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Overview 
Patterns of biodiversity and the mechanisms driving them must be thoroughly understood to guide 
an effective monitoring and resource management program. In addition, other dimensions of 
biodiversity along with new diversity metrics, such as interaction diversity, can act as more 
sensitive indicators of how ecological communities respond to management activities, 
disturbances, or global change parameters. These detailed measures of diversity, combined with 
knowledge of theoretical and mechanistic underpinnings of diversity, then must be made relevant 
for managers of natural resources. This combination of diversity pattern, process, and management 
has been the overarching theme of our SERDP funded research. The strategy outlined below shows 
how we have divided our activities into three sub-themes (Fig. 1): 1) cross-scale spatial and 
temporal patterns of diversity (Fig. 1, yellow boxes); 2) fine-scale examination of the role of fire 
in driving patterns of diversity (Fig. 1, green boxes); and 3) coarser-scale linkages useful for 
expanding mechanistic understanding to landscape and management relevant scales (Fig. 1, blue 
boxes).  
These themes both framed our research and were tactical; the project was large and complex and 

it was an efficient and effective strategy for guiding 
our research activities. We adopted this framework 
for the final report not because we executed three 
independent projects, but rather because each topic 
area was crucial for understanding the mechanisms 
linking fire, biological diversity and forest structure. 
Understanding these links mechanistically is critical 
for both guiding management now and in the future 
under the novel conditions expected with global 
change. We have completed all our planned activities 
and broadened the project in three important areas: 
fuel and fire behavior spatial dynamics and fuelbed 
modeling without adding any additional costs. While 
we have completed all promised analyses and 
syntheses, the work reported here will form the 
foundation for several new avenues of research we 
are actively pursuing. We were also mindful that the 
focus of the research was to produce management 
applications. We saw our challenge as generating 
applied knowledge and tools that have a solid 

mechanistic and theoretical foundation (Table 1).  
  

Figure 1. The three themes (blue, green, 
yellow boxes) of RC-2243, the red boxes 
indicate the final synthesis phase of the 
project.  
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Table 1. Examples of how the project has generated both basic and applied knowledge for science 
and management. Some of these topics were cited in the original proposal, others are new areas 
we are still pursuing and will continue to pursue. 
 
Project Activity Knowledge Gained Application Future Utility 

Aerial LiDAR Generate landscape- 
scale forest structure 
models; & coupled with 
terrestrial LiDAR 

Stand structural 
information at 
management relevant 
scales; scenario testing 

Technique broadly 
applicable to other 
forested ecosystems 

Cellular Automata 
model 

Identify mechanisms 
driving patterns of 
diversity/community 
assembly; Identified 
neutral processes. 

Community responses 
to fire management; 
scenario testing 

Applicable to other 
systems once 
appropriate model rules 
are determined; test 
with other (soil, 
canopy) disturbances  

In-fire Infrared 
Thermography 

Spatial and temporal 
patterns of fire behavior 

Link fire behavior to 
fire effects at relevant 
scales 

Calibration/validation 
of fire behavior models 

3D Fuel Rendering Create virtual surface 
fuels with real estimates 
of volume and biomass; 
Link canopy structure 
and surface fuels 

Create landscape-scale 
surface fuel models 

Develop better fuel 
characterization for fire 
behavior models; 
applicable in other 
systems 

Demographic Data 
(plants & arthropods) 

Advance theoretical 
foundations of 
community ecology 

Define appropriate 
type/scales for sampling 
diversity 

Identify key transition 
points where 
management 
intervention might be 
most successful 

Interaction Diversity Identify new 
dimensions of diversity 
currently unexplored in 
most ecosystems. 

Provides more robust 
metrics of diversity that 
can guide management 
decisions and helps to 
quantify actual 
ecosystem services 
provided by 
biodiversity 

Allows for more 
effective calculations of 
the billions of dollars of 
ecosystem services 
provided by 
biodiversity on any 
DoD land 

Unified Model Identification and 
linking of cross scale 
mechanisms driving 
patterns of diversity and 
ecosystem function 

Explicitly designed for 
management to test 
various interventions 
(e.g., logging, fire 
application) scenarios 

Modular nature of the 
model facilitates the 
inclusion of other 
parameters (e.g., fire 
spread, smoke) 
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Therefore, one major focus of our current project was aimed at identifying the mechanisms driving 
the relationship between fire and fine-scale patterns of diversity. We have hypothesized and have 
empirical evidence to support that at one end of the fire frequency spectrum, the high plant 
diversity found at very fine scales is driven by stochastic community assembly processes. This was 
not because we are joining the more than 5000 studies that have cited Hubbell’s influential 2001 
book on the unified theory of biodiversity and biogeography (or the 20,000+ publications on 
neutral theory), but because we hypothesized that the mechanisms that ecologists have identified 
as neutral processes (e.g., random mortality and recruitment limitation) are the actual drivers of 
the patterns of biodiversity that we have observed. These processes affect more than just a simple 
number count of species, they affect multiple dimensions of diversity, including genetic, 
taxonomic, functional, and interaction biodiversity. Understanding these mechanisms will allow 
us to make realistic predictions on the impacts of management on biodiversity. Because we have 
developed new ways to measure spatial and temporal patterns of fire energy release, we believe 
we have identified the mechanistic key to understanding how so many species coexist in such 
proximity in a nearly uniform substrate. Fuels such as grasses and pine needles dominate fire 
spread in frequently burned longleaf ecosystems and most plant species survive exposure to the 
burning of these fuels; the longleaf flora is dominated by perennial species and species 
composition post fire on the whole generally mirrors what was present prior to fire. However, fuels 
that burn for longer periods such as pine cones and tree branches release considerably more energy 
concentrated in a small area. This energy release represents the agent of random mortality key to 
neutral community dynamics. We also know that when fire is excluded, diversity declines and this 
process is not random, but predictable as certain species are released (e.g. woody plants) and 
competitively exclude other species. This represents a clear deviation from neutrality. Reconciling 
these processes has been described as the “Continuum Hypothesis” (Gravel et al. 2006, Fig. 2), 
which posits that different disturbance regimes or scales, allow for both neutral processes and 
significant deviations from neutrality to affect diversity.  

 
Figure 2. Graphic of the Continuum Hypothesis as influenced by fire return interval and influences 
on diversity scaling. The arrow points towards longer periods between fires and coarser scales of 
diversity. The boxes indicate positions on the spectrum of fire return intervals where ecological 
processes shift from neutral toward deterministic. Understanding the nature of the transition could 
identify tipping points and be useful for guiding restoration. 
 
Whereas the examples of the Continuum Hypothesis typically involve comparisons of different 
landscapes, we hypothesized and have empirical evidence that in systems dependent on frequent 
fire, the continuum can occur within a single landscape. A further discovery was that the shift from 
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neutral to deterministic processes occurs very rapidly, with as few as two missed fire entries, and 
the transition itself is complex and dynamic. This conceptual framework was one of the 
foundations of our project and was clearly the correct approach. While Gravel et al. 2006 were 
attempting to reconcile the theories, we argue that our study shows they are indeed discrete 
processes separated by the presence or absence of fire. The validity of our approach was also 
supported by our neutral modeling results. This approach was useful not only for teasing out the 
relative roles of competing ecological theories on community assembly, but also in providing a 
framework for testing how forest disturbances affect diversity at large scales. Because we used a 
spatially explicit rule-based modeling approach (Cellular Automata (CA) model, in ‘Fine-Scale 
Studies’ section) to test our ecological hypotheses, this allowed us to seamlessly integrate it with 
the landscape-scale portion of our project (‘Coarse-Scale Studies’ section) and the investigations 
into patterns of diversity. Plant diversity at scales larger than our 1m x 3m plots, including long-
term data collection at EAFB were utilized to understand diversity at coarser spatial and temporal 
scales (‘Patterns of Diversity’ section). By sampling arthropod diversity and creating linkages to 
plant diversity at multiple spatial and temporal scales, we could better understand how both plant 
and animal communities, as well as their interactions, are organized with respect to presence or 
absence of fire. Our measures of multiple dimensions of diversity reflect the current focus of 
biodiversity researchers in both basic and applied realms, and the interaction diversity measure is 
particularly important for linking biodiversity to the trillions of dollars of ecosystem services that 
are provided by natural ecosystems, since those services are all due to a diverse mix of ecological 
interactions. 

 
For clarity throughout this report, “diversity” refers to the multiple measures of diversity that we 
quantify, including the following: species richness = the number of species; species density = the 
number of species estimated per unit area (Gotelli and Colwell 2001); diversity = measures of 
entropy that include evenness and relative abundance, such as Shannon or Simpson diversity 
indices; effective number of species = indices converted from an entropy measure to the equally-
common species required to give a particular value of the index - for example, the transformed 
inverse Simpson index (1/D) is used as the effective species number, and allows for meaningful 
ecological comparisons (with species as the unit) across samples or studies (Jost 2007). The 
Simpson species equivalents are better for the ecological comparisons in our studies than 
rarefaction techniques (e.g., see Lande et al. 2000). In addition, we examine multiple dimensions 
of diversity, including “interaction diversity,” which we define as the richness and relative 
abundance of trophic interactions linking species into dynamic biotic communities (Dyer et al. 
2010, Forister et al. 2015). This measure of diversity is very important for understanding the 
relationship between economically valuable ecosystem services (e.g., predation, parasitism, 
pollination) and biodiversity, since these services depend on a diversity of natural interactions 
(Dyer et al. 2010). 

Sampling Design 
 
This section briefly describes the project’s sampling design performed at coarse scales (A), fine 
scales (B), and approaches to data mining and other sampling approaches (C). 
 

A. Coarse-Scale Sampling Design  
Expectations at the earlier stages of the project that high-density Buckeye LiDAR would be flown 
over all or significant portions of Eglin Air Force Base (EAFB), and delivered, never materialized. 
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As an alternative, we are using publicly available low density (1 to 2 points m-2) LiDAR flown 
from 2006-2008 across all of EAFB. These data have been downloaded for processing into 
predictive LiDAR metrics at a 30 m resolution. We have supplemented this low density data with 
high density (7 points m-2) where available. 
 

B. Fine-Scale Sampling Design 
Our overall experimental plan was a two-way randomized block design. Burn units were the 
blocking variable, site productivity (sandhills, flatwoods) and overstory density (three levels), 
were the two factors. We established our plots within existing EAFB monitoring plots classified 
as being in reference condition and used the monitoring tree maps to stratify the overstory as 
follows: In each habitat type, five replicate burn units had 1m x 3m plots installed in open, single-
tree, and clumped canopy conditions for a total of 30 plots (two habitat types x three treatments x 
five blocks). To stratify the overstory, we used a stem map and created four meter circular buffers 
around each tree. Open plots could only be located outside buffers, single-tree plots could only be 
located in a single buffer that did not intersect other buffers and clumped plots could only be placed 
in areas where at least three buffers overlapped. The locations of the plots were randomly selected 
within the strata. Arthropod sampling is conducted in proximity to the 30 monitoring plots (see 
‘Patterns of Diversity’ section). We also established three separate replicates of fire exclusion plots 
in sandhills near each experimental block in areas that could be protected from fire. Operation 
constraints as determined by EAFB fire managers prevented installation of plots in flatwoods. All 
plot locations at EAFB associated with this study are shown in Fig 3. 

 
Figure 3. Map of fine-scale vegetation plot locations across EAFB for this study. Arthropod 
sampling is conducted in close proximity to these vegetation plots. This map includes the plots 
created specifically for this project, and not the EAFB long-term 1-ha vegetation monitoring plots 
and sampling done across the FL panhandle. Each symbol represents 3 replicate plots. 
 
In addition to these 30 plots, we created nine additional fine-scale fuel manipulation plots in fall 
of 2013 within sandhills of EAFB. This was requested by the SERDP board for supplementing our 
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original design to explicitly test effects of particular fuels types on fire intensity and plant 
demography. Here, we distributed 0, 5, and 10 pine cones within each 1m2 quadrat of the nine 1m 
x 3m plots. They were placed so as to not overlap or touch each other or extend out from the plot 
edge, but otherwise randomly distributed within the respective 1m2 area. Spatial plant monitoring 
for these plots started in fall 2013. 
  

C. Data Mining & Other Sampling 
For management applicability and linking to other aspects of diversity (i.e., interaction diversity, 
in ‘Patterns of Diversity’ section), we used additional data from nineteen reference monitoring 
plots in the EAFB vegetation monitoring program collected from 2001-2012. After 2012, the 
EAFB monitoring program shifted focus from diversity to indicator species and no longer collects 
diversity data. Methods for collecting data in the EAFB monitoring program is detailed in Hiers et 
al. (2007). The monitoring plots have a hierarchical spatial structure that lends itself to examining 
patterns of diversity. A large dataset from the longleaf reference project data was originally 
collected in 1996-1998 (Provencher et al. 2001), then sampled again in the SERDP project RC-
1696 in 2010 (Kirkman et al. 2013). Methods for collecting data in the longleaf reference project 
are detailed in Provencher et al. (2001) and Kirkman et al. (2013). In addition, fine resolution 
spatial scale sampling using 5 m radius sampling plots were installed to allow us greater insight 
into species density, species richness, diversity, and effective number of species. Table 2 illustrates 
all data collected and other datasets used in this study. 

Table 2. Datasets used to calculate plant diversity across EAFB. This table is relevant to sections 
on ‘Fine-Scale Studies’ and ‘Patterns of Diversity’. The data summarized here are being used in 
individual-based as well as sample-based analyses of diversity (sensu Gotelli and Colwell 2001). 
 

Dataset 
Spatial 
scale 

Temporal 
Scale 

Diversity 
sampling Description 

lidar AFB 
vegetation 
monitoring 

1m2, 40 m2 2001-2012 Abundance and 
richness at 8m2 
scale, richness at 
40m2 scale 

152 abundance and richness quadrats, 
19 richness plots sampled after each 
management treatment during the 
time scale. 

Sandhill and 
Flatwoods 
vegetation plots 

3m2 2012 to 
present 

Richness 15 Sandhill plots and 15 flatwoods 
plots sampled in the fall of every year 
and spring in years not burned 

Provencher et al. 
(2001) and RC-
1696 

1m2, 400 m2 1996-1998 
and 2010 

Abundance and 
richness at 1m2 
scale, richness at 
400m2 scale 

320 abundance and richness quadrats, 
80 richness plots sampled during both 
time scales. 

