rate oscillations occurring over

an adulticide application period. This result itself provides the following useful information

for planning control strategies: in order to leverage beneficial synergy between a sinusoidal

emergence rate and multiple adulticide impulses of the same type applied over an oscillation

period, the impulse timings are required to be spaced non-uniformly in time.

For the purposes of this simple example, we assume m
⇤

= 1, implying that exactly one

adulticide impulse will is to be applied over the course of the emergence rate oscillation

period. In this case, the timing o↵set z in Eq. (89) is an indicator of the timing of the

adulticide application relative to the timing of the emergence rate oscillations; an o↵set of

z implies that the adulticide application impulse leads the peak emergence rate oscillation

by z + ⌧c/4 days (or, equivalently, lags by 3⌧c/4� z days). We can therefore determine the

impulse timing for maximally beneficial synergy by finding the values of z for which S is

largest in magnitude and negative in value.

Figure 14 shows contour plots for the values S under various parameters for ULV adulti-

cide spray and various o↵sets z. The corresponding plot for residual barrier spray is given as

figure S8 in the supplementary material. Note that S will scale linearly with �E, so we set �E
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Figure 2.13 Contour plots indicating the value of synergy factor S for ULV adulticide with 
phenological oscillations as a function of the explicit ULV fractional knockdown ρE and timing 
offset z, assuming a natural vector lifetime of 14 days and σE= 1. The white dashed lines indicate 
no synergy S= 0.  
 
Figure 2.14 shows extensions to larger oscillations, including 365 day oscillations typical of 
seasonal phenology. 
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Figure 2.15  Plots indicating the timing of ULV adulticide application required for maximum 
beneficial synergistic effects with phenological emergence rate oscillations, assuming a natural 
vector lifetime of 14 days. 
 
The central results of this section are thus stated as the following vector management 
recommendations: to achieve maximally beneficial synergy between a ULV adulticde protocol 
and a sinusoidal emergence rate, for a single application over an emergence period, apply the 
impulse at time of the uncontrolled peak vector oscillation, and for multiple applications over an 
emergence period, the optimal impulse timings will be spaced non-uniformly in time. 
 
Summary and Conclusions 
 

Optimal control theory provides a set of mathematical tools which, when applied to 
vector-borne disease models, can be used to find control protocols for achieving a control 
objective, such as R0<1, which minimizes a cost of control, or to find control protocols which 
optimally balance a disease cost with a cost of control. Due to the mathematical complexities 
inherent to optimal control theory, optimal control problems for vector-borne disease models are 
often formulated at the implicit level, where simplified numerical techniques are often possible 
and analytical results are sometimes within reach. Unfortunately, real-world monetary costs of 
control are defined in terms of explicit control properties like application frequency, so defining 
realistic control costs in terms of implicit control strengths alone is a difficult task. Essentially, to 
define a realistic cost function for implicit control strengths, one must determine the relationship 
between implicit control strengths and explicit control properties.  For this reason, we set a goal 
to relate implicit and explicit control models. 
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Figure 15: Plots indicating the timing of ULV adulticide application required for maximum
beneficial synergistic e↵ects with phenological emergence rate oscillations, assuming a natural
vector lifetime of 14 days
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Specifically, we have clarified the previously vague relationship between implicit and 
explicit control, and have shown that implicit control is an approximation representing the 
overall average effects of infinitely repeated fixed-strategy explicit control protocols (such as 
periodic application schedules), where over-all average means an average over time. Strong 
synergistic effects between explicit adulticide and larval controls can invalidate implicit control 
as a self-consistent modeling scheme, but we have shown synergistic effects to be negligible 
precisely when implicit control can be considered an accurate approximation. Thus, the accuracy 
and biological meaningfulness of implicit control go hand-in-hand.  
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PART 3:  UNDERSTANDING HETEROGENEITY IN CONTROL ACCESS 
 
Background 
 
The increased worldwide emergence and re-emergence of vector-borne diseases seen in recent 
decades demands increasingly efficacious responses from health and government agencies for 
the prevention of public health crises [1, 2, 3]. Strategies for managing these diseases typically 
consist of regular, large-scale larvicide and adulticide application by airplanes and/or trucks, 
combined with on-the-ground control efforts that require officials obtain access to areas where 
mosquitoes are actively breeding in order to eliminate sources of standing water susceptible to 
oviposition, as well as to applying larvicide and adulticide precisely and thoroughly.  

Both aerial/truck and on-the-ground strategies have advantages and disad-vantages. 
Aerial spraying can quickly provide blanket coverage to an entire region. However, adulticide 
aerial spray is only effective against active mosquitoes who come into contact with short-lived 
airborne insecticide plumes, so repeated frequent applications may be required to achieve 
sufficient levels of control [15]. Repeated application of aerial adulticide can become costly and 
promote insecticide resistance, and residents may be uncomfortable with planes flying overhead 
frequently. Therefore, aerial spraying alone may not always be a viable strategy [3, 16]. With on-
the-ground control, a longer lasting, more effective residual barrier adulticide spray can be 
applied to vegetation and other mosquito landing surfaces, and potential larval habitats (e.g. 
receptacles for standing water) can be identified and removed. This approach, however, is 
reported to be costly and time-consuming, and access to certain locations may be restricted by 
vegetation (e.g., in forested areas, these may represent regions of thick underbrush or dense 
swamp) or by resident accessibility (e.g., home owners may not allow officials into their yard, or 
may not be home).  This makes coverage of large-scale regions potentially difficult to achieve 
[15]. The inaccessible locations within a broader region may be randomly dispersed or highly 
clustered, for example due to social influences in urban settings, or larger extents of specific 
habitats in natural settings, and the clustering of control access can influence overall control 
efficacy [17]. Further, although accessible and inaccessible locations are spatially localized to 
individual sites or clusters of sites, mosquito motion allows localized heterogeneous levels of 
vector control to produce effects over larger, potentiality regional, spatial scales [17, 18].  

Aerial spraying and on-the-ground control strategies provide a trade-off between small-
scale localized control efficacy and ease in achieving efficient large-scale region-wide control 
coverage [15]. This trade-off, together with local social, political, and economic concerns, makes 
the design and implementation of effective integrated vector management strategies a logistical 
challenge [3, 16]. Given the complexities inherent to designing integrated vector management 
programs, mathematical models are useful tools for analyzing and predicting the efficacy of 
interventions strategies. Previous studies often incorporating additional controls such as 
vaccination and personal protection, have used metapopulation models to incorporate individual 
homogeneous patches of vector and host populations connected via a network structures 
allowing host and/or vector movement between connected patches, and are natural candidates for 
modelling disease systems with spatial heterogeneities at both large and small spatial scales. 
Results from metapopulation models have shown that network connectivity generally allows 
disease levels to persist in patches where they would otherwise face rapid extinction, which has 
important implications for designing vector management strategies.  
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Model Development 
 
We chose to model a larger region with variable accessibility as a two-dimensional lattice of N × 
N square patches indexed by integers i, where i � {1, 2, ... , N 2 − 1, N 2}, laid out as in Fig. 
3.1. Each patch represents a physical area of size l×l, and we assume Nih hosts reside in within 
patch i. We posit that while present in the area, hosts spend the majority of their time in and 
around their home patch (e.g., territory), and that the time spent traveling throughout the region 
is negligible by comparison. Mosquitoes, on the other hand, move continually in a somewhat 
random manner, and they may pass through many patches over the course of a lifetime 
depending on the physical patch size; Aedes aegypti, for example, will disperse hundreds to 
thousands of meters from their emergence site over the course of a lifetime [20]. Based on this 
observation, we consider a simplified model in which mosquitoes are able to move between 
neighboring patches while hosts remain fixed at their home patch.  
 

 
 

Figure 3.1 Site indices and corresponding locations within the larger region 

To capture mosquito movement, we let Ni
v(t) denote the distribution of mosquitoes at patch i at a 

time t, and then modeled mosquito motion with a nearest neighbor random walk between 
patches, assuming the following population dynamics  

 

(3.1) 

where Λi denotes the mosquito emergence rate in patch i, μi denotes the per-capita mosquito 
death rate in patch i, and ωij denotes the transition probability per unit time for an individual 
mosquito to hop from patch j to patch i. We assumed that parameters can vary across the network 

for Nv
i (t):
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where the overdot denotes a time derivative, ⇤i denotes the mosquito emergence rate in patch i, µi denotes

the per-capita mosquito death rate in patch i, and !ij denotes the transition probability per unit time for an

individual mosquito to hop from patch j to patch i. Parameters can vary across the network due to control

e↵orts. The probability per unit time for a mosquito to transition out of patch i, denoted by !ii and defined

by

!ii = �
N 2X

j=1
j 6=i

!ji, (2)

can be used to simplify the summation in Eq. (1):

Ṅv
i (t) = ⇤i � µiN

v
i +

N 2X

j=1

!ijN
v
j (t). (3)

Assuming unbiased nearest neighbor hopping with hopping rate !, we can write !ij as

!ij = �!Lij , (4)

where Lij denotes the elements of anN 2⇥N 2 Laplacian matrix associated with nearest neighbor connectivity

of our network. The actual form of the Laplacian matrix will depend on the boundary conditions we choose

for the edge of our neighborhood. We desire a mathematically closed system which prohibits mosquitoes from

fluxing in or out of the neighborhood boundary, so we must choose between periodic or reflecting boundary

conditions. The choice will be immaterial for the mathematics developed in Methods II and Methods III,

but will be necessary for obtaining the results from numerical simulations given in Results II. For numerical
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Ṅv
i (t) = ⇤i � µiN

v
i +

N 2X

j=1

!ijN
v
j (t). (3)

Assuming unbiased nearest neighbor hopping with hopping rate !, we can write !ij as

!ij = �!Lij , (4)

where Lij denotes the elements of anN 2⇥N 2 Laplacian matrix associated with nearest neighbor connectivity

of our network. The actual form of the Laplacian matrix will depend on the boundary conditions we choose

for the edge of our neighborhood. We desire a mathematically closed system which prohibits mosquitoes from

fluxing in or out of the neighborhood boundary, so we must choose between periodic or reflecting boundary

conditions. The choice will be immaterial for the mathematics developed in Methods II and Methods III,

but will be necessary for obtaining the results from numerical simulations given in Results II. For numerical

simulations which consider specific neighborhood configurations, we compare results for both sets of boundary

conditions (our results will show that the choice makes little practical di↵erence). For numerical simulations

which require large numbers of neighborhood configurations to be generated, we choose periodic boundary

conditions for simplicity. The form of both Laplacian matrices are given in Appendix A for reference.

The equilibrium mosquito population distribution, whose value in patch i we denote by Nve
i , is given by

the stationary solution to Eq. (3). This solution can be written compactly in vector-matrix notation. Let

6

Nv and ⇤ denote N 2- dimensional column vectors with components Nv
i and ⇤v

i , respectively, and let µN 2

denote the N 2 ⇥N 2 diagonal matrix with entries along the diagonal given by µi. The vector of equilibrium

mosquito population values, denoted by Nve, is then given by

Nve = (µN 2 + !L)�1 ⇤. (5)

SEIR model equations

We consider the following SEIR model for vector-borne disease spread throughout the neighborhood:

Ṡv
i (t) = ⇤i � µiS

v
i (t)� !

N 2X

j=1

LijS
v
j (t)� �vb

Ihi (t)

Nh
Sv
i (t) (6a)

Ėv
i (t) = �µiE

v
i (t)� !

N 2X

j=1

LijE
v
j (t) + �vb

Ihi (t)

Nh
Sv
i (t)� pvEv

i (t) (6b)

İvi (t) = �µiI
v
i (t)� !

N 2X

j=1

LijI
v
j (t) + pvEv

i (t) (6c)

Ṡh
i (t) = ��hb

Sh
i (t)

Nh
Ivi (t) (6d)

Ėh
i (t) = �hb

Sh
i (t)

Nh
Ivi (t)� phEh

i (t) (6e)

İhi (t) = phEh
i (t)� rIhi (t) (6f)

Ṙh
i (t) = rIhi (t), (6g)

where Sv
i (t), E

v
i (t), and Ivi (t) denote the distribution of susceptible, exposed, and infectious mosquitoes

in patch i at time t, respectively, and Sh
i (t), E

h
i (t), I

h
i (t) and Rh

i (t) denote the distribution of susceptible,

exposed, infectious, and recovered hosts in patch i at time t. As we are primarily interested in the hetero-

geneities introduced by compliance to control e↵orts, we assume the total number of hosts in each patch is a

fixed constant Nh (the Nh hosts in patch i represent the humans who live in the residential dwelling located

in patch i). Similarly, the per-bite human-to-vector and vector-to-human transmission probabilities, �v and

�h, respectively, the extrinsic and intrinsic incubation periods, 1/pv and 1/ph, respectively, and the average

human recovery time, 1/r, are all assumed to be patch-independent. We assume human birth and death

rates are negligible over the time scale of interest and that all infectious mosquitoes die before recovering.

Stationary solutions to the above system of equations for which all exposed and infectious classes remain

empty are referred to as disease-free equilibria. Epidemiologically relevant disease-free equilibrial solutions

are those which satisfy Sv
i = Nve

i and Sh
i + Rh

i = Nh for all i. In the work to follow, we will often adopt
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model, we included patch-dependent, time-independent reductions and increases in vector 
emergence and death rates, respectively. Controls incorporated in this manner are simple but 
effective models for describing the effects of regularly repeated fixed strategy real-world 
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basic reproduction number are naturally phrased in terms of actionable control advice based on 
real-world control parameters (see PART 2 above).  
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İhi (t) = phEh
i (t)� rIhi (t) (6f)

Ṙh
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And similarly, three possible assignments for vector birth rate in patch i 

 
 
Using the above model, we focused on predicting the basic reproduction number, R0.  Following 
[23], the next generation matrix FV−1 for our disease system in Eq. (3.5) can be written as the 
following 4N 2 × 4N 2 matrix:  

 
(3.6) 

where  

 

(3.7) 

 

(3.8) 

If Ev, Eh, Iv, and Ih exposed and infectious vectors and hosts are introduced as a perturbation to a 
completely susceptible disease-free equilibrium state, the distribution of newly generated 
exposed and infectious vectors is given by the next generation matrix’s action on the 4N2 
dimensional column matrix ((Ev)T ,(Eh)T ,(Iv)T ,(Ih)T )T  as follows:  

vector notation and let Sv denote the N 2 dimensional column matrix with components Sv
i . The vectors

Sh,Ev,Eh, Iv, Ih, and Rh are defined analogously.

Control and compliance

We incorporate door-to-door and adulticide aerial spray control strategies into our neighborhood disease

model as patch-dependent, time-independent reductions and increases in vector emergence and death rates,

respectively. Controls incorporated is this manner are simple but e↵ective models for describing the e↵ects

of regularly repeated fixed strategy real-world controls (e.g. an aerial spraying campaign in which airplanes

deploy a fixed amount of pesticide repeatedly according to a fixed schedule, or a door-to-door control cam-

paign in which employees visit residences repeatedly according to a fixed schedule) [21]. Under this modeling

methodology, the optimal control protocols for reducing the basic reproduction number developed in Meth-

ods III are naturally phrased in terms of actionable control advice based on real-world control parameters.

In the absence of control, we assume homogeneous natural death and emergence rates, denoted by µ0

and ⇤0, respectively, in each patch throughout the neighborhood. Adulticide aerial spray is an area-wide

control assumed to cover the entire neighborhood equally, so we model this strategy as a uniform increase

in vector death rates at every site. Door-to-door control a↵ects only the ‘compliant’ sites for which the

residents permit yard access to government or health agency workers to apply residual barrier adulticed

spray and conduct larval habitat reduction. We model this strategy as uniform increase in vector death rate

and decrease in vector emergence rate in compliant sites only. We thus have three possible assignments for

the vector death rate in patch i:

µi =

8
>>>>>><

>>>>>>:

µ0, No controls applied to system

µN , Controlled system, patch i non-compliant

µC , Controlled system, patch i compliant

(7)

where µ0  µN  µC . Likewise, the vector emergence rate in patch i can take one of three values:

⇤i =

8
>>>>>><

>>>>>>:

⇤0, No controls applied to system

⇤N , Controlled system, patch i non-compliant

⇤C , Controlled system, patch i compliant

(8)

where ⇤0 � ⇤N � ⇤C . We do not model any area-wide larvicide spray controls, so we will always have

⇤0 = ⇤N , but we retain the above notation to emphasize the structure of compliant and non-compliant sites.
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The functional forms of µC , µN , and ⇤C , written in terms of real-world explicit control properties such as

application frequency and percent knockdown, for example, are not needed for the mathematics developed

to analyze the basic reproduction number in Methods II, and are introduced and utilized in the optimized

control mathematics developed in Methods III.

Methods II: The basic reproduction number

We evaluate the e�cacy of control strategies for suppressing epidemic outbreaks as influenced of vector

mobility through the model basic reproduction number R0. The basic reproduction number is a general

measure of outbreak severity which, for our system, determines the stability of disease-free equilibria against

small perturbations in the infected population [22]: perturbing an entirely susceptible population will result

in epidemic outbreak if R0 > 1 and disease die-out if R0 < 1. To calculate the basic reproduction number

as a function of model parameters, we utilize the next generation matrix method as outlined in [23]. In the

next generation matrix formalism, R0 provides a measure of the maximum number of infectious individuals

generated over the lifetime of single infected (either exposed or infectious) individual introduced into a

background system held at 100% susceptible disease free equilibrium.

