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EXECUTIVE SUMMARY 

Soitec constructed a one (1) MWAC power plant (“Project”) at the U.S. Army’s installation at Fort 
Irwin, California, to demonstrate its Concentrix® concentrating photovoltaic (CPV) technology 
and address ESTCP’s objective of cost effective on-site distributed energy generation. The Project 
employed forty (40) Soitec CX-S530 CPV systems and included third party performance 
validation by the National Renewable Energy Laboratory (NREL) and solar forecasting 
development expertise by the University of California at San Diego (UCSD).   The data collection 
and observation period ran from 28 July 2015 to 28 July 2017 (24 months).  

CPV technology converts sunlight into electricity with state-of-the-art Fresnel silicone on glass 
lenses concentrating sunlight onto high performance multi-junction solar cells. The modules are 
mounted on dual axis trackers that follow the sun’s trajectory throughout the day. Fresnel lenses 
concentrate the sun by a factor of approximately 500 onto a small solar cell, thereby reducing the 
size and amount of costly cell material required.  

The Project’s objectives were to demonstrate to the DoD the reliability and cost-effectiveness of 
the CPV technology in the harsh desert climates with high Direct Normal Insolation (DNI), or 
direct sunlight a majority of the year.   Additionally, the solar forecasting system, a component of 
the Project, was intended to produce a direct, measurable benefit to the DoD due to cost-effective 
ways to manage and distribute on-site solar generation resulting in increased energy quality and 
security.  

Specific demonstration objectives and results are show in Table 1 below. 

Table 1.  Executive Summary of Performance Objectives and Results 

Performance 
Objectives Metric Success Criteria Results 

1. Technology 
Installation Time 

Number of days needed to install and 
commission the CPV systems. 

Two systems per day MET 
OBJECTIVE  

2. Preventive O&M 
Labor 

Cumulative number of man-hours  <  one man-hour annually per 
CPV System 

DID NOT MEET 
OBJECTIVE 

3. Reactive O&M 
Labor 

Cumulative number of man-hours  <  two man-hours annually per 
CPV System 

DID NOT MEET 
OBJECTIVE 

4. Energy Model 
Validation 

Energy produced (MWh or kWh 
generated by the power plant and the 
CPV systems). 

Within 2% of baseline model 
or expected value 

MET 
OBJECTIVE 

5. CPV Power Plant 
Availability 

Energy produced (MWh or kWh) and 
system downtimes and failures. 

Power plant availability is 
greater than 98% 

DID NOT MEET 
OBJECTIVE 

6. Long Term 
Performance 
Degradation 

Energy produced (MWh or kWh 
generated by the power plant and the 
CPV systems) 

Power output change after two 
years of operations is within 
measurement accuracy 

MET 
OBJECTIVE 

 
Implementation Issues: Soitec has found most end-user concerns with CPV revolved around the 
financeability of the CPV technology.  These concerns are categorized as such: 
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1. Dual-axis drive.  The drive unit, though composed of a standard housing, slewing rings, 
worm gearing, reduction gearbox and AC motor, was a source of end-user concern.  Major 
worries were how the drive would handle the immense tracker loads, especially during 
wind or seismic events, if the drive’s precision would support the exact pointing 
requirements of the CPV tracker (especially over time as the gear teeth experienced wear) 
and the general lifecycle of the drive. 

2. Soitec’s Long-Term Viability.  End users, developers and investors were concerned about 
what would happen if Soitec went bankrupt or abandoned its solar business.   

3. Equipment and Implementation Costs.  Equipment costs for this Project were over 
$1.20/watt.  During the same time period, conventional PV module efficiency has risen 
moderately and prices have fallen precipitously. Support technologies, such as 3rd party 
single-axis trackers and inverters have seen a shakeout in the industry, with quality rising 
and prices falling.   

4. Operations and Maintenance (O&M) Costs.  End-users were concerned at the lack of 
real O&M cost data, realizing that the CPV technology was unproven and would require 
intensive preventive and reactive maintenance over the life of the plant.   

5. Lack of Commercialization of CPV System Components.  At the time of construction 
of the DOD Fort Irwin project, the Soitec Bill of Materials were a combination of standard 
commercial off-the-shelf (COTS), a custom-built prototype, or newly commercialized.   

In late 2016 Soitec sold its CPV technology to Saint-Augustin Canada Electric Inc. (STACE), a 
world-class supplier of large electrical equipment in the power generation industry.   With this 
acquisition, STACE became the technological leader of the CPV industry and stated it would 
continue to improve the technology and maintain the collaboration with the recognized Fraunhofer 
Institute for Solar Energy Systems ISE, based in Freiburg, Germany. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

Soitec constructed a one (1) MWAC power plant (“Project”) at the U.S. Army’s installation at Fort 
Irwin, California, to demonstrate its Concentrix® concentrating photovoltaic (CPV) technology 
and address ESTCP’s objective of cost effective on-site distributed energy generation. The Project 
employed forty (40) Soitec CX-S530 CPV systems, which represented the fifth generation of 
Soitec’s CPV technology and included third party performance validation by the National 
Renewable Energy Laboratory (NREL) and solar forecasting development expertise by the 
University of California at San Diego (UCSD).  

The demonstration period ran from 28 July 2015 to 28 July 2017 (24 months).  At the same time 
of the construction of the power plant, January 2015, Soitec developed a strategic plan to refocus 
its activities around its core business of electronics.  Soitec restructured to begin divesting itself of 
its solar division and the solar division experienced massive personnel layoffs and asset 
divestitures.  However, a skeletal group of individuals remained to continue the demonstration and 
maintenance of the power plant at Fort Irwin. 

1.2 OBJECTIVE OF THE DEMONSTRATION 

The Project’s objectives were to demonstrate to the DoD the reliability and cost-effectiveness of 
Soitec’s CPV technology in the harsh desert climates with high Direct Normal Insolation (DNI), 
or direct sunlight a majority of the year.   Additionally, the solar forecasting system, a component 
of the Project, was intended to produce a direct, measurable benefit to the DoD due to cost-
effective ways to manage and distribute on-site solar generation resulting in increased energy 
quality and security.  

Specific objectives and results are show in Table 1 below. 

Table 1. Executive Summary of Performance Objectives and Results   
Performance 

Objectives Metric Success Criteria Results 

1. Technology 
Installation Time 

Number of days needed to install 
and commission the CPV systems. 

Two systems per day MET 
OBJECTIVE  

2. Preventive O&M 
Labor 

Cumulative number of man-hours  <  one man-hour annually per 
CPV System 

DID NOT MEET 
OBJECTIVE 

3. Reactive O&M 
Labor 

Cumulative number of man-hours  <  two man-hours annually per 
CPV System 

DID NOT MEET 
OBJECTIVE 

4. Energy Model 
Validation 

Energy produced (MWh or kWh 
generated by the power plant and 
the CPV systems). 

Within 2% of baseline model 
or expected value 

MET 
OBJECTIVE 

5. CPV Power Plant 
Availability 

Energy produced (MWh or kWh) 
and system downtimes and failures. 

Power plant availability is 
greater than 98% 

DID NOT MEET 
OBJECTIVE 

6. Long Term 
Performance 
Degradation 

Energy produced (MWh or kWh 
generated by the power plant and 
the CPV systems) 

Power output change after two 
years of operations is within 
measurement accuracy 

MET 
OBJECTIVE 
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1.3 REGULATORY DRIVERS 

San Diego Gas and Electric (SDG&E), in its “Net Metering 2.0” model, recently shifted its peak 
hours from 11AM-6PM to 4PM-9PM1.  This is a result of plentiful renewable power in the old 
peak hours.  The new peak hours reflect the changing energy markets and capture a portion of 
daylight hours when conventional PV power production has decreased significantly or stopped 
completely due to the lower horizon of the setting sun.  Other utilities are expected to follow suit. 

As discussed further in Section 2.3, CPV more closely matches matching peak load demands than 
conventional PV. CPV ramps up early in the morning and, more importantly, produces more 
energy in the peak demand period from approximately 2PM to 6:30PM when conventional PV 
ramps down production. 

Other technologies to extend the renewable power production hours, such as battery storage and 
molten salt have been constructed and operated on test and commercial scales, but the cost and 
complexity barriers are still high.  CPV is a proven technology that would today provide utilities 
with renewable energy when they most need it. 

  

                                                 
1 Robert Walton.  2017.  California regulators propose shifting peak period for SDG&E TOU rates.  Utility Dive.  
Online.   

https://www.utilitydive.com/news/california-regulators-propose-shifting-peak-period-for-sdge-tou-rates/448835/
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2.0 TECHNOLOGY DESCRIPTION 

2.1 TECHNOLOGY OVERVIEW 

As shown on Figure 1 below, Soitec’s Concentrix® CPV technology converts sunlight into electricity 
with state-of-the-art Fresnel silicone on glass lenses concentrating sunlight onto high performance 
multi-junction solar cells. The modules are mounted on dual axis trackers that follow the sun’s 
trajectory throughout the day. Fresnel lenses concentrate the sun by a factor of approximately 500 
onto a small solar cell, thereby reducing the size and amount of costly cell material required.  

  

Figure 1. Concentrator Photovoltaic Solar Cell Assembly (SCA)   
Each CPV system is comprised of twelve (12) CX-M500 CPV modules, one (1) CX-T030 tracker, 
one (1) CX-TC2 tracker control unit, and one (1) air drying unit CX-AD1 component. The 
innovative module design, high tracker accuracy of ±0.1 degree and the new air-drying unit 
represented some of Soitec’s recent R&D efforts at the time.  At the time of the proposal, Soitec’s 
new factory in San Diego had recently begun producing fifth generation CPV modules with 
enhanced features and performance characteristics to meet the demands of the North American 
market while employing the same proven reliable materials as previous generations.  

2.2 TECHNOLOGY DEVELOPMENT 

Prior to the field demonstration, the Concentrix CPV (formerly termed FLATCON) technology 
had been developed by the Fraunhofer Institute for over 10 years and had been field tested since 
2005 with commercial power plants in operation since 2008.  Global installations included 21 
demo installations in 10 countries (0.273 MW), 8 commercial installations in 6 countries (4.4 MW) 
and 7 commercial plants under construction (6.8 MW).   Soitec CPV modules had a cumulative 1 
million months of operation and no measurable degradation.  
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Evolutionary improvements over time included: 

• Increase concentration ratio and decreased cell material 

• Less expensive materials and less redundancy while maintaining quality 

• 12 CX-M500 modules per tracker vs. 168 CX-M400 modules per tracker 
• Increased module efficiency and size (see Figure 2 below) 

– Increased power rating from 59 watts to 2.34 kW 
– Increased glass surface area from 2.8 ft2 to 7.5 ft2 
– Increased number of cells per module, from 150 to 2,400 
– Increased concentration ratio from 385x to 500x 

 

Figure 2. Increased Module Size and Efficiency   
 

• Increased tracker size to strike a balance between material requirements and installation 
cost (see Figure 3 below). The first CX-T030 tracker was installed in July 2011 and was 
immediately subjected to accelerated life cycle testing. 
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Figure 3. Increased Tracker Size  

 

Concentrix was purchased by Soitec, a French semi-conductor company, in 2009.  Soitec 
commissioned third party tests and independent engineering reports from reputable engineering 
firms such as KEMA in 2009 and SAIC/R.W. Beck (now Leidos) in 2011.   

In particular, the findings from the SAIC/R.W. Beck engineering report were as follows: 

• Soitec has previously demonstrated the capability to manufacture its CPV modules using 
proven techniques and supply its Concentrix CPV systems. 

• Soitec has also demonstrated the capability to qualify the suppliers of the system 
components that it does not manufacture internally. 

• Soitec has successfully applied previous lessons learned into its design and manufacturing 
processes. 

• Soitec’s CX-P6, CX-S420, and the demonstration CX-S530 systems have been proven to 
work under their rated conditions and it is expected that commercial CX-S530 CPV systems 
are capable of operating as intended. 

• To date, Soitec’s CPV systems have operated without significant issues and based on this 
fact, it is expected that the CX-S530 CPV system will also operate without significant 
issues. 

• During the course of the review SAIC did not identify any significant technical risks with 
the CX-P6 system that could not be mitigated by proper O&M practices. 
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2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY  

2.3.1 Advantages 

CPV competes with conventional crystalline-silicon PV systems to produce energy from utility, 
commercial and residential power plant installations.   Due to the fact that CPV uses dual-axis 
tracking, the electricity produced by CPV technology is consistently high in high DNI regions 
(>1800 kWh/m²), such as the US Southwest, Southern Europe, Northern & Southern Africa, the 
Middle East and Australia.  The cell technology is based on III-V materials which maintain energy 
output at high temperatures (1/3 the losses of silicon) and with long life expectancies. 

 
Figure 4. High DNI Areas  

CPV more closely matches matching peak load demands than conventional PV.  Figure 5 below 
shows how energy produced from CPV ramps up early in the morning and, more importantly, 
produces more energy in the peak demand period from approximately 1400 – 1830 when 
conventional PV ramps down production. 

 
Figure 5. Power curve of Californian Grid 6 Aug 2008 and Production Curves in 

Seville Spain 1 May 20082 

                                                 
2 .  Sources: California Independent System Operator, Concentrix Solar, Abengoa Solar 
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As shown in Figure 6 below, CPV is more efficient than conventional crystalline-silicon PV 
systems, particularly in the high temperature desert conditions of the Southwest U.S.  Cell 
efficiency is over 40% and module efficiency is almost 30% which at the time was 2-3 times the 
efficiency of PV technology and was proposed as one of the most efficient and cost-effective solar 
power technologies with the lowest environmental impact. 

 

Figure 6. CPV vs. Conventional PV Efficiency  
Like PV, but unlike concentrated solar thermal power (CSP), there is no water needed for 
operations except for panel cleaning on an as-needed basis. 

2.3.2 Limitations 

As with any technology CPV has its limitations and constraints, some of which have been 
addressed during this demonstration: 

1. CPV experiences more significant energy fluctuations based on cloud cover versus 
conventional PV. CPV energy production relies upon DNI whereas conventional PV relies 
on both DNI and Global Horizontal Insolation (GHI). Therefore, CPV performance is not 
optimal in low DNI areas with frequent clouds.  

2. High wind events limit energy production due to the wind stow function necessary to 
protect the CPV Systems from damage.  The dual-axis trackers stow at approximately 33 
mph winds and it requires approximately 10 minutes to reach stow from the steepest tracker 
position.  During movement to stow position, stow position and movement back to 
operation, power production is virtually zero.  

3. Excessive rocky soil or sloped sites may limit economical foundation options, as the 16,000 
lb. tracker table requires robust foundations to withstand wind and seismic events.  CPV 
cannot be used on landfills or any location where cap penetration is an issue. 

4. Due to the tracker weight and wind signature, CPV is not ideal for rooftops or other similar 
structures. 
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5. CPV CAPEX and OPEX costs are higher than those of conventional photovoltaic solar 
technology.  This is discussed in more detail in Section 7 (Cost Assessment). 

6. There is a current lack of traction in the marketplace, as many CPV providers have departed 
the business or have declared insolvency. 

7. There is a current lack of government policy supporting CPV Technology 
8. There is a difficulty overcoming the more established photovoltaic solar technology 
9. CPV has a much more limited performance track record than conventional photovoltaic 

solar technology. 
10. There remains a lack of familiarity of financial institutions about CPV, resulting in 

inadequate financing options for CPV power plant projects. 
11. Additional implementation challenges are discussed in Section 8 (Implementation Issues). 
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3.0 PERFORMANCE OBJECTIVES 

3.1 SUMMARY OF CPV SYSTEM PERFORMANCE OBJECTIVES 

Performance objectives for the CPV technology‘s installation, operations and maintenance 
(O&M), energy production, availability, and performance degradation are summarized in Table 2.  
Soitec has provided a broad overview of the test design and data analysis to provide insight into 
the methodology.  

Table 2. Performance Objectives Summary Table  

Performance 
Objectives Metric Data Requirements Success Criteria Results 

1. Technology 
Installation 
Time 

Number of days 
needed to install and 
commission the CPV 
systems. 

Time studies of the 
installation from 
construction start to 
commissioning 
completion. 

> Two systems per 
day. 

MET OBJECTIVE  
2.9 systems per day 

2. Preventive 
O&M Labor 

Cumulative number 
of man-hours needed 
to perform annual 
preventive 
maintenance. 

Maintenance logbook 
of the different 
maintenance 
activities. 

< one man-hours 
per CPV System 
annually. 

DID NOT MEET 
OBJECTIVE  
154 hours, which is 1.93 
man-hour per CPV system 
annually. 

3. Reactive O&M 
Labor 

Cumulative number 
of man-hours needed 
to perform annual 
reactive maintenance. 

Event and 
maintenance logbook 
of the different 
activities required to 
repair equipment in 
the field. 

< two man-hours 
per CPV system 
annually.    

DID NOT MEET 
OBJECTIVE 
393 hours, which is 4.92 
man-hours per CPV 
system annually. 

4. Energy Model 
Validation 

Energy produced 
(MWh or kWh 
generated by the 
power plant and the 
CPV systems). 

Meter readings of 
energy produced by 
installation and CPV 
systems. 

Within 2% of 
baseline model or 
expected value 

MET OBJECTIVE  
99% (within 1% of 
expected) 

5. CPV Power 
Plant 
Availability 

Energy produced 
(MWh or kWh) and 
system downtimes 
and failures. 

Meter readings of 
energy and status of 
main power plant 
equipment (CPV 
systems and inverters) 

Power plant 
availability is 
greater than 98% 

DID NOT MEET 
OBJECTIVE 
CPV System 96.3%.  
Power Plant availability 
95.6%. 

6. Long Term 
Performance 
Degradation 

Energy produced 
(MWh or kWh 
generated by the 
power plant and the 
CPV systems) 

Meter readings of 
energy produced by 
CPV systems. 

Power output 
change after 24 
month operation is 
within measurement 
accuracy 

MET OBJECTIVE  
Improved 1.6% (within %5 
measurement accuracy) 

Note: No Solar Forecasting performance objective is included in Table 2, however, a Performance 
Objective for Solar Forecasting is discussed below in Section 3.2.6. 
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3.2 PERFORMANCE OBJECTIVES DESCRIPTIONS 

Each of the performance objectives is described in detail below. 

3.2.1 Performance Objective 1: Technology Installation Time  

Purpose: Soitec’s goal was to significantly decrease the time required to assemble, install and 
commission the CPV systems compared to previous installations.  Steps included (1) tracker table 
assembly process; (4) tracker table installation on the mast, and (5) completion and commissioning 
of the CPV system.  

Soitec performed the first full-scale trial of its Utility Scale Tracker Assembly (USTA) process. 
As conceptually shown below in Figure 7 and in the field in Figure 8, the USTA process employs 
a field-adapted centralized assembly production line concept which enables the delivery of tracker 
components to a central, protected assembly area equipped with specialized equipment utilizing 
streamlined, repetitive assembly movements. This results in a faster, safer, and less expensive 
tracker assembly process. The trackers are assembled on a specialized trailer which transports the 
tracker table to its designated mast where a crane installs it. Processes were balanced to minimize 
waiting time between tracker assembly operations.  

 

Figure 7. USTA Process Concept  
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Figure 8. USTA Field Setup with Tracker Structure Mounted on Specialized Trailer  
Metric: Soitec conducted a time study with help of a stopwatch in order to document the time 
required to assemble and erect the trackers. 

