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Extended Abstract SERDP Project ER-2311: Development of an Integrated Field 
Test/Modeling Protocol for Efficient In Situ Bioremediation Design and Performance 
Uncertainty Assessment

Linda M. Abriola, Tufts University (PI)

Natalie L. Cápiro; John A. Christ; Liyang Chu; Eric L. Miller; Kurt D. Pennell (co-PIs)

Introduction

Widespread use of chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene 
(TCE), in dry cleaning and degreasing operations has resulted in groundwater contamination at 
thousands of industrial facilities and government installations throughout the United States and 
abroad (ITRC, 2011; NRC, 2005). In most cases, chlorinated solvent spill sites are conceptualized 
as consisting of two main regions, a highly contaminated source zone that often contains free 
product, commonly referred to as a dense non-aqueous phase liquid (DNAPL), and a down-
gradient groundwater plume that contains both dissolved- and sorbed-phase contamination (ITRC 
2003). The long-term persistence of DNAPLs (as entrapped ganglia or pools) in the source zone 
and the high local contaminant concentrations associated with their presence also creates a strong 
driving force for contaminant diffusion into lower permeability layers, where dissolved and sorbed 
mass is subsequently sequestered. Substantial laboratory and field research has demonstrated the 
importance of this sequestered mass to the persistence of down gradient contaminant plumes (e.g., 
DiFilippo and Brusseau, 2008; NRC, 2005; Parker et al., 2008; Suchomel and Pennell, 2006) and 
the long term performance (mass removal or transformation rates) of most remedial technologies, 
in particular those that require the delivery of chemical additives or amendments (e.g., Christ et 
al., 2010; Kaye et al., 2008; Stroo et al., 2003).

Although substantial progress has been made in the development of both noninvasive and invasive 
source zone characterization technologies in the past two decades (e.g., ITRC, 2003; Kavanaugh 
et al., 2003; Kram et al., 2002; NRC, 2005), these technologies can typically provide quantitative 
information on contaminant mass distributions only in the vicinity of the sampling location, which 
may not be representative of the entire source zone.  To address the limitations associated with 
sparse sampling, it is now common practice to employ statistical interpolation approaches (e.g., 
kriging) to estimate contaminant concentration at unsampled locations using available borehole 
data. However, a primary drawback to such approaches is their limitation in interpolating highly 
sparse and discontinuous patches of DNAPL in heterogeneous domains (e.g., Maji et al. 2006). 

The challenges posed by detailed (fine-scale) delineation of source zone mass have also led to the 
development and application of averaged characterization metrics, such as DNAPL mass spatial 
moments, pool fraction, trajectory-averaged saturation statistics, and ‘source strength’,  that can 
represent the salient features of the mass distribution (e.g., Stroo et al. 2003; ITRC 2004; Jawitz et 
al., 2005; Christ et al., 2006; Saenton & Illangasekare, 2007; Chen and Jawitz 2009). Here, the 
hypothesis is that such metrics can be employed in upscaled mathematical models to predict source 
longevity and down-gradient flux evolution under natural or remedial conditions. Comparisons to 
laboratory data (Fure et al., 2006; Zhang et al., 2008; Christ et al., 2010; DiFilippo & Brusseau, 
2011) and field data history matching exercises ((DiFilippo and Brusseau 2008; Falta et al. 2005b)) 
suggest that such approaches may hold promise, particularly for use in screening remedial 
alternatives. 



Unfortunately, most laboratory treatability studies do not adequately mimic the mass transfer 
processes, such as rate-limited dissolution, diffusion and desorption, that control elution of 
sequestered mass and remedial system performance in a natural heterogeneous formation. Thus, 
such studies tend to overestimate potential treatment effectiveness. For example, a comparison of 
138 chlorinated solvent bioremediation field and laboratory studies revealed that median 
laboratory rate constants were consistently higher (up to one order-of-magnitude) than observed 
field rate constants (Suarez and Rifai 1999). The assumptions underlying the selection of a down-
hole treatability (DHT) methodology for this research are that: (a) even advanced assessment tools, 
such as molecular probes, fail to provide reaction rate information necessary to predict remediation 
extent in complex subsurface environments; and (b) the tool or method should provide information 
that is relevant at the field scale and can be readily incorporated into model(s) for simulation of
remediation performance and uncertainty assessment.