Next generation and second generation matrices

Here and throughout the rest of the paper, let 0k and 1k denote the k ⇥ k zero and identity matrices

respectively, for any positive integer k. Following [23], the next generation matrix FV�1 for our disease

system in Eq. (6) can be written as the following 4N 2 ⇥ 4N 2 matrix:

FV�1 =

0

B@
02N 2 02N 2

FV �1
21 FV �1

22

1

CA , (9)

where FV �1
21 and FV �1

22 denote the following 2N 2 ⇥ 2N 2 matrices, respectively:

FV �1
21 =

0

B@
pv (pv1N 2 + µN 2 + !L)�1 0N 2

0N 2 1N 2

1

CA , (10)

and

FV �1
22 =

0

B@
0N 2 �v b

rp
v (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve

N 2

�hb (µN 2 + !L)�1 0N 2

1

CA . (11)
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(3.9) 

The eigenvalues λ of the next generation matrix can be found by solving the following 
characteristic equation:  

 

(3.10) 

Letting M denote the following matrix  

   (3.11) 

the above characteristic equation can be written as 

    (3.12) 

The corresponding eigenvectors of FV−1 are determined by the relation  

    (3.13) 

while the eigenvalues of (FV−1)2 are given by the set {λ2|λ an eigenvalue of FV−1}, with corre- 
sponding eigenvectors determined by 

In Eq. (11), Nve
N 2 denotes the N 2⇥N 2 diagonal matrix with diagonal entries Nve

i defined in Eq. (5). The i, j

element of FV�1 measures the number of infected individuals in compartment i generated over the lifetime

of one individual initially introduced into compartment j in a completely susceptible system [23], where

compartments 1 to N 2 refer respectively to the exposed vectors in sites 1 through N 2, compartments N 2+1

to 2N 2 refer respectively to the exposed hosts in sites 1 through N 2, compartments 2N 2 + 1 through 3N 2

refer respectively to the infectious vectors in sites 1 through N 2, and components 3N 2 + 1 through 4N 2

refer respectively to the infectious hosts in sites 1 through N 2. If Ev, Eh, Iv, and Ih exposed and infectious

vectors and hosts are introduced as a perturbation to a completely susceptible disease-free equilibrium state,

the distribution of newly generated exposed and infectious vectors will be given by the next generation
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Note that the eigenvalues of (FV�1)2 are given by the set {�2|� an eigenvalue of FV�1}, with corre-

sponding eigenvectors determined by
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where

M = �vb�h b

r
pv (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve

N 2 (µN 2 + !L)�1 . (18)

The matrices M and M have identical spectra, and so we see that the eigenvalues � of the next generation

matrix can also be determined by solving

0 = �2N 2

Det
⇥
�21N 2 �M

⇤
. (19)

We refer to M and M as the “second generation” matrices. If a completely susceptible disease-free equi-

librium state is perturbed by the introduction of Iv infectious vectors, the disease will first travel through

the susceptible host population, and those hosts who become infectious will pass the disease to the suscep-

tible vector population, ultimately resulting in a distribution MIv of newly infectious vectors. Likewise, if

Ih infectious hosts are introduced as a perturbation to a 100% susceptible disease-free equilibrium state, a

distribution MIh of newly infectious hosts will be generated as the disease passes through the susceptible

vector population.

Basic reproduction number theory

The basic reproduction number, R0, is defined as the spectral radius of FV�1. The next generation matrix

is a non-negative matrix, so R0 is, itself, an eigenvalue of FV�1 such that all other eigenvalues are no
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   (3.14) 

where 

   (3.15) 

The matrices M and M have identical spectra, and we refer to them as the “second 
generation” matrices. If a completely susceptible disease-free equilibrium state is 
perturbed by the introduction of Iv infectious vectors, the disease will first travel through 
the susceptible host population, and those hosts who become infectious will pass the 
disease to the suscep- tible vector population, ultimately resulting in a distribution MIv of 
newly infectious vectors. Likewise, if Ih infectious hosts are introduced as a perturbation 
to a 100% susceptible disease-free equilibrium state, a distribution MIh of newly 
infectious hosts will be generated as the disease passes through the susceptible vector 
population.  We use these second generation matrices to determine R0 by finding the 
largest non-negative solutions to Eq. (3.12) and the corresponding worst case scenario 
spatial distributions of infectious host and vectors by solving the following eigenvector 
equations:  

      (3.16) 

We first considered the simplest scenario – a single, isolated patch.  In this case, the SEIR model 
in Eq. (3.5) reduces to a single-patch SEIR, making the characteristic equation trivial to solve.  
For the single uncontrolled, non-accessible and accessible patches, R0 is given, respectively, by 

    (3.17) 

Further analysis showed that these are also the values of R0 for the special case of a region with 

The corresponding eigenvectors of FV�1 are determined by the relation

�

0

BBBBBBB@

0

0

Iv

Ih

1

CCCCCCCA

=

0

BBBBBBB@

0

0

�v b
rp

v (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve
N 2Ih

�hb (µN 2 + !L)�1 Iv

1

CCCCCCCA

. (16)

Note that the eigenvalues of (FV�1)2 are given by the set {�2|� an eigenvalue of FV�1}, with corre-

sponding eigenvectors determined by

�2

0

BBBBBBB@

0

0

Iv

Ih

1

CCCCCCCA

=

0

BBBBBBB@

0

0

MIv

MIh

1

CCCCCCCA

, (17)

where

M = �vb�h b

r
pv (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve

N 2 (µN 2 + !L)�1 . (18)

The matrices M and M have identical spectra, and so we see that the eigenvalues � of the next generation

matrix can also be determined by solving

0 = �2N 2

Det
⇥
�21N 2 �M

⇤
. (19)

We refer to M and M as the “second generation” matrices. If a completely susceptible disease-free equi-

librium state is perturbed by the introduction of Iv infectious vectors, the disease will first travel through

the susceptible host population, and those hosts who become infectious will pass the disease to the suscep-

tible vector population, ultimately resulting in a distribution MIv of newly infectious vectors. Likewise, if

Ih infectious hosts are introduced as a perturbation to a 100% susceptible disease-free equilibrium state, a

distribution MIh of newly infectious hosts will be generated as the disease passes through the susceptible

vector population.

Basic reproduction number theory

The basic reproduction number, R0, is defined as the spectral radius of FV�1. The next generation matrix

is a non-negative matrix, so R0 is, itself, an eigenvalue of FV�1 such that all other eigenvalues are no

11

The corresponding eigenvectors of FV�1 are determined by the relation

�

0

BBBBBBB@

0

0

Iv

Ih

1

CCCCCCCA

=

0

BBBBBBB@

0

0

�v b
rp

v (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve
N 2Ih

�hb (µN 2 + !L)�1 Iv

1

CCCCCCCA

. (16)

Note that the eigenvalues of (FV�1)2 are given by the set {�2|� an eigenvalue of FV�1}, with corre-

sponding eigenvectors determined by

�2

0

BBBBBBB@

0

0

Iv

Ih

1

CCCCCCCA

=

0

BBBBBBB@

0

0

MIv

MIh

1

CCCCCCCA

, (17)

where

M = �vb�h b

r
pv (pv1N 2 + µN 2 + !L)�1 (Nh)�1Nve

N 2 (µN 2 + !L)�1 . (18)

The matrices M and M have identical spectra, and so we see that the eigenvalues � of the next generation

matrix can also be determined by solving

0 = �2N 2

Det
⇥
�21N 2 �M

⇤
. (19)

We refer to M and M as the “second generation” matrices. If a completely susceptible disease-free equi-

librium state is perturbed by the introduction of Iv infectious vectors, the disease will first travel through

the susceptible host population, and those hosts who become infectious will pass the disease to the suscep-

tible vector population, ultimately resulting in a distribution MIv of newly infectious vectors. Likewise, if

Ih infectious hosts are introduced as a perturbation to a 100% susceptible disease-free equilibrium state, a

distribution MIh of newly infectious hosts will be generated as the disease passes through the susceptible

vector population.

Basic reproduction number theory

The basic reproduction number, R0, is defined as the spectral radius of FV�1. The next generation matrix

is a non-negative matrix, so R0 is, itself, an eigenvalue of FV�1 such that all other eigenvalues are no

11

greater in magnitude [24]. Furthermore, to the eigenvalue R0, there corresponds eigenvector(s) with all

non-negative components [24], and these will be the only biologically relevant eigenvectors of interest (there

is no biological meaning to a negative or complex valued distribution of hosts or vectors). The non-negative

eigenvectors corresponding to R0 represent the worst case scenario initial distribution of infected hosts and

vectors which produces the largest asymptotic infected growth rate under the disease dynamics linearized

about the disease-free equilibrium; e.g. if one introduces a given total number of infected vectors and hosts

into a disease-free equilibrium system according to some chosen distribution, choosing a distribution which

corresponds to a non-negative eigenvector with eigenvalue R0 will cause disease levels to grow as rapidly as

possible (ignoring short-lived transient e↵ects). Equations (16) and (17) show that these worst case scenario

distributions will be comprised entirely of infectious (as opposed to exposed) vectors and hosts. We do not

utilize the next generation matrix itself in our analysis, but instead utilize the second generation matrices

to determine R0 by finding the largest non-negative solutions to either Eq. (15) or Eq. (19), and we find the

corresponding worst case scenario spatial distributions of infectious host and vectors by solving the following

eigenvector equations:

R2
0I

h = MIh (20)

R2
0I

v = MIv. (21)

Generally, Eqs. (15), (19), (20), and (21) can only be solved numerically. There are, however, a few biologi-

cally relevant simplified special cases, detailed in the following subsections, for which one can derive analytic

expressions useful for interpreting numerical results from the more general cases considered for the optimized

control developed in Methods III.

In the work to follow, we assume the eigenvectors Ih and Iv to be normalized such that their components

sum to unity so that they can be interpreted as probability distributions. Therefore, for a fixed number of

infectious vectors distributed in proportion to a normalized Iv, the component Ivi represents the probability

for a randomly selected member of the infectious vector population to be located in patch i, and likewise for

Ih and an infectious host population.

Isolated sites

For a neighborhood comprised of a single isolated site (e.g. N 2 = 1), the hopping rate ! and Laplacian

matrix L are irrelevant, and our system in Eq. (6) reduces to a single-patch SEIR model. In this case, the

12

characteristic equations in (15) and (19) are equivalent and trivial to solve, and we find

R0 =

8
>>>>>><

>>>>>>:

R00, Uncontrolled isolated site

R0N , Non-compliant isolated site

R0C , Compliant isolated site,

(22)

where the single-site uncontrolled, non-compliant, and compliant basic reproduction numbers are defined,

respectively, as

R00 =

s

�v
b

r
�h

b

µ0

pv
pv + µ0

1

Nh

⇤0

µ0
(23)

R0N =

s

�v
b

r
�h

b

µN

pv
pv + µN

1

Nh

⇤N

µN

R0C =

s

�v
b

r
�h

b

µC

pv
pv + µC

1

Nh

⇤C

µC
.

Homogeneous systems

For the special cases of no control, 100% compliance, and 100% non-compliance, all model parameters are

equivalent at every site in the neighborhood. Specifically, the diagonal death rate matrix µN 2 and emergence

rate vector ⇤ are given by the following:

µN 2 =

8
>>>>>><

>>>>>>:

µ01N 2 , No controls applied to system

µN1N 2 , Controlled system, 100% non-compliance

µC1N 2 , Controlled system, 100% compliance,

(24)

⇤ =

8
>>>>>><

>>>>>>:

⇤01, No controls applied to system

⇤N1, Controlled system, 100% non-compliance

⇤C1, Controlled system, 100% compliance.

(25)
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multiple patches where all patches are identical (e.g., all uncontrolled, all non-accessible or all 
accessible). 

Next, we considered what we termed the ‘infinitely fast hopping limit’, wherein ω → ∞. 
For this, we utilized the methods of Tien et al. outlined in [25].  This allowed us to obtain the 
following expression for R0  

    (3.18) 
Finally, we considered the other extreme, which we termed the ‘infinitely slow hopping limit’, 
with ω = 0.  In this case, all patches decouple, meaning that R0 is given by the worst possible 
scenario of any single patch, and thus 

    (3.19) 
From the limits above, we next considered finite hopping rates.  For the case of slow but non-
zero hopping, we analyzed our system using degenerate perturbation theory. Although 
perturbation results for R0 were complicated, they indicated that, for a given set of accessible and 
non-accessible control efficacies and a given neighborhood accessibility structure, the reduction 
in R0 induced by small non-zero mosquito hopping (e.g. the value of δR0) is determined by the 
larger and most tightly clustered non-accessible patches. 
 To model control within our heterogeneous patch system, we used the results from PART 
2 (see above).  This involves repeated application at a fixed rate.  When this is the case, it is 
reasonable to expect the associated cost of control to be roughly proportional to the application 
frequency. On-the-ground control requires small teams of government or health agency 
employees to visit every site in the region so that they may access the location and implement 
residual barrier spray and larval source reduction.  This requires a greater numbers of man-hours 
to deliver in regions with high rates of access. We therefore assume the following daily cost of 
control C which depends linearly on the application frequencies fA and fD:  
   

       (3.20) 
In the above equation, cA is the cost per application of adulticide aerial spray applied to the 
entire region, cDC is the cost for applying on-the-ground control to a 100-patch region at 100% 
accessibility, cDN is the labor cost for applying on-the-ground control to a 100-patch 
neighborhood at 0% accessibility, and f is the fraction of accessible sites in the region. 
 We consider the following control problem: for combined aerial spray and on-the-ground 
control strategies, aerial spray only, and on-the-ground control only, find the application 
frequencies fA and fD which suppress outbreak potential by reducing R0 to unity while 

the methods of Tien et al. outlined in [25]: we consider the quantities µ0/! and (µ0 + pv)/! to be small

parameters, perform Laurent expansions of (µN 2 + !L)�1 and (pv1N 2 + µN 2 + !L)�1 about these small

parameters, respectively, and retain the lowest order terms of the expansions (order negative one) as matrix

expressions valid in the ! ! 1 limit. We give only the results of this process and use them to obtain an

expression for R0 in the ! ! 1 limit, and refer the reader to [25] for details on performing the Laurent

expansions.

Following [25], we obtain the following in the infinitely fast hopping limit:

(µN 2 + !L)�1 =
!!1

11T

N 2 hµi (30)

(pv1N 2 + µN 2 + !L)�1 =
!!1

11T

N 2 (pv + hµi) , (31)

where the expression hgi denotes the average of a site dependent quantity g over the entire neighborhood,

and the product 11T is the N 2 ⇥ N 2 matrix filled entirely with ones. Equations (5) and (30) yield the

following equilibrium vector population:

Nve =
!!1

h⇤i
hµi1. (32)

Similarly, the second generation matrices defined in Eqs. (14) and (18) reduce to the following:

M =
!!1

M (33)

=
!!1

�v b

r
�h b

hµi
pv

pv + hµi
1

Nh

h⇤i
hµi

11T

N 2
.

The above matrix is comprised of N 2 identical rows, so it has rank 1, and thus has only one non-zero

eigenvalue (with algebraic multiplicity one) [26]. The matrix trace gives the sum of all eigenvalues for any

square matrix, so the single non-zero eigenvalue of M (or equivalently M) is found by taking the trace of

M, and R0 will be given by the positive square root of the result. From Eq. (33), we find

R0 =
!!1

s

�v
b

r
�h

b

hµi
pv

pv + hµi
1

Nh

h⇤i
hµi . (34)
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We thus have M = M = R2
011

T /N 2, and the normalized eigenvector solutions to Eqs. (20) and (21) are

found to be

Ih =
!!1

Iv (35)

=
!!1

1

N 2
1.

Infinitely slow hopping

In the infinitely slow hopping ! = 0 limit, all patches decouple from one another. This is not a singular

limit, and we can find expressions for the equilibrium vector population and the second generation matrices

by setting ! = 0 in Eqs. (5), (14), and (18):

Nve
(0) = µ�1

N 2⇤, (36)

M(0) = M(0) (37)

= Diag

⇢
�h b

µi
�v b

r

pv
pv + µi

1

Nh

⇤i

µi

�
.

Here and throughout the rest of this paper, the subscript (0) refers to quantities evaluated for ! = 0. The

second generation matrices are diagonal in the no-hopping limit, and the spectral radii are consequently

trivial to find:

R0(0) = max
i

(s

�h
b

µi
�v

b

r

pv

pv + µi

1

Nh

⇤i

µi

)
(38)

=

8
>>>>>><

>>>>>>:

R00, Uncontrolled system

R0N , Less than 100% compliant

R0C , 100% compliant.

The eigenspaces of M(0) and M(0) corresponding to R2
0 are degenerate: any vector which is distributed

entirely within any subset of the non-compliant sites will be an eigenvector with eigenvalue R2
0 (degeneracy

vanishes only for the special case of a spatially homogeneous system). Consequently, we know that the

worst case distributions of infectious vectors and hosts will lie entirely within the non-compliant sites in the

no-hopping limit, but we have no way of distinguishing which, if any, of all possible eigenvectors are more

“important” or “correct” practically, in terms of biological meaning and control strategies. This ambiguity

16
to deliver door-to-door control to neighborhoods with higher levels of compliance. We therefore assume the

following daily cost of control C which depends linearly on the application frequencies fA and fD:

C = cAfA +
⇣
cDCf + cDN (1� f)

⌘
fD. (56)

In the above equation, cA is the cost per application of adulticide aerial spray applied to the entire neighbor-

hood, cDC is the cost for applying door-to-door control to a 100-house neighborhood at 100% compliance,

cDN is the labor cost for applying door-to-door control to a 100-house neighborhood at 0% compliance, and

f is the fraction of compliant sites in the neighborhood. The numerical values of cA, cDC , and cDN used in

our analysis are given in Appendix D.

Control problem formulation

We consider the following control problem: for combined aerial spray and door-to-door control strategies,

aerial spray only, and door-to-door control only, find the application frequencies fA and fD which suppress

outbreak potential by reducing R0 to unity while minimizing the cost of control C, subject to fA, fD 2

[0, 1 day�1]. The bounds 0  fA, fD  1 day�1 limit control applications to occur at a rate of at most once

per day. Even if unlimited resources were available, societal and logistical concerns would likely prohibit

government or health agency employees from applying pesticides and invading yards more than once per day.

