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Abstract 

Objectives: This limited-scope project tackles the challenge for predicting water-cycle extremes 
in Texas and Oklahoma as severe as the 2015 and 2016 floods beyond seasonal timescale. The 
impact of extreme floods during spring and the hurricane season on Department of Defense 
(DoD) facilities has elevated, straining infrastructural limits and operational capability. The 
project’s main objectives are (i) tracking the 4-6-year ENSO (El Niño-Southern Oscillation) and 
teleconnections and (ii) characterizing uncertainty in the 4-6-year prediction, testing the 
hypothesis that predictability within the reportedly strengthened 4-6-year ENSO cycle and its 
teleconnection can be extracted to provide extended outlook for extreme flood risk. 

Technical Approach: We utilized long simulations produced by the Community Earth System 
Model (CESM) of the Large Ensemble Project (LEP) and observational data sets. Diagnostics of 
the LEP simulations of the 4-6-year ENSO cycle and its precursor patterns across the three major 
oceans were conducted to examine the evolution and regional impacts. Furthermore, an add-on 
analysis for Hurricane Harvey in the context of climate attribution and implication to prediction 
was performed. The guiding principle here is to understand the differing synoptic processes 
embedded in the large-scale variability. Extremely wet and dry seasons in Texas and Oklahoma 
were objectively identified within a global reanalysis, the CESM, and the suite of climate models 
from the Coupled Model Intercomparison Project (CMIP), and their connection with ENSO was 
evaluated. The synoptic elements that could either produce consecutive rainstorms or stall a 
tropical storm were investigated in the model projections, to assess their role in the prediction 
uncertainty. 

Results: The LEP simulations reveal stabile signal in the 4-6-year ENSO cycle with an amplified 
signal after 2010, suggesting increased predictability in the future, warmer climate. While both 
excessive precipitation and intense drought in Texas are projected to increase towards 2050, 
their association with the energized 4-6-year ENSO mode will likely strengthen and become 
increasingly predictable. However, groundwater storage in Texas and Oklahoma will likely 
decrease due to diminishing recharge caused by concurrent increases in drought, which offsets 
the effect of added rains. A greater implication of these results is that the alternation between 
excessive wet years and severe drought years will amplify. Prediction of ENSO impacts could be 
improved by capturing the western and north Pacific precursors showing strong air-sea 
interactions a year before a mature ENSO phase develops. These variations are manifest in the 
advection process of the sea surface heat budget, which acts in concert with the air-sea heat 
fluxes to foster ENSO development. However, these processes were compounded in the 
December 2015 Missouri flood, as the El Niño teleconnection interfered with the Madden Julian 
Oscillation, which contributes to uncertainty. Finally, through the analysis of Hurricane Harvey, 
we found that the stalling characteristics of tropical storms will enhance moderately, but 
prediction of hurricanes beyond a season is not feasible due to the lack of ENSO connection.   

Benefits: A physically based approach to anticipating extreme floods in Texas and Oklahoma was 
developed within this limited-scope project, one that could be straightforwardly adapted for 
other states and international bases. Project result implies an impending drought in 2018 and 
potential risk of widespread flood in 2019, along with a long-term outlook for water resources 
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planning.  Additionally, a mesoscale modeling approach adds value to quantifying extreme 
weather threat around Texas and Oklahoma, where precipitation is becoming more intense. 
Model data and forecast information generated within this project are made available through a 
public university’s webserver, to be widely available for DoD and civilian use.      
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1. Objectives 

This research project was developed in responding to RCSEED-17-01 call for proof of 
concept (2015), to target two of the five RCSEED Research Needs: modes of climate variability 
(#2) and using recent historical signals to update the non-stationarity of the climate signal (#4).  
After a year of execution, the project has yielded proof-of-concept results from analyzing the 
precursor of persistent weather patterns forced by traceable oceanic and atmospheric signals.   

The first objective of this project is Tracking the 4-6-year ENSO mode and teleconnections.  
Previous studies including those by the PI4,5 have linked an increasingly energetic 4-6-year 
frequency of El Niño-Southern Oscillation (ENSO) with a global propagation pattern in both the 
atmosphere and the oceans.  It is hypothesized that a diagnostics-based analysis can extract the 
extended predictability embedded within the full cycle of this energized 4-6-year ENSO 
frequency, as well as its teleconnection impacts on Texas.   

Our second objective targets Characterizing uncertainty in the 4-6-year prediction.  The 
uncertainty of long-range prediction for ENSO and its impacts on regional hydrologic cycle is 
challenged by the inability of coupled models in simulating the proper ENSO frequency.  Being 
able to diagnose model performance of this emerging type of ENSO and its various precursors 
will help characterize uncertainty when it comes to predicting the teleconnection pattern at 
different lifecycle of ENSO.  Uncertainty associated with random weather disturbances (like 
Hurricane Harvey) also requires investigation in the projection of extreme precipitation.   

 

2. Background 

This research was stimulated by the extreme flood in Texas during spring 2015, one of 
the many floods resulted from record rainfall produced by consecutive storms.  On the climate 
forcing, the 2015 event was linked to the combined effects of El Niño and Arctic variability, and 
events like that can potentially be forecast beyond seasonal time scale.  By contrast, the case of 
hurricane Harvey represents stochastic weather perturbations that can hardly be forecast more 
than a week ahead, but its climate drivers did show traceable climate change signals and are 
investigated as well.  The extent to which the current climate projection practice handles these 
two similarly devastating yet dynamically different deluge events, and what it means for DoD 
installation management, has not been addressed.   

The DoD operates many installations in Texas and Oklahoma and these states had seen 
several high-impact extreme events: Record drought in 2011 followed by 2015-16 floods, and 
Hurricane Harvey in 2017, causing severe damages and logistic problems in those installation 
sites.  These extreme events led the National Guard to mobilize various aircraft with a full extent 
of personnel and engineer units to assist in logistical support and rescue.  While some of the 
synoptic/climatic processes of such extreme precipitation could be predicted beyond weather 
timeframe, some are theoretically impossible to forecast.  As shown in Fig. 1 (left), the May 2015 
Texas flood resulted from a long-standing atmospheric “trough” channeling waves of rainstorms 
toward Texas (red arrow).  By contrast, Hurricane Harvey devastated Texas under a weak 
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atmospheric pattern (Fig. 1 right).  While long-term prediction of such tropical storms is difficult, 
their change in the projected climate scenarios and implication were investigated.  

 

        May 2015         August 2017 

   

 

Observational and modeling evidence suggests the existence of a prolonged, circum-
global propagation in tropical oceanic and atmospheric variables accompanying the ENSO 
evolution3.  Most studies focusing on the evolution and predictability of ENSO stressed the 
surface wind forcing and temperature anomalies up to two seasons in advance, but few explored 
the propagation features embedded in the energetic 4-6-year lifecycle of ENSO.  Even though 
ENSO evolution and precursors have been studied extensively6, the newly identified circumglobal 
propagations associated with ENSO could lend support to the development of long-term 
prediction beyond seasonal timescale.  This aspect was examined in this project. 

 Before Hurricane Harvey hit the U.S. state of Texas in August 2017, heavy precipitation 
events of non-hurricane origins have already caused multiple floods since April 2015 with 
devastating consequences. The May 2015 flood resulted from over 400 mm above-normal 
rainfall falling on Texas and, subsequently, the May 2016 flood took 12 lives and caused historic 
river levels, making it the fifth major flood event and the second 500-year flood in the Houston 
area. The synoptic conditions associated with the spring floods in 2015 and 2016 are not too 
distinct from each other, both featuring a quasi-stationary trough west of the southern Great 
Plains generating short waves and squall lines1. The developing El Niño in May 2015 further 
deepened this quasi-stationary trough while enhancing the low-level jet4. Global warming acted 
to strengthen the El Niño teleconnection7,8 that affects the southern Great Plains. Hurricanes 
such as Harvey produce excessive rainfall and have led to flood, but such weather systems are 
random in nature and linking them to large-scale forcing is difficult9. 

The recent succession of floods in Texas could lead to oversight of the risk in severe 
drought. Not too long ago in 2011, Texas underwent the worst 1-year drought on record10 with 
unprecedented heat waves11. Both the strong La Niña and anthropogenic warming played a role 
in the severity and increased probability of this drought12, an opposite pattern of the El Niño-

Å Fig. 1 (left) Ocean and 
atmosphere-forced flooding in May 
2015 associated with a standing 
upper-level trough creating month-
long heavy rains, versus (right) an 
upper-ridge or “fair weather” 
condition in which Hurricane Harvey 
was stalled over Texas in August 
2017 producing consecutive days of 
extreme rainfall.  [Author generated 
figures] 
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enhanced 2015 flood. In late 2017, the NOAA Climate Prediction Center (CPC) indicated a 70% 
chance for a La Niña to develop through February 2018, prompting an anticipation of a drought 
to develop over the Texas region.  This project published a paper in early 20181 about a possible 
“comeback” of drought near Texas and the most recent (August 2018) Palmer Drought Severity 
Index as shown in Fig. 2 does verify the emergence of drought. This result implies a short-term 
climate prediction in the face of recent La Niña and a longer-term outlook for water resources 
planning. Thus, we decided to evaluate climate model predictions of Texas’ water cycle extremes 
represented by excessive wet spring and severely dry summer and associated impact on 
groundwater.   

 

 

3. Materials and Methods 

Earlier climate models are primarily biased with a pronounced biennial frequency and 
most fail to produce the observed propagation features, either local or global13,14.  Pilot study of 
this project has identified a few newer models that are capable of simulating the propagating 
evolution of ENSO3.  One of the good performers is the Community Earth System Model (CESM) 
and it also simulates well the ENSO teleconnection impact on Texas1,4.  Thus, CESM was chosen 
to be the modeling tool of this project. 

We utilized large ensembles of long runs produced by the National Center for 
Atmospheric Research (NCAR) using the CESM v115, given its published performance on the 
ENSO frequency and teleconnection over North America4,16.  The CESM Large Ensemble Project 
(LEP) was designed for studying internal climate variability and climate change.  The stability of 
the 4-6-year ENSO cycle and associated impacts on Texas and vicinity have been examined in 
these simulations1,17.  Modern-era global reanalysis data and other data sets including the 
Extended Reconstructed Sea Surface Temperature (ERSST v5) and NOAA's Precipitation 
Reconstruction over Land and over ocean were used.  The LEP produced wo periods of data: 
1920-2005 with all external forcing and 2006-2080 with RCP8.5 forcing (the range of radiative 
forcing increase at 8.5 W/m2 per year till the year 2100 relative to pre-industrial values).  To 
provide a baseline performance measure and for attribution analysis, we also included 17 
models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical single-
forcing experiments.  Other observational data sources include the NCEP/NCAR Reanalysis 
starting in 194818 in order to analyze interdecadal changes. Other datasets include the Extended 

Å Fig. 2 Drought map of August 9, 2018 obtained from 
http://droughtmonitor.unl.edu/ indicating the emergence 
of drought in Texas and the surroundings, which was 
predicted almost a year ago in a project paper1. 

http://droughtmonitor.unl.edu/
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Reconstructed Sea Surface Temperature (ERSST, v3b) derived from the International 
Comprehensive Ocean–Atmosphere Dataset19 for the ENSO indexing, and the NOAA 
Precipitation Reconstruction over Land (PREC/L) gridded product of 0.5° degree resolution20. 

To quantify uncertainty in the projection of near-future ENSO teleconnection and 
impacts on Texas, we compared the monthly Niño-3.4 index with mean precipitation and 
frequency of extreme precipitation for different periods.  All data within either period was 
detrended to minimize the effect of any interdecadal cycle or forced trend.  Additional analysis 
was performed using the CESM LEP for different time slices in order to gauge uncertainty range 
while examining the effect of global warming on regional climate response.   

 

4. Results and Discussion 

Project results demonstrate potential predictability of the water cycle extremes in Texas 
and Oklahoma at long (> 2 years) lead time, through the pathway of a projected strengthening in 
the link with the 4-6-year ENSO mode.  A webpage was developed to provide preliminary 
prediction information of extreme flood risk in Texas, out to three years (2018-2020). 

a. Extreme water cycles: deluge vs. drought 

In terms of climatology, CESM-LE captured the spring rainy season but underestimates 
the secondary rainfall peak in fall. Overall, precipitation in Texas and Oklahoma is projected to 
increase throughout the year with a larger increase in spring (April-June), in which the increased 
precipitation amounts to 15-20% by the end of 21st century1. Subsequently, we examine the El 
Niño impact on Texas’ spring precipitation based upon the precipitation composites. The analysis 
during 1950-1995 (Fig. 3a) shows anomalous precipitation over southeastern Texas and part of 
Oklahoma and Louisiana. In the near-future simulations (Fig. 3c) and the historical simulations 
(Fig. 3b), there is a marked increase in the ensemble mean precipitation composite difference 
between El Niño and La Niña in Texas and Oklahoma. In terms of the changing teleconnection 
associated with ENSO, Figs. 3e and 3f show the CESM-LE geopotential height differences at 250 
hPa; these are generally in agreement with the observed pattern in Fig. 3d including the synoptic 
trough west of Texas. The El Niño-enhanced low-pressure anomaly west of Texas is increased by 
about 35% during 2010-2060 under the climate warming (Fig. 3f), while the broad-scale 
teleconnection pattern remains similar to the historical simulations (Fig. 3e).  