Data: The data required include number of trackers completed and time required to complete.  

Analytical Methodology:  The analytics for this objective were straightforward.  See Section 6 for 
graphical data in Excel format.   

Success Criteria: The goal was to assemble and erect two trackers per day.  As the previous record 
was one tracker per two days, this represented a 200% increase in the current baseline.   

Result: The assembly of the forty (40) solar tracker tables started 20 Jan 2015 and was completed 
5 February 2015 (12 work days).  Tracker installation averaged 3.33/day.  However, 
commissioning and completion was dependent upon the Balance of Plant schedule, since full 
commissioning requires AC power and a DC power load draw.  Therefore, since commissioning 
was not completed directly after tracker installation, it was nearly impossible to track the time.  
However, trackers were commissioned, on average, at the same rate as installation.  If conducted 
back-to-back with installation, this would normally lag installation by two days and result in an 
overall time, start to finish, of 14 days, yielding 2.9 trackers/day. 

3.2.2 Performance Objective 2: Preventive and Reactive O&M Labor.  

Purpose: Preventive maintenance is performed on a regular schedule and consists of systematic 
inspection, detection, and correction of incipient failures before they occur or develop into major 
defects. Reactive maintenance is carried out on an as-needed basis, typically after a failure is 
detected, and is aimed at restoring the CPV system to a condition in which it can perform its 
intended function. Soitec intended to reduce the number of man-hours needed to perform 
preventive and reactive maintenance, which is necessary to be competitive when comparing CPV 
levelized cost of energy (usually over 25 years) to PV. 

Metric: Soitec recorded the number of hours that field maintenance personnel spend performing 
annual preventive and reactive maintenance, as well as the cost of equipment used. 
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Data: The data recorded included the task, date and time. The data was recorded in a Computerized 
Maintenance Management System (CMMS) and categorized by different types of maintenance 
activities.    

Analytical Methodology: See Section 6 for graphical data in Excel format.   

Success Criteria: The goal is for preventive maintenance activities on each CPV system was to be 
no more than one man-hour annually. The goal is for reactive maintenance activities on each CPV 
system was to be no more than two man-hours annually. 

Result:   

Preventive Maintenance – DID NOT MEET OBJECTIVE; preventive maintenance over two 
years totaled 154 man-hours, which was1.93 man-hours per CPV system annually.   

Reactive maintenance - DID NOT MEET OBJECTIVE; recorded reactive maintenance over 
two years totaled 316 hours, which was 3.9 man-hours per CPV system annually.  However, there 
was an approximately 6-month gap in reactive maintenance records between September 2016 and 
March 2017.  Reactive maintenance averaged 12.96 hours/month, so assuming a fairly level 
pattern, this would represent an additional 80 hours of reactive maintenance, making the total 393 
man-hours, or 4.92 man-hours of reactive maintenance per tracker. 

The main causes of reactive maintenance were: 

1) Failed drive encoders 
2) Failed limit switches 
3) Failed control boards 
4) Failed 4Q sensors 
5) Variable frequency drive overcurrent, undervoltage or over-temperature 
6) Failed DC connectors 

3.2.3 Performance Objective 3: Energy Model Validation.  

Purpose: Soitec used the industry-leading PV simulation software PVSyst to calculate the energy 
output of its CPV power plants. This model duplicated the expected energy production based on 
the actual onsite weather conditions and allows it to be compared to actual energy production. 
Actual energy production of CPV power plants depends on onsite specific meteorological 
conditions, as well as plant components, layout, and assembly. As actual energy production is 
closely correlated to plant revenues and requires a high level of predictability. In order to validate 
the energy production model, NREL provided an assessment of Soitec and PVSyst findings.  

Metric: Energy produced (kWh/MWh) by the CPV systems. Since this consisted of assessing pure 
performance, the expected energy production when a CPV system was not available (i.e. not 
producing power) was reduced proportionally. 

Data: Meter readings of energy produced by the CPV Systems as well as weather station 
measurements (DNI, temperature, and wind speed). 
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Analytical Methodology: The PV energy simulation data (with actual meteorological inputs) were 
compared to actual energy production data. 

Success Criteria: Energy produced must be within 2% of baseline model or targeted value, when 
the outliers are removed from the full data population. 

Result:  MET OBJECTIVE - Within the limitations of the available data, the power plant 
demonstrated capability to produce 99% of model predicted energy, which exceeds the target 98% 
of model predicted energy. 

3.2.4 Performance Objective 4: CPV Power Plant Availability 

Purpose: It is assumed that in a typical utility scale solar power project a certain small portion 
(usually 0 - 2%) of energy production will be lost due to maintenance and repair downtime. The 
objective of the availability assessment was to evaluate how long it took to maintain and repair the 
CPV Systems, how much corresponding energy was lost, and how long the trackers were not 
operated. The analysis enabled the assessment of the amount of energy lost due to the 
unavailability of the CPV systems, the inverters, and the remaining balance of plant equipment. 

Metric:  The availability definition used for this analysis is a ratio of the number of online records 
and the total number of records: 

Availability= (Number of records with trackers online)/(Total number of records) 

Two types of availability were considered: 

 System availability – This is an “all-in” availability that considers all sources of downtime 
regardless of cause. 

 CPV availability – This is an “in-scope” availability that excludes site-wide events that are 
not within the scope of the operator. 

To reduce uncertainty and avoid counting tracker production during invalid DNI data recordings, 
only records with a DNI>500 W/m2 were considered in the calculation.   

To avoid sensor error and tracker performance from impacting the availability calculation, Soitec 
used an online/offline threshold of 1,000 kW. The data points above the threshold are considered 
online records. Using this threshold ensures that the calculation is a measure of availability, not 
dependent on performance. 

This is consistent with the methodology that Soitec has historically used for other power plants3: 

Availability (missing data excluded) = _____n_avail______ 

       n_unavail + n_avail 
                                                 
3 Tobias Gerstmaier, Tobias Zech, Michael Röttger, Christian Braun and Andreas Gombert. Large-Scale and Long-
Term CPV Power Plant Field Results. 2015.  AIP Conference Proceedings of the 11th International Conference on 
Concentrator Photovoltaic Systems CPV-11, Aix-les-Bains, France. 
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where: 
n_avail = enough data for DNI and average DC power of system >= 1kW 
n_unavail = enough DNI data and enough data for system and DNI>=500 W/m² and average DC 
power of system < 1kW 

Data:  Hourly average values of DNI and DC power, measured individually for each CPV System. 

Analytical Methodology: Calculated by using two years of actual weather conditions programmed 
into PVSyst. 

Success Criteria: CPV Systems available > 98%. 

Result:   

Overall Power Plant Availability – DID NOT MEET OBJECTIVE; 95.6%.   

CPV System Availability - DID NOT MEET OBJECTIVE; 96.3%, 

Results are discussed in further detail in Section 6.4 below. 

3.2.5 Performance Objective 5: Performance Degradation 

Purpose:  There are two types of performance degradation may impact a solar energy system: 

• Short-term degradation - Primarily is caused by soiling on the modules, which reduces 
power output performance.  

• Long-term system performance degradation – Results from materials failure and is of 
greater concern for power plant owners, utilities, financiers and other stake-holders.  

Metric: Energy (MWh/kWh) generated by the CPV systems. 

Data: Meter readings of energy produced by the CPV Systems as well as weather station 
measurements (DNI, temperature, and wind speed).  Also, onsite personnel were to document the 
local soiling conditions regularly and clean the trackers and sensing equipment as necessary. 

Analytical Methodology:  

• Short Term Degradation: As further detailed in Section 6.5, Soitec conducted intensive 
soiling studies at a 1.5 MW CPV Power plant in Newberry Springs, CA, about 70 miles 
south of Fort Irwin in the spring of 2014.  Soitec compared the performance changes in 
clean CPV Systems (the control) and naturally soiled CPV System (the variable).   

• Long Term Degradation: Production degradation was verified by comparing performance 
on clear days near the start and end of the evaluation period. 

Success Criteria:    

• Short-term performance degradation - NREL’s recommended cleaning frequency is less 
than once every six weeks. 



 

15 

• Long-term system performance degradation - Power output change after two years of 
operations is within measurement accuracy of the performance index. 

Result:   

• Short-term performance degradation - Soitec’s conclusion was that the soiling loss factor 
could not be determined as it was within the measurement accuracy; however, NREL did 
not have the opportunity to analyze this objective. 

• Long-term performance degradation - MET OBJECTIVE - Performance appeared to 
improve by 1.6%, which is within the estimated 5% measurement uncertainty of the 
performance index. 

3.2.6 Solar Forecasting Performance Objective 

Purpose: With future incorporation of the CPV power plant and the Solar Forecasting System into 
an on-base grid management system, optimal plant operation (storage dispatch, curtailment, 
demand response, etc.) could be further achieved and potentially enable the effective capture of 
demand related savings. 

Metric: The metric used for this assessment was the forecasting skill (s) developed by the UCSD 
team. This metric provides a path to assess the accuracy of solar forecast by allowing for 
comparison of forecast skill across different sites, timesteps, and irradiance versus power.  

The metric s is defined as the the ratio: 𝑠𝑠 = 𝑉𝑉−𝑈𝑈
𝑉𝑉

= 1 − (𝑈𝑈
𝑉𝑉

) 

where uncertainty U is defined as the standard deviation of a model’s forecast error divided by the 
estimated clear sky solar irradiance Iclr over a subset time window of Nw data points.   

The solar irradiance variability V is represented by the standard deviation of the step-changes of 
the ratio of the measured solar irradiance to that of Iclr.   

Data: The quality and accuracy of the forecast provided by UCSD was monitored and documented 
using data from the Project.   Due to difficulties with accessing data from the Project’s inverter 
Shark 200 meters and unavailability of instantaneous CPV System data, real-time data analysis 
was not possible.  Soitec downloaded energy production data from the CPV Systems and provided 
it to UCSD. 

Analytical Methodology:   A measure of the improvement of a forecast method with respect to the 
persistence forecast based on the clear sky index is defined by the ratio U/V. s = 1 means that the 
solar irradiance or solar power output is perfectly forecasted, and when s = 0 the forecast error is 
as large as the variability. By definition, the persistence forecast has a forecast quality measure of 
s = 0. The metric s evaluates the variability that is efficiently reduced by the forecasting models 
by taking the difference between U and V. Since the uncertainty U depends on meteorological 
conditions it increases as complex weather develops. It also increases with the temporal resolution 
of the forecast (e.g. minute-by-minute forecast from a sky imager versus hourly average forecast 
from NWP), the s’ normalization by V controls the variability impact providing comparability 
across different geographic regions and temporal resolutions.  
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Success Criteria: The forecasting component of this project was to be considered a success if the 
target values in Table 3 below were achieved. 

Table 3. Forecast Performance of Current Techniques versus Target Values at the 
End of the Project by Time Horizon4 

Horizon  < 1 hr 
(RTD) 

1 hr 
(HASP) 

1-6 hrs 24-36 hrs 
(DAM) 

>36 
hrs 

Averaging period 1 min 5 min 15 min 1 h 1 d 

Current s 0.12-0.32 0.15-0.29 0.08-0.14 0.08-0.39 0.19 

Target s 0.25-0.45 0.40 0.30 0.30 0.40 

Result: Results are shown below in Table 4.  For shorter time horizons (< 1 hour and 1 hour), the 
targeted forecasting skills were not fully achieved. However the obtained values are in agreement 
with the best performing forecasting models published in current literature5. For the forecast time 
window 1-6 hours, the Result s (DNI) of 0.25 to 0.39 (average of 0.32) exceeded the Target s of 
0.30, meaning the average accuracy of the DNI forecast exceeded the target.  With respect to longer 
horizons the demonstration exceeded the targets.  More detail on the results can be found in Section 
6.6 and UCSD’s full final report can be found in Appendix C. 

Table 4. Forecast Performance Result Values at the End of the Project  
Horizon  < 1 hr 

(RTD) 
1 hr 
(HASP) 

1-6 hrs 24-36 hrs 
(DAM) 

>36 
hrs 

Averaging period 1 min 5 min 15 min 1 h 1 d 

Result s (DNI) 0.24-0.32 0.24-0.32 0.25-0.39 0.34 .41 

Success Criteria Met? No No Yes Yes Yes 

 

  

                                                 
4 Note the current and project values of forecast skill in the table above also increase with the averaging period. For 
example, 24-36 hour forecasts are hourly averages while the 1-6 hour forecasts have 15-minute resolution. This and 
the decrease in accuracy of the reference (persistence) causes the 24-36 hour forecast to have higher skills. 
 
5 J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de Pison, and F. Antonanzas-Torres. 2016. Review 
of Photovoltaic Power Forecasting. Solar Energy. 136:78–111. 
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4.0 FACILITY/SITE DESCRIPTION 

4.1 FACILITY / SITE LOCATION AND OPERATIONS 

After evaluating  DOD installations that meet the project criteria of a minimum average daily direct 
normal irradiance of 6.0 kWh/m2, Soitec located the solar power plant at the Fort Irwin Military 
Installation in San Bernardino County, California.  

 

Figure 9. Fort Irwin National Training Center Location in California  

 

Soitec used approximately 6 acres of land of the Fort Irwin National Training Center, CA 
(Department of Army).  Fort Irwin is located roughly halfway between Las Vegas, NV and Los 
Angeles, CA.   

The project site is located on Goldstone Road, approximately 1 mile from the center of the Fort 
Irwin cantonment area.  It is bordered on the east by a water treatment plant, on the south by a 
RV/camping area and on the west by old garrison horse stable area.  Figure 10 below shows the 
location and plant layout about one mile from the garrison center at Fort Irwin.  
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Figure 10. Site Location and Layout on Goldstone Road at the Fort Irwin National 
Training Center (GoogleEarth) 

 

4.2 FACILITY/SITE CONDITIONS 

The location is representative of arid desert environments in which CPV technology performs at 
the highest level.  The adjacent water treatment, RV park and horse stable facility operations did 
not significantly impact the operation of the solar plant.   

 

Figure 11. CPV Plant at Fort Irwin 
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5.0 TEST DESIGN 

The broad technical approach of the proposed project was comprised of five activities: 

1) Site-specific system design - described in detail in Section 5.3.   
2) System construction, installation and commissioning – described in Section 3.2.1. 
3) System operation and maintenance – described in Section 3.2.2. 
4) System performance monitoring and validation – described in Section 3.2.3, Section 3.2.4 

and Section 3.2.5. 
5) Deployment of solar DNI forecasting – described in Section 3.2.6. 

5.1 CONCEPTUAL TEST DESIGN 

The primary scope of work involved the installation of a CPV demonstration power plant at Fort 
Irwin, followed by the monitoring and reporting of the operations and energy production at this 
plant.  

a) Soitec recorded system assembly and installation times in the field using a dedicated 
manager witnessing crew assembly and commissioning times. 

b) Soitec recorded measurements of energy and energy production performance using DC 
energy meters in the control units of each tracker.  Recorded information captured major 
power plant downtime periods and outages. 

c) Soitec logged O&M activities by on-site personnel entered their activities into a 
Computerized Maintenance Management System (CMMS) which allows data extraction 
and reporting.   

d) UCSD provided solar forecasting services for the project. UCSD’s forecasting engines are 
based on multi-layered data processing and machine learning algorithms, and its integrated 
load and solar generation forecasts have been extensively refined over the past few years 
for intra-hour, one to six hours, and up to 36 hours ahead.  

e) NREL provided independent monitoring and validation services over the duration of the 
project. 

5.2 BASELINE CHARACTERIZATION 

Soitec installed the 1.12MWDC power plant at Fort Irwin because of the reference conditions, 
which included: 

1. Average DNI (Direct Normal Irradiance) of at least 6.0 kWh/m2/day. 
2. Dry, arid conditions 
3. Good construction site composed of flat ground with good soil characteristics for 

supporting the tracker masts and which would support rapid installation of the trackers 
without slopes or excessive vegetation 

4. Readily available grid distribution system for tie-in.   
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5. The Fort Irwin installation’s maximum 30MW energy demand  and minimum 10MW 
energy demand 

Baseline characteristics for each of the performance objectives were as follows: 

Table 5. Baseline Characteristics for Each Performance Objective 

Performance 
Objectives Metric Baseline 

1. Technology 
Installation Time 

Number of days needed to install and 
commission the CPV systems. 

CPV systems were previously installed one 
system every two days. 

2. Preventive O&M 
Labor 

Cumulative number of man-hours 
needed to perform annual preventive 
maintenance. 

N/A; due to lack of recorded and available data 
for a CPV power plant of this size and location 

3. Reactive O&M 
Labor 

Cumulative number of man-hours 
needed to perform annual reactive 
maintenance. 

N/A; due to lack of recorded and available data 
for a CPV power plant of this size and location 

4. Energy Model 
Validation 

Energy produced (MWh or kWh 
generated by the power plant and the 
CPV systems). 

See below.  Performance Index for Soitec’s 
power plants had proven to be up to 106.2%  
over 4 years.6 

5. CPV Power Plant 
Availability 

Energy produced (MWh or kWh) and 
system downtimes and failures. 

See below.  Availability for Soitec’s power 
plants had proven to be up to 98.8%  over 4 
years.7 

6. Long Term 
Performance 
Degradation 

Energy produced (MWh or kWh 
generated by the power plant and the 
CPV systems) 

See below.  No discernible degradation over 7 
years using modules with similar components 
and technology.8 

At the beginning of the demonstration, Soitec had almost 80MWp of cumulative capacity installed 
and although the bulk of this installation had just begun operation Soitec had over six years of field 
performance data from three plants, two in Spain and one in South Africa.  Soitec also had a year 
of data from a 1MW plant in the US that utilized the CX-S530 CPV system.  The energy model 
validation was supported by the results below: 

The South Africa Plant (77kWp, 10 CPV systems) had an availability of 98.8% and a daily 
performance ratio of 79.7%.  Comparing the actual AC energy (from plant meters) to the target 
AC energy (from PVSyst), the plant performed at 106.3% of expected production, as the actual 
AC energy exceeded the target AC energy by 6.3%. 

                                                 
6 Tobias Gerstmaier, Tobias Zech, Michael Röttger, Christian Braun and Andreas Gombert. 2015. Large-Scale and 
Long-Term CPV Power Plant Field Results. AIP Conference Proceedings of the 11th International Conference on 
Concentrator Photovoltaic Systems CPV-11, Aix-les-Bains, France. 
7 Ibid. 
8 Andreas Gombert.  2015.  Soitec’s Concentrator Photovoltaic (CPV) Long-Term and Large-Scale Track Record.  
Soitec Corporate Presentation. 
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Figure 12. South Africa Plant Availability9 

 

Figure 13. South Africa Plant Production Ratio10 

Plant #1 in Spain (263kW, 36 CPV Systems) had performance ratio of 74.1% and an availability 
of 97.7%, despite being used for firmware/software tests and insufficient customer maintenance.  
Comparing the actual AC energy (from plant meters) to the target AC energy (from PVSyst), the 
plant performed at 103.3% of expected production, as the actual AC energy exceeded the target 
AC energy by 3.3%. 

