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Background

• Extreme precipitation is 
related to temperature via the 
Clausius-Clapeyron equation 
(with some variation) 
• (Pall et al., 2006, Lenderink

and van Meijgaard, 2008, 
Kunkel et al., 2012)

The relationship between the annual maximum daily 
precipitation and the amount of water vapor within various 
regions of the United States in comparison with the Clausius-
Clapeyron relations depicted in black. (Kunkel et al. 2012)



Historical trends

• Precipitation in the CONUS has 

increased by ~10% since the 

1910s

• About half of the increase in 

overall precipitation is from 

increases in extreme (top 10% 

quantile) precipitation events

• Both max intensity and frequency 

of extreme events has increased 

(Karl and Knight, 1997)

• Short storms (sub-daily) most 

sensitive to increases in 

temperature (Westra et al., 2014)

Time series of the percent contribution of the upper 10 

percentile of daily precipitation events to the total annual 

precipitation area-averaged across the United States. 

Smooth curve is a nine-point binomial filter, and the trend is 

also depicted. (Karl and Knight, 1997)



Historical trend detection

• Long records of station data are needed
• Three types of tests commonly employed:

1. Mann-Kendall test 
2. Student-t test
3. Likelihood ratio test 



Mann-Kendall test

• Results from Mann-Kendall test at 0.05 significance applied to 
a network of 841 stations across the CONUS shown at the 
station above. 

• To the right is a chart showing the total number of positive or 
negative trends at each duration over CONUS.



Likelihood Ratio Test

• As applied by Dr. Demissie
• Where CCSM4 with RCP8.5 scenario was used for future (2035-

2064) data. 

Trend results for past daily precipitation (5% show 
trend) 

Trend results for combined past and future  daily 
precipitation (56% show trend)



Ongoing challenges in trend detection

• Some argue it is too early to adopt a full nonstationary approach
• Lins and Cohn (2011), Matalas (2012), Koutsoyiannis and Montanari (2014) 

• Others argue it is time to assume the null hypothesis is nonstationary 
behavior instead of stationary behavior 
• Milly et al. (2008, 2015) 

• Climate variability, at-station noise, and short records increase 
uncertainty in detecting and modeling trend



IDF Curves
• IDF curves are commonly based 

on some mathematical formula 
such as 

• Koutsoyiannis et al. 1998 fit this 
form to multiple probability 
distributions (Gumbel, GEV, 
Gamma, etc) 

• Cheng et al. 2014 write a 
framework that allows a time-
varying GEV distribution

• Introducing NS parameters in 
probability distributions 
introduce NS into IDF curves 
using this mathematical 
framework
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Nonstationary vs. stationary IDF Curves for different return periods and 

durations at the selected station in White Sands National Monument 

Station, New Mexico. (from Cheng and AghaKouchak (2014))



IDF Curves
• Not incorporating 

NS into IDF curves 
can lead to 
underestimations 
in precipitation 
extremes Nie et al. 
2009, Rosenberge et al. 
2010, Mailhot and 
Duchesne 2010, Kessler 
2011, Cheng and 
AghaKouchak (2014) 

• Demaria et al. (2017) found that the nonstationary in extreme 
precipitation may increase the risk of failure of a hydraulic structure by 
25% for a 100-year return period and a project life of 100 years. 

Stationary and non-stationary IDF curves for different return periods and 
durations at the semi-arid (Arizona) and the temperate (Ohio) watersheds. Plots 
in the right most panels (p. to r.) show changes between estimated non-
stationary and stationary intensities as percentage of the stationary estimates.  
(from DeMaria et al., 2017)



IDF Curves – current status

• NS-IDF curves based on historical trends are better for short time-
horizon projections and not long time-horizon projections
• Ganguli and Coulibaly (2017) find the short-term future projections 

are useful for about one decade into the future
• Further projections have increasingly high uncertainties 