The cost function in Eq. (56) is linear in the application frequencies fA and fD, so our control problem is a

bounded linear optimization problem subject to a non-linear constraint R0 = 1. We solve all optimization

problems numerically using the fmincon function in Matlab R2017a.

For our numerical analysis, we use the model and control parameter values given in Appendix D. Under

these parameters, for any hopping rate or compliance distribution, it is always be possible to find application

frequencies fA, fD 2 [0, 1 day�1] which reduce R0 to unity for aerial spray only control and for combined

aerial spray and door-to-door control strategies. For door-to-door only control, however, there exist hopping

rate / compliance distribution combinations for which R0 cannot be brought to one for any fD 2 [0, 1 day�1].

In such circumstances, we refer to the system as being uncontrollable under door-to-door control alone. For

an uncontrollable system, as long as there is at least one compliant site in the neighborhood, door-to-door

only control will provide some benefit by reducing R0 to an extent, even if not all the way to one. In this

case, the optimal door-to-door only control solution will be fD = 1day�1, meaning that door-to-door only

control should be applied as often as possible in order to bring R0 as close as possible to one. If there

are no compliant sites in the neighborhood, door-to-door only control will have no influence over R0, and

the optimal door-to-door only control solution will be to never spend money on door-to-door control, so
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minimizing the cost of control C, subject to fA,fD � [0, 1 day−1]. The bounds 0 ≤ fA, fD ≤ 1 

day−1 limit control applications to occur at a rate of at most once per day. Even if unlimited 
resources were available, societal and logistical concerns would likely prohibit government or 
health agency employees from applying pesticides and invading yards more than once per day.  
 
Model Analysis 

 

Figure 3.1 (a) Single-site basic reproduction number values as a function of the relative 
controlled death rate μi/μ0 and relative controlled emergence rate Λi/Λ0. These values also 
represent the homogeneous system basic reproduction numbers when μi and Λi are uniform 
across the neighborhood, as well as the no-hopping basic reproduction numbers when μi and Λi 
are the non-accessible death and emergence rates. Control efficacy increases along the μi/μ0 axis 
and decreases along the Λi/Λ0 axis. The case of no control is represented by the upper left 
corner where R0 = 1.89, and the red line indicates R0 = 1. Control efficacy for non-accessible 
sites is represented along the top of the plot where Λi = Λ0. (b) Infinitely fast hopping basic 
reproduction number values as a function of percent accessibility. The dotted black line 
represents the uncontrolled value R0∞ = 1.89, and the different color curves represent varying 
degrees of control efficacy in accessible and non-accessible sites. Blue represents strong 
accessible efficacy and weak non-accessible efficacy, orange represents moderate accessible 
efficacy and weak non-accessible efficacy, green represents strong accessible efficacy and 
moderate non-accessible efficacy, and red represents moderate accessible efficacy and moderate 
non-accessible efficacy.  

Fig. 3.1 shows numerical simulation results for the analytic expressions for R0 derived for 
infinitely slow hopping, infinitely fast hopping, and homogeneous systems. Figure 3.1a 
represents the single-site, homogeneous system, and no-hopping R0 values as a function of 
relative adulticide efficacy μi/μ0 and relative larval source reduction efficacy Λi/Λ0. For the case 
of a single site, μi and Λi  represent the site’s controlled death and emergence rates, and for the 
case of a homogeneous system, μi and Λi represent the controlled death and emergence rates, 
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which are uniform over the entire system. For an inhomogeneous system, Fig. 3.1a represents the 

 
 
Figure 3.2 Various possible arrangements of varying sizes of non-compliant blocks. The 
shading within a particular configuration indicates the distributions of the unperturbed 
eigenvectors Ih(0) and Iv(0) as determined by first order perturbation analysis when that 
configuration is the unique configuration which determines δR0 in a region. Any configuration 
of size one through six can be obtained from one of the pictured configurations through a number 
of bending symmetry operations.  
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Figure 3.3 Basic reproduction number perturbation (scaled by κ) as functions of ξ induced 
by the non-accessbile blocks pictured in Fig. 3.2. In Fig. 3.3a, line A represents a single non-
compliant site, line B represents a block of two non-compliant sites, line C represents a block of 
three non-compliant sites, lines D, E, and F represent different configurations of blocks of four 
non-compliant sites, and lines G, H, I, and J represent different blocks of five non-compliant 
sites. All lines in Fig. 3.3b represent different blocks of six non-compliant sites. In both plots, the 
solid black vertical line ξ = 5/3 is the largest value of ξ achievable when pv = μ0, and 
corresponds to the case of no control in non-accessible sites and strongly efficacious control 
control in accessible sites. The dotted vertical line ξ = 1.5 corresponds to the maximum possible 
value of ξ in the limit of strongly efficacious non-compliant control μN /pv → ∞  
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Figure 6: Basic reproduction number perturbation (scaled by ) as functions of ⇠ induced the non-compliant
blocks pictured in Fig. 5. In Fig. 6a, line A represents a single non-compliant site, line B represents a block
of two non-compliant sites, line C represents a block of three non-compliant sites, lines D, E, and F represent
di↵erent configurations of blocks of four non-compliant sites, and lines G, H, I, and J represent di↵erent
blocks of five non-compliant sites. All lines in Fig. 6b represent di↵erent blocks of six non-compliant sites.
Note the change in vertical scale between Figs. 6a and 6b. In both plots, the solid black vertical line ⇠ = 5/3
is the largest value of ⇠ achievable when pv = µ0, and corresponds to the case of no control in non-compliant
sites and strongly e�cacious control control in compliant sites. The dotted vertical line ⇠ = 1.5 corresponds
to the maximum possible value of ⇠ in the limit of strongly e�cacious non-compliant control µN/pv ! 1.

31



 

  57 

 
no-hopping basic reproduction number when μi and Λi represent non-accessible death and 
emergence rates. We assume that non-accessible sites are only subject to an adulticide spray 
which does not decrease vector emergence rates below their natural value, so the relevant values 
of R0 are given along the top of Fig. 3.1a. In general we see that R0 decreases as μi/μ0 increases 
from zero to infinity, and that R0 increases as Λi/Λ0 increases from zero to one, thus implying 
that R0 generally decreases with increasing control efficacy. The red line in Fig. 3.1a represents 
R0 = 1 so parameter values to the right of and below this line will effectively suppress outbreak 
potential for our model parameters in a single-site system, homogeneous system, or no-hopping 
system. The case of no control is given in the upper left-hand corner of Fig. 3.1a, where R0 = 
1.89.  Figure 3.1b shows the infinite hopping basic reproduction number R0∞ as a function of 
percent accessible patches, assuming various accessible and non-accessible control efficacies. At 
zero percent accessible, on-the-ground control has no effect on the system, so the corresponding 
R0∞ values in Fig. 3.1b represent aerial control only and are equivalent to the homogeneous 
system R0 values. In general, R0∞ decreases as a function of percent accessible, and it decreases 
more rapidly when the relative efficacy of accessible control to non-accessible control is larger.  
 Figures 3.2 and 3.3 summarize our results for the perturbation analysis for small non-zero 
hopping rates. Specifically, Fig. 3.2 shows a number of clustering arrangements for non-
accessible blocks of sizes one through six sites.  In Fig. 3.3, we plot the corresponding values of 
δR0/κ induced by those non-accessible blocks as a function of ξ (the relative efficacy of 
accessible versus non-accessible control), assuming that the blocks pictured are completely 
surrounded by accessible sites. If more than one non-accessible configuration in Fig. 3.2 is 
present in a region, the corresponding values of δR0 indicated by Fig. 3.3 will represent 
candidate δR0 values, and the actual value of δR0 will be determined by the block with the 
largest candidate. The shading within any one particular configuration in Fig. 3.2 shows the 
distributions of the unperturbed eigenvectors Ih(0) and Iv(0) as determined by first order 
perturbation analysis when that configuration gives the unique largest candidate δR0 value in a 
region. For a given configuration, we see that Ih(0) and Iv(0) tend to peak and decay away from 
the sites with the fewest number of connections to the configuration border.  
 Fig. 3.4 shows optimized control results for the cases of no mosquito hopping, infinitely 
fast mosquito hopping, and homogeneous systems (at any hopping rate). These correspond to the 
special cases where we can find analytic expressions for R0 that do not depend on the spatial 
distribution of accessible plots. In the no hopping limit, we find that, unless the system is 100% 
accessible, the optimal control action is to apply only aerial spray about once every 4.80 days at 
a cost of about $5.02 per day on average. At 100% accessibility, the optimal control action is to 
apply only on-the-ground control about once every 4.5 months at a cost of about $3.08 per day 
on average. Finding that on-the-ground control is never recommended below 100% accessibility 
reflects the fact that, at a hopping rate of zero, the basic reproduction number is determined 
solely by the non-accessible sites. For homogeneous systems, R0 is independent of hopping rate, 
and therefore for any ω, the optimal control action for a 100% accessible system is on-the-
ground only control applied about once every 4.5 months, while the optimal control action for a 
100% non-accessible system is aerial spray only control applied about once every 4.80 days.  In 
the infinitely fast hopping limit, we find that below about 4.58% accessibility, the optimal 
control action is aerial spray only control applied about once every 4.80 days. Above about 
4.80% accessibility, the optimal control action is on-the-ground only control, with optimal 
application frequencies decreasing as accessibility increases. At about 4.80% accessibility, on-
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the-ground control must be applied about once every 19.5 days at a cost of about $4.74 per day 
on average. The on-the-ground only daily cost and application frequency reduce to $3.08 per day 
and about once every 4.5 months, respectively, as percent accessibility approaches 100%. We 
thus see that only within a narrow accessibility interval (4.58%, 4.80%) does optimal control 
require combined aerial spray and on-the-door strategies. In this interval, the combined controls 
are applied less frequently than they would be if they were used on their own.  

 

Figure 3.4 Optimal costs and application frequencies in the infinite hopping ω → ∞ limit as 
functions of percent accessibility. For the special cases of 100% and 0% accessibility, the above 
optimal costs and application frequencies are equivalent to the optimal costs and application 
frequencies for a homogeneous region at any hopping rate. In Fig. 3.4a, the blue curve is the 
optimal costs for combined aerial spray and on-the-ground strategies, while the green and black 
curves are the optimal costs for on-the-ground only control and aerial only control, respectively. 
The crossover points in the zoomed-in inset show the cut-off accessibility levels, beyond which 
combined control strategies or on-the-ground only control becomes more cost effective than 
aerial only control. In Fig.3.4b, the blue and the red curves are the optimal aerial and on-the-
ground application frequencies, respectively, for combined control strategies, while the green 
and black curves are the optimal application frequencies for on-the-ground only control and 
aerial only control, respectively. The optimal on-the-ground only costs increase linearly between 
0% and about 2.1% accessibility in Fig. 3.4a, and the optimal on-the-ground only frequencies are 
equal to 1 day-1.  

 Figures 3.5 and 3.6 show the effects of finite hopping rates on optimal control.  
Specifically, they show optimized costs and applications frequencies as functions of hopping rate 
for specific clustered and dispersed 20% and 60% accessible distributions under both periodic 
and reflecting boundary conditions.  for a given accessibility level, the different boundary 
conditions yield negligible differences in optimized cost and frequency curves for the clustered 
configurations, and yield qualitatively and numerically similar curves for the dispersed 
configurations. Generally, the periodic boundary systems are slightly cheaper to control than the 
corresponding reflecting boundary systems, and require slightly less frequent control 
applications. Figures 3.5 and 3.6 also show that, unlike boundary conditions, accessibility 
clustering can have a strong effect on optimal controls. Clustered systems are much more 
expensive to control than the corresponding dispersed systems, and they require much more 
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Figure 7: Optimal costs and application frequencies in the infinite hopping ! ! 1 limit as functions of
percent compliance, assuming model and control parameters given in Appendix D. For the special cases
of 100% and 0% compliance, the above optimal costs and application frequencies are equivalent to the
optimal costs and application frequencies for a homogeneous neighborhood at any hopping rate (assuming
a neighborhood comprised of 100 sites). In Fig. 7a, the blue curve is the optimal costs for combined aerial
spray and door-to-door strategies, while the green and black curves are the optimal costs for door-to-door
only control and aerial only control, respectively. The crossover points in the zoomed-in inset show the
cut-o↵ compliance levels, beyond which combined control strategies or door-to-door only control becomes
more cost e↵ective than aerial only control. In Fig. 7b, the blue and the red curves are the optimal aerial
and door-to-door application frequencies, respectively, for combined control strategies, while the green and
black curves are the optimal application frequencies for door-to-door only control and aerial only control,
respectively. The optimal door-to-door only costs increase linearly between 0% and about 2.1% compliance
in Fig. 7a, and the optimal door-to-door only frequencies are equal to 1 day�1 (not in the range of Fig. 7b).

Figure 7 plots the optimal costs and application frequencies as a function of percent compliance in the

infinitely fast hopping limit. At 0% compliance, Fig. 7 is in agreement with the 0% compliance values in Ta-

bles 1 and 2. Figure 7 only shows between 0% and 15% compliance for visual clarity, but we note that when

compliance approaches 100%, the infinitely fast hopping costs and application frequencies curves approach

the 100% compliance values in Tables 1 and 2. From Fig.7, we see that below about 4.58% compliance, the

optimal control action is aerial spray only control applied about once every 4.80 days. Above about 4.80%

compliance, the optimal control action is door-to-door only control, with optimal application frequencies

decreasing as compliance increases. At about 4.80% compliance, door-to-door control must be applied about

once every 19.5 days at a cost of about $4.74 per day on average, which reflects a cost of $92.12 for a single

door-to-door application applied to a 4.80% compliant neighborhood. The door-to-door only daily cost and

application frequency reduce to $3.08 per day and about once every 4.5 months, respectively, as percent

compliance approaches 100%. We thus see that only within the narrow compliance interval (4.58%, 4.80%)

does optimal control require combined aerial spray and door-to-door strategies. In this compliance interval,

the combined controls are applied less frequently than they would be if they were used on their own, and
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Figure 3.5 Optimal controls and application frequencies for the 20% accessibility dispersed 
and clustered distributions in Fig. 3.5f, where white squares indicate compliant sites, and red 
squares indicate non-compliant sites. Blue and red curves correspond to the dispersed 
distribution under periodic and reflecting boundary conditions, respectively. The differences in 
costs and frequencies between reflecting and periodic boundary conditions is negligible for the 
clustered distributions, and the green curves in the figures correspond to the clustered 
distribution under either reflecting or periodic boundaries (these curves coincide). The black line 
in Figs. 3.5a, 3.5b, and 3.5d corresponds to aerial spray control only (e.g. used without on-the-
ground control). The crossover points in the zoomed-in inset in Fig. 3.5d are the cut-off hopping 
rates beyond which on-the-ground control alone becomes more cost-effective than aerial 
spraying alone.  

0 5 10 15

  / 0

0

1

2

3

4

5

6

7

8

C
os

t (
do

lla
rs

 p
er

 d
ay

)

Optimal Costs: Combined Controls

(a)

0 5 10 15

  / 0

0

0.05

0.1

0.15

0.2

0.25

Fr
eq

ue
nc

y 
(in

ve
rs

e 
da

ys
)

Optimal Aerial Spray Frequency: Combined Controls

(b)

0 5 10 15

  / 0

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fr
eq

ue
nc

y 
(in

ve
rs

e 
da

ys
)

Optimal Door-to-Door Frequency: Combined Controls

(c)

0 5 10 15

  / 0

0

50

100

150

200

250

300

C
os

t (
do

lla
rs

 p
er

 d
ay

)

Optimal Costs: Door-to-Door Control Only

0 5 10 15
0

2

4

6

8

10

(d)

0 5 10 15

  / 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
eq

ue
nc

y 
(in

ve
rs

e 
da

ys
)

Optimal Door-to-Door Frequency:
Door-to-Door Control Only

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

(e)

Dispersed Clustered

(f)