The above discussion highlights the urgent need for better field treatability test methods to predict 
potential remedial system performance and for the development of improved, cost-effective, field 
characterization methods and associated modeling tools that encompass all source zone mass and 
facilitate the identification of the most critical source zone properties that will govern mass 
persistence and the performance of remedial options.

Objectives

The overarching goal of this research project is to develop and demonstrate a remediation design 
and performance assessment protocol that can efficiently assess the suitability of a remediation 
technology and predict remedial performance (e.g., mass removal/destruction) and the uncertainty 
associated with such predictions. This protocol couples careful characterization of the contaminant 
source with down-hole treatability testing and mathematical modeling. The research directly 
responds to the following specific objectives in the SERDP Statement of Need:

Development of field measurements or methodologies that provide predictive capability of 
performance to reduce the uncertainty associated with long-term performance so that 
decisions can be made early in the remedial process to avoid years of suboptimal 
performance.
Development of field measurements or methodologies that provide data to optimize 
treatment if current operations are not expected to meet performance objectives.
Development of assessment procedures and methodologies that aid in the decision to 
discontinue operation of a technology and implement an alternative technology. 

The fundamental hypothesis of this work is that it is impossible to provide reliable predictions of 
remedial performance, and its associated uncertainty, without consideration of the complex 
coupling between contaminant transformation/reaction rates, contaminant mass distribution 
(spatial configuration and phase partitioning), and the processes influencing the accessibility of 
this mass (e.g., heterogeneous flow paths, diffusion). Although the project utilizes microbial 
reductive dechlorination as a representative in situ remediation technology, the developed protocol 
and associated modeling tools are applicable to other remediation technologies, such as monitored 
natural attenuation and chemical oxidation.

Technology Approach

The research approach involves coupling of site characterization, remediation performance 
assessment (reaction rates), upscaled model development, and numerical simulations of remedial 



performance and uncertainty. The study focused on a representative TCE-contaminated site (i.e. 
Commerce Street Superfund Site, Williston, VT) to facilitate the development, refinement and 
testing of protocols and software tools within the context of an actual field site.

To achieve its goal, the project was structured around three phases that addressed: (i) source and 
plume characterization, (ii) upscaled mass transfer and transformation rates, and (iii) field-scale 
reactivity and predictions of remedial performance. The project work plan is illustrated in Figure
1.

Figure E-1. Project work plan.

Phase I focused on the development and demonstration of methods/modeling tools to characterize 
the source zone for subsequent remedial design, implementation, and assessment. Here, the 
specific objective was to develop a protocol and software tools that employ measured field data to 
produce a representation of the subsurface source zone that captures the spatial distribution and 
uncertainty associated with key features (i.e., permeability, microbial activity/mass, and 
sequestered contamination [sorbed, immobile aqueous, and NAPL]) that control remedial 
performance. 

Phase II focused on batch and bench-scale laboratory testing, and upscaled mathematical model 
development to support the design and implementation of a field remediation strategy. Here, the 
performance of microbial reductive dechlorination was evaluated in aquifer cells that were 
representative of field conditions, and the resulting data were employed to develop and evaluate 
upscaled models to describe effective mass transfer and reaction rates.

Phase III focused on the estimation and application of effective rate parameters in field-scale 
remediation. In this phase, a downhole treatability test was conducted at the Commerce Street 
Superfund Site to estimate effective in situ transformation/reaction rates and to support the design 
and assessment of site remediation strategies.  Here a mathematical model, refined and validated 
in Phase II, was employed to estimate effective field transformation rates.  Estimated rates were 



then compared to batch- and aquifer cell-measured rates to shed light on the processes controlling 
remediation at the field scale. In addition, a traditional three-dimensional flow and transport 
simulator was adapted and employed, in conjunction with the source zone characterization and 
uncertainty results from Phase I, to propose an optimal sampling strategy coupling sensitivity 
analysis and uncertainty quantification. 
Results and Discussion

