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Motivation

Low-frequency sonar response

Acoustic-color plots

Robust features

This work: Investigate whether CNNs can be trained
with unconventional input “imagery” like acoustic-color
plots for UXO discrimination.
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Background on Deep Learning for ATR

CNNs with Acoustic-Color Data
Experimental Results
Conclusions
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Deep Learning in the Wild

rnﬂw i—ﬂﬁ@

[1] Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge,” IJCV, 2015.

[2] Ciresan et al., “Mitosis Detection in Breast Cancer Histology Images using Deep Neural Networks,” MICCAI, 2013.
[3] Silver et al., “AlphaGo, Mastering the game of Go without human knowledge,” Nature, Vol. 550, 2017.

[4] @teenybiscuit
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Deep Learning

Richness of the architecture permits more sophisticated decision
surfaces than traditional (“shallow”) classifiers

Traditional shallow classifiers hit performance plateau: beyond a
point, more data doesn’t improve performance

DL continues to improve as data increases: natural way to leverage
huge (and ever-increasing) amounts of experimental data

Deep Convolutional Neural Networks (CNNs): state-of-the-art for
image classification tasks

CNN automatically learns the most useful bases in which to
represent the data — no need to extract predefined features

A
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On Training Data 1
| |
1
]
1

On Test Data

et

Performance

v

Model Complexity 5

»
»

Large CNN

Medium CNN

Small CNN

Performance

Traditional ML algorithms

%

But: need enough data to avoid overfitting
Key Ratio: Model Complexity / Training Data

v

Amount of Training Data

Sufficient amount of training data to support the
model’s complexity

Insufficient amount of training data to support
the model’s complexity (too many parameters)
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Convolutional Neural Networks (CNNs)

* CNNs are not magic!

+ “Vanilla” CNN: sequences of convolutional layers,
nonlinear activations, and pooling

+ Training a CNN simply means learning the filters of the

convolutional layers
* Instead of using pre-defined filters, the CNN /earns what

filters should be from the data
* These filters transform the input data (imagery) into a
new representation space

* With successive convolutional layers, the level of data
abstraction and (highly nonlinear) decision-surface
complexity increases

* At the end of the CNN, have features in a space that
should be easily separable by class

» The trick: lots of free parameters to learn, so need lots of data
(bigger the CNN, more data required)

*» CNN = learning a transformation to map an input image into a new representation space where classes separate
SERDP + ESTCP
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CNNs for Acoustic-Color Data

Consider 9 CNNs (with 2-12 convolutional layers),
common high-level architectures

+ 2/3/4 convolutional blocks
* 1/2/3 convolutional layers per block

e ol e

Average pooling (large factors)

ReLU activation functions

4 filters per convolutional layer

Filter sizes and pooling factors dependent on input data size
4 nodes (“features”) at final dense layer

~600-4000 parameters to learn per CNN
« Tiny number compared to typical optical image CNNs
+ Eases training data requirements

All training ab initio (“from scratch”)
Input data: size varies depending on data “chunk” and CNN
Output: probability of belonging to UXO class =~ #as
Batch size of 128 (64 per class)

Loss function: binary cross-entropy

Learning rate of 0.001 (RMSprop optimization)

“On-the-fly” data augmentation: reflection in aspect

Train for 100 epochs
* 1 epoch is a full pass through training set (~500 batches)
* Timing: ~1 minute / epoch

Python with TensorFlow software library +1 GPU (GTX 1080)

SERDP+ ESTCP
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A Note on Performance Metrics

ATR and machine learning communities evaluate classification performance
using metrics like ROC curves, AUC, precision/recall, F,-score, etc.

Not appropriate metrics for actual UXO remediation efforts

UXO remediation demands very high (at/near unity) probabilities of detection

Better metric: probability of false alarm at key probabilities of detection

* e.g., “How many false alarms would we sustain if we ensured that we
found all the UXO?”