 

Figure 14. Spain Plant #1 Performance Ratio11 

                                                 
9 Ibid, pg. 12. 
10 Ibid, pg 23. 
11 Ibid, pg 21. 



 

22 

 

Figure 15. Spain Plant #1 Availability12 

 

Plant #2 in Spain had a performance ratio of 72.8% and 96.9% availability from December 2008 
to December 2014.  Comparing the actual AC energy (from plant meters) to the target AC energy 
(from PVSyst), the plant performed at 102.6% of expected production, as the actual AC energy 
exceeded the target AC energy by 2.6%. 

 

 

Figure 16. Spain Plant #2 Production Ratio13 

The US plant experienced numerous issues with inverters, AC meter data compilation and was 
used to support other tests; however, when operated normally the daily AC actual to target AC 
ratio was 100.8%.  The availability at the same time was 98.1%. 

                                                 
12 Ibid, pg 15. 
13 Ibid, pg 22. 
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Figure 17. US Plant Production Ratio and Availability Record14 

 

A detailed comparison of days with similar weather conditions reveals no degradation over 7 years 
for CPV modules from three operating power plants. 

 

Figure 18. Comparison of Multi-year Module Production under Similar Weather 
Conditions15 

                                                 
14 Ibid, pg 27. 
15 Ibid, pg 19. 
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In conclusion, at the beginning of the demonstration Performance Ratio and Availability for 
Soitec’s power plants had proven to be high and stable over 6+ years and day-by-day AC efficiency 
comparison of 7 consecutive years had not revealed measurable module degradation. 

5.3 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS 

5.3.1 CPV Module 

At the heart of the system is the M-500 CPV module, which has the specifications: 

• Dimensions: 12.0 ft x 7.84 ft x 0.335 ft 
• Characteristics: 

– 2,400 Solar Cell Assemblies (“SCA”) per M500 (12 sub-modules, 200 SCAs each) 
– One air tube inlet and one outlet valve 
– One junction box located on short edge for portrait assembly 

• Certification: IEC62108 

 

Figure 19. Soitec M-500 CPV Module 
5.3.2 Dual-Axis CX-S530Tracker 

The CX-S530 main components are grouped into parts and named as follows:  

• Thirty Stringers (1) 
• Two Main tubes (2) 
• One dual-axis drive (3) 

– Elevation gear reduction box and motor (5) 
– Azimuth gear reduction box and motor (4) 

• Twelve ribs (6) 
• One Air Drying Unit (ADU) (7) 
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• One Tracker Control Unit (TCU) (8) 

 

Figure 20. Soitec CX-S530 Tracker 
The tracker has the following specifications: 

• Dimensions: 47.9 ft x 24.7 ft 
• Aperture: 110 m2 
• Two-axis tracking, rotational elevation 
• Mast height above ground: 12ft 
• Elevation movement: 5 to 90° 
• Azimuth movement: +/- 150° 

 
Figure 21. CPV System Major Component Illustration  
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5.3.3 Balance of System 

As illustrated below in Figure 22, the Balance of System (BOS) of the power plant is the electrical 
collection system, which collects the DC power produced by each of the trackers and transports it 
to the power conversion station, also known as the inverter station.  The inverter station converts 
the DC electrical power to AC electrical power and a transformer increases the voltage to medium-
voltage (MV) AC electrical power.  Additional electrical collection equipment transports the AC 
power to the substation, or energy delivery point, where another transformer increases the MV AC 
power to high voltage (HV) AC power.  At the point, the electrical power is placed on the 
transmission or distribution lines of the utilities’ grid, where it is a commodity ready for use. 

  

Figure 22. CPV Power Plant Schematic Showing Balance of System16 

Figure 23 shows the layout of the 1MW Fort Irwin CPV Plant, with forty (40) CPV Systems around 
a central inverter station containing 2 AE 500TX (500kW) inverters.  The plant AC station contains 
equipment from Soitec and from the utility, Southern California Edison and is the point of delivery 
to the utility’s grid system on the military installation.   

                                                 
16 Note the color coding is a typical scope of work division between Soitec and EPC for a CPV Power Plant. 
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Figure 23. Fort Irwin CPV Power Plant Layout 

 

5.4 OPERATIONAL TESTING 

Phase I of the project was the project development and permitting by Soitec and the physical 
construction by an Engineering, Procurement, Construction (EPC) contractor under Soitec’s 
supervision.  Phase 1 consisted of installing 40 trackers on a bus cabling system feeding into 
DC combiner box, which in turn feed into a central inverter station.   Two AE-500TX (500kW) 
inverters are housed in one location, sharing a 1MW transformer with two low voltage 
windings.  

During Phase 1, Soitec was able to evaluate and confirm the tracker assembly process employing 
a field-based centralized assembly production line concept which enabled the assembly of modules 
onto tracking rigs, ready for transportation and attachment to the mast. 

Phase 2 of the project was the operational data gathering and analysis of the power plant.  The size 
of the demonstration power plant project is 1.12MWDC which allowed Soitec to evaluate and 
confirm: 

1) O&M costs and their subsequent impact on the economic viability of the technology and 
the availability of the power plant; 

2) Total energy and power production as a function of actual conditions and time of day 
throughout the duration of the project life; 
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3) No measurable degradation in energy production performance during project life; 
4) The CPV system’s capability to integrate with advanced DNI forecasting systems (UCSD). 

Phase 3 of the project was the final report development and transfer of the property (power plant) 
over to the host site, Fort Irwin National Training Center.   

The phases are shown below in a Gantt chart format in Figure 24. 

 

Figure 24. Fort Irwin 1MW CPV Project Phase Gantt Chart 

 

5.5 SAMPLING PROTOCOL 

The sampling protocol for each performance objective is listed below in Table 6.  
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Table 6. Sample Collection Approach for Each Performance Objective 

Performance 
Objectives 

Sample 
Descriptions 

Number 
of 

Samples 

Type of 
Samples 

Methodology Quality 
Assurance 
Sampling 

Calibration 

1. Technology 
Installation 
Time 

Number of trackers 
completed per day.  
NOTE: Soitec did 
not count the first 
five trackers 
because they served 
as the learning curve 
for the EPC 
contractor, who had 
never assembled one 
of these trackers 
before. 

40 Number of 
trackers 
completed 
per day. 

Soitec assigned 
a dedicated on-
site project 
manager to 
perform the data 
collection and 
summary.   

Project 
management 
supervision 

N/A 

2. Preventive 
O&M Labor 

Cumulative number 
of man-hours 
needed to perform 
annual preventive 
maintenance. 

Multiple Hourly logs Maintenance 
logbook entries 

Maintenance 
supervision 

N/A 

3. Reactive 
O&M Labor 

Cumulative number 
of man-hours 
needed to perform 
annual reactive 
maintenance. 

Multiple Hourly logs Maintenance 
logbook entries 

Maintenance 
supervision 

N/A 

4. Energy 
Model 
Validation 

Energy produced 
(MWh or kWh 
generated by the 
power plant and the 
CPV systems). 

Multiple DC meter 
readings of 
energy 
produced  

See details 
below. 

Cleaning of 
DNI sensors 

Calibration of 
DNI sensors 

5. CPV Power 
Plant 
Availability 

Energy produced 
(MWh or kWh) and 
system downtimes 
and failures. 

Multiple DC meter 
readings of 
energy 
produced  

See details 
below 

Cleaning of 
DNI sensors 

Calibration of 
DNI sensors 

6. Long Term 
Performance 
Degradation 

Energy produced 
(MWh or kWh 
generated by the 
power plant and the 
CPV systems) 

Multiple DC meter 
readings of 
energy 
produced. 

See details 
below 

Cleaning of 
DNI sensors 

Calibration of 
DNI sensors 

 

5.6 SAMPLING RESULTS  EQUIPMENT CALIBRATION AND DATA QUALITY 
ISSUES 

During the demonstration there were a few instances of data unavailability that affected the data 
collection; however, in most cases engineering, separate observations/studies and assumptions 
were used to supplement the findings. 

Issue: Inverter Meter Data.   



 

30 

Discussion: It was planned to record data from the Shark 200 inverter meters, specially selected 
and installed to incorporate into Soitec’s SCADA system, during the demonstration; however, due 
to Soitec’s decision to leave solar industry and the subsequent personnel drawdown the data 
linkage never happened.   

Solution: The DC energy data from the CPV Systems were used in all calculations and analysis.  
This type of data is commonly used for the performance objectives’ supporting calculations. 

Issue: Real-Time Performance Data.   

Discussion: Soitec was not able to provide UCSD with real-time data for solar forecasting analysis 
due to the lack of knowledgeable IT personnel.   

Solution: UCSD performed their analysis with Fort Irwin performance data provided by Soitec 
with a delay and compare this to their forecast models. 

Issue: Soiling Data and Module Washing Frequency 

Discussion: Due to resource shortages, Soitec was not able to conduct module washings and 
soiling studies. 

Solution: Soitec conducted a detailed soiling study at a 1.5MW CPV Power plant in Newberry 
Springs, CA which is about 70 miles south of Fort Irwin and located in a similar environment in 
the Mohave Desert.  In Section 6.5, Soitec provides the findings of this soiling study in lieu of data 
at Fort Irwin. 

Issue: Missing O&M Recorded Hours 

Discussion: Soitec technicians failed to record all O&M data from approximately October 2016 
to February 2017 (5 months). 

Solution: Soitec assumed certain CPV System and BOS reactive and preventive maintenance 
hours would have been consistent with the remainder of the performance period and factored in 
these estimated hours into the calculations.  

Issue: Half the CPV System’s Energy Measured by TCU DC Energy Meter 

Discussion:  Only six (6) CPV modules (half of the twelve total modules on the CPV System) are 
connected to the TCUs so as to not exceed their NEC code current constraints.   Therefore, the DC 
meters only measure half of the energy produced by the tracker.  This is also the case with other 
Soitec CPV power plants with this type of CPV System in the US.  

Solution: On December 17, 2015 Soitec IT made a software change to double the measured energy 
from each CPV System.  Prior to this date, the DC energy was recorded as measured.  The change 
assumes that each half of the CPV System (6 modules) are performing exactly the same as the 
other.  To obtain consistent data throughout the demonstration, DNV multiplied the energy 
measured prior to December 17, 2015 by two.  



 

31 

6.0 PERFORMANCE ASSESSMENT 

6.1 PERFORMANCE OBJECTIVE 1: TECHNOLOGY INSTALLATION TIME 

This was a straightforward performance objective to monitor and record.  Table 7 below shows 
the number of CPV Systems (also called trackers) assembled and installed per day.  As mentioned 
in Section 3.2.1, commissioning did not take place immediately after installation due to the power 
plant schedule.  Tracker assembly and installation averaged 3.33/day.  When combining the 
commissioning rate this would result in an overall time, start to finish, of 14 days, yielding 2.9 
trackers/day.   The tracker assembly station was comprised of 3 bays with transport trailers.  Each 
bay had an equipment operator (lift vehicle) and approximately 5 workers.  There were three 
commissioning teams with two workers to each team.  The number of teams and the composition 
of teams would have a significant effect on the assembly, installation and commissioning rates.  
For larger power plants, EPC firms would normally make a larger investment in equipment, 
stations and workers to increase throughput.  Figure 25 below shows the ramp-up and ramp-down 
of the installation process.  As the workers became more practices, the rate increased.  Towards 
the end the EPC contractor began shutting down bays and de-mobilizing lift equipment to save 
money, slowing down the process on the last few trackers. 

Table 7. Record of CPV System (tracker) Assemblies/Day 
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Figure 25. Graphical Display of CPV System Assembly, Installation and 
Commissioning17 

 

6.2 PERFORMANCE OBJECTIVES 2 AND 3: PREVENTIVE AND REACTIVE O&M 
LABOR 

As mentioned previously, Soitec recorded technicians’ hours performing reactive and preventive 
maintenance on a CMMS system.  Soitec found that the majority of O&M hours were spent on 
reactive maintenance on the CPV Systems (see Figure 26).  

                                                 
17 Note: NREL has not reviewed construction/installation data.   
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CPV System 
Reactive

54%BOS Reactive
19%

CPV System 
Preventive

21%

BOS Preventive
6%

Reactive and Preventive Maintenance 
Percentages

 

Figure 26. Reactive and Preventive Maintenance Percentages 

The main causes of reactive maintenance on the CPV Systems were: 

1) Failed drive encoders 
2) Failed limit switches 
3) Failed control boards 
4) Failed 4Q sensors 
5) Variable frequency drive overcurrent, undervoltage or over-temperature 
6) Failed DC connectors 
7) Loose hardware bolts (likely from installation) 

The majority of the CPV System preventive maintenance was related to the annual CPV System 
inspection and the bi-annual dual-axis drive regreasing. This is normally referred to as Scheduled 
Maintenance but for reporting purposes was considered as Preventive Maintenance.   

BOS reactive maintenance was mostly comprised of troubleshooting faulty communications to the 
site.  This could have involved the Verizon services, routers, modems, etc. 

BOS preventive maintenance was performed by 3rd party specialist contractors on the AE inverters, 
the Caterpillar backup generator and the AC switchgear and other electrical hardware. 

The performance objectives specifically pertained to the CPV Systems, so the results are 
highlighted in Figure 27 below. 
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Preventive Maintenance – DID NOT MEET OBJECTIVE; preventive maintenance over two 
years consumed 154 hours, which is 1.93 man-hours per CPV system annually.  Eliminating the 
Scheduled Maintenance activities of the annual CPV System inspection and the bi-annual dual-
axis drive regreasing would dramatically reduce this metric to .23 man-hour per CPV system 
annually and would meet the objective. 

Reactive maintenance - DID NOT MEET OBJECTIVE.  Reactive maintenance over two years 
was 393 hours, which is 4.92 man-hours per CPV system annually.   

 

Figure 27. Preventive and Reactive Maintenance Hours/CPV System/Year 

 

As mentioned in Section 5.6 and as shown below in Figure 28, there was an approximately 5-
month gap in CPV System reactive maintenance records between October 2016 and March 2017.  
Soitec assumed certain CPV System and BOS reactive and preventive maintenance hours would 
have been consistent with the remainder of the performance period and factored in these estimated 
hours into the calculations. 
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Figure 28. CPV System Reactive Maintenance Hours 
6.3 PERFORMANCE OBJECTIVE 4: ENERGY MODEL VALIDATION 

The performance assessment was performed by DNV-GL and confirms that the Soitec CPV 
Systems did perform as predicted.  The completed PVSyst prediction that was completed at the 
beginning of the test was modified to reflect the weather data measured during the two years of 
the project, as variability of the weather adds complexity to any solar-related performance 
assessment.  DNV GL compared energy production with expected production as predicted using 
measured weather as input to the PVsyst performance simulation model as supplied by Soitec. 

Results: DNV-GL’s report is shared in Appendix B.  In summary, the performance objective was 
met. 

NREL was involved in this process from a verification standpoint via the following steps: 

• NREL Initial Verification of Model: At the beginning of the test, NREL and Soitec 
verifed that NREL and Soitec both obtained the same prediction from PVSyst.  This 
required alignment of all of the inputs to the model.  The duplication of the modeling will 
ensure that no changes are made to the model between the initial application and the final 
application. 



 

36 

• NREL Site Visit October 2015: NREL visited the site shortly after the completion of 
construction to inspect the location and installation of all sensors, initial sensor calibration 
certificates, the one-line drawings ad site conditions.  The inspections confirmed the 
identity and accuracy of what is being measured by each meter and sensor, as well as 
confirming the direct relevance of the measured data to the input and output data of the 
PVSyst model18.  Major observations were: 
– Module Alignment: 
 Observation.  35% of the modules inspected were noted to not be in the optimal 

alignment position.  NREL estimated energy losses due to misalignment to be in 
the 1-2% range. 

 Resolution: Due to resource constraints, Soitec was not able to correct the module 
alignment during the demonstration. 

– DNI sensor misalignment and soiling 
 Observation:  One DNI sensor was not within the alignment specifications of Kipp 

& Zonen (the equipment manufacturer) while both sensors had visual soiling 
present. 

 Resolution: Soitec cleaned the DNI sensors periodically, though unfortunately only 
a few records indicate the date cleaned. 

– Predicted vs. measured DC performance data 
 Observation: NREL found modeled and measured performance were in close 

agreement between 9 am and 3 pm.  Outside that window PVsyst underestimated 
the output outside these hours while the simple model overestimated the output, 
possibly because PVsyst overestimated the shading or spectral losses while the 
simple model overestimated performance as it did not include either of these 
effects. 

 Resolution: Modeled and measured performance was compared for all daylight 
hours and the result is an average of the comparison. 

See Appendix E for the NREL initial report which contains more detail on the issues listed above. 

NREL Follow-On Report 4/17/2017.   NREL also submitted a follow-on report on April 17, 2017 
from six months of data (June 2016 to December 2016)19.  Major observations were: 

– DNI sensor misalignment and soiling 
 Observation:  One DNI sensor alignment sunspot for DNI sensor (SN 140003) was 

still not within the alignment specifications of Kipp & Zonen (the equipment 
manufacturer) while both sensors had visual soiling present.   
o Both issues can result in a false low DNI readings, which made the measured 

power seem higher than the PVSYST energy predictions. 
o Comparison with a NREL Measurement and Instrumentation Data Center 

(MIDC) station in Las Vegas showed the DNI in Las Vegas in September 2016 
was nearly 9% higher than in Ft. Irwin, which is not typically expected for clear 
sky conditions at each of these sites. 

                                                 
18 Matthew Muller, Sarah Kurtz and Chris Deline.  2015.  Fort Irwin 1 MW Soitec CPV Field Inspection.  National 
Renewable Energy Laboratory (NREL) Report. 
19 Matthew Muller, Sarah Kurtz and Chris Deline.  2017.  Fort Irwin 1 MW Soitec CPV Performance Validation 
Report. National Renewable Energy Laboratory (NREL) Report. 
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o Comparison with a Las Vegas DNI sensor suggested that the site sensor could 
be under reporting DNI by nearly 6%. This is consistent with other soiling 
studies for PV systems in southern California which show annual energy losses 
(uncleaned systems) on the order of 2-6%. 

 Resolution: Soitec’s engineer DNV-GL conducted a correction in the calculations 
to correct for excessive soiling.  For the alignment issue, if the DNI sensors were 
within 5% of each other, Soitec used an average of the two.  If the DNI sensors 
were greater than 5% of each other, Soitec used the higher DNI value. 

See Appendix F for the NREL follow-on report which contains more detail on the issues listed 
above. 

NREL Review of DNV-GL’s Approach and Calculations.  NREL reviewed DNV’s report 
including: 

• The original PVSyst prediction of electricity generation; 

• The original solar resource that was used for the PVSyst prediction; 

• The measured solar resource; 

• The modified PVSyst prediction based on measured weather data; 

• The measured electricity generated by the trackers; 

• The uncertainty found in the modified prediction and the measured electricity. 
NREL agreed with DNV-GL’s major findings, as signified by their approval letter in Appendix C. 

6.4 PERFORMANCE OBJECTIVE 5: CPV POWER PLANT AVAILABILITY 
This performance assessment CPV Systems did not meet the Availability target of 98%.  The 
overall Power Plant Availability was 95.6% and the CPV System Availability was 96.3%.   
Detailed results are shown within the DNV-GL technical report in Appendix B. 

6.5 PERFORMANCE OBJECTIVE 6: LONG TERM PERFORMANCE 
DEGRADATION 

Though this performance objective title specifies long-term performance degradation, the details in 
the Demonstration Plan also labeled a criteria for short-term module degradation caused by soiling.   

