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EXECUTIVE SUMMARY 

This report documents findings from a demonstration project to verify the feasibility of employing 
a model-based approach to central plant operation and diagnostics at U.S. Department of Defense 
(DoD) facilities, and to quantify the associated benefits.  

OBJECTIVES OF THE DEMONSTRATION  

This field demonstration was designed to validate: effectiveness in reducing electricity consumption 
and associated greenhouse gas (GHG) emissions; user satisfaction; cost-effectiveness and viability 
of system economics; and validity of model calibration. 

TECHNOLOGY DESCRIPTION  

In this demonstration, Lawrence Berkeley National Laboratory (LBNL) developed a hybrid data-
driven and physics model-based tool for energy efficiency in central cooling plants. Once 
developed, the PlantInsight technology was implemented at the U.S. Naval Academy (USNA), 
and the technology performance objectives were evaluated. PlantInsight provides detection and 
diagnosis of three types of faults: fan cycling, chiller cycling, and poor chiller efficiency. It also 
provides analysis of optimal condenser water setpoint temperatures to minimize plant energy 
consumption. A calibrated simulation model is used in the algorithms to identify poor chiller 
efficiency and optimal condenser water temperature, while the cycling faults are identified using 
purely data-driven models. In addition, the tool offers visualization for operators to track key 
parameters such as cooling plant load and chilled water loop temperature. Figure ES-1 contains a 
diagram of the Modelica model used to conduct the cooling optimization and the architecture of 
the PlantInsight tool, as implemented for the demonstration. Figure ES-2 contains screen shots of 
the user interface. 

  

Figure ES-1. Diagram of the System-level Modelica Model Used to Represent the Cooling 
Plant (left); Architecture (right) of the PlantInsight Operational Tool 
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Figure ES-2. Screen Shots from PlantInsight: Visualization and Key 
Performance Indicator (KPI) Tracking (top); Condenser Water Temperature 

Setpoint Optimization (bottom) 

DEMONSTRATION RESULTS 

Model calibration: To ensure that the models developed to simulate the central plant were 
representative of the central plant’s actual physical performance, the chiller and tower models were 
calibrated to measured data from the site. The calibration goal targeted a difference between 
model-predicted and measured parameters of less than 10% for 90% of data points. This was 
achieved for ten of ten tower cells for which data were available, and for three of six chillers. The 
soundness of the calibration process was confirmed; however, calibration was challenged by the 
limited volume of data representing full-capacity chiller operation, and perhaps by inaccurate 
water temperature sensor data, or faulty operations underlying the data.  
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User satisfaction: The demonstration technology was evaluated to determine whether PlantInsight 
offered equal or improved satisfaction relative to existing operational tools. Survey responses 
indicated that satisfaction with the capabilities of PlantInsight was equal to or better than that with 
the preexisting Johnson Controls International (JCI) Metasys system that is used for plant 
operations. Table ES-1 summarizes operational staff’s feedback on the user interface (UI), outputs 
of the fault detection and diagnostics (FDD) and optimization analytics, and the tool overall, on a 
scale of one to five.  

Table ES-1. User Feedback on the PlantInsight UI, FDD, and Optimization Outputs, 
and Overall Tool 

Characteristic Not Satisfied 
 

Neutral 
 

Highly 
Satisfied 

1 2 3 4 5 
User interface 

   
X 

 

FDD and optimization outputs 
   

X 
 

Tool overall 
   

X 
 

Energy and GHG emissions savings: The demonstration targeted 10% annual reductions in 
electricity consumption and associated GHG emissions at the central cooling plant. The results of 
the savings analysis indicated that daily energy savings greater than 10% are obtainable for 
approximately six months of the year, mainly during the winter season. However, for the year as 
a whole, energy savings of approximately 1.5% are obtainable. Since savings were driven by wet 
bulb temperature (lower), which occur in winter, when total plant consumption is lowest, larger 
annual savings are possible in drier climates. GHG emissions were quantified using a conversion 
factor based on references published by the U.S. Environmental Protection Agency. Since the 
conversion factor was represented as a single constant for the region, the emissions reduction 
results are the same as those for energy, in terms of percent savings.  

System economics: Assessment of system economics based on standard capital budgeting metrics 
provides a gauge for determining financial feasibility of the demonstration technology. The 
analysis showed that simple and discounted payback can be met in 1.4 years, well within the five-
year target that was established.  

IMPLEMENTATION ISSUES 

Future implementation of the technology will require attention to three areas: information 
technology (IT) security, maintenance and evolution, and scale-up and transition. 

IT security: The PlantInsight technology requires unidirectional transfer of cooling plant 
operational data from the site to the application’s database. The application is hosted on a web 
server. In the USNA demonstration, port 443 was used for secure communication from the 
building automation system (BAS) kiosk to PlantInsight. To satisfy DoD IT security requirements, 
future installations can consider several options. PlantInsight can be integrated within existing 
accredited applications or could be put through the accreditation process itself. Another option that 
was explored was to push plant operational data from the installation to a server farm on a secure 
DoD network, with PlantInsight accessing the data through a virtual private network (VPN) 
application. 
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Technology maintenance and evolution: As the demonstration comes to a conclusion, LBNL will 
work with UNSA IT and Naval District Washington (NDW) to identify options to transfer the tool 
to a server and location that will comply with security requirements. Although it is not yet used 
universally throughout the industry, companies such as HOK, JCI, and United Technologies 
Corporation (UTC) have staff that are familiar with the modeling language (Modelica) upon which 
the tool is built. They could potentially be contracted to support future model modification and 
calibration. 

Technology scale-up and transition: To make the PlantInsight Tool available to other DoD 
installations, it will be released through an open source software license. This will enable stand-
alone use according to its current design, or adaptation for use within existing installation energy 
management facility and information systems as described in the considerations of IT security. 
Several types of documentation have been developed to support these future transition activities, 
and to support ongoing use at USNA. 

CONCLUSIONS 

Future implementations of the technology will benefit from awareness of the following higher-
level lessons that were learned throughout the course of the demonstration. First, operators place 
strong value on access to tools that provide visibility into how controls impact energy use and cost. 
This is not as a rule available in today’s commercial analytics technologies that span BASs, meter 
analytics tools, or equipment-specific FDD tools. As such, heating, ventilation and air conditioning 
(HVAC) optimization technologies represent advances in the state of today’s available technology, 
and this is even more true of optimization tools that incorporate physics-based modeling 
approaches. Environmental Security Technology Certification Program (ESTCP) and USNA have 
acted as a leader in the demonstration of these cutting-edge solutions, and future implementations 
will continue to contribute to the state of knowledge of their development and application.  