—— All Environments [AUC: 0.9715]
t1 [AUC: 0.9719]
—E t 3 [AUC: 0.9661]
—E t 4 [AUC: 0.9663]
—E t 10 [AUC: 0.9694]
— t 5 [AUC: 0.9711]
—E t 11 [AUC: 0.9716] |
—E t 6 [AUC: 0.971]

Present classification results here mainly in terms of ROC curves and AUC e e e

—E t 15 [AUC: 0.9744]

Probability of Detection
m

° Later Wl" ShOW Pfa at key Pd L ‘ —Env::nmem::lAui:::Zsm] 1

04 05 06
Probability of False Alarm
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Example CNN Results

Target and Reverberation Experiment 2013 (TREX13) data

Input data for CNNs: Acoustic color plot over 3-30 kHz and
X aspect degrees  [72 - R

Divide data into disjoint training/test sets by object

Training set: 67,680 “images” from 47 full AC plots

Test data objects

Object

Index Description

5 5:1 aspect telephone pole section
6 55-gallon drum, water-filled

7 3" aluminum cylinder

10 panel target

14 scuba tank, water-filled, with stem

17 2" aluminum cylinder

18 cement block

19 tire

8 155 mm howitzer without collar
12 81 mm mortar

21 steel UXO replica

22 original material UXO

28 155 mm howitzer with collar
29 bullet #2

Probability of Detection

= CNN A: 2 layer (1 conv per) [AUC: 0,7503)
== CNN B: 2 layer (2 conv per) [AUC: 0.8485]
=== CNN C: 2 layer (3 conv per) [AUC: 0.751]
=== CNN D: 3 layer (1 conv per) [AUC: 0.8615]
= CNN E: 3 layer (2 conv per) [AUC: 0.8159] | |
CNN F: 3 layer (3 conv per) [AUC: 0.7813]
== CNN G: 4 layer (1 conv per) [AUC: 0.8128]
w— CNN H: 4 layer (2 conv per) [AUC: 0.7931] | _|
== CNN |: 4 layer (3 conv per) [AUC: 0.8287]
| === Ensemble [AUC: 0.8754]
1 1 1 1
o 0.1 02 03 04 05 06 0.7 08 08 1
Probabiity of False Alarm

Fig. 5.4. For the 30° input data case, classification performance using the various CNNss.

SERDP+ ESTCP
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_ i Input Data
Input Data Range 10° 30 40 90°
10° 30° 40° 90° ——
e 10m, 15m) JT0.5739 [0.5949 [ 05573 T 0.7595 '
CNNB 110891 108385 T 0.8007 | 0.8001 15m,20 m) [| 0.6859 [ 0.8058 | 0.7809 | 0.8290 O | pescription ~ Input Data ‘
CNN C 0.7826 | 0.7510 | 0.7987 | 0.6273 20 m, 25 l'l'l) 0.9187 | 0.8874 | 0.8914 | 0.9500 Index 10 30 40 90
CNND |[ 08180 | 0.8615 | 0.8321 | 0.8172 25m,30m) || 0.7914 | 0.8388 [ 0.8871 | 0.9292 5 5:1 aspect telephone pole section 0.865 | 0.895 | 0.920 | 0.940
CNNE || 0.7775 | 0.8150 | 0.8005 | 0.8002 30m,35m) || 0.8863 | 0.0000 | 0.9678 | 0.0877 6 55-gallon drum, water-filled 0.993 | 0.996 | 0.999 | 0.995
CNNF || 0.8496 | 0.7813 | 0.7353 | 0.8227 35m,40m) || 0.9984 | 0.9988 | 1.0000 [ 1.0000 7 3" aluminum cylinder 0.990 | 0.997 | 0.998 | 0.986
CNNG | 0.8886 | 0.8128 | 0.8037 | 0.8633 10 | panel target 0.779 | 0.791 | 0.896 | 0.925
CNN H || 0.8085 | 0.7931 | 0.8395 | 0.6561 14 | scuba tank, water-filled, with stem || 0.741 | 0.842 | 0.881 | 0.939
CNNT [ 07620 | 08287 ] 07334 ] 0.8313 17 | 2 aluminum cylinder 0550 | 0.535 | 0.534 | 0.686
E(A-T) || 0.8534 | 0.8754 | 0.8985 | 0.9198 J 18 cement block 0.787 | 0.882 | 0.795 | 0.839
\ 19 | tir 0.920 [ 0.778 | 0.766 | 0.678
8 155 mm howitzer without collar 0.781 | 0.826 | 0.865 | 0.924
. _ fapatDeta , T2 | 8T mm mortar 0851 [ 0.815 [ 0.825 [ 0.888
Aspect 100 | 30° | 40° | 90 31| steel UXO replica 0.881 [ 0.000 | 0.010 | 0.916
—90°, —60°) | 0.9237 | 0.9263 | 0.9428 | 0.9197 33| original material UXO 0.873 | 0.876 | 0.888 | 0.905
—60°,—30°) || 0.8155 | 0.8634 | 0.8941 | 0.9271 38 | 155 mm howitzer with collar 0.834 | 0.878 | 0.020 | 0.901
[-30°,0 0.8431 | 0.9010 | 0.9007 | 0.9680 39 | bullet#2 0.924 | 0.042 | 0.967 | 0.979
10°,30°) 0.8835 | 0.8950 | 0.0518 | 0.9400
30°,60°) || 0.8013 | 0.8180 | 0.8515 | 0.8637
e « Discriminatory information exists even in only 10° of data
120°,150°) || 0.8015 | 0.8183 | 0.8500 | 0.8639
150°,180°) || 0.8828 | 0.8925 | 0.0511 | 0.9383
180°,210°) || 0.8448 | 0.9030 | 0.9024 | 0.9682
210°,240°) || 0.8145 | 0.8622 | 0.8935 | 0.9273 SERDP+ESTCP
210°,270°) || 0.0222 | 0.9255 | 0.9427 | 0.9201 10 SYMPUSIUM
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Intermediate Responses