DNV-GL performed the analysis for the long-term performance degradation and the results are 
located in Appendix B.  In summary, performance actually appeared to improve by 1.6%, which 
is within the estimated 5% uncertainty of the performance index. 

For short term module degradation caused by soiling, as mentioned in Section 5.6, Soitec was not able 
to conduct module washings at the Fort Irwin CPV plant due to resource shortages.  However, Soitec 
did conduct intensive soiling studies at a 1.5 MW CPV Power plant in Newberry Springs, CA20.  

                                                 
20 Newberry Soiling Analysis March 18th to April 14th 2014.  2014.  Internal Presentation, Soitec Solar Energy 
Business Unit. 



 

38 

Newberry Solar 1 is about 70 miles south of Fort Irwin and is also located in the Mojave Desert 
with approximately the same atmospheric conditions.  Soitec conducted the soiling analysis at 
Newberry over the time span March 18th – April 14th 2014 to determine the monthly soiling loss 
factor for financing a larger CPV project.   

The approach was to clean one CPV System regularly (the control) and leave one CPV System to 
soil naturally and clean manually only when the rest of the trackers within the power plant were 
cleaned.  The two CPV Systems were located adjacent to each other.   

Soitec conducted two tests of this nature. The results are show below in Figures 29 - 32. 

 

Figure 29. CPV System Soiling Test 1 Results 
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Figure 30. CPV System Soiling Test 2 Results 

 

Figure 31. CPV System Soiling Test 1 Results 

 

Figure 32. CPV System Soiling Test 2 Results 
Soitec’s conclusion was that the soiling loss factor could not be determined, with the following 
possible explanations: 

• Short test duration 
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• Depending on the atmospheric conditions, cleaning may actually induce soiling since 
after washing the water residue collects air particles. 

• Error induced by measuring half of the tracker  
• DC board measurement accuracy of 2% was higher than soiling effect 

Furthermore, at the Newberry and Fort Irwin facilities, Soitec management decided that the energy 
gained by cleaning the CPV Systems was not worth the cost in manpower and equipment.  This, 
of course, may be different from plant to plant as plant location, proximity to other power plants, 
labor costs, etc. may vary significantly.  The M-500 modules at the Newberry and Fort Irwin 
facilities have not been washed for years (other than natural precipitation events) with no 
significant visual accumulation of dirt or dust.  The humidity levels in the high desert elevation 
reduce the dust’s ability to adhere to the modules and the frequent high wind events and blowing 
sand remove any accumulation that does occur.   

Therefore, it is Soitec’s conclusion that the short-term degradation due to soiling does not require 
a cleaning frequency less than once every six weeks. 

6.6 SOLAR FORECASTING PERFORMANCE OBJECTIVE 

Success Criteria: The forecasting component of this project was to be considered a success if the 
target values in Table 8 below were achieved. 

Table 8. Forecast Performance of Current Techniques versus Target Values at the 
End of the Project by Time Horizon21 

Horizon  < 1 hr 
(RTD) 

1 hr 
(HASP) 

1-6 hrs 24-36 hrs 
(DAM) 

>36 
hrs 

Averaging period 1 min 5 min 15 min 1 h 1 d 
Current s 0.12-0.32 0.15-0.29 0.08-0.14 0.08-0.39 0.19 
Target s 0.25-0.45 0.40 0.30 0.30 0.40 

 

Result: Results are shown below in Table 9.  For shorter time horizons (< 1 hr. and 1 hr. forecast 
time window), the targeted forecasting skills were not fully achieved since the Result s was not 
higher than the Target s.  This means that the accuracy of the forecast (an s value closer to 1 is 
more accurate) did not meet the target accuracy, about 70-75% of the time they were innacurate 
and the actual DNI and Power values did not match the forecasted DNI and Power values.  
However, the obtained values are in agreement with the best performing forecasting models 
published in current literature22. The results of the effort show the great difficulty in forecasting 
short-term DNI from on-site sky camera data due to nature of rapidly changing atmospheric 
conditions and the relatively limited field of view of the cameras.   

                                                 
21 Note the current and project values of forecast skill in the table above also increase with the averaging period. For example, 24-36 hour forecasts 
are hourly averages while the 1-6 hour forecasts have 15-minute resolution. This and the decrease in accuracy of the reference (persistence) causes 
the 24-36 hour forecast to have higher skills. 
22 J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de Pison, and F. Antonanzas-Torres. 2016. Review of Photovoltaic Power 
Forecasting. Solar Energy. 136:78–111. 
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With respect to longer horizons the demonstration met or exceeded the target values.  For the 
forecast time window 1-6 hours, the Result s (DNI) of 0.25 to 0.39 (average of 0.32) exceeded the 
Target s of 0.30, meaning the average accuracy of the DNI forecast improved over two times the 
baseline level and exceeded the target accuracy.  The forecast time window 24-36 hours ahead saw 
the greatest increase in accuracy with a Result s (DNI) of 0.34 which exceeded the Target s of 
0.30.  The forecast accuracy of the 48 hours (>36 hours)  ahead forecast time window doubled 
during this exercise, just exceeding the target of 0.40, meaning 41% of the time the forecasts were 
accurate. 

Improvements in accuracy forecasts for longer intra-day (1-6 hours) and day(s)-ahead horizons 
were greater as these forecasts incorporated satellite images and national cloud cover forecasts 
versus only sky images from on-site cameras.  The cloud cover information contained within the 
on-site camera images is good for not much more than an hour and  is a very weak predictor of 
conditions for the next day.   

The 24 to 36-hour and the 48 hour forecasts are important for regulating entities and independent 
system operators whose job is to schedule resources ahead of time to balance electric grids. 

Table 9. Forecast Performance Result Values at the End of the Project 

Horizon  < 1 hr 
(RTD) 

1 hr 
(HASP) 

1-6 hrs 24-36 hrs 
(DAM) 

>36 
hrs 

Averaging period 1 min 5 min 15 min 1 h 1 d 

Result s (DNI) 0.24-0.32 0.24-0.32 0.25-0.39  0.34 .41 

Result s (Power) 0.24-0.32 0.20-0.24 0.17-0.35 0.38 .43 

Success Criteria Met? No No Yes Yes Yes 
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7.0 COST ASSESSMENT 

Soitec performed this section with internal knowledge of Fort Irwin’s cost and cost proposals for 
larger CPV plants that were never constructed due to lack of financing. However, the cost proposals 
were in the final stages in 2014/2015 and should serve as a reliable estimate.  Soitec also relied upon 
employee knowledge of conventional PV costs from the external experience within that industry and 
from recent online research.  However, it is important to note that these are only reasonable estimates.  
Soitec has not been active in securing better pricing from suppliers nor reducing installation costs 
since early 2015 due to Soitec’s decision to depart from the solar business within that timeframe. 

7.1 COST MODEL 

In Table 10 below, Soitec has provided a simple cost model for the 1MW CPV System at Fort 
Irwin.  In Section 7.3 these costs will serve as the basis of a lifecycle cost analysis. 

Table 10. 1MW CPV Demonstration System (Fort Irwin) Cost Table 

DESCRIPTION % of Total Cost Cost/ watt
Mobilization 4.09% 97,070$             0.09$           
Site Logistics 3.84% 91,174$             0.08$           
Site Grading and Trenching 2.98% 70,673$             0.06$           
Tracker Assembly Area Grading 2.08% 49,331$             0.04$           
Access Road 2.44% 57,862$             0.05$           
Construction Entrance 1.56% 37,105$             0.03$           
Dust control 3.12% 73,935$             0.07$           
Erosion Contrl 1.60% 38,052$             0.03$           
Seeding 1.32% 31,415$             0.03$           
Fencing and Gate 4.76% 112,848$           0.10$           
Security and Lighting 4.06% 96,226$             0.09$           
Drive Piers/Masts 1.96% 46,403$             0.04$           
Surveys 0.38% 9,080$               0.01$           
Water Supply Equipment (Tank, etc.) 0.34% 7,991$               0.01$           
Fire Control Equipment 0.25% 5,902$               0.01$           
Backup Generator 0.77% 18,161$             0.02$           
DC Cabling and Hardware 8.82% 209,179$           0.19$           
Inverter Installation 15.68% 372,076$           0.33$           
AC Cable and Hardware 5.05% 119,694$           0.11$           
SCADA/Panel Installation 1.83% 43,519$             0.04$           
Tracker Assembly  3.27% 77,509$             0.07$           
Tracker Installation 2.68% 63,529$             0.06$           
Tracker Terminations 0.32% 7,607$               0.01$           
Tracker Commissioning 0.81% 19,274$             0.02$           
Indirect Cost 26.00% 616,783$           0.55$           
Insurance, Contingency, Bonding, OH&P INCLUDED IN PRICE BREAKDOWN
EPC Total 2,372,400$        2.12$           
Non-DOD reduction (%)

Substation and Gen-Tie 18.25% 433,000$           0.39$           
Subtotal 2,805,400$        2.50$           
BOM Cost 1,346,429$        1.20$           
Owner PM 104,566$           0.09$           
TOTAL Construction Cost 4,256,395$        3.80$           
Engineering Cost 150,000$           0.13$           
Development and Land Cost 233,667$           0.21$           
Subtotal 4,640,062$        4.14$           
ESTCP Pre-Construction Compliance (Legal) 82,743$             0.07$           
Total Cost 4,722,805$        4.22$            
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7.2 COST DRIVERS 

Below Soitec has listed and described some of the major cost drivers of this project, as well as 
anticipated cost drivers that should be considered when selecting the technology for future 
implementation. 

7.2.1 CPV System Costs 

The cost of manufacturing CPV components is still higher than conventional flat plate technology 
due to lack of high volume manufacturing of CPV components and modules needed to achieve 
cost competitiveness versus conventional flat plate solar.  Conventional PV single-axis tracker 
prices are at $.10 to $0.21/watt23 and conventional crystalline-silicone PV solar panels are dipping 
$0.35/watt at the factory gate to $0.40 to $0.53/watt cost to integrators24.   

Each CPV tracker requires its own control unit, which adds to the CPV system cost.  With some 
conventional PV single-axis tracking system, trackers within an approximate area of a football 
field are controlled by a single control box. 

 Each CPV module must be humidity-controlled on the inside to prevent condensation and 
moisture damage to sensitive wiring components.  This requires air-drying units and air tubing to 
each module.  The additional AC power requirements for the air-drying equipment causes 
increased AC wiring and hardware sizing and costs. 

7.2.2 CPV Installation Costs 

CPV installation costs are typically higher than conventional PV due to several reasons.  First, 
assembly and installation requires heavy crane equipment, as the tracker tables with modules 
weigh approximately 16,000 lbs and must be mounted on an 11’ mast.  This makes installation 
vulnerable to wind speeds over 20mph, causing expensive delays.   

 

Figure 33. Tracker Table Assembly Process 

                                                 
23 Ran Fu, David Feldman, Robert Margolis, Mike Woodhouse, and Kristen Ardani.  2017.  U.S. Solar Photovoltaic 
System Cost Benchmark: Q1 2017.  National Renewable Energy Laboratory (NREL) Report. 
24 Ibid, pgs. 13- 19. 
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Figure 34. Tracker Table Lift and Installation on the Mast 

 

 

Figure 35. Completion and Commissioning of the CPV System 
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Figure 36. Labor Percentage Breakdown on Fort Irwin CPV System Assembly 

Second, Soitec and the CPV industry as a whole has not had the opportunity to invest in automated 
equipment on a large scale because the majority of power plants have been under 10MW and only 
a few (Alamosa at 30MW and Touwsrivier at 44MW) have approached the 50MW mark.   

Third, the industry has engineered out installation costs and has gained overwhelming experience 
in conventional PV installation.  There are thousands of workers and construction superintendents 
that have worked with systems from First Solar, SunPower, Nextracker and Array Technologies.  
Fourth, the masts (or piers) required to support the massive tracker tables must themselves be either 
driven or vibrated into the ground with large, custom equipment or require massive amounts of 
excavation and concrete for foundations.  In contrast, there are hundreds of specialized pier-driving 
machines and experienced operators for conventional PV piers.  Entire companies that specialize 
in designing and installing piers have emerged and that portion of the power plant installation is 
very competitive.  This has contributed to utility-scale conventional PV systems achieving 2020 
Sunshot cost targets three years early in 201725. 

7.2.3 Civil Work Costs  

CPV is more susceptible to higher costs when the soil is rocky, loose, corrosive, has a higher water 
table.   Because the masts (up to 30” or higher in diameter) must be driven deeper into the soil (at 
least 15’ or more), they are adversely affected when rocks, caliche or water are found at shallower 
levels.  By comparison, most conventional PV piers are driven 5-8’ deep.  CPV mast weigh at least 
1,000 lbs. and require large equipment to ship, transport and maneuver around the construction 
site.  The masts require full-scale excavator platforms with custom equipment to pre-drill holes of 
the required diameter and drive the ½ ton masts into the ground (Figure 37).  These machines are 
very expensive to mobilize, have a high per hour rate and require skilled operators. 

                                                 
25 Ibid, Pg 9. 
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Figure 37. Pre-drilling and driving CPV masts 
 

 

Figure 38. Typical Conventional PV Pier Driving Machine 

 

7.2.4 Shipping, Handling and Treatment Costs 

CPV modules weigh approximately 500 lbs. each, making them more expensive to ship and 
handle.   They require forklifts and special attachments to move a single module on site.  By 
comparison, conventional CPV modules are shipped and moved around the construction site in 
stacks of 30-40 modules.   
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The CPV tubular masts and horizontal main tubes are difficult to ship efficiently due to the weight 
and the volume of air inside the masts that takes up space and minimizes the amount that can fit 
on a truck or inside a shipping container.  The large size of the masts limits the number of vendors 
who have adequate facilities to perform hot-dip galvanization for corrosion protection on the 
masts.   

There are a few components of the tracker table that can be moved by hand, such as the ribs and 
stabilizers; however the mast, drive, horizontal main tubes and modules require a forklift to 
maneuver.   

7.2.5 O&M Costs 

Soitec researched industry publications for O&M costs and found: 

• Single-axis conventional PV O&M costs are 10-20% higher than fix-tilt arrays26.   
• Smaller systems (<1MW) can be 2-4x more expensive to maintain compared to large sites 

(>10MW)27.  For purposes of this report, Soitec assumes a 30% increase in O&M costs for 
a small conventional PV power plant. 

• Due to the size of the CPV System components and complexities involved with dual-axis 
tracking, Soitec estimates the O&M costs for CPV dual-axis CPV Systems are at least 20-
30% higher than single-axis conventional PV.  There are several reasons for this: 

• The large tracker components, such as the drive, requires crane equipment for 
replacements.   

• Because the drive unit, motors, modules and DC string cabling are located 12-15’ off the 
ground, a boom lift is needed frequently to allow crews to troubleshoot, inspect or repair 
components at that level.   

• The CPV module requires a reach forklift and special lifting equipment for replacements.  
Conversely, conventional CPV O&M crews rarely need more than a service truck and 
manpower for replacing or repairing PV modules. 

• The control units of dual-axis CPV trackers are more complex because the pointing 
accuracy limits are more stringent.   Each CPV tracker requires its own control box and 
each control box is susceptible to communications failure and component failure.  This 
requires additional maintenance crew travel and troubleshooting time.  

• Washing modules on a 28’ tall tracker requires more time and specialized equipment. 
• The CPV dual-axis drives require re-greasing and re-oiling every two years and a total 

lubricant change every 10 years.  This requires significant manpower, boom lift equipment, 
lubricant and lubricant storage and disposal costs. 

Figure 39 below validates this, showing CPV estimated O&M costs to the right of the graph, 
approximately 21% higher than crystalline silicone PV. 

                                                 
26 Charles W. Thurston.  Trackers Thaw Solar Freeze.  2016.  PV Magazine, Issue 10-2016.  Online. 
27 Nadav Enbar, Dean Weng, Geoff Klise.  2015.  Budgeting for Solar PV Plant Operations and Maintenance: 
Practices and Pricing. EPRI/Sandia National Laboratories Report. 



 

49 

 

Figure 39. O&M Average Costs 201528 

7.2.6 Performance Costs 

CPV modules are more efficient than conventional PV modules.  However, CPV modules produce 
energy only when provided with Direct Normal Insolation (DNI).  High wind events (typically 
both CPV and conventional PV trackers will stow at 32-38mph winds) will cause CPV power 
production to go to zero.  Clouds will have the same effect.  After a high wind or cloud event, 
trackers need anywhere from a few minutes to 30 minutes to return to the sun, depending on the 
length of the event.  Conventional single-axis PV trackers will continue producing power, albeit 
at a reduced level, during these events and will resume pointing within a few minutes of a wind 
event.  When analyzing CPV projects for Levelized Cost of Energy (LCOE) and Return on 
Investment (ROI), analysts and investors must factor in added impact of wind velocity history and 
cloud events.    

7.3 COST ANALYSIS AND COMPARISON 

Soitec included project development costs, equipment/BOM costs, installation costs and 
operations and maintenance (O&M) costs when developing the CPV lifecycle cost analysis.     

For the conventional PV comparison, Soitec only considered single-axis crystalline-silicon PV, 
not fixed tilt PV.  A tilted single axis tracking system provides energy gains in the range of 30-
40% compared to a tilted fixed PV panel29 and 20+% for non-tilted panel30.  

Ideal site requirements are listed below in Table 11.  The table shows applicability to CPV, PV or 
both. 

                                                 
28 Ibid, pg.10. 
29 S. P. Singh, K. Srikant and K. S. Jairaj.  2017. Performance Comparison and Cost Analysis of Single Axis 
Tracking and Fixed Tilt PV Systems.  School of Energy and Environmental Studies, Devi Ahilya University.  Pg. 6. 
30 Charles W. Thurston.  2016.  Trackers Thaw Solar Freeze (Dan Shugar (NextTracker) quote).  PV Magazine, 
Issue 10-2016.  Online. 
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Table 11. Ideal Site Requirements for CPV and Conventional PV Power Plants 

Requirements CPV PV Comments 
Located in an area with at high direct irradiation 
(>1800 kWh/m²) 

X  Conventional PV does not require high DNI 
regions; therefore, provides more 
geographical options 

Relatively flat and well-drained with minimal 
grading required 

X X  

Does not contain excessively rocky or loose soils 
within 20’ of surface 

X  Conventional PV piers are not driven as 
deep (normally 5-8’) 

Bedrock and water table lower than 20’ from top 
of ground 

X  Conventional PV piers are not driven as 
deep (normally 5-8’) 

Minimal vegetation clearance required X X  
No surrounding structures (trees, buildings, 
mountains) which may shade the solar modules 

X X  

Within ¼ mile from utility point of delivery or 
grid connection point (substation, distribution 
line) 

X X  

Near or containing water source for washing 
modules 

X X  

No permitting restrictions (e.g. solar trackers up 
to 30’ high allowed) 

X  Conventional PV is more low-profile. 