Model-predictive optimization combined with FDD is recognized as a critical aspect of realizing 
the dynamic low-energy buildings of tomorrow; it can deliver even more impact by expanding the 
set of parameters included in the optimization, and the number of end-uses that are considered. 
Although these technologies represent advanced applications, the external infrastructure to support 
their delivery is mature; cloud hosting and computational scalability are well supported through 
modern IT solutions. The most significant practical implementation barrier is brittle building data 
acquisition and communication systems that present chronic challenges to applications that 
interface with controls data. Finally, we note that the creation and calibration of physics-based 
models for use in the operational phase of the building life-cycle is highly dependent upon the 
specific algorithms with which they will be paired. The open, reference implementations that are 
delivered with PlantInsight are important contributions to the industry’s continued success in 
leveraging these promising approaches for next-generation building energy efficiency. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

It is estimated that 5% to 30% of the energy used in commercial buildings is wasted due to faults 
and errors in the operation of the control system, including suboptimal setpoints, operational 
sequences, and control problems (Fernandez et al. 2017; Katipamula and Brambley 2005; Mills 
2011; Roth et al. 2005). Energy managers, owners, and operators are using a diversity of 
commercial offerings often referred to as energy information systems (EIS), fault detection and 
diagnostics (FDD) systems, or more broadly energy management and information systems (EMIS) 
to cost-effectively enable savings on the order of 10% to 20% (Granderson and Lin 2016; 
Granderson et al. 2017; Kramer et al. 2017; Henderson and Waltner 2013; Lane and Epperson 
2013). Most of these EMIS analytic technologies use data from meters and sensors, with rule-
based and/or data-driven models to characterize system and building behavior. Within the family 
of EMIS technologies, automated heating, ventilation and air conditioning (HVAC) system 
optimization offerings are beginning to emerge. Newer to the market than meter analytics and 
FDD technologies, these tools use physics-based, or more commonly data-driven, models to 
predict optimal supervisory system control settings. These are then automatically implemented 
through bi-directional connectivity and communication with the building automation system 
(BAS).  

In contrast to data-driven approaches, physics-based modeling uses first principles and engineering 
models (e.g., efficiency curves) to characterize system and building behavior. Historically, these 
physics-based approaches have been used in the design phase of the building life cycle or in retrofit 
analyses. Whereas empirical data-driven analytics permit assessment of operations based on actual 
prior system performance, physics-based approaches also enable assessment relative to design 
intent and underlying physical principles. Physics-based models can be used to automate the 
detection of system or component faults, and to identify optimal control strategies to minimize 
system energy use. The use of hybrid data-driven and model-based approaches for operational 
tools that conduct continuous fault detection and energy use optimization is largely still the domain 
of exploratory research. For example, a previous attempt (Pang et al. 2012) to use EnergyPlus 
physics-based models to identify whole-building level operational energy waste was proposed and 
demonstrated (Adetola et al. 2014).  

In this demonstration, Lawrence Berkeley National Laboratory (LBNL) developed a hybrid data-
driven and physics model-based operational tool for energy efficiency in central cooling plants. 
The tool, PlantInsight, offers FDD functionality, setpoint optimization, and visualization of key 
performance parameters, targeting 10% energy savings and associated reductions in greenhouse 
gas (GHG) emissions. With annual U.S. Department of Defense (DoD) expenditures of 
$3.7 billion on facility energy consumption (DoD 2016), and HVAC comprising over 40% of 
commercial building site energy usage (US EIA 2012), the savings potential reaches hundreds of 
millions of dollars if the technology is successful and applied across all DoD facilities and HVAC 
end uses. The key targets for this specific demonstration are facilities with central cooling plants. 
This represents a smaller, but more energy intensive, fraction of DoD facilities. 
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1.2 OBJECTIVE OF THE DEMONSTRATION 

The overarching goal of the demonstration project was to verify the feasibility of employing a 
model-based approach to central plant operation and diagnostics at DoD facilities, and to quantify 
the associated benefit. Although the tools developed under this project can be applicable to both 
buildings and central plants, the primary focus is on central plant energy efficiency.  

Specific objectives that the field demonstration was designed to validate include: 

• Effectiveness in reducing electricity consumption and associated GHG emissions 

• Ease of use and user acceptability 

• Cost-effectiveness and viability of system economics 

• Validity of model calibration 

• Acceptable latency in data transfer between software components 

It was originally planned that the demonstration would be conducted at the U.S. Navy Yard in 
Washington D.C., and that the technology would be integrated with Naval District Washington’s 
(NDW’s) Building, Asset, and Energy Situational Awareness (BAESA) and IBM monitoring 
systems. Due to disruptions at the Navy Yard that affected the central plant operations and ability 
to host a demonstration, the project was moved to the U.S. Naval Academy (USNA) in Annapolis, 
Maryland (site points of contact are provided in Appendix A). Over the course of the project the 
NDW discontinued its use of the IBM system, so the PlantInsight tool was deployed as a stand-
alone tool. 

1.3 REGULATORY DRIVERS 

This technology demonstration leverages and supports compliance with several regulatory drivers. 
Advanced metering was required at federal buildings beginning in 2012 (Energy Policy Act of 
2005, section 103, codified in 42 USC 8253(e)), providing a foundation of metering and 
monitoring infrastructure that the demonstration builds upon. Analytics technologies such as those 
demonstrated in this project support the automation of baselining and performance reporting, 
which are required in the Energy Independence and Security Act (EISA) 2007. Finally, the 
advanced diagnostic capabilities that will be integrated with EIS in this demonstration will further 
enable compliance with the 30% energy reduction and associated carbon reduction goals in 
Executive Orders (EOs) 13423 and 13514, and EISA 2007. Most recently, EO 13693, signed in 
March 2015 and effective the beginning of fiscal year 2016, calls for the promotion of building 
energy conservation, efficiency, and management by reducing agency building energy intensity 
(measured in British thermal units [Btu] per gross square foot) by 2.5% annually through the end 
of fiscal year 2025, relative to the baseline of the agency’s building energy use in fiscal year 2015 
and taking into account agency progress to date. 
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2.0 TECHNOLOGY DESCRIPTION 

2.1 TECHNOLOGY/METHODOLOGY OVERVIEW  

PlantInsight is a hybrid data-driven and physics model-based operational tool for energy efficiency 
in central cooling plants. It provides detection and diagnosis of three types of faults: fan cycling, 
chiller cycling, and poor chiller efficiency. It also provides analysis of optimal condenser water 
setpoint temperatures to minimize plant energy consumption. A calibrated simulation model is 
used in the algorithms to identify poor chiller efficiency, and optimal condenser water temperature, 
while the cycling faults are identified using purely data-driven models. In addition, the tool offers 
visualization for operators to track key parameters such as cooling plant load and chilled water 
loop temperature.  

Figure 1 shows the landing page of the tool. The period of time for which data are shown and faults 
are summarized is user-selected and shown in the upper right date summary. In the plot, the total 
load on both plants (tons) is overlaid with the load from each plant individually. The landing page 
plots can be toggled to plant efficiency (kilowatts [kW]/ton) as well as the load and weather 
forecast for the next 24 hours. Above the plot, the total cost of operations, total consumption, 
maximum load, and number of current faults are summarized in key performance indicator (KPI) 
tiles. The landing page also shows runtime summaries and fault summaries. The menu options on 
the left side of the page allow the user to access drill-down information associated with the 
optimization and fault detection capabilities.  