R e
38 S
[ ==
1 [~
[ —— —
| — ]
——
« 3’ cylinder, range 30 m, center aspect 229° + 3’ cylinder, range 30 m, center aspect 229°
* CNN H, 10° input (using AC data of 224°-234°) * CNN H, 40° input (using AC data of 209° -249°)
TRt
\ SERDP+ ESTCP
11 SYMPOSIUM
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Multi-Band, Multi-Aspect

« Rather than using full frequency band to train CNN, use smaller sub-bands
* Three octaves considered: 3-6 kHz, 6-12 kHz, 12-24 kHz

And full band: 3-30 kHz

* Also use sub-apertures
Forces CNN to find discriminatory clues in small sectors of the acoustic color plot

Aspect

Frequency

12

Input data for 3-6 kHz, 10° CNN

Input data for 6-12 kHz, 30° CNN

SERDP+ ESTCP
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CNN Design

Convolutional Column Filter Sizes (pixels)

. Un|q ue CNN (f||ter sizes and CNN Layers Block 1 Layers Block 2 Layers gg!,t[l:::::
H Label ‘q - v R . g
pooling factors) for each sub-band B N S ruetors
and sub-aperture case A 2 1 5 8 14 5 [7115]
. 3 5 8 3
 ~400-1500 parameters in each B : 2 3 A r 3 [F][5]
3 4 6 3
C 2 3 2 3 5 2 [f][5]
2 3 5 2
Input: 10° Input: 30° Input: 40°
CNN _Row Row CNN _Row Row CNN L Row Row
Label Filter Sizes Pooling Label Filter Sizes Pooling Label Filter Sizes Pooling
(Pixels) Factors (Pixels) Factors (Pixels) Factors
A [ [A[[A] [I31I31] [ A [ [SJ[AT I6I[61] [ A J[W0I[7][[06I[0]
313 5114 615
B oo | [3][3] B gl [[6][4] B s 5] [ [6][4]
2 2 1 1 6 1
C 2 2 [3][2] C 3 3 [6][2] C 6 4 [6][2]
2 2 3 3 6 4

SERDP+ ESTCP
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Results: Sub-bands

Table 5.17. AUC of various cases usineg CNN A’s architecture

, Frequency Band (kﬁz) U ;'.
f () Ensemble 4, e
3-6 | 6-12 | 12-24 | 3-30 aZ R UL e

10° | 10° || 0.7790 | 0.7970 | 0.7596 | 0.8253 | 0.8596
30° | 30° || 0.7822 | 0.7382 | 0.8365 | 0.7728 | 0.8421 -
40° | 40° (| 0.7877 | 0.7410 | 0.7506 | 0.7807 0.8635
10° | 40° || 0.8416 | 0.8429 | 0.8176 | 0.8844 | 0.9033 \
30° | 40° || 0.7879 | 0.7423 | 0.8434 | 0.7801 0.8467

. e . . . . Assume one look provides 40° of data
+ Considerable discriminatory information exists even in small sectors of ©: CNN input data size

the AC plot (e.g., small frequency sub-bands) Y- Total span of predictions fused

« Ensemble of sub-band CNNs outperforms using a single full-band CNN
« Different clues being leveraged
» Averaging sub-aperture predictions over the span provided by one look
outperforms using single full-aperture CNN

SERDP+ ESTCP
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Multi-Look Experiments

« Having obtained data from one look of an unknown object
(and at unknown orientation), what is the optimal next look
from which to collect data to most improve classification?

