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PROBLEM: 1,4-Dioxane is Widely-Occurring

Data collected from U.S. public water systems n
during UCMR3 (2013-2015)
1,4-Dioxane
) Below MRL
© Above MRL but Below RC _
® Above RC _!\/hles:I
0 200 400

KEY POINTS

* 1,4-D detected above method
reporting limit (MRL = 0.07 ug/L)
in sample(s) from 21% of public
water systems

* 1,4-D detected above health-
based reference concentration
(RC = 0.35 pg/L) in sample(s)
from 7% of public water systems
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Source: Adamson, Pina, Cartwright, Rauch,
Anderson, Mohr, and Connor, 2017, Science
of the Total Environment
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PROBLEM: 1,4-Dioxane Sites are Challenging to Manage

( - - - - - - \
Distribution of Historical Maximum
N 1,4-D Concentrations /) + 1,4-D plumes are generally dilute
« Particular concern at DoD sites (see chart)
* 1,4-D sources are challenging to identify
1E+3 - -
« Rapid dissolution and migration potential
g 1 « Actual source may be 1,4-D diffusing out
= 1E~ of lower-k zones (Adamson et al., 2016;
g . SOTE)
s - * In situ treatment options for
18 I contaminated groundwater are limited
IE Py=T— —— . Sommercial . !Vlany ty_pical methods are I_ikely to be
ineffective or cost-prohibitive
Source: Chiang, Anderson, Source: Adamson,
Wilken, and Walecka- Anderson, Mahendra,
Hutchison, 2016, Remediation etal., 2015; ES&T SERDP+ ESTCP
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HYPOTHESIS:

Monitored Natural Attenuation

(MNA) May Be Best Approach at Some Sites

Feasibility
of MNA for
1,4-D

WIGSI
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Evidence for attenuation of 1,4-dioxane

1 at many (but not all) field sites
(e.g., Adamson et al., 2015; Li et al., 2015; Gedalanga
et al., 2016; da Silva et al., 2018)

Better understanding of 1,4-D behavior and
- 2 distribution at contaminated sites

(e.g., Adamson et al., 2014, 2016; Chiang et al., 2016;

Karges et al., 2018)

Improved forensic tools to support

3 MNA evaluations
(e.g., Gedalanga et al., 2016; Zhang et al., 2017;
Bennett et al., 2018; Dang et al., 2018)
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PROBLEM: No Framework for Selecting MNA for

1,4-D and Many CVOCs

wEPA

Technlcal Protocol for
Evaluating Natural
Attenuation of Chlorinated
Solvents in Ground Water

4
e
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1,4-Dioxane and Chlorinated

Ethanes (e.g., 1,1,1-TCA) are not
included in original MNA protocol

Recent advances in “lines of
evidence” can be used to support
evaluation of MNA for these
compounds
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PROJECT OBJECTIVES:

Develop 1,4-Dioxane Attenuation Framework

1. Develop and test a
quantitative decision tool
to evaluate MNA for 1,4-D
and associated CVOCs

O
2. Validate “C-based assay Project No.
(laboratory method) and ER-201730

other lines of evidence
for attenuation (field

sam pl In g) Search “Dioxane TCA natural attenuation” for project overview page
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[ Collect Field Data

and/or

[ Perform 14C Assay

Determine Source
Reduction
Necessary to make
MNA Plausible

OVERVIEW OF DECISION PROCESS

Estimate Rate
Constant

NO
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Support with
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PROJECT-SPECIFIC FIELD SAMPLING

OBJECTIVE:
Collect samples for '4C
1 site Region assay and to evaluate
- several lines of
@ 1 site evidence for
Region .
attenuation
Southeast * Mix of DoD and
REQ’O” commercial sites

1 site * 6 sites sampled to-date
* 1 to 3 sites yet to be
sampled
* Hoping to add more...

Pacific

4 sites
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RESULTS TO-DATE: What Positive Lines of

Evidence for Attenuation Have Been Observed?

Lines of Evidence

Legend:
No Evidence
+ Low
++ Moderate
+++ Strong
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RESULTS TO-DATE: Why factors may have negatively

influenced 1,4-D biodegradation?

High Low levels | Absence Low Low
levels of of of co- DO? levels of
CVOCs? | Biomarkers | substrate? 1,4-D?
1 v v, .-

g ) 4 J Little or no "#C-

2 1,4-D degraded
6 v v v |
0’ A

14C.1,4-D

degraded in
multiple locations

’Q
*
* *
* ¢
«?
2

*

*

14C-1,4-D assay not yet performed

QIR < <
= ) &

s
v

Not yet sampled



RESULTS TO-DATE: Compilation of Rate Constants

from Various Studies

1,4-D Degrading Pure Cultures

Range of Half-Lives (yr)
(log-scale)

Median = 2.2 yr

(CB1190 and ENV487 at Bl?ccliegraciat:ont_Rate ) 0.3 —— 11
0.001 — 1 mg protein/L) (excludes non-destructive processes
Multi-Site Survey Source Attenuation Rate Median = 3.6 yr
(n = 22 sites + 131 wells w/ significant (includes non-destructive processes, 0.3 * 14
rates; Adamson, Anderson et al., 2015)) excludes statistically non-significant rates)