Development of PlantInsight comprised four primary elements: model construction and calibration, 
creation of FDD and optimization algorithms, architecture definition, and graphical user interface 
(GUI) development. The architecture of the Tool is shown in Figure 2 as a block diagram schematic. 
The green blocks indicate portions of the system that are located at the site, while the orange blocks 
represent remote components. Data from the meters and sensors at each cooling plant is transferred 
to the on-premise automation system (energy management and control system, or EMCS), which is 
accessed through an operator kiosk. Data from the site is pushed to a remote PostgreSQL database 
that is used to store data for access by the PlantInsight tool. The user accesses the tool through a 
browser-based JavaScript graphical front-end application that interacts with the back-end via a 
representational state transfer (REST) application programming interface (API). 
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Figure 1. Screen Shot of the Landing Page of the PlantInsight Tool 

 

Figure 2. Architecture of the PlantInsight Tool for Hybrid Model-based and Data-
Driven Central Plant Diagnostics and Optimization 
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2.1.1 Model Construction and Calibration 

The physics-based modeling approaches that underlie PlantInsight’s optimization and efficiency 
diagnostics are built using the Modelica language specification (Wetter et al. 2014) and Functional 
Mock-up Interface (FMI) standard (Blochwitz et al. 2011), each of which are open standards. 
Modelica is an equation-based, object-oriented programming language for the modeling and 
simulation of physical systems, for which there is a Modelica Buildings Library (Wetter et 
al., 2014). FMI is a standard way of packaging and interfacing physical models to enable exchange 
and co-simulation among different tools.  

The Modelica models that simulate the operation of the central cooling plant were developed using 
information from design specifications, nameplate data, drawings, and trend-log data. Component 
models for chillers, pumps, and cooling towers were taken from the Modelica Buildings Library 
and parameterized using specification and nameplate data. These component models were 
combined to form plant-level models of the two central plants. Finally, control sequence models 
were embedded into each plant model. Figure 3 illustrates the Rickover plant model, where solid 
blue lines represent the water pipes and the dashed lines are the paths for control signals and other 
inputs for the model, such as weather data and plant cooling load.  

Once constructed, the chiller and cooling tower models were calibrated to 16 months of historic 
steady-state plant operational data (May 13, 2014–September 22, 2015). The GenOpt (Wetter 
2001) optimization engine was used to find model parameters that minimized the difference 
between the model outputs and the associated measured data. Calibration was deemed sufficient 
when more than 90% of the data points fell within a 10% error band.  The calibration results are 
described in detail in Section 6.4 

 

Figure 3. Diagram of the System-level Modelica Model for the Rickover Cooling Plant 
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2.1.2 Optimization and FDD Algorithms 

The optimization algorithm determines the most effective cooling tower condenser water 
temperature setpoint for the next day at which the total energy consumption of the chillers and the 
cooling towers is minimized. First, the plant load was predicted using a linear model of minute, 
hour, forecast outside air temperature, day of week, and constant bias. The outside air temperature 
forecasts were downloaded from Weather Underground (www.wunderground.com). The 
coefficients of the linear model was trained by linear least squares on the previous year’s data. 
Second, the predicted plant load was split among the two plants with a separate model that was 
created based on previous measurements of the load split ratio. Third, the optimal condenser water 
setpoint was determined for the given plant load running GenOpt and plant models. The minimum 
and maximum condenser water setpoints were defined based on plant operators’ recommendation 
and equipment capacity. The conventional setpoint is 22.22°C. 

Two types of FDD algorithms are implemented in the tool. The first is the detection of cycling 
faults in the cooling tower fans and chiller compressors. The second is identifying efficiency faults 
in the chiller. The detection and diagnosis of chiller efficiency faults was developed and 
implemented in the development version of the tool, but was not included in the “live” version of 
the tool that was released to the site for day-to-day use in operations.  

Cycling Faults 

Tower fan cycling faults are detected using cooling tower variable frequency drive speed data 
while chiller cycling faults are detected using chiller compressor current data. For each five-minute 
time interval being analyzed during the period of interest, the algorithm counts the number of fan 
or chiller transitions from on to off, or off to on, that occur in the hour surrounding the time interval. 
If the number of transitions is excessive, a fault is flagged for that five-minute time interval.  

Figure 4 illustrates that flagged faults are then aggregated into faulty intervals if they persist for at 
least 90 minutes. Multiple faulty intervals are aggregated into a faulty period if they occur within 
two hours of each other.  

 

Figure 4. Fault Aggregation Algorithm.  
A single faulty period is displayed to the user if two faulty intervals are within two hours (left). If the time 

interval is greater than two hours (right), two faulty periods are displayed. 
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Chiller Efficiency Faults 

Poor chiller efficiency is determined by comparing model-predicted coefficient of performance 
(COP) with that estimated from measured data. Described in detail in Bonvini et al. (2014a and 
2014b), the FDD algorithm is based on an advanced Bayesian nonlinear state estimation technique 
called Unscented Kalman Filtering (UKF) that estimates system states and parameters based on 
measured data and a model of the system (Julier and Uhlmann 1996). Detecting poor chiller 
efficiency for a given time period occurs by first identifying steady-state operating periods, then 
estimating a COP based on the data using the UKF, comparing the estimated value with the 
expected value from the model and flagging if faulty, and aggregating faulty intervals into faulty 
periods as described previously. 

In the future, a clustering and decision tree analysis procedure could be implemented to provide 
further diagnostic insight. A procedure was developed to group detected faults based on the 
similarity of conditions under which they occur using k-means clustering. Once the clusters are 
identified, a human readable diagnostic message must be assigned, using a decision tree to 
determine the boundaries in the feature space that distinguish between regular and faulty data, and 
thus identify them. The results of the decision tree are then sorted in order of importance to find 
the set that best describes the majority of the faulty conditions. 

2.1.3 Architecture Definition 

PlantInsight is written in Python 2.7, and consists of three main components: the Django web 
framework, the model simulation and optimization EstimationPy Python packages, and a 
PostgreSQL relational database. The Django web framework serves the web pages and API calls, 
runs the data update routines to calculate derived data points, runs the models, and runs the 
FDD/optimization algorithms. Within these algorithms, model simulations are run by Dymola 
dymosim files, optimizations are run by GenOpt, and FDD use EstimationPy. Dymola is a 
Modelica development, compiling, and simulation program; GenOpt, developed by LBNL, is an 
optimization tool for building energy simulation programs; and EstimationPy is a Python package, 
developed by LBNL and used for state and parameter estimation of dynamic systems that conform 
to the FMI standard. 

The PlantInsight data originates from a Johnson Controls International (JCI) Historian database 
running Microsoft SQL Server located at the USNA site. A program was written in Java 8 to copy 
the data from the USNA SQL Server database to the PlantInsight PostgreSQL database, located at 
LBNL. The program was installed on an operator kiosk at USNA and scheduled to run daily at 
8:00 AM PT. Automated routines on the PlantInsight system read in the new data, update its 
derived data points, run the models, run the FDD/optimization algorithms, then update the results 
on GUI. 

2.1.4 GUI Development 

To ensure that the tool would be of maximum utility to plant operators, design feedback was 
obtained iteratively throughout development. The most important feedback that was integrated 
into the tool design and functionality is summarized in the following:  
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• Add KPIs: Primary chilled water loop temperature, and weather forecast are critical 
parameters tracked by the operations staff. Staff also requested that the tool-predicted plant 
load forecast be added to the interface.  