Phase I
A novel statistical approach was developed and implemented for the reconstruction of non-
aqueous phase liquid (NAPL) source zone realizations and the quantification of source zone 
metrics and associated uncertainty. This approach employed discriminative random field (DRF) 
models, originally introduced for computer vision applications, to model the spatial distributions 
and relationships among source zone properties (i.e. permeability, NAPL saturation and aqueous 
concentration distributions) consistent with commonly collected field data. Application of DRF 
models required a limited number of full-scale simulations to train the model parameters. Monte-
Carlo sampling methods based on these trained models then provided an efficient method to 
generate contaminant mass realizations conditioned on measured borehole, bypassing the need to 
run computationally intensive, PDE-based simulations of physical flow and transport. Post-
processing of these realizations yielded approximations of uncertainty to inform further sampling 
for characterization and remediation (Phase III). The reconstructed contaminant mass realizations 
provided sufficient information for calculating averaged characterization metrics, such as total 
contaminant mass and pool fraction (PF), used to predict source zone longevity, mass recovery 
behavior and remedial performance. The model performance was evaluated through comparisons 
of these predicted source zone metrics with those obtained from the ‘true’ mass distributions 
generated with validated flow and transport models. These comparisons clearly demonstrated that 
the trained DRF model can reconstruct realistic saturation and concentration fields conditioned to 
borehole data for a range of NAPL spill scenarios (see example in Figure E-2). The model was 
also shown to significantly outperform traditional kriging approaches in reconstructing NAPL 
mass distributions.

Figure E-2. Example output of BRAINS model for estimation of DNAPL saturation distribution profile 
in a heterogeneous formation.  Depicted output (d) is the average of 2000 realizations.

Selected Conclusions from Phase I:

A discriminative random field (DRF) model (BRAINS) was developed and implemented 
for contaminant source zone characterization and uncertainty quantification.  The DRF 
model is completely characterized by a small collection of parameters (w and v vectors). These 
parameters are determined through a ‘training’ process, employing a set of source zone spill 
data specific to the selected DNAPL contaminant and geologic environment.  Once the DRF 
parameters are determined, the model can be used to generate realizations of the DNAPL 



saturation and aqueous phase concentration using off-the-shelf Metropolis sampling methods. 
This methodology is far superior to Monte Carlo approaches, which require extensive flow and 
transport simulations to generate a similar set of realizations and cannot easily account for 
measured data. .

Ensemble averages over realizations of the DRF model represent the expected values for 
concentration and saturation fields, while the variances provide a quantifiable measure 
of the uncertainty associated with permeability and contaminant source zone. These 
uncertainty measurements were used in Phase III to identify optimal locations for further 
borehole sampling.

Model performance was assessed by comparing estimated and ‘true’ metrics for contaminant 
mass distributions in a structured heterogeneous unconsolidated depositional aquifer 
environment.  The trained DRF model produced realistic saturation and concentration 
fields, conditioned to borehole data for a range of NAPL spill scenarios (release rates, 
spill ages, pool fractions). Comparison with a traditional kriging approach clearly 
demonstrated the superiority of BRAINS in reconstructing DNAPL saturation 
distributions and associated DNAPL architecture metrics.

Phase II
Microcosms were provided with lactate and trichloroethene (TCE) to derive dechlorination rates 
in a batch system and one set was amended with SiREM KB-1®. Microcosm and batch reactor 
experiments demonstrated the need for bioaugmentation and biostimulation at the site to transform 
TCE to ethene. The native microbial population was capable of transforming TCE to cis-DCE 
using the dissolved organic carbon in site groundwater but completed the transformation more 
quickly when supplied with lactate as an electron donor. The absence of continued dechlorination 
in most reactors indicated a low population of Dhc harboring the RDase genes necessary to 
produce VC and ethene and a non-uniform distribution of organisms at the site. Bioaugmentation 
of reactors with KB-1® or BDI was successful, facilitating the transformation of TCE to ethene in 
an average of 37 days. A robust numerical model incorporating adsorption of contaminants to soil 
and partitioning into the bottle headspace was created to simulate microbial reductive 
dechlorination in the batch reactors and microcosms. The numerical model and Matlab fitting 
routine were able to match the chlorinated ethene and ethene concentrations observed in the KB-
1® bioaugmented microcosms, providing culture-specific yield coefficients and substrate 
utilization rates that were used in later modeling work.