Figure 8: Optimal controls and application frequencies for the 20% compliance dispersed and clustered
distributions in Fig. 8f, where white squares indicate compliant sites, and red squares indicate non-compliant
sites. Blue and red curves correspond to the dispersed distribution under periodic and reflecting boundary
conditions, respectively. The di↵erences in costs and frequencies between reflecting and periodic boundary
conditions is negligible for the clustered distributions, and the green curves in the figures correspond to the
clustered distribution under either reflecting or periodic boundaries (these curves coincide). The black line
in Figs. 8a, 8b, and 8d corresponds to aerial spray control only (e.g. used without door-to-door control). The
crossover points in the zoomed-in inset in Fig. 8d are the cut-o↵ hopping rates beyond which door-to-door
control alone becomes more cost-e↵ective than aerial spraying alone.
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Figure 3.6  Optimal controls and application frequencies for the 60% accessibility dispersed and 
clustered distributions in Fig. 3.6f, where white squares indicate compliant sites, and red squares 
indicate non-compliant sites. Blue and red curves correspond to the dispersed distribution under 
periodic and reflecting boundary conditions, respectively. The differences in costs and 
frequencies between reflecting and periodic boundary conditions is negligible for the clustered 
distributions, and the green curves in the figures correspond to the clustered distribution under 
either reflecting or periodic boundaries (these curves coincide). The black line in Figs. 3.6a, 3.6b 
and 3.6d corresponds to aerial spray control only (e.g. used without on-the-ground control). The 
crossover points in the zoomed-in inset in Fig. 3.6d are the cut-off hopping rates beyond which 
on-the-ground only control becomes more cost-effective than aerial spray only control.  
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Figure 9: Optimal controls and application frequencies for the 60% compliance dispersed and clustered
distributions in Fig. 9f, where white squares indicate compliant sites, and red squares indicate non-compliant
sites. Blue and red curves correspond to the dispersed distribution under periodic and reflecting boundary
conditions, respectively. The di↵erences in costs and frequencies between reflecting and periodic boundary
conditions is negligible for the clustered distributions, and the green curves in the figures correspond to the
clustered distribution under either reflecting or periodic boundaries (these curves coincide). The black line
in Figs. 9a, 9b and 9d corresponds to aerial spray control only (e.g. used without door-to-door control). The
crossover points in the zoomed-in inset in Fig. 9d are the cut-o↵ hopping rates beyond which door-to-door
only control becomes more cost-e↵ective than aerial spray only control.
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frequent control applications. Further, Figs. 3.5 and 3.6 show that as hopping rates increase, 
optimized control becomes cheaper and needs to be applied less often, and that for small hopping 
rates, the optimal control action is to apply aerial only control about once every 4.80 days. 
Focusing on any one configuration and boundary condition, we see that as the hopping rate 
increases away from zero, there exists a threshold hopping rate where the optimal control action 
transitions from an aerial spray only strategy to a combined aerial spray and on-the-ground 
strategy. At even larger hopping rates, we find a second threshold where the optimal control 
action transitions from a combined control strategy to an on-the-ground only control strategy. 
For the clustered 20% accessibility distribution in Fig. 3.5, under either boundary condition, 
optimal control action calls for combined strategies for hopping rates ω � (6.20μ0, 10.5μ0). For 
hopping rates below and above this interval, optimal control action calls for aerial spray only and 
on-the-ground only, respectively. The corresponding intervals for the dispersed 20% accessibility 
distribution are given by (1.30μ0, 1.90μ0) under periodic boundary conditions and (1.70μ0, 
2.30μ0) under reflecting boundary conditions. For the 60% accessibility distributions in Fig. 3.6, 
the corresponding intervals are given by (1.65μ0,3.18μ0) for the clustered distribution under 
either boundary condition, (0.175μ0,0.475μ0) for the dispersed distribution under periodic 
boundary conditions, and (0.200μ0,0.650μ0) for the dispersed distribution under reflecting 
boundary conditions.  
 Figures 3.7 and 3.8 show the results of our randomized on-the-ground only control 
analysis. Generally, we see that for a given level of clustering, controllability increases with 
hopping rate, and that control costs and application frequencies decrease on average. Likewise, 
for a given hopping rate, the more dispersed distributions tend to be more controllable and 
cheaper to control than the clustered distribution. In Fig. 3.7, we see that for a given hopping rate 
and level of clustering, there exists a region of low accessibility where average costs increase 
linearly with percent accessible and the corresponding average application frequencies are equal 
to 1day−1. This accessible region corresponds to the region in 3.8 where nearly all generated 
configurations for that hopping rate and clustering level are uncontrollable. As accessibility 
levels increase beyond this region, average costs and average frequencies quickly drop as more 
and more of the generated configurations become controllable. For each hopping rate and 
clustering level in Fig. 3.8, we note the existence of an accessible controllability interval. At 
accessibility levels below the controllability interval, no generated configurations are 
controllable, and at accessibility above the interval, all generated configurations are controllable. 
Within the interval, a non-zero fraction of the generated configurations are controllable. We also 
note the existence of a accessibility cost-effectiveness interval. At accessibility levels below the 
cost-effectiveness interval, no generated configurations are cheaper to control than with aerial 
spray only control, and at accessibility levels above the interval, all generated configurations are 
cheaper to control than with aerial spray only control. The controllability and cost-effectiveness 
intervals are given, respectively, by (7%,12%) and (10%,16%) for ω = 5.0μ0 dispersed, 
(13%,26%) and (17%,37%) for ω = 5.0μ0 clustered, (23%,49%) and (29%,62%) for ω = 1.0μ0 
dispersed, (56%,81%) and (60%,89%) for ω = 1.0μ0 clustered, (42%, 81%) and (52%, 89%) for 
ω = 0.5μ0 dispersed, and (79%, 92%) and (92%, 95%) for ω = 0.5μ0 clustered.  
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Figure 3.7  On-the-ground only control costs, application frequencies, and application periods 
required to bring R0 to unity (or as low as possible when the system is uncontrollable) as a 
function of percent accessibility. Blue, red, and green curves correspond to the hopping rates ω = 
5μ0, ω = μ0, and ω = 0.5μ0, respectively. For each value of percent accessibility and hopping 
rate, we average over 200 random neighborhood accessibility configurations that are either 
highly clustered (dashed curves) or randomly dispersed (solid curves), assuming periodic 
boundary conditions. The crossover points in the zoomed-in plot in Fig. 3.7b indicate cut-off 
accessibility levels beyond which on-the-ground only control becomes more cost-effective than 
aerial only control on average. Figures 3.7c and 13.7d represent the same information; we 
display both application period and application frequency for visual clarity.  

 

 

 

 

and at compliance levels above the interval, all generated configurations are cheaper to control than with

aerial spray only control. The controllability and cost-e↵ectiveness intervals are given, respectively, by

(7%, 12%) and (10%, 16%) for ! = 5.0µ0 dispersed, (13%, 26%) and (17%, 37%) for ! = 5.0µ0 clustered,

(23%, 49%) and (29%, 62%) for ! = 1.0µ0 dispersed, (56%, 81%) and (60%, 89%) for ! = 1.0µ0 clustered,

(42%, 81%) and (52%, 89%) for ! = 0.5µ0 dispersed, and (79%, 92%) and (92%, 95%) for ! = 0.5µ0 clustered.
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Figure 10: Door-to-door only control costs, application frequencies, and application periods required to bring
R0 to unity (or as low as possible when the system is uncontrollable) as a function of percent compliance.
Blue, red, and green curves correspond to the hopping rates ! = 5µ0,! = µ0, and ! = 0.5µ0, respectively.
For each value of percent compliance and hopping rate, we average over 200 random neighborhood compliance
configurations that are either highly clustered (dashed curves) or randomly dispersed (solid curves),
assuming periodic boundary conditions. The crossover points in the zoomed-in plot in Fig. 10b indicate
cut-o↵ compliance levels beyond which door-to-door only control becomes more cost-e↵ective than aerial
only control on average. Figures 10c and 10d represent the same information; we display both application
period and application frequency for visual clarity.
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Figure 3.8  Shown here are the fraction of neighborhood configurations that can be controlled 
with on-the-ground control alone as a function of percent accessibility, as well as the fraction of 
configurations that are more cost-effective to be controlled with on-the-ground control compared 
to aerial spraying. Results are shown for three values of the vector hopping rate: Blue, red, and 
green curves correspond to the hopping rates ω = 5μ0, ω = μ0, and ω = 0.5μ0, respectively. For 
each value of percent accessibility and hopping rate, we average over 200 random regional 
accessibility configurations which are either highly clustered or randomly dispersed, assuming 
periodic boundary conditions. Solid curves represent the fractions of randomly dispersed 
configurations that are controllable with on-the-ground control, and the neighboring dotted 
curves represent the fractions of randomly dispersed configurations that are both controllable and 
cost-effective (e.g. those that are both controllable and cheaper to control with on-the-ground 
control than with aerial spray). The dashed curves represent the fractions of highly clustered 
configurations that are controllable, and the neighboring dashed-dotted curves represent the 
fractions of highly clustered configurations that are both controllable and cost-effective.  

Overall, our findings indicate that the cost-optimal on-the-ground and area-wide aerial 
spray application frequencies required for reducing R0 to unity are influenced by the rate of 
mosquito motion, the level of on-the-ground accessibility, as well as the degree of accessibility 
clustering. The manner in which these factors influence the optimal choice between on-the-
ground control only, aerial spray control only, and a combined integrated vector management 
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Figure 11: Shown here are the fraction of neighborhood configurations that can be controlled with door-
to-door alone as a function of percent compliance, as well as the fraction of configurations that are more
cost-e↵ective to be controlled with door-to-door control compared to aerial spraying. Results are shown for
three values of the vector hopping rate: Blue, red, and green curves correspond to the hopping rates ! =
5µ0,! = µ0, and ! = 0.5µ0, respectively. For each value of percent compliance and hopping rate, we average
over 200 random neighborhood compliance configurations which are either highly clustered or randomly
dispersed, assuming periodic boundary conditions. Solid curves represent the fractions of randomly dispersed
configurations that are controllable with door-to-door control (e.g. those where R0 can be brought to unity),
and the neighboring dotted curves represent the fractions of randomly dispersed configurations that are both
controllable and cost-e↵ective (e.g. those that are both controllable and cheaper to control with door-to-door
control than with aerial spray). The dashed curves represent the fractions of highly clustered configurations
that are controllable, and the neighboring dashed-dotted curves represent the fractions of highly clustered
configurations that are both controllable and cost-e↵ective.
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strategy is a central result of this work. At low levels of accessibility, on-the-ground control 
alone can not control the system unless the mosquito hopping rate is sufficiently large. 
Mathematically, this effect arises from the fact that the system-wide R0 is determined by an 
infectious vector population which is distributed in and around the larger more clustered non-
accessible blocks of sites. In this sense, on-the-ground control can only reduce the system-wide 
R0 when the infectious vectors originating in the non-compliant blocks have sufficient mobility 
such that they spend enough time in accessible sites to feel the effects of strong accessible 
control. This explains why a greater level of clustering of non-accessible sites is more difficult to 
control than a dispersed distribution of non-accessible sites; vectors existing in an extremely 
deep block of non-accessibility require an extreme amount of mobility in order to feel the effects 
of on-the-ground control in accessible sites. However, even at infinitely fast mosquito motion, 
under our model and control parameters, the system is uncontrollable under on-the-ground 
control at accessibility levels below about 2%, regardless of accessibility clustering. Simply put, 
even if the vector population is able to be essentially eliminated in accessible sites, such sites 
must comprise about 2% of the total area, at minimum, in order to have any hope of on-the-
ground control alone preventing an epidemic outbreak. More realistically, at finite (potentially 
small) hopping rates, much greater levels of accessibility are required for on-the-ground 
controllability, especially if the accessibility distribution is highly clustered.  

When a system is uncontrollable with on-the-ground control alone, control efforts must 
be supplemented by area-wide spraying, and the combined action of on-the-ground control and 
aerial spraying can potentially be more cost-effective than either strategy used alone. For a given 
distribution of compliant sites, when hopping rates are far too slow for the system to be 
controllable with on-the-ground control alone, the optimal action is to use only area-wide 
spraying. In such cases, an inability to spray frequently due to societal concerns, budgetary 
constraints, or resistance concerns is detrimental to disease control, and no amount of on-the-
ground control can make up for the deficit. As hopping rates approach the on-the-ground 
controllability threshold from below, the optimal control action becomes to supplement aerial 
spraying with on-the-ground control. Here, the disease is still uncontrollable under on-the-
ground only, so an inability to conduct frequent area-wide spraying is still detrimental to 
outbreak prevention. However, mosquito motion is fast enough such that a non-trivial fraction of 
infectious vectors originating in non-accessible sites will travel to accessible sites where they 
experience the effects of on-the-ground control. As hopping rates continue to increase past the 
on-the-ground controllability threshold, aerial spray is optimally applied less frequently, and on-
the-ground control is optimally applied more frequently. At these hopping rates, an inability to 
conduct aerial spraying will not be detrimental to outbreak prevention, but will require sub-
optimal spending on on-the-ground efforts in order to control the system. At large enough 
hopping rates, the system will not only be controllable under on-the-ground efforts alone, but 
will also be much more cost effective under on-the-ground control alone than under aerial spray 
alone. Here, the optimal control action is to apply only on-the-ground control.  

Generally speaking, systems with lower levels of accessibility and greater levels of 
clustering will have larger intervals of hopping rates where optimal control actions call for using 
aerial spray, either alone or combined with on-the-ground efforts. Likewise, systems with 
smaller hopping rates will have greater numbers of accessibility levels and randomly dispersed 
distributions of compliant sites for which the optimal control action is to apply aerial spray only 
in comparison to systems with faster hopping rates. For a given hopping rate, there will be a 
greater number of highly clustered accessibility distributions for which the optimal control action 
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is only aerial spray in comparison to more randomly dispersed accessibility distributions. As 
shown in Fig. 3.8, the effects of accessibility clustering is diminished at larger hopping rates. 
This follows from the notion that highly mobile vectors experience the effects of accessible and 
non-accessible sites in a more averaged sense in correspondence to the fraction accessibility in 
the region, where the actual spatial distributions of accessibility and non-accessibility become 
increasingly irrelevant as ω → ∞.  

It is important to note than even when a system is controllable under on-the-ground 
control alone, using only on-the-ground control may not be more cost-effective than aerial spray 
alone, despite on-the-ground’s higher control strength and lasting effects in accessible sites 
relative to aerial spray. Specifically, Fig. 3.8 indicates that for a given hopping rate, the number 
of accessibility configurations which are controllable under on-the-ground alone is smaller than 
the number of configurations which are cost-effective under on-the-ground alone. The 
differences between the number of configurations which are controllable and the number of 
configurations which are cost-effective, however, tends to be small outside of the narrow 
accessibility ranges where systems transition from always uncontrollable to always controllable. 
On the other hand, Figs. 3.5 and 3.6 show that, for a given accessibility configuration, the range 
of hopping rates over which the system is controllable is greater than the range of hopping rates 
which are cost-effective, and that the differences between the two ranges are rather small. In any 
event, we obtain the following ‘rules of thumb’ - when a system is in the range of uncontrollable 
to almost controllable, the optimal control action is to apply only aerial spray; when a system is 
in the range of almost controllable to controllable and slightly more cost-effective, the optimal 
control action is to apply a combined aerial spray on-the-ground strategy; when a system is 
controllable and in the range of slightly more to much more cost-effective, the optimal control 
action is to apply on-the-ground control only.  
 

Summary and Conclusions 

Mosquito motion, door-to-door control compliance levels, and spatial clustering of 
accessible sites play an important role in determining whether or not vector-borne disease can be 
controlled by area-wide aerial spraying and/or on-the-ground control, as well as the most cost-
effective strategies for control in a regional scale system. We find that, in general, increased 
mosquito motion, increased accessibility levels, and decreased accessibility clustering are all 
beneficial for the efficacy of on-the-ground control efforts. We note the numerical results 
presented here are all based on a disease-related parameter set representative of typical values 
associated with vector-borne diseases such as Zika or dengue in North America. Our intent here 
is not to provide specific control advice which can be responsibly applied directly in the field. 
Rather, we have focused on providing mechanistic insight into the biological factors which 
should, in conjunction with additional practical considerations that can not be reliably modeled, 
be considered when designing a real-world integrated vector management strategy. Our specific 
numerical results are most appropriate for use as a simplified baseline example case from which 
one can build some mathematical intuition for control efficacy on regional scales.  
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PART 4: LA CROSSE ENCEPHALITIS 
 
This work has been published, and can be found at:  Bewick, Sharon, et al. "Epidemiology of 
La Crosse virus emergence, Appalachia Region, United States." Emerging infectious diseases 
22.11 (2016): 1921. 
 
Background 
 
In recent years, several vector-borne diseases have re-emerged either at new locations or to new 
levels in historic ranges.  Commonly cited factors for re-emergence include evolution of novel 
vector or pathogen strains (1), increased human mobility or disease spread by infected travelers, 
decreased herd immunity (2), landscape change (3), climate change (4), and invasion of new 
regions by competent disease vectors (5).  Although continent-scale disease translocations are 
almost always a result of human transport, pathogens that exhibit novel regional spread and/or 
increased transmission in pre-existing locations are more difficult to explain.  Such is the case 
with La Crosse encephalitis (LAC), a mosquito-borne viral disease currently emerging in 
Tennessee, North Carolina, Virginia, and West Virginia.  With 30-180 cases of severe LAC 
reported annually (6), and an estimated total disease incidence as high as 300,000 cases per year, 
LAC is rapidly becoming a leading cause of encephalitis in the United States (7, 8).  In severe 
cases, LAC has lifelong neurologic consequences (6) and carries an estimated fatality rate of  
0.5-1.9% (6, 9).   

Previously, most LAC cases were associated with forested areas in the Midwest (10).  
However, since the mid-1990s, the Appalachian region has emerged as a new and important 
focus for the disease (8, 11-13).  One potential explanation is the introduction of the invasive 
Asian tiger mosquito (Aedes albopictus, henceforth the ‘tiger mosquito’) (14).  Historically, 
LAC was maintained through a cycle involving the eastern tree-hole mosquito (Ochlerotatus 
triseriatus, henceforth the ‘tree-hole mosquito’) and three mammal species –  eastern chipmunks 
(Tamias striatus), grey squirrels (Sciurus carolinensis) and fox squirrels (Sciurus niger) (10, 15)  
However, demonstrated laboratory competence (16, 17), isolation of LAC virus from field-
collected tiger mosquito pools (18), observation of LAC-positive tiger mosquitoes at sites with 
human LAC infections (19), and the coincidental link between tiger mosquito invasion and the 
emergence of LAC in Appalachia (11) indicate that the tiger mosquito may now be aiding in 
LAC spread.  Unfortunately, while these observations demonstrate the potential of the tiger 
mosquito to influence LAC dynamics, this mosquito’s contribution to observed increases in LAC 
transmission remains unclear.  

One obstacle to identifying the role of the tiger mosquito in LAC emergence is our 
limited understanding of how invasive species interact with native disease cycles and how this 
affects disease transmission, both within natural reservoirs and to human hosts.  Epidemiological 
modeling is a powerful tool that has proven useful for understanding the outcomes of different 
transmission pathways in other disease systems.  To our knowledge, however, there are no 
dynamic models for LAC, even for the case where the tree-hole mosquito is the only disease 
vector.  Here we develop a compartmental model (see Figure 4.1) for LAC.  We use this model 
to explore LAC dynamics in both the native and invaded systems and to assess the likelihood 
that the Asian tiger mosquito is responsible for the emergence of LAC in Appalachia. 
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Figure 4.1  Schematic illustrating transitions/interactions in our compartmental model. 
Subscripts ‘1’, ‘2’ and ‘C’ are used to denote parameters and state variables for the tree-hole 
mosquito, tiger mosquito and host populations.  S, I, E and R are used for susceptible, infected, 
exposed and recovered classes.  A discussion of parameters can be found at 
(science.umd.edu/biology/faganlab/disease-ecology.html).  Black boxes are used for infected 
classes, grey boxes for exposed classes, and white boxes for susceptible/recovered classes.  A 
dotted line and grey shadow demark the subset of transitions/interactions that define the native 
system prior to tiger mosquito invasion.   
 