Spatial scale 5m 
radius sampling 
plots 

0.785m2 - 
78.54m2 

2014-
present 

Abundance and 
richness 

7 plots variable spatial scale plots 
sampled Summer 2014 with more to 
be added Summer 2015 
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Coarse-Scale Studies  

Abstract 
An operating assumption in our project is that fine-scale (sub-meter) patterns in surface fuels and 
plant diversity are related to fine-scale fire patterns through mutual feedbacks. As detailed 
elsewhere in this report, O’Brien et al. (2016a, b) provide strong evidence for the causal link 
between surface fire and surface fuels, and Bright et al. (2016) between surface fuels and 
understory plant diversity, characterizing the exceptionally high plant diversity observed at sub-
meter spatial scales.  
 
Another assumption in our project is that these observed fine scale patterns in understory plant 
diversity, surface fuels, and fire are related to forest overstory canopy structure that varies at larger 
scales ranging from individual tree crowns to forest stands, which in our project we equated with 
the 425 land management blocks distributed across Eglin AFB. The distribution of tree crowns 
affects the light and moisture microenvironment, providing a constraint on understory fuel 
structure and plant species composition. That gaps in the longleaf pine forest tend to be shrubbier 
(e.g., turkey oaks) is evidence of this overstory influence (Mitchell et al. 2006, 2009). Conversely, 
needle litter beneath the longleaf pine provides a more homogeneous fuel bed that is more 
conducive to fire spread, thus limiting shrub establishment.  

Objectives 
For the coarse-scale study portion of the project, our objectives were to map tree density and other 
canopy metrics (height, basal area, stem volume), across EAFB from freely available low density 
LiDAR and evaluate these landscape values with EAFB’s long-term ecological monitoring data 
(n=200) as well as this project’s field data. Another objective was to examine relationships 
between LiDAR-based canopy estimates to EAFB’s fire regime and surface fuels and species 
characteristics. We also used terrestrial LiDAR scanners combined with airborne scanners to 
examine their relationships and combined attributes for landscape surface fuel estimation. 

Technical Approach 
A. Tree Density and Fuels from aerial LiDAR 

We had two LiDAR datasets available for use in this project: High density LiDAR (> 6 pulses m-

2) across a select few and considerably smaller extent of Eglin’s management blocks or stands 
(Hudak et al. 2016a) and low density LiDAR (< 2 pulse m-2), which was available across the entire 
study area. The lidar points within a 3-m radius from the center of 1m x 1m destructive clip plot 
surface fuel samples were reduced to statistical metrics indicate of surface fuel density, height 
mean, mode, standard deviation, coefficient of variation, skewness, and kurtosis. These lidar 
metrics were then considered as candidate variables for predicting surface fuel loads from lidar; 
nine metrics were selected as significant predictors in a multiple linear regression model (Table 
3) that explained one third of the variation in fuel load (Fig. 4). The predictive model was 
subsequently applied to the full, high-density lidar collections, in which the lidar points were 
binned at a 5m x 5m resolution that were comparable in size to the 3m radius areas around the clip 
plot locations, used to train the model (Fig. 5). From the high density LiDAR, Hudak et al. (2016a) 
demonstrated that surface fuel loads can be predicted with high accuracy (Fig. 5), but our goal was 
to map canopy characteristics across the entire study area. 
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Table 3. Multiple linear regression model predicting surface fuel loads (ln-transformed) from nine 
selected LiDAR metrics.  
Lidar predictor Estimate Std. Error t value Pr (>|t|) Significance 
(Intercept) 2.141 0.315 6.789 4.96e-11 *** 
Mean (0–2 m) -1.767 0.780 -2.266 0.024 * 
Kurtosis (0–2 m) 0.003 0.001 2.261 0.024 * 
Mode (0–0.05 m) -4.772 2.327 -2.051 0.041 * 
Proportion (0–0.05 m) -1.779 0.242 -7.355 1.41e-12 *** 
Proportion (0.05–0.15 m) -1.777 0.308 -5.763 1.84e-08 *** 
Std Dev (0.05–0.15 m) 23.838 8.616 2.767 0.006 ** 
CV (0.15–0.50 m) 0.575 0.210 2.743 0.006 ** 
Std Dev (0.5–1m) 1.507 0.677 2.225 0.027 * 
Std Dev (1–2m) 0.988 0.368 2.687 0.008 ** 
Model statistics:      
R2 = 0.456; Adj. R2 = 0.442 df = 344 RSE = 0.566 F = 32.07 p <0.0001 *** 

 

 
Figure 4. Multiple linear regression models predicting a) pre-fire surface fuel load (ln-
transformed) from nine airborne lidar metrics (Table 3). Backtransformation with bias correction 
yielded the predicted vs. observed relationships for surface fuel load in b). On both graphs, the line 
of best fit is shown in green, and the nonparametric regression with loess smoothing is shown in 
red, with the solid line indicating the mean fit and the dashed lines indicating the square root of 
the squared positive and negative residuals above and below the mean.  
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Figure 5. Pre-fire surface fuels mapped across the extent of 2011 and 2012 high density airborne 
lidar collections (from Hudak et al. 2016a). 
 
We aimed to develop methods for using the low density airborne LiDAR to map tree canopy 
attributes and link the canopy metrics to understory characteristics across EAFB. As such, utilizing 
Eglin’s environmental monitoring plot data and low density lidar Hudak et al. (2016b) explicitly 
linked plant species richness and surface fuel measures to overstory structure, as well as the 
frequent fire management regime. Because understory plant species richness and surface fuel loads 
are at best only weakly detectable with airborne LiDAR, particularly low density LiDAR, we used 
an imputation modeling strategy to predict these attributes In this study, the monitoring plot having 
the most similar structural signal to a given, unsampled location on the landscape based on the 
lidar data, was imputed to that location, thus “filling in” plot observations at unsampled locations 
where only lidar data were available. Plant species richness and surface fuel loads. Fig. 6 shows 
the models developed to impute tree density and basal area, along with precision and accuracy 
statistics. Random Forests (RF), a machine-learning algorithm developed by Breiman (2001) and 
broadly applied for predictive modeling, was the method used to assign the model weights for 
imputation. A Ripley’s L statistical point pattern analysis (Clark and Evans 1954) applied to the 
plot-level tree stems mapped in ‘reference’ and ‘restoration’ stands revealed that longleaf pine 
trees at Eglin AFB (and likely more broadly) have a clumped distribution that can be captured at 
a resolution of 30 m (Fig. 7).  These LiDAR points were binned at a 30m x 30m resolution for 
imputing tree density, basal area, and dominant tree species estimates measured at 195 
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environmental monitoring plots. The most similar plot was imputed to every 30m x 30m cell across 
Eglin based on the canopy structure signal captured by the LiDAR. 

Figure 6. Predicted versus observed results using RF models to predict TPH (a, b) or BA (c, d) as 
either a univariate response in regression mode (a, c) or via multivariate k-NN imputation (b, d). 
Models were trained with a random selection of 2/3 of the plot data (n = 130) and tested with the 
remaining 1/3 of the plot data (n = 65); these graphs illustrate the testing results. The same ten 
predictor variables (Table 3) were used in all models. Solid lines in each graph indicate best linear 
fit; dashed lines indicate 1:1. 
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Figure 7. Ripley’s L summarizing the spatial pattern of trees from 61-m x 106-m (0.65 ha) plots 
randomly placed within longleaf pine stands classified by Eglin AFB managers as representing 
reference (left, n=35) or restoration (right, n=93) conditions. Only plots with a minimum of 20 
trees are included (from Hudak et al. 2016b). 
 

B. Imputation of individual tree attributes from field and LiDAR data 
The goal was to predict individual-tree height (m), basal area (m2), and stem volume (m3) 
attributes, imputing Random Forest k-nearest neighbour and individual-tree-level-based metrics 
extracted from a LiDAR-derived canopy height model in longleaf pine stands. All trees were 
measured for diameter at breast height using calipers (two measurements at right angles, averaged) 
or a steel diameter tape, and for height using a LaserTech Impulse 200. We also geo-located them 
using a GPS with <2.5 m accuracy. The mean longleaf pine tree height and diameter at breast 
height measured in our study area was 22.95 (±4.88) m and 32.87 (±13.30) cm, respectively, and 
the number of trees per hectare was approximately 147 (±29) trees. The outside-bark stem volume 
was obtained via a longleaf pine allometric equation according to Gonzalez-Benecke et al. (2014), 
The equation has a coefficient of determination (R2) of 0.78 and absolute and relative root-mean-
square error of 0.17 m3 and 38.21%, respectively. Individual tree detection was performed in R 
(R Development Core Team 2015) using the FindTreesCHM function from the rLiDAR package 
(Silva et al. 2015). The FindTreesCHM function uses a local maximum algorithm to search for 
treetops in the canopy height model trough a moving window with a fixed treetop window size 
(Wulder, et al. 2000). A total of 15 test subplots (30 m x 30 m) were randomly situated within each 
of the 15 plots (1 subplot per plot), and the number of trees detected per subplot from LiDAR were 
manually compared with field-based data and evaluated in terms of true positive (correct 
detection), false negative (omission error) and false positive (commission error). The accuracy of 
the detection was further evaluated for recall, precision and F-score according to Li et al. (2012), 
using the equations from (Goutte and Gaussier, 2005; Sokolova et al., 2006). 
 
Tree crown delineation was performed in R using the ForestCAS function from the rLiDAR 
package (Silva et al. 2015). Inputs to this process were the smoothed canopy height model in 
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addition to the tree location outputs. The algorithm implemented in the ForestCAS function is 
based on the Voronoi Tessellation (Aurenhammer and Klein, 1999). Initially, it starts by applying 
a variable radius crown buffer to delimit the initial tree crown area. The variable radius was 
calculated for each tree by multiplying the LiDAR–derived tree height by 0.6, because preliminary 
field observation revealed that the tree crown radius typically was not larger than 60% of the 
LiDAR–derived tree height. After determining the merged tree polygon using the first area 
delimitation, we then split the data using the centroidal voronoi tessellation approach to isolate 
each individual tree polygon. After isolating each tree polygon, we clipped them from the canopy 
height model, and excluded the grid cells with values below 30% of the maximum height in each 
specific detected tree to eliminate the low-lying noise. Finally, the tree crown delineation and 
crown area (m2) were computed by delimiting the boundary of grid cells belonging to each tree.  
Accuracy of the imputation model was assessed by calculating the absolute and relative root mean 
square distance and bias between imputations and observations (Stage and Crookston 2007). 
 

C. LiDAR derived crown metrics: Comparison of terrestrial vs. airborne scanners 
Airborne Laser Scanners and Terrestrial Laser Scanners are two LiDAR systems currently being 
used for remote sensing of forested ecosystems. As an added deliverable to this project, we 
compared crown metrics derived from terrestrial and airborne data for describing forest structure 
at Eglin Air Force Base, where the longleaf pine forest has an open canopy structure. Lidar data 
were collected over the study area, and represented by four (7854 m2) plots with coincident 
terrestrial and airborne scans. Canopy height models were created from both sets of point clouds 
separately, and by combining them. Individual trees were detected from the canopy height models 
and crown metrics, such as crown height, crown projected area and crown volume were computed 
for each tree using the rLiDAR package. In this study, forest structure was assessed by the number 
of trees and distribution of crown metrics derived from both instruments.  We used the results of 
the combination of these instruments as the reference, and Kolmogorov-Smirnov tests were 
applied to compare crown metrics between terrestrial, airborne, and the combined data. 
 

D. Integration of terrestrial and airborne laser scanning for fuels mapping 
The fuel cell concept (Hiers et al 2009) describes variability in fire behavior at sub-meter scales 
for southeastern fuels, indicating fuels and fire effects in this system operate at fine-scales.  There 
has generally been limited ability to collect observed data at these scales as opportunity costs 
between comprehensiveness and spatial distribution of these data are time and cost intensive.  As 
detailed elsewhere in this report, Hudak et al. (2016) provide an excellent frame work for 
estimating surface fuel loading using multiple-linear regression models between airborne laser 
scanning and observed fuel load (dry weighed biomass).  However, the limited number of samples 
taken in situ and the relatively large grain size of scanner-based metrics (25m2) only provide a 
coarse estimate of fuels.  To begin bridging between scales, the use of terrestrial scanning to 
estimate total fuel load, estimation of post-fire consumption from terrestrial scanning derived pre- 
and –post-fire mass and the use of these terrestrial scanning derived estimates as a surrogate for in 
situ observations to refine predictions from airborne scanning derived metrics were conducted as 
part of this project.   
 
  

E. Pinecone density maps from airborne LiDAR 
We created a 3-m resolution canopy height model across EAFB using LAStools, using the process 
outline in Fig. 8. A resolution of 3-m was chosen because the canopy height model resolution (9 
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m2) were comparable to 8.4 m2, the mean crown area of 373 longleaf pines measured in our study 
plots, and because the LiDAR was of relatively low resolution (<2 pulses m-2).  
 

 
Figure 8. Flowchart describing the creation of pinecone production maps (PPMs) and pinecone 
density maps (PDMs) from LiDAR and ancillary information. CHM: canopy height model, 
PBTM: pinecone bearing tree model (PBTM). 
 
The minimum tree height of 218 cone-bearing longleaf pines across EAFB is 7.92 m (26 feet), as 
measured in the site’s long-term ecological monitoring plots, so areas with heights < 7.92 m were 
eliminated from the analysis. Only areas where the dominant tree species (product of Hudak et al. 
2016b) were slash or longleaf pine were included. The pinecone bearing tree model was then 
multiplied by the annual cone production measurements of Brockway (2015) (Fig. 9) to create 
annual pinecone production maps across EAFB for 2006-2015. A start year of 2006 was chosen 
to coincide with the beginning year of the LiDAR acquisition, 2006.  Annual fire history polygons 
were rasterized and integrated with pinecone production maps to create pinecone density maps.  
 
 

 
Figure 9. Mean pinecone production per tree estimates for EAFB from Brockway (2015). 
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Results & Discussion 
 

A. Tree Density and Fuels from aerial LiDAR 
Based on the map of nearest neighbor plot IDs, plot-level measures of the surface fuel and plant 
species richness attributes were also mapped across Eglin AFB (Fig. 10). Fig. 11 shows maps of 
two of the many attributes mapped via this imputation strategy. When these pixel-level predictions 
and those of 14 other surface fuel attributes were aggregated to the 425 management blocks and 
compared to the overstory response variables, and to fire history variables compiled from 1972-
2012 Eglin AFB burn records, the Spearman rank correlations were nearly all significant (Table 
4). That virtually all of these correlations are significant suggests that these fine scale plant 
diversity and surface fuel attributes relate to overstory structure, a hypothesis we have posed to 
better understand the underlying ecological mechanisms of this community. 
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Figure 10. Imputations of (a) TPH, (b) BA, and (c) DomSpp from airborne LiDAR across Eglin 
AFB, and (d) Plot ID imputed as an ancillary variable (from Hudak et al. 2016b). 
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Figure 11. (a) Plant-species richness and (b) duff depth related to the imputed overstory responses 
via plot ID (Fig. 10.), along with (c) number of recorded fires and (d) years since last recorded fire 
(from Hudak et al. 2016b). 
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Table 4. Spearman rank correlations between mapped overstory responses or fire history variables 
and surface fuel and plant species richness measures associated with the Plot ID map (Fig. 3d) and 
aggregated within Eglin AFB land management blocks (n=425); significant (P < 0.05) correlations 
indicated in boldface (from Hudak et al. 2016b). 