 By examining the sliding correlation between spring precipitation anomalies in Texas and 
the ENSO cycle from the observation and CESM LEP data (not shown), we found a clear decadal-
scale fluctuation in the observation with a more pronounced increase after year 2000.  The 
CESM produces a gradual increase and it becomes persistently significant after 2000 at the 95% 
level.  These results echo the observation that Texas’ spring precipitation response to the ENSO 
evolution has intensified and this trend is projected to continue.  A greater implication is that the 
alternation between excessive wet years and severe drought years will amplify and, as our 
following analysis will shows, such an alternation between flood and drought atmospheric 
precursors is potentially predictable. 
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↑Fig. 3 Precipitation differences (∆P) between the El Nino and La Nina composites (see text) 
during the April-June seasons of (a) 1950-1995 from the observation data and the CESM-LE 

ensemble mean during (b) 1940-1985 and (c) 2010-2060; blue contours outline the 
significance level of p<.001.  (d)-(f) Similar to (a)-(c) but for the 250hPa geopotential height 

difference (∆Z) from reanalysis and CESM-LE data for the same periods.  The letter L indicates 
low-pressure anomaly centers and H indicates high pressure. [ Figure adopted from the 

project publication of Yoon et al.1 ] 

 

To quantify the effect of the changing ENSO teleconnection on the extreme wet/dry 
spring and summer in the SGP, we computed the frequencies of (a) back-to-back wet springs 
consisting of spring precipitation anomalies greater than 1 standard deviation occurring in two 
consecutive years, (b) same as (a) but only for those occurring with an El Niño winter in between, 
and (c) reversal of (b) for consecutive two dry summers with the JAS precipitation deficits 
occurring with a La Niña winter in between. In the observation, the period of 1985-2015 exhibits 
a distinctly higher frequency in all three cases than the earlier 30 years. Meanwhile, the CESM-LE 
projects an almost linear increase in both the El Niño associated wet springs4 and the La Niña 
accompanied dry summers toward the end of the 21st century1.  
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The effect on groundwater storage resulting from the aforementioned concurrent increase in 
drier summers was also examined.  Based upon CESM LE’s groundwater recharge and infiltration 
outputs, together with other surface variables that comprise the terrestrial water budget, the 
trends of the 2006-2100 period were computed.  The simulated groundwater storage anomalies 
(Fig. 4) indicate a significant decrease with a rete of -2.3 cm/decade in the future, with most 
ensemble members falling below zero after 2040.  This 
particular analysis shows that the decline in the 
recharge rate is profound as the recharge will have 
become deficit after 2020.  While an increase in annual 
precipitation is projected in Texas, surface 
evapotranspiration plays a substantial role in affecting 
the terrestrial water budget.  We show that the 
increased rate of evapotranspiration exceeds the rate 
of precipitation minus surface runoff, leading to a 
smaller infiltration and this reduces the groundwater 
recharge and soil water, amounting to a significant 
decrease with a rate of approximately -1.5 cm per 
decade in the future1.  This result has implication to 
the design and maintenance of military installations 
that rely on groundwater resource, an information 
that is additional to coping with flood risk. 

 

b. Synoptic processes of extremes rainfall “cases” associated with ENSO 

In the same year of the 2015 Texas flood, three days of extreme rainfall in the middle of 
the Mississippi River during late December led to massive winter flooding in Missouri.  Given its 
close proximation with the great spring (and fall) flood in Texas, the meteorological context of 
this event was analyzed through synoptic and ENSO diagnoses for the precipitation event’s 
severity21.  The synoptic waves that induced the extreme precipitation and ensuing flooding 
were traced to the Madden Julian Oscillation (MJO), which amplified the trans-Pacific Rossby 
wave train likely associated with the strong El Niño of December 2015.  Though the near 
historical El Niño contributed to a quasi-stationary trough that induced the high precipitation 
event, a constructive interference between the MJO and El Niño teleconnections resulted in a 
relatively weak atmospheric signature of the El Niño.  The influence of anthropogenic climate 
change on the relationship between ENSO and precipitation across central U.S. was revealed 
from CMIP5 models.  Our analysis21 indicates that a regime change in ENSO-related precipitation 
anomalies has occurred, from being negatively correlated before 1950 to significantly positive 
correlations after 1980; this decadal change suggests an effect of anthropogenic warming on the 
December 2015 deluge in the southern plains.  To assess subseasonal predictability, a forecast 
attribution analysis was conducted using NOAA’s Climate Forecast System.  Further examination 
of the MJO's prediction skill shows that the model realistically simulated the spatial patterns and 
propagation associated with the MJO during December 2015 up to about 20 days in advance 
with varying prediction skill in different phases of the MJO21.  This particular study corresponds 

Fig. 4 CESM LE’s groundwater storage 
anomalies over Texas relative to 2006 values 
in the ensemble mean (line) and model 
spread (shading). [ from Yoon et al.1 ] 
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to the SEED Statement of Need #4 Using recent historical signals to update the non-stationarity 
of the climate signal and it complements the ENSO teleconnection analysis for Texas.  It is 
concluded that the response of precipitation in the southern U.S. to ENSO can be enhanced 
owing to a warming climate, and we suggested a pathway from which this happens, i.e. the MJO 
teleconnection compounded by pronounced ENSO phases and its link to the forecast of tropical 
seasonal variations. 

Given the recent extreme flooding in Texas brought about by Hurricane Harvey, we also 
analyzed this severe precipitation event17.  Harvey was the first land-falling Category 4 hurricane 
to hit Texas since Hurricane Carla in September 1961 and it occurred in the absence of any 
significant ENSO phase.  While its intensity at landfall was notable, most of the vast devastation 
in the Houston metropolitan area was due to Harvey stalling near the southeast Texas coast over 
several days.  As was reported in the project publication17, Harvey’s long-duration rainfall event 
was reminiscent of extreme flooding that occurred in the neighboring state of Louisiana in 2016: 
both were caused by a stalled tropical low-pressure system encountering an approaching low-
pressure trough from the north.  To quantify uncertainty in the attribution of Harvey’s rainfall, 
we used a mesoscale atmospheric model forced by constrained boundary and initial conditions 
that had their long-term climate trends removed.  The removal of the various trends of the 
boundary and initial conditions minimizes the effects of warming in the air and the ocean surface 
on Harvey.  The 60-member ensemble simulations using a mesoscale model suggest that post-
1980 climate warming could have contributed approximately 20% to the extreme precipitation 
that fell on southeast Texas during 26-29 August 2017, with an interquartile range of 13-37%.  
This downscaling approach affords the closest means possible of a case-to-case comparison, 
complementing the more common statistics-based event attribution.  Further analysis using the 
CESM LE to track Harvey-like, stalled tropical low-pressure systems indicates an increase in storm 
frequency and intensity over southeast Texas through 2050.  While the intensification in storm 
precipitation can be attributed to increased moisture content in the warming troposphere, the 
increase in storm frequency has some dynamical implication in the changing midlatitude jet 
stream pattern22. 

 

c. Characterizing the 4-6-year ENSO propagation processes  

We examined the large-scale dynamics of ENSO through the identification and tracking of 
the so-called conduits or precursor patterns in sea surface temperature (SST) and wind anomaly 
fields that precede an ENSO event.  A chapter of the Ph.D. Dissertation2 was devoted to explore 
this aspect.  It is known that higher latitudes forcing act through certain conduits or precursor 
patterns, and they in turn trigger ENSO.  These types of precursors have an ocean temperature 
component either at the surface or subsurface, tapping into the high heat capacity and slow 
ocean thermal inertia that aids in predictability.  The dissertation2 examined the relationship 
between two North Pacific ENSO precursor patterns, i.e. the Western North Pacific (WNP) mode 
and the Pacific Meridional Mode (PMM) and their dynamical evolution, by decomposing (i) the 
ocean mixed layer heat budget equation and (ii) the vertical mass of the Walker circulation.  It is 
found that, unlike the PMM, the WNP precursor is strongly linked with air-sea heat coupling and 
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ocean advection in the western and equatorial North Pacific; these processes favor the initiation 
of ocean Kelvin waves favorable for the development of El Niño about a year ahead.  In 
comparison to the PMM, the WNP is more strongly linked to the Pacific Walker circulation, an 
inherent part of ENSO variability, and tends to last for a longer time than PMM (i.e. making it 
potentially more predictable).   

The processes encompassing the evolution for these two North Pacific ENSO precursors 
(PMM vs. WNP), as well as their differences, were subsequently studied using the forcing terms 
of the SST heat budget and diagnostics of the Pacific Walker Circulation variation based on the 
zonal mass stream function.  The result indicates that the WNP (PMM) shows strong air-sea 
interactions a year (about two season) before the development of a mature ENSO.  As shown in 
Fig. 5, these ENSO precursors are manifest in the advection term of the SST heat budget, which 
acts in concert with the air-sea heat fluxes to foster ENSO development.  These results explain 
why the peak correlations of wintertime WNP (PMM) with ENSO is maximum at about 4-5 
seasons (3 seasons) in advance.  The CESM LE analysis replicates a part of the precursors, but 
more so in the WNP than the PMM (result not shown).  However, WNP does exhibit a stronger 
persistence which translate to potential longer lead time in ENSO prediction.  An earlier study23 
has indicated that this WNP connection with ENSO will likely strengthen in the warming climate. 

 

 

d. Preliminary prediction for Texas’ extreme flood risk   

Given the outcome of the proposed research1,3,4, we took the initiative and built a 
webpage to demonstrate the prediction framework based upon the Indian Ocean→Western 
Pacific→subtropical North Pacific route of ENSO precursors as proposed3, as well as the 
teleconnection from each ENSO phase4,16.  As shown in Fig. 6 (top), two “decision tree models” 
were tested using the ERSSTv5 data. “Decision tree” is a decision support tool that uses a tree-
like graph or model of decisions and their possible consequences, including the chance of event 
outcomes.  A decision tree model, in the theories of computational complexity and 
communication complexity, describes the computation or communication process in which an 
algorithm is developed to sequence the branching of operations based on comparisons of some 
quantities.  Fig. 6 (bottom) shows the webpage hosting the “flood risk” prediction outputted 
from these decision tree models.  There, “High Risk” indicates spring precipitation anomaly in the 

Í Fig. 5 Lead/lag regression between ENSO 
precursor indices (WNP and PMM) and air-
sea fluxes (10-6 oC s-1) meridionally averaged 
across 5°S- 5°N with data spanning 1950 to 
2015. The strongest anomalies of both the 
equatorially-averaged air-sea heat fluxes and 
advection lead the WNP by about 1-2 season. 
[ Adopted from Fosu2 ] 
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state of Texas reaching at least 180% above normal, based upon SST anomaly at certain region 
during certain time.  Likewise, Medium Risk (or MidRisk) indicates 90% above normal, while 
“normal” indicates within 30% of the climatological mean, allowing for a 1-3-year prediction of 
Texas’ spring extreme flood risk.  Note that the most current prediction suggests a heightened 
flood risk in the spring of 2019.   

 
https://earth.climate.usu.edu/service/floodingModel.php (currently under VPN restriction) 

 

 

 

e. Limitations and caveats to project methodology and results 

One has to consider that even a sophisticated model like the CESM remains a limited tool 
to understand the complicated atmospheric dynamic processes involving interannual variation, 

Í Fig. 6 (top) The “decision-tree” 
model concept used to predict 
extreme flood risks up to 3 years 
in advance (2018-2020), using SST 
anomalies of varying seasonal lags 
according to publications1,3 that 
define the SST information. This 
PI-generated image was 
presented at the Nov 2017 SERDP 
Symposium in D.C.  (bottom) A 
preliminary webpage embedded 
in the Utah Climate Center, 
illustrating an elevated flood risk 
for spring 2019 as predicted by 
the consensus of the above 
decision-tree models. This 
website is not yet open for public 
access. 

https://earth.climate.usu.edu/service/floodingModel.php
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global warming and embedded weather extremes. Our initial prediction developed from Wang 
et al.3,4 as shown in Fig. 6 is completely empirical (based on decision-tree models with observed 
information, not yet the dynamic computation).  Therefore, improving the prediction still 
requires independent evaluation of climate model hindcast (forecasts of the past) produced 
from operational forecast systems to assess dynamical predictability. In terms of the prediction 
for tropical storms, which is an essential part for the future climate of Texas, we caution that the 
projection and attribution results found in Wang et al.17 may differ by model and by the physics 
schemes used, and its estimate from the downscaling attribution is by no means absolute. Our 
purpose here is not necessarily to provide a definitive number but rather to propose a way to 
provide a more quantitative measure of extreme precipitation – i.e. quantifying uncertainty.  

 

5. Conclusions and Implications for Future Research 

Objective 1 “Tracking the 4-6-year ENSO mode and teleconnections”: The present research 
investigated the large-scale climatic processes (from ocean and the atmosphere) in the 
occurrence of extreme seasonal precipitation, while examining the compounding factors 
involving cross-scale interactions in producing Harvey-like extreme flood.  Our analysis shown 
here takes into account that the post-1980 warming is not simply due to anthropogenic causes 
but also involves natural climate variability and random weather systems.  Echoing our finding, a 
recent study24 based on CO2 and ENSO as covariates also found that human-induced climate 
change likely increased Harvey's precipitation in the Houston metropolitan area by 40% with a 
lower bound estimate of 18%.  We note, however, similarly to what they acknowledged in their 
paper, that other natural modes of variability such as the Atlantic SST anomaly may be 
responsible for some of the increased SST in the Gulf of Mexico.  These are compounding factors 
that complicate the ENSO-forced variability in Texas and Oklahoma, though our preliminary 
experiment did indicate potentially skillful prediction of Texas’ extreme-flood risk (Fig. 6).   