Look 1

15

SERDP+ ESTCP

SYMPOSIUM
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Results: One Additional Look

Optimal look separation depends on frequency band and on the span of data provided by one look
* N.B.: Agnostic to object and initial-look-aspect

* Result can inform sensing/re-inspection strategies

0.937
0916 - Table 5.18. For CNN A, optimal look separation, from first look, of second look for two-look
case
. Frequency Band (kHz) .
0004 O 1 Y || 36 | 612 | 12:24 | 3.30 | Ensemble
0876 10° | 10° || 120° | 140° | 80° | 150° | 140°
30° | 30° 80° | 120° | 140° | 140° 120°
" 0853 2 40° | 40° |[ 130° | 130° | 40° | 100° 120°
2 10° | 40° 60° | 140° 80° 120° 130°
30° | 40° 80° | 120° | 140° | 150° 120°
Table 5.19. For CNN A, best two-look AUC using optimal second look
7 " Frequency Band (kHz) s
(6,7) o sa ] O 1 v | 36 | 612 | 1224 | 330 | Ensemble
i —©—CNN A: 3-6 kHz
100 400 ° gN" A: 6-12 kHz 10° | 10° || 0.8385 | 0.8489 | 0.8079 | 0.8733 0.9102
/ —&—CNN A: 12-24 kHz °© 20° A A
( . ) ARG 30° | 30° || 0.8348 | 0.7720 | 0.8944 | 0.8164 | 0.8827
—6—Ensemble 40° | 40° || 0.8341 | 0.7770 | 0.7954 | 0.8423 0.9086
20 60 %0 120 150 180 210 240 270 300 330 360 10° | 40° || 0.8757 | 0.8844 | 0.8529 | 0.9155 0.9374
Look Separation (degrees) 30° | 40° 0.8375 | 0.7760 | 0.8988 | 0.8211 0.8853

SERDP+ ESTCP
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Results: Two Additional Looks

*  Myopic strategy is not always optimal

—  Will select different second look depending on if only one additional
look will be obtained, or if two additional looks will be obtained

o

0.945

w
s

Table 5.20. For CNN A, optimal look separation, from first look, of second and third looks for
three-look case
0 U

@
3

Frequency Band (kHz) .

36 | 612 | 1224 | 330 | Ememble
10° | 10° || 50°,120° | 80°,220° | 80°,160° | 80°,220° | 120°,240°
30° | 30° || 120°,240° | 120°,240° | 120°,240° | 40°,80° | 120°,240°
40° | 40° || 120°,240° | 50°,130° | 40°,90° | 120°,240° | 120°,240°
10° | 40° || 60°,120° | 30°,150° | 90°,220° | 110°,220° | 120°,240°
g% 30° | 40° || 120°,240° | 120°,240° | 120°,240° | 40°,80° | 120°,240°

= 0.935

-
]
S

-0.93

-
&
S

N
o

{0.92

93-61 Look Separation (degrees)
N -
= @
S 3
T

Table 5.21. For CNN A, best three-look AUC using optimal second and third looks

270 0915 0 " s qugl_eln;y Bdi];;l;Hz) 430 Ensemble
e ost 10° | 10° || 0.8633 | 0.8679 | 0.8299 | 0.8950 | 0.9272
330 30° | 30° {| 0.8573 | 0.7932 | 0.9118 | 0.8308 0.8955
0.905 40° | 40° || 0.8541 | 0.7976 | 0.8138 | 0.8676 0.9282
% 30 60 90 120 1;0 1;0 210 240 z;u 3(;0 3:;0 360 10° | 40° || 0.8896 | 0.8934 | 0.8654 | 0.9271 0.9487
0,70, Look Separation (degroes) 30° | 40° | 0.8589 | 0.7965 | 0.9155 | 0.8335 0.8971
(6,v) SERDP + ESTCP
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Performance with Ensembles: AUC

S o6 L -
Ea

0.78 s [-ocnna
o |0 CNNB
0.76 ! L !

Baseline + Sub-bands + Sub-apertures + 2nd-Look + 3rd-Look

Fig. 5.9. For CNN A and CNN B, the overall AUC as additional representations are included
in an ensemble prediction. The additions are cumulative. Refer to the text for details.