 
Model Development 
 
We built three separate models:  (i) a model where the tree-hole mosquito is the only LAC 
vector, (the ‘Tree-hole Model’), (ii) a model where the tiger mosquito is the only LAC vector, 
(the ‘Tiger Model’) and (iii) a model where both tree-hole and tiger mosquitoes simultaneously 
serve as LAC vectors, (the ‘Tree-hole & Tiger Model’).  (In model iii, either mosquito species 
may be driven extinct through competitive exclusion; thus while both vectors are potentially 
present, it is possible that only one persists).  For all models, we assumed that the vertebrate host 
was the eastern chipmunk.  The basic dynamical system (see Figure 1) is as follows: 
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where for vector population ! = 1 (tree-hole mosquitoes) or 2 (tiger mosquitoes) we consider 
susceptible (!!,!) and infected (!!,!) female larvae (where the ‘larval stage’ includes both the egg 
stage and the true larval stage), as well as susceptible (!!,!), exposed (!!,!) and infected (!!,!) 
female adults.  The total larval population of mosquito species ! is given by !!,! = !!,! + !!,!, 
while the total adult population is given by !!,! = !!,! + !!,! + !!,!.  For hosts, we consider 
susceptible (!!), infected (!!) and recovered (!!) classes.  The total population of the host 
species is given by !! = !! + !! + !! , where !!  is defined as a model parameter.   
 
Model Analysis 
 

Figure 2 presents a Latin Hypercube Sampling analysis of R0 for each of our three 
models. Interestingly, we find that sustained LAC transmission can occur in the majority of Tree-
hole Model scenarios (60%), but only in a small fraction of Tiger Model scenarios (3%).  This is 
surprising, because the average tiger mosquito population has approximately twice as many 
biting females per hectare as does the average tree-hole mosquito population– a feature that 
reflects both the higher larval carrying capacity and the faster larval maturation rate of tiger 
mosquitoes versus tree-hole mosquitoes.  Clearly, the numerical abundance of the tiger mosquito 
does not compensate for its lower horizontal and vertical LAC transmission rates and its lower 
biting rates on key host species. 

Moving to the two-vector system, our results for the Tiger & Tree-hole Model indicate a 
similar outcome – that the invasion of tiger mosquitoes into tree-hole mosquito populations 
should reduce the fraction of scenarios (from 60% to 37%) where LAC transmission is viable.  
Thus, instead of causing the emergence of new LAC foci, the invasion by tiger mosquitoes 
should instead drive LAC out of regions where it could previously persist.  This is again a 
function of the poor intrinsic capability of tiger mosquitoes to serve as LAC vectors.  It also 
depends on asymmetric competition between tiger and tree-hole mosquitoes.  For example, 
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whereas 14% of parameter combinations yield tiger mosquitoes competitively excluding tree-
hole mosquitoes, the converse is true for only 0.03% of parameter combinations.  Moreover, 
even when tree-hole and tiger mosquitoes coexist, the tree-hole mosquito population suffers an 
average 63% population reduction through interspecific competition.  By contrast, interspecific 
competition only reduces the tiger mosquito population by an average of 16%.  Not surprisingly, 
then, when both mosquito species are present, the vast majority (on average 78%) are tiger 
mosquitoes.  Because the tiger mosquito is the poorer of the two LAC vectors, its invasion 
actually reduces the likelihood of LAC transmission.   
 

 
 
 
 
 
 
 
 
 
 
Figure 4.2  Histograms of R0 
values based on LHS analyses 
with 10,000 randomly selected 
parameter sets.  In each panel, the 
black vertical line at log(R0 )=0 
corresponds to the general 
breakpoint between growing and 
shrinking infection rates, and thus 
represents the threshold for LAC 
persistence.  (a) the Tree-hole 
Model, (b) the Tiger Model, and 
(c) the Tree-hole & Tiger Model. 
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Figure 4.3 illustrates LHS results for an elasticity analysis of the four viral transmission 
pathways in the Tree-hole & Tiger Model.  In the majority of scenarios, the pathway that is most 
important for disease spread is horizontal transmission by tree-hole mosquitoes.  Vertical 
transmission by tree-hole mosquitoes can also be important, but usually only in cases where the 
role of tiger mosquitoes is minimal.  For scenarios where tiger mosquitoes contribute to spread, 
the important pathway is horizontal transmission either by tiger mosquitoes alone or else in 
combination with horizontal transmission by tree-hole mosquitoes.  By contrast, vertical 
transmission by tiger mosquitoes is rarely important, and only matters in systems where 
horizontal transmission by tiger mosquitoes is already the major mode of disease spread. 
 

 
Figure 4.3  Two views of a quaternary plot showing the relative contributions to R_0 from (i) 
horizontal transmission by tree-hole mosquitoes, (ii) vertical transmission by tree-hole 
mosquitoes, (iii) horizontal transmission by tiger mosquitoes, and (iv) vertical transmission by 
tiger mosquitoes. This figure plots only the 8602 replicates (out of 10000) wherein tiger and tree-
hole mosquitoes coexisted.  
 

Table 1 outlines summary statistics for our dynamic analyses. Importantly, predictions 
from dynamic models are similar to predictions for R0 (LAC transmission in 46% of scenarios) 
and match many expectations from LAC systems.  First, in both the native system (i.e., the Tree-
hole Model) and the invaded system (i.e., the Tree-hole & Tiger Model) host seroprevalence 
rates should be remarkably high, approaching 100% towards the end of the season (mean 
[median] end-of-season host seroprevalence rates of 89% [99%] in the Tree-hole Model and 84% 
[97%] in the Tree-hole & Tiger Model).  This is consistent with findings from Wisconsin where, 
at least in high quality habitat, multiple surveys have demonstrated that antibody prevalence rates 
in chipmunks can be well over 50%, often nearing 100% late in the season (15, 22).  At the same 
time, our model predicts very low numbers of LAC-positive mosquitoes, even in the native 
system (mean [median] yearly averages of 2.0% [1.6%] for the Tree-hole Model).  Again, this is 
highly consistent with observed minimum field infection rates (MFIR) that range from 0.26/1000 
to 12.5/1000 (13, 23-26).  Interestingly, predicted infection rates in overwintering eggs are even 
lower than rates of infection in adult populations (mean [median] end-of-season infection rates of 
0.63% [0.49%] respectively for the Tree-hole Model.)  This reflects the fact that transovarial  
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Table 1.  Summary statistics* for epidemiological metrics based on LHS analysis of the full dynamic model; all 
metrics beyond the first row are only calculated for the subset of simulations that gave infected mosquitoes. 

 Tree-hole 
Model Tiger Model Tree-hole and Tiger 

Model* 
    

Parameter Sets with LAC Persistence 46% 0.20% 24% 
    
    

End of Season Host Seroprevalence Rate    
     Mean 89% 79% 84% 
     Median 99% 88% 97% 
     Maximum 100% 100% 100% 
    
    

Mid-Season Host Seroprevalence Rate    
     Mean 65% 12% 18% 
     Median 74% 8.9% 12% 
     Maximum 100% 38% 98% 
    
    

Peak No. Infected Mosquitoes (ha-1)    
     Mean 32 58 23 
     Median 22 50 16 
     Maximum 331 200 222 
    
    

Peak Mosquito Infection Rate    
     Mean 4.5% 1.6% 1.9% 
     Median 3.5% 1.5% 1.3% 
     Maximum 27% 5.3% 15% 
    
    

Average Mosquito Infection Rate    
     Mean   2.0% 0.44% 0.80% 
     Median 1.6% 0.33% 0.57% 
     Maximum 13% 1.8% 6.8% 
    
    

Max. Human Transmission (mo-1person-1ha-1)    
     Mean 15 59 14 
     Median 8.6 40 7.9 
     Maximum 251 247 221 
    
    

Timing of Peak Human Transmission    
     Mean 8/14 9/21 8/23 
     Median 8/10 9/28 8/21 
     Earliest 6/21 8/26 6/26 
     Latest 9/30** 9/30** 9/30** 
    
    

End of Season Egg Infection Rates    
     Mean 0.63% 0.08% 0.28% 
     Median 0.49% 0.07% 0.20% 
     Maximum 5.0% 0.32% 2.2% 
    
* We avoid reporting minimum values since these are likely to depend on the threshold that we selected for 
determining disease persistence (see Appendix IV).   
**In these systems, the abundance of infected mosquitoes was still increasing at the end of the season.  This 
indicates that infection rates do not slow prior to the decline in mosquitoes at the end of the summer. 
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transmission is less than 100% and that overwintering eggs are laid later in the season, 
sometimes after peak LAC transmission has subsided.  Again, predicted rates of egg infection 
strongly agree with field data indicating that 0.29-0.6% of overwintering eggs from LAC 
endemic sites yield LAC-positive larvae (26, 27).  Finally, our predicted timing of peak human 
disease risk is broadly consistent with observed human LAC cases that tend to occur in late 
summer and early fall (8, 12). 

What our dynamic model does not predict is any increase in LAC prevalence in the 
invaded system (i.e., Tree-hole & Tiger Model) as compared to the native system (i.e., Tree-hole 
Model).  In fact, even in systems where LAC survives introduction of the tiger mosquito, the 
tiger mosquito tends to dampen LAC transmission.  In Table 1, for example, both the absolute 
number of infected mosquitoes and the rate of mosquito infection are lower in the Tree-hole & 
Tiger Model as compared to the Tree-hole Model.  Consistent with mosquito infection rates, we 
find that host seroprevalence rates are also lower when tiger mosquitoes are present. 
Although the tiger mosquito is a poor amplifying vector for LAC, it may still increase human 
LAC cases.  Indeed, because this species is an aggressive human biter, it has the potential to 
intensify the rate of disease transfer to human populations, albeit while simultaneously reducing 
disease spread in wildlife reservoirs (i.e., it may act as a bridge vector).  Table 1, however, shows 
that this is not the case.  Although tiger mosquito biting rates on humans (not shown) partially 
compensate for lower rates of LAC transmission in wildlife reservoirs, this compensation is not 
complete.  Thus, human infections are still predicted to occur more commonly in the uninvaded 
versus the invaded system. 
 Figure 4.4 summarizes our PRCC results for model parameters.  In single-vector models 
– i.e., the Tree-hole Model (white) and the Tiger Model (black) – transmission rates, biting rates, 
mosquito survival rates, mosquito population growth rates, mosquito maturation rates, mosquito 
carrying capacity, and rates of LAC dissemination in mosquitoes are all positively correlated 
with R0.  In contrast, rates of host recovery are negatively correlated with R0, as is host 
population size.  Though this latter result is somewhat counterintuitive, it is well known for 
systems with a saturating functional response (28).   

In the two-vector model, most PRCC values are reduced, but maintain the same sign.  
This reflects the similar effect but lower importance of either mosquito species individually 
when both species are present.  Not surprisingly, PRCC reductions are more severe for the tiger 
mosquito, which is the less competent and thus less important vector in the two-vector system.  
Although the majority of PRCC values merely exhibit reductions in the two-vector model, 
several undergo more striking changes. First, both the tiger mosquito population growth rate and 
the tiger mosquito carrying capacity switch from being positively correlated with R0 (strongly so 
in the case of carrying capacity) in the Tiger Model to being negatively correlated with R_0 in 
the Tree-hole & Tiger Model.  This is because tiger mosquitoes are generally detrimental to LAC 
spread in systems where the native vector is also present.  Importantly, this conclusion accords 
with our general finding that tiger mosquitoes should, if anything, reduce LAC transmission.   
Second, the population growth rate of the tree-hole mosquito actually becomes more important 
when tiger mosquitoes are present.  This parameter is particularly important in the Tree-hole & 
Tiger Model because it helps to influence the outcome of interspecific competition.  Specifically, 
high tree-hole mosquito growth rates give this species a fighting chance against the more 
aggressive, generally more fecund tiger mosquito population. 

While PRCC analysis can identify correlations between model parameters and disease 
outcomes, large PRCC values additionally indicate model parameters that contribute a high 
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degree of uncertainty to model predictions.   In the Tree-hole & Tiger Model, the largest sources 
of uncertainty in R0 are the survival rate of tree-hole mosquitoes, the biting rate of tree-hole 
mosquitoes, and interspecific competition of tiger mosquitoes on tree-hole mosquitoes.  In the 
Tree-hole Model and the Tiger Model, the largest contributions to uncertainty are again survival 
and biting rates, but also vector carrying capacities.   
 

 
Figure 4.4 Partial Rank Correlation Coefficients (PRCCs) for the effect of each model 
parameter on the basic reproduction number, R_0, in the Tree-hole Model (white), the Tiger 
Model (black) and the Tree-hole & Tiger Model (grey).  Positive PRCC values indicate that R0 is 
positively correlated with a specific parameter, whereas negative PRCC values indicate the 
opposite.   
 
Recently, we have begun to extend our La Crosse model to consider temperature dependent 
effects associated with seasonality, and the impact that this has on control.  Figure 4.5 shows 
preliminary results assuming variable mosquito demographic parameters as a function of average 
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seasonal temperatures in the state of Ohio, along with optimal control results for the best timing 
of larvicide and adulticide.  

 
Figure 4.5 Preliminary results for temperature dependent proportions of infected hosts and 
vectors, along with instantaneous R0 as a function of season, and optimal larvicide and adulticide 
treatment over the course of one year. 
 
Figure 4.6 shows the potential effects of optimally timed control depending on yearly 
temperatures over a 10oC range.  Specifically, we find that less control is required at lower 

Optimal control of La Crosse Virus under a temperature variable environment 

Temperature in Ohio R0 with different temperature in Ohio

Proportion of infected chipmunk with mean 
temperature in Ohio 

Proportion of infected mosquitoes with 
mean temperature in Ohio 

Optimal larviciding and adulticiding with mean 
temperature in Ohio 
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tempeartures, and that significantly greater reductions, particularly in infected hosts, can be 
realized at lower temperatures. 

 
Figure 4.6  Preliminary results showing the number of infected hosts and vectors, as well as total 
controls implemented at three different mean yearly temperatures.  These results suggest that La 
Crosse Encephalitis will become more costly and more difficult to control with increasing global 
temperatures. 
 
Conclusions and Summary 

We developed what appears to be the first dynamic model for LAC.  In contrast to 
previous conclusions (29), our model suggests that LAC should be sustainable in 46-60% of 
scenarios where the tree-hole mosquito serves as the sole vector.   Interestingly, this still 
indicates a sizeable number of scenarios where LAC transmission should not occur.  One 
interpretation is that LAC spread is only marginally favorable, and that small changes in system 
characteristics, for example different mosquito or viral strains or environmental conditions, are 
sufficient to initiate or suppress disease transmission.  This could explain the patchy detection of 
LAC across its native range (9), as well as the sudden appearance of LAC at sites where the 
disease was previously absent.   
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One factor that does not explain the emergence of novel LAC foci is the invasion of tiger 
mosquitoes.  In fact, we predict that the invasive tiger mosquito should actually reduce disease 
transmission in both wildlife reservoirs and human populations (even accounting for the fact that 
tiger mosquitoes are aggressive human biters).  Thus the presence of the invasive tiger mosquito 
is not sufficient to explain the dramatic increase in LAC cases observed in Appalachia (8, 11-13, 
30, 31).  Interestingly, the Midwest has not seen any increase in LAC prevalence since the tiger 
mosquito’s arrival.  Indeed, reported cases in the region have decreased (11) (see Appendix VII), 
which is consistent with predictions from our model.  

Increased warming temperatures, on the other hand, do appear to be detrimental in terms  
of both the degree of LAC spread, as well as the cost of LAC control.  This suggests that the 
increasing prevalence of LAC in Appalachia may be driven by ongoing global change, and 
suggests that further emphasis be placed on LAC control in the future. 
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PART 5: ZIKA 
 
This work has been published, and can be found at:   
Agusto, Folashade B., S. Bewick, and W. F. Fagan. "Mathematical model of Zika virus with 
vertical transmission." Infectious Disease Modelling 2.2 (2017): 244-267. 
 
Agusto, F. B., S. Bewick, and W. F. Fagan. "Mathematical model for Zika virus dynamics with 
sexual transmission route." Ecological Complexity 29 (2017): 61-81. 
 
Bewick, Sharon, et al. "Zika virus: endemic versus epidemic dynamics and implications for 
disease spread in the Americas." BioRxiv (2016): 041897. 
 
Background 

After being discovered in Ugandan forests in 1947 (1), Zika virus (ZIKV) remained a 
relatively minor arboviral disease for 60 years (2).  In 2007, however, an outbreak of ZIKV on 
Yap Island (3) in the Pacific Ocean signaled spread of the virus beyond its historic range (2-4).  
From Yap Island, ZIKV was transported to French Polynesia in 2013 (5) and then on to Brazil in 
2014 (6-8).  Once in Brazil, the virus took off, ‘spreading explosively’ (9) throughout both South 
and Central America.  By early 2016, for example, local transmission of ZIKV had been reported 
in 20 countries and territories in the Americas (10).   Initially, ZIKV was not viewed as a 
significant public health threat.  Indeed, with a negligible mortality rate and symptoms 
resembling a mild form of dengue (DENV) (2), the ZIKV outbreak appeared to be more of a 
nuisance than a public health emergency.  In November 2015, however, alarms were raised about 
a potential connection between ZIKV transmission and increasing rates of newborn 
microcephaly (11).  

In 2017, confirmation of the link between ZIKV and microcephaly was made.  This, and 
the >20-fold increase in microcephaly in regions of Brazil where ZIKV was spreading (12) 
caused countries to take drastic precautionary action.  The United States Centers for Disease 
Control (CDC), for example, posted a travel alert recommending that pregnant women avoid 
regions in the Caribbean and Latin America where ZIKV transmission is ongoing (13).  
Meanwhile, public health officials in El Salvador and Colombia have suggested that women 
delay pregnancy up to two years until ZIKV outbreaks can be controlled (14).   

