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Project Team
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» Fire-fighting foams
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» Fire-fighting foams
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= Environmental science
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= Surface / colloid chemistry
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= Surface / colloid chemistry
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Prof. Jennifer Field
» Analytical chemistry

Prof. Bill Stubblefield
= Environmental toxicology
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Background

e SON Number: WPSON-17-01, project started 2017

o AFFF foams are used by the military and civil aviation
to extinguish liquid fuel fires

e AFFF contain fluorocarbons
¢ Long chain >C6 are persistent, bioaccumulative, toxic
¢ Short chain C6 are persistent, toxicity under investigation

e Fire fighting foams that meet MIL-F fire performance
but without fluorine would maintain safety but reduce
environmental impact

e Current commercialized fluorine-free foams can meet
some standards (ICAO B, C) but not MIL-F



Technical Objectives

Develop a fluorine-free fire-fighting foam that meets the
performance standards in MIL-F 24385F

Increased understanding of the physical chemistry
involved in fire-fighting foams

Complete a life cycle assessment of foam manufacture
and use, and compare environmental impacts of fluorine
and fluorine-free foams
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Technical Approach — Understand the science

o« Development of new F-free foam
¢ Physical chemistry of foam components
¢ Foam properties
¢ Fire performance

e Labtests m===) small scale fire tests===) large fire tests

o Life cycle assessment

¢ Life cycle inventory analysis
» What happens when AFFF foam is applied to a fire?

¢ Impact Assessment
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Technical Approach — Foam development

Surfactant \

Surfactant
+ solvents

Lead Statistical . .

Start with simple systems to correlate formulation with physical chemistry
and foam properties
Systematically increase the complexity
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Technical approach LCA —product flow
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Primary surfactants

o Must rapidly lower surface tension
¢ Requires high critical micelle concentration
¢ Dynamic and equilibrium surface tension measurements
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¢ Mixture of anionic + amphoteric gives best results
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Primary surfactants

o Stable to fuel destruction
¢ Close packing of surfactant molecules at interface
¢ Similar chain lengths give an ordered surface layer
¢ Microscopy demonstrates bubble stability

¢ Two candidate surfactant packages identified
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Effect of solvent

o Fire-fighting foams usually contain glycol ether type
solvents, known as foam boosters
¢ Purpose is to increase solubility of the fluorocarbons

e Do fluorine-free foams need solvent?

¢ In fresh water, hydrocarbon surfactants have good solubility,
high cmc

¢ Solvent increases fuel emulsification on application
¢ Solvent does more harm than good

¢ But in sea water surfactants get “salted out”
¢ Solvent helps with solubilising and increases cmc

10



Secondary surfactant

e Adsorbs more slowly than primary surfactant
¢ Not greatly involved in initial foam generation

e Makes foam stiffer/ more fuel resistant

¢ Fatty acids / alcohols
= Low solubility
¢ Polypeptide
= High MW
= Denature on adsorption

o Measure foam stability on hot fuel
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Polymer

e Polymers in the foam structure can:
¢ Affect rheology, giving a stiffer foam with a greater yield stress
¢ Increase foam drainage time
= Foam is longer lasting

o Improve fuel stability

e BUT polymers can also
¢ Make the foam concentrate too viscous to proportion
¢ Increase foam viscosity and slow down spreading

= DOE

12
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Yield stress of foams
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The yield stress is where the foam properties change from elastic to viscous
and the foam starts to flow

13
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Summary of foam components

Primary Generate foam, Adsorbs rapidly at Hydrocarbon <1 second
surfactant(s) resist fuel new air/water surfactants with high
interface water solubility
Secondary Stiffen and Slower adsorption  Hydrocarbon 1-10
surfactant stabilise foam surfactants with high seconds
water solubility
Polymeric
surfactants
Solvent Foam booster Solubilises Glycol ether <10
surfactants seconds
Polymer Solidifies foam  Increased Polysaccharide >10
viscosity Poly(ethylene)imine  seconds

Cross-link bubbles

Components act over different timescales to change foam properties
|deal foam is initially very fluid, then thickens
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Lead formulations

e Two lead formulations have been developed

e Formulation pathway 1
¢ Aimed at rapid control and extinguishment in fresh water
¢ Anionic / amphoteric surfactant blend
¢ Fatty acid
¢ Polymer

e Formulation pathway 2
¢ Aimed at good performance in sea water
¢ Amphoteric surfactant blend — no anionics
¢ Polypeptide
¢ Cationic polymer
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Formulation pathway 1 — fresh water

o Amphoteric / anionic surfactant blend
¢ Generates foam

e Long chain fatty acid

¢ Increases foam yield stress

e Polysaccharide
¢ Thickens foam solution
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Fire performance — heptane / fresh water