Attributes Tree density 
(trees ha-1) 

Basal area  
(m2 ha-1) 

Number of 
Fires 

Years Since 
Last Fire 

1-hr (counts) 0.27 0.28 -0.50 0.43 
10-hr (counts) 0.37 0.37 -0.28 0.25 
100-hr (counts) 0.46 0.49 -0.09 0.14 
1000-hr (counts) 0.41 0.44 -0.36 0.35 
Litter depth (cm) 0.58 0.64 -0.15 0.18 
Duff depth (cm) 0.49 0.52 -0.42 0.38 
Fuelbed depth (cm) -0.45 -0.42 0.08 -0.09 
Oak litter cover (%) 0.14 0.12 -0.55 0.46 
Long-needle conifer litter cover (%) 0.62 0.61 0.69 -0.60 
Short-needle conifer litter cover (%) -0.11 -0.11 -0.65 0.56 
Grass litter cover (%) -0.14 -0.13 0.61 -0.52 
Forb litter cover (%) 0.02 -0.01 0.64 -0.57 
Shrub litter cover (%) -0.57 -0.54 -0.03 0.03 
Saw palmetto litter cover (%) 0.35 0.35 -0.41 0.31 
Mineral soil cover (%) -0.47 -0.48 0.44 -0.39 
Plant species richness (species m-2) -0.55 -0.59 0.31 -0.32 

 
 
From a management perspective, the maps we generated and shared with Eglin AFB managers at 
the April 2017 workshop were well received and will be used to better inform decisions relating 
to forest, fuel, and fire management.  
 

B. Imputation of individual tree attributes from field and LiDAR data 
We developed a new framework (Fig. 12) for modeling tree-level forest attributes that comprise 3 
steps: (i) individual tree detection, crown delineation, and tree-level-based metrics computation 
from LiDAR-derived canopy height model; (ii) automatic matching of LiDAR-derived trees and 
field-based trees for a regression modeling step using a novel algorithm; and (iii) Random Forest 
k-nearest neighbour imputation modeling for estimating tree-level height, basal area, and stem 
volume and subsequent summarization of these metrics at the plot and stand levels. Root-mean-
square deviations for tree-level height, basal area, and stem volume were 2.96%, 58.62%, and 
8.19%, respectively. Although basal area estimation accuracy was poor because of the longleaf 
pine growth habitat, individual-tree locations, height, and volume were estimated with high 
accuracy, especially in low-canopy-cover conditions. Future efforts based on the findings could 
help improve the estimation accuracy of individual-tree-level attributes, such as basal area. 
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Figure 12. Illustration of individual tree detection and crown delineation under different COV 
conditions. (1) COV = 90.96%; (2) COV = 76.79%, and (3) COV = 58.66%. (A) 2D visualization 
of the tree location and crown delineation over the CHM. (B) 3D visualization of the LiDAR point 
cloud and reference trees measured in the field. (C) 3D visualization of the LiDAR virtual forest, 
and the reference tree locations. 
 

C. LiDAR derived crown metrics: Comparison of terrestrial and airborne scanners 
Terrestrial and airborne laser scanners detected fewer trees when processed individually compared 
to when the data are combined (Fig. 13). The relative difference for the number of individual trees 
detected between terrestrial and airborne scanners compared to them combined were -2.68 and -
23.08%. The mean of crown height, crown area, and crown volume were 7.06 m, 3.65 m2 and 
15.37 m3 for terrestrial; 7.32 m, 6.13 m2 and 20.87 m3 for airborne, and 7.64 m, 9.08 m2 and 33.33 
m3 for them combined. Kolmogorov-Smirnov tests showed that crown height, crown area, and 
crown volume computed individually from terrestrial and airborne differed significantly (p-value 
< 0.05) from them combined. This confirmed our hypothesis that combining the points from these 
two instruments would produce a higher level of accuracy, as it provides a denser point cloud from 
which to identify trees and derive crown metrics. 
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Figure 13. Crown metrics distribution in Airborne Laser Scanning (ALS) A) Terrestrial Laser 
Scanning (TLS) B) and ALS + TLS C) derived 3d point cloud. HMAX is the crown height; CPA 
is the crow projected area, and CV is the crown volume. 
 
 

D. Integration of terrestrial and airborne laser scanning for fuels mapping 
Employing voxel (three dimensional pixels) analysis, occupied volume estimates of the fuelbed 
were used to predict fuel mass for units representing a grass\shrub and forested fuel matrices at 
Eglin AFB. Terrestrial scanner data is collected at scales of 1 point per mm, providing incredible 
dense and accurate datasets.  Voxel domains were determined to be a 100cm3 volume that 
represents if a cell is occupied.  Results using leave-one-out-cross validation linear regression 
modeling outline successful estimation of both pre-and post-fire aboveground biomass for the 
forested and grass\shrub units (Fig. 14). Separate models were used to predict pre- and post-fire 
estimates from comparison with observed data.  Estimates of consumption compared favorably 
with observed estimated from plot averages.  These estimates were used to predict fuel mass across 
400m2 plot that provides a first known attempt at obtaining a spatially explicit total fuel loading 
(Fig. 15).   
 
Terrestrial scanner derived estimates of above-ground biomass were used as independent data to 
predict large-scale estimates of fuel mass across the high resolution airborne laser scanner dataset 
described in Hudak et al. (2016).  Total above-ground biomass was summed for coincident 25m2 
cells of airborne laser derived height metrics.  Using a similar approach to Hudak et al. (2016), a 
linear model was used to produce a spatially explicit map of surface fuels from the airborne laser 
scanner (Fig. 3). The results describe improvements of fuel estimation using the terrestrial scanner 
derived above-ground biomass as an independent variable, improving the coefficient of variation 
by 30% over using plot data as the independent variable. 
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Figure 14. Linear regression models predicting A) forested pre-fire and B) grass\shrub pre-fire 
above-ground biomass from voxel estimated occupied volume. A separate model is used to 
estimate C) forested pre-fire and D) grass\shrub post-fire residual above-ground biomass. 
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Figure 15. Aboveg-ground biomass is mapped for each of the plots demonstrates the variability 
and distribution of mass across the plots based off the forested and grass\shrub predictive models. 
 

a. rLiDAR and Web-LiDAR tools 
Tools to map individual trees and extract crown attributes from the aerial LiDAR points were 
developed to support LiDAR-based forest inventory and management at Eglin Air Force Base, 
Florida, USA (Fig. 16). These tools, however, are general applicable to other forests in other 
ecosystems, and we encourage users to test it broadly.  Both of these tools were developed from 
the ground up by our team, and they are available online for interactive analyses at the plot-level 
(Web-LIDAR, https://carlosasilva.shinyapps.io/LiDARTreeTop/), or in a downloadable, freely 
available R package (rLiDAR, http://cran.r-project.org/web/packages/rLiDAR/index.html) for 
processing LiDAR datasets at the stand or landscape levels. Preliminary results show R2 = 0.80-
0.95 for accurately estimating the number of trees per large plot, which corresponds in size to the 
30 m x 30 m map units in the tree density map. 

https://carlosasilva.shinyapps.io/LiDARTreeTop/
http://cran.r-project.org/web/packages/rLiDAR/index.html
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Figure 16. Example of the rLIDAR and Web-LiDAR tools that are freely available and developed 
from the ground-up by our team. 
 

E. Pinecone density maps from airborne LiDAR 
Pinecone density maps were successfully created using LiDAR coupled with field measurements 
(Fig. 17).  From our analysis, we found that 10-hr fuels measured in fuel transects from the sites’ 
long-term ecological monitoring plots were weakly, yet significantly positively correlated with 
predicted pinecone density (Spearman’s ρ = 0.15, p = 0.03). Agreement was better between 
pinecone weights measured in this study’s clip plots versus extracted values from the pinecone 
density maps Pearson’s (r=0.79, p=0.06, n=6), especially considering the small number (6) of clip 
plots that had pine cones. The limitation of this approach is that the LiDAR is only from one 
timeframe (2006, 2008) and the farther away we get from this time frame, the more likely canopy 
cover changes are likely to occur, particularly at the stand level. 
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Figure 17.  Pine cone density map (10-hour fuel here) of one section of Eglin AFB (block L2F) at 
the 30 m x 30 m and 6 m x 6 m cell resolution.  These datasets were derived from airborne LiDAR 
data coupled with field measurements of pine cone production. 
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Fine-Scale Studies  

Abstract 
Our principal hypothesis that fire maintains diversity through neutral processes hinges on the 
existence of a random agent of mortality that kills plants regardless of their morphology. We 
further hypothesized that these consisted of woody canopy derived fuels, especially cones. In order 
to test whether these fuels release sufficient energy to behave in this manner and to understand the 
many interactions among fuels, fire, and plant demography in the understory, measurements of 
must be performed at the appropriate scale. We found this to be at the individual plant scale, which 
we found to be approximately 100 cm2. For this portion of the study, we examined these multiple 
interacting properties in a spatially and temporally explicit manner within our 1m x 3m plots (300 
100 cm2 cells) by using infrared thermography, 3D modeling, and plant monitoring techniques. 
These data were both analyzed to examine their relationships, e.g. how fire energy impacts plant 
mortality, whether traits predict mortality, and used to develop a CA model of spatial plant 
demography. This model was used to examine individual cell plant change in response to fire, as 
well as to simulate or project changes in plant community dynamics in response to fire intensity 
and frequency across these plots of varying overstory structure. Finally, we used state-of-the-art 
rendering to generate fine scale fuel beds with realistic properties useful for advancing fire 
behavior modeling.  

Objectives 
For the fine-scale studies portion of the study, our objectives were to: 

1) Use infrared thermography to measure cm-scale fire radiative energy of surface fires within 
each 1m x 3m plot. Use the data to capture the energy release from specific fuel types. 

2) Monitor understory plant demography at the 10cm2 scale pre- and post- experimental burns 
to track spatial and temporal plant change. 

3) Use remote sensing and 3D modeling techniques to characterize the fine-scale fuelbed. 
4) Use 1-3 to develop a Cellular Automata model of fire and fuel effects on understory plant 

demography. This model will be used to test theories of plant community dynamics and 
project plant change in response to fire frequency and intensity through space and time. 

5) Examine the deviation from neutrality when fire is excluded and examine the role of plant 
traits on predicting competitive outcomes. 

Technical Approach  
The fine scale measurements we conducted in the 30 monitoring plots, 9 fire exclusion plots and 
9 fuel manipulation plots and are reported here in three sub-sections: A) fine scale fire intensity 
measurements, B) fuel measurements and modeling, and C) plant demography sampling and CA 
modeling.  

A. Linking Fine-Scale Fire Intensity & Fuel Measurements to Plant Demography 
As of June 2017, all experimental burns planned for this project are complete, reported in Table 
5. One set of replicates (3 plots) in the sandhill habitat were burned by a wildfire in 2014, and was 
unable to be burned in 2015 due to logistical constraints. Also, two sandhill fire exclusion plots 
were incidentally burned off schedule, however in both cases we continued to collect demography 
data which was still useful. For each burn, we used three long-wave infrared camera systems 
developed during this project to record spatio-temporal fire intensity. These data provided total 
fire radiative energy emitted in high resolution (~ 1 cm2 scale) imagery that was important for 
relating individual and community plant change occurring in the understory. One was deployed in 
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each of three 1m x 3m plots located within a burn unit. This system represents an innovation in 
the collection of spatially explicit fire behavior measurements (O’Brien et al. 2016).  
 
Table 5. Burn schedule and plant demography monitoring schedule according to fine-scale plots. 
Grey areas represent future sampling schedule for this project. ‘Yes’ indicates successful 
monitoring of plant demography plots. ‘Burn’ indicates season of experimental burns and no plant 
monitoring was done. ‘NA’ indicates no burn and no monitoring. Monitoring in nine fuel 
manipulation plots started in fall of 2013. All scheduled burns are complete for this project. 
 

 2012 2013 2014 2015 2016 

 Plots Fall Spring Fall Spring Fall Spring Fall Spring Fall 

Stratified 1m x 3m plots 
(n=30) Yes Burn Yes Yes Yes Burn Yes Yes Yes 

1m x 3m fire exclusion plots 
(n=15) Yes NA Yes Yes Yes NA Yes Yes Yes 

1m x 3m fuel manipulation 
plots (n=9) NA NA Yes Burn Yes NA Yes Yes Yes 

 
Fine-Scale Fuel Measurements & Modeling 
Fuels were sampled both non-destructively within each 1m x 3m plot as well as destructively 
nearby each plot. Fuel characteristics were physically mapped within each 1m x 3m plot using 
point-intercept sampling in a 10 cm x 10 cm grid (300 points per plot). This was done just prior to 
each experimental burn. We recorded height and percent cover by plant functional category (e.g. 
wiregrass, other grasses, herbaceous, deciduous and evergreen shrubs, pine and shrub litter and 
bare soil), including pine cones and woody fuels as distinct fuel categories within each grid cell. 
In spring 2015, four additional 0.25 m2 subplots 5 m away from plot center in the 60°, 120°, 240°, 
300° directions from plot center were destructively sampled. Samples have been sorted, oven 
dried, and weighed for estimations of fuel loading. Photographs and point-intercept sampling were 
done for each 0.25 m2 subplot. Photographs were also taken of each plot prior to each burn. Using 
these photographs, we have developed a novel photogrammetry technique to model the understory 
fuel bed (Bright et al. 2016). The technique produces a dense surface model, similar to LiDAR, 
specifically terrestrial laser scanning (Loudermilk et al. 2009). Two or more overlapping digital 
photographs are spatially referenced to create a 3D surface. The combined 3D spatial point clouds 
and color information from the photogrammetry provides information on spatial location, 
structure, texture, and clustering (heterogeneity) of fuels for identifying fuel types and their 
configuration within the fuelbed. 
 