Objective 2 “Characterizing uncertainty in the 4-6-year prediction”: Our project that analyzed 
CESM LE and CMIP5 simulations of the future extreme wet and dry seasons and their association 
with the strengthened ENSO teleconnection under global warming indicate that both intense 
drought and excessive precipitation will increase towards 2050 with a relatively small inter-
model spread. These findings imply that one can take advantage of the recent improvement in 
ENSO prediction to further the development of long-lead prediction of ENSO’s regional climate 
impact, especially for Texas and vicinity where the signal is robust.  Despite the projected 
increase in annual precipitation, groundwater storage is anticipated to decrease with diminishing 
groundwater recharge; this is primarily due to the projected increase in summer heat that 
reduces infiltration. The alternation of wet-dry seasons associated with ENSO can offset the 
effect of increased precipitation in the long run. Moreover, preliminary CESM analysis projecting 
stalled storms over Texas, in conjunction with recent analyses of a similarly stalled storm in 
Louisiana22, signifies an increasing trend in the number of similar synoptic patterns and 
stationarity to that accompanying Harvey. This prediction information implies increased duration 
of heavy rainfall events in the future, despite CESM’s relatively coarse resolution that could 
undermine rainfall intensity. 
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Implication for future research 

Important DoD assets are located in areas where spring rainstorms and hurricanes are 
evidently becoming more intense, with implication to extreme rainfall and flood risks. Explicitly, 
the coastal area of Texas where naval bases and airbases are located seems to be one of the 
most affected facilities in the region. The approach of using process-based prediction for the 
extreme water cycle coupled with ENSO can graphically express changes in flood risk in a manner 
that is easily relatable to DoD operational decision-making criteria, such as for issuance of 
weather watches and warnings.  For a better representation of organized convective systems like 
hurricanes, the US Climate Variability and Predictability Program (CLIVAR) suggests future 
research to consider utilizing convective permitting modeling that shows superior performance 
in warm-season convection25. We thus call for a careful reevaluation of the projection of both 
tropical cyclones and spring mesoscale convective systems that may become more frequent, 
more stalled, and more intense in the future.  

In the face of more information coming out of such modeling assessment, it is equally 
important to examine human cognitive biases in facing climate risk, given the increasing sources 
of prediction information.  Thus, in recommending for a future project, key objectives should 
include (A) furthering the development of long-lead climate prediction for extreme flood, 
drought and heat, (B) developing regional prediction products at proper spatial resolution that is 
useful to military installation sites, and (C) communicating to incentivize management agencies 
for preparatory actions with emphasis on impacts rather than probability. Potential activity and 
collaboration of the objectives are identified as follows:   

Next-Objective (A): explore the physical processes enabling decadal prediction for extremes 

The task for developing long-lead climate prediction will involve understanding of the 
interactions between the 4-6-year ENSO cycle and the low-frequency Pacific and Atlantic 
climate modes, including the less known Pacific Quasi-Decadal Oscillation (QDO)26,27.  The 
Pacific QDO’s transition phase between extreme warm and cold in SSTA can induce 
impactful teleconnection patterns that significantly modulate the U.S. hydroclimate28, as 
we had reported on the Great Missouri River flood29.  As recent as 2018, a similar 
approach based on low-frequency climate variability concerning ENSO has been applied 
to accessing Mississippi River’s river engineering and how it impacts flood hazard30.  This 
task will be conducted primarily by the PI’s group at Utah State University. 

Next-Objective (B): analyze past/future conditions at high resolution for specific sites  

Any useful prediction information of climate needs to be interpreted to proper 
geographical boundary that is meaningful to installation management.  To produce 
physically sound interpretation of climate risks (dynamic downscaling), high-resolution 
computer modeling is necessary in order to quantify any risk level at certain locations.  
This task will be joined by the 2017 SERDP Project of The Year (RC-2205) team led by Dr. 
Christopher L. Castro of University of Arizona, to produce dynamically downscaled 
prediction for the risk of extreme events.  The PI has collaborated with Dr. Castro in the 
past three years and together they serve in the U.S. CLIVAR’s Predictability, Predictions, 

https://serdp-estcp.org/Program-Areas/Resource-Conservation-and-Resiliency/Infrastructure-Resiliency/Vulnerability-and-Impact-Assessment/RC-2205
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and Applications Interface Panel (https://usclivar.org/panels/ppai), a national research 
program that fosters understanding and prediction of climate variability.  By teaming up, 
Dr. Castro and the PI will investigate how the predicted change in the atmospheric 
environment of next 2-5 years affect Texas’ rainy season (pattern change and storm 
behavior) extracted from global climate models using convective-permitting models. 

Next-Objective (C): communicate to develop information requirements by discipline and location  

This task is focused on avoiding the recently found five “decision biases”31 that interfere 
with management’s ability to minimize installation damage: (1) spatial myopia, (2) poor 
mental model of risk, (3) gaps between objective and subjective probability estimates, (4) 
prior event experience, and (5) political factors.  These biases can only be reduced 
through effective communication linking a predicted risk with the perceived risk.  The PI 
will work with a journalism professor, Dr. Matthew D. LaPlante (hyperlink) of Utah State 
University, who is ex-Navy and has done combat correspondence and veterans affairs 
reporting.  Specialized in “crisis communication”, Dr. LaPlante will analyze the prediction 
information versus historic/perceived events and then, tailor the prediction information 
into consequential impacts for practitioners to weight in; this will help mitigate cognitive 
biases that come into play on long and short time scales when managers make 
preparation decisions31.  We will offer a framework for improved decision making in the 
face of the above five biases to reduce vulnerability to extreme events.  Dr. LaPlante is 
best for this task for his professional work experience in international crises, military 
issues, and science, reported from a dozen nations including Iraq. 

 

Affirmation of final report 

The information presented in this interim technical report represents an accurate reporting of 
the most pertinent research results obtained in Project RC-2709 (Limited Scope) in relation to 
the originally proposed work, to the conclusion of funding period of this project. 

 

 

Simon S.-Y. Wang, Ph.D. 

Principal Investigator  

https://usclivar.org/panels/ppai)
https://journalism.usu.edu/faculty/directory/matthew-laplante
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Abstract
The US state of Texas has experienced consecutive flooding events since spring 2015 with devastating
consequences, yet these happened only a few years after the record drought of 2011. Identifying the
effect of climate variability on regional water cycle extremes, such as the predicted occurrence of La
Niña in winter 2017–2018 and its association with drought in Texas, remains a challenge. The present
analyses use large-ensemble simulations to project the future of water cycle extremes in Texas and
assess their connection with the changing El Niño–Southern Oscillation (ENSO) teleconnection
under global warming. Large-ensemble simulations indicate that both intense drought and excessive
precipitation are projected to increase towards the middle of the 21st century, associated with a
strengthened effect from ENSO. Despite the precipitation increase projected for the southern Great
Plains, groundwater storage is likely to decrease in the long run with diminishing groundwater
recharge; this is due to the concurrent increases and strengthening in drought offsetting the effect of
added rains. This projection provides implications to short-term climate anomaly in the face of the La
Niña and to long-term water resources planning.

1. Introduction

Before Hurricane Harvey hit the US state of Texas
in August 2017, heavy precipitation events of non-
hurricane origins have already caused multiple floods
since April 2015 with devastating consequences. The
May 2015 flood resulted from over 400 mm above-
normal rainfall falling on Texas (Wang et al 2015).
Then, the May 2016 flood took 12 lives and caused
historic river levels, making it the fifth major flood
event and the second 500 year flood in the Hous-
ton area. As shown in figure 1(a), the precipitation
anomaly over the 13 months from May 2015 through
May 2016 reveals a marked increase centered around
Oklahoma, which is the upstream of many rivers that
run through the southern Great Plains (SGP). The
timing of these recent spring floods coincides with
SGP’s rainy season (figure 1(b)). Starting in April, a

‘spring trough’ develops west of the SGP and it inter-
acts with the developing low-level jet (LLJ) to form the
convergence of moisture fluxes (Helfand and Schu-
bert 1995), leading to the May–June rainfall peak over
the SGP (Higgins et al 1997, Wang and Chen 2009).
The synoptic conditions associated with floods in 2015
and 2016 during April–June (AMJ, defined for spring)
are not too distinct from each other, both featuring a
quasi-stationary trough west of the SGP (supplemen-
tal figure S1 available at stacks.iop.org/ERL/13/054002/
mmedia) generating short waves and squall lines. In
May 2015, the developing El Niño further deepened
this quasi-stationary trough while enhancing the LLJ
(Wang et al 2015). Global warming acted to strengthen
the El Niño teleconnection (Meehl and Teng 2007,
Stevenson et al 2012) that affects the SGP. Hurricanes
such as Harvey also produce excessive rainfall and can
lead to flood, but these weather systems are random
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Figure 1. (a) Annual mean precipitation anomalies of May
2015 through May 2016 from the climatology (mm/day).
(b) Monthly precipitation averaged in the SGP as outlined
in (a) for the climatology (gray bar) and the 2015–2016 period
(open blue bar), repeated for one more annual cycle for illus-
tration. (c) Similar to (b) but for the CESM LE precipitation of
the historical period (gray bar) and future period (open bar);
the ensemble spread is overlaid with the second annual cycle
as the box plot.

in nature and linking them to large-scale forcing is
difficult (van Oldenborgh et al 2017).

The succession of the post-2014 floods in Texas
could lead the society into overlooking the risk in the
comeback of severe droughts. In 2011, Texas under-
went an intense drought and associated heat waves that
was unprecedented (Nielsen-Gammon 2012) making
it the worst 1 year drought on record (Fernando
et al 2016). Both the strong La Niña and anthro-
pogenic warming played a role in the severity and
increased probability of this record drought (Rupp et al
2012), suggesting that the El Niño-related 2015 flood
is the opposite pattern of the 2011 drought. Given
the robust influence of the El Niño–Southern Oscil-
lation (ENSO) on the SGP’s precipitation (Lee et al
2014, Liang et al 2014, Liang et al 2015) and the
role of global warming in strengthening this ENSO
influence (Rupp et al 2012, Stevenson et al 2012,

Wang et al 2015), it is reasonable to anticipate a drying
tendency, or even drought, to occur over the SGP in
the face of a (future) La Niña event.

As of November 2017, the NOAA Climate Pre-
diction Center (CPC) indicated a 70% chance for a
La Niña to develop through February 2018. Given the
emergence of this La Niña event, we decided to analyze
the risk of severe drought to occur in the SGP, similar to
that of the 2011 condition, and evaluate climate model
projections of its water cycle extremes represented by
excessive wet season and severe drought.

2. Data sources

Forty members of climate simulation were produced
by the Community Earth System Model version 1’s
Large Ensemble Project (CESM-LE) with spatial reso-
lution of 0.9 degrees longitude x 1.25 degrees latitude
(Kay et al 2015). The simulations cover two periods:
(1) 1920–2005 with historical forcing including green-
house gases, aerosol, ozone, land use change, solar and
volcanic activity, and (2) 2006–2080 with RCP8.5 forc-
ing (Taylor et al 2012). The ensemble spread of initial
conditions is generated by the commonly used ‘round-
off differences’ method (Kay et al 2015). CESM-LE
was used here partly because it performs well on the
depiction of the ENSO cycle and its teleconnection
over the North Pacific and North America (Wang et al
2015, Yoon et al 2015). Of note, the land surface model
used in the CESM-LE does not include the process of
anthropogenic groundwater withdrawal.

For observational data, we use the NCEP/NCAR
Reanalysis (R1) (Kalnay et al 1996) that starts in 1948
inorder to analyze interdecadal changes. Other datasets
include the Extended Reconstructed Sea Surface Tem-
perature (ERSST, v3b) derived from the International
Comprehensive Ocean–Atmosphere Dataset (Smith
and Reynolds 2003) for the ENSO indexing and
the NOAA Precipitation Reconstruction over Land
(PREC/L) gridded product (Chen et al 2002) of 0.5◦

degree resolution.

3. Results

Based on the SGP domain outlined in figure 1(a),
the CESM-LE simulation of the region’s monthly pre-
cipitation is shown in figure 1(c) for the historical
(1940–1985) and a ‘near-future’ (2010–2060) peri-
ods. In terms of climatology, CESM-LE captured the
spring rainy season but underestimates the secondary
rainfall peak in fall. Overall, precipitation in the SGP
is projected to increase throughout the year with a
larger increase in spring (April–June or AMJ), in
which the precipitation increase amounts to 15%–
20%. Subsequently, we examine the El Niño impact
on the SGP’s spring precipitation based upon the pre-
cipitation composites; this is determined by the sea
surface temperature anomalies (SSTA) of the NINO3.4

2
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Figure 2. Ensemble precipitation differences (P) between the El Niño and La Niña composites (see text) during the April–June seasons
of (a) 1940–1985 and (b) 2010–2060; the blue contours outline the significance level of p< .001. (c)–(d) Similar to (a)–(b) but for the
250 hPa geopotential height difference (ΔZ) ensembles for the same two periods.

region (170◦–140◦W, 5◦S–5◦N) being greater than
0.5 ◦C in the spring and 1 ◦C in the preceding winter
(less than−0.5 ◦C/-1 ◦C for La Niña). This threshold is
applied to each ensemble member and the observation
as well, to depict the difference of the precipita-
tion composites between El Niño and La Niña. The
observational analysis during 1950–1995 (figure 2(a))
shows anomalous precipitation over southeastern
Texas and part of Oklahoma and Louisiana, a known
feature. In the near-future simulations (figure 2(c))
and the historical simulations (figure 2(b)), there is
a marked increase in the ensemble mean precipita-
tion composite difference between El Niño and La
Niña in the SGP. Furthermore, a similar precipitation
analysis using the Coupled Model Intercompari-
son Project Phase 5 (CMIP5), which is shown in
supplemental figure S2 by following Wang et al
(2015), reveals corresponding precipitation patterns
as well. That both the CESM-LE and CMIP5 simu-
lations capture the general pattern and intensification
of the ENSO-related precipitation anomalies in the
SGP suggests an impact from anthropogenic climate
warming.

