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Problem Statement

•Wastewater treatment involves energy-
intensive aerobic treatment. 
•Aerobic energy demand is associated with 
aeration.

•Aerobic treatment generates significant 
sludge.
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Anaerobic Membrane Bioreactor (AnMBR)

• Combines anaerobic biological treatment and physical 
membrane separation. 

• Eliminates energy-intensive aeration, produces 
biogas, and minimizes sludge production.

• Enables low temperature operation and produces 
water for reuse.
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Ultrafiltration Membrane Fouling Management 
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Gas-Sparged AnMBR Configuration
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Gas-Sparged AnMBR

BioreactorMembranes
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Gas-Sparged AnMBR Configuration Including Downstream 
Processes
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GAC-Fluidized AnMBR Configuration
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GAC-Fluidized AnMBRFluidized Bed 
Bioreactor Membranes
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“Side-By-Side” Comparison
Bucheon, KoreaFt. Riley, Kansas
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Better Effluent Quality in the GAC-Fluidized AnMBR
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Gas-Sparged AnMBR GAC-Fluidized AnMBR

AnMBR BOD5 in (mg/L) BOD5 out (mg/L) COD in (mg/L) COD out (mg/L)
Gas-Sparged 250±130 25±12 620±240 58±27
GAC-Fluidized 140±40 15±9 210±50 29±9

• Similar percent removals of BOD5 and COD
• Lower hydraulic residence time and effluent concentrations in GAC-fluidized AnMBR

HRT = 11±3 hours HRT = 3.9±1.0 hours
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Total Methane Yield Dependent on Temperature
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Gas-Sparged AnMBR GAC-Fluidized AnMBR

• Less solids hydrolysis at lower temperatures
• Leads to greater sludge yield
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Dissolved Methane Recovered
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• Dissolved methane removal important to mitigate greenhouse gas emissions and recover energy

• Removed  79±2% dissolved methane

• 3M 2.5×8 Industrial Extra-Flow Liqui-CelTM membrane contactor

Hollow fiber gas-liquid contactor
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Sulfide and Phosphorus Removed by Coagulation
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• Sulfide removal 99±2% and phosphorus removal 94±3%
• Chemical-intensive process

Sulfide Phosphorus

115 mg/L FeCl3
30 mg/L aluminum chlorohydrate
1 mg/L polymer 
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• More flexible because of gas-sparging flow rate can be varied
• Greater permeability at higher suspended and colloidal solids concentrations

UF Membrane Performance Better in Gas-Sparged AnMBR

• LMH (membrane flux) = L m-2 h-1
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UF Membrane Abraded by GAC in GAC-Fluidized AnMBR

16

Gas-Sparged AnMBR GAC-Fluidized AnMBR

• Gas-sparged AnMBR is more robust
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Energy-Neutral or -Positive Operation Possible
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• Temperature, wastewater strength, and sparging energy determine result
• Less energy than conventional activated sludge (0.3 to 0.6 kWh/m3)

Gas-Sparged AnMBR GAC-Fluidized AnMBR
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Chemical Use Drives AnMBR Costs
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• Chemicals for sulfide removal dominate operating costs
• Membrane cleaning and replacement, and GAC replacement also contribute

5 million gallons/day
20-year life
7% discount rate
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Conclusions

• BOD5 and COD removals better in the GAC-fluidized AnMBR down to 15°C
• Ultrafiltration membrane performance better in the gas-sparged AnMBR
• Energy efficiency better in the GAC-fluidized AnMBR
• Dissolved methane removal using hollow-fiber contactors possible but 

alternatives exist
• Cost and lifecycle environmental impacts driven by chemical use for sulfide 

removal
• Alternative chemical-free methods of sulfide removal should be evaluated
• A hybrid fluidized-bed followed by a gas-sparged membrane AnMBR is 

recommended for further evaluation
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Thank You!

• For more information:
• https://www.serdp-estcp.org/Program-Areas/Environmental-
Restoration/Wastewater-and-Drinking-Water/ER-201434/ER-
201434/(modified)/31Dec2015
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Treatment Observed Over a Wide Temperature Range
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• More efficient treatment by GAC-fluidized AnMBR at similar organic loading rates
• 60% shorter hydraulic retention time (3.9±1.0 versus 11±3 hours)
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Ammonia Removed by Clinoptilolite Zeolite
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• Ammonia reduced 99.9±0.1% (goal >90%)
• Loading reduced over time because of iron coagulant carryover

• Ammonia reduced from 37±4 to 0.05±0.05 mg-N/L
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Chemical Use Drives Lifecycle Environmental Impacts
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• Impacts below are relative to processes with sulfide removal using coagulation
• Relative impacts without chemical use less than conventional for certain AnMBR configurations