For the photogrammetry portion, we introduced a novel methodology for fine-scale 3D 
characterization of understory plants and fuels. We compared products derived from close-range 
photogrammetry to field measurements of understory plants and fuels, and evaluated the use of 
close-range photogrammetry for distinguishing understory plants and fuels. Point-intercept 
measurements of plants and fuels within each 10x10 cm cell were gathered for nine plots that were 
1x3 m in size. Fuel measurements for each 10x10 cm cell included presence/absence of the 
following: litter depth, fuel depth, 1-,10-,1000-hr fuels, perched pine litter, perched oak litter, 
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grass, shrubs, volatile shrubs, forbs and forb litter, bare soil, deciduous oak litter, longleaf pine 
litter, and pinecone. Following Hiers et al. (2009), we summarized the above presence/absence 
measurements by defining fuel types via cluster analysis.  
 
For these same nine plots, close-range photogrammetry was used to create 3D point clouds. Using 
PhotoModeler Scanner software, stereo pairs were created from two photographs of each plot, and 
3D points were extracted from stereo models so that resulting point clouds had densities of roughly 
10,000 points per square meter. Points were classified as ground or nonground, nonground point 
heights were normalized to heights above ground, and metrics were created for each 10x10 cm 
cell coincident with fuel and plant point-intercept measurements. Statistical tests were used to 
evaluate how well photogrammetry metrics could distinguish understory species, plant types, and 
fuel types. Height distributions of field-measured and photogrammetry-derived fuelbed depth were 
also compared. 
 
3D rendering technique 
The two methods described previously using terrestrial laser scanner (0.25m2) and airborne laser 
scanners (25m2) data are part of a larger gradient of scales that include high resolution 3-D 
simulations (mm2).  Simulated fuelbeds, using methods developed for three-dimensional models 
for gaming and animation, create high resolution spatial (Fig. 18) data that cannot be achieved 
through remote sensing or direct observation.  Rowell et al (2016) describe a method of using the 
meshed surface area of the simulation per fuel element (e.g. needle, leaf, grass surface area), where 
simple assumptions of biomass per unit area (mm2) produce robust estimates of total and specific 
biomass.  Correlations with observed height and simulated height also demonstrated a strong 
relationship.  These models were developed independently of observed biomass data and models 
were developed to directly compare with observed biomass, significant relationships were found 
for litter and grass fuel types.  Comparisons with terrestrial scanner point clouds and using the 
vertices of the simulations as a proxy for simulated point clouds demonstrated that terrestrial 
scanner data under represents the lowest strata of the fuelbeds (e.g. needle litter) which is 
characteristic of the highest loads of fuel mass (Fig. 19).  These findings open avenues for 
distributing fuels by type using simulations to inform terrestrial scanner derived estimates of fuel 
load. 
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Figure 18.   Pre-fire fuelbed simulation compared with nadir photography captured at Eglin AFB. 

Figure 19.   Pre-fire fuelbed simulation for a needle litter dominated plot collected in a managed 
longleaf pine stand at Eglin AFB.  Weibull distributions for the simulated and TLS point clouds 
demonstrate substantial under representation of mass by the TLS data in the first 10cm of the 
fuelbed (from Rowell et al. 2016). 
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B. Fine-Scale Plant Demography for Cellular Automata Modeling 
 
For the cellular automata modeling portion of the study, we focused on incorporating the 
assumptions of the Unified Neutral Theory of Biodiversity (UNTB), developed originally by 
Hubbell in 2001. Research on ecological community assembly and biodiversity was invigorated 
by the UNTB (Hubbell 2001, Chave 2004, Matthews and Whittaker 2014, Missa et al. 2016). The 
theory stimulated discussion on the relative roles of stochastic processes versus competitive 
exclusion and niche differentiation in driving patterns of species richness and community 
assembly, particularly for plants, in different ecosystems. UNTB is a null model that assumes 
individuals among species at an equivalent trophic level are competitively and functionally 
equivalent and that communities of these species are structured by random demographic processes 
such as birth, death, and dispersal, and at longer time scales speciation and extinction. The 
frequently burned longleaf pine community might be the closest example of a truly neutral 
community. The assumption of neutrality for longleaf pine ecosystems requires frequent fire, 
which provides both the required element of randomness, particularly mortality (Wiggers et al. 
2013, O'Brien et al. 2016) and keeps competition in check (Barnett 1999, McGuire et al. 2001). 
We hypothesized that neutral processes (Hubbell 2001) can explain ground cover community 
dynamics at high fire frequencies. To test this, we developed a simple autonomous agent model 
with probability based parameters to examine neutral processes of species richness in longleaf pine 
ground cover communities found at EAFB. We used our fine-scale plant monitoring data from 
2012 to 2016 for model parameterization. Since our parameters were variable across years, yet 
there was no statistical relationship to species traits (see Trait Analysis section above), we used 
the Fourier Amplitude Sensitivity Test to examine parameter sensitivity; the first order effects of 
mortality, birth, dispersal limitation as well as exogenous effects (size of areas, number of areas) 
on simulated species richness were quantified.  To examine the effects of scale and dispersal 
processes on parameter sensitivity, we examined these first order effects across five scales of input 
species frequency distributions, employing both spatial and non-spatial dispersal processes.  The 
examination of both endogenous and exogenous parameter sensitivity across scales and dispersal 
assumptions provides an in-depth look at multiple interacting processes of community dynamics, 
stochasticity, and scale in a fine-scale plant community, which has not been done before. 
 
Our fine-scale plant monitoring data at the 100 cm2 grid scale were used to estimate mortality, 
recruitment (birth), and immigration rates within and across cells and plots. Mortality was 
determined by individual plant species that died with or without replacement. Similarly, 
recruitment was determined by new individual plants found in an empty cell or replacing another 
plant in a cell. We created species frequency distributions from our fine-scale monitoring data, 
which was used to create the five different scales of input data. The model has been developed 
with an object-oriented design using the Python programming language.  
 
We used the Fourier Amplitude Sensitivity Test (FAST) (Saltelli et al. 1999) and applied in the 
python library SALib (v.1.0.2) to examine the first order effects of the five model parameters 
(birth, mortality, immigration, size of area, number of areas simulated) on simulated species 
richness. FAST quantifies the sensitivity of multiple parameters simultaneously by oscillating 
across a range of possible input parameter values (determined by empirical data) at different 
frequencies. As such, a unique set of input parameter values is created for each model run.   A flow 
chart and description is found in Fig. 20. We applied a scenario approach to run the FAST input 



29 
 

parameter sets. First, input parameter sets for five model parameters were created.  These 
parameter sets were run using five scaled input frequency distributions for both the spatial and 
non-spatial dispersal model.  This resulted in 10 scenarios total (5 scales of inputs x 2 models) 
replicated three times. 
 
 

 
Figure 20. Flow chart of model development and analysis for simulating groundcover richness. 
Our empirical data on plant monitoring was used to develop the range of parameter values for 
mortality, birth, and immigration, as well as area simulated and number of areas simulated that 
were used to run the neutral cellular model.  In addition, the species frequency distributions were 
also from the monitoring data and used to create the five different scales of input data. These values 
were used in the Fourier Amplitude Sensitivity Test (FAST) where parameters were 
simultaneously varied (creating 500 parameter combinations) using the five scales of input data 
and spatial and non-spatial dispersal assumptions for the model. All simulations were replicated 
three times. 

Results & Discussion 
 

A. Linking Fine-Scale Fire Intensity & Fuel Measurements to Plant Demography 
The link between fire energy release and plant demography 
We used three of the experimental burns conducted on May 23-25, 2014 to examine the impact of 
fire energy release of specific fuels on plant demography. The three burns were 6 ha, 62ha and 260 
ha in extent. All three burns consisted of ground ignition prescribed fires as part of regular fire 
management operations at Eglin AFB. Target fuel moisture and fire weather conditions were 
monitored up to the test fire to ensure fire behavior would allow for ignition of pine cones and 
achieve complete consumption. The fire rate of spread and to a lesser extent, type varied in the 
plots (Table 6).  
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Table 6. Date of ignition, rate of spread and fire type in the experimental plots. Rate of spread was 
measured as the time the fire took to travel 1 m perpendicular to the fire front while in a plot. Fire 
type refers to head fire (fire moving parallel to the wind direction) and flanking fire (fire moving 
perpendicular to the wind direction). 

 
 
The burns were ignited on three consecutive days with similar ignition times (approximately 1500 
UTC). Weather conditions during the burns were comparable: the temperature ranged from 31° C 
to 32° C and relative humidity ranged from 44% to 54%. While in-situ fuel loading was not 
destructively collected, fuels types within plots were estimated in all the 300 grid cells indirectly 
using photogrammetry and 3D rendering techniques (see Bright et al. 2016, Rowell et al. 2016). 
 
High resolution LWIR thermography (Fig. 21) was collected for each plot using three thermal 
imaging systems from FLIR Inc.: an SC660 and two A655SC. Both models of FLIR systems have 
a focal plane array of 640 x 480 pixels, a spatial resolution of 1.3 mRad, a sensitivity of 0.03°C 
and a thermal accuracy of ± 2%. The temperature range selected for data collection during the fires 
was 300 - 1500°C at a measurement rate of 1 Hz. The imaging systems provided a nadir view of 
the plots using an 8.2m tall tripod system (see Loudermilk et al. 2014, O'Brien et al. 2016) which 
positions the camera optics 7.7m directly above the center of the 1 m x 3 m plots. Having the 
camera optics 7.7 m above the target resulted in a pixel resolution of ≈ 1 cm². 

Unit Plot Ignition Date Type Wind Speed cm s-1 
F-22 1 23-May-14 Head 11.1  

2 
 

Head 9.1  
3 

 
Head 28.2 

F-18 4 24-May-14 Head 10.1  
5 

 
Flanking 1.2  

6 
 

Head 3.5 
F-19 7 25-May-14 Head 16.7  

8 
 

Head 11.1  
9 

 
Head 4.2 
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Figure 21.  Fire intensity measured with the LWIR illustrating the difference in cumulative 
radiative power, i.e., fire radiative energy, in 1m2 areas influenced by the cone density treatments 
(0, 5, 10).  As the fire enters the plots (top image) grasses, shrubs, and leaf litter carry the fire, 
while three minutes after the fire, pine cones and other coarse woody debris are still releasing 
radiant heat above 300° C. 
 
The initial step of the LWIR imagery used the proprietary FLIR software ExaminIR Pro where 
plot boundary coordinates were identified and local conditions that impact IR measurements 
specified (emissivity, air temperature, relative humidity, and distance to target) for proper 
calibration of the image files. The files were then exported as an ASCII array of temperatures in 
°C with rows and columns representing pixel positions. The identified plot boundary coordinates 
were used to extract the region of interest and then converted into another ASCII file of three 
columns where x, y, z = pixel row, pixel column, and temperature using the Python 2.7 processing 
language. Temperatures were then converted to degrees Kelvin and the Stefan-Boltzmann equation 
for a gray body emitter with an emissivity of 0.98 (typical of plant material and soils) was used to 
convert temperatures into fire radiant flux density, FRFD, Wm-2, (O’Brien et al. 2016).  The LWIR 
data was aggregated to the 10cm x 10cm scale to be comparable to the scale of the plant 
demography data. This was accomplished by integrating the FRFD in each 10 cm x 10 cm area 
over time (Fig. 21).  When integrated over time, FRFD is converted to fire radiative energy density 
(FRED, J m-2). FRFD from 18 pine cones (two randomly chosen from each plot) were also 
extracted from the LWIR imagery and integrated over time to give fire radiative energy density 
(FRED, kJ m-2) released from this particular fuel type for use in further analysis (see below). A 
mask consisting of the original perimeter of the cone was created and all pixels within this mask 
were extracted and the FRFD and FRED calculated as described above. We used a blocked split-
plot experimental design to examine the additional energy released by cones compared to 
background fuels. The three individual fire management units were treated as blocks each having 
three plots (total plots = 9), and cone treatments split within the plots (cones versus cones 
removed).  A general linear mixed effect model was run using STATISTICA (data analysis 
software system), version 12, StatSoft, Inc. (2013) where the cone treatment and burn blocks were 
fixed effects and the plots were treated as random effects.  We applied a Tukey’s HSD post-hoc 
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means test. We measured the magnitude and significance of spatial autocorrelation of fire intensity 
using the Moran’s I analysis within the ‘‘ape’’ package (Paradis et al. 2004) in R (R Core Team 
2013).  To assess the range of spatial correlation and magnitude of spatial variability between the 
cone density sub-plots, we modeled the semivariance (spatial autocorrelation function) within 
treatments using the “geoR” package in R (Ribeiro Jr and Diggle 2001).  For each group of cone-
density sub-plots, an isotropic exponential autocorrelation function (Goovaerts 1997) was fit to the 
empirical semivariance.  All semivariance parameters were the same between groups (lags=10, lag 
separation distance=5 cm, nugget=0, range ~20 cm), except for the sill (sill~900, 11,000, 22,000 
for 0, 5, 10 cone densities, respectively). 
 
We assessed the impact of fine-scale fire intensity, i.e., the “hot spots” created by burning pine 
cones on understory plant mortality patterns using a logistic regression with mortality as the 
dependent variable and FRED as the independent variable. We calculated a binary fire intensity 
metric by using cone FRED as determined by the LWIR imagery as a threshold for a high (1) and 
low (0) FRED.  The mean (standard deviation) FRED of 18 pine cones (2 per plot) was 7730 
(3154) kJ m-2.  We calculated the threshold value for a high FRED (4576 kJ m-2) as the mean cone 
FRED minus one standard deviation. We used this threshold to separate areas within the plots that 
were influenced by cones or other woody fuels from areas of sparse fuels or other quick burning 
fuels such as grasses and pine litter.  

 
Figure 12. Box plots of background fuel and cone Fire Radiative Energy Density. 
 
 
The results from the linear mixed effect model illustrated that there was a significant difference 
between FRED among the burn units and cone treatment, but no interaction between burn unit and 
plots (Table 7, Fig.s 22). From the post hoc test, cones released significantly more energy than 
background fuels. The plots in fire management unit F-22 released significantly more energy than 
F-18 and F-19 which did not differ. 
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Table 7. Results of analysis of variance. 