In terms of the atmospheric circulation associated
with ENSO and its changing teleconnection, figures
2(e) and (f) show the CESM-LE-generated geopoten-
tial height differences at 250 hPa; these are generally
in agreement with the observed pattern in figure
2(d) including the synoptic trough west of Texas.
The El Niño-associated low-pressure anomaly west of
Texas is enhanced by about 35% during 2010–2060
(figure 2(f)), while the broad-scale teleconnection
pattern remains similar to the historical simulations
(figure 2(e)). We should note that a sign reversal in
figure 2 indicates the La Niña influence on pre-
cipitation reduction in Texas. We should note that
seasonal rainfall anomalies in the SGP are not only
controlled by ENSO but by other circulation factors as
well. Nonetheless, a further sliding correlation analy-
sis between the SGP precipitation and the ENSO cycle,
based on different climate models and a different pre-
cipitation observation, yields the same outcome of an
amplified ENSO impact (supplemental figure S2).

Next, we examine the prevailing circulation pattern
modulating the SGP by plotting in figure 3 the anoma-
lous 250 h Pa geopotential height that is regressed
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Figure 3. CESM LE’s 250 hPa geopotential height anomalies (ΔZ) regressed with the normalized spring precipitation averaged in
Texas (outlined) for the periods of (a) 1940–1985 and (b) 2010–2060 during the April–June season.

with the SGP precipitationduringAMJ. A low-pressure
anomaly to the west of Texas appears to be the domi-
nant feature embedded ina zonally oriented short-wave
train, which is different from the long-wave dom-
inant pattern induced by ENSO (figures 2(d)–(f)).
There is not an apparent difference in the anoma-
lous circulation’s magnitude over Texas between the
two time periods, suggesting that the common circula-
tion features affecting the spring precipitation in Texas
will not change. However, the strengthened ENSO
teleconnection can become increasingly important to
modulate or amplify this circulation feature. We should
also note that other major circulation processes may
compensate the ENSO teleconnection and that the
sample sizes between figures 2 and 3 are different.

To examine the changing association between
spring precipitation anomalies in the SGP and the
ENSO cycle, we next compute the precipitation’s
15 year sliding correlations with the spring NINO3.4
SSTA from the observation and CESM-LE data; this
is shown in figure 4(a). There is a clear decadal-
scale fluctuation in the observation with a more
pronounced increase after year 2000. The CESM-LE
produces a gradual increase and it becomes persis-
tently significant after 2000, at the 95% level. These
results echo Wang et al (2015)’s observational and
modeling analyses that the SGP’s spring precipitation
response to the ENSO teleconnection has intensi-
fied and this trend is projected to continue. Other
recent studies (Guilyardi et al 2012, Yoon et al 2015,
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Figure 4. (a) The 15 year sliding correlations between the
springprecipitation in theSGPandtheNINO3.4SSTAderived
from both the observation (black broken line) and CESM LE
(blue line), overlaid with individual members as light gray
dashed lines. The values above the 95% significance interval
is shaded with yellow. (b) The 15 year concurrences of a hot
summer following a dry spring computed from the observa-
tion (black line) and CESM LE (red line) and the ensemble
spread (error bar). (c) Same as (b) but for the 15 year running
occurrence of extremely wet springs in the SGP.

Zhou et al 2014) also suggest that the changing trop-
ical heat release associated with the ENSO-related
teleconnection has amplified its regional impacts
worldwide.

Perhaps a greater implication of these analyses can
be revealed by the concurrence of a hot summer fol-
lowing a dry spring, loosely describing a flash drought
in the central US (Otkin et al 2016). Here, hot sum-
mers are defined as the July–September (JAS) surface
air temperature exceeding 1 standard deviation (sd.)
above the mean, while dry springs refer the AMJ pre-
cipitation deficit of 1 sd. below the mean of either era;

these are computed within a 15 year running window.
This analysis is based on the fact that severe drought
in the SGP usually accompanies a below-normal
spring/rainy season followed by a hotter-than-normal
summer season (Long et al 2013, Nielsen-Gammon
2012). As shown in figure 4(b), the observed drought
occurrence has increased after the 1990s, though it
appears to be part of a multi-decadal variation. In the
CESM-LE, the drought occurrence increases persis-
tently throughout the 21st century. Likewise, the 15
year running occurrence of extremely wet springs (fig-
ure 4(c); defined by the AMJ precipitation deficit of
2 sd. below the mean), is projected to increase after
2015 despite a downtrend after 2050. By comparing fig-
ures 4(b) with (c), it appears that the disparity between
their latter trends is caused by a further increase in
dry springs. This downtrend in figure 4(c) is likely due
to internal model variability such as that drives the
earlier turnarounds in the historical period. Regard-
less, the ENSO impact on the JAS precipitation change
in the SGP is also projected to amplify, as shown
in supplemental figure S3 following the composites
of figures 2(c) and (d).

To quantify the effect of the changing ENSO tele-
connection on the extreme wet/dry spring and summer
in the SGP, we further compute the frequencies of
(a) back-to-back wet springs consisting of AMJ pre-
cipitation anomalies greater than 1 sd. occurring in
two consecutive years, (b) same as (a) but only for
those occurring with an El Niño winter in between,
and (c) reversal of (b) for consecutive two dry sum-
mers with the JAS precipitation deficits below 1 sd.
occurring with a La Niña winter in between; these
are computed within a 30 year window and shown
in figure 5. In the observation, the period of 1985–2015
exhibits a distinctly higher frequency in all three cases
than the earlier 30 years. Meanwhile, the CESM-LE
projects an almost linear increase in both the El Niño-
associated wet springs and the La Niña-accompanied
dry summers toward the end of the 21st century.
Given the difference between the observation and
CESM-LE simulations revealed in figures 4 and 5, one
has to take into account that even a sophisticated
model like the CESM-LE remains a limited tool to
understand the complicated climatological processes
involving interannual variation, global warming and
associated extremes.

4. Implication on groundwater

At face value, an increasingly wet climate in the SGP
(cf. figure 1(c)) would suggest a net increase in the
water storage, but how the concurrent increase in
dry summers affect the groundwater storage in the
SGP in the future remains unclear. Analyzing
the CESM-LE’s groundwater outputs, the trends
of the 1956–2080 period are computed for groundwa-
ter storage anomalies and groundwater recharge. The
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Figure 5. The 30 year frequencies of (a) consecutive two wet
springs, (b) same as (a) but with an El Niño winter in between,
and (c) consecutive two dry summers with a La Niña winter in
between, computed from the observation (orange) and CESM
LE data (blue).

simulated groundwater storage anomalies are shown
in figure 6(a) from 1956–2080 averaged every 30
year, relative to the mean of 1956–1985. The result
indicates a significant decrease with a rate of approx-
imately −1.5 cm per decade in the future. Figure 6(b)
shows the simulated groundwater recharge rate from
1956–2080, in which the decline in the recharge
rate becomes negative after around 2015. While an
increase in annual precipitation is projected in the SGP,
it seems that the increase in surface evapotranspira-
tion plays a substantial role in affecting the terrestrial
water budget; this leads to a smaller infiltration and
a reduction in the groundwater recharge and soil
water.

5. Concluding remarks

The US southern Great Plains has experienced an
alternation of severe drought and extreme flood since
2010 with devastating consequences. We have ana-
lyzed large-ensemble simulations that project the

(a)

(b)

Figure 6. (a) CESM LE’s groundwater storage anomalies over
the SGP relative to 2006 values in the ensemble mean (line)
and model spread (shading). (b) The 30 year means of the
CESM LE groundwater recharge rate with the model spread
in error bars.

future of extreme wet and dry seasons in the SGP
and assessed their association with the changing ENSO
teleconnection under global warming. Both intense
drought and excessive precipitation are projected to
increase towards the middle of the 21st century
and this projection is associated with a strengthened
relation with ENSO teleconnections. The findings pre-
sented here echo the documented effect of El Niño
in strengthening the anthropogenic warming-induced
increase in summer rainfall elsewhere in the world,
such as central China (Yuan et al 2018). Despite
the projected increase in precipitation over the SGP,
groundwater storage is anticipated to decrease with
diminishing groundwater recharge; this is primarily
due to the surface warming and projected increase in
summer drought that reduces infiltration. These, sub-
sequently, offset the effect of increased precipitation.
The analysis presented here may be model-dependent
and requires further verification using more sophis-
ticated land surface models and/or subsurface
observations.
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Abstract
Hurricane Harvey made landfall in August 2017 as the first land-falling category 4 hurricane to hit the
state of Texas since Hurricane Carla in September 1961. While its intensity at landfall was notable,
most of the vast devastation in the Houston metropolitan area was due to Harvey stalling near the
southeast Texas coast over the next several days. Harvey’s long-duration rainfall event was
reminiscent of extreme flooding that occurred in the neighboring state of Louisiana: both of which
were caused by a stalled tropical low-pressure system producing four days of intense precipitation.
A quantitative attribution analysis of Harvey’s rainfall was conducted using a mesoscale atmospheric
model forced by constrained boundary and initial conditions that had their long-term climate trends
removed. The removal of the various trends of the boundary and initial conditions minimizes the
effects of warming in the air and the ocean surface on Harvey. The 60 member ensemble simulations
suggest that post-1980 climate warming could have contributed to the extreme precipitation that fell
on southeast Texas during 26–29 August 2017 by approximately 20%, with an interquartile range of
13%–37%. While the attribution outcome could be model dependent, this downscaling approach
affords the closest means possible of a case-to-case comparison for event attribution, complementing
other statistics-based attribution studies on Harvey. Further analysis of a global climate model
tracking Harvey-like stalling systems indicates an increase in storm frequency and intensity over
southeast Texas through the mid-21st century.

1. Introduction

Hurricane Harvey made landfall in Texas as a cate-
gory 4 hurricane on the Saffir–Simpson wind scale
and caused at least 73 direct fatalities with an esti-
mated 30 000 people displaced from their homes. The
catastrophic flooding produced by Harvey destroyed
9000 homes and damaged 185 000 additional homes
(Texas Department of Public Safety). Total eco-
nomic damage from Hurricane Harvey is estimated
at between $90–$160 billion dollars (Blake and Zelin-
sky 2018). Scientific discussions soon emerged citing
that the increased sea surface temperature (SST)

in the Gulf of Mexico, the ability of the warmer
troposphere to hold more moisture, and the grow-
ing stagnation of the atmospheric circulation feasibly,
in unison, could strengthen the intensity of Har-
vey while worsening its impact (e.g. The Guardian,
8/28/2017; Potsdam Institute for Climate Impact
Research, 8/28/2017). Subsequent attribution studies
indicated an increase in extreme rainfall probability in
Texas ranging from 15% (van Oldenborgh et al 2017)
to 30% (Risser and Wehner 2017) that was linked
to anthropogenic warming in the atmosphere, with
an associated shortening of return periods for such
precipitation events (Emanuel 2017).
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Figure 1. (a) Hurricane Harvey on 27 August 2017 and (b) the Louisiana storm on 11 August 2016 shown with geopotential height
at upper levels (shading) and at 925 hPa (contour) and their tracks as indicated by dashed arrow lines. The approaching synoptic
troughs that stalled the storms are outlined by gray lines. (c) Adopted and modified from van der Wiel et al (2017), the simulated
tropical cyclones that resemble Harvey and its associated extreme precipitation in southeast Texas. Data of van der Wiel et al (2017) is
also available at climexp.knmi.nl/selectfield_att.cgi. (d) Satellite image of Harvey making first landfall in Texas (source: Cooperative
Institute for Research in the Atmosphere).

Apart from being an intense hurricane, what made
Harvey particularly devastating was that the storm
stalled near the Texas coast and produced heavy rains
for four consecutive days; these were mostly focused
on the Houston metropolitan area as the best track
shows in figure 1(a) (Blake and Zelinsky 2018). The
intense rainfall over several days was reminiscent of
the Louisiana flood that occurred a year earlier i.e. in
August 2016 (figure 1(b)). In that event, a stalled low
pressure system produced four days of intense rain-
fall that devastated the city of Baton Rouge (van der
Wiel et al 2017). The two events bear some resem-
blance in the time of year that they occurred (August)
as well as in their geographical location (neighbor-
ing states). Both systems also stalled due to blocking
high pressure that prevented movement further inland
followed by interactions with a frontal system to the
north. In attributing the Louisiana storm of 2016,
van der Wiel et al (2017) showed that the major-
ity of uppermost extreme precipitation events in the
Gulf Coast result from tropical cyclones. The van der
Wiel et al simulations identified 18 ‘maximum extreme

precipitation events’ in the Gulf Coast, each produc-
ing a 3 day accumulated rainfall of up to 500 mm.
As shown in figure 1(c) from van der Wiel et al
(2017 ), three of these simulated events resulted from
tropical cyclones similar to Harvey.