• Convert energy units to dollars: While campus energy managers regularly track kilowatt-hours 
(kWh) and Btu, tons and dollars resonate more strongly with plant operations staff.  

• Limit the frequency of optimization: The operations staff were not comfortable 
implementing changes more than once a day. In addition, if the savings are not significant 
(>1%), the conventional setpoint temperature is recommended.  

Figure 5 shows the condenser water temperature setpoint optimization features in the tool. In the 
upper plot, the model-determined optimal setpoint is shown along with the (constant) conventional 
actual setpoint for the upcoming day. The forecasted wet bulb temperature is also plotted. In the lower 
plot, the actual measured power (orange) and the predicted power that would have been consumed 
under the model-determined optimal condenser water temperature setpoint (green) is shown.  

Figure 6 contains a summary overview of tower fan and chiller cycling fault detection results 
during the time period of April 24–27, 2016. The red box indicates that tower fan cycling fault 
was detected in Rickover Tower 1 Cell A.  

 

Figure 5. Screen Shots of the Condenser Water Temperature Setpoint Optimization 
Features in PlantInsight 

(Top) Optimal and conventional condenser water setpoints with predicted wet bulb temperature. (Bottom) 
Measured and predicted optimal power. 
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Figure 6. Screen Shot of the Cycling Fault Detection Results Overview in the 
PlantInsight Tool for a Time Period during which a Tower Fan Cycling Fault Was Detected 

 

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY/ 
METHODOLOGY 

In assessing the advantages and limitations of the technology, we considered diagnostic and 
optimized control power, scalability, required expertise, maintainability, and contrast with 
approaches based purely on rule-based and data-driven techniques.  

Diagnostic and optimized controls power: Physics-based techniques remain a compelling direction 
for the continuous commissioning, optimization, and FDD systems of the future. Users can 
compare how the system should operate to how it has operated in the past. Accordingly, 
knowledge of the underlying physics holds potential to enhance diagnostic power. Model-based 
approaches are critical in the delivery of holistic strategies for advanced, efficient building 
controls. The buildings industry is only beginning to deliver dynamic, anytime optimization. These 
capabilities will be needed in the buildings and energy supply systems of the future, and will 
require model-based representations of the underlying physics in the system.  

Required expertise: Given the modeling tools available today, physics-based model construction 
is more labor-intensive and less scalable than rule-based and data-driven models. While non- 
physics-based approaches typically require tuning of key parameters, they are less likely to require 
customization or rebuilding for each new building or system encountered. If components change, 
retrofits are made, or controls are modified, physical models may also require modification. It is 
possible to leverage reference models that provide a coarser representation of the building and its 
systems, however, it is not clear that these offer sufficient resolution for reliable fault diagnostics 
and optimization. Depending on the specific modeling environment used, “stock” components may 
be available from preexisting libraries. However, the models must then be adapted for use with 
specific diagnostic algorithms. Model calibration requires a specialized expertise in building 
modeling, and building science. In general, however, it can largely be conducted with data that are 
commonly available from building control systems.  
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Scalability and maintainability: Cost-effective integration of control system data into analytics 
tools remains a significant challenge whether model-based or data-driven approaches are 
employed. In practice, the cost and complexity often outweigh the benefits of the advanced 
analytics. Once the data are obtained, care must be taken to ensure that the models are being 
calibrated in a physically meaningful way. Auto-calibration routines are being developed and are 
beginning to be offered to the industry (Sanyal et al. 2014; Sun et al. 2016). However, calibration 
approaches must be matched to the application. For example, calibration of a model used for a 
chiller fault detection as it operates through dynamic and steady-state regimes may be quite 
different from that of a whole-building model that is used to determine faults in centralized HVAC 
systems. The questions of when to recalibrate and how to account for faults present in the 
calibration data are the subjects of ongoing research. Finally, one can consider the infrastructural 
aspects of delivering model-based approaches for use in operational analytics. The infrastructural 
requirements for such systems do not present a practical challenge for scaled delivery. Cloud-
based software services dominate today’s solutions for operational analytics tools, precisely 
because of the cost-efficient, scalable, computational, and hosting flexibility they provide. 
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3.0 PERFORMANCE OBJECTIVES 

Table 1 below provides a summary of the demonstration performance objectives, metrics, data 
requirements, success criteria, and results. 

Table 1. Performance Objectives 

Performance 
Objective Metric Data Requirements Success Criteria Results 

Quantitative Performance Objectives 

(1) Reduce 
Central Plant 
Electricity Use 

Annual energy 
use, normalized 
for weather 
(kWh/year) 

Plant energy data, and 
independent variables such 
as outside air temperature 
and relative humidity 

At least 10% 
reduction compared 
to baseline cooling 
plant energy use 

Objective 
achievable for 
~6 months of the 
year 

(2) Reduce 
Central Cooling 
Plant GHG 
Emissions  

Equivalent carbon 
dioxide emissions 
(metric tons) 

Metered energy use before 
and after the 
demonstration, and 
emissions factors 

10% reduction 
compared to cooling 
plant baseline 

Objective 
achievable for 
~6 months of the 
year 

(3) System 
Economics 

Simple and 
discounted 
payback for 
technology use 

Costs: sensor hardware, 
installation, model creation 
and calibration, electricity 
use, software maintenance, 
training, and time to use 
tool 

Simple and 
discounted payback 
in less than 5 years  

Objective met 
with simple and 
discounted 
paybacks of 
1.4 years 

(4) Central Plant 
Model 
Calibration 

Difference 
between model 
prediction and 
measurement  

Plant operational 
parameters, e.g., 
compressor status, flow 
rates, temperatures, 
weather, fan speed, etc. 

Difference between 
model-predicted and 
measured parameters 
less than 10% for 
90% of data points 

Objective met for 
3 of 6 chillers and 
10 of 10 cooling 
tower cells  

(5) Latency in 
Data Transfer 
Between 
Database and 
GUI 

Latency 
(milliseconds) 

Measured time to transfer 
data between the tool’s 
components 

Near-zero latency, in 
data transfer between 
GUI and database, 
i.e., <500 
milliseconds 

Objective 
superseded by 
Performance 
Objective 6 

Qualitative Performance Objectives 

(6) User 
Satisfaction  

Qualitative 
measures of 
satisfaction  

Pre- and post-installation 
interviews with operators 

Equal or improved 
satisfaction relative 
to existing 
operational tools 

Objective met 
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4.0 SITE DESCRIPTION 

The technology demonstration was conducted at the USNA. The technology was implemented 
across the two central plants, Rickover and Lejeune, that serve the campus-wide chilled water loop. 

4.1 FACILITY/SITE LOCATION AND OPERATIONS 

The USNA is located in Annapolis Maryland, and therefore operates within mixed-humid 
American Society for Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) 
Climate Zone 4A. The cooling plant is split into two separate buildings, and serves a diverse set 
of buildings, including traditional office spaces, classrooms, libraries, gymnasiums, laboratories, 
a small data center, and other university buildings.  

The plant is relatively new (constructed in 2006) and represents the current state of efficient design 
practice. The plant management staff uses the BAS to trend the standard operational parameters 
that are leveraged by the PlantInsight tool, and it contains a good degree of monitoring and 
measurement. USNA shares many common characteristics with other DoD installations. 