Effect 
Effect 
(F/R) df SS MS F p 

Intercept Fixed 1 315.47 315.47 82.12 >0.001 
Block Fixed 2 37.441 18.721 4.871 0.041 
Cones Fixed 1 226.121 226.121 58.861 >0.001 
Plot*Block Random 6 12.1 2.01 0.525 0.775 
Error 

 
8 30.73 3.84 

  

Total 
  

306.41 
   

 
 
The Moran’s I test illustrated that there was significant spatial autocorrelation for all three cone 
density treatments (MI = 0.78, p < 0.0001 for all treatments). From the semivariance analysis, we 
found that the range (distance) of spatial autocorrelation was similar (~17 cm) for all cone 
densities, but the inclusion of more dense fuel at fine-scales (pine cones) created significantly 
higher magnitude of spatial variability (sill). The spatial heterogeneity in fuelbed heights and FRE 
is apparent at these fine scales, where in this study one fuel type (pine cones) drive the FRE release 
(Fig. 22).    
 
The logistic regression results showed that higher mortality rates occurred in areas of high fire 
intensity (Table 8). The results showed that cells with high FRED were 2.78 times more likely to 
experience mortality than areas with lower FRED. 
 
Table 8. Results of the logistic regression on plant mortality versus high or low FRED. 

 D.F. Wald Statistic p value Odds Ratio 
Lower 95% 

CI 
Upper 95% 

CI 
High-Low FRED 1 5.101 0.023 2.78 2.34 3.22 

 
The goal of this portion of the study was to examine the spatial heterogeneity of within-fire energy 
release, its relationship to type of fuel and link this information to fire effects, particularly vascular 
plant mortality. The heterogeneity in FRED did vary at fine spatial scales; observations of FRED 
were spatially dependent at less than 17 cm, similar scales to the individual herbs and grass clumps 
consumed in the fire (Hiers et al. 2009, Loudermilk et al 2014). Woody fuels (pine cones) increased 
the magnitude of spatial variability and also resulted in more than twice the energy release. We 
were successful in showing that areas with higher FRED were related to fuel type, in this case pine 
cones, and this higher FRED though very local (<17 cm, Fig. 22), resulted in nearly 2.5 times 
greater probability of mortality of vascular plants. These fuels also had a much higher radiative 
energy density that background fuels; cones released approximately eight times more energy (Fig. 
22). The connection of fuels to post-fire mortality in this study documents a key prerequisite for a 
neutral model of plant community dynamics in frequently burned longleaf pines: a random agent 
of mortality. While the distribution of cones is certainly not random at larger spatial scales since 
cone density is linked to tree location we argue that at the fine scales relevant to individual plants, 
the final position of a cone falling from a tree to the ground could be considered random. We can 
also exploit this correlation by being able to link a fine scale process to landscape scale patterns of 
tree density (Coarse Scale Study, Hudak et al. 2016) and episodic cone production common in 
these systems (Boyer 1998). We recognize random processes are not the only mechanisms at work 
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in longleaf community dynamics. For example, deterministic processes such as facilitation 
(Espeleta et al. 2004, Loudermilk et al. 2016) and competition (McGuire et al. 2001, Pecot et al. 
2007) are well known elements of community ecology in longleaf woodlands, but these 
mechanisms also require highly resolved LWIR data to elucidate microsites and niche space in 
frequently burned ecosystems (Loudermilk et al. 2016). Competition becomes especially relevant 
when fire return intervals lengthen or fire is excluded (Wahlenberg 1946). Nonetheless, with 
frequent fire, we argue that the mechanism we have identified, mortality driven by fine scale 
variation in fire behavior, could prove to be a key component of community assembly among the 
high diversity understory plant community. While further analysis of resulting patterns in plant 
demography will be needed to fully test a neutral model, our results are a critical first step.  
Nonetheless, these results highlight the critical importance of understanding spatial patterns of 
within-fire spatial heterogeneity at fine scales when studying ecological fire effects.  
 
There were also differences across the EAFB landscape in total FRED likely driven by 
management legacies. Unit F-22 had nearly double the FRED of Units F-18 and F-19. F-22 also 
had been treated with hexazinone herbicide approximately 10 years before the experiment and this 
could have resulted in higher loading of fine fuels (Addington et al. 2012) and subsequent higher 
fire intensity. Plots in F-22 also likely burned with higher intensity due to fireline geometry. We 
observed two head fires were ignited on either side of the plot and the fireline interactions increased 
fire intensity as the fire moved across the plot. The higher intensity would have resulted in greater 
fuel consumption at total higher FRED. Regardless of the differences observed between blocks, 
the cones still burned with higher intensity within all the burn blocks. 
 
The availability of portable thermal imagers has allowed for the capture of quantitative data on 
spatial and temporal heat transfer at ecologically relevant scales (O’Brien et al. 2015). This has 
enabled the mechanistic linkage of fuel structure to fire behavior in ways not possible in the recent 
past. For example, Hiers et al. (2009) and Loudermilk et al. (2009, 2012) were able to link fuel 
structure to fire behavior at the 0.25 m2 scale, though they recognized that their analysis would not 
detect the influence of point-like fuels such as cones. We show here that even finer scale processes 
related to cones or other compact high energy releasing fuels (Fig. 21, 22) can have a major impact 
on plant mortality through fine scale, long duration smoldering. While the technology itself is more 
than a decade old, the application of thermal imagery to fine scale fire behavior measurements still 
represents a new direction for fire ecology (Hiers et al. 2009).  
 
While the application of this technology deployed here within the fire environment is at fine scales, 
such spatially and temporally resolved data may prove critical at larger scale fires (10-1000 ha) 
(O’Brien et al 2016).  There currently remains a technology gap for such scale to resolve nadir 
perspective between airborne and group based sensors (Hudak et al. 2016, Dickinson et al. 2016).  
Airborne sensors often produce gaps in data due to turn around times and operational constraints 
on airspace around fires (Hudak et al. 2016). UAVs (Kiefer et al. 2012, Zajkowski et al. 2016) 
offer promise to bridge this spatial scale. Nonetheless, attenuation of LWIR signals by canopies 
remains a challenge (Hudak et al. 2016, O'Brien et al. 2016), and may require a combination of 
sensors and platforms across scales to overcome these issues.  
 
LWIR thermal imagery provides high resolution quantitative measurements of in-fire energy 
transfer with complete spatial coverage at scales relevant to many ecological processes, such as 
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plant mortality and stem or soil heating. These measurements are also useful for directly linking 
spatial fuelbed metrics to fire behavior that should prove useful in better understanding 
mechanisms driving fire spread. 
Trait analysis and departure from neutrality with fire exclusion 
The continuum hypothesis predicts a gradient in community assembly dynamics from stochastic 
to deterministic. In our case we predicted the lack of fire would move plant community assembly 
from neutral to a pattern driven by competitive exclusion. The results of the analysis of the plant 
demography monitoring and cellular automata modeling (section) indicated that indeed, with 
frequent fire, assembly can be predicted by simple demographic parameters because of the random 
fire driven mortality described above. Interestingly, the departure from neutrality begins almost 
immediately as was demonstrated by the analysis of the net migration rate parameter of the UNTB 
(see next section) where there was a marked reduction in community dynamics in only a year 
following a fire. This pattern continued with longer periods of fire exclusion. To explicitly examine 
these processes, we analyzed the plot data from both burned and unburned plots using a vector 
analysis on non-metric multidimensional scaling (NMDS) scores. A vector analysis explicitly tests 
the relationship between an explanatory variable and the community composition. In our case we 
tested how fire influenced the patterns of species (Fig. 23). The vectors representing time since 
fire or the number of burns were parallel but pointed in opposite directions. In the plot of the 
scores, NMDS axis 1 was nearly parallel to the fire vectors indicating that the spread of species 
along this axis was likely responsive to fire frequency. This observation is supported by the 
locations species associated with a lack of fire such as Pinus clausa and fire dependent species 
such as longleaf pine at opposite ends of axis 1. The spread of species along Axis 2 shows no 
obvious pattern and could reflect the ubiquitous high diversity found in the reference plots that is 
a legacy of regular burning.  
 
We further explored the shift in species composition with a plot of successional trajectory between 
the first census and last census. The results indicated that the change in species composition in the 
unburned plots was moving in a similar direction though each had different initial conditions. 
Conversely, the movement of plots in species space showed no obvious pattern in the burned plots, 
reflecting the stochastic nature of neutral community assembly.  We used indicator species analysis 
(Dufrêne and Legendre 1997) to identify which species were representative of the burned and 
unburned plots (Table 9). 
 
Table 9. Results of the indicator species analysis showing taxa significantly associated with 
whether a plot had been burned and unburned. The letter to the right of the species indicates form: 
G=graminoid, F=forb, W=woody. 
 
Burned   Unburned  
Andropogon virginicus G Bulbostylis ciliatifolia G 
Dichanthelium ovale G Commelina erecta F 
Schizachyrium scoparium G Galactia regularis F 
   Paspalum praecox G 
   Pinus clausa W 
   Pityopsis graminofolia F 
   Ruellia caroliniana F 
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Interestingly, while one of the species associated with the lack of fire were expected (P. clausa), 
others are used as indicators of frequently burned reference stands. To examine whether there was 
a trend through time, we then plotted the successional trajectory of the plot scores from the first 
census to the last census. Finally, we examined the distribution of traits in burned and unburned 
plots to see if there were particulate guilds of plants that had a competitive advantage. We used a 
combination of morphological and reproductive traits and analyzed their distribution using a G 
test. The test was significant (P<0.0001) and we examined the pattern of trait change using 
pairwise comparisons with a Bonferonni correction. The results are shown in Fig. 23. The analysis 
showed that small herbaceous plants decreased in the unburned plots and woody plants with large 
storage organs increased in frequency. The change in trait distribution through time did not change 
in the burned plots with the exception of an increase in plants with long distance dispersal in both 
burned and unburned plots. We hypothesize that a nearby soil disturbance increased the propagule 
load from weeds profiliferating there. 
 

 
 
Figure 23. Change in trait occurrence in burned and unburned plots between the 2012 and 2016 
census. Filled bars are significantly different after a Bonferroni correction (critical value 
α=0.0071). Hatched bars were not different. 
 
The results showed that the switch between stochastic and deterministic community assembly 
occurs very rapidly; after missing two burn rotations, new patterns in trait frequency began to 
emerge. These results support previous work (e.g. Kirkman et al. 2004) that linked the highes 
diversity with the highest fire frequency and suggests that variable fire return intervals will not 
augment diversity, on the contrary, consistently frequent fires would be required to maintain the 
highest plant diversity through suppressing competition. Competition seems the likely mechanism 
since the smallest plants disappeared first, replaced by more robust and woody plants. Another 
important result form this analysis is that there appears to be differences between short term 
responses and long term responses. In the short term, herbaceous species still remain common, 
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though after longer periods, woody plants eventually dominate. While our study did not encompass 
the time scale required to capture this further transition, our results are the first to demonstrate the 
rapid shift in community assembly dynamics. 
Fuel metrics from photogrammetry & in-situ data 

For the photogrammetry analysis, fifty-seven different species were observed, and cluster analysis 
resulted in the definition of 13 different fuel types. Point cloud height distributions approximated 
field-measured height distributions (Fig. 24, Fig. 25), and point cloud metrics varied significantly 
between plant species, plant types, and fuel types 41, 54, and 44% of the time, respectively. We 
concluded that close-range photogrammetry can provide 3D height information comparable to 
point intercept techniques. 

 
Figure 24. Comparison of field-measured fuelbed depth and photogrammetry-derived maximum 
height. Grid cells are 10x10 cm in size. From Bright et al. 2016, Canadian Journal of Remote 
Sensing. 
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Figure 25. Comparison of distributions of field-measured fuelbed depth and photogrammetry-
derived maximum height for each of the nine 1x3 m plots. 
 

A. Fine-Scale Plant Demography for Cellular Automata Modeling 
Fire intensity data with plant change  
From the empirical data on fire and plants, we compared the net migration rate of individual plants 
with FRE (fire radiative energy) from surface fires. The migration rate was calculated as the net 
migration of individuals, regardless of species, in each 10 cm2 cell within each plot. The spatial 
location of individual plants and fire was critical, as this rate was dependent on whether an 
individual previously occupied the cell, there was individual gone (mortality) with or without 
replacement by another, or a new individual was found (spread into an empty cell). Fig. 26 
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illustrates the relationship between mean cell FRE and total FRE with mean net migration rate 
across plots.  

 
Figure 26. Results illustrating plot level relationships between plant change and fire intensity. 
Both regressions had a p < 0.001. Net migration rate was calculated within each 10 cm2 cell (plant 
change between fall 2012 and fall 2013) and averaged across the plot to get the mean net migration 
rate within each plot. FRE (fire radiative energy) was calculated at the plot level from the spring 
2013 burns (IR cameras). Total plot FRE (top graph) is the total FRE within each plot. Mean cell 
FRE (bottom graph) is the average cell (or pixel) FRE within each plot. 
  
Cellular Automata modeling 
Species richness distributions were successfully simulated in a frequently burned longleaf pine 
ground cover plant community (Fig. 27) using simple probability functions, representative of the 
Unified Neutral Theory of Biodiversity (UNTB). Furthermore, a broad range of estimates for 
mortality and birth (values from 0.2 to 0.6) were successful in simulating richness; combined, these 
two parameters accounted for less than 5% of the variance through direct effects.  This suggests 
that general values of recruitment and death rates for the entire community, rather than individual 
species, produce robust outputs and large efforts to estimate these values may be unnecessary.  
Immigration on the other hand, was the most sensitivity of the parameters (up to 20%, depending 
on input scale). This illustrates the importance of quantifying accurate immigration rates (or 
understanding community level dispersal) when modeling fine-scale community richness. The 
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importance of immigration and the assumptions about this parameter are similar to other UNTB 
simulated systems (Girdler and Barrie 2008, Lowe and McPeek 2014). 
 
The two exogenous variables had a larger effect on the model than mortality and birth, but 
comparable to immigration depending on scale of input data (Fig. 28). Number of plots and area 
simulated (extent) had considerable effects on normalized species richness, ranging from 9-19% 
and 12-18%, respectively.  In the model, the number of areas directly affects the number of local 
communities, while area simulated affects size of the local community pool within areas being 
simulated. We found that the more plots or larger the area simulated, the more stable the 
community and likelihood for rarer species to exist through time. We did not see a large effect 
from the type of dispersal (spatial dispersal vs. non-spatial dispersal, Fig. 27) on species richness. 
And although this would suggest that deciding between spatial vs. non-spatial dispersal processes 
may be generally irrelevant for modeling species richness, restricting recruitment in the local 
community (spatial model) creates a modeling environment conducive to more realistic dispersal 
patterns of these small plants. Population structure, or the scale of input frequency distribution, 
was significant in terms of influencing parameter sensitivity (Fig. 28) and output species richness 
(Fig. 27).  
 