With the extreme precipitation produced by Har-
vey and the various rainfall records associated with
the storm (see following section), and given the exist-
ing literature about the attribution of Atlantic tropical
cyclones (van Oldenborgh et al 2017), we decided
to conduct a quantitative attribution on the impact
of long-term climate trends on the heavy precipi-
tation associated with Harvey (which can be linked
to both anthropogenic climate change as well as
internal decadal variability), through simulations of
a regional model forced by various sets of lateral
boundary conditions and those with the long-term
trends removed. A meteorological overview of Hur-
ricane Harvey is presented in section 2, followed by
an explanation of the methodology in section 3. Dis-
cussions and a summary are given in sections 4 and 5,
respectively.
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2. Harvey’s meteorological history

Hurricane Harvey was first classified as a tropical
depression on 17 August at 6 Z and was upgraded to a
tropical stormthat sameday at 18 Z(Blake andZelinsky
2018). Strong northeasterly shear, dry air entrainment
and rapid storm translation speed contributed to weak-
ening, and Harvey degenerated into an open tropical
wave on 19 August while tracking through the east-
ern Caribbean. After moving across the remainder of
the Caribbean and the Yucatan Peninsula as an open
wave, Harvey encountered a much more conducive
dynamic and thermodynamic environment when it
entered the Bay of Campeche. It was upgraded to
a tropical depression on 23 August at 12 Z and a
tropical storm six hours later. Harvey tracked north-
ward across the Gulf of Mexico and rapidly intensified
in an environment of very low vertical wind shear
and ∼30 ◦C sea surface temperatures. During the 48
hour period from 24 August at 0 Z to 26 August at
0 Z, Harvey rapidly intensified by 75 knots. It made
landfall shortly thereafter between Port Aransas and
Port O’Connor, Texas as a 115 knot category 4 hur-
ricane, with a central pressure at landfall of 937 hPa
(figure 1(d)). The extreme precipitation that fell on
southeast Texas was due to Harvey’s stalling character-
istics over the next several days—caused by collapsing
steering currents. Anomalous high-pressure areas to
the northwest and northeast of Harvey resulted in
very weak steering over the storm itself (ref. steer-
ing current—figure 1(a)), and Harvey drifted very
slowly eastward and then southeastward until it became
caught up by a dipping upper-level trough, revers-
ing its track. By 28 August, Harvey had drifted back
out over the Gulf of Mexico and continued tracking
slowly east-northeastward over the extreme western
portion of the Gulf of Mexico over the next two days.
By early 30 August, Harvey made its final landfall in
CameronParish, LA as a weak tropical storm and weak-
ened as it moved further inland (Blake and Zelinsky
2018).

Harvey’s landfall ended the longest-running
United States major (category 3+) hurricane land-
fall drought on record that had been ongoing since
Hurricane Wilma in 2005 (Hart et al 2016). It was
the first land-falling category 4 hurricane to hit the
state of Texas since Hurricane Carla in 1961. Harvey’s
landfall pressure of 937 hPa was also the lowest
for any hurricane in the Gulf of Mexico hurri-
cane since Rita in 2005. Large parts of the Houston
metropolitan area received over 30 inches of rain
from Harvey, with a United States record of 60.58
inches recorded in Nederland, Texas. Harvey’s prox-
imity to the Gulf of Mexico allowed it to tap into
copious amounts of moisture that inundated the
Houston metropolitan area triggering catastrophic
flooding.

3. Data and modeling approach

3.1. Data sources
Harvey’s meteorological history was summarized from
the National Hurricane Center best track report (Blake
and Zelinsky 2018). Observed precipitation data were
derived from the 4 km NCEP Stage-IV Quantitative
Precipitation Estimates (Lin and Mitchell 2005). For
sea surface temperatures, we used the Extended Recon-
structed Sea Surface Temperature (ERSST) version
4. The NCEP-NCAR Reanalysis-1 data (R1) and the
NCEP-DOE Reanalysis 2, or R2 (Kanamitsu et al
2002) were used to depict the atmospheric variables
and to compute the trends. For future climate pro-
jections, we analyzed the Community Earth System
Model version 1 (CESM1) under the Large Ensemble
(LE) Project (Kay et al 2015). We used the LE simula-
tions for the 2006−2080 period with RCP8.5 forcing,
producing 40 members with selected daily variables at
a spatial resolution of 0.9◦ long.× 1.25◦ lat.

3.2. Regional model
Simulations using the Advanced Research Weather
Research and Forecasting (WRF-ARW) model (Ska-
marock and Klemp 2008) version 3.8 were performed
for the heavy precipitation period over southeast Texas
from 0000 UTC 26 August to 0000 UTC 30 August
2017. The model was forced by initial conditions
(IC) and lateral boundary conditions (LBC) using the
0.5◦ × 0.5◦-resolution Global Forecast System (GFS)
initial analysis. We focused on the post-1980 trend
in both tropospheric and ocean surface temperature
and conducted four experiments: (1) A control sim-
ulation forced by the original GFS analysis as IC and
LBC, and a set of ‘detrended’ simulations in which we
removed the linear trends from the IC and LBC for (2)
SST (denoted as DSST), (3) all tropospheric variables
(DAIR), and (4) both SST and tropospheric variables
(DSST+DAIR). The trends were first computed from
the R2 monthly data for each variable and then linearly
interpolated onto the GFS’s resolution and pressure
levels. Then, we subtracted these trends from the GFS’s
initial analysis (geopotential height, horizontal winds,
air temperature, etc.) before using it as IC and LBC
to drive the WRF-ARW. To evaluate model sensitiv-
ity, we also added a double-trend simulation forced
by the original LBC to which the post-1980 trends
in both the atmosphere and SST were added instead
of removed, hence ‘doubling’ the warming effect;
this is denoted as DB runs.

The assumption here is that any post-1980 trend
manifest in the troposphere and ocean surface con-
tains signals that are traceable to anthropogenic global
warming, which is supported by most attribution anal-
ysis (Weaver et al 2017). Of course, we also had to
assume that Harvey would occur anyway within the
climatically detrended environment. This ‘detrended
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Table 1. Twenty combinations of different cumulus schemes and
microphysics in WRF-ARW v3.8 (omitting references due to page
limits), which were run at three spatial resolutions of 10, 15 and
20 km.

No Cumulus schemes Microphysics

1 Kain–Fritsch Kessler
2 Betts–Miller–Janjic Kessler
3 Modifed Tiedtke Kessler
4 New GFS simplified Arakawa-Schubert Kessler
5 Kain–Fritsch Lin
6 Betts–Miller–Janjic Lin
7 Modifed Tiedtke Lin
8 New GFS simplified Arakawa-Schubert Lin
9 Kain–Fritsch WSM-3
10 Betts–Miller–Janjic WSM-3
11 Modifed Tiedtke WSM-3
12 New GFS simplified Arakawa-Schubert WSM-3
13 Kain–Fritsch Ferrier (new Eta)
14 Betts–Miller–Janjic Ferrier (new Eta)
15 Modifed Tiedtke Ferrier (new Eta)
16 New GFS simplified Arakawa-Schubert Ferrier (new Eta)
17 Kain–Fritsch Thompson
18 Betts–Miller–Janjic Thompson
19 Modifed Tiedtke Thompson
20 New GFS simplified Arakawa-Schubert Thompson

downscaling’ approach follows that used by Cho et al
(2016) for the attribution analysis of the June 2013
flood in northern India and the role climate warming
played in that event. To assess simulation uncertainty,
the WRF-ARW model was run with 60 members
in each of the four experiments; these encompass
20 combinations from four microphysics schemes
and five cumulus parameterization schemes (listed in
table 1) that were run at three spatial resolutions: 15, 20,
and 25 km (4× 5× 3 = 60 members). We used a single
domain centered around Houston, TX (30◦N, 95◦W)
with the domain outlined in figure 3. To better depict
the environmental conditions and associated changes
from the detrending, we enabled the ‘3 dimensional
analysis and surface nudging’ of WRF-ARW in all of
the experiments.

4. Results

4.1. WRF-ARM attribution
In the Gulf of Mexico (defined as 100-80◦W, 20–
30◦N), August SST has warmed by ∼0.7 ◦C since
1980 (figure 2(a) red line), while the lower tropo-
spheric temperature within the 1000−500 hPa layer has
warmed by 1.4 ◦C through 2017 (figure 2(b), based on
R1 data). Precipitable water over the Gulf of Mexico
has increased by 7.3% since 1980 with August 2017
being the highest monthly value per R1 data (fig-
ure 2(c)). In the WRF-ARW detrended experiments
(2)−(4), such post-1980 trends were removed from
all the meteorological variables in the IC and LBC.
We refer to these simply as climate trends rather than
global warming trends, since it is likely that not all
of the SST increase in the Gulf of Mexico since 1980
is due to anthropogenic causes. The Atlantic Multi-
decadal Oscillation, for example, has a pronounced
signal in the Gulf of Mexico (Enfield et al 2001), as is

evidenced in the multi-decadal variability of SST
(figure 2(a)) embedded in the long-term warming
trend. On the other hand, the warming after 1990 did
start to exceed the spread of variability as shown by the
CESM1 historical experiment ensembles in both the
SST (figure 2(d)) and lower-tropospheric temperature
(figure 2(e)), suggesting a prominent role of anthro-
pogenic warming.

Harvey produced extremely heavy rainfall in south-
east Texas during 26−29 August 2017. The four-day
average of 700 h Pa geopotential height and accumu-
lated precipitation from 26−29 August, produced by
the control simulation from the ensemble of 60 mem-
bers, are shown in figure 3(b) and are compared with
the observed precipitation and the 12 km North Amer-
ican Mesoscale model initial data in figure 3(a). The
simulated center of Harvey is very close to its actual
location but the precipitation centers are shifted about
120 km to the southwest of the observed—a persis-
tent bias. The patterns of accumulated precipitation in
DSST, DAIR, DSST+DAIR and DB (figures 3(c)−(f))
follow the slightly shifted precipitation of the control
run and are more concentrated near the hurricane cen-
ter than the observation (figure 3(a)). Nevertheless,
the metropolitan area of Houston is within the simu-
lated precipitation maxima indicating that model bias
is minimal in our assessment.

The box and whisker diagram in figure 4(a) shows
the median and spread of the 26−29 August accumu-
lated precipitation ratio compared to the observation,
averaged over southeast Texas (red box in figure 3).
Based on the median, the control precipitation ensem-
ble is only 1% smaller than the observation with an
interquartile range from −12% to +8% and we con-
sidered this a reasonable simulation. Compared to
the control run, the change in the simulated pre-
cipitation in southeast Texas was a 3% reduction in
DSST, a 17% reduction in DAIR, and a 20% reduc-
tion in DSST+DAIR with an interquartile range of
10%−35%. In the double-trend experiment (DB),
the precipitation median was increased by 9% with
the upper quartile exceeding 20%. Since Harvey lin-
gered along the Gulf Coast through 30 August, we
also tested the daily precipitation accumulated through
27−30 August (see supplemental figure S1 available at
stacks.iop.org/ERL/13/054014/mmedia). For this later
period, themedianchangewas a9%reduction inDSST,
a 22% reduction in DAIR, and a 26% reduction in
DSST+DAIR while the DB experiment increased the
precipitation by 10%—these are more robust change
than from 26−29 August. It is noteworthy in the
DSST+DAIR experiment of 27−30 August (figure S1)
that even the upper extreme was lower than the obser-
vation, implying that climate warming can induce
even more precipitation from hurricanes as strong
as Harvey.

The impact of the climate trends on Harvey’s
strength was examined in terms of the central pres-
sure difference from the observation during the 4 day
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Figure 2. Observed August (a) SST and (b) air temperature in ◦C averaged from 1000−500 hPa overlaid with linear trends, as well as
CESM LE (yellow) and observed (red) precipitable water over the Gulf of Mexico as outlined by the inset map. Black line in (c) is the
30 year running mean. (d) and (e) Same as (a) and (b) but from the CESM1 LE data.

period, which is shown in figure 4(b). Based on the
median, the control run underestimated the center
pressure by 2 hPa and DSST increased the pressure
slightly from the control runby 0.3 hPa. The differences
between control and both DAIR and DSST+DAIR
are much more pronounced, increasing the center
pressure by 5−6 hPa during 26−29 August (8 hPa
during 27−30 August; figure S1). In DB, the center
pressure was 2.5 hPa lower than the observed while
the lower quartile was 6 hPa lower, suggesting that
additional SST warming could intensify future Harvey-
like hurricanes even further. The daily breakdown
of these precipitation and central pressure compar-
isons is displayed in supplemental figure S2; the
reduction effects of DAIR and DSST+DAIR had on
Harvey’s precipitation and central pressure are consis-
tent. These results uniformly indicate the strengthening
effect of the climate trends on Harvey.

Notable is the impact of DAIR on Harvey’s
precipitation and intensity which is much stronger
than that of DSST, implying that climate trends in
the atmospheric BC are critical in influencing Harvey.
To infer the possible physical processes involved, we
examined the post-1980 trends in the 300 hPa and
900 h Pa geopotential height, shown in supplemental

figures S3(a) and S3(b). The increased upper-level
height accompanying the decreased low-level height
suggests an increase in the atmospheric thickness, likely
associated with the mid-level warming; this is shown
to be the case by a significant positive air temperature
trend at 500 hPa (figure S3(c)). Such an increase
in the atmospheric thickness and mid-tropospheric
warming coincides with the vertical structure of a
developing tropical cyclone which can be found on
www.usno.navy.mil/NOOC/nmfcph/RSS/jtwc/pubref/
References/GUIDE/chap4img/fig402.jpg and arguably
contributes to the intensification of hurricanes.