Choosing a covariate 

• Time and temperature are common covariates with extreme 
precipitation
• Other covariates may reflect local, geographic or atmospheric process
• ENSO, PDO, NAO, IOD
• Topography, 
• Wind, sea level pressure 

• May examine trend on monthly, seasonal, or annual basis
• Each covariate introduces more uncertainty 



Consider what type of trend to use

• Most recent work assumes a linear trend to relate the change in 
extreme precipitation and time
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• Not much work has been done to justify this choice
• Other types of functions may be nonlinear, exponential, or periodic



Estimating distribution parameters

• Maximum likelihood method
• Generalized maximum likelihood method
• Bayesian approach
• Generalized model for location, scale and shape (GAMLSS) framework 
• Probabilistic neural network
• Multi-objective genetic algorithm 



Bayesian Framework example as set up by Dr. 
Demissie

Comparison of the updated IDF curves with 
the IDF curves constructed using the entire 
data (1937-2016) for an example station in 
Washington state

Methodology



Redefine terms

• There is now an added 
dimension to characteristics
• Ex: the design storm depends on 

storm duration and 
reoccurrence interval 
• New design storm now depends 

on time as well 

Effective design values for Palomar Mountain, CA, station 

(COOP ID:046657) showing how the extreme precipitation 

intensity changes for a fixed return period. The observed 

data, plotted in grey, is the AMS of the station. 



Challenges in NS-IDF

• Inconsistent trends across storm durations leads to mathematical 
complications
• High uncertainty, especially with short record length
• No well-established agreement on how to approach problem



Regional Flood Frequency
• Regional flood frequency can exploit 

information across stations (Lettenmaier et 
al., (1987), Hosking and Wallis (1997))
• Typically depends on creation and use of 

homogeneous regions
• Where homogeneous regions implies that 

all sites within the region are presumed to 
have the same underlying distribution
• Homogeneous regions do not have to be 

physically contiguous
• Many studies still use physically contiguous 

areas instead of homogeneous areas

Homogeneous precipitation regions as set up by 
Guttman (1993) using station network across the 
CONUS. 



Historical trends –
Regional level
• When aggregated from station 

to regional level, trends show 
more consistent increases in 
regions, with the exception 
being the southwest
• This figure uses physically 

contiguous regions instead of 
homogeneous regions

Observed changes (%) in heavy defined different ways for two 
different time periods (Easterling et al. 2017).



Detecting regional nonstationary behavior

• Regional Bootstrap Resampling (Cunderlik and Burn, 2003)
• Extreme Precipitation Index (Kunkel, 2003)
• Monte Carlo simulations (Livezey and Chen, 1983) 
• Need to establish the understanding that if a region tests for 

significant nonstationarity, then all points/stations within the region 
should be modeled as nonstationary as well



Growth Curve

• Growth curve represents underlying distribution within a 
homogeneous region
• Regional parameters are estimated by an average of the at-site 

parameters, weighted by the station’s record length
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NS-growth curve
• Incorporate time trend into growth curve distribution by way of 

introducing a time-varying term (or other covariate) to the 
distribution parameters

Homogeneous 
regions across a 
station network in 
the CONUS



• Regional growth curves for the twelve homogeneous regions for durations of one-

and 24-hours for time t=1 and t=100 years. The regional quantile function is on the 

y-axis and is plotted against the Gumbel reduced variate, (−ln(− ln % ).



• Percent changes in 50-year return period 

intensities across all regions for time index = 

0 (1960) to 100 years (2060). 

• Percent changes range over -5.14% to 

+19.8%.

• Stations are assumed to have a nonstationary 

location parameter in the estimation of 

regional growth curves.



Challenges in Regional Flood Frequency

• Disagreements at-site in behavior for different durations only further 
complicated
• Will be more difficult to establish statistically significant NS behavior 

in regions



Ongoing questions

• Much of the work is still ongoing
• Is it safer to assume stationary or nonstationary behavior as the null 

hypothesis?
• How to resolve against storm durations?
• How to reduce uncertainty in estimating the trend? 
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