Concurrently, an aquifer cell system was constructed with soil from the Commerce Street field 
site, loaded with TCE, and configured to mimic the field-scale downhole treatability test. The 
aquifer cell was provided with lactate and then bioaugmented with KB-1®. Effluent and side port 
measurements of volatile fatty acid concentrations, chlorinated ethene and ethene concentrations, 
and biomass abundance were used in conjunction with an enhanced version of the modular three-
dimensional multispecies transport simulator MT3DMS to explore effective bio-reaction rates 
(e.g., maximum substrate utilization rates ( ). This enhanced version of MT3DMS is capable 
of simulating anaerobic reductive dechlorination of multiple contaminants in heterogeneous 
environments, incorporating consumption of the carbon source by a competitor culture. Microbial 
reductive dechlorination is modeled with a modified Monod kinetic expression that accounts for 
limitations due to election donor availability and daughter product inhibition. Model simulations 
employing batch-measured rates provided a good prediction of aquifer cell behavior (average 



relative error of 19%) only when heterogeneity was explicitly modeled and TCE and cis-DCE 
inhibition of VC transformation was neglected (see Figure E-3). This result was attributed to 
spatial variations in microbial population and substrate availability created by the presence of 
physical heterogeneity. Comparison of simulation results for models employing both 
heterogeneous and uniform domain properties, incorporating the same domain size and 
transformation rate parameters, revealed that ethene production was underpredicted by the uniform 
property model. This result contrasts with literature reports of field-scale reductions in observed 
effective transformation rates. Coupling of laboratory observations with modeling results suggests 
that transformation to ethene varied spatially within the domain, primarily associated with low 
permeability layers (zones with longer residence times). This variation demonstrates the influence 
of local heterogeneity on dechlorination prediction accuracy. To investigate the effect of the 
residence time on dechlorination, the flow rate was reduced by 50%, increasing the proportion of 
ethene in the aquifer cell (molar basis) from 26% to 54%.

Also in this project phase, upscaled modeling was undertaken to develop solutions and correlations 
to quantify effective mass transfer coefficients that describe back-diffusion/desorption and 
bioenhanced NAPL dissolution under a range of heterogeneous formation conditions.

Figure E-3. Comparison between simulated and experiment effluent concentrations for chlorinated ethenes 
and ethene components. Competitive inhibition was neglected in this simulation.

Selected Conclusions from Phase II
• An industry-standard groundwater transport simulator, MT3DMS, was adapted to 

incorporate multi-order Monod kinetics coupled with a microbial growth model to 
account for biotransformation of multiple components by multiple microbial 
populations.

Bioenhanced desorption and back diffusion of chlorinated solvents play an important 
role in mass release in heterogeneous formations. For the examined experimental 
conditions, the magnitude of this enhancement was observed to vary spatially and temporally 
(from 6-55%), with the largest enhancement measured at interfaces with fine-textured, highly 
sorptive media.  These results demonstrate that bioenhanced desorption/back diffusion can 
significantly reduce plume persistence and remedial cleanup timeframes.



Temporal and spatial population shifts in the predominant strain of Dhc are observed 
with changes in electron acceptor abundance. These observations demonstrate the 
importance of maintaining a robust dechlorinating community harboring multiple RDase 
genes.  When the necessary genes are present, the microbial population is able to adapt to 
changes in electron acceptor availability associated with varying up gradient concentrations or 
the back diffusion of chlorinated ethenes from low permeability and highly sorptive materials.

Dhc cells are capable of penetrating low permeability porous media, including clays.

Observed aquifer cell microbial transformation rates were consistent with microcosm
(batch)-fitted values, when permeability variations were incorporated in the model. Thus, 
models must incorporate heterogeneity to make accurate predictions of dechlorination 

Competitive inhibition was found to be of little significance in heterogeneous-packed 
formations, attributed to microenvironments in the aquifer cell and differences in soil/water 
ratios between microcosm and aquifer cell experiments.