4.2. Projection of the stalled storm
What is displayed in figure 1(a) describes an encounter
between two sub-synoptic weather systems moving
in opposite directions over Texas. Such weather sys-
tems are not uncommon but are random in nature.
A case such as this fits the description of a classic
tropical-extratropical interaction that combines abun-
dant moisture carried with the low-pressure system and
a vorticity source associated with the upper trough.
Like the 2016 stalled cyclone that inundated portions
of Louisiana (figure 1(b)), the upper trough moving
through the central US induced a positive vorticity
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Figure 3. 26−29 August average of 700 hPa geopotential height (contour) and precipitation (shading) from (a) the observations of
NAM initial and Stage IV and from the ensembles of (b) control, (c) DSST, (d) DAIR, (e) DAIR+DSST, and (f) double-trend/DB
experiments. The red box is used for the domain average shown in figure 4.

tendency that intercepted the low-pressure system,
inducing vortex stretching in the lower levels (Wang
et al 2016). To provide a synoptic perspective, we
tracked similar weather systems that resembled the
unusual encounter of Harvey and the approaching
cyclone that stalled it. A similar analysis was done by
Wang et al (2016) for the August 2016 Louisiana stalled
cyclone, and the ensuing analysis follows their method.

To identify similar cases involving a stalled storm
along the Gulf Coast interacting with a dipping synop-
tic trough from the north, we conducted the analysis
based upon the 26−29 August average conditions.
We applied a spatial harmonic analysis to the four
day geopotential height at 850 hPa to filter out zonal
wavenumbers 8 and beyond, based upon the size
of landfalling Harvey (∼15◦ longitude in diameter);
this spatial filter isolated the stalled Harvey as a low-
pressure anomalywhile eliminatingambient large-scale

circulations such as the Bermuda High. We then
applied a low-pass filtering for the 300 h Pa geopoten-
tial height by retaining wavenumbers 1–8; this was to
depict the synoptic-scale flow pattern consisting of the
western ridge and the eastern trough flow pattern, like
the synoptic setting shown in figure 1(a), while remov-
ing shorter waves. This spatial filtering analysis was
applied to both the R2 and CESM1 data.

Next, to objectively assess the extent to which any
historical and simulated storm compares with Har-
vey, we adopted the ‘pattern correlation coefficient’
that calculates the Pearson product-moment coeffi-
cient of linear correlation between two variables at
corresponding locations; this method outputs a sin-
gle number (correlation coefficient denoted as !P) that
conveniently depicts the similarity between two sys-
tems. We computed !P of the R2 geopotential height
during 26−29 August with any four day mean of the
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Figure 4. Box and whisker plots of (a) the ratio of simulated precipitation and (b) minimum sea level pressure relative to the observation
with 60 ensemble members each, derived from (left to right) control, DSST, DAIR, DAIR+DSST (color filled), and DB runs. The
x-axis labels marked with ∗ indicate a significant difference from control runs at 95% confidence interval per t-test.

CESM1 LE, after applying the spatial filtering described
above to both geopotential height fields. The compari-
son was made for two domains, a synoptic one for the
upper level with low-pass filtering (ref. steering condi-
tions and stagnation associated with the low-pressure
system in question). It is expected that there would be
a range of cases from ‘somewhat similar’ to ‘almost
identical’ in the historical and simulated data; thus,
we designated a range of !P from a low bar of 0.5
(somewhat similar) as the minimal criterion to a high
bar of 0.8 (almost identical) with a 0.05 increment
for both pressure levels; this led to 49 combinations
with seven !P intervals in the upper level pairing to
seven !P intervals in the lower level. Furthermore, we
applied an intensity criterion using the minimum cen-
tral value of the 850 h Pa geopotential height. In any
4 day sequence, the daily minimum height within the
low-pressure system over southwest Texas (red box
in figure 3) had to be at least 0.6 of the value exhib-
ited during 26−29 August 2017. An evaluation made
between the reanalysis data and the CESM1 Histori-
cal LE yielded a roughly 1:2 ratio of identified cases
(not shown). The higher number of cases in CESM1 is
expected due to the low-bar criteria that includes extra
weaker cases.

The temporal distribution of the identified cases
during the 2006−2080 period is presented as a series
of box plots in figure 5(a) for the number of cases,
and in figure 5(b) for the four day accumulated pre-
cipitation (including all 49 !P combinations per year
from each member). A 15 year running mean of their
medians is also shown. There is an apparent increase
in the number of cases beginning in ∼2050, and this is
concurrent with event precipitation increases that are

projected to continue to∼2070. The Atlantic Oceanhas
been projected to feature an overall increase in intense
tropical cyclone frequency (Jones et al 2016), with
more category 4–5 storms and fewer weaker storms
(Bender et al 2010, Knutson et al 2010). A warm-
ing tropical Atlantic Ocean can induce low-pressure
anomalies over the Gulf of Mexico during late summer
(Weaver et al 2009) and subsequently enhance the
conditions for tropical cyclone formation. However,we
note that the ability of CESM1 to simulate and project
tropical cyclones is unclear, and wedo nothave a defini-
tive explanation for the subsequent decline after 2070
other than referring it to internal variability. Likewise,
the 2050−2070 increase also could be due to internal
variability, though the overall uptrends in precipita-
tion and case number from 2020 to 2080 are arguably
attributable to climate warming. Here, as was the case
in the WRF-ARW simulations, we caution that the pro-
jection results in figure 5 may differ by model and by
the physics schemes used.

5. Discussion

The reason for the increasing number of low-pressure
systems in the Gulf Coast (figure 5(a)) is manifold,
involving both natural and anthropogenic origins.
Some modeling studies project that North Atlantic
category 4−5 storms will increase (Bender et al 2010,
Knutson et al 2013) while weaker hurricanes will likely
decrease (Jones et al 2016). To our knowledge, no stud-
ies have focused specifically on future tropical cyclone
strength in the Gulf of Mexico, except for a loose com-
parison made in van der Wiel et al (2017). Given
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Figure 5. Box and whisker plots of (a) the case number accumulated and (b) event precipitation averaged over southeast Texas of
Harvey-like weather systems depicted from the CESM LE projection data from the ensemble of 40 members for each year. The medians
are connected by thick solid line by the backward 15 year moving average.

the widened increase in the number of cases (figure
5(a)) between low-bar criteria and high-bar criteria, it
is possible that the increase in storm precipitation is
mainly driven by weaker tropical cyclones in the Gulf
of Mexico.

High moisture content in the atmosphere plays
an important role in strong hurricanes like Harvey as
well as the storms leading to the 2016 Louisiana flood
(Wang et al 2016). Precipitable water in the Gulf
of Mexico has increased considerably and will only
increase in a warming climate; this was both observed
and projected by CESM1 as shown in figure 2(c).
Consequently, the prospect of future tropical cyclones
resulting in extreme precipitation is a scenario that the
Gulf Coast and coastal metropolitan areas will likely
face in the future, and the simulation results of fig-
ure 5(b) also suggest it. Nonetheless, recent climate
projection studies (Gao et al 2012, Janssen et al 2014,
Wuebbles et al 2014) did not underscore the Gulf States
as a hotspot for a significant increase in summertime
extreme precipitation. High-emission climate projec-
tions showed only a weak increase in the maximum
daily precipitation in Texas and Louisiana, consider-
ably less than the northeast US and Midwest (Wuebbles
et al 2014); this apparent discrepancy between the
two projections requires caution in interpretation.

Conceptually, our approach that constrains the
boundary and initial conditions of an atmospheric
model used to create a synoptic event is in line with
the emerging ‘storyline approach’ of attribution anal-
ysis (Zappa and Shepherd 2017). When it comes to
attribution analysis, the mere use of observational
data and model free runs is not adequate enough
to reach robust conclusions. Global model free runs
may approximate a historical hurricane, e.g. as in
the Hurricane Sandy attribution (Lackmann 2015),

but they do not necessarily replicate the environmen-
tal conditions associated with the particular storm.
Using the dynamical downscaling approach forced
by observed IC and LBC provides the closest possi-
ble influences of the true environmental conditions at
the time of a mesoscale or weather system of interest.
While the simulations suggest that Harvey’s precipita-
tion over southeast Texas as well as its intensity could
have been enhanced by climate warming trends, we
acknowledge that the estimate can change depending
on a number of factors, such as different models used
and their settings, different IC and LBC sources, and
choice of trend periods removed.

6. Conclusion

While the Gulf Coast is no stranger to strong hur-
ricanes, a tropical cyclone that stalls for days over a
major metropolitan area and results in excessive rainfall
is a recipe for disaster. Quantitative attribution con-
ducted by WRF-ARM downscaling simulations, with
the climate trends removed from the IC and LBC, sug-
gest that post-1980 warming in both the ocean and
atmosphere likely resulted in a ∼20% increase of the
accumulated event precipitation with an interquar-
tile range of 13%−37%. Preliminary CESM1 analysis
projecting stalled storms over southwest Texas, in con-
junctionwith recent analyses of a similarly stalled storm
in Louisiana (van der Wiel et al 2017, Wang et al
2016), signifies an increasing trend in the number of
cases that have similar synoptic patterns and associated
stationarity to that of Harvey. Precipitation associ-
ated with these stalled storms was also projected to
increase, despite CESM1’s relatively coarse resolution
prevents a more quantitative assessment.
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The method demonstrated here echoes one of the
alternative ways outlined in Trenberth et al (2015) to
resolve the challenge facing attribution analysis from
a physical standpoint, that is, questioning whether
observed changes in the thermodynamic state affected
the impact of a particular event. We note that the
post-1980 warming is not simply due to anthro-
pogenic causes but also likely involves natural climate
variability and random weather systems. Risser and
Wehner (2017) conducted extreme value analysis using
CO2 concentration and annually-averaged El Niño–
Southern Oscillation (ENSO) as covariates and found
that human-induced climate change likely increased
Harvey’s precipitation in the Houston metropolitan
area by 40% with a lower bound estimate of 18%.
We note, however, similarly to what they acknowl-
edged in their paper, that other natural modes of
variability such as the AMO may be responsible for
some of the increase in SST in the Gulf of Mex-
ico. In the context of event attribution, our regional
downscaling attribution approach went one step fur-
ther in conducting a more direct, ‘apples-to-apples’
comparison of Harvey’s extreme precipitation when
compared to the value-based (not event-specific) sta-
tistical analysis or return period analysis that relies
on capturing similar ‘Harvey-like’ events, without
dealing with the environment factors and synoptic set-
tings accompanying the particular event of interest.
In general, our result is in agreement with that of
van Oldenborgh et al (2017) and Emanuel (2017) in
that anthropogenic warming in the atmosphere con-
tributed to the rainfall intensity of Harvey and may
lead to more frequent similar storms in the future.

The estimate from the present downscaling attri-
bution is by no means absolute and attributing
convectively-driven extreme precipitation events is
challenging. Our purpose here is not necessarily to
provide a definitive number but rather to propose a
way to provide a more direct, quantitative measure
for conducting extreme precipitation event attribution.
For a better representation of storm-scale structures in
organized convective systems, the US Climate Vari-
ability and Predictability Program (CLIVAR) suggest
future research to consider utilizing convective per-
mitting modeling that shows superior performance in
warm-seasonconvection (US_CLIVAR2017).We thus
call for a careful reevaluation of the projection of both
tropical cyclones and other convective systems that may
become more stalled in the future and produce more
rainfall.
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Supplemental	Figure	S1

Same	as	Fig.	4	but	for	the	period	of	27-30	August	2017.
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Supplemental	Figure	S2

Similar	to	Fig.	4	but	showing	only	the	ratio	between	the	experiments	displayed	
and	the	control	run	on	each	day	of	26-29	August	2017.
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Supplemental	Figure	S3

Poste-1980	trends	in	the	August	(a)	300-hPa	and	(b)	900-hPa	geopotential	
height	and	(c)	600-hPa	air	temperature.		Dotted	areas	indicate	significance	
at	95%	confidence	interval	per	Student’s	t-test.		These	are	compared	to	(d)	
idealized	vertical	cross	section	of	a	tropical	cyclone	showing	the	vertical	
depth	increase	as	it	intensifies.	(Source:	http://www.usno.navy.mil/)
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(c)	Tair trend	500	hPa
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Abstract: Three days of extreme rainfall in late December 2015 in the middle of the Mississippi River 10 
led to severe flooding in Missouri. The meteorological context of this event was analyzed through 11 
synoptic diagnosis into the atmospheric circulation that contributed to the precipitation event’s 12 
severity. The midlatitude synoptic waves that induced the extreme precipitation and ensuing 13 
flooding were traced to the Madden Julian Oscillation (MJO), which amplified the trans-Pacific 14 
Rossby wave train likely associated with the strong El Niño of December 2015. Though the near 15 
historical El Niño contributed to a quasi-stationary trough over the western U.S. that induced the 16 
high precipitation event, an interference between the MJO and El Niño teleconnections resulted in 17 
a relatively weak atmospheric signature of the El Niño in comparison to that of the MJO. The 18 
influence of anthropogenic climate change on the relationship between ENSO and precipitation 19 
across several central U.S. states was also investigated using 17 CMIP5 models from the historical 20 
single-forcing experiments. A regime change in ENSO-related precipitation anomalies appears to 21 
have occurred, from being negatively correlated before 1950 to positive and significantly correlated 22 
after 1970, suggesting a likely effect of anthropogenic warming on the December 2015 extreme 23 
precipitation event.  24 