- Baseline: CNN prediction using input data of 10° (all frequencies) [EEREEET . =~ 1]

+ Sub-bands: Average prediction across CNNs for each frequency sub-band g

« + Sub-apertures: Average prediction also across 40° span of data (provided by first look)

+ 2nd-Look: Average prediction also across second set of 40° span

+ 3rd-Look: Average prediction also across third set of 40° span
SERDP+ ESTCP
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Performance with Ensembles: Pg, at Key P,

AUC is inappropriate metric for actual UXO remediation
UXO remediation demands very high (at/near unity) probabilities of detection
+ Better metric: probability of false alarm at key probabilities of detection

Minimum Probability of False Alarm
T T

1

T
0.9
1
0.8
——
J// - - 07
e . S
F — ©0.99
2 2 0.6
o
a
S 05
2
3
Soesh o4
[
o 03
0.2
“ CNN A: 2 layer (1 conv per) [AUC: 0.7503)
= CNN B: 2 layer (2 conv per) [AUC: 0.8485] | | 09
=== CNNC:2a w per) [AUC: 0.751] 01
=== CNN D: 3 layer (' w per) [AUC: 0.8615)
W per) [AUC: 0.8159)
CNN F: 3 layer (3 conv per) [AUC: 0.7813] . 0
== CNN G: 4 layer (1 conv per) [AUC: 0.8128] Baseline + Sub-bands  + Sub-apertures  + 2nd-Look + 3rd-Look
= CNN H: 4 layer (2 conv per) [AUC: 0.7931] | |
== CNN I: 4 I; &) ) [AUC: 0.8287] . - .. IS ~ o . .
 Ercomble UG- 0754y Fig. 5.10. For CNN A, the minimum probability of false alarm that achieves certain key prob-
G e 0 ' abilities of detection, as additional representations are included in an ensemble prediction. The
additions are cumulative. Refer to the text for details. SERDP+ESTCP
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Assuming Full 360° Acoustic-Color Data

Earlier: making predictions
using only a small sector of an
acoustic color plot

UXO remediation less time-
sensitive than MCM operations

« Can execute multiple
surveys to obtain full 360°
acoustic color plots for
each object

Much easier problem,
performance improves
significantly

Frobabity of Dascticn

= CNN A 2 kryee (1 0oy per) [AUC: 0.7975]
— CNN B: 2 laryer (2 conv per) [AUC: 0.8007]
CNN C: 2 layer (3 conv per) [AUC: 0.7987] ||
= CNN D: 3 layer (1 conv per) [AUC: 0.8321]
e CNN E: 3 layer (2 conv per) [AUC: 0
CNN F: 3 layer {3 coow per) (AUC: 0.7
w— CNN G: 4 layer (1 conv per) AUC: 0
— NN H: 4 layar (2 conv per) [AUC: 0.8395) | |
w— CNN ;4 layer (3 conv par) [AUC: D,7354]
— Engemitie [AUC 0.8965)

— 6 Nt Evagrribe AIC: 0UT7E

(a) (b)
Figure 3: Classification performance on the TREX13 test data (a) for the 40° input data case using 9
different CNNs, and (b) assuming access to full 360° acoustic-color data and using an ensemble of 36
CNNs. In (b), the operating point on the receiver operating characteristic (ROC) curve corresponding to
a 0.5 decision threshold is marked with a dot.

SERDP+ ESTCP
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Multi-Representation Acoustic-Color CNNs

« TIERSWAT data
+ Target scattering: APL/UW target-in-the-environment response model
* Environment scattering: NSWC PC-SWAT

)

\

vl

v

(@]

Nz

o

v

o

[\

vl

\

)

A

av)

v
Concatenation

Table 1: Acoustic-color data used in each CNN
CNN Label Number 9f Frequency Bands | Representations Number of
Representations Parameters
Hm 1 HF magnitude 3317
Hp 1 HF phase 3317
Bm 1 BB magnitude 1269
Bp 1 BB phase 1269
b““ HmHp 2 HF magnitude, phase 6633
b BmBp 2 BB magnitude, phase 2537
(a) HmHpBmBp 4 HF, BB magnitude, phase 9169