Like other viruses in the genus Flavivirus, for example DENV, West Nile Virus (WNV) 
and Yellow Fever Virus (YFV), ZIKV is primarily spread by mosquitoes.  For ZIKV, the main 
vectors appear to be members of the genus Aedes (15), including the notorious Ae. aegypti.  This 
is of concern because Aedes species are widespread in warmer temperate and tropical regions 
(16, 17).  In addition, although chemical larvicides and adulticides are somewhat effective at 
reducing certain Aedes populations, these mosquitoes can reproduce in very small containers of 
standing water.  This makes complete eradication difficult (18).  

We considered three interesting features of ZIKV dynamics.  First, we asked why a 
correlation only recently emerging between prenatal exposure to ZIKV and microcephaly.  
Second, we asked about the role of vertical transmission in ZIKV dynamics.  Third, we asked 
about the role of sexual transmission in ZIKV dynamics.  This final question is interesting, 
because ZIKV is relatively unique among vector-borne diseases in terms of its ability for sexual 
transmission. 
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Model Development  
 
To examine the question of the recent connection between ZIKV and microcephaly, we 
considered the following age, sex and reproductive status model: 
 
Humans (S-I-R): 
Pre-reproductive females and males: 
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Reproductive females (pregnant): 
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Reproductive males: 
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Post-reproductive females and males: 
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where !, ! and ! are populations that are susceptible to, infected with, and recovered from (and 
thus immune to) ZIKV, respectively, and subscripts on the state variables are: ! for children, ! 
for reproductive-aged females that are not pregnant, ! for reproductive-aged females that are 
pregnant, ! for males within the age range of reproductive females, and ! for adults beyond 
reproductive age (as based on female reproduction). 
 
To examine the role of vertical transmission, we considered the following, somewhat more 
simplified model: 
 

 
Figure 5.1 Flow diagram for our vertical transmission model 
 
with associated equations 
 

2015). Most evidence, however, is correlative. In Brazil, for example, 2782 cases of microcephaly were reported in the year
following ZIKV introduction, as compared with 147 cases and 167 cases in the two years prior to ZIKV arrival (Romero, 2015).
Retrospective analysis of data fromFrenchPolynesia similarly uncoveredanunusual numberof babies bornwithneural defects
during the height of the ZIKV outbreak (Vogel, 2016). Over this same period, French Polynesia also sawa spike in Guillain-Barre
syndrome (FauciMorens, 2016; Oehler et al., 2014), as well as increases in a range of other neurologic conditions including
meningitis, meningoencephalitis, and myelitis (Talan, 2016). More recently, a series of Latin American countries, including
Brazil, Colombia, and Venezuela have observed similar upticks in the incidence of Guillain-Barre (World Health Organization,
2016a,WorldHealthOrganization, 2016b), consistentwith the proposed relationship between this disorder andZIKV infection.

In addition to correlative support, several clinical and lab-based findings hint at potential mechanisms to explain the link
between ZIKV and neural complications (Mlakar et al., 2016). In 1952, for example, Dick et al (Dick, Kitchen,&Haddow,1952).
demonstrated ZIKV tropism to the brain in intraperitoneally infectedmice. Expandingon thisfinding, Bell, and colleagues (Bell,
Field, & Narang, 1971) later showed that both neurons and glia could be infected by ZIKV. More recently, a number of studies,
havedemonstrated evidence of intrauterine infectionwithZIKV (OliveiraMelo et al., 2016), including infectionof the fetal brain
(Martines, 2015; Rubin, Greene, & Baden, 2016). This latter finding, in particular, provides a direct path from maternal ZIKV
infection to microcephalye a rare neurological condition inwhich an infant's brain develops abnormally in the womb or does
not growas it should after birth (Mayo Foundation forMedical Education andResearch, 2016). Ultimately,microcephaly results
in an infant'sheadsizebeing significantlysmaller than theheadsof other childrenof the sameageandsex (MayoFoundation for
Medical Education and Research, 2016). Althoughmicrocephaly can range frommild to severe, cases currently associatedwith
the ZIKV outbreak in Brazil are notable for the level of damage observed in the brains of affected infants (da Silva et al., 1953;
Talan, 2016). Furthermore, congenital Zika usually come with a wide spectrum of clinical features (da Silva et al., 1953).

In this paper, we develop and analyze a mathematical model for ZIKV. Our focus is multi-fold. First, we consider overall
ZIKV transmission in the adult population. Second, we consider ZIKV transmission to infants, either directly by mosquitoes or
else prior to birth through vertical transmission from themother. Infant ZIKV casesmay be particularly severe because central
nervous system (CNS) infections in young children can cause long-term damage to the developing brain (Bundy, 2014, p. 221).
Finally, we consider microcephaly rates, which we assume occur as a result of vertical transmission of ZIKV to the fetus during
the early stages of pregnancy. The paper is organized as follows. The model is formulated in Section 2 and we investigate the
theoretical properties of the Zika model with mother-to-child vertical transmission in Section 3. In Section 4, we assess the
impact of the asymptomatic classes and identify key parameters with the most impact on disease burden in Section 5. We
conduct numerical exploration of three control strategies in Section 6. The study results are discussed in Section 7.

2. Model formulation

We model the transmission dynamics of ZIKV using a compartmental framework. We consider two human populations
consisting of adults and newly born babies as well as the vector population. The population of newly born babies consists of

Fig. 1. Flow diagram of the Zika transmission model.
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(5.2) 

with state variables defined as follows: 

 
 
To examine the role of sexual transmission, we again considered a somewhat simplified model, 
as follows: 

susceptible ðSBðtÞÞ, exposed ðEBðtÞÞ, asymptomatic ðABðtÞÞ, symptomatic newly born without microcephaly, newly born with
microcephaly ðIBMðtÞÞ and recovered newly born babies ðRBðtÞÞ. The total population of adults, NW ðtÞ, at time t is split into
mutually exclusive sub-populations of individuals who are susceptible ðSW ðtÞÞ, exposed ðEW ðtÞÞ, asymptomatic ðAW ðtÞÞ,
symptomatic ðIW ðtÞÞ, adultwithmicrocephaly ðIWMðtÞÞand recovered adults ðRW ðtÞÞ. The population of themosquitoes include
the susceptible ðSV ðtÞÞ, exposed ðEV ðtÞÞ and infected mosquitoes ðIV ðtÞÞ. The total population for each group is given as:

NBðtÞ ¼ SBðtÞ þ EBðtÞ þ ABðtÞ þ IBðtÞ þ IBMðtÞ þ RBðtÞ;
NW ðtÞ ¼ SW ðtÞ þ EW ðtÞ þ AW ðtÞ þ IW ðtÞ þ IWMðtÞ þ RW ðtÞ;
NV ðtÞ ¼ SV ðtÞ þ EV ðtÞ þ IV ðtÞ:

and total human population is NHðtÞ ¼ NB þ NW . Equations representing the mathematical model are given below. The flow
diagram of the model is depicted in Fig. 1, and the associated state variables and parameters are described in Table 1.

S0BðtÞ ¼ pB % qApBAW ðtÞ % qIpBIW ðtÞ % qRpBRW ðtÞ % lBðIV ;NBÞSBðtÞ % ðaþ mBÞSBðtÞ
E0BðtÞ ¼ lBðIV ;NBÞSBðtÞ % ðaþ sB þ mBÞEBðtÞ
A0BðtÞ ¼ qApBAW ðtÞ þ ð1% pÞsBEBðtÞ % ðaþ gB þ mBÞABðtÞ
I0BðtÞ ¼ qIpBIW ðtÞ þ psBEBðtÞ % ðaþ gB þ mBÞIBðtÞ

I0BMðtÞ ¼ rqRpBRW ðtÞ % ðaþ mBÞIBMðtÞ
R0BðtÞ ¼ ð1% rÞqRpBRW ðtÞ þ gBABðtÞ þ gBIBðtÞ % ðaþ mBÞRBðtÞ
S0W ðtÞ ¼ aSBðtÞ % lW ðIV ;NW ÞSW ðtÞ % mWSW ðtÞ
E0W ðtÞ ¼ lW ðIV ;NW ÞSW ðtÞ % ðsW þ mW ÞEW ðtÞ
A0W ðtÞ ¼ ð1% pÞsWEW ðtÞ % ðgW þ mW ÞAW ðtÞ
I0W ðtÞ ¼ psWEW ðtÞ % ðgW þ mW ÞIW ðtÞ

I0WMðtÞ ¼ aIBMðtÞ % mWIWMðtÞ
R0W ðtÞ ¼ aRBðtÞ þ gWAW ðtÞ þ gWIW ðtÞ % mWRW ðtÞ
S0V ðtÞ ¼ pV % lV ðAB; IB;AW ; IW ;NB;NW ÞSV ðtÞ % mVSV ðtÞ
E0V ðtÞ ¼ lV ðAB; IB;AW ; IW ;NB;NW ÞSV ðtÞ % ðmV þ sV ÞEV ðtÞ
I0V ðtÞ ¼ sVEV ðtÞ % mV IV ðtÞ:

(2.1)

where, (0) represent derivative with respect to t, and

lW ðIV ;NW Þ ¼
bWbVIV
NW

; lBðIV ;NBÞ ¼
hbBbV IV

NB
;

lV ðAB; IB;AW ; IW ;NB;NW Þ ¼ bVbV

!
IW þ rWAW þ hðIB þ rBABÞ

NW þ hNB

"
;

are the disease forces of infection rates, and all other parameters are as defined in Table 1. In particular, bW ; bB and bV are the
transmission probability per contact in adults, newly born babies andmosquitoes, bV is themosquito biting rate, rW and rB are
modification parameters modeling the infectivity of the asymptomatic babies and adults. The parameter h is a modification
parameter that indicates that babies' exposure rate is different from that of adults. For instance, they may be protected from
mosquito bites, making they less likely to get the infections, on the other hand, they may receive more mosquito bites if left
unprotected; we assume that h>0. We assume that the infection in the asymptomatic individuals might not be high enough
to infect the susceptible mosquitoes or is the same level as for the infectious individuals, in which case the modification
parameters are taken as 0 & rB; rW & 1.

Zika virus is passed prenatally from a pregnant woman to her unborn fetus (Moore et al., 2017). For example, during the
2015 Zika outbreak in Brazil, Zika virus RNAwas found in the amniotic fluid of twowomenwhose fetuses were determined via
prenatal ultrasound to have microcephaly (Schuler-Faccini et al., 2016). Depending on timing of infection in the womb,
newborn babies can also be infected from birth (Besnard, Lastere, Teissier, Cao-Lormeau, & Musso, 2014). Thus, we assume
that some babies are bornwith infected with the virus. The parameters qA; qI ; qR represent fractions of newly born babies who
are infected due to vertical transmission. So that the fraction pBð1% qAAW % qIIW % qRRW Þ are babies born healthy by infected
and recovered mothers and the remaining fraction qApBAW ; qIpBIW ; qRpBRW are born infected.

Despite the fact that there is sufficient evidence to conclude that intrauterine Zika virus infection is a cause of micro-
cephaly (Moore et al., 2017), not all newly born babies are born with microcephaly, although they may have other congenital
abnormalities (da Silva et al., 1953). We assume that some babies are born recovered from the virus. Thus, the parameter r
correspond to the fraction of the qRpBRW recovered babies born by recovered mothers, while the remaining portion
ð1% rÞqRpBRW are newly born babies who have microcephaly. The parameter p represent the fraction of adults and newly
born babies who are asymptomatic and the remaining fraction ð1% pÞ are adults and newly born babies who are infectious.
The parameter a denotes the maturation rate. Microcephalic individuals experience profound developmental delay (Carter,
Mirzaa, McDonell, & Boycott, 2013); although their lifespan is not known, they live for a short period due to severe neuro-
logic impairments (some have been known to live up to 9 years) (Carter et al., 2013). As a result, we assume thatmicrocephalic
adults do not reproduce.
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2.1. Basic properties

We shall now explore the basic dynamical features of model (2.1). Since the model (2.1) describes both human and
mosquito populations during a Zika epidemic, it will only be epidemiologically meaningful if all state variables are non-
negative for t ! 0. That is, its solution with positive initial data will remain positive for all time ðt >0Þ.

Lemma 1. Let the initial data Fð0Þ ! 0, where FðtÞ ¼ ðSB; EB;AB; IB; IBM ; SW ; EW ;AW ; IW ;RW ; IWM ;RB; SV ; EV ; IV Þ. Then the solu-
tions FðtÞ of model (2.1) are non-negative for all time t >0. Furthermore

lim sup
t/∞

NHðtÞ %
pB
mH
; lim sup

t/∞
NV ðtÞ ¼

pV
mV

;

where mH ¼ minfmB;mWg:
with,

NBðtÞ ¼ SBðtÞ þ EBðtÞ þ ABðtÞ þ IBðtÞ þ IBMðtÞ þ RBðtÞ;
NW ðtÞ ¼ SW ðtÞ þ EW ðtÞ þ AW ðtÞ þ IW ðtÞ þ IWMðtÞ þ RW ðtÞ;
NV ðtÞ ¼ SV ðtÞ þ EV ðtÞ þ IV ðtÞ:

The proof of Lemma 1 is given in Appendix A.
Invariant regions
Model (2.1) will be analyzed in a biologically-feasible region as follows. Consider the feasible region

G ¼ GH ' GV3ℝ12
þ ' ℝ3

þ

with,

GH ¼
!
SBðtÞ; EBðtÞ;ABðtÞ; IBðtÞ; IBMðtÞ;RBðtÞ; SW ðtÞ; EW ðtÞ;AW ðtÞ; IW ðtÞ; IWMðtÞ;RW ðtÞ

: NHðtÞ ¼
pB
mH
;

"
;

GV ¼
!
SV ðtÞ; EV ðtÞ; IV ðtÞ : NV ðtÞ ¼

pV
mV

"
:

Table 1
Description of the state variables and parameters of the Zika model (2.1).

Variable Description

SBðtÞ, SW ðtÞ Susceptible newly born babies and adults
EBðtÞ, EW ðtÞ Exposed newly born babies and adults
ABðtÞ, AW ðtÞ Asymptomatic newly born babies and adults
IBðtÞ, IW ðtÞ Symptomatic newly born without microcephaly and adults
IBMðtÞ, IWMðtÞ Microcephalic newly born babies and adults
RBðtÞ, RW ðtÞ Recovered newly born babies and adults
SV ðtÞ Susceptible female mosquitoes
EV ðtÞ Exposed female mosquitoes
IV ðtÞ Infected female mosquitoes
Parameter Description
pB Birth rate newly born babies
p Fraction of adults and newly born babies who are asymptomatic
1( p Remaining fraction of adults and newly born babies who are infectious
a Maturation rate
r; qA; qI ; qR Fractions of newly born babies who are infected and have microcephaly
1( r Remaining fraction of newly born babies who have microcephaly
h Modification parameter
bW ; bB Transmission probability per contact of adults and newly born babies
rW , rB Infectivity modification parameters in asymptomatic adults and newly born babies
sW ; sB Progression rate of exposed adults and newly born babies
gW ;gB Recovery rate of asymptomatic and symptomatic adults and newly born babies
mW ;mB Natural death rate of adults and newly born babies
pV Recruitment rate of mosquitoes
bV Transmission probability per contact of susceptible mosquitoes
bV Mosquito biting rate
sV Progression rate of exposed mosquitoes
mV Natural death rate of mosquitoes
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Figure 5.2 Flow diagram for our sexual transmission model 
 

 
(5.3) 

dIF

dt
¼ sFEF"ðgF þmFÞIF :

Finally, the population of recovered individuals is comprised of
individuals that have progressed through the infectious stage and
become refractory to further diseases. This population is then
decreased due to natural death at a rate mF. Thus, the equation for
the recovered population becomes:

dRF

dt
¼ gF IF"mFRF :

The equations for the male sub-population are similarly obtained;
additionally, however, we include male-to-male transmission
(Deckard et al., 2016). Although there are no reported cases of
female-to-male transmission, this possibility cannot be ruled out
and we assume the existence of this transmission route, though
possibly with a different transmission probability per encounter.

For the vector population, we assume that susceptible
mosquitoes are recruited at a rate (PV). This population is then
reduced by biting on infectious humans, and as a result of natural
death at a rate mV. This gives:

dSV

dt
¼PV"

bVbV ðIF þ IMÞSV

NH
"mV SV :

When a susceptible mosquito bites an infectious human, then with
probability of infection (bV), the mosquito move to the exposed
class (EV). The equation for this class is given by:

dEV

dt
¼ bVbV ðIF þ IMÞSV

NH
"ðsV þmV ÞEV

where we have again assumed a natural death rate of mV. Exposed
mosquitoes move to the infected class at the rate sV and are again
reduced by natural death. Thus, we have:

dIV

dt
¼ sV EV"mV IV :

Overall, our model for ZIKV, including both sexual and vector-
borne transmission, is given as:

dSF

dt
¼ PF"

bVbHIV SF

NH
"

CM1
bMIMSF

NF
"mFSF

dEF

dt
¼ bVbHIV SF

NH
þ

CM1
bMIMSF

NF
"ðsF þmFÞEF

dIF

dt
¼ sFEF"ðgF þmFÞIF

dRF

dt
¼ gF IF"mF RF

dSM

dt
¼ PM"

bVbHIV SM

NH
"CFbF IFSM

NM
"

CM2
bMIMSM

NM
"mMSM

dEM

dt
¼ bVbHIV SM

NH
þCFbF IFSM

NM
þ

CM2
bMIMSM

NM
"ðsM þmMÞEM

dIM

dt
¼ sMEM"ðgM þmMÞIM

dRM

dt
¼ gMIM"mMRM

dSV

dt
¼ PV"

bVbV ðIF þ IMÞSV

NH
"mV SV

dEV

dt
¼ bVbV ðIF þ IMÞSV

NH
"ðsV þmV ÞEV

dIV

dt
¼ sV EV"mV IV ; (2.5)

where PF = PH/2 and PM = PH/2. The flow diagram of the ZIKV
model (2.5) is depicted in Fig. 1 and the associated variables and
parameters are described in Table 1.