Not located in an acute flood zone (e.g. 100-year 
floodplain) 

X X  

Non-corrosive, well-graded soils (assumed soil 
conditions) 

X X  

7.3.1 Installation Cost Exclusions: 

• Location and/or demolition of any existing site utilities 
• Costs associated with existing underground utilities (location, removal, alteration) 
• Costs associated with concrete footings for masts/piers 
• Removal of any hazardous materials (including any required abatement). 
• Standard fencing (6’ chain link with 3 strands of barbed wire)  
• Premium for off-hours work or accelerated schedule. 
• Site storm drainage above and beyond standard SWPPP. 
• Construction of any paved permanent access, fire access or perimeter roads. 
• Upgrades of existing utility or meter equipment. 
• Annual SCADA/DAS monitoring agreement subscription costs. 
• O&M services 
• O&M building and/or infrastructure 
• Cathodic or other corrosion protection for foundation mast/piers (other than hot-dipped 

galvanization) 
• Sales tax for all materials and equipment. 
• Hazardous material testing, investigation, removal or dispoal 
• Off-site improvements 
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• Payment and performance bonds 

7.3.2 Installation Cost Assumptions: 

• Driven mast/pier installation only 
• Site conditions as indicated above 
• Workmanship Guarantee of two (2) years from the Substantial Completion Date 
• Direct-buried, aluminum cable 
• Use native soil for all backfill with no required import or export of soils 
• Non-union, non-prevailing wage job site 
• On-site water source for dust control 

7.4 LIFECYCLE COST APPROACH 

7.4.1 Project Development Costs 

Soitec used historical project development costs in the lifecycle cost model.  These costs would be 
applicable to CPV and conventional PV and include: 

• Permitting (Major Use Permit) 
– Costs of supporting studies, surveys and reports (i.e. geotech, visual impacts, traffic, 

environmental) 
– Fees 

• Interconnection Agreement (IA) 
– Costs of supporting studies, surveys and reports (i.e. interconnect upgrade survey) 
– Fees 

• Power Purchase Agreement (PPA) costs (normally paid to the utility) 
– Costs of supporting reports and applications 
– Fees 

• Legal Fees 
• Consultant Costs 
• Real Estate Fees (easements, rights of way) 
• Engineering costs to support project development efforts 

Project development costs typical add $0.03 to $12/watt to the cost of the project, depending on 
the size of the project and the situation31.  They would be approximately similar for CPV or 
conventional PV. 

                                                 
31 Ran Fu, David Feldman, Robert Margolis, Mike Woodhouse, and Kristen Ardani.  2017.  U.S. Solar Photovoltaic 
System Cost Benchmark: Q1 2017.  National Renewable Energy Laboratory (NREL). Pg 39. 



 

52 

7.4.2 Project Pre-Construction Costs 

These costs would include: 

• Value engineering costs 
• More detailed soils analysis 
• Site plan approvals and building permits 
• Purchase of long-lead items (e.g. main transformers, gen-tie poles/towers) 
• Contract development costs (EPC, separate installation contractors) 

7.4.3 Equipment Procurement Costs 

These costs would vary widely between CPV and conventional PV, for reasons previously stated.  
These costs would normally include shipment to the construction site and any customs fees. 

7.4.4 Installation Costs   

The majority of these costs involve payments to an Engineering, Procurement and Construction 
(EPC) company who fills the role of a general contractor.  This is normally the majority of the 
project’s capital expense (CAPEX).  Every project will have differences in the EPC’s scope, for 
example who provides major components such as trackers, modules, inverters and cabling.  This 
depends on the preferences of the owner aor which entity can utilitize the most advantageous 
purchasing power with suppliers.  For this lifecycle cost analysis, Soitec has assumed that the 
major Balance of System component costs (inverters, cabling) will be borne by the EPC, while 
modules and trackers will be provided by the Owner. 

The EPC Cost Breakdown for the Fort Irwin is shown in Figure 40.  As this was 2013 pricing, it 
is evident that inverter procurement/installation costs, indirect costs and cable 
procurement/installation were major contributors.  Indirect costs include project management 
costs, general conditions (construction trailers, life support items, office equipment) travel, 
specialty tools, and temporary power and water.  The percentage of indirect costs to the entire 
CAPEX cost is generally higher on small projects because although they rise with the size of the 
project, there is a baseline cost that is spread out over fewer megawatts. 
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Figure 40. Fort Irwin 1MW CPV EPC Cost Percentage Breakdown 

 

For Fort Irwin, the modules, trackers, internal wiring and auxiliary equipment (Soitec monitoring 
system and sensors) comprised approximately 36% of the project, as shown in Figure 41.  This 
figure would remain consistent with estimated cost breakdown of future projects (Figure 42), 
indicating that EPC cost reductions and Soitec BOM cost reductions would be approximately the 
same.    

This ratio is consistent with conventional PV (Figure 43) for the same reason:  the costs of 
conventional PV BOM components (modules, trackers, internal wiring) are lower, but so are the 
EPC costs. 
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Figure 41. Fort Irwin 1MW CPV EPC and CPV BOM Cost Breakdown 
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Figure 42. Future 1MW CPV Plant Cost Breakdown 
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Figure 43. EPC vs. CPV BOM Future Project Cost Breakdown 

The reason for the lower EPC costs on a conventional commercial PV plant is that eight plus years 
of intense competition and the concentration of specialized vendors who have honed techniques 
and prices on conventional utility-scale PV power plants have driven pricing down dramatically.  
A few examples are: 

• Companies who specialize in pier installation have developed specialized machines that 
are easily mobilized and demobilized and use the latest technology to efficiently drive 
piers.   

• AC and DC cable manufacturers have been under intense competition to create unique 
products that allow direct burial of cable without conduit protection.   

Additionally, those in the solar industry are well-acquainted with the race to the bottom on pricing 
for module and tracker components. 

• Fixed and single-axis tracker manufacturers have developed trackers that in some cases 
eliminate the need for AC cabling to the trackers and have designed products that install 
quickly in the field, requiring only forklifts.   They have reduced the quantity of steel, taken 
advantage of off-the-shelf subcomponents and have leveraged competition among a 
multitude of sub-assembly suppliers. 

• The most significant shift in pricing has been with conventional PV module manufacturers. 
According to NREL, average module prices were ~ $0.40 per wattdc during Q1/201732. 

• Average single-axis tracker structure pricing is $.015/wattdc33 

Another large cost reduction contributor that would affect both CPV and conventional PV is that 
inverter manufacturers have developed larger inverters that do not require expensive climate-
controlled enclosures or shade and have dropped prices dramatically with foreign labor and 
simplified designs, down to $0.06 to $0.08/wattdc.34 

                                                 
32 Ibid, pg 39. 
33 Ibid, pg 39. 
34 Ibid, pg 39. 
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Table 12. Conventional CPV Module Prices (Q1 2017)35 

 

In summary, both installation costs and solar component costs have fallen at consistent rates, 
leading to overall lower costs for conventional PV plants.  The average price of a 100MW single-
axis tracker project in Q1 2017 is about $1.05 per watt36; however, this is an average price and 
will generally be higher for power plants under 10-20MW, where indirect costs are spread out over 
more MW.  Soitec estimates that a 1MW conventional PV plant would cost between $1.28 and 
$1.35/watt.  Smaller plants cost more because generally the same permits must be obtained, the 
same designs must be engineered, fees and taxes must be paid and the EPC’s general conditions 
(trailers, life support, etc.) are more expensive per watt.   

Installations requiring prevailing wage, such as on DOD installation, easily adds 10-25% to the 
EPC’s overall cost37.  By that same rationale, Soitec estimates a 1MW conventional PV plant on 
a DOD installation would cost between $1.60 to $1.70/watt.  See Table 13 below for a breakdown 
of costs.   

  

                                                 
35 Christian Roselund. 2017.  U.S. utility-scale solar falls below US$1 per watt .  PV-Magazine.  Online.   
36 Fu, op. cit., pg 38. 
37 Ibid. 
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Table 13. Cost Estimate for Various Sizes of CPV and Conventional PV Power Plants 

 Scenario 

DESCRIPTION Cost Cost/ watt Cost Cost/ watt Cost
Cost/ 
watt Cost Cost/watt Cost Cost/watt

Mobilization 97,070$             0.09$           77,656$             0.06$       77,656$             0.06$     517,705$            0.02$          54,359$            0.04$          388,278$              0.014$     
Site Logistics 91,174$             0.08$           72,939$             0.05$       72,939$             0.05$     486,262$            0.02$          51,058$            0.04$          486,262$              0.018$     
Site Grading and Trenching 70,673$             0.06$           49,471$             0.04$       49,471$             0.04$     659,615$            0.02$          49,471$            0.04$          659,615$              0.024$     
Tracker Assembly Area Grading 49,331$             0.04$           34,532$             0.03$       34,532$             0.03$     230,214$            0.01$          3,453$              0.00$          46,043$                0.002$     
Access Road 57,862$             0.05$           46,290$             0.03$       46,290$             0.03$     617,198$            0.02$          46,290$            0.03$          617,198$              0.023$     
Construction Entrance 37,105$             0.03$           35,250$             0.03$       35,250$             0.03$     176,251$            0.01$          35,250$            0.03$          176,251$              0.006$     
Dust control 73,935$             0.07$           59,148$             0.04$       59,148$             0.04$     591,481$            0.02$          59,148$            0.04$          591,481$              0.022$     
Erosion Contrl 38,052$             0.03$           26,636$             0.02$       26,636$             0.02$     133,182$            0.00$          26,636$            0.02$          133,182$              0.005$     
Seeding 31,415$             0.03$           21,990$             0.02$       21,990$             0.02$     109,952$            0.00$          21,990$            0.02$          109,952$              0.004$     
Fencing and Gate 112,848$           0.10$           95,921$             0.07$       95,921$             0.07$     479,605$            0.02$          95,921$            0.07$          479,605$              0.018$     
Security and Lighting 96,226$             0.09$           81,792$             0.06$       81,792$             0.06$     408,960$            0.02$          81,792$            0.06$          408,960$              0.015$     
Drive Piers/Masts 46,403$             0.04$           46,403$             0.03$       46,403$             0.03$     928,053$            0.03$          23,201$            0.02$          403,501$              0.015$     
Surveys 9,080$               0.01$           9,080$               0.01$       9,080$               0.01$     45,402$              0.00$          9,080$              0.01$          45,402$                0.002$     
Water Supply Equipment (Tank, etc.) 7,991$               0.01$           7,991$               0.01$       7,991$               0.01$     39,954$              0.00$          7,991$              0.01$          39,954$                0.001$     
Fire Control Equipment 5,902$               0.01$           5,902$               0.00$       5,902$               0.00$     30,000$              0.00$          5,902$              0.00$          30,000$                0.001$     
Backup Generator 18,161$             0.02$           18,161$             0.01$       18,161$             0.01$     181,608$            0.01$          -$                  -$           -$         
DC Cabling and Hardware 209,179$           0.19$           125,508$           0.09$       125,508$           0.09$     2,510,152$         0.09$          100,406$          0.07$          2,510,152$           0.092$     
Inverter Installation 372,076$           0.33$           148,830$           0.11$       148,830$           0.11$     2,480,508$         0.09$          148,830$          0.11$          2,480,508$           0.091$     
AC Cable and Hardware 119,694$           0.11$           71,817$             0.05$       71,817$             0.05$     1,436,333$         0.05$          57,453$            0.04$          1,436,333$           0.053$     
SCADA/Panel Installation 43,519$             0.04$           34,815$             0.03$       34,815$             0.03$     174,077$            0.01$          34,815$            0.03$          174,077$              0.006$     
Tracker Assembly  77,509$             0.07$           54,256$             0.04$       54,256$             0.04$     1,085,127$         0.04$          32,554$            0.02$          361,709$              0.013$     
Tracker Installation 63,529$             0.06$           44,470$             0.03$       44,470$             0.03$     889,401$            0.03$          26,682$            0.02$          296,467$              0.011$     
Tracker Terminations 7,607$               0.01$           5,325$               0.00$       5,325$               0.00$     106,498$            0.00$          3,195$              0.00$          26,624$                0.001$     
Tracker Commissioning 19,274$             0.02$           13,492$             0.01$       13,492$             0.01$     269,842$            0.01$          8,095$              0.01$          89,947$                0.003$     
Indirect Cost 616,783$           0.55$           462,587$           0.34$       462,587$           0.34$     1,541,957$         0.06$          370,070$          0.27$          1,541,957$           0.057$     
Insurance, Contingency, Bonding, OH&P INCLUDED INCLUDED INCLUDED INCLUDED INCLUDED INCLUDED
EPC Total 2,372,400$        2.12$           1,650,263$        1.21$       1,650,263$        1.21$     16,129,335$       0.59$          1,353,644$       1.00$          13,533,458$         0.50$       
Non-DOD reduction (%) -$        10% 0.00$     10% 10% 10%

-$        1,485,237$        1.09$     14,516,401$       0.53$          1,218,280$       0.90$          12,180,112$         0.45$       
Substation and Gen-Tie 433,000$           0.39$           433,000$           0.32$       300,000$           0.22$     900,000$            0.03$          300,000$          0.22$          900,000$              0.03$       
Subtotal 2,805,400$        2.50$           2,083,263$        1.53$       1,785,237$        1.31$     15,416,401$       0.57$          1,518,280$       1.12$          13,080,112$         0.48$       
BOM Cost 1,346,429$        1.20$           1,360,000$        1.00$       1,360,000$        1.00$     27,200,000$       1.00$          752,857$          0.55$          15,057,143$         0.55$       
Owner PM 104,566$           0.09$           104,566$           0.08$       50,000$             0.04$     500,000$            0.02$          50,000$            0.04$          500,000$              0.02$       
TOTAL Construction Cost 4,256,395$        3.80$           3,547,829$        2.61$       3,195,237$        2.35$     43,116,401$       1.59$          2,321,137$       1.71$          28,637,255$         1.05$       
Engineering Cost 150,000$           0.13$           150,000.00$      0.11$       150,000$           0.11$     600,000$            0.02$          150,000$          0.11$          600,000$              0.02$       
Development and Land Cost 233,667$           0.21$           233,667$           0.17$       250,000$           0.18$     1,400,000$         0.05$          250,000$          0.18$          1,400,000$           0.05$       
Subtotal 4,640,062$        4.14$           3,931,496$        2.89$       3,595,237$        2.64$     45,116,401$       1.66$          2,721,137$       2.00$          30,637,255$         1.13$       
ESTCP Pre-Construction Compliance (Legal) 82,743$             0.07$           82,743$             0.06$       0 -$       0 -$           -$           -$                      -$         
Total Cost 4,722,805$        4.22$           4,014,239$        2.95$       3,595,237$        2.64$     45,116,401$       1.66$          2,721,137$       2.00$          30,637,255$         1.13$       
System Cost (Total Cost - Development Cost) 4.01$           2.78$       2.46$     1.61$          1.82$          1.07$       
O&M Cost 25.76$               24.29$               24.29$               17.00$                22.10$              17.00$                  

1.  2015 Fort Irwin CPV 4.  2017 20MW CPV 5.  2017 1MW PV2: 2017 1MW DOD CPV
3. 2017 1MW CPV (non-

DOD)  6.  2017 20MW PV 

 
 

7.4.5 Annual O&M costs 

Soitec calculates that annual O&M costs for the Fort Irwin 1MW CPV project to be $25.76/kWdc-
yr or $28.85 /kWac-yr which is approximately 14% higher than the $22.10/kW-yr for a small 
conventional single-axis PV plant38. Some of the special cost drivers in this case are: 

• There are no existing warranties on the Fort Irwin power plant equipment. 
• Due to the remote location of the site, Soitec assumed response distance to the site would 

be 50 miles for a contract O&M employee for a typical O&M company under contract. 
– 10 hour workdays (2 hours overtime) due to the remote location and base access 

requirements 
– Travel costs (service truck maintenance and mileage) 

• Two module cleanings per year 
• $25/hour labor 
• 23 year project life (25-year PPA minus 2 years already operated) 
• No full-time site personnel 

 

                                                 
38 Ibid, pg. 42. 
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Other typical cost drivers for any CPV plant O&M are: 

• 10 year extensive dual-axis drive re-lubrication requirement.  Due to the height of the 
module this requires special lifting equipment, such as bucket trucks or boom lifts and 
greasing equipment (automatic greasing equipment, air compressors).   

• Reactive maintenance costs are higher.  As seen in Figure XX below, reactive maintenance 
costs comprise 56% of the annual O&M budget.  This is due to the autonomously-
controlled trackers and the complexity of the individual tracker control units to keep the 
dual-axis trackers focused on the sun. 

• Component replacement is more expensive due to the heavier components and the height 
of the components.  This requires lifting equipment such as cranes, forklifts and boom lifts. 

In general, for 1 MW+ systems, preventive maintenance consumes 70-85% of available budget is 
while 15%-30% is allocated to reactive maintenance39.  However, Figure 44 shows the O&M 
category breakdown for the 1MW Fort Irwin CPV plant and reactive maintenance is unusually 
high in comparison to preventive maintenance.  This is due to the unique requirements and 
complexities of Soitec’s dual axis CPV System.  It will be crucial to reduce this cost category in 
order to be competitive in the future.  

Also, usually module washing requires an allocation of $0.80 to $1.30/kW-yr40; however, in this 
case cleaning is 9% of the total, or $2.19/kw-yr. 

Cleaning
9%

Preventive
37%

Reactive
35%

Admin/Monitoring 
19%

 

Figure 44. DOD Irwin CPV Power Plant O&M Cost Category Breakdown 

 

                                                 
39 Enbar, op. cit., pg.12. 
40 Ibid, pg. 11. 
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For a typical 1MW CPV power plant (non-DOD installation) in 2017 with the provisions below, 
Soitec estimates annual O&M costs would reduce somewhat to $24.29/kWdc-yr or $27.21 /kWac-
year: 

• Five-year inverter warranty, 10-year module warranty, 2-year general plant equipment 
workmanship warranty 

• 25-year project life 

There are a few major reasons for the difference between CPV and conventional PV O&M costs: 

• Simplicity of equipment, especially with fixed-tilt trackers where there are no moving 
parts. 

• Depending on the location, module cleanings are conducted once a year or less, since the 
PV modules are not as affected as CPV modules, which require DNI. 

• Improved module quality 
• Better personnel management and the fact that CPV requires a higher skilled worker 
• Better plant and data management 
• Robust logistics chain geared to the conventional PV industry 

7.5 LIFECYCLE COST ANALYSIS 

 Soitec calculated the lifecycle cost of California CPV and PV power plants of various sizes, both 
on DOD installations and for a typical non-DOD Independent Power Producer (IPP).  The 
scenarios are as follows: 

• DOD Irwin 1MW CPV (2015 installation) 
• DOD 1MW CPV (2017 installation) 
• Non-DOD 1MW CPV (2017 installation) 
• Non-DOD 20MW CPV (2017 installation) 
• Non-DOD 1MW Conventional PV (2017 installation) 
• Non-DOD 20MW Conventional PV (2017 installation) 

For all scenarios, Soitec used the following assumptions: 

• $70/MWh peak PPA, $40 off-peak PPA price 
• 25 year system lifetime 
• 30% Investment Tax Credit 
• 5% residual value 
• $0.025/w inverter major repair cost after 13 years 
• 3% discount rate during construction 
• 2.2% discount rate during operations 
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• Depreciation 
– 90% - five year MACRS 
– 5% - fifteen year MACRS 
– 0% - twenty year MACRS 
– 5% – fifteen year S/L 
– 0% - twenty year S/L 

• 8.25% state tax rate 
• 35% federal tax rate 
• 2% annual escalator 
• 32% on-peak production 
• 2,269 kWh/kWp ratio 

The Power Purchase Agreement (PPA) rate Soitec used for all scenarios is quite generous by 
today’s standards.  Prices offered by the utilities have fallen dramatically over the past 10 years, 
with California prices near $150/MWh as late as 2010 and 2017 prices near $40/MWh (see Figure 
45)41.  This represents a 75% decrease over 7 years.  However, PPA prices structures vary widely 
across states and regions, as they are influenced by the peak power requirements, percentages of 
solar energy vs. round-the-clock conventional power sources and state policies.   

