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Motivation

• Low-frequency sonar response
• Acoustic-color plots
• Robust features 

• This work: Investigate whether CNNs can be trained 
with unconventional input “imagery” like acoustic-color 
plots for UXO discrimination.

2Images courtesy of Steve Kargl (APL/UW)
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Outline

I. Background on Deep Learning for ATR
II. CNNs with Acoustic-Color Data
III. Experimental Results
IV. Conclusions
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Deep Learning in the Wild
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Deep Learning

• Richness of the architecture permits more sophisticated decision
surfaces than traditional (“shallow”) classifiers

• Traditional shallow classifiers hit performance plateau: beyond a
point, more data doesn’t improve performance

• DL continues to improve as data increases: natural way to leverage
huge (and ever-increasing) amounts of experimental data

• Deep Convolutional Neural Networks (CNNs): state-of-the-art for
image classification tasks

• CNN automatically learns the most useful bases in which to
represent the data – no need to extract predefined features
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On Test Data

On Training Data

• But: need enough data to avoid overfitting
• Key Ratio: Model Complexity / Training Data
• Sufficient amount of training data to support the

model’s complexity
• Insufficient amount of training data to support

the model’s complexity (too many parameters)

Amount of Training Data
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Traditional ML algorithms

Large CNN

Medium CNN

Small CNN
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Convolutional Neural Networks (CNNs)

• CNNs are not magic!
• “Vanilla” CNN: sequences of convolutional layers, 

nonlinear activations, and pooling
• Training a CNN simply means learning the filters of the 

convolutional layers
• Instead of using pre-defined filters, the CNN learns what 

filters should be from the data
• These filters transform the input data (imagery) into a 

new representation space
• With successive convolutional layers, the level of data 

abstraction and (highly nonlinear) decision-surface 
complexity increases

• At the end of the CNN, have features in a space that 
should be easily separable by class

• The trick: lots of free parameters to learn, so need lots of data 
(bigger the CNN, more data required)
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v CNN = learning a transformation to map an input image into a new representation space where classes separate
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CNNs for Acoustic-Color Data

• Consider 9 CNNs (with 2-12 convolutional layers), 
common high-level architectures
• 2/3/4 convolutional blocks
• 1/2/3 convolutional layers per block

• Average pooling (large factors)

• ReLU activation functions 

• 4 filters per convolutional layer

• Filter sizes and pooling factors dependent on input data size

• 4 nodes (“features”) at final dense layer

• ~600-4000 parameters to learn per CNN
• Tiny number compared to typical optical image CNNs
• Eases training data requirements
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• All training ab initio (“from scratch”)

• Input data: size varies depending on data “chunk” and CNN

• Output: probability of belonging to UXO class

• Batch size of 128 (64 per class)

• Loss function: binary cross-entropy

• Learning rate of 0.001 (RMSprop optimization)

• “On-the-fly” data augmentation: reflection in aspect

• Train for 100 epochs
• 1 epoch is a full pass through training set (~500 batches)
• Timing: ~1 minute / epoch

• Python with TensorFlow software library +1 GPU (GTX 1080)
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A Note on Performance Metrics

• ATR and machine learning communities evaluate classification performance 
using metrics like ROC curves, AUC, precision/recall, F1-score, etc.

• Not appropriate metrics for actual UXO remediation efforts
• UXO remediation demands very high (at/near unity) probabilities of detection
• Better metric: probability of false alarm at key probabilities of detection

• e.g., “How many false alarms would we sustain if we ensured that we 
found all the UXO?”

• Present classification results here mainly in terms of ROC curves and AUC
• Later will show Pfa at key Pd
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Example CNN Results
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• Target and Reverberation Experiment 2013 (TREX13) data

• Input data for CNNs: Acoustic color plot over 3-30 kHz and 
X aspect degrees

• Divide data into disjoint training/test sets by object

• Training set: 67,680 “images” from 47 full AC plots

Test data objects
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Results
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90o

0o
• Discriminatory information exists even in only 10o of data
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Intermediate Responses

• 3’ cylinder, range 30 m, center aspect 229o

• CNN H, 10o input (using AC data of 224o -234o)
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• 3’ cylinder, range 30 m, center aspect 229o

• CNN H, 40o input (using AC data of 209o -249o)
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Multi-Band, Multi-Aspect

• Rather than using full frequency band to train CNN, use smaller sub-bands
• Three octaves considered: 3-6 kHz, 6-12 kHz, 12-24 kHz
• And full band: 3-30 kHz

• Also use sub-apertures
• Forces CNN to find discriminatory clues in small sectors of the acoustic color plot
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Input data for 6-12 kHz, 30o CNN

Input data for 3-6 kHz, 10o CNN
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CNN Design

• Unique CNN (filter sizes and 
pooling factors) for each sub-band 
and sub-aperture case