Extinguishment 43" Burnback > 360"

28ft2 fire test on heptane in fresh water, formulation 1.
MIL-F 24385G proposal requires 35” extinguishment and >360” burnback 17
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Formulation pathway 2 — sea water

o Amphoteric surfactant
¢ Generates foam
e Polypeptide
¢ Stabilises interface
o Cationic polymer
¢ Cross-links and gives structure

Bubble
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Fire performance — gasoline / sea water

90% control 29” 99% control 43”

Extinguishment 75" Burnback 286"

28ft2 fire test on gasoline in sea water, formulation 2.
19
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Requirements of a MIL-F fire fighting foam

e Rapid control and extinguishment (0 — 307)

¢ Spreading over fuel
» Dynamic and equilibrium surface tensions
= Expansion ratio
= Rheology Fire ‘
¢ Stability to fuel ‘

Fuel
= Resistance to fuel destruction
= Bubble size distribution
e Long burnback (60 — 4207) -
oam

¢ Resistance to vapour permeation blanket\_
= Drainage time ‘
= Microscopy
= Rheology

20
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Fire performance

e In fresh water

o Rapid control of fire on both heptane and gasoline fuels
¢ 90 and 99% control within 30 seconds

e Extinguishment around 43 — 50”

e Very good burnback

¢ For protection of life and assets, this is equivalent to the current
MIL-F specification

e In sea water

e Foam is poorer quality
¢ 90% control is rapid
¢ 99% control and extinguishment are slower

e Burnback not yet at 360"

OE

21
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Final Formulation

e Design of Experiments (DoE) will used to optimise the two
formulations

e Previous experience suggests this will give an
iImprovement in extinguishment and burnback times

22



I ©SERDP

Life Cycle Analysis

o Chemical fate of fluorocarbons applied to a fire
e Life cycle inventory analysis

e Life cycle analysis

23
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Fate of foam components

o« What happens to
fluorocarbons in a foam
that is applied to a fire

¢ No published data

o Does degradation occur?

e Can C6 fluorocarbons form
higher chain PFAS?

2.7 ft2 fire pan

24
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Foam fate: Results

Analysis conducted using HPLC-QToF-MS
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Concentration of
fluorosurfactant (6:2
FTSaB) in the foam
solution was much lower in

the early drainage samples.

This has potentially
significant implications for
both foam clean-up and
understanding for foam-
system behaviours.

Foam fate: Drainage
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Drainage rate of 6:2 FTSaB

Time (min)

40

60



I P©SERDP

Life cycle analysis (LCA) - Outline

Life cycle assessment Product
considers the MERIACHre
environmental impacts '
across all life stages of a
product.

Raw material Distribution

acquisition ‘g
The ReCiPe method was . A ? e oo
used to compare 2 MIL- I \
F fluorosurfactant foam |
products with 2 fluorine- 1
free foam products. ‘\
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Midpoint and endpoints
calculated for each life cycle
stage on a hierarchist (100
year) basis

[ Raw material acquisition }

|

E Foam manufacture }

}

Foam use

!

Foam disposal

Data sources:
ReCiPe methodology
Ecoinvent database
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Midpoint impact category Damage pathways
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Peer-reviewed publications
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Comparison of C6 AFFF with F3

Ecosystem quality Health quality Resource depletion
8.0E-05 1.6
3.0E-07
43 6.0E-05 s 12
B = =
S 2.0E-07 3 o
© e sl
o S o
Q —1 4.0E-05 — 0.8
- ~ S~
S~ ()]
) -& +
Z c <
= 1.0E-07 'S o
Q0 a a 04
a 2.0E-05 :
0.0E+00 0.0E+00 0 -
Ue+ .OE+
\(&» ‘\(&'L A\(&\, '\(&'\, .\(&» \&'\, '\(&» .\(&m .\Q@'\/ ‘\Q@’» ~\oe’\/ \(\e’),
\)0‘ on oo& \)ok 00\ \)0\ \»0‘ 0& \)oﬂ ooﬂ \)0\ Qo&
< < & & < < & S Q Q N N
&8 &0 © N $o° $o°