 

Figure 45. Power Purchase Agreement (PPA) Rate Trend Chart 

For the 2017 1MW and 20 MW installations, Soitec used a 1.36 DC/AC ratio instead of the 1.12 
DC/AC ratio for the DOD Irwin project.  This is a more efficient DC/AC ratio.  The Fort Irwin 
DC/AC ratio was due to contract constraints at the time. 

                                                 
41 Mark Bolinger, Joachim Seel, Kristina La Commare.  2017. Utility Scale Solar 2016: An Empirical Analysis of 
Project Cost, Performance and Pricing Trends in the United States.  Lawrence Berkeley National Laboratory.  pg. 32. 
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Fort Irwin had no land costs, but extensive development and legal costs.  Scenarios 1-5 feature a 
land cost, assuming 8 acres/MW and $5,000/acre. 

For module degradation rates, Soitec used the maximum guaranteed rate from its limited module 
warranty (0.7%)42 and the maximum guaranteed rate from SunPower’s module warranty (0.4%)43.  
Even though in reality module degradation rates are closer to 0.5%44, developers and lending 
institutions would use the maximum guaranteed rate in a lifecycle cost analysis. 

Inputs specific to each scenario are shown in Table 14 below.  Lifecycle cost analysis results are 
also shown in Table XX are described as follows: 

• Net Present Value (NPV) – defined by Investopedia as “the difference between the present 
value of cash inflows and the present value of cash outflows. NPV is used in capital 
budgeting to analyze the profitability of a projected investment or project.  A positive net 
present value indicates that the projected earnings generated by a project or investment (in 
present dollars) exceeds the anticipated costs (also in present dollars). Generally, an 
investment with a positive NPV will be a profitable one and one with a negative NPV will 
result in a net loss”.  

• Internal Rate of Return (IRR) – defined by Investopedia as  “measuring the profitability of 
potential investments. Internal rate of return is a discount rate that makes the net present 
value (NPV) of all cash flows from a particular project equal to zero”.  Basically, this is 
the break-even point.  Developers and investors look for a minimum of 7-8% IRR. 

• Payback Period – also known as Return on Investment (ROI) - defined by Investopedia as 
“the length of time required to recover the cost of an investment”.   Payback period 
completely disregards the time value of money, as it is simply concerned with how many 
years it takes to recover the capital investment. 

Table 14. Lifecycle Cost Analysis 

Scenario 1 2 3 4 5 6

LCC Input/ Assumption 
Description

DOD Irwin 1MW 
CPV

2017 1MW DOD 
CPV

2017 1MW CPV 
(non-DOD)

2017 20MW 
CPV

2017 1MW 
PV

2017 20MW 
PV

System Size (MW DC) 1.12 1.36 1.36 27.20 1.36 27.20
System Cost ($/w dc) 4.01$               2.78$                2.46$                1.61$           1.82$       1.07$             
O&M Costs ($/kWh) 25.76$              24.29$              24.29$              17.00$         22.10$      17.00$           
Development Cost ($/w dc 0.21$               0.17$                0.18$                0.05$           0.18$       0.05$             
Annual Module Degradatio  0.70% 0.70% 0.70% 0.70% 0.40% 0.40%

NPV ($) ($1,209,031) ($722,237) ($564,671) $4,000,723 ($119,781) $10,997,870
IRR (%) -2.61% -0.97% -0.51% 3.54% 1.51% 7.00%
Payback Period (years) 40 40 40 14 20 10  

                                                 
42 Soitec CPV Module CX-M500 Product and Performance Limited Warranty. 2013.  Soitec Solar GmbH Corporate 
Document. 
43 SunPower Limited Product and Power Warranty for PV Modules. 2012.  Sunpower Document#: 503170 Rev A.  
Online. 
44 Bolinger, op. cit., Pg. 38. 
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The lifecycle cost analysis results show that CPV power plants of any size today would have great 
difficulty getting financed due to the low IRR that is driven by the high construction and operating 
costs.  The IRR are negative for small CPV plants (1MW) and are still low for CPV power plants 
at least up to the 20MW size, using the constraints and settings of this model.  Even small 
conventional PV power plants (~1 MW) present a financing challenge and would have to be 
supplied with higher PPAs and/or other financial incentives to provide an attractive IRR.  At the 
20MW size, using the constraints and settings of this model, conventional PV power plants start 
to become attractive in terms of IRR, with an IRR of 7.0% using the constraints and settings of 
this model.  The surrounding circumstances and specific incentives of each power plant can vary 
significantly and changing these inputs to the model can move the needle materially in terms of 
NPV and IRR.  To summarize, in general there is much progress needed on closing the gap 
between CPV construction and operating costs and conventional PV construction and operating 
costs in order for CPV technology to be an attractive technology selection for future photovoltaic 
power plants.  
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8.0 IMPLEMENTATION ISSUES 

In addition to the limitations of CPV technology discussed in Section 2.3, Soitec has found most 
end-user concerns revolved around the financeability of the CPV technology.  These concerns are 
categorized as such: 

8.1 DUAL-AXIS DRIVE 

The drive unit, though composed of a standard housing, slewing rings, worm gearing, reduction 
gearbox and AC motor, was a source of end-user concern.  Major worries were how the drive 
would handle the immense tracker loads, especially during wind or seismic events, if the drive’s 
precision would support the exact pointing requirements of the CPV tracker (especially over time 
as the gear teeth experienced wear) and the general lifecycle of the drive.  Soitec notes that the 
dual-axis drives on other, larger projects have functioned quite well for several years without a 
single internal drive issue with the slewing rings and worm drives.    

 

Figure 46. Dual-Axis Drive 

8.2 SOITEC’S LONG-TERM VIABILITY 

End users, developers and investors were concerned about what would happen if Soitec went 
bankrupt or abandoned its solar business.  Major concerns related to this were: 

• Module warranty issues.  Soitec’s modules were proprietary and Soitec was the exclusive 
manufacturer and supplier.  Customers were concerned about where they would get 
warranty service and replacement modules.   

• Custom proprietary tracking system, software and source code.  Customers were concerned 
about a lack of future software support.  

• CPV Component Suppliers.  Customers also demanded “step-in” rights for Soitec’s 
suppliers so that they could ensure continuous supply of spare or replacement parts. 
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8.3 OPERATIONS AND MAINTENANCE (O&M) COSTS 

End-users were concerned at the lack of real O&M cost data, realizing that the CPV technology 
was unproven and would require intensive preventive and reactive maintenance over the life of the 
plant.  This was especially acute given the exact pointing requirements of the trackers and the 
immediate reduction in energy production if the pointing accurancy criteria were exceeded for any 
reason. 

8.4 LACK OF COMMERCIALIZATION OF CPV SYSTEM COMPONENTS   

At the time of construction of the DOD Fort Irwin project, the Soitec Bill of Materials were a 
combination of standard commercial off-the-shelf (COTS), a custom-built prototype, or newly 
commercialized.  The majority of the major equipment (CPV module, tracker structure and 
auxiliary equipment) were either newly commercialized with less than 400 tracker units produced 
for the US at the time and most of the COTS items are fastening hardware and represent a nominal 
portion of the overall CPV system cost. 

8.5 PERMITTING AND REGULATIONS 

The only major concerns with permitting/regulations are height restrictions which may exist in 
some locations.  Most of the project sites permitted by Soitec fell within the AHJ-imposed height 
ceiling of 35 feet, as the trackers are approximately 28 feet high at the steepest angle. 

8.6 IMPLEMENTATION ISSUES CONCLUSION 

Soitec expects this demonstration would alleviate end-users’ concerns with initial warranty claims 
and chronic problems, as the power plant did not require an inordinate amount of spare parts or 
experience any abnormal issues.  However, concerns about the long-term viability of the CPV 
technology would remain given the 24-month demonstration duration was less than 10% of the 
average Power Purchase Agreement (PPA) life.   

Also, at the time this power plant was commissioned (summer 2015), Soitec announced its exit of 
the solar business and subsequent inability to sell the business.  Therefore, over the past two years 
Soitec has not moved forward with project, supplier or technology development/refinement and 
until recently most CPV development has stalled.  Other CPV suppliers have experienced a similar 
fate, such as: 

• Amonix closed its Las Vegas production facility in 2012 (now renamed and operating in 
a smaller capacity as Arzon Solar). 

• SolFocus closed in 2013. 

• GreenVolts went out of business in 2012. 

• Energy Innovations, Soliant, Concentrator Optics, SunPower's C7 and Skyline Solar's low-
concentration PV (LCPV) are no longer operating45 

                                                 
45 Eric Wesoff. 2014.  Sources: Concentrated PV Startup Solar Junction Acquired by Saudis.  Greentechmedia.com. 
Online. 
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During the same time period, conventional PV module efficiency has risen moderately and prices 
have fallen precipitously. Support technologies, such as 3rd party single-axis trackers and inverters 
have seen a shakeout in the industry, with quality rising and prices falling.  Third party O&M 
providers and performance monitoring companies have also refined their offerings and dropped 
prices significantly.  Conventional PV power plants design techniques have improved.  Therefore, 
Soitec expects CPV technology would face even stiffer competition with conventional PV today. 

Paths forward that Soitec envisions for CPV that would allow it to approach the economic offering 
of conventional PV power plants would be: 

• A breakthrough in the multi-junction cell efficiency, which would allow fewer trackers to 
provide the same amount of power, thereby reducing CAPEX costs. 

• Improvements in tracking software and firmware 

• Streamlined tracker control unit with software redundant protection systems 

• Reduction in reactive maintenance costs 

• Elimination or severe reduction in module washing 

• Introduction of secondary optics in CPV modules to allow for looser pointing accuracy 
criteria 

• New tracker design that reduces the amount of steel and hardware 

• Commercialization of currently custom-built parts 

In late 2016 Soitec sold its CPV technology to Saint-Augustin Canada Electric Inc. (STACE), a 
world-class supplier of large electrical equipment in the power generation industry.   With this 
acquisition, STACE became the technological leader of the CPV industry and stated it would 
continue to improve the technology and maintain the collaboration with the recognized Fraunhofer 
Institute for Solar Energy Systems ISE, based in Freiburg, Germany46. 

 

  

                                                 
46 Saint-Augustin Canada Electric Inc.(STACE) acquires Soitec solar CPV technology.  2017.  News Release. 
www.stacelectric.com. 

http://www.stacelectric.com/
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APPENDIX B DNV-GL ENGINEERING REPORT 

The report from engineering firm DNV-GL covers the performance index, availability and long-term 
degradation performance objectives. 
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EXECUTIVE SUMMARY 
 
At the request of Soitec Solar Industries, LLC, DNV GL performed an independent analysis of the Fort Irwin 
1MW Solar Project. The purpose of this review was to assess the performance of the Project during its first 
two years of operation with respect to energy production, equipment availability, and production 
degradation. 

 
The Project, located in Ft. Irwin, CA, consists of 40 solar dual-axis tracker units that feed power to the grid. 
The tracker units use concentrator photovoltaic (CPV) panels to directly convert solar irradiance into direct 
current (DC) electrical power. 

 
DNV GL compared energy production with expected production as predicted using measured weather as 
input to the PVsyst performance simulation model as supplied by Soitec. Within the limitations of the 
available data, the power plant demonstrated capability to produce 99% of model predicted energy, which 
exceeds the target 98% of model predicted energy. 

 
DNV GL assessed overall system availability as well as tracker availability, which excludes the impact of site- 
wide outages. Overall system availability and tracker availability was found to be 95.2 and 96.7%, respectively, 
which is less than the target 98%. Much of the tracker downtime was a result of encoder failures. Following a 
design upgrade to the tracker encoders the monthly availability exceeded 98% consistently. DNV GL 
determined that throughout the period, 1.5% of the downtime was a result of just 
three trackers. Excluding these three trackers yielded an availability of 98.2% which exceeds the target 
availability. 

 
Production degradation was verified by comparing performance on clear days near the start and end of the 
evaluation period. Performance appeared to improve by 1.6%, which is within the estimated 5% uncertainty 
of the performance index. 

 
1 INTRODUCTION 

 

 
At the request of Soitec Solar Industries, LLC (“Soitec” or the “Customer”), DNV Kema Renewables, Inc. (“DNV 
GL”) performed an independent analysis of the Fort Irwin 1MW CPV Solar Project (“Fort Irwin” or the “Project”). 
This work was carried out pursuant to DNV GL proposal 152247-HOU-P-01-B Fort Irwin Assessment. The 
purpose of this review is to assess the performance of the Project during its first two years of operation. 

 
1.1 Project Description 

 

 
The Project, located in Ft. Irwin, CA, consists of 40 solar dual-axis tracker units that feed power to the grid. 
The tracker units use concentrator photovoltaic (CPV) panels to directly convert solar irradiance into direct 
current (DC) electrical power. 

 
1.2 Objective and  scope of review 

 

 
As part of this analysis, DNV GL has performed the following tasks: 

 
• Energy Model Validation: DNV GL calibrated the Project’s PVsyst energy model with typical year 

weather and analyzed the resulting discrepancies to actual performance (subject to limitations of 
quality/availability of existing measured data, follow approach of IEC62670-2). 

 
• Availability Analysis: Calculated overall System Availability and Tracker Availability. A reasonable 

downtime power threshold was selected by DNV GL and agreed upon with Soitec, with the 
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concurrence of the National Renewable Energy Laboratory (NREL; acting as independent validation 
entity). The overall System Availability includes all downtime sources including tracker downtime, 
inverter outages, and grid outages; Tracker Availability excludes inverter and grid outages. 

 
• Degradation Review: DNV GL identified performance data records corresponding to clear-sky exposure 

and full system availability within 2 months of start of review period and 2 months of end of review 
period. DNV GL estimated magnitude and uncertainty of power capacity estimates, and of the derived 
degradation estimate. 

 
2 METHODOLOGY AND  RESULTS 

 
 
2.1 Energy Model Validation 

 
2.1.1 Methodology 

 
The following subsections describe the methodology used for the energy model validation including a 
description of the dataset and data quality treatment. 

 
2.1.1.1 Data Intake 

 
Performance data were supplied in 21 Microsoft Excel files extracted from the power plant Supervisory Data 
and Control (SCADA) system, with various columns and time periods covered [1]. Scripted import of these 
files was used to merge the results reproducibly, and clear-sky estimated irradiance was computed based on 
site location and timestamps found in the data files and compared with measured data to confirm time- 
alignment of irradiance data. Channels provided included one DC power per each of 40 trackers, two 
pyrheliometer readings, two ambient temperature readings, and two wind speed readings. 

 
Figure 2-1 illustrates that the IrrDNI1 sensor readings (Kipp and Zonen pyrheliometer serial number 140003 
mounted on Tracker 17) were missing in late 2015, were essentially mostly zeroed (off-sun) between 9 
January 2017 and 23 February 2017 (system downtime due to manpower shortage) and again from 2 April 
2017 until 20 April 2017 (system downtime due to grease seal retrofit/replacement activities on site). Thus, 
there is a significant reliance on irradiance measurements IrrDNI2 (Kipp and Zonen pyrheliometer serial 
number 140029 mounted on Tracker 32). Data for channel 1 (Tracker 17) of the ambient temperature and 
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wind speed were missing prior to 8 December 2015, though the channel 2 data were mostly reasonable.

 
Figure 2-1.  Trend of supplied performance data 

 
 
We note that a fundamental limitation of this data set is that the power sensors were connected to one-half 
of the modules on each tracker. On 17 December 2015 a multiplier of 2 was added to the plant SCADA 
configuration so values reported after that time would be indicative of the power being produced by the whole 
tracker. Upon data import, DNVGL applied a retroactive factor of two prior to that date for simplicity of 
analysis. 

 
Another fundamental limitation of this data was that no AC power or energy data were recorded by the 
SCADA system during this period of evaluation, so the analysis is all performed at the array-to-inverter 
interface rather than the more typical revenue meter interface. 
All Fort Irwin performance data were reported in 15-minute data records. The UNLV and DRA data was 
supplied in 1-minute records which we aggregated to 15-minute basis. 
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2.1.1.2 Synthesized Data 

 
The redundancy of meteorological station data supports sanity checking and “best estimate” values to be used 
when either of a pair of sensors fails to report valid (or any) data. For measured irradiance, the approach used 
for each data record was to mark individual sensor readings as missing (empty cell), night (≤0) or IrrHi 
(>1400), or otherwise valid (Ok) for comparing with other sources of data. For extracting a redundant best 
estimate of irradiance, one additional criterion was applied: IrrLow (<500W/m2), and then among the readings 
still marked as valid we chose the sensor with the greatest value for reasons discussed 
below.  For temperature and wind speed, a similar missing and range approach was used (-4oC < Ta < aoC

 
and o mjs < ws  < 1oo mjs ), but the mean of the valid values for that parameter was used. To simplify

 graphs, in some plots below the term “Invalid” is used to represent any of the conditions “Night”, “IrrHigh”, 
or “IrrLow”. 

 
Since the pyrheliometers were installed at the bottom edge of their respective trackers to facilitate regular 
cleaning, they were also typically shaded before 9am and after 3pm. 

 
Onsite irradiance data appeared to be lower than expected, most likely due to some combination of alignment 
error or soiling. We compared clear day irradiance with two publicly-accessible solar meteorological stations: 
University of Nevada Las Vegas, or UNLV, and the SURFRAD station at Desert Rock, 
Nevada). Each of these stations is about 100 miles north-northeast of the Fort Irwin project site, with Desert 
Rock at about the same 1000m elevation and UNLV at around 650m above sea level. Clearly, the timing of 
cloud patterns will not be the same in these locations as at the project site, but to the extent that clear days in 
both locations have similar discrepancies we considered the discrepancies to be most likely indicative of 
impaired measurement at the project site. For most of the test period the SURFRAD Desert Rock (DRA) site 
reported clear day irradiance values about 4% higher than UNLV, except for the last few months when DRA 
dropped noticeably lower than UNLV, perhaps due to a tracking issue. 