4.2 FACILITY/SITE CONDITIONS  

The Rickover plant, which is used for the majority of the year, contains two 1,250-ton chillers, one 
2500-ton chiller, and four two-cell cooling towers. The Lejeune plant contains three 2,500-ton 
chillers, and three two-cell cooling towers.  

Figure 7 shows images of the Lejeune cooling towers and one of the chillers. The 2,500-ton chillers 
at the plant have two compressors, while the 1,250-ton chillers have one compressor each. The 
central chilled water loop is operated in a primary/secondary pumping arrangement with each 
plant. Variable frequency drives are outfitted on each cooling tower fan and secondary chilled 
water loop pump. The plants use a JCI Metasys® BAS. USNA energy management staff report 
that the campus HVAC operates during typical “campus” operating hours but can run long hours 
to accommodate students during exam weeks or other high-activity times.  

The primary loop pumps are operated as follows. Each pump is associated to a specific chiller and 
operates at nominal speed if the chiller is designated to turn on. One backup pump is available for 
chiller during operation. The pumps are staged based on minimum runtime. The secondary loop 
pumps each have variable frequency drives and are controlled to maintain the prescribed 
differential pressure setpoint across the campus loop. The condenser pumps are operated similarly 
to the primary pumps. 
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Figure 7. Lejeune Plant Cooling Towers (left), Chillers and Pump (right) 

The cooling plant is operated to provide campus loop chilled water at 42°F ±2°F. Each plant is 
operated in a seasonal configuration. During winter months, only the Rickover plant provides 
cooling to the campus by running one of the two 1,250-ton chillers at a time, with one cooling 
tower. In non-winter mode, the two plants (Rickover and Lejeune) are operated to satisfy the 
cooling load requests. Once the load surpasses the capacity of the single 1,250-ton chiller, the 
Rickover 2,500-ton chiller begins to operate. When the load rises above the capacity of the 
2,500-ton chiller, the 1,250-ton chiller with the lowest runtime commences operation. Upon 
continued rise of the cooling load above 3,750 tons, the operation is switched to the Lejeune plant. 
Personnel may decide to operate both plants simultaneously under certain circumstances. Finally, 
cooling towers are staged on/off according to minimum runtime and to maintain a nominal 
condenser water temperature of 72°F ±2°F (adjustable). Cooling tower fan speeds are modulated 
to maintain fine control of the setpoint. Note that this condenser water setpoint is the optimization 
variable of interest, as described in Section 2. 

 

Figure 8. Configuration of the USNA Cooling Plants and the Chilled Water Loop 
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5.0 TEST DESIGN 

5.1 CONCEPTUAL TEST DESIGN 

The technology demonstration was conducted in three phases. First, design wireframes and an 
alpha version of the PlantInsight optimization and diagnostic tool was developed to obtain early 
design feedback. This alpha version interfaced with a static database of historical operational data. 
In the second phase, we connected operational data with a beta version of the tool and conducted 
troubleshooting and refinement. We vetted the diagnostic and optimization algorithms. In the third 
phase, we released the first version (v1) of the tool for operator use and began tracking its 
performance.  

5.2 BASELINE CHARACTERIZATION  

The technology demonstration evaluated three categories of performance objectives: 

1. System economics, energy and GHG reductions, which require a rigorous quantitative 
baseline characterization. 

2. Model calibration and system latency, which are absolute measures that do not require 
comparison relative to a baseline.  

3. User satisfaction, which is a qualitative measure that was assessed relative to a baseline 
comprising the existing technologies used in by the operations staff, using a survey and 
interview instrument.  

Baseline energy use and GHG emissions were characterized using measured cooling load at each 
plant, measured weather conditions at the site, and the conventional condenser water setpoint 
temperature of 22.2°C as inputs in the plant simulation models. The simulated electricity 
consumption of each plant includes chiller compressors and cooling tower fans. Baseline 
conditions for the evaluation of system economics are detailed in Section 7. 

5.3 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS 

The primary components of the demonstration technology, PlantInsight, were described in Section 
2 and illustrated in Figure 2. Data from meters and sensors at the USNA’s two central cooling 
plants is stored locally in the JCI Microsoft SQL server. These data are accessed by operational 
staff through the “operator kiosk.” The kiosk is located in a different facility on the USNA campus 
than either cooling plant. The PlantInsight tool is located on a server at LBNL, and accessible to 
USNA via web browser. Site data required for PlantInsight is pushed to LBNL using secure port 
443 and a data transfer program installed on the kiosk.  

5.4 OPERATIONAL TESTING 

The phases and dates of development and operational testing are summarized below:  

2012: Project launch at Washington Navy Yard (WNY); central plant information and data 
acquisition; Demonstration Plan development and approval. 



 

16 

2013: Early model development; integration plan to deliver PlantInsight through NDW’s 
EnergyICT analytics system; demonstration site relocation due to WNY shooting incident. 

2014: Update of Demonstration Plan to reflect new location; information and data gathering for 
new site; NDW recommendation to deliver PlantInsight through the IBM operational platform; 
wireframe mockups of PlantInsight delivered for early design testing and feedback.  

2015–2016: NDW recommendation to untether PlantInsight from IBM platform; reassignment of 
GUI implementation and tool hosting to LBNL.  

2016–2017: Alpha version released; troubleshooting to establish continuous data access from 
USNA to LBNL database; features update based on user feedback. Beta released with live data 
updates; iterative hardening and enhancement. Full-fledged in-situ operational testing including 
implementation of optimized setpoints recommended by the tool. 

5.5 SAMPLING PROTOCOL 

The data that were used for the development and operation of PlantInsight are summarized in  
Table 2. 

Table 2. Summary of Data and Monitoring Points Used for Technology Development 
and Operation 

Data Point Sampling 
Frequency 

Quantity Data Source Use of Data  

Chiller compressor status COV1 10 Metasys Model calibration 
Fault detection and diagnosis 

Chiller chilled water leaving 
temperature 

5 min 6 Metasys Model calibration 
Fault detection and diagnosis 

Chiller chilled water entering 
temperature 

5 min 6 Metasys Model calibration 
Fault detection and diagnosis 

Chiller chilled water leaving 
temperature setpoint 

COV 6 Metasys Model calibration 

Chiller FLA2 motor current 5 min 10 Metasys Energy calculation 
Model calibration 
Fault detection and diagnosis 

Chiller chilled water pressure 
difference 

5 min 6 Metasys Calculate chilled water flowrate 
for model calibration 
Fault detection and diagnosis 

Chiller condenser water pressure 
difference 

5 min 6 Metasys Calculate chilled water flowrate 
for model calibration 
Fault detection and diagnosis 

Cooling tower module status COV 14 Metasys Model calibration 
Fault detection and diagnosis 

Cooling tower condenser water 
leaving temperature 

5 min 14 Metasys Model calibration 
Data quality check 

Cooling tower condenser water 
entering temperature 

5 min 14 Metasys Model calibration 
Data quality check 
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Table 2. Summary of Data and Monitoring Points Used for Technology Development 
and Operation (Continued) 