• ~400-1500 parameters in each

13

Input: 30oInput: 10o Input: 40o
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Results: Sub-bands

• Considerable discriminatory information exists even in small sectors of 
the AC plot (e.g., small frequency sub-bands)

• Ensemble of sub-band CNNs outperforms using a single full-band CNN
• Different clues being leveraged

• Averaging sub-aperture predictions over the span provided by one look 
outperforms using single full-aperture CNN
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Assume one look provides 40o of data
Θ: CNN input data size
Ψ: Total span of predictions fused
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Multi-Look Experiments

• Having obtained data from one look of an unknown object
(and at unknown orientation), what is the optimal next look 
from which to collect data to most improve classification?
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Results: One Additional Look

• Optimal look separation depends on frequency band and on the span of data provided by one look
• N.B.: Agnostic to object and initial-look-aspect

• Result can inform sensing/re-inspection strategies
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Results: Two Additional Looks

• Myopic strategy is not always optimal
– Will select different second look depending on if only one additional 

look will be obtained, or if two additional looks will be obtained
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Performance with Ensembles: AUC

• Baseline: CNN prediction using input data of 10o  (all frequencies)

• + Sub-bands: Average prediction across CNNs for each frequency sub-band

• + Sub-apertures: Average prediction also across 40o  span of data (provided by first look)

• + 2nd-Look: Average prediction also across second set of 40o  span

• + 3rd-Look: Average prediction also across third set of 40o  span
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Performance with Ensembles: Pfa at Key Pd

• AUC is inappropriate metric for actual UXO remediation
• UXO remediation demands very high (at/near unity) probabilities of detection
• Better metric: probability of false alarm at key probabilities of detection
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Assuming Full 360o Acoustic-Color Data
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• Earlier: making predictions 
using only a small sector of an 
acoustic color plot

• UXO remediation less time-
sensitive than MCM operations

• Can execute multiple 
surveys to obtain full 360o

acoustic color plots for 
each object

• Much easier problem, 
performance improves 
significantly
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Multi-Representation Acoustic-Color CNNs

• TIERSWAT data
• Target scattering: APL/UW target-in-the-environment response model
• Environment scattering: NSWC PC-SWAT
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Example Result: Multi-Rep. Acoustic-Color CNNs
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Intermediate Responses
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Explainable CNNs

• Using CNNs with acoustic-color data for 
UXO classification is feasible

• Key remaining unknown: Developing 
explainable CNNs

• Approach: Use developed CNN 
framework in conjunction with specially 
controlled experiments to learn 
principled, explainable features that can 
be tied directly to the physics involved
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Solid Cylinder vs. Hollow Cylinder
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Conclusions

• Using CNNs with acoustic color data is indeed feasible

• Strong classifiers can be obtained from tiny CNNs with only hundreds of parameters to learn
• Generalize well even to new objects not in training set
• Still need to test in more challenging scenarios (e.g., new environments)

• Significant performance gains can be achieved by further slicing the acoustic color data into multiple frequency sub-bands and 
aperture sub-aspects, and from employing multiple looks

• Ensembles from the above, and from employing multiple unique CNN architectures can greatly reduce the false alarm rate at 
the high Pd values that UXO remediation demands

• Incorporating multiple representations (HF and BB, magnitude and phase of acoustic color) is also promising

• Rich veins for future work:
• Improving CNN architecture design (filter sizes, pooling factors, etc.)
• Tying the uncovered CNN clues back to the physics

• Acknowledgments:
• Thanks to Kevin Williams and Steve Kargl at APL/UW for providing the TREX13 and TIERSWAT data
• This work was funded by SERDP under SEED project MR18-1444 
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Supplemental Slides
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CNN Architectures for Acoustic-Color Data

• Consider 9 CNNs (with 2-12 convolutional layers), 
common high-level architectures
• 2/3/4 convolutional blocks
• 1/2/3 convolutional layers per block

• Average pooling (large factors)

• ReLU activation functions 
• 4 filters per convolutional layer
• Filter sizes and pooling factors dependent on input data size
• 4 nodes (“features”) at final dense layer
• ~600-4000 parameters to learn per CNN

• Tiny number compared to typical optical image CNNs
• Eases training data requirements
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Sonar Data

• Target and Reverberation Experiment 2013 (TREX13)

• Gulf of Mexico, using a rail system

• Frequency band 3-30 kHz

• 27 objects (11 UXO, 16 non-UXO)

• Ranges 10-40 m 

• Sandy seafloor

• Resulting acoustic-color (AC) plots
• 0.5o sampling in aspect
• 100 Hz sampling in frequency
• “Images” of size 720 pixels x 271 pixels
• 90 full (i.e., 360o) AC plots constructed

• 54 of UXO objects (11 unique objects at various ranges)
• 36 of non-UXO objects (16 unique objects at various ranges)
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