Figure 4: Input data for the four-representation CNN of a 2:1 cylinder (object 221), at a range of 28 m in
environment 10, and at an orientation of (a) broadside and (b) almost nose-endfire. From top to bottom,
the representations are the acoustic-color HF magnitude, HF phase. BB magnitude, and BB phase. The
horizontal axes correspond to frequency: the vertical axes indicate aspect. SERDP+ ESTCP
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Example Result: Multi-Rep. Acoustic-Color CNNs

Table 2: AUC for the four-representation HmHpBmBp CNN, but using training data from only certain
environments, as a function of test environment

08"
Test Data Training Data from Environment
o7k Environment All 1 5 14 8 17
All 1.000 | 0.959 | 0.988 | 0.984 | 0.982 | 0.972

1.000 | 0.993 | 0.997 | 0.991 | 0.984 | 0.972
1.000 | 0.993 | 0.994 | 0.983 | 0.976 | 0.966
1.000 | 0.990 | 0.992 | 0.981 | 0.975 | 0.966

e
o

| wo| =

Probability of Detection
2
\
| S

oS 1.000 | 0.080 | 0.992 | 0.982 | 0.978 | 0.960
——— HmHPBmBp [AUC: 0.9998] 1.000 | 0.968 | 0.994 | 0.984 | 0.981 | 0.971
= HmHp [AUC: 0.9966] 1.000 | 0.956 | 0.992 | 0.990 | 0.986 | 0.972
== BmBp [AUC: 0.9959] 1.000 | 0.952 | 0.994 | 0.993 | 0.989 | 0.971
03k — — ::'[Eﬁf : :::s‘:]l 1 14 1.000 | 0.950 | 0.993 | 0.994 | 0.989 | 0.973
—— Bm [AUC: 0.9862] 7 1.000 | 0.947 | 0.992 | 0.994 [ 0.992 | 0.975
02k Bp [AUC: 0.9926] il 12 1.000 | 0.947 | 0.990 | 0.992 | 0.993 | 0.976
~—— Ensemble: HmHp+BmBp [AUC: 0.9997] 3 1.000 | 0.943 | 0.988 | 0.990 | 0.991 | 0.974
Ensemble: Hm+Hp [AUC: 0.9993] 15 1.000 | 0.941 | 0.986 | 0.991 | 0.993 | 0.974
oar- St ] 9 1.000 | 0.040 | 0.084 | 0.988 | 0.991 | 0.978
Ensemble: Hm+Hp+Bm+Bp [AUC: 1] - - - . .
= Ensemble: HmeBmBp+Hme¢Bme+Hm4Hp+Bm+sp [AUC 1] 17 0.999 | 0.916 | 0.962 | 0.959 | 0.967 | 0.982
0 " il F— sl s L
10° 10% 10° 10z 10' 1o°
Probability of False Alarm
Figure 5: Classification performance of CNNs using different input data representations, when using
training ddld from all environments. (Note the logarithmic horizontal-axis.)
SERDP+ ESTCP

22 SYMPOSIUM

#SerdpEstcp2019




Intermediate Responses

Figure 6: For the input data in Fig. 4(a), a 2:1 cylinder at broadside, the transformed data representations
(top to bottom: HF magnitude, HF phase, BB magnitude, BB phase) after the first convolutional layer
of the four-representation CNN.

Figure 7: For the input data in Fig. 4(b), a 2:1 cylinder at almost nose-endfire, the transformed data
representations (top to bottom: HF magnitude, HF phase, BB magnitude, BB phase) after the first
convolutional layer of the four-representation CNN.
? P SERDP+ESTCP
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Explainable CNNs

* Using CNNs with acoustic-color data for i i i
UXO classification is feasible Solid Cylinder vs. Hollow Cy. Imcjer

Solid Al Cylinder (r=15m) vs. Hollow Al Cylinder (r=15m}

+ Key remaining unknown: Developing
explainable CNNs

* Approach: Use developed CNN
framework in conjunction with specially
controlled experiments to learn
principled, explainable features that can
be tied directly to the physics involved