Data Point Sampling 
Frequency 

Quantity Data Source Use of Data  

Cooling tower condenser water 
leaving temperature setpoint 

5 min 2 Metasys Model calibration 
CDW3 setpoint optimization 

Cooling tower module fan speed 5 min 14 Metasys Model calibration 
Cooling tower module electric power 5 min 14 Metasys Energy calculation 

Model calibration 
Fault detection and diagnosis 

Outside air dry bulb temperature 5 min 1 Metasys Model calibration 
Outside air relative humidity 5 min 1 Metasys Model calibration 
Primary loop chilled water leaving 
temperature 

5 min 1 Metasys Data quality check 

Primary loop chilled water entering 
temperature 

5 min 1 Metasys Data quality check 

Secondary loop chilled water leaving 
temperature 

5 min 1 Metasys Data quality check 

Secondary loop chilled water 
entering temperature 

5 min 1 Metasys Data quality check 

Forecasted outside air dry bulb 
temperature 

Hourly 1 Weather 
underground 

Load forecast 
CDW setpoint optimization 

Forecasted outside air relative 
humidity 

Hourly 1 Weather 
underground 

Load forecast 
CDW3 setpoint optimization 

1   COV: change of value 

2   FLA: full load amps 

3   CDW: condenser water in cooling plant 

The demonstration did not require addition of meters or sensors other than those already in place 
at the site. As such, demonstration-specific calibration beyond the site’s standard calibration 
procedures was not conducted, except for the plant temperature sensors (which are critical to the 
models that underlie the PlantInsight tool). Data were cleaned using standard logic to remove 
outlier spikes and discard data for periods when values that should have been variable were 
observed to be constant, or “pinned.” Quality assurance checks showed that among the twelve 
temperature sensors for six chillers, four temperature sensors had biased readings. The biases were 
corrected through a calculation within the PlantInsight tool. Analyses for the cooling tower 
condenser water leaving and entering temperature indicated that the cooling tower temperature 
sensors were producing accurate readings. 

5.6 SAMPLING RESULTS 

The figures in this section contain data plots for some of the most critical points used in operational 
testing. In Figures 9 and 10, operational data for Rickover Chiller 3 and Tower 4, respectively, are 
shown over a five-day period in spring. Figure 11 shows the implementation of the optimal 
condenser water setpoint, which was 10°F lower than the typical static setpoint otherwise used.  
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Figure 9. Operational Data for Rickover Chiller 3: April 6–10, 2017 

 

 

Figure 10. Operational Data for Rickover Tower 4: April 6–10, 2017 

 

 

Figure 11. Rickover Cooling Tower Leaving Temperature Setpoint Changing Due to the 
Implementation of an Optimized Setpoint from April 6–10, 2017 
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6.0 PERFORMANCE ASSESSMENT 

6.1 REDUCE CENTRAL PLANT ELECTRICITY USE  

6.1.1 Procedure 

To determine whether the 10% energy savings objective was met, a simulation analysis was 
conducted. For each plant, measured cooling load data and observed weather conditions were used 
by the optimization algorithm to determine the optimal condenser water setpoint for a given day. 
Once this setpoint was determined, the operation of each plant for the given day was simulated 
using the developed models twice—once with the optimized setpoint and once with the 
conventional setpoint. The conventional setpoint represents the baseline operation, while the 
optimized setpoint represents operation with the tool in use. This procedure was repeated every 
day for one year. The savings were taken as the difference between the total annual energy 
consumption simulated with baseline operation and that with optimized operation.  

In addition to assessment of yearly energy savings with a simulation, real energy savings were 
analyzed using measured data from the site during the period during which plant operators 
implemented setpoints suggested by the PlantInsight tool.  

6.1.2 Annual Simulation Results 

The analysis indicated that daily energy savings of greater than 10% can be obtained for 
approximately six months of the year, mainly during the winter season. However, on an annual 
basis, across all 12 months of the year, obtainable annual energy savings were 1.38% 
(434,785 kWh, $30,435). Figure 12 (left) shows the absolute savings for the two plants as a total, 
for each day over the course of the year. 

Figure 12 (right) shows the relative savings as a percentage of the baseline operation for each day. 
In total, the Rickover plant achieves greater than 10% energy savings 48% of the days of the year, 
while Lejeune does not achieve greater than 10% energy savings for any portion of the year. While 
relative savings during the winter can be as high as 30%, the total power consumption is low, and 
therefore the contribution to annual savings is too low to meet the annual 10% target. 

Further analysis shows that savings potential is driven by outside wet bulb temperature in addition 
to the trade-off between cooling power and chiller power consumption. For Rickover, during the 
winter when savings potential is high, the optimal condenser water setpoint temperature is low due 
to low wet bulb temperatures, indicating that working the fans harder to achieve a lower condenser 
water temperature is worth the increase in chiller efficiency and lower chiller energy consumption. 
Meanwhile, in the summer, high wet bulb temperatures limit the ability for the cooling towers to 
lower the condensing temperature and provide any energy savings. For Lejeune, on days that 
provide a higher savings potential, the optimal condenser water setpoint temperature is high, 
indicating that working the fans less on those days is worth a slight loss in chiller efficiency. 
However, the savings in tower fan energy is relatively small compared to chiller power, and so the 
savings on the system is small.  
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Figure 12. Simulated Daily Energy Savings from September 2014 through September 
2015 (left: absolute value; right: relative) 

6.1.3 Performance Assessment with Field Data 

In addition to simulation, energy savings were evaluated using field testing data from before and 
after the implementation of optimal setpoints from April 7–10, 2017. Energy savings were 
determined by creating a baseline model of plant electricity consumption as a function of cooling 
load. The linear regression showed good fitness to the data, with an R2 of 0.8, normalized mean 
bias error of 0.04%, and coefficient of variation of the root mean square error of 6%. 

Although these results correspond to a short-term period of implementation, they serve to validate 
the simulation findings, which indicate comparable savings potential. Taken together, these 
analyses provide confidence in the assessment of demonstration performance objectives.  

We also note that there is some flexibility in the overall system so that even imperfectly calibrated 
models for some chillers and towers can be used to strong effect to obtain savings relative to baseline 
practices. Figure 13 shows the savings results from projecting the baseline model to estimate the 
energy use that would have occurred during the test period had the optimized setpoints not been 
implemented. 17% savings were achieved over this four-day period, for a total of 5,436 kWh. 

 

Figure 13. Actual vs. Baseline-predicted Energy Use (test period: April 7–10, 2017) 
during which 17% Energy Savings Were Quantified 
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6.2 REDUCE CENTRAL COOLING PLANT GREENHOUSE GAS EMISSIONS  

The goal of this performance objective was to reduce the equivalent carbon dioxide emissions 
associated with the electricity used to run the central cooling plant over the course of one year 
(metric tons) by 10% with respect to baseline operations. Therefore, to analyze this performance 
objective, the procedure and findings in Section 6.1 were used with a conversion factor applied to 
estimate GHG emissions attributable to plant electricity consumption. With a single conversion 
factor applied (using Energy Star and eGRID [Emissions & Generation Resource Integrated 
Database]), the results of the analysis were the same as performance objective 6.1 in terms of 
percent savings. That is, greater than 10% daily savings were achieved for approximately six 
months of the year for the two-plant combined total. However, on an annual basis, achievable 
annual savings of 1.38% were achieved. This savings potential translates to 181,403 tons of 
cooling for the combined plant total. 