 
To identify and compare the clearest days in each month during the evaluation period, the daily irradiation 
value for which 95% of the values are smaller was chosen. (The maximum value is often more influenced by 
interfering effects than the P95 value is.) The monthly P95 daily irradiation values (in each of four quality 
categories) are shown in Figure 2-2 for the individual pyrheliometers and combined best estimate irradiance 
for the Fort Irwin (FTI) project site, along with the corresponding DRA and SURFRAD data in Figure 2-2. (Each 
site is identified with different symbol shapes, while the at-site multiple sources are distinguished using color.) 
Most of the irradiation is collected during “Ok” quality times, but the “invalid” (primarily below 
500W/m2) quality category accounts for about 10% of the irradiation when individual sensors are used but 
is negligible when best-estimate combined irradiance data are used. The preliminary soiling estimates are 
obtained by computing the ratio of the Ok quality, best-estimate (combined) FTI P95 daily irradiation values 
(for which days are likely to be clear) with similar values obtained from the UNLV data. Due to data quality 
problems at the project site, some months appear to have some unexpectedly low best-case days so a floor 
of 80% was imposed to prevent overcompensation for soiling in early 2017. 
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Figure 2-2.  Daily P95  per  month irradiation values for  three sites 
 
The preliminary soiling estimate and constrained soiling estimate appear in Figure 2-3. The 80% constraint rule 
prevents application of soiling corrections to the measured irradiance by more than 20%, and it only affects 
July 2015. Note the general trend downward, as typical of dust accumulation trends, interrupted in November 
2016 by improved output from the pyrheliometers for three months and then some erratic variations starting 
in February 2017. Between the relatively simple seasonal changes in the UNLV P95 daily irradiation and our 
observations of rain-correlated performance index changes discussed later it appears that the variations in 
discrepancy are related to the FTI site measurements. Even though this soiling trend mostly looks consistent 
with the site inspection report discussion, this monthly correction is susceptible to interference by non-soiling 
mechanisms so introduces possible bias high in the available irradiance if we correct for it. The true value of 
irradiance is likely between the raw value and the corrected value. For this reason, we show performance index 
computations below using both non-soiling-corrected (“Raw”) and soiling-corrected (“Corr”) irradiance data. 
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Figure 2-3.  Apparent pyrheliometer soiling 
 
2.1.1.3 Quality Control 

 
Quality control was applied to the data by creating a marking column for each input and computed 
parameter. The quality marking is implemented in order, so that later categories only apply to Ok records, 
and do not change previous non-Ok marks. For a given set of criteria, each record in the combined 15- 
minute-interval data set is assigned a unique quality characterization. 

Raw Sensor Quality 
Individual sensor readings can in some cases be identified as having quality problems with no reference to 
other sensors. 

 
• Quality marks for each of the power data columns PwrDC1 through PwrDC40 are set to SiteIssue where 

site outage time periods occur. Negative power readings (typically though not always at night) are 
marked as RevPwrDC, and power readings greater than 30kW are marked as HiPwrDC 

• Input data (sensor readings) are marked as missing data or out of range, 
• Time-intervals with known per-sensor operations issues were marked, 
• Low irradiance (less than soo W/m2) data was marked as IrrLow for IrrDNI1 and IrrDNI2,

 
• The IrrDNI1 and IrrDNI2 qc marks are set to IrrDiff if both sensor values were ok but their 

readings were more than 5% different from each other

 

Redundant Sensor Quality 
 

When best estimates for parameters are obtained by referring to multiple redundant sensor readings, the 
combined parameter is regarded as having Ok quality unless all inputs fail their individual quality evaluations. 
This maximizes the number of records for which the parameter can be relied on. 

 
• A redundant (best-estimate) IrrDNI estimate is computed by selecting the mean of the Ok values at 

each timestep, unless they differ by more than 5% in which case the maximum value is selected 
(under the premise that the lower value is likely affected by soiling). 
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• Redundant (best-estimate) TmpAmb and SpdWind estimates are computed by computing the mean of 
all Ok values at each timestep (under the premise that their discrepancies are random). 

 

Non-Redundant Sensor Quality 
Where multiple sensors are needed to obtain a quantity such as total DC power, any one sensor being 
invalid means the combined value is invalid. 

 
• A total dc output PwrDCA40 (DCA representing direct current at the array level) is computed as the 

equally-weighted sum of the 40 individual power values when all inputs are quality marked as Ok. 
• An alternate "most of system" PwrDCA36 value was computed by summing all dc power values except 

for PwrDC2, PwrDC17, PwrDC24 and PwrDC25 and scaling that sum up by 40/36. The corresponding 
quality mark omits dependence on the qc marks for those four excluded power values. 

Performance Metric Quality 
 

When applied to computing a performance metric, all relevant parameters should have Ok quality. If any do 
not, then the quality of the performance metric is marked according to the first identified non-Ok quality 
mark. It is then possible to plot all of the input data for that quality metric but color-code it according to 
different performance metric quality marks. This means for example that a best-estimate DNI value may be 
regarded as Ok for the purposes of one metric (where temperature or power are also Ok) but not for 
another metric (where either temperature or power are not Ok). 

 
• A 40-tracker quality mark for the performance index computed using PwrDCA40 was determined by 

choosing the first non-Ok mark from among the quality marks for PwrDCA40 and the quality marks 
for the best-estimate meteorological quantities IrrDNI, TmpAmb and SpdWind. 

• A similar 36-tracker quality mark was computed for the PI calculated with PwrDCA36 and the quality 
marks for the best-estimate meteorological quantities IrrDNI, TmpAmb and SpdWind. 

• A MET qc mark was generated based on the marks for the best-estimate meteorological quantities 
IrrDNI, TmpAmb and SpdWind. 

• For reference, some results are computed with no quality mark checking. 
 
2.1.1.4 Data Coverage 

 
Figure 2-4, Figure 2-5, and Figure 2-6 show the combined quality marks applicable for using all best- estimate 
meteorological data, for adding all dc power values (e.g. computing performance index with all sensors), and 
ignoring four trouble-prone trackers in order to gain access to a greater quantity of internally- consistent data 
records (black data points) at the cost of neglecting the performance in a subset of the system. 
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Table 2-1, Table 2-2, and Table 2-3 summarize monthly distribution of marks corresponding to 24h/day all 

month.  
 

Figure 2-4.  Best  estimates of meteorological data 
 

Table 2-1.  Monthly distribution of  meteorological quality marks 
 

Month  Ok  IrrLow  MissingDNI 
2015-06-01 - - 100.0 
2015-07-01 3.0 11.8 85.2 
2015-08-01 38.4 54.0 7.6 
2015-09-01 35.5 64.5 - 
2015-10-01 25.9 74.1 - 
2015-11-01 22.9 59.4 17.6 
2015-12-01 21.6 78.3 0.2 
2016-01-01 17.8 82.2 - 
2016-02-01 33.2 66.8 - 
2016-03-01 23.8 76.2 - 
2016-04-01 22.9 60.3 16.8 
2016-05-01 39.1 60.7 0.2 
2016-06-01 44.0 56.0 - 
2016-07-01 45.2 54.8 0.0 
2016-08-01 41.5 58.4 0.1 
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2016-09-01 38.1 61.9 - 
2016-10-01 27.9 72.1 - 
2016-11-01 29.2 70.8 - 
2016-12-01 16.8 83.1 0.0 
2017-01-01 18.0 82.0 - 
2017-02-01 18.2 81.8 - 
2017-03-01 31.2 68.8 - 
2017-04-01 31.8 67.1 1.1 
2017-05-01 39.3 60.1 0.5 
2017-06-01 42.4 56.5 1.0 
2017-07-01 40.2 59.8 0.0 

 

 
 

Figure 2-5.  Quality trends for  40-tracker performance index inputs 
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Month  Ok  HiPwrDC  IrrLow  MissingPwrDC  RevPwrDC  SiteIssue 
2015-06-01 - - - 100.0 - - 
2015-07-01 0.4 - 0.4 87.2 11.9 - 
2015-08-01 21.2 - 3.2 0.1 42.7 32.8 
2015-09-01 27.5 - 3.9 0.5 68.0 0.1 
2015-10-01 24.5 - 2.9 0.2 72.2 0.1 
2015-11-01 5.4 - 0.4 34.8 41.6 17.8 
2015-12-01 - 0.1 - 67.4 32.3 0.2 
2016-01-01 11.1 - 4.2 0.6 84.0 0.0 
2016-02-01 30.7 - 2.9 0.1 66.2 0.0 
2016-03-01 20.1 - 5.1 - 74.7 - 
2016-04-01 13.1 - 2.8 19.9 47.3 16.8 
2016-05-01 8.0 - 0.8 59.5 31.1 0.5 
2016-06-01 42.8 - 5.8 - 51.0 0.5 
2016-07-01 37.7 - 2.8 0.0 59.4 0.1 
2016-08-01 35.5 - 4.8 0.3 59.2 0.1 
2016-09-01 36.6 - 3.0 - 60.3 0.1 
2016-10-01 17.8 - 3.6 28.3 50.3 0.0 
2016-11-01 - - - 83.4 16.6 - 
2016-12-01 - - - 74.5 25.4 0.0 
2017-01-01 - - - 57.6 42.4 0.0 
2017-02-01 2.3 - 0.2 44.1 53.4 - 
2017-03-01 16.3 - 3.5 16.3 63.9 0.0 
2017-04-01 6.6 - 0.7 75.4 16.1 1.2 
2017-05-01 7.6 - 0.4 79.4 12.4 0.2 
2017-06-01 - - - 98.9 - 1.1 
2017-07-01 - - - 100.0 - 0.0 
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Figure 2-6.  Quality trends for  36-tracker performance index inputs 
 

Table 2-3.  Monthly distribution of 36-Tracker performance data  quality 
 

MBegin  Ok  HiPwrDC  IrrLow  MissingDNI  MissingPwrDC  RevPwrDC  SiteIssue 
2015-06-01 - - - - 100.0 - - 
2015-07-01 0.4 - 4.7 - 87.3 7.6 - 
2015-08-01 21.2 - 30.1 - 0.1 15.8 32.8 
2015-09-01 28.2 - 48.0 - 0.4 23.3 0.1 
2015-10-01 24.6 - 50.8 - 0.1 24.3 0.1 
2015-11-01 16.3 - 42.0 - 0.1 23.7 17.8 
2015-12-01 2.0 0.1 50.7 - 2.6 44.4 0.2 
2016-01-01 17.0 - 57.4 - 0.1 25.5 0.0 
2016-02-01 31.5 - 52.0 - 0.1 16.4 0.0 
2016-03-01 23.5 - 50.9 - - 25.6 - 
2016-04-01 21.1 - 38.5 - - 23.6 16.8 
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2016-05-01 38.1 - 42.2 - 0.4 18.7 0.5 
2016-06-01 43.4 - 40.7 - - 15.5 0.5 
2016-07-01 37.7 - 38.6 0.0 0.0 23.6 0.1 
2016-08-01 35.7 - 44.3 - 0.3 19.6 0.1 
2016-09-01 36.9 - 46.6 - - 16.5 0.1 
2016-10-01 27.5 - 53.5 - 0.2 18.8 0.0 
2016-11-01 29.0 - 54.3 - - 16.7 - 
2016-12-01 11.9 - 57.1 - 0.1 30.8 0.0 
2017-01-01 4.2 - 53.7 - - 42.1 0.0 
2017-02-01 6.5 - 51.1 - 0.1 42.2 - 
2017-03-01 28.5 - 47.2 - - 24.3 0.0 
2017-04-01 25.0 - 36.5 - 15.4 21.9 1.2 
2017-05-01 39.0 - 40.6 0.5 0.0 19.6 0.2 
2017-06-01 25.4 - 24.4 - 29.0 20.0 1.1 
2017-07-01 40.2 - 44.3 - 0.0 15.4 0.0 

 
 

Figure 2-7 confirms that the agreement between the two sensors is largely within a ±5% calibration band, 
and Figure 2-8 shows how the agreement drifts over time in 2016, and is occasionally reset (presumably by 
the actions of re-alignment cleaning). 

 
 

Figure 2-7.  Comparison of DNI sensor readings 
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Figure 2-8.  Trend of ratio of DNI1/DNI2 
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2.1.1.5 Reference Model 
 

The reference model used was a set of PVsyst model files developed by Soitec for this project. The original 
(reference) simulation was run under PVsyst version 5.66. 

 
Table 2-4.  Files used  in Fort  Irwin Soitec CPV  system model 

 

Application_Note_PVSyst_v31_EN_2014-07-11.pdf  General guidance for  design of PVsyst models with 
Soitec CPV  modules 

CX-M500_2335Wp_MOD-99009_1_0.PAN Modeling parameters for module used at Fort Irwin 
SMA_Central500CP.OND Modeling parameters for inverters used at Fort Irwin 
FORT IRWIN.MET Typical meteorological data used in reference simulation 
DOD Fort Irwin.PRJ PVsyst project site assumptions file 
DOD Fort Irwin.VC0 PVsyst project PV system assumptions file 
DOD Fort Irwin approximated layout.SHD PVsyst shade configuration 
DOD Fort Irwin.SIT PVsyst location specification file for this project 

 
2.1.1.6 Simulated Generation 

 
A total of six 8760-record1 input files (2 sets of 3 years) were generated using the best estimate 
meteorological data above, one set with (“Corr”) and the other set without (“Raw”) the soiling correction 
applied to the irradiance data. Empty or missing data fields in the field meteorological data were filled with 
zeros in the PVsyst input files, with the understanding that each record has been marked per its quality so 
that records not marked “Ok” will be discarded. The PVsyst version used was v6.63 rather than the original 
v5.66, but typical annual production was verified to still be 2,543 MWh as it was in the original estimate. 

 

Figure 2-9 shows the two sets of dc power (EArray  as computed using either as-measured “Raw” DNI or 
soiling-corrected “Corrected” DNI) generated by PVsyst plotted versus the measured dc power, filtered per 
four different data quality approaches. Using the Raw DNI leads to measured power often exceeding 
modelled power. Using the Corrected DNI values equalizes or shifts the measured data down relative to the 
modelled values. Estimating total “measured” DC power using all 40 trackers (half of modules installed) 
leads to the fewest available data points, while using 36 of the most reliable trackers (45% of installed 
modules) allows system performance to be evaluated in more data records. For purposes of estimating the 
impact of availability the data quality can be relaxed to the level where all reasonable meteorological data 
that can be used to estimate a valid power production value is used. Finally, all data (no quality constraints) 
is shown for completeness. For each of the first three combinations, only “Ok” data points not marked for 
some quality issue are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  Data on 29 February 2016 was not modeled since PVsyst standard input files are non-leap year size. 
 



 

15 
 

 
Figure 2-9.  Agreement Plots of Measured vs. Modeled DC power 

 
2.1.1.7 Performance Index 

 
Performance Index is the ratio of actual to expected production, where in this case the expected production is 
set by the PVsyst model using measured meteorological inputs. For any given data record, this can be 
interpreted as the slope of a line in Figure 2-9 drawn from the origin to a data point. Trends of performance 
index over time can be used for diagnostic purposes, and the performance over a time interval can be computed 
using the ratio of energy produced over energy expected or the energy performance index. In this case, we 
have various concerns about data quality by time and tracker, so long-term energy estimates may be computed 
with different data quality restrictions as long as the same restrictions are used for excluding data in both the 
numerator and denominator of the ratio. 

 
Figure 2-10 shows the trends of performance index computed using the data presented in Figure 2-9. No 
manual cleaning events were recorded in the operations logs, but a rainfall of 0.26 inches was recorded by 
Weather Underground on 24 July 2017 near the very end of the performance period. The performance index 
recovers quite distinctly at that point (visible at the end of the evaluation interval in Figure 2-10 but seen more 
clearly in the approximately 8% “level shift” between midday 22 July 2017 to 28 July 2017 in Figure 2-11), 
suggesting that soiling was a significant cause of the apparent downward trend in performance during the 
evaluation period. 
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Figure 2-10.  Trends of Performance Index

 
 

Figure 2-11.  Performance Index Around 24 July  2017  Rain  Event 
 
For avoidance of doubt: the intent of using the Corrected DNI is to avoid setting the target production 
inappropriately low (which would lead to inappropriately high PI values), and is not used here to correct for 
soiling on the array itself. 

 

2.1.2 Results 
 
The accuracy of an energy production model such as the Fort Irwin PVsyst energy would ideally be judged on 
the total energy produced over the test interval. However, in practice, PV systems and their monitoring systems 
are composed of subsystems, not all of which may be functioning at once. For example, comparing all of the 
available energy produced with the energy prediction from the original typical-year model is an all- effects 
considered approach to verifying the original production estimate but if the weather conditions during the test 
interval were significantly different than the long-term average then PI metric is likely to inform the observer 
better regarding equipment function than the raw data will. 
In the methods section above we discussed a couple of energy production expectations for power production 
and four approaches to quality control (40 trackers power, scaled-up power for 36 trackers, limiting only to 
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acceptable meteorological data, and all data considered). To the second set of options we add here summaries 
drawn directly from the reference simulation (TMY) for comparison. 

 
Figure 2-12.  Monthly DC Performance Index for  subsets of data 

 
Of the above combinations, the best long-term estimate of overall system production relative to expectations 
is DC performance index using corrected irradiance and 36 trackers, at 97.2%. However, this metric includes 
the uncertain estimate of soiling magnitude obtained by comparison with non-co-located reference weather 
sites, and depends on measurements of only 45% of the modules in the system. An alternate metric for 
overall system performance is the Corrected-DNI 40-tracker performance index at 
101.3%, but this omits some low performance periods later in the evaluation period. Neither of these metrics 
includes performance during reduced system availability, so the weather-only data quality used in the MET 
quality category includes all data records where expected power production could be estimated, including 
low availability periods. 

Table 2-5.  Overall summary of energy performance metrics 
 

Type  QC  Measured  Modeled  Irradiation  DC Yield  PRdc  PIdc 

(kW)  (kW)  (kWh/m2) (kWh per 
kWh/m2) 

Raw 40 1697511 1574517 1847 1514 82.0 107.8 
Raw 36 2805916 2721764 3119 2503 80.2 103.1 
Raw MET 3233414 3298535 3843 2884 75.1 98.0 
Raw All 3961497 4485696 5151 3534 68.6 88.3 
Corr 40 1697511 1675964 1967 1514 77.0 101.3 
Corr 36 2805916 2885285 3318 2503 75.4 97.2 
Corr MET 3233414 3493784 4082 2884 70.7 92.5 
Corr All 3961497 4757211 5470 3534 64.6 83.3 

 
TMY 40 1508298 1508298 1658 1345 81.2 100.0 
TMY 36 2530357 2530357 2771 2257 81.4 100.0 
TMY MET 3114820 3114820 3423 2779 81.2 100.0 
TMY All 5266612 5266612 6044 4698 77.7 100.0 
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To avoid the erratic 2015 performance data apparent in Figure 2-12, Table 2-6 provides the same 
summaries as Table 2-5 but excludes 2015 performance. 

Table 2-6.  Post-2015 energy performance metrics 
 

Type  QC  Measured  Modeled  Irradiation  DC Yield  PRdc  PIdc 

(kWh)  (kWh)  (kWh/m2) (kWh per 
kWh/m2) 

Raw 40 1332666 1300268 1441 1189 82.5 102.5 
Raw 36 2378781 2403604 2647 2122 80.2 99.0 
Raw MET 2625111 2791330 3079 2342 76.1 94.0 
Raw All 3221962 3599536 4118 2874 69.8 89.5 
Corr 40 1332666 1393547 1551 1189 76.7 95.6 
Corr 36 2378781 2557960 2834 2122 74.9 93.0 
Corr MET 2625111 2969021 3294 2342 71.1 88.4 
Corr All 3221962 3831189 4403 2874 65.3 84.1 
TMY 40 1164658 1164658 1283 1039 81.0 100.0 
TMY 36 2128841 2128841 2334 1899 81.4 100.0 
TMY MET 2485242 2485242 2730 2217 81.2 100.0 
TMY All 4017558 4017558 4601 3584 77.9 100.0 

 

The evaluation of energy production capability is that “energy produced is within 2% of baseline model or 
targeted value, when the outliers are removed from the full data population.” The targeted generation 
modelled with Corrected DNI provides least bias error regarding instrumentation soiling, and the measured 
generation extracted from 36 working trackers excludes tracker availability outliers, and evaluating post- 
2015 performance avoids erratic (over-) performance identified at the beginning of the evaluation period, so 
the best metric for operating performance is a PI of 93.0%.  However, if the soiling on the array is comparable 
with the soiling on the pyrheliometer, then the Raw 36 PI of 99.0% would have reduced bias error in 
representing array performance absent soiling but have greater random uncertainty due to possible soiling 
discrepancies between the measurement system and the power system. 