L] —— CNN B: 3-30 kHz [AUC: 0.802)
= CNN B: 3-15 kHz [AUC: 0.8158]
CNN B: 15-30 kHz [ALC: 0.8181)
CNIN B 6-12 KHZ AUL: 0.76238)
= CNN B: 12:24 kHz [AUC: 0.755)
CNN B: 312 kHz [AUC: 0.7562)
—— CNN B; 12-21 kHz [AUC: 0.8462]
—— CNN B: 21-30 kHz [AUC: 0.7541]
——CNN B: 3-6 kHz JAUC: 0.4862]
CNN B: 6-9 kHz [AUC: 0.7406]
CNN B: 8-12 kHz [AUC: 0.5635)
CNN B: 1215 kHz [ALC: 0.8175]
CNN B: 1618 kHz [AUC: 0.7302)
CNN B: 18-21 kHz [AUC: 0.4509]
CNN B; 2124 kHz [AUC: 0.5432]
CNN B; 24-27 kHz [ALC: 0.6503]
—— CNN B: 27-30 kHz [AUC: 0.7015]
—— Ememble [3UC: 0,8852)

[0)Scid Al Cyinder (r=15m)
—— [1) Holow Al Cyfinder (r=15m)

(a) (b)

Figure 8: For the binary classification problem attempting to discriminate solid cylinders from hollow
cylinders, (a) performance as a function of acoustic-color CNN that uses certain frequency sub-band
data, and (b) the predictions as a function of aspect for the 12-15 kHz frequency band case for the two
objects at a range of 15 m.

SERDP « ESTCP
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Conclusions

+ Using CNNs with acoustic color data is indeed feasible

+ Strong classifiers can be obtained from tiny CNNs with only hundreds of parameters to learn
* Generalize well even to new objects not in training set
+ Still need to test in more challenging scenarios (e.g., new environments)

+ Significant performance gains can be achieved by further slicing the acoustic color data into multiple frequency sub-bands and
aperture sub-aspects, and from employing multiple looks

« Ensembles from the above, and from employing multiple unique CNN architectures can greatly reduce the false alarm rate at
the high P, values that UXO remediation demands

* Incorporating multiple representations (HF and BB, magnitude and phase of acoustic color) is also promising

* Rich veins for future work:
* Improving CNN architecture design (filter sizes, pooling factors, etc.)
* Tying the uncovered CNN clues back to the physics

* Acknowledgments:
+ Thanks to Kevin Williams and Steve Kargl at APL/UW for providing the TREX13 and TIERSWAT data
+ This work was funded by SERDP under SEED project MR18-1444
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CNN Architectures for Acoustic-Color Data

Consider 9 CNNs (with 2-12 convolutional layers),
common high-level architectures ACP> C a|E|—> C >|E|—> C 9|E|e C aEHEl—)O
 2/3/4 convolutional blocks

» 1/2/3 convolutional layers per block ) ‘ - . \
Table 5.3. CNN architectures for 30° input-data (1 pixel represents 0.5° x 100 Hz of data)

 Average pooling (large factors) cnn || Convolutional Filter Sizes in Pixels Pooling Factors
. . . Label || Blocks P:rﬂéi;zk (Row x Column) (Row XDCo]umn)
* RelU activation functions T : B0 ] EEIED
. . B 2 2 o ;ig 6% 8] [4 x &
* 4 filters per convolutional layer et B B L
. . . . . C 2 3 3x6 3Ix4 [6 x 8] [2 x 8]
* Filter sizes and pooling factors dependent on input data size I 1 s S
« 4 nodes (“features”) at final dense layer E | 3| 2 sxi || 5xs || ixs (23] 5] 2x5]
4x5 4x4 3x4
« ~600-4000 parameters to learn per CNN N . o A R B o 2l
Tiny number compared to typical optical image CNNs T ff?fﬁﬁ?ié iii}][fzxﬁs]} T
- . - 3x5 3x5 3x5 2x5
+ Eases training data requirements 3x5 | 3%5 | [3x5[[2x3
I 4 3 3x5 2x5 2x5 2x3 2x4[2x2][2x2][1x2]
2x4 2x4 2x4 2x3
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Sonar Data

+ Target and Reverberation Experiment 2013 (TREX13)
+ Gulf of Mexico, using a rail system

* Frequency band 3-30 kHz
» 27 objects (11 UXO, 16 non-UXO)
* Ranges 10-40 m

+ Sandy seafloor

Aspect

* Resulting acoustic-color (AC) plots
* 0.5° sampling in aspect
* 100 Hz sampling in frequency
* “Images” of size 720 pixels x 271 pixels
* 90 full (i.e., 360°) AC plots constructed
+ 54 of UXO objects (11 unique objects at various ranges) /
+ 36 of non-UXO objects (16 unique objects at various ranges) Frequency

S. Kargl, “Acoustic response of underwater munitions near a sediment interface: Mea- SERDP+ESTCP
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