Fluorine 1: C6 MIL-F 24385F approved, Fluorine 2: C6 ICAO B approved
Non-fluorine 1: ICAO B approved, Non-fluorine 2: UL and EN approved
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Comparison of AFFF with F3

Fluorine-free foams generated a lower

impact in most mid-points. Fluorine-free foams were lower in all

endpoint categories.
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Summary of results to date

e Increased understanding of how foam components affect
foam properties and fire performance

o Two formulation pathways investigated

¢ Fire tests in fresh water show rapid control, extinguishment does
not yet meet MIL-F target, very good burnback

¢ In sea water, reasonable control, extinguishment and burnback
not good enough

¢ Statistical optimisation to be carried out

o Fate of fluorocarbon in foam investigated

e Life Cycle Analysis shows fluorine free foams have lower
Impact over all endpoints

31
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Next steps

e Develop new MIL-F 24385 specification for fluorine-free
foams

o Improve formulations to deliver MIL-F performance in
fresh and sea water:
¢ Extinguishment on heptane <35”, burnback >360"

o Address user concerns
e Qualify foams and make available commercially

e Publish life cycle analysis method and results
¢ Apply LCA methodology to foams

32
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Transition plan - Revision of MIL-PRF-24385-F

o Current specification is designed around
fluorocarbons

o Modify specification to be appropriate for fluorine-free
foam
¢ Requirement to contain fluorocarbons
¢ Positive spreading coefficient

e National Foam has provided a MIL-PRF-Fluorine
Free draft specification in fresh water
¢ Various suggestions

¢ Seek end user feedback 23
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First Article Test (FAT)

o Complete formulation work, select optimised product and
manufacture small pilot batch

o Conduct specification testing for proof of results & grade
compliance to proposed new MIL-PRF-24385F standard
¢ Fire tests in fresh & sea water
¢ Corrosion
¢ Aquatic toxicity
o Manufacture small pilot batches of foam for field testing

¢ Structure usage and performance plan review for user community

¢ Field test new foam, using current application equipment at user
training facilities
¢ Solicit user feedback

34
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Transition plan — Commercialisation of Foam

o National Foam to conduct full MIL-PRF-New Fluorine
Free Foam site acceptance testing based on production
batches

e Elevate foam to “Qualified Products List”

o Finalize supporting documentation
¢ MSDS
¢ Use and Handling
¢ Training Guidance
¢ Other

35



- B SERDP

DDDDDDDDDDD

Transition plan - Life Cycle Analysis

e Publish findings

o Highlight sustainability and environmental safety
differences between F and F-free foams

e Inform future foam development

e Inform best practices for use of foam in training,
equipment commissioning and deployment

36
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Key points

e Improved understanding of fluorine-free fire-fighting
foams

o« Foam formulations developed for fresh and sea water
show promising results

o Method developed for life cycle analysis of foams

e Fluorine-free foams show a significant reduction in
environmental impact compared with AFFF

37



- P SERDP

DDDDDDDDDDD

Publications

e Posters presented at SERDP Symposium, Washington
2017, 2018 and planned December 2019

e Poster at SCl Formulation Conference London Jan 2018

o 3 publications currently planned

¢ Comparative life cycle analysis of two fluorinated vs two fluorine-
free fire fighting foams

¢ Short communication on dynamics of surfactant concentration in
drained foam

¢ Chemical fate of PFAS exposed to fires

38
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WP-2738: Fluorine-free aqueous film-
forming foam

Performers: John Payne, Kate Schofield, Katie Shelbourne, Nigel Joslin,
Anne Regina

Technology Focus
» Study physical chemistry processes to guide development of a new F-free foam
» Identify and generate data needed for life cycle analysis

Research Objectives
« Develop F-free foam that meets MIL-F fire performance in fresh and sea water
« Complete life cycle analysis of F and F-free foams

Project Progress and Results

» Foam properties needed to pass test defined

» Candidate formulations give good 90% and 99% control, excellent burnback in fresh water MIL-F fire
test but flickers give long extinguishment time

» Fate of fluorocarbons in fire investigated

» Life cycle analysis completed

Technology Transition
* Redefine MIL-F specification for F-free foams

NATIONAL
» Approve F-free foam onto QPL F o A M
*  Manufacture and market new foam to users

» Publish life cycle analysis to inform industry 39