Accurate representation of sorption processes (i.e., extent, rate limitations, and 
nonlinearity) in transport models is crucial to the accurate prediction of plume longevity,
particularly for the prediction of post-DNAPL dissolution longevity; (de)sorption processes 
were observed to dominate the rate of mass release (back diffusion) to transmissive zones, 
following DNAPL dissolution.

An upscaled model was developed and parameterized to describe effective mass transfer 
(desorption) rates in three dimensional heterogeneous systems. This Multi-Rate Mass 
Transfer (MRMT) model, with two constant-in-time first-order rates, was shown to 
successfully reproduce breakthrough curves.  

A screening level model was developed and implemented to estimate bioenhancement of 
DNAPL dissolution. Nomographs were presented to facilitate graphical estimation of 
bioenhancement factor expressions for zero-order, first-order, and full Monod transformation 
kinetics as a function of the Péclet and Damköhler Numbers.

Phase III
A down-hole treatability (DHT) test was conducted at the Commerce St site and test observations 
were used, in conjunction with the enhanced MT3DMS model, to estimate effective in situ
biotransformation rate parameters. Simulations of the field pilot test, using aquifer cell-calibrated 
rate parameters that had been adjusted for temperature effects, resulted in an over-prediction of 
ethene production by a factor of 2. Model sensitivity analyses suggested that this discrepancy,
observed between laboratory and field transformation rates despite the comparable sizes of the 
aquifer cell and pilot test treatment zone, was associated with unmodeled heterogeniety in flow 
and biomass distributions. Similar to the behavior observed in the cell experiment, when the flow 
rate in the test zone was reduced by 50%, the observed proportion of ethene increased from 17% 
to 78% at the end of the treatment zone. These data demonstrate that controlling residence time is 
essential to completely detoxify TCE to ethene.  

Also in this project phase, adjoint sensitivity analysis was employed, in conjunction with a first-
order second-moment (FOSM) uncertainty analysis method, to develop a systematic approach to 
optimize borehole sampling for prediction of down-gradient flux-averaged concentration (FAC) 
evolution at a contaminated site. In this approach, an initial conditioned spatial distribution of 



contaminant mass is first generated by averaging realizations of the DRF model developed in 
Phase I.  The adjoint state method is then used to quantify the importance of local system properties 
on down-gradient FAC. The FOSM method, which uses linear approximations to directly 
propagate parameter and data uncertainties into system states via sensitivity matrices, is employed
to estimate the uncertainty of FAC predictions. Both permeability and source zone mass
compartments are treated as random variables to account for aquifer heterogeneity, flow 
irregularity, source zone morphology, and their interlinkages. Then in the decision process, data 
worth analysis is used to develop an optimal borehole sampling strategy by selecting additional 
measurements that yield the largest reduction in FAC uncertainty. The entire approach was 
implemented in the widely-used transport modeling platform MT3DMS to facilitate future 
adoption by practitioners and site managers. The utility of this approach was demonstrated using 
numerically generated, two-dimensional, heterogeneous DNAPL source zones. Results reveal that 
the model-guided sampling strategy recommends additional sampling locations that vary with the 
prediction time window; optimal borehole measurements are chosen further down-gradient for 
early time predictions, while up-gradient measurements have larger impact at later times. 
Locations with low permeability values and high DNAPL saturations are generally good potential 
candidates for additional measurements. Comparison of predictions associated with the optimized 
versus a uniform sampling approach reveals that the FOSM model yields better estimates of down-
gradient flux averaged concentration, associated with a significant reduction in variance. This 
innovative sampling strategy, coupling sensitivity analysis and uncertainty quantification, shows 
promise for enhancement of our ability to guide characterization of source zones under realistic 
field conditions.

Finally, in this phase, project results were integrated into a source zone remediation feasibility 
framework to guide practitioners on the use of the developed modeling methodologies (see 
description in next section).  This framework provides an efficient method to perform site 
characterization and obtain screening-level forecasts of site behavior, with and without 
implementation of treatment remedies.  Application of the framework to a realistic synthetic field 
scenario in Section VII.A. of the report demonstrated its feasibility and potential benefits during 
conceptual site model refinement and remedial site management.