The overall effects of scale on species richness are relatively clear (Fig. 27); species richness 
patterns can successfully be simulated using UNTB assumptions at all scales, although at coarser 
scales, all species are more evenly represented in the input frequency distributions and create more 
stable outputs.  The effects of scale on individual parameters is more complex. At the finest scales 
of input frequency distributions (Fig. 28), immigration rate had the largest individual parameter 
sensitivity on normalized richness of any parameter, where rarer species depended more on 
immigration from the metacommunity using the finer scaled inputs.  At coarser scales, the input 
frequency data were less skewed, i.e., rare species were no longer comparatively rare and richness 
was more stable than using finer scale data. The same effect of scale was found for birth rate, but 
with lower individual sensitivities. Here, rarer species depended more on effective recruitment at 
finer scales. Effects of scale on mortality rates was minor, with little variability across scales of 
input data, and low overall individual parameter sensitivity.  Scale had significant effects on both 
exogenous variables, where in general, as the input scale coarsened, the individual parameter 
sensitivity increased, rather than decreased, as seen with the endogenous parameters. These results 
illustrate how scale and population structure can influence a simulated community determined by 
neutral processes. 
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Figure 27. Normalized groundcover species richness as simulated using the neutral CA model, 
using the 500 F.A.S.T. parameter combinations, five input scales of frequency distributions, and 
the spatial and non-spatial dispersal assumptions. Each boxplot is the output from 500 model runs 
using the 500 F.A.S.T. parameter combinations. The legend illustrates the scale in which the data 
were created from the empirical data, including the original resolution of the data (1.0: 10 cm x 10 
cm, etc.). Normalized species richness is the species richness change from time zero compared to 
last time step (50) of each model run.  This was created to analyze simulated richness among 
simulations of varying size areas and number of areas simulated. 
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Figure 28. First order effects or individual parameter sensitivity (%) of the three endogenous 
parameters (mortality, birth, and immigration) and exogenous parameters [extent (size of area) and 
number of areas (plots)] on simulated normalized richness.  The legend illustrates the resolution 
(in dm) in which the data was created from the empirical data, including the original resolution of 
the data (1.0: 10 cm x 10 cm). Boxplots represent variance across three replicates of model runs 
using the 500 FAST parameter combinations. The graph on the right illustrates the difference in 
input frequency distributions when they are scaled. The arrows illustrate which frequency 
distributions (scale of data) were used as input for the given boxplot.  
 
The CA model was also successful at illustrating changes in species richness during small intervals 
of fire exclusion.  As we have found that species richness decreases in as little as two years without 
fire (Fig. 29), we assumed a large probability (0.8) of mortality during short time periods without 
fire. We ran the CA model assuming continuous fire (timestep in model = 2 years), and used a 0.2 
probability of experiencing fire exclusion.  The results illustrate the temporal “dips” in species 
richness during years without fire, and the increase thereafter when fires are included again (Fig. 
30).  This illustrates strong decreases in species richness during the time of fire exclusion and 
smaller (yet significant) reductions in species richness over the course of the simulation. 
 



43 
 

 
Fig. 29.  Species richness change between years of prescribed burning (left) and no prescribed 
burning (right).  The number of species begin to decrease with two years since the last burn in 
these Flatwoods areas. 
 

 
Fig. 30.  Illustration of species richness change through time simulated with the neutral CA model 
when fires are continuous through time (left) and when there are short intervals of fire removal 
(right) from the system. This illustrates 10, 1 m2 plots. The x-axis is timesteps, which equal 2-year 
intervals. The green spikes represent when fire was removed from the model. 
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Patterns of Diversity 

Abstract 
In addition to the coarse- and fine-scale vegetation studies, we are coupling data mining and field 
monitoring to examine how fire effects on plant diversity cascade up to the arthropod community, 
which can in turn modify fire-plant diversity associations. We are using several arthropod 
monitoring techniques at varying spatial scales to examine method bias, species area relationships, 
and functional diversity metrics. By sampling arthropod diversity and creating linkages to plant 
diversity, we will be able to better understand how both plant and animal communities, as well as 
their interactions, respond to fire. To quantify trophic interaction diversity, and to model the effects 
of fire on multiple dimensions of diversity, we are building on a long-term Lepidopteran rearing 
dataset associated with the long-term monitoring vegetation data. 

Objectives 
We used the fine scale vegetation plot data and other diversity datasets (Table 10) to examine 
species area relationships, species density, sampling issues, and spatial patterns of diversity across 
EAFB, between forest types, and across a gradient along the Florida panhandle. For example, we 
utilized semivariograms of the plot data along with kriging to derive optimal estimates of diversity 
across the landscape.  

Technical Approach 
A. Scaling study 

To examine spatial patterns of diversity we established a series of nested circular plots in reference 
longleaf pine sandhills throughout EAFB during summer 2014. A 5 m radius circle was divided 
into quarters with total stem counts tallied for all species in a quarter arc at each 1m radius 
increment. Variable spatial scales ranging from a single 1m arc (0.785 m2) to the entire 5 m radius 
circle (78.54 m2) and anything in between can be compared. More scale sampling plots will be 
sampled during the period May-August, 2015. 

 
We are examining associations between sampling area and means and variances in diversity 
estimates calculated via bootstrapping (Pla 2004), jackknifing (Smith and van Belle 1984, Colwell 
and Coddington 1994, also see the approach of Butturi-Gomes et al. 2014 for Tsallis entropy), and 
similar techniques. We are using nonlinear regression and other standard components of 
generalized linear models to examine associations between our different methods, scales, and 
diversity measures with the goal of testing hypotheses about optimal scales and metrics for 
measuring biodiversity in longleaf pine systems. For some of our diversity comparisons, problems 
of uneven sample sizes for diversity (based on different spatial or temporal scales) are being 
corrected using rarefaction, entropies, and additive partitioning (Heck et al. 1975, Lande 1996, 
Gotelli and Colwell 2001, Lande et al. 2001, Crist and Veech 2006). More importantly, we are 
utilizing Hierarchical Bayesian statistics (e.g., Ogle and Barber 2008) to test ecological hypotheses 
at multiple scales via merging data from multiple plots within the spatial hierarchy or merging data 
with other empirical data (e.g., Hiers et al. 2007, Dyer et al. 2010). 
 

B. Arthropod diversity 
To examine the utility of arthropod functional groups as practical indices of management efficacy, 
we utilized a series of six malaise traps to sample before, during, and four periods post-fire. 
Sampling was done in conjunction with the fires conducted as part of the fuel manipulations burns 
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in late May 2014. Specimens were organized by morphospecies, identified at minimum to family, 
and assigned to a functional trophic guild of herbivore, detritivore, parasitoid, or predator. 
Abundance and richness of morphospecies were used to calculate Shannon and Simpson diversity 
indices with the inverse Simpson diversity index (1/D) used for analyses. As described by Jost 
(2007), the inverse Simpson gives the effective species numbers instead of a measure of entropy 
given by the untransformed and often used Shannon or Simpson indices. Therefore, this makes for 
allowable and informative comparisons across studies. Additional malaise sampling will take place 
during the late spring and throughout the summer of 2015 to address patterns of seasonal variation. 
 

C. Interaction diversity 
Here and elsewhere, we define interaction diversity as the number of interactions linking species 
together into dynamic biotic communities (Dyer et al. 2010, Dattilo and Dyer 2014), and for this 
and other studies, we focus on trophic interaction diversity. For this metric of diversity, the 
calculation of richness, diversity indices, and rarefaction diversity is based on trophic links 
between interacting species rather than species alone. Interaction diversity is affected by 
taxonomic, genetic, and functional diversity, and our quantitative measure of interaction diversity 
provides novel insight into debates about neutrality and correlations between diversity, stability, 
productivity, and ecosystem services (e.g., Forister et al. 2015). For our new measure of interaction 
diversity (Dyer et al. 2010), which can be used as a proxy for functional and overall species 
diversity, we established nine 30 m diameter plant-arthropod sampling plots centered on the fine 
scale monitoring plots. Arthropods were sampled using a sweep-net and walking around the plot 
in concentric circles working from the outside towards the center. Using beat sheets and visual 
searches, we collected caterpillars on host plants in the plot and rear them to adult or parasitoid. 
We recorded plant stem and leaf counts within the plots to estimate the leaf area searched and plant 
diversity. These plots were sampled at least three times per year, and we will continue collecting 
these data throughout the duration of the project. During the summer of 2015, additional 
interaction diversity sampling will take place at the 30m diameter plot scale along a time-since-
fire gradient. 
 
To help determine the most effective sampling techniques for quantifying interaction diversity, we 
compared sweep net sampling with vacuum sampling. We also compared sweep net samples 
across plots with diameters of 5m, 10m, 30m and 50m. All arthropod samples were sorted, 
identified, curated and are currently stored at the University of Nevada, Reno Museum of Natural 
History. 

Results & Discussion 
A. Scaling study 

Additive Partitioning of plant species diversity across EAFB  
To best describe the patterns of diversity found in understory plant communities of longleaf 

pine ecosystems, we analyzed an extensive data set including both mined historical data (Hiers et 
al. 2007, Provencher et al. 2001) and supplemental experimental data. In addition, we utilized an 
additive partitioning of plant diversity (Tello et al. 2015, Chandy et al. 2006) to elucidate the 
hierarchical spatial patterns of diversity including species richness, and independent measures of 
alpha and beta diversity (Tuisomo 2010, Jost 2007). Datasets included species abundance and 
richness measures from various timeframes and spatial extents including over 200 monitoring plots 
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representing a decade of sampling within hierarchically arranged plots (Hiers et al. 2007), (Fig. 1), 
and dynamic reference stand data (Provencher et al. 2001).  

Sampling scales ranged from 0.785 m2 to 400 m2 (Table 10) among the studies and allowed 
for aggregation up to the management scale of 5 ha. Data were collected over the time period from 
1995 to 2015 in both the spring and fall seasons by crews from The Nature Conservancy, 
Department of Defense natural resource technicians, and professional botanists. Additionally, fire 
history records were available for the majority of plots extending over the entire sampling time 
period. 
 
Table 10: Datasets used in additive partitioning analysis of understory vegetation within Eglin 
AFB. Abundance (A) and Richness (R) measurements taken as indicated in data description 

Dataset Spatial scale Temporal Scale Diversity sampling Description 

Eglin AFB vegetation 
monitoring 

1 m2, 40 m2 2001-2012 Abundance and richness at 8 
m2 scale, richness at 40 m2 
scale 

152 (A, R) quadrats, 19 (R)  
plots sampled after each 
management treatment during 
the time scale. 

Neutral theory 
vegetation plots 

3 m2 2012 to 2016 Richness 15 sandhill quadrats and 15 
flatwoods quadrats sampled in 
the Fall of every year and 
Spring in years not burned 

Longleaf restoration and 
Dynamic reference 
projects 

1 m2, 400 m2 1996-1998 and 2010 Abundance and richness at 1 
m2 scale, richness at 400 m2 
scale 

320 (A, R) quadrats, 80 (R)  
plots sampled during both time 
scales. 

Spatial scale 5 m radius 
sampling plots 

0.785 m2 - 78.54 m2 2014-2015 Abundance and richness 9 plots variable spatial scale 
plots sampled Summer  

 
We defined and calculated diversity components in an additive manner: regional diversity 
represented the sum of alpha and beta diversity (Tuisomo 2010, Jost 2007). At each spatial scale 
within each dataset, alpha diversity was calculated as the mean diversity within the sampling unit 
and beta diversity was calculated between sampling units. This differed from Whittaker’s 
multiplicative relationship and allowed us to addititively partition the total diversity across Eglin 
AFB into scale-specific diversity components.  
 
As expected, richness and alpha diversity increase with area (Table 11), but a more relevant metric 
for managers interested in monitoring biodiversity is beta diversity. Beta diversity is a measure of 
compositional difference between sampling sites, with high levels of beta diversity indicating 
greater amounts of species turnover. Beta diversity begins to reach an asymptote amongst 1m2 
plots with increases in spatial extent surveyed adding little to compositional difference in the 
understory community. This analysis allowed us to identify the spatial scale that most effectively 
captures diversity and in turn, the extent to efficiently monitor plant diversity. We found that while 
species richness and alpha diversity increased with spatial scale, beta diversity asymptotes at 
smaller (1 m2) scales. Further analysis by rarefaction based on over 1,800 1m2 reference plots, 
indicated mean slope began to asymptote at 50 samples. This indicates an effective level of 
sampling intensity to achieve an accurate measure of plant species richness 
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Table 11: Results from additive partitioning analysis on different components of diversity at 
increasing spatial scale. While alpha diversity (H’) increases with scale, beta diversity reaches an 
asymptote among 1m2 plots indicating sampling larger spatial extents adds little to community 
composition. 
 

 
Overstory-Derived Surface Fuels Mediate Plant Species Diversity in Frequently Burned Longleaf 
Pine Forests 
We analyzed long term data sets to elucidate the relationship between fire and specific fuel types, 
and how the combination of these two elements contributes to ground cover species diversity. We 
used 11 years of monitoring data from longleaf pine forests at Eglin to parameterize a structural 
equation model (SEM) that examines causal relationships between fuels and fire history on ground 
cover plant diversity. Overstory derived fuels, including pine needle litter, pine cones and other 
woody fuels, had the greatest positive impact on diversity in reference stands. A second model 
examined surface fuel components originating from the forest overstory as characterized by 
airborne LiDAR and found that pine needle litter was positively associated with canopy density. 
Our parameter estimates for causal relationships between easily measured variables and plant 
diversity will allow for development of management models at the stand scale while being 
informed by fuels measured at the plot scale. 
 
We found that the overstory-derived fuels in stands maintained by frequent fire, provided a 
significant contribution to species richness, particularly in flatwoods (Fig. 31). We also found that 
longleaf pine litter exerted the greatest positive influence on ground cover richness in reference 
plots, where a mean fuel loading of 0.34 kg m-2 added a mean of 1.2 plant species with each 
additional fire. Overstory-derived fuels, mainly longleaf pine needles and cones on the forest floor, 
are a critical component of longleaf pine fire ecology (Mitchell et al. 2009, Loudermilk et al. 2012, 
Hiers et al. 2009, O’Brien et al. 2016). Pine needles facilitate fire by supplying a continuous and 
highly combustible fuel bed (Rebertus et al. 1989, Loudermilk et al. 2012, Hiers et al 2009).  
Additionally, variations in the amount of pine litter had significant impacts on fire behavior and 
fire effects, which in turn alters forest structure by determining the prevalence of midstory 
hardwood species (Hiers et al. 2009, Ellair and Platt 2013).  
 