1. Introduction 25 
During late December 2015, a low-pressure system moved ashore onto the West Coast of the 26 

United States and later tracked northeastwards. This trough system induced a strong band of 27 
thunderstorms across the U.S. Central and Southern Plains, bringing unseasonably numerous 28 
tornadoes and unprecedented flooding (Fig. 1a). The storm and its aftermath caused 50 fatalities and 29 
an estimated $3 billion damages in 13 U.S. states, with Missouri being the most impacted by flooding 30 
(USGS Report, Holmes et al. 2016). Several antecedent factors contributed to the severity of the 31 
flooding in Missouri: First, soil moisture conditions were saturated (Fig. 1b) due to a consistently wet 32 
year with record rainfall in November (Fig. 1c). Statewide precipitation was 300% of normal, making 33 
it the second wettest December on record and the wettest since 1982 (Fig. 1d). The soil conditions 34 
exacerbated the effect of the widespread rains received in December (not shown), before the late-35 
December storm dropped about eight inches of precipitation. The atypical nature of the flooding is 36 
further highlighted by the time of year it occurred, since major precipitation and flooding events 37 
along the Mississippi River and Missouri have historically taken place in spring or summer (e.g. 38 
Hirschboeck 1991, USGS flood reports).  39 

The persistent synoptic patterns associated with the flooding (Fig. 1a) seems to suggest a 40 
modulation effect from large-scale circulation anomalies. During December 2015, the El Niño 41 
Southern Oscillation (ENSO) was at a near record positive phase, and it is well known that ENSO 42 
and its teleconnection can modulate the frequency of wintertime extremes in the U.S. (e.gs Higgins 43 
et al. 2000, Schubert et al. 2008). Coincidentally, a mature Madden Julian Oscillation (MJO) episode 44 
developed in December and appears to have interfered constructively with the El Niño effect (Fig. 45 
S1a). As the primary source of intraseasonal variability in the Earth’s climate system (Zhang 2005), 46 
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the MJO's modulation of tropical convection can initiate poleward propagating Rossby waves that 47 
impact extratropical weather patterns and, in turn, influence the leading modes of low-frequency 48 
northern hemisphere variability, particularly in the Boreal winter (Riddle et al. 2013, Rodney et al. 49 
2013).  50 

 51 
 52 

a. b.

Figure 1
a. Meteorological evolution of the late December event: 250-hPa winds (vectors) and  precipitation 
(mm,  shading),  from 25–29  Dec  2015.  Areas  of  positive  (negative)  vertically  integrated  (from 
1000-300  mb)  moisture  flux  convergence  greater  than  3x10-4  kgs-1  are  represented  by  magenta 
(green) stipplings. Upper-level short wave troughs are marked with yellow curves. The dark red box 
delineates the most affected storm areas, i.e. the study region. b. 2015 monthly soil moisture (blue 
outline) (cm) in comparison to the 1950-2010 climatology (gray bars). c. Monthly precipitation in 
2015 expressed as a percentage of climatology. Each bar is representative of the total precipitation in 
each month of 2015 expressed as a percentage of that month’s climatology. d. Interannual variation 
of statewide monthly precipitation for December for Missouri
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Against this backdrop, the purpose of this study is to evaluate the extent to which large-scale 53 
circulation patterns associated with the El Niño and MJO may have facilitated the late-December 2015 54 
extreme precipitation in Missouri. What’s more, recent studies have reported that the ENSO 55 
teleconnection has enhanced under a warming climate, along with its impacts on the southern and 56 
central U.S. (Meehl et al. 2007, Stevenson et al. 2012, Wang et al. 2015). In view of this, we also 57 
investigate changes in ENSO-related precipitation across the central U.S. (with emphasis on West-58 
North Central and the Southern Plains), particularly when forced by greenhouse gases and deduce 59 
the contribution of such changes to the severity of the 2015 Missouri flooding. 60 

The rest of the paper is structured as follows: in Section 2, we outline the methods used to align 61 
the typical MJO phase with this case in December 2015, as well as the approach used for assessing 62 
the role of the El Niño teleconnection. We move on to results and discussions in Section 3, and provide 63 
some concluding remarks in Section 4. 64 

2. Data and Methodology 65 

2.1 Data sources 66 
The Climate Prediction Center’s (CPC) model-calculated monthly soil moisture at 0.5° grid 67 

spacing is used to estimate monthly soil moisture anomalies (Fan and van den Dool, 2004). For 68 
precipitation, we utilize the CPC morphing technique (CMORPH, Joyce et al. 2004) and the 69 
Parameter-Elevation Regressions on Independent Slopes Model (PRISM, Daly et al. 2008) datasets for 70 
daily and monthly fields respectively. To analyze atmospheric circulation, output from the National 71 
Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 72 
global reanalysis at 2.5-degree resolution is used (Kalnay et al. 1996).  73 

Attribution analysis is carried out by assessing long-term changes to ENSO’s teleconnection 74 
impact on precipitation across the central U.S. using 17 models from phase 5 of the Coupled Model 75 
Intercomparison Project (CMIP5). We specifically analyze two historical single-forcing experiments, 76 
i.e. the natural-only forcing (NAT) and the greenhouse gas (GHG)-only forcing (Taylor et al. 2011). 77 
Each experiment produced multiple members initialized from a long-stable preindustrial (1850) 78 
control run up to 2005. Table S1 in the supporting information provides the full name, institute, 79 
ensemble size, and spatial resolution of each model.  80 

2.2 Determining relevant MJO phases  81 
The MJO has often been identified by use of an empirical orthogonal function (EOF) analysis. In 82 

this study, the state of the MJO is defined by projecting daily anomaly data onto the leading pair of 83 
empirical orthogonal functions (EOFs) of equatorially averaged (15oS-15oN) 200 hPa velocity 84 
potential (χ200) fields. The EOF analysis covers a three months’ period (Dec 1 - Feb 28), and is 85 
performed on yearly basis, i.e. from 1979 to 2015. Prior to the EOF computation, χ200 is bandpass 86 
filtered to the intraseasonal period of 30-60 days to isolate the MJO signal, a method dating back to 87 
several MJO studies. The MJO can also be viewed in a two-dimensional phase space defined by the 88 
two-leading pair of principal component (PC) from the EOF analysis. Since the phase space diagram 89 
is a method to observe both the amplitude and the phase of the MJO during its propagation, we 90 
construct yearly phase space diagrams and use them to identify “MJO activity days,” defined as days 91 
when the MJO amplitude (!. #. PC1' + PC2') is greater than or equal to one (Zhou et al. 2012). Note 92 
that before the phase space diagrams are constructed, the two PCs are normalized with their 93 
respective mean and standard deviation (Kiladis et al. 2014). 94 

This approach generally follows the methodology of Wheeler and Hendon 2004 (WH04), but 95 
unlike WHO4, we use velocity potential (χ200) for the EOF representation instead of a combination of 96 
OLR, 850-hPa zonal wind (u850) and 200-hPa zonal wind (u200). Ventrice et al. 2013 shows that OLR 97 
is a relatively noisy field both spatially and temporally, with variability mostly limited to the Eastern 98 
Hemisphere. Additionally, the inverse Laplacian used to calculate χ200 acts as a smoother, which 99 
makes χ200 more sensitive to global-scale variations of divergence rather than being concentrated on 100 
the Indo-Pacific warm pool like OLR.  101 
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2.3 Synoptic attribution methods   102 
This section outlines the attribution methods employed to assess the relative contributions of the 103 

MJO and El Niño to the synoptic conditions associated with the late December 2015 extreme rainfall, 104 
and subsequent flooding in Missouri. This is quite a lengthy section but is necessary to properly 105 
interpret the ensuing results from our diagnostic methods. 106 

a. The 2015 December MJO episode 107 
First, the spatial representation and evolution of the MJO event during which the late December 108 

2015 Missouri flooding occurred is constructed. For the remainder of this paper, we call this MJO 109 
event the “December MJO episode.” In accordance with the phase space diagram for year 2015, the 110 
spatial evolution of the December MJO episode is developed by averaging all MJO activity days (i.e. 111 
amplitude ³ 1) in each given phase. This is done for both 200 hPa velocity potential (χ200) and 112 
streamfunction (*'++) over a domain spanning the globe longitudinally and from latitude 40oS-80oN. 113 
Both χ200 and *'++	 are bandpass-filtered within a 30-60 day intraseasonal frequency.  114 

Next, we take an approach based on the idea that the contribution of the December MJO episode 115 
to the synoptic conditions that caused the Missouri flooding can statistically be separated. This can 116 
be achieved through regression analysis that involves an “MJO phase composite” comprising past 117 
MJO events with identical characteristics to the December 2015 MJO episode. In line with this, 36 118 
MJO episodes before 2015 are constructed on yearly basis, from 1979 to 2014 by following the initial 119 
steps outlined above. The so-called MJO phase composite is created from these 36 MJO episodes. But 120 
before the composition is done, we take measures to ensure that the eight phases of the MJO phase 121 
composite can correctly align with the corresponding phases of the December 2015 MJO episode. This 122 
is necessary for two reasons: First, it provides an objective basis for a more direct empirical 123 
comparison between the MJO’s general structure and the December episode. Second, it ensures that 124 
the MJO phase composite can serve to attribute the source of the December 2015 circulation 125 
anomalies.  126 

To achieve the aforementioned alignment, corresponding phases of the December 2015 MJO 127 
episode and past MJO episodes are subjected to a spatial correlation analysis. If the resulting 128 
correlation coefficients at all eight phases for any past episode remains robust above 0.8, that episode 129 
is retained. Twenty five out of the 36 past MJO episodes satisfy the criteria and are synthesized to 130 
create two MJO phase composites - one for χ200 and the other for *'++.  131 

b. MJO related anomalies 132 
The MJO’s contribution to the synoptic conditions that led to the late December 2015 Missouri 133 

flooding is calculated by linearly regressing the eight phases of the 2015 December MJO episode on 134 
the eight phases of the MJO phase composite. This can be expressed by  135 

-(/,1) = 45(/,1) + 6 136 

where	- and 5 are the December MJO episode and the MJO phase composite respectively, both 137 
are on a spatial longitude-latitude (lat-lon) domain. The regression coefficient 4 is considered an 138 
estimate of the historical effect of the MJO in December. Therefore 4(/,1)	 is composed of the 139 
regression coefficients of several time series regressions at every given grid point within a specified 140 
domain. Consider a least-squares regression between two datasets with eight time steps 141 
(representative of the MJO phases) over a lat-lon domain (i.e. 180oE-180oW, 40oS-80oN), instead of a 142 
regression between two sets of time series. At this point, the statistical estimation of the MJO 143 
“component” of the December 2015 circulation anomalies becomes possible by multiplying the 144 
regression output 4(/,1)	 to the December MJO episode at every phase. This is done for both χ200 and 145 
*'++. 146 

One may argue that a more straightforward calculation of the MJO’s contribution to the flooding 147 
can be achieved by simply replacing the MJO phase composite with MJO amplitude in the regression. 148 
However, MJO amplitude is calculated from the two leading principal components (PCs) generated 149 
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through EOF analysis (!. #. 789:!;<=# = PC1' + PC2' ) and therefore, will not include the phase 150 
information of the MJO in a regression. While the WH04 RMM indices or PC’s of MJO proxies have 151 
emerged as the optimal way of explaining MJO variability, unless taken together, a single PC index 152 
by itself cannot explain all the variability associated with the MJO. On the other hand, employing the 153 
phase composite as used here accounts for both the amplitude of the MJO and its “correct” phase, 154 
which is critical in terms of the actual MJO event days. Although somewhat unconventional, our 155 
composite approach ensures that both the phasing and amplitude of the MJO are accounted for in 156 
the regression.  157 

c. ENSO related anomalies 158 
On the seasonal timescale, the effect of the strong El Niño in December 2015 on circulation is 159 

also assessed. The ENSO signal is defined as the Niño 3.4 index (N34), i.e. the normalized SST 160 
anomaly over the 5° S - 5° N and 170° W-120° W region of the Pacific Ocean. Here, we use monthly 161 
N34 anomalies to approximate the impact of ENSO during each phase of the MJO. For each MJO 162 
phase, monthly N34 values are assigned to the 25 previously selected past MJO episodes. The initial 163 
outcome is a 25-point index for each MJO phase. However, for the subsequent regression analysis we 164 
only use a version of each index with N34 anomalies greater than one standard deviation (i.e. strong 165 
ENSO events), which we call a “strong N34 index.” While this may appear subjective, it follows 166 
previous research that during weak ENSO events, there is no clear Pacific/North American oscillation 167 
pattern which prevents influential energy propagation towards the continental U.S. (Huang et al. 168 
1998, Mourtzinis et al. 2016).  169 

To calculate the portion of circulation anomalies attributable to ENSO, *'++	 (on a spatial 170 
domain) is regressed on the strong N34 index at every phase. The resulting regression outputs are 171 
taken as representative of the historic ENSO effect on each MJO phase. We then multiply the 172 
regression outputs by values of the N34 index corresponding to the 2015 December MJO episode, to 173 
obtain statistical estimates of the December 2015 circulation anomalies attributable to the El Niño by 174 
phase. 175 

Once the attributable components of the MJO and ENSO have been calculated for the December 176 
MJO episode, a synoptic attribution analysis is carried out. For χ200, we only remove MJO component 177 
(i.e. the portion of the circulation anomalies attributable to the MJO) from the December MJO episode. 178 
For *'++	, both the MJO and ENSO components (i.e. the typical MJO impact, plus strong ENSO 179 
signals regressed out of the 2015 December MJO signal) are removed. What is left, the residual, is 180 
then regarded as the portion of the circulation that cannot be explained by ENSO and the MJO.  181 

