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Motivation

Problem:

• State-of-the-art industry heat pumps  degrade by up to 60% in 
capacity and 50% in system coefficient of performance (COP) at 
very low ambients.

• Cold blow effect further cements that heat pumps are not a viable 
technology for space heating in cold climates

• Scalable and cost-effective technologies as well as system 
optimization/integration are necessary to deploy CCHP
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State-of-the-art commercial heat pumps significantly degrade in cold climates

Target Market:

• Commercial building owners need a superior air-source HP that operates over extreme heating and cooling seasons 

• U.S. Commercial buildings in cold climates represent 45% of the national building stock.

• 32% use electricity as the primary source of space heating representing 149 billion kWh and $9.2 billion 

• 56% of DoD buildings fall in climate zones suitable for cold climate heat pumps
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Expected DoD Benefit
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• Quantitative
 Energy Savings: 20% annually for electric-based space heating & cooling

• Superior heating performance at moderate and extreme heating
• Parity in cooling performance at design and part load conditions (IEER)

 Pricing: Parity with State-of-the-art Carrier heat pumps
 Thermal comfort: >95oF supply air temperature

 Institutional scalability: 56% of DoD buildings
 Annual Cost Savings: >$61M savings (electric heating solutions and supplement needs only)
 Annual energy savings: ~14 trillion Btu
 Annual GHG Reductions: 2,884,535 metric tons of CO2*

• Qualitative
 Remote heating solution
 Reduced operational costs (volatility and dependence) associated with using hydrocarbon fuels to remote bases
 Increased visibility into electric-based air-source heat pumping equipment solutions
 Easily scalable to larger packaged roof-top units - up to 40TR 

*7.03 × 10-4 metric tons CO2 / kWh
(eGRID, U.S. annual non-baseload CO2 output emission rate, year 2012 data)
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Previous work, DoE and Carrier Sponsored
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DoE Project (-13F Target)

Recip Compr, EBM Papst Fans

Performance Targets Achieved

Focus on Cost Optimization

IP Protected



#SerdpEstcp2019

ESTCP Project Objectives
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Cold Climate Heat Pump

KPI
10TR 

50HCQ
10TR CCHP

Size - Smaller

Heating 
Performance at 0F

3.5TR >9TR

Supply Air Temp at 
0F

85F >100F

Cooling IEER 13.6 14.6

Cost to Carrier - Parity

Key Enablers:

Optimized compression

Dynamic Models & Controls

Chassis & HX optimization

Field demonstrate cost-effective high performance 
cold climate heat pump
 Demonstrate heating and cooling performance of cost optimized CCHP

 Develop and deploy field ready controls for two field trial systems

Achieving Price Parity…
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Approach
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Program Phases at Camp Keys Maine (MEARNG)

Legacy System Phase I
Carrier 50HCQ

Phase II
CCHP field trial

Two air-handler units,
Four residential style 

condensing units,
Baseboard heating.

16SEER 10TR Carrier heat pump 
with auxiliary electric heat. 
BMS system control

10TR CCHP field trial unit with 
SpeedGoat Controls
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Approach
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Program Phases at UTRC Psychrometric Laboratory

Lab has >10TR capacity
Outdoor room controls from -20F to 130F
Controlled Frost/Defrost Testing

2018: Control Development and Lab Verification

Winter 2019 data from MEARNG used to improve 
control code and cost-optimize system.

Verified in Lab, and code updated at MEARNG.
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Results

Things to note:

• Steady COP in lab can be much higher than integrated 
COP at the site:

• Cycle Degradation

• Frosting

• Defrost cycle

• Unnecessary electric heat

• Outdoor air ventilation can add significantly to the load, 
or reduce it (economize), depending on conditions.