6.3 SYSTEM ECONOMICS 

The life-cycle cost analysis that was conducted to evaluate system economics is described in detail 
in Section 7.0. The analysis confirms that the demonstration technology can meet simple and 
discounted paybacks of 1.4 years, satisfying the five-year performance objective. 

6.4 CENTRAL PLANT MODEL CALIBRATION  

The performance objective associated with plant model calibration stipulated that the difference 
between model-predicted and measured parameters be less than 10% for 90% of data points. This 
objective was satisfied for three of six chillers, and for each of the ten cooling towers for which 
there was sufficient data. 

For the three chillers that could not be calibrated to the performance objective, it is suspected that 
the causes were either a limited volume of data representing full-capacity operation, erroneous 
data, or faulted operations underlying the data. In the case of the cooling towers, four cells could 
not be calibrated because the necessary calibration parameters were not available or were 
erroneous from the measured data history at the site. Since the model structure for each of the 
cooling towers were equivalent, the calibration parameters for towers that were well-calibrated 
were applied to those for which calibration data were not available. The calibration parameters for 
chillers that were less well-calibrated were used in the chiller models, even though they were less 
than ideal with respect to the performance objective. Although measured data required to calibrate 
these three chillers was limited, we were able to leverage information from identical equipment on 
site that was calibrated, and thereby provide sufficient calibration across the board to meet the 
project objectives sufficiently to develop a credible tool whose predictions were consistent with 
user expectations.  

Figures 14 and 15 contain selected examples of the calibration results for the chiller and cooling 
tower models. Figure 14 shows model-simulated versus measured COP for a case in which the 
performance objective was met, and for a case in which it was not met. 

Figure 15 shows model-simulated versus measured cooling tower fan power and cooling tower 
leaving temperature, for one of the ten towers for which the performance objective was met. 
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Figure 14. Comparison of Simulated and Measured Chiller COP for Chiller Lej-CH2, 
for which the Model Calibration Performance Objective Was Met (left,) and for Chiller 

Lej-CH3, for Which It Was Not Met (right) 

 

 

Figure 15. Comparison of Simulated (left) and Measured (right) Cooling Tower Fan 
Power and Cooling Tower Leaving Temperature for Tower Rick-T3A.  

In both cases the model calibration performance objective was met. 

Given that the majority of the models used in PlantInsight were able to be closely calibrated to the 
measured data from the site, the demonstration team was comfortable to incorporate the models 
into the PlantInsight tool. The assessment of the energy-savings performance objective confirmed 
that for key seasonal conditions (low wet bulb temperature), the model-derived optimized setpoints 
were indeed more efficient than the heuristic static setpoint typically used to operate the plant. 

6.5 USER SATISFACTION  

The criterion to provide equal or improved satisfaction relative to existing operational tools 
was satisfied. The two primary users of PlantInsight—the USNA central chilled water plant 
manager and the lead central plant operator—were interviewed and surveyed following release of 
the v1 version of the tool to USNA.  
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Overall, users reported that satisfaction with the capabilities of PlantInsight was equal to or better 
than that with the preexisting JCI Metasys system that is used for plant operations. Although 
PlantInsight is intended to complement (not replace) the Metasys system, from a user satisfaction 
standpoint, it provides a meaningful benchmark.  

The capabilities of PlantInsight that were deemed most valuable are summarized in Table 3. Users 
were asked to select three to five capabilities from a list of eleven options. On the whole, users 
stated that the technology improved their ability to operate the plant more efficiently by identifying 
the load and energy impacts associated with changes in setpoints and equipment operations.  

Table 3. User Feedback on the Three to Five Most Valuable Capabilities of 
PlantInsight  

PlantInsight Capabilities Highest Value to Plant 
Manager 

Highest Value to Plant 
Operator 

Visualization and plotting of plant 
load data 

X X 

Visualization and plotting of 
efficiency curves (kw per ton vs. tons) 

X X 

Quantification of plant energy 
consumption 

X  

Quantification of plant 
utility/operational costs 

X  

Weather forecasting X  
Chiller runtime and energy use 
summary statistics 

 X 

Optimization of central plant setpoints  X 
Fan cycling fault detection   
Chiller cycling fault detection   
Quantification of cost of faults   
Central plant load forecasting   

On a scale of 1–5, with 3 being neutral and 5 being highly satisfied, the plant manager and lead 
operator rated the PlantInsight user interface, FDD and optimization outputs, and tool overall at a 
level 4. 
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7.0 COST ASSESSMENT 

7.1 COST MODEL 

A cost model for PlantInsight is presented in Table 4. This cost model reflects estimated cost that 
would be required to implement the technology anew at a real site. All estimates are based on 
observations of team and partner experiences throughout the course of the demonstration. 

Table 4. Summary of Demonstration Technology Cost Elements and Estimates 

Cost Element Description of Cost Element Estimated Costs 

Hardware Capital 
Costs 

Cost of metering required to calibrate models and execute 
optimization and FDD algorithms 

$18,000 

Installation Costs Labor to install and configure PlantInsight $897 

Labor required to implement data export from BAS to PlantInsight $897 

Labor to install flow meters $6,435 

Labor to create and calibrate models $8,372 

Consumables N/A N/A 

Facility 
Operational Costs 

Annual plant energy used with PlantInsight optimized setpoints $2,170,535/year 

Labor time to use the tool $4,126/year 

Maintenance Labor to conduct software information technology (IT) 
maintenance 

$1,077/year  

Labor to calibrate flow meters $423 every five years 

Labor to update and recalibrate models $8,416 every five years 

Hardware Lifetime Natural degradation flow meters over time 10 years 

Operator Training Staff time to learn how to use the software and become familiar 
with the interface 

$423 every five years 

7.2 COST DRIVERS  

The most significant cost drivers for the demonstration technology are hardware capital and 
installation costs, engineering costs to create and calibrate models, and operators’ time to use the 
tool. USNA has a modern well-instrumented central cooling plant that did not require the addition 
of supplementary hardware to monitor plant operational parameters. This may not be the case in 
other facilities. The cost model assumed that installation of chiller flow meters would be required; 
however, depending on the specific site, additional instrumentation could be required, introducing 
higher hardware and installation costs. Over time, as equipment and operations evolve, or for new 
installations, the models that underlie the tool’s algorithms may require modification and calibration.  
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7.3 COST ANALYSIS AND COMPARISON 

To model and run the cost analysis, we assume implementation of the technology in a large facility 
approximately equivalent to that of the USNA, which is served by multiple chillers, which may be 
split across several individual cooling plants. Hardware costs assume that, on average, six chiller 
flow meters may need to be added to provide the required data for the tool, and that those meters 
would need periodic calibration. Similarly, models may require periodic updating by an engineer. 
The National Institute of Standards and Technology (NIST) Building Life-Cycle Cost (BLCC) 
tool was used to conduct a comparative analysis between the demonstrated technology and the 
current approach. Since the energy savings potential is driven by climate (wet bulb temperatures), 
cost-effectiveness could increase in drier climates. 