Median = 164 yr

Multi-Site Survey Bulk Attenuation Rate 0.4 ————————
(n = 11 sites w/ C vs. d data) (includes non-destructive processes) ) > 1000
. ) . Median = 113 yr
14C Assays from 7 sites Biodegradation Rate
(n = 13 well locations (excludes non-destructive processes, 0.3 328

w/ significant rates) excludes statistically non-significant rates)
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RESULTS TO-DATE: Compilation of Rate Constants

from Various Studies

1,4-D Degrading Pure Cultures
(CB1190 and ENV487 at
0.001 — 1 mg protein/L)

Multi-Site Survey
(n = 22 sites + 131 wells w/ significant
rates; Adamson, Anderson et al., 2015)

Biodegradation Rate

(excludes non-destructive processes)

Source Attenuation Rate
(includes non-destructive processes,
excludes statistically non-significant rates)

Range of Half-Lives (yr)
(log-scale)

Median = 2.2 yr

0.3 * 11

Median = 3.6 yr

0.3 __14

Multi-Site Survey
(n = 11 sites w/ C vs. d data)

14C Assays from 7 sites
(n = 13 well locations w/ significant
rates)

Bulk Attenuation Rate

(includes non-destructive processes)

Biodegradation Rate
(excludes non-destructive processes,
excludes statistically non-significant rates)

Median = 164 yr

Median = 113 yr

0.3 — 328

KEY POINT: These types of rates are generally most appropriate for modeling MNA, but broad range

of values highlights site-specific nature of 1,4-D attenuation.




RESULTS TO-DATE:

How Should #C Assay Results Be Interpreted?

« Based on normal test procedures for 4C assay, rate constants are likely to be conservative
« Lack of solid-phase and/or nutrient supply may suppress rates

« One option is to use “C assay in step-wise approach ﬂ
Run test using standard procedures as screening step

Perform follow test using soil and/or nutrients as validation step
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RESULTS TO-DATE: Other secondary lines of evidence

for MNA to support rate estimates

10 1
DXMO-type process likely 1. Develop correlations
contributing to observed 1,4- .
1 D biodegradation at this well between biomarkers

Correlations from other and predICted rate
] _ lab culture studies constants

{1 Other contributors
to observed 1,4-D
01 4 biodegradation at

2. Plot site-specific rate
these 2 wells

constants to evaluate

—Mahendra and Alvarez

Rate Constant (per year)

---Barajas and Freedman

0.01 1
. B Wells from Midwest Site
0.001 -"- L — T ———Trm
1.0E+00 1.0E+02 1.0E+04 1.0E+06

Abundance DXMO Genes (gene copies/mL)

if identified biomarker
is plausibly
responsible for
observed 1,4-D
degradation
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RESULTS TO-DATE:

How Should CSIA Results Be Interpreted?

N

-24

SITE 3 - DUAL ISOTOPE PLOT
40 —
20 | 0.35\;}_
S 0- g
O
= 7
> -20 — /
g\_o/ | 0.05 , :
% _40 — P66\’>
| st//*.\
-60 P70
-80 - I -
-34 -32 -30 -28 -26
313C (%o, VPDB)

Data collected in collaboration with SERDP ER-2535 — Thanks to Peter Bennett, Katharine Morrison, and rest of team

Site 3 Downgradient Wells:

Extensive fractionation - reflects impact of
attenuation along plume and pilot test

Site 3 Source/Mid-Plume Wells:

Little fractionation despite evidence of
attenuation capacity (14C assay, biomarkers) -
presumably due to location and mixing with
anaerobic groundwater (i.e., undegraded 1,4-D)
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RESULTS TO-DATE:

How Should CSIA Results Be Interpreted?

B. Plume fringe concept

Why was no fractionation observed in some Site 3 wells?

u 2l

unsaturated zone

‘ Fe red SO ) 3.
Mn -red. - -
y souree (me(tha ogen)eS|s)
\_J aerobic

respiration

GWflow ,4-D

ﬁ aquifer

.' ‘ G S I Source: Meckenstock et al., 2015

« Wells have a mix of O,, and Fe*?, meaning they almost

certainly are producing blended samples of aerobic and
anaerobic water.

« Lack of 1,4-D degradation in anaerobic portions masks
fractionation occurring as a result of 1,4-D degradation
in aerobic portions

« CSIA may yield false negatives and should be
interpreted with other lines of evidence

SERDP+ ESTCP
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PROJECT DELIVERABLE

©ESTCP & SERDP

DOD = EPA = DOE

BioPIC: Pathway Identification Criteria
A Decision Guide to Achieve Efficient Remediation of
Chlorinated Ethenes, Chlorinated Ethanes, and 1,4-Dioxane

Overview
MNA

Start ‘

« Simple Excel-based spreadsheet

« Expands existing BioPic tool (which is for chlorinated ethenes)
* Includes “BIOCHLOR"-like rate constant estimator

« Expected in late 2020

* Free!
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GOALS

@ Develop tool that walks
through each step for remedy

selection (with focus on MNA)

@ Provide guidance on how to
collect data and interpret results
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KEY POINTS

o
Project No.
ER-201730

o

Search “Dioxane TCA natural attenuation” for project overview page
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MNA should be evaluated as a potential long-term strategy for 1,4-D

A robust “C laboratory method was developed and validated to
determine 1,4-D degradation rates across many sites

1,4-D biodegradation activity was confirmed at some—but not all-
sites where attenuation was observed

Interpretation of data shows benefit of additional lines of evidence
to confirm actual degradation mechanisms at sites

Data collected so far suggests that odds of observing 1,4-D
biodegradation drops at sites with > 3 of 5 key characteristics

Tool to support evaluation of MNA of 1,4-D and “other” CVOCs will
be available soon
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BACK UP SLIDES
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