We found that woody fuels, which include small branches and pine cones derived from the longleaf 
canopy, significantly promoted ground cover diversity when burned, adding a mean 0.74 species 
in reference stands at loadings of 0.1 kg m-2 (Table 3). Woody debris burns at high intensity, 
releasing 12 times the radiative energy as fine fuels (O’Brien et al. 2016) and has significantly 

Partition 
 

Scale (m2) Change in 
Richness 

Alpha (H') Beta ( H') 

α 1 9.24 3.29 4.94 

β1  1 18.27 5.44 6.66 

β2 3 3.20 10.76 2.65 

β3 13 2.79 12.94 2.41 
β4 ~5 x 106 8.00 7.61 2.17 
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longer residence times (Loudermilk et al. 2012, 2014, Fonda and Varner 2004). These ‘hot spots’ 
of fire intensity can influence understory mortality as plants near woody debris have been found 
to be 3 times as likely to die from increased energy release from burning woody fuels (O’Brien et 
al. 2016). These patches of increased mortality likely result in open areas of bare mineral soil for 
seedling establishment of both herbaceous species and longleaf pine resulting in increased 
variation in recruitment patterns post fire (Wiggers et al. 2013, O’Brien et al. 2008).  

Figure 31. Structural equation model including hypothesized causal relationships between the 
burning of individual fuel categories and plant diversity in longleaf pine reference stands.  In fire 
dependent ecosystems such as the longleaf pine forest, greater numbers of fires have positive 
effects on ground cover species richness. This relationship is mediated by the composition and 
consumption of different surface fuel types, including longleaf pine litter, pine cones and other 10-
hour and 100-hour woody fuels, grass litter, and saw palmetto litter. Numbers next to lines are the 
standardized path coefficients (spc). Line thickness corresponds to strength of path coefficient and 
asterisks denote statistical significance (P<0.05). Black dashed line represents total indirect effects 
of fire on diversity as indicated in Table 12. The model is a good fit to the data (χ2 =5.2; df=7; 
P=0.64) as indicated by P-values larger than 0.05. Insets within fuel types are partial correlation 
plots of the paths between individual fuel types and species richness while accounting for the 
effects of all other fuel types. 
 
When fire is removed from the landscape, litter and woody fuels accumulate on the forest floor 
contributing to an O horizon, which is also described as duff or forest floor (Varner et al. 2005). 
Hiers et al. (2007) showed that understory health is inversely linked with the amount of duff that 
has accumulated in the absence of fire in longleaf pine. Consistent with that study, we found that 
species richness was indirectly reduced with elevated litter in plantations, resulting from longer 
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fire return intervals. This was not the case, however, with the consumption of woody fuels. When 
fire is reintroduced, the increased fire intensity and radiative energy released by woody fuels 
(O’Brien et al. 2016), coupled with longer residence times (Loudermilk et al. 2012, Fonda and 
Varner 2004), will result in the consumption of duff and exposure of bare mineral soil for seedling 
establishment (Wiggers et al. 2013, Hiers et al. 2009, O’Brien et al. 2008). Therefore, woody fuels 
consumption may be a key process maintaining diversity in forested stands characterized by more 
extended fire return intervals. This potentially high contribution to diversity by woody debris 
consumption in flatwoods and pine plantations warrants further investigations into issues such as 
the fire radiative heat flux necessary to create open space in shrubby flatwoods or the consumption 
of duff in pine plantations (Varner et al. 2005). 

 
Table 12: Indirect effects of fire on diversity for each fuel type in reference stands. In fire 
dependent ecosystems such as the longleaf pine forest, greater numbers of fires have positive 
effects on ground cover species richness. This relationship is mediated by the composition and 
consumption of different surface fuel types, including longleaf pine litter, pine cones and other 10-
hour and 100-hour woody fuels, grass litter, and saw palmetto litter. Total effects are calculated as 
the sum of the product of individual standardized path coefficients (spc). Significant pathways 
denoted with asterisk. Effect size in terms of species richness (S) also shown as indicated by 
calculated slope (β) from fuel-diversity SEM.  
Fuel Fire Effect                

on Fuel 
Fuel Effect                

on Diversity 
 Indirect 

Effect (spc) 
Indirect 

Effect (S) 
Longleaf Pine Litter      -0.23* -0.39* 0.09 1.17 

Woody Fuels -0.12 -0.44* 0.05 0.74 

Grass Litter -0.01 -0.37* 0.004 0.03 

Saw palmetto Litter -0.11         -0.15  0.02 0.22 

Total Effects of Fire on Diversity         0.16* 2.16 

 
B. Arthropod diversity 

While we know fire is a crucial element in the maintenance of plant biodiversity, little is known 
about the impacts of fire on arthropods in longleaf pine. Arthropods are the most abundant and 
species-rich group of animals in terrestrial systems and have tremendous impacts on ecological 
processes such as nutrient cycling, net primary production, and food web structure (Weisser and 
Siemann 2004). Clearly arthropods should be included in studies of fire-diversity-ecosystem 
function relationships. Furthermore, since arthropod diversity is tightly linked to changes in 
diversity of plants, mammals, and birds (Tallamy 2004), arthropod-fire relationships should be 
relevant to entire communities. In the numerous studies investigating the effects of fire on 
arthropod communities there are no clear patterns in the response of arthropods to fire (Pryke and 
Samways 2012, Whelan 1995, Swengel 2001). Results from such studies are highly variable due 
to differences in weather, burn intensity, focal taxa studied, and season of burn. Therefore, it has 
been suggested that inclusion of multiple taxa is necessary for more accurate assessments of fire 
effects on arthropod diversity (Pryke and Samways 2012). 
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We investigated the diversity of arthropod communities in longleaf forests before, during, and five 
times post burn. Sampling with malaise traps over an entire year showed fire effects were taxa 
specific with most orders dropping in diversity after the fire, followed by diversity recovery one-
year post burn (Fig. 32). As the greatest increased taxonomic diversity was seen in three highly-
vagile orders, dispersal ability may give greater resilience to mobile taxa and provide increased 
recolonization potential as the vegetative habitat returns post fire. Trophic diversity response 
indicates that bottom-up regulation is resulting in decreased predator diversity and latent 
recoveries in parasitoids and detritivores.  
 
 

Figure 32: Patterns in the diversity of arthropods calculated at various stages in relation to time 
since fire. Each line represents a unique taxonomic order. 
 
Arthropods were also sampled with sweepnets along a time since fire gradient represented by plots 
located within frequently burned stands (fire return interval (FRI): 1-5 years), intermediately 
burned stands (FRI: 5-20 years), and infrequently burned (FRI: >20). Alpha diversity of the 
arthropod community was highest in frequently burned plots, followed by infrequently burned 
plots, and lowest in intermediately burned plots. Furthermore, as time since fire increased, the 
overall diversity of both herbivores and parasitoids declined. Coupled with the significantly higher 
levels of beta diversity found between frequently burned plots, results indicated that arthropod 
communities are most diverse in stands that burn regularly.  
 
We also examined what happened to those taxa that are not as readily mobile by erecting a series 
of sticky traps within burn units on prescribed fires. Results indicate a significant dispersal 
response by non-flying juvenile arthropods via vertical dispersal (Dell et al. 2017, Fig. 33). The 
cooler temperatures and reduced combustion in the canopy during low-intensity surface fires in 
the longleaf pine ecosystem confers increased potential for survival and subsequently 
recolonization post-burn. 
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Figure 33. Five arthropods orders collected per sticky trap during fires. Traps were located within 
burn units and at adjacent control sites away from fire. 
 
Our results indicate that arthropod communities are re-assembling in patterns that suggest bottom-
up regulation, since longleaf pine ecosystems are fire-adapted and plants readily resprout quickly 
after fire, often in a matter of days. As the vegetation returns the arthropod community also returns 
as habitat is restored and diversity increases as the vegetative community becomes more complex. 
Subsequent decreases in overall diversity follow as plants enter senescence. However, over the 
course of one year, communities become compositionally similar to pre-burn assemblages. This is 
not surprising as the fire return interval in healthy longleaf pine forests can be as short as 1 year. 
Quantifying the diversity of the overall arthropod community allows for multiple comparisons in 
the responses of numerous taxa enhancing the understanding of ecosystem response to disturbance. 
 

C. Interaction diversity 
In this study, we focused on trophic interaction diversity and have categorized arthropod 

species into trophic guilds to examine the diversity of trophic interactions per unit area between 
host plants, herbivores, and their natural parasitoid enemies. We have quantified interaction 
diversity based on replicated 30 m diameter plots at Eglin and across the Gulf coastal plain. Results 
of the model have allowed us to frame relevant hypotheses about how interaction diversity is 
related to species diversity, fire, and ecosystem stability at Eglin. We used plant and arthropod 
richness, measured at 4 different scales at Eglin (1m2, 25m2, 100m2, 900m2, all of Eglin), along 
with levels of consumer-resource specialization to parameterize our models and estimate 
interaction diversity at Eglin. Preliminary model results have been verified with empirical data 
(Fig. 34) – for example, the estimated interaction diversity at Eglin based on diet breadth of known 
herbivores (from our sampling plots) matches model predictions. We continue to develop our 
measure of interaction diversity as a useful measure of functional diversity and an important 
correlate of community resilience and ecosystem function. 
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Figure 34: Predictions of species richness and interaction richness from a simulation model (50 
runs of the model are depicted here) parameterized with plots at EAFB. For a 1 km2 area, at least 
500 plots would be necessary to estimate global interaction richness. Species richness asymptotes 
at an order of magnitude fewer plots. At smaller scales (1 m2 to 700 m2), which are more relevant 
for plant interactions with insect herbivores and predators, both species and interaction diversity 
can reach an asymptote within 10 samples, and interactions reach an asymptote before species.   
 

The primary objective of the empirical component was to quantify interaction diversity 
across a time since fire gradient, to comparatively assess the effect of longer fire return intervals 
on biotic community interactions and network parameters in longleaf pine forests. The burn 
gradient was comprised of frequently burned plots (fire return interval (FRI): 1-5 years), 
intermediately burned plots (FRI: 5-25 years), and infrequently burned plots (FRI: >25 years). 
Interaction diversity was calculated based on the richness and abundance of links between 
interacting species (Dyer et al. 2010). Secondly, we investigated how these patterns varied over 
increasing spatial extents. Diversity was quantified at various hierarchical levels including the 
local plot level, and at the regional level (plots and general collecting) and aggregated to create a 
network comprised of all tri-trophic interactions (Fig 35).  

Regionally, frequently burned plots had greater interaction richness and overall species 
diversity. In addition, a focus on trophic guilds showed frequently burned plots had greater 
parasitoid and herbivore species diversity. Parasitoids make up about 15% of the species richness 
while only 8% in the infrequently burned. This indicates that frequently burned forests have greater 
biological control with greater parasitoid richness. Furthermore, in a comparison of network 
parameters, connectance- which is a measure of standardized species interactions, was higher in 
frequent than in infrequently burned plots. This has ecological relevance as interaction networks 
with greater connectivity are characterized by higher levels of functional stability within an 
ecosystem (Thyliankis et al. 2010).   
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When looking at the plot level scale, alpha interaction diversity was actually greatest in 
infrequently burned plots; in contrast, beta interaction diversity (turnover of interactions) was 
highest in frequently burned plots. Taken together, the high degree of interaction turnover is what 
contributes to greater gamma or regional interaction diversity in frequently burned forests. 

 

  
Figure 35: 3-D visualization of entire Florida interaction diversity empirical database. Red nodes 
represent plants, orange nodes represent herbivores, and yellow nodes represent parasitoid 
enemies. The colored edges linking nodes together represent bi-trophic (plant-herbivore, 
herbivore-enemy) and tri-trophic (plant-herbivore-enemy) interactions. Network represents 
collections compiled from standardized plots and general collecting.  
 
Streamlining Biodiversity Monitoring 
We developed a streamlined biodiversity monitoring program at Eglin Air Force Base with 
efficiency gains and improved methodology to an already existing biodiversity monitoring 
program. Using existing data, we found spatial and temporal targets in which monitoring efforts 
are maximized, as well as, recommendations for sampling stratification (location) and intensity 
plot size and number of samples, Figs. 36, 37).  
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Figure 36: Number of plots to sample for accurate diversity measures. Rarefaction curves are 
displayed for interactions and species for 500 plant-herbivore-predator communities simulated 
based on plot data from EAFB. Rarefaction curves were generated for all three networks within 
each communities: Plant-Herbivore (PH), Herbivore-Enemy (HE), and Plant-Herbivore-Enemy 
(PHE). PHE networks include all PH and PHE interactions.  For a 1 km2 area, at least 500 plots 
would be necessary to estimate global interaction richness, while species richness asymptotes at 
an order of magnitude fewer plots. At smaller scales (1 m2 to 700 m2), which are more relevant for 
plant interactions with insect herbivores and predators, both species and interaction diversity can 
reach an asymptote within 10 samples, and interactions reach an asymptote before species. 
 
Our monitoring program also utilized simulation models parameterized with plot data collected in 
longleaf pine forests to examine the effectiveness of different sampling methods. Using taxonomic 
measures of diversity as well as, interactions between plants, herbivores, and natural enemies 
(Dyer et al. 2010), we calculated diversity indices based on the number of species or interactions 
and their relative abundance. These indices were transformed into unbiased diversity equivalents, 
measuring the effective number of species or interactions in samples (Jost 2007). We then 
performed rarefaction analyses to remove correlations between sample size and measures of 
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diversity. At smaller scales (1 m2 to 700 m2), which are more relevant for plant interactions with 
insect herbivores and predators, both species and interaction diversity can reach an asymptote 
within 10 samples, indicating the appropriate number of plots to sample for an accurate measure 
of diversity (Fig. 36).  

 
We also used transformed indices of beta diversity, measuring compositional difference in plant 
communities between sampling sites. High-levels of beta diversity indicate greater amount of 
species turnover. Results from our additive partitioning analysis on different components of 
diversity at increasing spatial scale showed alpha diversity (H’) increased with scale, while beta 
diversity reached an asymptote among 1m2 plots indicating sampling larger spatial extents adds 
little to community composition. Therefore, monitoring efficiency will be maximized at the spatial 
extent where beta diversity begins to reach an asymptote. This point indicates the grain size that 
best captures representative diversity and can then be used for management objectives such as 
monitoring programs. Previous to this result, monitoring was being conducted at the 1ha scale, and 
was highly redundant in terms of diversity representation. 
 