The following are the other assumptions used in the model: 

• Project Life: 10 years (assuming the software has a shelf life of only 10 years and needs 
major overhaul after that time period) 

• Salvage Value: $0 

• Escalation Rates:  

– Assumed BLCC recommended rates for the energy rates 
– Assumed an inflation rate of 2% for operations and maintenance, repair, and other labor 

costs 

• Assumed a discount rate of 3%, with a mid-year discounting 

• The project will start performing from April 1, 2018. The period between April 1, 2017, 
and March 3, 2018, is considered to be the baseline period. 

The following are the results of the cost-comparison analysis between the two options (“do 
nothing” and maintain current operations versus operate with PlantInsight): 

• Savings-to-Investment Ratio: 7.21 

• Adjusted Internal Rate of Return: 23.26% 

• Simple Payback: 1.37 year 

• Discounted Payback: 1.42 year 
 

  



 

27 

8.0 IMPLEMENTATION ISSUES 

Future implementation of the technology concerns three pertinent areas: IT security, maintenance 
and evolution, and scale-up and transition. There are no regulations that apply to use of the 
technology. The only equipment that may be required for implementation may comprise additional 
off-the-shelf sensors or meters, as discussed in Section 7. 

1. IT Security 
The PlantInsight technology requires unidirectional transfer of cooling plant operational data from 
the site to the application’s database. The application is hosted on a web server and is accessible 
via a web browser. In the USNA demonstration, port 443 was used to establish secure 
communications from the Metasys BAS Kiosk to the PlantInsight application; for ongoing use at 
USNA, PlantInsight could be ported to a USNA server. 

To satisfy DoD IT security requirements, future installations can consider several options that 
surfaced over the duration of the demonstration. PlantInsight can be integrated within existing 
accredited applications, as was the original intent when the demonstration was first initiated at the 
WNY. Specifically, accreditation refers to compliance with the Risk Management Framework 
(RMF) for DoD IT, which has replaced DIACAP (DoD Information Assurance Certification and 
Accreditation Process). Alternatively, PlantInsight could be put through the accreditation process 
itself. Another option that was explored was to push plant operational data from USNA to a server 
farm on a secure Navy network, with PlantInsight accessing the data through a virtual private 
network (VPN). The third option that was explored was to leverage the “Enabler” data transport 
system that was under development by NDW at the time that the demonstration was being 
transferred from WNY to UNSA. The Enabler is no longer available for use, and if NDW decides 
to pursue implementation of the technology at additional installations, viable cyber security 
solutions will need to be identified. 

2. Technology Maintenance and Evolution 
As the demonstration comes to a conclusion, LBNL will work with UNSA IT to transfer the tool 
from LBNL’s server to a server and location that will comply with IT security requirements. This 
is a key step in ensuring that the technology can continue to provide efficiency improvements to 
the chiller plant operations. Similarly, as the campus grows and cooling load is added, as plant 
equipment is updated, and as operations evolve over time, it will be necessary to update and 
recalibrate the models used in PlantInsight. Although it is not yet used universally throughout the 
industry, companies such as HOK, JCI, and United Technologies Corporation (UTC) have staff 
that are familiar with the modeling language (Modelica) upon which the tool is built. They could 
potentially be contracted to support future model modification and calibration. 

3. Technology Scale-up and Transition 
To make the PlantInsight Tool available to other DoD installations, it will be released through an 
open source software license. This will enable stand-alone use according to its current design, or 
adaptation for use within existing installation energy management facility and information systems 
as described in the considerations of IT security. Several types of documentation (for developers 
and implementers and for installation users) have been developed to support these future transition 
activities, and to support ongoing use at USNA.  



 

28 

In conclusion, future implementations of the technology will benefit from awareness of the 
following higher-level lessons that were learned throughout the course of the demonstration. First, 
operators place strong value on access to tools that provide visibility into how controls impact 
energy use and cost. This is not as a rule available in today’s commercial analytics technologies 
that span BASs, meter analytics tools, or equipment-specific fault detection and diagnostics tools. 
As such, HVAC optimization technologies represent advances in the state of today’s available 
technology, and this is even more true of optimization tools that incorporate physics-based 
modeling approaches. The Environmental Security Technology Certification Program (ESTCP) 
technology demonstration program has acted as a leader in the demonstration of these leading-
edge solutions, and future implementations will continue to contribute to the state of knowledge 
of their development and application.  

Model-predictive optimization, combined with fault detection and diagnostics, is recognized as a 
critical aspect of realizing the dynamic low-energy buildings of tomorrow, and today’s 
applications can deliver even more impact from expanding the set of parameters that are included 
in the optimization, as well as the number of end uses that are considered. Although these 
technologies represent advanced forward-looking applications, the external infrastructure to 
support their delivery at scale is mature; cloud hosting and computational scalability are well 
supported through modern IT solutions. In contrast, the most significant practical implementation 
barriers are the brittle building data acquisition and communication systems that present chronic 
challenges to analytics applications that need to interface with controls data. Finally, we note that 
the creation and calibration of physics-based models that are intended to be used in the operational 
phase of the building life-cycle is highly dependent upon the specific algorithms with which they 
will be paired. The open, reference implementations that are delivered with PlantInsight are 
important contributions to industry’s continued success in leveraging these promising approaches 
for next-generation building energy efficiency.  
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APPENDIX A POINTS OF CONTACT 

Point of 
Contact 
Name 

Organization 
Name  

Address 

Phone 
Email Role in Project 

Mary Ann 
Piette 

LBNL, 1 Cyclotron Rd., 
Berkeley, CA 94720 

510-486-6286 
mapiette@lbl.gov 

Principal Investigator 

Jessica 
Granderson 

LBNL, 1 Cyclotron Rd., 
Berkeley, CA 94720 

510-486-6792 
JGranderson@lbl.gov 

Co-Principal 
Investigator 

Christopher 
Crouse 

NDW HQ 202-257-9206 
christopher.j.crouse@navy.mil 

Liaison from NDW 
Headquarters 

Rodney Milley 
 

Public Works Department 
Utilities & Energy Mgmt. 
Branch, USNA 
181 Wainwright Road 
Annapolis, 21402 
 NAVFAC Washington 

410-293-3185 
rodney.milley@navy.mil 

Branch Manager, 
Utilities and Energy 
Management 

John Barton Public Works Department 
Utilities & Energy Mgmt. 
Branch, USNA 
181 Wainwright Road 
Annapolis, 21402 
 NAVFAC Washington 

410-293-1039 
john.barton1@navy.mil 

Liaison with all 
public works staff at 
USNA 

Wellington W. 
Sullivan 

Lead EMCS & CHWP Operator 
USNA - Annapolis Support 
Project 

 410-293-3782 
Wellington.W.Sullivan@iapws.com 

Lead operator of 
facilities at USNA 

Chi Chiu Public Works Department 
Utilities & Energy Mgmt. 
Branch 
181 Wainwright Road 
Annapolis, 21402 

410-293-1045 
chi.chiu@navy.mil 

Mechanical Engineer 
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