2.1. Basic properties

We shall now explore the basic dynamical features of model
(2.5). Since model (2.5) describes both human and mosquito
populations during the course of a Zika epidemic, it will only be
epidemiologically meaningful if all state variables are non-
negative for t & 0. That is, its solution with positive initial data
will remain positive for all time (t > 0).

Lemma 1. Let the initial data F(0) & 0, where F(t) = (SF, EF, IF, RF, SM,
EM, IM, RM, SV, EV, IV). Then the solutions F(t) of model (2.5) are non-
negative for all time t > 0. Furthermore

limsup
t!1

NHðtÞ ¼
PH

mH
; limsup

t!1
NV ðtÞ ¼

PV

mV
;

[(Fig._1)TD$FIG]

Fig. 1. Flow diagram of the Zika virus model (2.5) with sexual transmission route.

Table 1
Description of the state variables and parameters of the Zika virus model (2.5) with
sexual transmission route.

Description

Variable
SF(t), SM(t) Susceptible females and males
EF(t), EM(t) Exposed females and males
IF(t), IM(t) Infected females and males
RF(t), RM(t) Recovered females and males
SV(t) Susceptible mosquitoes
EV(t) Exposed mosquitoes
IV(t) Infected mosquitoes

Parameter
PH Recruitment rate of females and males
CF, CM1

Heterosexual contact rate between females and males
CM2

Homosexual contact rate between males
bH Transmission probability per contact of susceptible

humans with infected mosquitoes
sF, sM Progression rate of exposed females and males
gF, gM Recovery rate of females and males
mF, mM Natural death rate of females and males
pV Recruitment rate of mosquitoes
bF, bM Transmission probability per contact of females and males
bV Mosquito biting rate
bV Transmission probability per contact of susceptible

mosquitoes with infected humans
sV Progression rate of exposed mosquitoes
mV Natural death rate of mosquitoes
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dIF

dt
¼ sFEF"ðgF þmFÞIF :

Finally, the population of recovered individuals is comprised of
individuals that have progressed through the infectious stage and
become refractory to further diseases. This population is then
decreased due to natural death at a rate mF. Thus, the equation for
the recovered population becomes:

dRF

dt
¼ gF IF"mFRF :

The equations for the male sub-population are similarly obtained;
additionally, however, we include male-to-male transmission
(Deckard et al., 2016). Although there are no reported cases of
female-to-male transmission, this possibility cannot be ruled out
and we assume the existence of this transmission route, though
possibly with a different transmission probability per encounter.

For the vector population, we assume that susceptible
mosquitoes are recruited at a rate (PV). This population is then
reduced by biting on infectious humans, and as a result of natural
death at a rate mV. This gives:

dSV

dt
¼PV"

bVbV ðIF þ IMÞSV

NH
"mV SV :

When a susceptible mosquito bites an infectious human, then with
probability of infection (bV), the mosquito move to the exposed
class (EV). The equation for this class is given by:

dEV

dt
¼ bVbV ðIF þ IMÞSV

NH
"ðsV þmV ÞEV

where we have again assumed a natural death rate of mV. Exposed
mosquitoes move to the infected class at the rate sV and are again
reduced by natural death. Thus, we have:

dIV

dt
¼ sV EV"mV IV :

Overall, our model for ZIKV, including both sexual and vector-
borne transmission, is given as:
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where PF = PH/2 and PM = PH/2. The flow diagram of the ZIKV
model (2.5) is depicted in Fig. 1 and the associated variables and
parameters are described in Table 1.

2.1. Basic properties

We shall now explore the basic dynamical features of model
(2.5). Since model (2.5) describes both human and mosquito
populations during the course of a Zika epidemic, it will only be
epidemiologically meaningful if all state variables are non-
negative for t & 0. That is, its solution with positive initial data
will remain positive for all time (t > 0).

Lemma 1. Let the initial data F(0) & 0, where F(t) = (SF, EF, IF, RF, SM,
EM, IM, RM, SV, EV, IV). Then the solutions F(t) of model (2.5) are non-
negative for all time t > 0. Furthermore

limsup
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; limsup
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PV

mV
;
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Fig. 1. Flow diagram of the Zika virus model (2.5) with sexual transmission route.

Table 1
Description of the state variables and parameters of the Zika virus model (2.5) with
sexual transmission route.

Description

Variable
SF(t), SM(t) Susceptible females and males
EF(t), EM(t) Exposed females and males
IF(t), IM(t) Infected females and males
RF(t), RM(t) Recovered females and males
SV(t) Susceptible mosquitoes
EV(t) Exposed mosquitoes
IV(t) Infected mosquitoes

Parameter
PH Recruitment rate of females and males
CF, CM1

Heterosexual contact rate between females and males
CM2

Homosexual contact rate between males
bH Transmission probability per contact of susceptible

humans with infected mosquitoes
sF, sM Progression rate of exposed females and males
gF, gM Recovery rate of females and males
mF, mM Natural death rate of females and males
pV Recruitment rate of mosquitoes
bF, bM Transmission probability per contact of females and males
bV Mosquito biting rate
bV Transmission probability per contact of susceptible

mosquitoes with infected humans
sV Progression rate of exposed mosquitoes
mV Natural death rate of mosquitoes
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Model Analysis 
 

Figure 5.3 shows the predicted number of women who will experience a ZIKV infection 
during pregnancy as a function of the number of years since ZIKV arrival in a region based on 
the dynamics in Eq. (5.1).  Similar dynamics are observed for all but the most conservative 
estimates of ZIKV transmission, suggesting that one third to one half of women who are or 
become pregnant during the first year of a ZIKV outbreak will experience a ZIKV infection at 
some point during their pregnancy.  These results immediately explain the dramatic increase in 
microcephaly rates in Brazil.  Indeed, even if ZIKV crosses the placenta in only a small fraction 
of infections, or only affects the fetus during the early stages of pregnancy, there will still be a 
sizeable fraction of babies born with ZIKV complications.  

Figure 4 shows yearly prenatal exposures to ZIKV that would be expected in regions 
where the virus has been endemic for many years (i.e., equilibrium exposure rates).  Compared 
to the 30-40% of pregnant women infected during the first year of a ZIKV epidemic (see Figure 
5.3), predicted yearly exposures in regions where the disease is endemic are dramatically lower, 
typically below 5 infections per 1000 births.  This is slightly higher than the approximately 0.1 
cases of microcephaly per 1000 live birth reported in most countries without ZIKV transmission 
(28).  However, 5 cases per 1000 births is our highest estimate, and further assumes that all 
infected pregnancies suffer microcephaly complications.  If ZIKV crosses the placenta in only a 
fraction of these cases, or only affects the baby during certain stages of pregnancy, rates would 
be much lower.  Thus, based on our model predictions, it seems highly likely that ZIKV related 
microcephaly could easily go undetected in systems with endemic ZIKV – even assuming high 
surveillance rates.  Together, Figures 3 and 4 explain why the relationship between ZIKV and 
microcephaly was only detected once ZIKV emerged in new regions where it had not occurred 
previously. 
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individuals that have progressed through the infectious stage and
become refractory to further diseases. This population is then
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(Deckard et al., 2016). Although there are no reported cases of
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where PF = PH/2 and PM = PH/2. The flow diagram of the ZIKV
model (2.5) is depicted in Fig. 1 and the associated variables and
parameters are described in Table 1.

2.1. Basic properties

We shall now explore the basic dynamical features of model
(2.5). Since model (2.5) describes both human and mosquito
populations during the course of a Zika epidemic, it will only be
epidemiologically meaningful if all state variables are non-
negative for t & 0. That is, its solution with positive initial data
will remain positive for all time (t > 0).

Lemma 1. Let the initial data F(0) & 0, where F(t) = (SF, EF, IF, RF, SM,
EM, IM, RM, SV, EV, IV). Then the solutions F(t) of model (2.5) are non-
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Fig. 1. Flow diagram of the Zika virus model (2.5) with sexual transmission route.

Table 1
Description of the state variables and parameters of the Zika virus model (2.5) with
sexual transmission route.

Description

Variable
SF(t), SM(t) Susceptible females and males
EF(t), EM(t) Exposed females and males
IF(t), IM(t) Infected females and males
RF(t), RM(t) Recovered females and males
SV(t) Susceptible mosquitoes
EV(t) Exposed mosquitoes
IV(t) Infected mosquitoes

Parameter
PH Recruitment rate of females and males
CF, CM1

Heterosexual contact rate between females and males
CM2

Homosexual contact rate between males
bH Transmission probability per contact of susceptible

humans with infected mosquitoes
sF, sM Progression rate of exposed females and males
gF, gM Recovery rate of females and males
mF, mM Natural death rate of females and males
pV Recruitment rate of mosquitoes
bF, bM Transmission probability per contact of females and males
bV Mosquito biting rate
bV Transmission probability per contact of susceptible

mosquitoes with infected humans
sV Progression rate of exposed mosquitoes
mV Natural death rate of mosquitoes
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Figure 5.3 Predicted ZIKV dynamics, showing the number of women who experience a 
ZIKV infection during pregnancy as a function of the number of years since ZIKV arrival in the 
country or region. The inset shows the total number of ZIKV cases during the first year of the 
epidemic. 
 

 
Figure 5.4  Number of women who experience an active ZIKV infection at any point during 
pregnancy (solid lines) and percentage of children (below reproductive age) that have acquired 
ZIKV immunity (dotted lines) as a function of (A) mosquito biting rates, (B) mosquito 
recruitment rates, and (C) mosquito life expectancy in a region with endemic disease (i.e., a 
system at equilibrium).  Results are shown for high (black), intermediate (dark grey), and low 
(light grey) ZIKV transmission scenarios.  Curves cross the x-axis at the threshold for disease 
persistence (!! = 1).  The black arrows show the average values of the parameters under 
consideration, and thus can be thought of as starting points for control.    
 



 

  84 

 Figure 5.5 shows PRCC analysis of the ZIKV model with vertical transmission.  Notably, 
vertical transmission does not have a huge effect on the ability of ZIKV to spread.  However, this 
does not negate the importance of vertical transmission in driving microcephaly rates across 
infants born during a ZIKV outbreak. 

 
Figure 5.5  PRCC values for the Zika model (5.2), using as response functions the basic 
reproduction number R0.  
 
Using our ZIKV model with vertical transmission, we thus considered a variety of control 
schemes.  Figure 5.6 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases 
of microcephaly for three different levels of mosquito control. 
 
 

 
 
 
Figure 5.6  Simulation of the 
Zika model (5.2) for various 
control levels of the mosquito 
reduction control strategy. (a). 
The cumulative number of 
new Zika cases in adults. (b). 
The cumulative number of 
new Zika cases in newly born 
babies. (c). The cumulative 
number of new cases of newly 
born babies with 
microcephaly.  
 
 
 
 

distributed. Then a total of 1000 simulations of the models per LHS runwere carried out, using the ranges and baseline values
tabulated in Table 3 (with the basic reproduction number, ℛ0, as the response function). From Fig. 4 it follows that the pa-
rameters that have themost influence on Zika transmission dynamics are the death rate of the mosquitoes ðmV Þ, the mosquito
biting rate ðbV Þ, mosquito recruitment rate ðpV Þ, the transmission probability per contact to mosquitoes ðbV Þ and to adult
humans ðbW Þ, and the adult recovery rate ðgW Þ. Identification of these key parameters is important to the formulation of
effective control strategies for combating the spread of disease. In particular, the results of this sensitivity analysis suggest that
a strategy that reduces the transmission probability per contact to mosquitoes or to adult humans (i.e., reduces bV or bW
respectively), will adequately reduce the spread of ZIKV in the community. Furthermore, a strategy that reduces the mosquito

Fig. 3. Simulations of the Zika model (2.1) with different values of rB ¼ rW ¼ 0;0:25;0:5; 0:75; 1:0 (a). Cumulative number of new cases generated by infectious
mosquitoes transmitting to susceptible humans. (b). Cumulative number of new cases generated by infectious humans transmitting to susceptible mosquitoes.
Parameter values used are as given in Table 3.

Table 2
Contribution of the asymptomatic and infectious individuals to the mosquitoes' cumulative infections with various values of rB and rW .

rW ; rB 0.25 0.50 0.75 1.0

Asymptomatic 20:5% 34:1% 43:7% 50:9%
Infectious 79:5% 65:9% 56:3% 49:1%

Fig. 4. PRCC values for the Zika model (2.1), using as response functions the reproduction number ℛ0. Parameter values (baseline) and ranges used are given in
Table 3.

F.B. Agusto et al. / Infectious Disease Modelling 2 (2017) 244e267 251

2. Moderate-effectiveness personal-protection strategy: bV ¼ 0:250=day;
3. High-effectiveness personal-protection strategy: bV ¼ 0:125=day.

Fig. 6 shows the cumulative number of new infections in adults, new infections in newly born babies and newly born
babies with microcephaly for each of the three protection levels. The high effectiveness personal-protection strategy lead to a
considerable reduction in the number of new cases compared to the moderate-effectiveness level (see Table 5) at the same
time period. The low-effectiveness level performed the poorest producing the most number of new cases.

6.3. Combined mosquito control and personal protection strategy

The combined strategy (where both the mosquito reduction and personal protection strategies are implemented simul-
taneously) was assessed for the following three control levels:

1. Low-control strategy: pV ¼ 500=day;mV ¼ 1
21=day; bV ¼ 0:5=day;

2. Moderate-control strategy: pV ¼ 250=day; mV ¼ 1
14=day; bV ¼ 0:25=day;

3. High-control strategy: pV ¼ 125=day;mV ¼ 1
8=day; bV ¼ 0:125=day.

Fig. 7 shows the cumulative number of new infections in adults, new infections in newly born babies, and babies with
microcephaly for each control strategy. A comparison of the three control levels in Table 6 shows that higher levels of
combined control are more effective for preventing new ZIKV cases.

Fig. 5. Simulation of the Zika model (2.1) for various control levels of the mosquito reduction control strategy. (a). The cumulative number of new Zika cases in
adults. (b). The cumulative number of new Zika cases in newly born babies. (c). The cumulative number of new cases of newly born babies with microcephaly.
Parameter values used are as given in Table 3.
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Figure 5.7 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases of 
microcephaly for three different levels of personal protection use. 
 

 
 
 

 
Figure 5.7  Simulation of 
the Zika model (5.2) for 
various levels of personal 
protection use. (a). The 
cumulative number of 
new Zika cases in adults. 
(b). The cumulative 
number of new Zika cases 
in newly born babies. (c). 
The cumulative number 
of new cases of newly 
born babies with 
microcephaly.  
 
 
 

 
Figure 5.8 shows the number of adult ZIKV cases, infant ZIKV cases and infant cases of 
microcephaly for three different levels of delayed pregnancy. 
 
 

 
 
 
Figure 5.8  Simulation of 
the Zika model (5.2) for 
various levels of delayed 
pregnancy. (a). The 
cumulative number of new 
Zika cases in adults. (b). The 
cumulative number of new 
Zika cases in newly born 
babies. (c). The cumulative 
number of new cases of 
newly born babies with 
microcephaly.  
 

  
 

A comparison across control strategies (larviciding, adulticiding, mosquito-reduction, personal-protection, and the
combined strategy) in each group (see Table 7) shows, as expected, that the combined strategy is more effective than the
other strategies implemented separately. Indeed, combining strategies results in anywhere from a 43% reduction to a 94%
reduction as compared to single control strategies. With respect to single control strategies, personal protection is more
effective than mosquito-reduction for reducing ZIKV and also for preventing microcephaly in newborns.

6.4. Delayed pregnancy

In light of the warnings issued by the Brazilian, Colombian, El Salvadorian, and Jamaican governments for reproductive
women to delay conceiving (Ahmed, 2016; Darlington, 2016), we explore the impact that this will have on ZIKV transmission
and the number of babies born with microcephaly. To consider delayed pregnancy, we adjusted the human birth rate pB. As
above, we consider three levels of delayed pregnancy:

Table 4
Simulation results of the Zika model (2.1) using the mosquito reduction control strategy.

Humans Low-Control Moderate-Control High-Control

Adults 2:1! 106 5:8! 105 1:2! 105

Newly born babies 7:7! 105 1:4! 105 2:8! 104

Newly born with microcephaly 10:0! 103 3:9! 103 2:0! 103

Fig. 6. Simulation of the Zika model (2.1) for various control levels of the personal-protection strategy. (a). The cumulative number of new Zika cases in adults.
(b). The cumulative number of new Zika cases in newly born babies. (c). The cumulative number of new cases of newly born babies with microcephaly. Parameter
values used are as given in Table 3.

F.B. Agusto et al. / Infectious Disease Modelling 2 (2017) 244e267254

the strongest impact on model outcome (i.e., the basic reproduction number). These are the mosquito biting rate, the
transmission probability per contact to mosquitoes and to human adults, the mosquito recruitment rate, and the mosquito
death rate. Identification of these key parameters is vital to the formulation of effective ZIKV control strategies.

Basedonour analysis,weconsider various control strategies aimedat reducingmosquitobiting rates,mosquito recruitment
rates, andmosquito death rates to examine if these strategies will be effective in curtailing ZIKV spread in the community. We
lack methods for reducing viral transmission probabilities; however, these would also be effective targets for control if

Table 9
Simulation results of the cumulative number of newcases for the Zikamodel (2.1) using various rates of delaying conception, combinedmosquito control and
personal protection strategies.

Humans None-delayed & Low-Control Some-delayed & Moderate-Control Many-delayed & High-Control

Adults 2:1! 106 1:2! 105 2:2! 104

Newly born babies 7:7! 105 2:6! 104 4:8! 103

Newly born with microcephaly 10:0! 103 1:0! 103 78.2

Table 10
Comparison of the combined control strategies (involving mosquito reduction and personal protection), and delayed pregnancy for the Zika model (2.1).