• Use of zone set-back (unoccupied) causes large 
scatter in load as a function of temperature

• Use of zone set-back can increase the use of electric 
heat upon recovery, and actually hurt integrated COP.
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Data Processing

𝐶𝑂𝑃 =
 𝑡1
𝑡2
𝑄𝑡ℎ𝑒𝑟𝑚 𝑑𝑡

 𝑡1
𝑡2
𝑃𝑜𝑤 𝑑𝑡

𝑡2 − 𝑡1 = 4ℎ𝑟

Integrated COP over set number of hours is used 
to process the data:

Instantaneous Qtherm is determined from calibrated 
flow stations installed in the supply and return 
ducts.  

Outdoor air flow rate is the mass-flow difference 
from supply and return.  

Siemens 
Power Meter

Return Air Flow Station
(T, Dew, CFM)
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Phase I Results, Benchmark RTU
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Heating A
Heating B

Cooling

Start End

Capacity

• Two heating seasons and a cooling season analyzed. 

• Between seasons had little load (and sometimes 
heating and cooling in same day)

• Peak heating load (4hr average) was 39kW (11Tons)

• Large variation in load at a given ambient.

Example of

Cold-Ambient operation
• OAT 10-18F

• Unit runs continuously, 
electric heat cycles on and 
off to meet load.

• With electric heat off, SAT 
< 80F!
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Phase I Results, Benchmark RTU
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• Q and P generally increase with decreasing 

temperature. Little to no load above 50F.  

• Large scatter at given temperature.

• Variations in COP are due to:

• Frosting

• Defrosting, and the amount of defrost time 

that happens to fall within the 4-hr integral 

• Cycling

• Fraction electric heat (affected by set-back)

=

Capacity

Power

COP

(Data shown for Qavg > 1kW)

Cold Climate

Cold Climate

Cold Climate

• Huge variations in 
integrated COP

• COP is often < 1 
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Phase I Results, Benchmark RTU
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D5F temp bins,
Sum all Q and P per bin,

Divide to find overall COP as a function of temperature.
COP

Cold Climate

• Effective COP is <1 below 20F

• Three steady operating points shown 
for comparison (with neither frost nor 
cycling effects) are much higher. 
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Phase I Results, Benchmark RTU

Frosting!

• Normally heat pumps are not run to 0F 
ambient.  We changed the factory-set cut-out 
from 30F to -20F for this demonstration. 

• Several times the baseline unit did not defrost 
on its own, but needed intervention.

• When frosted the instantaneous capacity and 
COP are very low, but defrosting (which runs in 
cooling mode with electric heat) is even worse. 
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Phase II Results, CCHP Field Trial
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Example of

Cold-Ambient Operation
• OAT 8-18F
• Supply Air T > 100F 

without electric heat.

• Unit cycles on and off 
meeting load.

• No electric heat needed 
except during defrost.

CCHP

Baseline

Start
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Results Phase II, CCHP Field Trial
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CCHP significantly better than baseline

• Integrated COP > 2 times higher at low ambient.

• But dip at 30-35F.

• A look at this data indicates significant frosting 
(next slide). 

=
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Results Phase II, CCHP Field Trial
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Airport Data, February 2019

Dewpoint

Dry bulb

• Many warmer periods in this data set had nearly 
100% humidity.

• This results in lower integrated performance.  The 
unit was found to be running with very low suction 
pressure.

• COP can be improved with better defrost logic. 
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Code Improvement and Cost Optimization (UTRC)

Defrost:  

• The CCHP unit was noted to defrost more quickly than the baseline, typically in less than 3 
minutes.  No interventions were required.

• But even still, frost and defrost cycles were seen to significantly lower integrated COP.

• A new sensor-based logic was developed from the winter 2019 data and verified in the UTRC 
psychrometric laboratory.  

• Avoids unnecessary defrost cycles

• Defrosts sooner if needed. 

High Ambient:

• The field trial unit did not see temperatures over 100F.  High ambient (up to 125F) operation 
was lab verified

Cost Optimization: 

• The proprietary compressor control actuators were simplified by adjusting the control logic 
while maintaining performance.  
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