Selected Conclusions from Phase III

A FOSM uncertainty analysis modeling framework was developed and implemented to 
estimate variance in predicted flux averaged concentration along a transect down 
gradient of a DNAPL source zone. The method honors borehole observations and enables 
consideration of the coupling among aquifer heterogeneity, flow irregularity, and source zone 
mass distribution (morphology). The FOSM model was coupled with data worth assessments 
and implemented in the modeling framework to guide acquisition of additional site data.

Application of the FOSM method to numerically generated, field-scale, source zone 
scenarios revealed that hydraulic conductivity variations and DNAPL saturation 
distributions tend to dominate FAC predictions.

Down Hole Test results were consistent with trends observed in the aquifer cell 
experiment. Bioaugmentation with KB-1® successfully provided a large, viable Dhc
population capable of transforming cis-DCE to ethene over the duration of the pilot test. 
Lactate pulses were rapidly fermented and provided a growth substrate to increase the Dhc
population. Growth stalled when the residence time was insufficient to increase the degree of 



cis-DCE dechlorination. A reduction in pumping rate, increased the extent of transformation 
of cis-DCE to ethene and allowed the Dhc population to continue to increase in abundance.

Implications for Future Research and Benefits

This research provides site managers, regulatory officials, and the scientific community with 
protocols and software tools to (a) efficiently characterize site conditions, (b) obtain relevant 
reaction rates and develop upscaled models, and (c) predict remedial performance and associated 
uncertainty. The developed models and their associated implementation protocols are equally 
applicable to any remedial technology whose application is hindered by interphase mass transfer 
limitations, i.e., by heterogeneity in formation properties and contaminant mass distributions.

A straightforward framework (Figure E-4) was presented for implementation of the developed
mathematical models for near-source site characterization and plume response prediction. This
framework couples the 2D BRAINS model with an existing upscaled mass transfer model
previously developed under SERDP sponsorship (Christ et al., 2010). The trained BRAINS model
is used to generate a set of 2D representations of contaminant mass distributions along a plume
centerline. These results enable the estimation of effective, or upscaled, parameters employed in
the screening model, as well as the estimation of the uncertainty associated with screening model
predictions.

Figure E-4 represents the work flow for site characterization and screening-level FAC assessment.
Here, once a DNAPL source zone site has been selected, available data on the site
geology/stratigraphy are collected and matched to a representative site subsurface permeability
model. The permeability models are then linked to a library of machine learning characterization
tools (i.e. BRAINS library).

After a site-matched characterization tool is obtained, BRAINS is employed, along with measured 
borehole data to estimate source zone metrics. This procedure requires only field-measured 
borehole data (permeability, saturation, sorption and aqueous concentration) as inputs, as well as 
some formation geostatistical characteristics. The first step in applying BRAINS to a real-word 
problem is to generate multiple realizations of the permeability field, conditioned on borehole 
measurements. Once the permeability realizations have been generated, the site-appropriate 
trained BRAINS model is applied to each permeability field to derive a set of equiprobable
realizations of contaminant mass distribution along the plume centerline. Here all realizations are 
conditioned available site data (saturations and aqueous and sorbed mass concentrations).

A set of source zone characterization metrics, such as DNAPL mass spatial moments and pool
fraction (PF), can then be calculated from the averages of the source zone (saturation and
concentration) realizations. This procedure provides a simple and straightforward approach to
predict the estimated range of characterization metrics across all equiprobable permeability
realizations. Once the ranges for source zone metrics have been estimated, the Protocol employs
an upscaled screening tool, presented by Christ et al., (2010), to predict mass recovery behavior.
Screening tool output can then guide preliminary site remediation decisions and future in-source
data collection. The case study presented in Section VII.A illustrates the used of this framework.

This research focused on the development and application of the BRAINS model for one
representative heterogeneous unconsolidated formation type in 2D cross section. Thus, it should
be viewed as a proof of principle for the application of this modeling approach and as the first step
in generating a 3D characterization tool (i.e. library of models). It is anticipated that, while the



developed features and model structure are robust, the BRAINS model itself will need to be
retrained for applications to different depositional environments. Future work should focus on the
development of such a library of trained models and on the design and implementation of a field
demonstration of the framework.

 



Figure E-4. Site Remediation Feasibility Protocol Flow Diagram 
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