3. Results and Discussion 182 
Fig. 1 shows the synoptic evolution leading up to the late December 2015 extreme precipitation 183 

event and characteristics of the moisture fields associated with it. Precipitation occurred during an 184 
extended period (Dec 25-28) over several central U.S. states in a band of thunderstorms generally 185 
stretching from Illinois to Texas, with a center over Missouri.  Concomitant with this was a quasi-186 
stationary trough over the western U.S., which deepened prior to inducing the strongest precipitation 187 
event on December 27. Markedly, the anomalies of vertically integrated moisture flux as shown in 188 
Fig. 1 are effective in highlighting the strongest areas of moisture transport associated with the 189 
heaviest rainfall, where instability remained strong upstream of the trough along the axis of the mean 190 
wind. 191 

 To characterize the December 2015 circulation patterns and associated ENSO teleconnection, 192 
we first show in Fig. 2a a regression of the Niño 3.4 index on 250-hPa height anomalies from 1950 to 193 
2014, in comparison with the December 2015 circulation anomalies plotted in Fig. 2b. A trans-pacific 194 
wave train emanating from Asia into North America is discernable in either case, and depicts an 195 
anomalous Aleutian low over the Northern Pacific with a height anomaly of opposite polarity over 196 
the Plains states (Chen 2002, Wang et al. 2010).  197 

Next, we illustrate in Fig. 2c the Hovmöller diagram of the 20-year sliding correlation between 198 
Niño 3.4 and precipitation averages along a longitudinal cross section of the central U.S. (95°W-85°W; 199 
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during December), to depict the link between the changing ENSO teleconnection pattern and local 200 
precipitation response. The 20-year sliding window is chosen to examine the decadal-scale variations 201 
between ENSO and precipitation (McCabe et al. 1999). There exists an apparent “regime change” in 202 
the ENSO-related precipitation anomalies across the target region, from being negatively correlated 203 
before 1950 to positively and significantly correlated after 1970. This implies a general amplification 204 
effect of the El Niño teleconnection on Southern Plains precipitation as was reported in Bonfils et al. 205 
(2015) and Wang et al. (2015). Different sliding windows ranging from 10 to 25 years were also tested. 206 
The result (not shown) does not indicate any significant difference in the correlation pattern. 207 

 208 
The MJO episodes embedded in the December 2015 event are also examined. Fig. 3a illustrates 209 

the evolution of the global χ200 from early December to mid-January, revealing an eastward 210 
propagating pattern that shows a clear association with the MJO. As expected, the December MJO 211 
episode (Fig. 3a) and the corresponding composite of past MJO cycles (Fig. 3b; created from the 212 
alignment method introduced in Section 2.2a) show a coherent eastward propagation. While it may 213 
be difficult to differentiate between the two patterns, the residual plot in Fig. 3c, computed by 214 
subtracting Fig. 3b from Fig. 3a, does show only regional and somewhat stationary features. This 215 
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implies that the MJO did have a discernable impact on the global divergent circulation during 216 
December 2015. The inadvertent difference in magnitude between the phases of the December MJO 217 
episode and that of the composite may be considered a limitation in our regression approach. 218 
Although all MJO event days are selected using the same criteria, the magnitude of a well-defined 219 
MJO event (amplitude ≥ 1 for consecutive pentads and lasts longer than 25 days, Fig. S1b) like the 220 
December episode would always be greater than that of any MJO composite. However, a correct 221 
phase of the MJO is equally important as its amplitude to North American weather (Yao et al. 2011, 222 
Rodney et al. 2013, Johnson et al. 2013) and is a key factor in the context of this study. 223 

One of the fundamental and underlying mechanisms by which tropical convection, such as that 224 
associated with the MJO excites Pacific/North American (PNA) like teleconnection patterns (ref Fig. 225 
2a) is through the linear dispersion of a Rossby wave triggered by the tropical heating (Johnson et al. 226 
2013). To examine this extratropical wave train induced by the MJO’s convective forcing, we repeat 227 
the analyses of Fig. 3 using *'++. This time, we superimpose the wave-activity flux for stationary 228 
waves as derived by Takaya and Nakamura 2001 (Fig. 4). The general characteristics of the anomalous 229 
circulation patterns between the December 2015 MJO cycle (Fig. 4a) and the composite MJO cycle 230 
(Fig. 4b) are similar. Focusing on the period prior to the floods (Phase 6), strong Rossby wave trains 231 
steadily propagate eastward from the tropical Pacific towards North America during the preceding 232 
weeks (phases 4 and 5; Fig. 4a). The circulation patterns from phases 4 to 6, particularly in phase 6, 233 
resemble the ENSO-induced teleconnection pattern; these are consistent with previous findings that 234 
MJO-storm track variability associated with ENSO and phases 5 and 6 of MJO have qualitatively 235 
similar characteristics to that associated with the PNA (Grise et al. 2013, Goss et al. 2015).  236 
Furthermore, Fig. 4a lends support to the notion that it takes a week for any tropical diabatic heating 237 
signal to propagate into North America (Lin et al. 2007) and about 2 weeks for the extratropical 238 
response to fully develop (Jin and Hoskins 1995). The relatively strong amplitude of the December 239 
MJO (ref Fig. S1b) forced the eastward flux of Rossby waves which, in turn, triggered robust 240 
extratropical atmospheric responses prior to phase 6 (the storm event) as shown by streamfunction 241 
and the wave activity flux in Fig. 4.  242 

The residuals in Fig. 4c reflect what is left from the December 2015 cycle after the linear removal 243 
of the combined impacts of the MJO and ENSO, as outlined in sections 2.2b and 2.2c. Of the remaining 244 
circulation anomalies, the wave-activity flux in Fig. 4c does not resemble any prominent 245 
teleconnection source and therefore, mostly comes from internal variability associated with synoptic 246 
disturbances over the north Pacific. It is important to mention that, only the removal of strong ENSO 247 
events as discussed earlier had a noteworthy impact on the anomalous circulations as seen in Fig. 4c. 248 
Yet, ENSO’s effect was not as large as the MJO's subseasonal contribution. These results demonstrate 249 
that the synoptic patterns associated with the heavy precipitation can be primarily attributed to MJO-250 
related circulation anomalies.  251 

As is shown in Moon et al. (2010) and Roundy et al. (2010), the extratropical response to the MJO 252 
is enhanced when MJO-related convection is in phase with heating and convection anomalies 253 
associated with certain ENSO phases. However, attempts to uncover a systematic relationship 254 
between the MJO and ENSO have yielded conflicting results (Hendon et al. 2007) due to nonlinearity 255 
in their combined impact (Roundy et al. 2010). Riddle et al (2013) showed that the occurrence 256 
probabilities of Pacific North America (PNA) like MJO teleconnection patterns are more likely to 257 
occur during El Niño periods than during La Nina or neutral periods, while a more recent study by 258 
Hoell et al. (2014) shows that strong MJO activity significantly weakens the atmospheric branch of 259 
ENSO. That said, the simple fact that ENSO imprints are longer than the episodic MJO phases makes 260 
attribution difficult. These are the likely reasons why the atmospheric signature of a near historical 261 
El Niño was relatively weak in comparison to the MJO during late December 2015.  262 

 263 
 264 
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  266 

 Phase 6 (23 Dec-28 Dec)

 Phase 5 (19 Dec-22 Dec)

 Phase 4 (12 Dec-18 Dec)

 Phase 3 (9 Dec-13 Dec) 

 Phase 1 (12 Jan-17 Jan)

 Phase 8 (6 Jan-11 Jan)

 Phase 7 (29 Dec - 5 Jan)

106m2s-1

Figure 3
a.  200-hPa velocity potential  anomalies based on the eight  phases of  the December 2015 MJO 
episode described in the text. b. Composite of 200-hPa velocity potential  anomalies based on 25 
prior MJO episodes c. Velocity potential anomalies not linearly explained by the MJO (i.e. linearly 
regressed construction of the MJO’s impact subtracted from the December event anomalies of χ). 
Green stipplings show significant areas at the 95% confidence level.

a. December Event  b. Composite c. Residual

  Phase 2 (18 Jan-23 Jan) 
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Phase 6 (23 Dec-28 Dec)

Phase 5 (19 Dec-22 Dec)

Phase 4 (12 Dec-18 Dec)

Phase 3 (9 Dec-13 Dec) 

Phase 1 (12 Jan-17 Jan)

Phase 8 (6 Jan-11 Jan)

Phase 7 (29 Dec - 5 Jan)

107m2s-1

a. December Event  b. Composite c. Residual

Figure 4
a.  200-hPa  streamfunction  anomalies  based  on  the  eight  phases  of  the  December  2015  MJO 
episode described in the text. b. Composite of 200-hPa streamfunction  anomalies based on 25 prior 
MJO episodes c.  Streamfunction anomalies not linearly explained by the MJO and ENSO (i.e. 
linearly regressed constructed impact of both the MJO and ENSO subtracted from the December 
event anomalies of Ψ). Corresponding wave-activity fluxes are superimposed in vectors.

 Phase 2 (18 Jan-23 Jan) 
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b. Climate change impacts 270 
Recall that Fig. 2c depicts a regime change in the ENSO-related precipitation anomalies across 271 

several parts of the Central and Southern Plains. To attribute the causes of this apparent regime 272 
change, we repeat the analysis in Fig. 2c using two forcing scenarios of 17 CMIP5 models. The result 273 
is presented in Fig. 5 - the CMIP5 representation of the 20-years sliding correlation between the Nino-274 
3.4 index and precipitation. In the GHG run (Fig. 5a), the model spread (contours), along with the 275 
ensemble mean (shading), which is the composite mean of 17 models (table 1), depict a general 276 
strengthening of the relationship between ENSO and precipitation across the central U.S. Note that 277 

Figure 5
20-years  sliding  correlation  between  the  December  Nino  3.4  index  and  precipitation  averaged 
longitudinally  over 95°W-85°W, as depicted by 17 CMIP5 models in two scenarios - (a) GHG run 
and (b) Natural run. Shading represents the ensemble mean. Years on the x axis represent the central 
years of the sliding window. The ensemble spread is in contours and only statistically significant 
contours based on the Student’s t-test at the 95% confidence level are drawn. Fig. 5c is a repeat of 
Fig. 2c with a comparable timespan to the model runs.
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only statistically significant contours based on the Student’s t-test at the 95% confidence level are 278 
drawn. On the contrary, the NAT run (Fig. 5b) exhibits a relatively weak relationship between ENSO 279 
and precipitation. Although this result does not directly address the impact of climate change 280 
specifically on the December 2015 Missouri flooding, it does lend support to the observations (Fig. 281 
5c) and previous studies (e.g., Wang et al. 2015) that the regime change in the ENSO-induced 282 
precipitation anomalies across the Southern Plains is likely linked to the warming climate. Further 283 
examination of the MJO’s effect on precipitation in the Southern Plains will be needed when the 284 
CMIP5 models’ performance in the tropical intraseasonal variability is improved. 285 

 286 
 287 

4. Concluding remarks  288 
The spatial and temporal features of the large-scale circulation anomalies associated with the 289 

late-December 2015 flood in Missouri were analyzed. Through synoptic attribution analyses, we 290 
found an interference between certain MJO phases and the El Niño during the time leading up to the 291 
Missouri flood. Consequently, an unusually high precipitation event occurred during phase 6 of the 292 
MJO cycle, i.e. from 23 to 28 December. At this time, the MJO's convection amplified a trans-Pacific 293 
Rossby wave train that resembles the ENSO-driven teleconnection pattern from the tropics to form 294 
the constructive interference. This contributed to an energized upper-level circulation and strong jet 295 
stream flow over the contiguous United States and led to the advection of intense cyclone activity 296 
into the Central and Southern Plains (e.g. Bell et al. 1995). In the long term, the effect of anthropogenic 297 
warming on the December event is also implied through the analysis of several CMIP5 models. The 298 
models suggest that the response of precipitation in the central U.S. to ENSO would be enhanced 299 
owing to a warming climate. With this study, we seek to provide a meaningful contribution to the 300 
literature on the synoptic attribution of climate extremes.  301 
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Supplementary Figure 1 (Figure S1)
Longitude-time  plot  of  the  7-day  mean  a.  outgoing  longwave  radiation  (OLR)  and  850  mb  wind 
anomalies (base period: 1981-2010) averaged over 5S-5N, from July-Dec 2015. The thick yellow bars on 
the longitudinal axes highlight the ENSO region. (figures courtesy of the Tokyo Climate Centre).   b. 
Phase space diagram for 27Nov2015 - 5Jan2016 illustrating the phase and amplitude of the activity days 
of  the  2015  MJO cycle,  based  on  the  principal  components  (RMM) of  the  first  two  EOFs  from a 
combined EOF analysis using 850 hPa zonal wind, 200 hPa zonal wind and OLR. Counter-clockwise 
movement around the diagram indicates an eastward propagating signal across eight phases from the 
Indian Ocean to the Pacific and later the western hemisphere. Color of lines distinguish different months 
and dates are annotated. The farther away from the center of the circle the stronger the MJO signal (figure 
courtesy  of  the  Climate  Prediction  Center)  ;  and  frequency  distribution  of  MJO amplitudes  during 
extended boreal winters (1 Nov–31 Mar, 1979–2010). Median value: 1.64. (figures adopted from Jones 
and Carvalho 2014)
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