Humans Combined Control Delayed Pregnancy Delayed Pregnancy þ Combined Control

Adults 2:2! 104 2:1! 106 2:2! 104

Newly born babies 4:9! 103 7:8! 105 4:8! 103

Newly born with microcephaly 1:6! 103 500 78.2

Fig. 9. Simulation of the Zika model (2.1) showing the cumulative number of new cases in newly born babies with microcephaly for various levels of delayed
pregnancy. Parameter values used are as given in Table 3.

F.B. Agusto et al. / Infectious Disease Modelling 2 (2017) 244e267 257
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Recognizing that delayed pregnancy is not always an option, this appears to be one of the best 
mechanisms for preventing ZIKV associated microcephaly during an outbreak.  This result is 
consistent with our previous findings regarding microcephaly rates during the initial outbreak 
versus subsequent outbreaks in a country where ZIKV has become endemic. 
 Using our ZIKV model with sexual transmission, we explore the role of risky sexual 
behavior on ZIKV transmission and prevalence in male and female populations.  Figure 5.9 
shows how ZIKV is more prevalent in the female population versus the male population when 
heterosexual men have multiple female partners while homosexual males are monogamous.  The 
reverse, however, is true when heterosexual men are more likely to be monogamous versus 
homosexual men. 

 
Figure 5.9  Simulation of the Zika model (5.3) as a function of time with different sexual contact 
rates. (a) Setting the sexual contact rate CF=0, CM1=50, CM2=2. (b) Setting the sexual contact rate 
CF=0, CM1=2, CM2=80.  
 
Summary and Conclusions 
 
By exploring Zika using three different models, we found an explanation for observed increases 
in microcephaly in regions where ZIKV has recently been introduced.  We also identified 
strategies for combatting ZIKV microcephaly, and characterized the degree to which sexual 
behavior might impact the dynamics of ZIKV spread. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

homosexual males maintain a monogamous relationship; we
observed in Fig. 8(a) that this risky behavior leads to more
infected females than males with 2.37% difference between
females and males, see also Table 4. When the men maintain a
monogamous relationship with females in the population but

have multiple sexual partners as homosexual males, we observed
that this risky behavior leads to more infected males compared to
females; this resulted in about 3.04% difference between the
sexes (see Table 4).

We further explore the scenario with no male-to-female
transmission and compare this with the transmission in the
absence of mosquitoes. We observed in Table 5 more infection in
both female and male populations when there are no male-to-
female transmission and compare to the transmission in the
absence of mosquitoes. This result points to the importance of the
sexual route transmission.

5. Discussion and conclusion

In this paper, we develop a new deterministic model to study
the transmission dynamics of Zika virus. Our model incorporates
both vector-borne and sexual transmission routes. Additionally, it
considers both heterosexual and homosexual transmission. Sexual
transmission of Zika is interesting for several reasons. First, Zika is
the only known arbovirus to exhibit a sexual mode of spread in the
human population. Second, unlike most purely venereal diseases,
Zika virus appears to exhibit unidirectional transmission. In
particular, Zika appears to transmit from males to females, and
from males to males, but not from females to males. Although data

[(Fig._7)TD$FIG]

Fig. 7. Simulation of the Zika model (2.5) as a function of time with different sexual contact rates. Parameter values used are as given in Table 3. (a) Setting the sexual contact
rate CF ¼ CM1

¼ CM2
¼ 2. (b) Setting the sexual contact rate CF = 0, CM1

¼ CM2
¼ 2.

[(Fig._8)TD$FIG]

Fig. 8. Simulation of the Zika model (2.5) as a function of time with different sexual contact rates. Parameter values used are as given in Table 3. (a) Setting the sexual contact
rate CF = 0, CM1

¼ 50, CM2
¼ 2. (b) Setting the sexual contact rate CF = 0, CM1

¼ 2, CM2
¼ 80.

Table 4
Simulation results of the Zika model (2.5) for the cumulative number of infected
cases over the simulation period from 0 to 500 days with different sexual contact
rates. Parameter values used are as given in Table 3.

Sexual contact rates Females Males

CF ¼ CM1
¼ CM2

¼ 2 4.894213"106 4.912264"106

CF = 0, CM1
¼ CM2

¼ 2 4.894010"106 4.894010"106

CF = 0, CM1
¼ 50, CM2

¼ 2 5.134227"106 4.895659"106

CF = 0, CM1
¼ 2, CM2

¼ 80 4.897354"106 5.204081"106

Table 5
Simulation results of the Zika model (2.5) for the total number of infected cases with
no sexual contact rate and in the absences of mosquitoes. Parameter values used are
as given in Table 3.

Females Males

Sexual-only transmission 4.874287"106 4.874287"106

Mosquitoes-only transmission 8.253976"104 1.137854"105

F.B. Agusto et al. / Ecological Complexity 29 (2017) 61–8172
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PART 6: PHENOLOGY MODELS 
 
Background 
 

Phenology – the seasonal timing of plant and animal life-cycles – governs temporal 
interactions of species across ecosystems.  As such, it is an important driver of ecological 
processes.  With respect to pathogen exposure pathways, phenology can affect whether or not a 
particular disease persists, the severity of disease spread and the timing of disease appearance in 
susceptible populations.  These factors, in turn, inform management decisions regarding the best 
intervention strategies and when these should occur to optimally reduce disease risk. 
Unfortunately, species phenologies are shifting as a result of climate change.  Furthermore, shifts 
in phenology, both across life-stages and among species, are occurring at different rates, altering 
intra- and interspecific interactions.  Because these interactions are critical to disease 
transmission, disease dynamics may be particularly sensitive to phenology change.  Although 
there is a long history of vector-borne disease models in epidemiology, few account for species 
phenology, and even fewer do so in the context of complex, multi-species interaction networks. 

Several modeling papers have considered seasonality or phenology.  Ding (11) used a 
hybrid model with discrete ‘summer’ and ‘winter’ seasons to study the temporal dynamics of 
ticks, mice and Lyme disease and the optimal timing of acaracide application for disease 
management.  Although two discrete seasons can only capture phenology in the broadest sense, 
Ding’s work was a first step towards integrating multi-species interaction networks and 
management strategies in a seasonal environment.  In a more recent study, Thomas, et al. (12) 
applied a similar, two season model to understand the impact of insecticide use to control WNV.  
Their model included a temperature dependent delay-differential equation, and predicted that 
spraying in the fall would be more effective than spraying in warmer months.  Again, however, 
the model did not include explicit phenology.   

Even fewer modeling papers have considered the role of seasonality on the basic 
reproduction number R0 – a quantity that is often the focus of epidemiological models.  In 
particular extension of R0 to seasonal systems is relatively recently, having only been developed 
within the past few years. Thus, while R0 has been studied for systems with periodic vector 
populations, the broader influences of phenology on persistence of vector-borne diseases remain 
poorly known.  A better understanding of the fundamental relationships between model 
parameters, phenology and disease persistence could provide valuable insight into disease 
ecology.  This is particularly true for rare diseases that have not been extensively studied, but is 
also true for more common diseases that are strongly affected by seasonality and therefore may 
not be fully described by existing qualitative models that do not consider phenology. 

 
Model Development 
 
To explore the effect of seasonality in multi-species host and vector populations on the basic 
reproduction number, R0, we model a disease whose dynamics are described using a prototypical 
SI, SIR, or SIRS-type compartmental ordinary differential equation (ODE) model, where Iiv(t) 
and Siv(t), denote the infectious and susceptible population densities of the ith vector species, 
respectively, and likewise for Iih(t) and Sih(t) are the ith host species. Recovered classes, if 
present, will be irrelevant in our mathematical analysis. The time evolution of the infectious 
compartments are given by the following ODE’s:  
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(6.1) 

In Eq. (6.1), βv
ij denotes the probability of transmission from host type j to vector type i, and βh

ij 
denotes the probability of transmission from vector type j to host type i. The terms α(t)v

i and 
α(t)h

i denote the rates at which infectious vectors and hosts exit the infectious classes. These rates 
are expected to vary seasonally in conjunction with the host and vector populations. Specifically, 
when population are “in-season” (meaning a times of large population density), infectious 
individuals experience favorable environmental conditions and remain in the area for the 
duration of the infection, so the corresponding exit rates are expected to be given by the natural 
recovery rates (or the natural death rates when recovery times are much larger than the average 
lifespans). When populations are “out-of-season” (meaning a times of negligible population 
density), individuals quickly exit the area due to either migration or rapid death caused by 
unfavorable environmental conditions, so the corresponding exit rates are expected to be much 
larger than the in-season values.  
 To enable calculation of multi-species seasonal R0 values, we assume simple pulsed 
population models where population values are a fixed non-zero constant when in-season, and 
are zero when out of season. Specifically:  

      (6.2) 
In Eq. (6.2), T is the length of the year, τiv is the length of the on-season for vector species i, ziv is 
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Here, the notation “DFE” under the equals sign indicates disease free equilibrium dynamics. Equations (4)

and (5) are the dynamical systems studied in this paper.
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The primary goal of this paper is to determine how and to what extent exit rate values and in-season lengths

yield peaks in yearly outbreak potential as a function of the relative timings of in-seasons, as measured by

the periodic basic reproduction number.
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The host species are assumed to recover from infection over time scales much shorter than their 
average lifetimes, so the in-season exit rates are taken to be natural recovery rates, denoted by rih 
for host species i. The out-of-season exit rate is denoted γih for host species i, where γih ≥ rih, 
and we thus have  

       (6.4) 
 
Model Analysis 
 
From the model defined in Eqs. (6.1-6.4), it is possible to explore the effect of seasonality on the 
basic reproduction R0 in multispecies seasonal models.  Figure 6.1 shows the predicted value of 
R0 as a function of the relative timing of host phenology to vector phenology for a disease system 
involving a single vector and a single host for a range of different host and vector exit rates.  
Importantly, we find that a slight offset results in a larger R0, which is counterintuitive.  Indeed, 
one would inherently expect that perfectly aligned phenologies would be most conducive to 
disease spread. 
 

 
 
Figure 6.1 Calculated values of R0 as a function of the phenology difference between host 
and vector species 
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Figure 6.2 extends Figure 6.1 by considering a system with 2 hosts and a single vector. Again, 
the slight mismatch in phenology between host and vector species at the maximum value of R0 is 
apparent in this somewhat more complex system. 
 
 

 
 
Figure 6.2  Calculated values of R0 as a function of the phenology difference between two hosts 
and vector species 
 
 
Figure 6.3 extends Figure 6.1 by considering a system with a single host and 2 vectors. As in 
Figures 6.1 and 6.2, the mismatch in phenology between host and vector species at the maximum 
value of R0 is apparent in this system as well. 
 

 
 
Figure 6.3 Calculated values of R0 as a function of the phenology difference between a host and 
two vector species 
 
In addition to an R0 analysis, we used numerical simulations to explore the dynamics of a 
similarly pulsed phenological model with a single host and vector species.  This model is shown 
in Figure 6.4, along with results for infected hosts as a function of phenological mismatch.  
Interestingly, we found clear evidence of a bifurcation as a function of the mismatch in timing 
between host and vector seasonal timing.  In particular, changes in this mismatch can drive 
disease from an endemic equilibrium to year-to-year oscillations in disease severity and even 
into a chaotic regime, where there is no way to predict the level of disease from one year to the 
next.  This finding of changes in qualitative dynamics of a simple SIR type model based on the 
seasonality of the host relative to the vector suggests that climate change may have a negative 
and unpredictable effect on disease dynamics. 

Periodic R 0 values: Two host one vector

1 / gamma h = 1 day
1 / gamma v = 1 day

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

H
os

t t
w

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

h 2 (d
ay

s)

0

0.05

0.1

0.15

0.2

0.25

Periodic R 0 values: Two host one vector

1 / gamma h = 7 days
1 / gamma v = 7 days

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

H
os

t t
w

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

h 2 (d
ay

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Periodic R 0 values: Two host one vector

1 / gamma h = 12 days
1 / gamma v = 14 days

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

H
os

t t
w

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

h 2 (d
ay

s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Periodic R 0 values: One host two vectors

1 / gamma h = 1 days
1 / gamma v = 1 days

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

Ve
ct

or
 tw

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

v 2 (d
ay

s)

0

0.05

0.1

0.15

0.2

0.25

0.3

Periodic R 0 values: One host two vectors

1 / gamma h = 7 days
1 / gamma v = 7 days

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

Ve
ct

or
 tw

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

v 2 (d
ay

s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Periodic R 0 values: One host two vectors

1 / gamma h = 12 days
1 / gamma v = 14 days

0  30 60 90 120 150 180 210 240 270 300 330 360

Host one season timing offset z h
1 (days)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

Ve
ct

or
 tw

o 
se

as
on

 ti
m

in
g 

of
fs

et
 z

v 2 (d
ay

s)

0

0.5

1

1.5

2

2.5



 

  91 

 

 
 
Figure 6.4 Simple single vector single host model to explore the role of phenology on 
disease dynamics. 

 
 
 
Figure 6.5 Orbit plots showing the average percent of hosts infected as a function of 
phenology mismatch between the host and vector populations. 
 
The above models are simple and generic, aiming to capture the effect of phenology without 
becoming mired in the details of any specific system.  However, we also explored more specific 
models carefully parameterized to capture the temperature dependent life-histories of three 
different genera of mosquito – Aedes, Culex and Culiseta.  These three genera are responsible for 
the majority of disease spread of North American mosquito-borne disease systems, for example 
La Crosse Encephalitis, West Nile Virus and Eastern Equine Encephalitis respectively.  For these 
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species, we used data on larval development rates over five instars, along with estimates of adult 
mortality as a function of temperature, and fecundity as a function of temperature to predict 
changes in mosquito population dynamics throughout a season and also in the context of overall 
global warming.  Next, we interfaced these models to a genetic algorithm in order to predict the 
optimal timing for larvicide and adulticide application to maximally reduce the mosquito 
population while minimizing costs.  Figure 6.6 shows an example output for Aedes aegypti 
assuming mean seasonal temperatures in New Orleans under current conditions.  Figure 6.7 
shows the same output, but under the assumption of a season-wide increase in average 
temperature of 3oC due to global warming. 
 

 
Figure 6.6  Mosquito larval and adult population abundances as a function over a season, but in 
an unmanaged system (black) and under management (red) applying both larvicide and 
adulticide.  Total larvicide and adulticide costs for management were $4967 and $5078 
respectively, with effort focused throughout the spring, summer and fall, particularly for 
larvicide. 
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Figure 6.6 Mosquito larval and adult population abundances as a function over a season, but 
in an unmanaged system (black) and under management (red) applying both larvicide and 
adulticide.  Total larvicide and adulticide costs for management were $9934 and $1693 
respectively, with effort focused more in the spring and fall. 
 
Similar figures can be made for different locations, based on NOAA data on mean seasonal 
temperatures, altered according to various climate change scenarios.  Likewise, we can examine 
each of the different mosquito species for which we have fully parameterized models. 
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PART 7: GUI 
 
As a final step towards bringing our work to its target audience, we developed a GUI that allows 
vector management practitioners to input information on population abundances throughout the 
year, and then use this information to predict the optimal timing of larvicide and adulticide 
treatments based on the phenology of the vectors.  Briefly, the GUI works by fitting a curve to 
the inputted seasonal data, and then using this to parameterize an underlying vector dynamics 
model.  Figure 7.1 shows the basic user interface linking management personnel to the 
admittedly complex mathematical models that we developed as part of the current grant. 
 

 
 
Figure 7.1  GUI interface aimed at aiding vector management practitioners in selecting the 
optimal timing of larvicide and adulticide treatments to best balance vector reduction and 
management costs. 
 
Figure 7.2 shows a sample output of the fitted input data, that is then used to predict optimal 
timing of management strategies based on historical phenology data.  Figure 7.3 shows the 
controlled versus uncontrolled population of mosquitoes predicted based on a particular set of 
management criteria (estimated mosquito lifespan, allowable costs, etc.) 
 



 

  95 

 
 
 
Figure 7.2  Sample fitted curves from the GUI  
 
 

 
Figure 7.3 Sample output illustrating the degree of vector reduction achievable by optimally 
distributing management actions based on historical phenology data. 
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CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH  
 

Through a series of models, we have successfully improved the mechanistic detail 
incorporated into control models, and clarified when simplifying assumptions are valid and 
when they are not.  We have additionally explored several interesting features of the 
management landscape, including variation in accessibility to habitat patches for the purposes 
of control.  Using some of the insight gained from these models, we have developed new 
models for specific diseases, as well as specific vectors (Culex, Aedes and Culiseta) 
responsible for the majority of native North American vector-borne diseases.  These models 
allow us to understand how changing conditions due to global change might impact 
everything from vector biology through to disease spread and disease dynamics.  Finally, we 
have incorporated many of our findings into a GUI that is aimed at direct application by 
mosquito management practitioners based on relevant data collected on a regular basis (e.g. 
adult counts in CDC light traps).  This transitions our findings to the relevant audience, where 
they can be broadly applied to improve management of vector-borne diseases. 

       In the future, we would like to extend our models to some of the more specific 
diseases that we had initially anticipated modeling.  We believe that this is still a highly valid 
and important endeavor, and that our recent findings will improve our ability to tackle this 
goal, ultimately increasing the accuracy and resolution with which we will be able to predict 
vector-borne disease dynamics and vector-borne disease control, both now and in the future.  
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PART 2: 

 

 
 

tegers j and j0 satisfying jmµ + j0m
⇤

= n � mµk. The expression on the last line follows1166

from Eq. (110), and the expression on the second line follows from the fact that all solu-1167

tion pairs k, k0 to the linear Diophantine equation mµk + k0 = n can be written as1168

k = ↵ (113)

k0 = n�mµ↵,

for some integer ↵ (Anderson and Bell, 1997). The n = 0 mode of Eq. (112) gives the1169

expression for X
0

in Eq. (39).1170
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