Monitoring at Eglin AFB is typically scheduled the season following management peturbations, 
such as fire, herbicide application, and timber harvest. We surveyed individual plants within 1m2 
quadrats on a weekly basis post operational prescribed fires in two separate sandhill communities. 
This chronosequence study indicates that a there should be a minimum of 8 weeks between fire 
and sampling to accurately measure diversity (Fig. 37). In addition, future monitoring frequency 
will be dependent on the season in which the management event occurred and historical practices. 
 

Figure 37: When to sample in relation to disturbances.Monitoring at Eglin AFB is scheduled the 
season following management. Chronosequence shows that a there should be 8 weeks minimum 
between fire and sampling to accurately measure diversity. 
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Conclusions 
It is well known that fire is required to maintain healthy longleaf pine ecosystem function, and that 
frequent fire promotes high plant, arthropod, and functional diversity. Quantifying the spatial 
pattern of fire-induced mortality is critical for understanding the processes structuring vegetative 
communities post fire. (Alonso et al. 2006) identified three requirements for explaining the 
distribution, abundance and diversity of species in a biogeographical (scale-independent) context 
that are fulfilled by UNTB (Hubbell 2001): first, the plant community must define the random 
dynamics of species over time, second, one must have a spatial formulation and third, one must 
consider the fates of discrete individuals which allows the empirical testing of the theory.  Our 
strategy of combining spatially explicit and fine scale fire, fuels and demography measurements 
with coarser scale measurements of forest structure across the landscape not only allowed us to 
identify and test mechanisms driving community dynamics, but gave us the framework to make 
our results relevant to management. These results when coupled with the detailed examination of 
patterns of diversity through time and space has given us a comprehensive understanding of 
mechanisms driving diversity, how diversity is distributed and best monitored, and identified new 
metrics of diversity that should provide sensitive indicators to disturbance and management. We 
have identified the scales at which patterns of diversity emerge, and thus the appropriate scale for 
sampling and monitoring of various kinds and dimensions of diversity. We have also identified 
the mechanisms driving these patterns, namely stochastic demographic dynamics at high fire 
frequency, and competition as fire becomes less frequent. It is also known that plant diversity, fuel 
structure, and fire dynamics operate at scales that are too fine to practically guide management of 
large areas. Management decisions are most often made at the scale of large land blocks. Our 
coarse-scale study has demonstrated how existing low density LiDAR and high resolution image 
datasets can be effectively leveraged to improve management of longleaf pine stands at 
management-relevant scales. We are using our results to build a cross-scale modeling framework 
that will allow managers to better understand how their actions will affect multiple metrics of 
diversity. For example, we have been able to link woody fuel distribution, a critical driver of 
diversity maintenance, to LiDAR derived tree maps. These tree maps could be used to predict how 
silvicultural treatments will interact with fuels and impact plant diversity. Finally, the inherent 
flexibility of the spatially explicit rule based core of our model system makes is likely to be useful 
in other ecosystems given appropriate parameters and initial data. We have met all and in many 
cases exceeded our objectives as promised in the proposal. Our results also showed that our 
conceptual framework was appropriate; that is, in the burn plots, neutral dynamics appear to be 
operative, whereas in fire exclusion plots, deterministic patterns, specifically competitive 
exclusion of small herbaceous plants occurred. It was surprising how rapidly this process emerged, 
as soon as the year following fire. We have successfully developed the framework and code of the 
CA model and have tested hypotheses on community assembly mechanisms. This will provide the 
foundation for exploration of other disturbance and management impacts. We also used theory to 
generate not only basic understanding of how diversity is structured over the entire region, but also 
identified critical elements for accurately measuring and monitoring diversity. We feel the overall 
success of the project resulted from not just the work of a talented team, but also our approach to 
organizing and integrating the research activities of such a comprehensive study. What follows are 
conclusions relevant to the three study areas. 
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Coarse Scale Studies 
We met our original objectives by illustrating the link between canopy structure, the fire regime, 
and understory vegetation characteristics. Low density aerial LiDAR was a heavily used dataset 
in this study, where maps were produced that represent landscape-level estimates of tree density, 
tree heights, basal area, dominant tree species, crown metrics, and stem volume. Furthermore, 
LiDAR estimates of canopy height distributions were linked to both the long-term ecological 
monitoring data and Eglin’s fire database, as well as our study plots of fuels and groundcover 
plants. The correlations were successfully used to produce maps of fine fuels, including pine and 
oak litter, shrubs, and grasses; and coarse woody fuels, including pine cones, which relate to fine-
scale mortality; as well as plant species richness. As such, we have illustrated the link between 
fine-scale fuels and diversity to landscape canopy structure.  
 
We exceeded our objectives by 1) examining two airborne LiDAR datasets of very different 
resolutions (1 vs. 10 pulses m-2) to provide a large variety of results (individual tree mapping to 
fine-scale fuel mapping), 2) exploring terrestrial LiDAR approaches to estimating surface fuels 
and how that information can be combined and compared with aerial platforms, and 3) creating 
two freely available tools, one web-based (LiDARTreeTop) and one R package (rLIDAR), to run 
algorithms on input LiDAR data to map individual trees and provide canopy metrics; this was 
produced using the high density LiDAR provided for only a subset of the area within EAFB. 
 

Fine-Scale Studies 
From the fine-scale portion of the study, we met as well as exceeded all our objectives. We 
captured fine-scale fire radiative energy, and both related that information to specific fuel types, 
particular those coarse woody fuels (pine cones) that cause individual plant mortality. Plant 
demography was successfully captured using our 100cm2 monitoring protocol within 1 m x 3 m 
plots, and this was critical for analyzing the relevance of species traits and provide neutral 
parameters and inputs to the CA model.  We captured the fine-scale fuelbed characterisitcs using 
both field and photogrammetry techniques, and this was linked to the plant monitoring data and 
3D fuel rendering. We illustrated that plant community dynamics of 270+ groundcover species 
can be modeled using neutral-based assumptions. Species richness distributions were successfully 
simulated in this frequently burned longleaf pine groundcover plant community using simple 
probability functions, representative of the UNTB.  This was done by using four years of fine-
scale (10 cm x 10 cm grid) sampling of the groundcover community and across two years of 
experimental burns.  Sampling at this spatial scale represented the scale at which community 
dynamics occurred and the time-frame of sampling was necessary to quantify the parameters for 
the neutral CA model. The most difficult parameter to measure and estimate was “immigration” 
(Lowe and McPeek 2014, Chen 2015). Immigration is characterized by defining the restriction or 
limitation of dispersal from the species population pool as a whole or metacommunity, e.g. habitat 
or site of interest. This parameter is particularly important when the species frequency distribution 
is highly skewed, where there are many rare species. The conundrum of parameterizing 
immigration can likely be alleviated by simply simulating a large local community, i.e. a large 
landscape, at a fine resolution.  This is supported by the results of the scale effects on size and 
number of areas simulated; these parameters are generally less sensitive using finer-scaled data. 
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We exceeded our objectives by 1) developing photogrammetric models of fuels and vegetation to 
predict groundcover plant diversity, 2) developed a new technique of 3D rendering to create 
models of individual fuel types and complex fuelbeds. 

Patterns of Diversity 
From the patterns of diversity portion of the study, we met as well as exceeded all of our objectives. 
We have identified patterns in numerous measures of diversity across multiple scales, including 
taxonomic, functional and interactions between plants, arthropods, and their natural enemies. We 
have optimized the spatial scales that are important to survey alpha and beta diversity for plant and 
arthropod communities as well as the interactions between them, allowing for identification of the 
grain size and sampling effort at which to maximize efficiency in monitoring diversity. We found 
that the optimal plot size for plant diversity was at a fine-scale (1m2), while arthropod and 
interaction diversity require sampling over a larger spatial extent (30 m diameter, ~700 m2). This 
was further supported by combining simulation models and empirical data. We have also 
documented temporal changes in diversity - for example, we found very different arthropod 
communities before and after a burn and fire-stage specific effects on trophic diversity. In addition, 
we analyzed how trophic interaction network topology responds to disturbance, or in the case of 
longleaf pine communities, how interaction diversity responds to variation in fire frequency, which 
generated informative patterns about the relationship between disturbance  and biodiversity. 
 
We exceeded our objectives by 1) finding linkages between small scale patterns in understory plant 
diversity and coarser scale stand characteristics by identifying a mechanism where overstory derived 
fuels contribute to plant species richness, 2) developing a framework for maximizing efficiency in 
biodiversity monitoring, and 3) documenting a novel arthropod adaptation to survival with 
frequent disturbance. 

Implications for Future Research  
There are aspects of this work that if continued will contribute substantively to both basic 
ecological theory and very practical guidance for management of DoD forests. The unified neutral 
theory of biodiversity has never been tested as effectively and thoroughly as we have done for 
diversity of all plants and as we are doing for total ecosystem plant-insect diversity. Additionally, 
the chemical ecology of fire has never been fully explored by collaborations between chemists and 
ecologists. Our funded work yielded data to examine the null models that comprise neutral theory 
and to demonstrate how deviations from neutrality are structured by moving away in space and 
time from fire. This work also provides unprecedented insight into the spatial and temporal scales 
needed to assess the impact of fire management on maintaining sustainable levels of biodiversity. 
Our work also laid the ground work for future chemical ecology research to examine how variation 
in longleaf pine chemistry and variation in plant chemistry across longleaf pine understory plants 
can contribute to fire intensity and maintenance of plant-insect biodiversity. These are exciting 
areas of research for fire ecology and for understanding effective management of diverse and 
interesting ecosystems managed by the Department of Defense 
 
Our study focused on understanding mechanisms driving diversity and community dynamics in 
pristine habitats. This was crucial for understanding how a fully functioning, intact ecosystem 
operated. This approach was successful in clarifying how these systems function but also identified 
topics that could be of interest to DoD land managers. For example, our approach could be used 
to model the impact of military training on changes in fire behavior and fuels, but would need 
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further work to incorporate the impact of soil disturbance and vegetation disturbance that occur at 
multiple scales.  
 
As the scales of disturbance and tree mortality increase, the probability of recruitment for an 
individual species in the understory will be more influenced by life history traits. Species capable 
of longer distance dispersal, such as many ruderal species, will likely have a higher probability of 
recruitment in larger patches of disturbance or mortality (e.g., large canopy gap openings). On the 
other end of the spectrum, when the disturbance is sufficiently small and irregular (e.g., mortality 
from smoldering pine cones), the recruitment process is dominated by the surrounding 
neighborhood of surviving individuals and dispersal syndrome plays a lesser role and random 
(neutral) dynamics occur more frequently.  In the middle of the spectrum, where disturbance is 
moderate (from e.g. tank tracks) the outcomes are less clear and likely affected by the quality of 
the very nearby habitat (abundance of herbaceous species) and local fire regime. And, although 
military training activities represent a range of possible disturbances, experience teaches that these 
can be large-scale and profound.  Soil disturbances that disrupt soil profiles and alter soil structure 
and topography by compacting and churning mineral soils (e.g., entrenchments, craters, tracks) 
would likely alter patterns of fire behavior and plant recruitment, which is currently an unexplored 
area of research. In longleaf pine stands, recruitment and recovery of the groundcover vegetation 
would depend on unknown interactions determined by plant traits. Community dynamics would 
be moving in the opposite direction of the Continuum (Fig. 2) in which we modeled, from random 
to deterministic processes. Identifying how these patterns change along this gradient, which 
operates across time and space, could help guide and possibly speed restoration of disturbed areas. 
Additional sampling guided by the mechanistic processes we have identified would be necessary 
and important for demonstrating these technique on multiples sites, as well as assessing their 
performance and applicability.  
 
We have the foundation for a cross-scale modeling framework that would allow managers to better 
understand how their actions will affect multiple metrics of diversity. For example, we have been 
able to link woody fuels distributed on the ground, a critical driver of diversity maintenance, to 
understory plant species diversity at sub-meter scales, as well as overstory trees at coarser (6-30m) 
scales, as mapped from LiDAR across EAFB. These tree maps could be used to predict how a 
silvicultural treatment will interact with fuels and impact plant diversity.  
 
Furthermore, we have the capability to demonstrate a streamlined biodiversity monitoring protocol 
that can maximize efficiency and ensure the collection of the most relevant data for monitoring 
longleaf pine diversity. Future validation of these methods at other longleaf pine research sites 
would be required to develop models that 1) characterize the spatial and temporal patterns of plant 
diversity at multiple scales; 2) quantify linkages between longleaf pine overstory and understory 
diversity; and 3) clarify the relationship between fire, fuels and understory composition.  The result 
would be the development of how-to guides for both starting a biodiversity monitoring program 
from scratch and working with existing programs to leverage long term data sets while improving 
and streamlining future data collection.  
 
Many aspects of our approach and associated findings, specifically the nested spatial scales of the 
modeling could be applied to other fundamentally different ecosystems, ranging from grasslands 
to deserts, after finding appropriate rules and parameter estimates. We have high confidence that 
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our approach would work in other fire influenced ecosystems. We are interested in expanding our 
research to examining the impacts of other disturbances on community dynamics; particularly 
those that could be relevant to DoD land managers, such as timber harvests, hurricane or wind 
damage, forest pests, as well as fine to coarse scale military training activities. We have developed 
a template for the development of a modular but unified cross-scale and cross-model (Fig. 38) that 
we are close to completing for longleaf pine at Eglin, but could also be developed with different 
components. 
 

 
Figure 38.  Conceptual model of the “Grand Unification Model” for prescribed fire.  The goal is 
to link in a modeling environment, the coarse-scale to fine-scale processes of the forest (canopy to 
groundcover) to fuels, fire behavior and smoke modeling. RC-2243 has provided the essential 
framework (canopy, fuel and diversity layers) but work remains to link process models outside the 
domain of our study. 
 
We could further expand our framework to include fire behavior, forest stand dynamics, and smoke 
dynamic models to build a “Grand Unification Model” for prescribed fire (Fig. 38). This could act 
as both a planning and operational tool and would unify interests of fire and timber management. 
The completion of this model requires the inclusion components beyond our immediate control 
such as a spatial coupled fire-atmosphere fire behavior model, and smoke and climate models to 
make a truly unified model, but we are working towards that aim. We are confident that SERDP’s 
investment will continue to provide inspiration and the foundation for new mechanistic 
understanding of fire, diversity and forest structure that will advance not only basic understanding 
of the complex theoretical interactions driving these processes, but aid in providing concrete 
management recommendations for DoD managers. 
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