 
2.2 Availability Review 

 
2.2.1 Methodology 

 
The following section describes the methodology used for the availability review including a description of 
the dataset and the availability definitions. 

 
2.2.1.1 Data Intake 

 
Soitec provided the following data for the period of August 2015 through July 2017: 

 
• 15-minute Supervisory Control and Data Acquisition (SCADA) data including power, direct normal 

irradiance (DNI), temperature, and wind speed [1]; and 
 

• Annual summary for all work undertaken at the Project [3]. 
 
2.2.1.2 Synthesized Records 

 
DNI data was provided from two sensors and was synthesized into a single value for the purpose of this 
analysis. To synthesize the value, the difference between the two DNI readings was calculated. Where the 
sensors agreed within 90% of each other, the average value was used. If the sensors did not agree, due to 
a bad sensor reading, the higher of the two values was used. During the period of 8 December 2015 through 
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29 December 2015, both DNI sensors were reading low values, virtually zero, for the entire period. DNV GL 
expects that these low readings are due to sensor error, and thus has considered this as zero data coverage 
and excluded the period from this analysis. 

 
DNV GL identified periods where power readings were null for a single tracker, while data was available for 
the other trackers. It is expected that this loss of data is due to tracker downtime. Because of this, DNV GL 
assumed a synthesized power value of 0kW for periods when a single tracker was missing data. During periods 
when all trackers were missing power data, DNV GL expects that there was a site-wide outage. Thus, during 
these periods, a power value of 0 kW was assigned to all trackers. 

 
2.2.1.3 Data coverage 

 
Data coverage is a measure of how much valid data is within a given dataset. The data coverage for the 
dataset is shown in Figure 2-13 by month. The DNI data coverage reflects the synthesized DNI value as 
discussed above with the period of 8 December 2015 through 29 December 2015 considered to have zero 
data coverage. 

 

 
 

Figure 2-13  Monthly data  coverage 
 
DNV GL noted that during some periods there was no valid power or DNI data. It is expected that at least 
some of these periods of missing data are due to site-wide outages. Because these periods of missing data 
are essential excluded from the analysis due to no data coverage, the overall plant availability results may 
be slightly higher than the actual performance. However, these periods are excluded from the tracker 
availability and do not affect the results. 

 
2.2.1.4 Availability Calculation 

 
The availability definition used for this analysis is a ratio of the number of online records and the total 
number of records: 

Availability == 
Number of records with trackers online 

Total number of records 

 
Two types of availability are considered: 

 
• System availability – This is an “all-in” availability that considers all sources of downtime regardless 

of cause. 
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• Tracker availability – This is an “in-scope” availability that excludes site-wide events that are not 
within the scope of the operator. 

 
DNV GL reviewed plots of power versus DNI plots for the tracker at the Project to determine an appropriate 
threshold for online/offline periods. Figure 2-14 shows a representative plot from Tracker 2. DNV GL notes a 
clearly defined horizontal grouping of points of 0 kW to ~400 kW at the bottom of the plot. These points 
represent periods when DNI resource was available, but the tracker was not producing. 

 
Above these points there is some scatter, then a strong trend of average power versus DNI is apparent (shown 
with the blue line on the plot). This line represents the expected power, which is approximately equal to 
20xDNI. Between the expected power and the online/offline threshold there are periods of scatter, some of 
which can be attributed sensor error due to the distance between the DNI sensor and the tracker. Other 
scatter is a result of poor performance by the tracker. Despite the lower power in this scatter area, DNV GL 
considers the tracker to be online during these periods. To avoid sensor error and tracker 
performance from impacting the availability calculation, DNV GL selected an online/offline threshold of 1,000 kW. 
The data points above the threshold are considered online records. Using this threshold ensures that the 
calculation is a measure of availability, not dependent on performance. 

 
The yellow box below, shows records where little to no DNI is measured, yet the tracker is producing. DNV GL 
considers these points to be a result of invalid DNI readings. To remove these points and other noise from 
start-up/shutdown periods, only records with a DNI>500 W/m2 were considered in the calculation; this is 
marked with the red line in the plot below. 
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DNI>500 W/m2 
 
 
Expected power 
�20*DNI 

 
 
 
 
 
 
 
 
 
 
 
 

Power>1000 kW 
 
 
 
 
 

Figure 2-14  Representative power versus DNI plot 
 
 
 
2.2.2 Results 

 
Using the methodology described above, DNV GL calculated the system and tracker availability. The overall 
System and Tracker Availability was 95.2% and 96.7%, respectively. The difference between the two values 
suggests that 1.5% of the downtime was a result site-wide events; however, as noted previously, the System 
Availability may be skewed high due to missing data during site-wide outages. DNV GL understands that the 
Project had a target availability of 98%. Using the described method, the Project failed to meet the target for 
both System and Tracker Availability. The annual results of these calculations are shown in the table below. 

 
 

Table 2-7  Annual availability results 
 

Year  System Availability [%]  Tracker Availability 
[%] 

2015  
88.7 95.7 

2016  
97.7 98.0 

2017  

  Overall  
95.2 96.7 

 
 
 
 
 
The monthly system and tracker availability is shown in the plot below with a line indicating the target 
availability of 98%. 
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Figure 2-15  Monthly system and  tracker availability 
 
 
 
To further understand the availability of the Project, DNV GL reviewed the causes of downtime for months 
with lower availability. The following was noted: 

 
• September 2015 – troubleshooting of faulted trackers occurred throughout the month. Additionally, 

Tracker 1 and Tracker 24 were offline for much of the month. 
 

• May 2016 – Tracker 24 offline for most of the month. 
 

• November 2016 – Tracker 24 offline for the entire month 
 

• December 2016 – Tracker 24 offline the entire month; Tracker 2 periodically offline for much of the 
month. Trackers 26, 27, and 30 offline for a week. 

 
• January 2017 – Tracker 24 offline the entire month; Tracker 2 periodically offline for much of the 

month. Tacker 38 offline for much of the month. 
 

• February 2017 – Tracker 2 periodically offline throughout the month; Tracker 17, Tracker 24, and 
Tracker 38 offline for much of the month. 

 
• March 2017 – Tracker 2 offline for most of the month; Tracker 17 offline for much of the month; 

many trackers were faulted 3/12-3/13. 
 

• April 2017 – Tracker 2 offline for most of the month; Tracker 17 offline for most of the month. 
 

• May 2017 – Tracker 2 offline for most of the month. 
 

• June 2017 – Tracker 2 offline for the entire month; Tracker 12 offline for part of the month. 
 

• July 2017 – Tracker 2 offline for the entire month. 
 
DNV GL notes that much of the tracker downtime was due to only three trackers: 2, 17, 24. The Project 
reported that much of the extended tracker downtime is due to encoder failures. A retrofit was installed in 
February and March 2017 to address the encoder failures. Tracker 2 was down due to a unique failure that 
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has taken an extended time to repair. If this tracker is excluded, the resulting availability is 97.3% for the 
period. Excluding the three worst trackers yields an availability of 98.2%, which is above the target 
availability. Thus, approximately 0.7% of the availability loss is due to just Tracker 2 and of 1.5% of the 
downtime is a result of just three trackers. With those three trackers excluded, much of the remaining 
downtime is s result of encoder failures. DNV GL notes that following the retrofit installed to address this 
issue, the availability target was met each month. This is shown in Figure 2-16 below. 

 
 

Figure 2-16  Tracker Availability excluding Trackers 2, 17, and  24 
 
 
 
 
2.3 Degradation Analysis 

 

 
Degradation is the overall change in production capacity of the equipment over time. 

 
2.3.1 Methodology 

 
Due to the evident array soiling, the trend of performance index values over time is not a reflection of 
changes in the production capacity of the power plant equipment. For this reason, the change in 
performance index observed during two short evaluation periods near the start and end of the evaluation 
period is used to indicate the change in equipment capacity. 

 
For the purposes of estimating system capacity in this section we add to the quality control criteria used in 
the energy model validation, a Cloudy criterion wherever the best measured DNI estimate is less than the 
clear-sky DNI modeled using the apparently-conservative Laue 1970 [1] method. 

 
To minimize the uncertainty introduced by use of the irradiance soiling correction, both short evaluation 
periods need to occur when the pyrheliometer and array soiling are negligible. The array and 
instrumentation were cleaned prior to the time of installation, and 16 August 2015 was the first available 
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clear day with good data quality. The array and instrumentation experienced a strong rain (0.26 inches in 
one day on 24 July 2017) near the end of the evaluation period, and 28 July 2017 was the day with best 
quality data available prior to the end of evaluation on 31 July 2017. 

 
Figure 2-17.  First degradation evaluation interval 
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Figure 2-18.  Second degradation evaluation interval 

 
 
 
2.3.2 Results 

 
 
 

Table 2-8.  Evaluation Period Summary 
 

Interval  Measured  EArray_Raw_36  DNI  Pldc 
Energy  (Wh)  (kWh/m2) 
(Wh) 

First 7903 7857 8.888 100.6 

Second 1025 1003 1.325 102.2 
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This suggests an improvement in performance over time of +0.8%/yr , which is within the measurement 
uncertainty of 5%/yr of the expected -0.7%/yr. With a longer evaluation period the uncertainty of the 
performance index values (dominated by the irradiance uncertainty) could be amortized over more years 
and a more significant result could be obtained. However, this result does not suggest any cause for concern 
regarding module degradation. 

 
3 CONCLUSIONS 

 

 
Subject to the limitations of the data collection system, the best estimate for evaluating energy production 
capability of the equipment during the evaluation period is 99% of the modeled prediction, which is within 
the margin of 2% of expected energy production. Note that this estimate assumes that the soiling on the 
irradiance instruments is comparable to the soiling on the whole array, and omits low availability and poor 
data quality time intervals. 

 
Overall system availability and tracker availability was found to be 95.2 and 96.7%, respectively, which is 
less than the target 98%. Much of the tracker downtime was a result of encoder failures, and following a 
design upgrade to the tracker encoders the monthly availability exceeded 98% consistently. Excluding the 
three lowest performing trackers yielded an availability of 98.2% for the period, which exceeds the target 
availability. 

 
Reviewing performance during clear-sky conditions near the start and end of the evaluation period, the 
performance appeared to improve by 1.6%, but this is well within the 5% estimated uncertainty of the 
performance index. That is, there does not appear to be any cause for concern that significant degradation 
occurred during the evaluation period. 
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APPENDIX C SOLAR FORECASTING REPORT 

The report from the University of California San Diego (UCSD) covers the solar forecasting 
performance objectives. 
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1 Project Description 
SOITEC constructed one 1 MWAC power plant at the U.S. Army’s installation at Fort Irwin, 

California, to demonstrate its Concentrix concentrating photovoltaic (CPV) technology. This 
project will address ESTCP’s objective of cost effective on-site distributed energy generation using 
CPV technology. 

The project is comprised of six activities:  site-specific system design; system assembly; sys- 
tem installation and commissioning; system deployment of in-situ DNI forecasting; performance 
monitoring and validation of forecasting algorithms. 

UCSD provided solar forecasting services for the project. UCSD’s forecasting engines are 
based on multi-layered data processing and machine learning algorithms,  and its integrated load 
and solar generation forecasts have been extensively refined over the past few years for intra-hour, 
one to six hours, and up to 36 hours ahead. 

The goal of this forecasting project is to provide high fidelity resource (DNI) and power output 
(PO) forecasts for CPV installation to be demonstrated at Fort Irwin. The intent is to demonstrate a 
direct, measurable benefit to the DoD by facilitating cost-effective ways to manage and distribute 
on-site solar generation, resulting in increased energy quality and security. 

UCSD has demonstrated the next generation, intelligent forecasting platform that integrated 
publicly available, privately owned and proprietary real-time meteorological, generation and load 
data from high frequency sensor networks, satellite and ground based imaging, and meter 
telemetry.  Improvements over traditional state-of-the-art forecasts provided increased visibility 
while reducing uncertainty. 

 

2 Phase 5: Final Reporting 
Demonstration Study Closure: UCSD provided input to the Demonstration Plan and a 

completed Final Report detailing the results of this project and its effectiveness for integration of 
distributed generation at Department of Defense facilities. 

In this document we report on the technical activities pursued to achieve the project’s 
objectives.  The description of the technical activities and the forecasting results follows the project 
structure in the Demonstration Plan. 

A general overview for the forecasting models produced in this project is given in Figure 1. 
The target variable (DNI or PO) is forecasted for horizons grouped in three categories: intra-hour 
(FH  < 1 hour), intra-day (1 hour ≤ FH  < 6 hours) and day-ahead (24 hours ≤ FH  < 36 hours, and 
FH ≥ 36 hours). The forecast horizon is the length of time into the future for which forecasts are to 
be prepared.  These forecasts differ in terms of issuing time: intra-hour and intra- day forecasts are 
produced continually every 15 minutes (a time-step equal to the data granularity). Day-ahead 
forecasts are produced only once daily at 10 am PST (Pacific Standard Time) in the case of the 24- 
to 36-ahead forecasts, in the case of ≥ 36 hours the forecasts are issued at 00:00 PST using daily 
averaged data. 
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The forecasts also differ in terms of predictors. Figure 1 indicates some of those variables for 
the different forecasts. For instance, intra-day forecasts make use of information derived from sky 
images, but day-ahead forecasts do not, as the information contained in the images is a very weak 
predictor of conditions for the next day. 

In the sections below we explain in detail the predictors used to forecast DNI and PO for each 
forecasting horizon category and quantify in detail the resulting forecasting accuracy. 

 

 
 

3 Phase 1.0 Preliminary solar resource analysis and 
instrumentation 
3.1   Data Collection, De-Trending, Forecast Engine Training and Analysis 

To demonstrate DNI and PO forecasts for Fort Irwin, we identified relevant inputs or predictors 
from historical data, historical satellite images and ground instruments. Data quality control and 
input selection were conducted for all data streams from ground sensors, plant power output, sky 
imagers, satellite images, and Numerical Weather Prediction (NWP) models, when appropriate. 

After analyzing the data available from SOITEC instrumentation already installed on site, it 
was decided that the only additional instruments necessary were two sky cameras. UCSD provided 
SOITEC the hardware and technical assistance necessary to install and maintain the sky cameras. 

Table 1 lists all the data sources used in this project and how they were obtained. The first six 
data sources comprise the local telemetry used in the project. Ambient data (DNI, temperature and 
wind speed) were obtained from instruments installed by SOITEC for monitoring the solar plant. 
The PO and solar tracker data were acquired by SOITEC from their plant monitoring tools. These 
data were transmitted to UCSD via email throughout the course of this project. Sky images were 
obtained from two sky cameras acquired by UCSD and deployed at the power plant by SOITEC, as 
mentioned.  The cameras captured sky images and transmitted them via FTP to a server at UCSD 
(see Figure 2). 
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The remaining two data sets listed in Table 1 originate from publicly available data streams and 

comprise the remote sensing data used in this project. The first one originates from forecasts 
produced by the North America Mesoscale Model (NAM). The NAM is a numerical weather pre- 
diction (NWP) model provided by the National Oceanic and Atmospheric Administration (NOAA) 
on a 12 km × 12 km spatial grid that covers the continental United States (CONUS). Forecasts are 
generated four times daily at 00Z, 06Z, 12Z and 18Z, with hourly temporal resolution for 1–36 
hour horizons and 3 h resolution for 39–84 hour horizons.  From all the NAM nodes that cover 
CONUS we select the ones nearest to Fort Irwin. Figure 3 shows the 13 NAM nodes selected. 

 

 
 

The NAM simulations produce a large amount of forecasted variables (e.g. wind speed, 
pressure at different altitudes, precipitation, etc.). For the purpose of this work we use only two 
variables that are closely related to the solar resource: 
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1. The downward shortwave radiative flux (DSWRF) [W/m2] at the surface, a synonym for 
GHI. 

2. The total cloud cover (TCDC) [%], where the entire atmosphere is treated as a single layer. 
The final remote sensing data set consists of satellite images acquired by the Geostationary 
Operational Environmental Satellite system (GOES), operated by the United States’ National 

Environmental Satellite, Data, and Information Service (NESDIS). The motivation to include these 
images in the analysis is related to the fact that images obtained from the sky cameras have a 
limited field of view. Figure 4 shows examples of the GOES images used in this project. 
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3.2 Demonstration of Forecast System 

For this project we developed a web application to display the forecasts in real time using data 
from Folsom, CA. The website can be accessed at http://coimbra.ucsd.edu/projects/FIW/ (see Fig. 
5). 

 

 
 
The web portal illustrates the forecasting output in real-time. New data is received from the 

local instruments and ingested by the forecast algorithms.  We then produce several products 
(figures, tables, etc.) that show the forecasted values and forecasting accuracy based on the latest 
available telemetry. 
  

http://coimbra.ucsd.edu/projects/FIW/
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4   Phase 2.0 Detailed short-term solar forecast development 
4.1 Task 2: Stochastic learning, cloud classification and segmentation 
algorithms 
 

In this task we used local telemetry to develop intra-hour irradiance forecasts.  The intra-hour 
forecast includes the shortest forecasting horizons in this work, but it is the most challenging type 
of forecast in solar energy applications. This results from the fact that at these very short horizons 
we are not only interested in predicting the average behavior of the solar irradiance and power 
generation, but also in predicting their large and sudden changes: the ramps.  Given that clouds 
moving in and out of the solar field are the key factor in determining these ramps, the intra-hour 
models rely on sky images. These images are essential to track the cloud motion and predict 
fluctuations in the solar generation. The activities for this phase are divided  in 5 subtasks. Below 
we report on the activities for each one. 
 
 
4.1.1 Subtask 2a: Train algorithms using resource data from Task 1 

In this subtask we used the data obtained in Phase 1 to create intra-hour forecasts for DNI. For 
this horizon the most relevant data sources include the most recent irradiance measurements and 
sky-images. 

At this location we have deployed two sky cameras:  one centered at the zenith and another 
centered at the sun. Figure 6 illustrates how the images from these cameras are processed to extract 
information about clouds moving towards the power plant. The image processing is explained in 
more detail in Section 4.1.2. 
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The benchmark model used for the intra-hour forecast is the clear-sky persistence model 
explained in Appendix C.1. The model assumes that the DNI clear-sky index (𝑘𝑘𝐷𝐷) remains constant 
in the forecasting window 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + [15, 45] minutes. 

We also applied machine-learning tools to predict DNI for these horizons. We used the k- 
nearest-neighbors (kNN) model to predict DNI from its historical behavior (see Appendix C.2). 
The kNN model uses historical data to identify instances in the past (the neighbors) that resemble 
the conditions at the forecasting issuing time. The kNN predictions are created from the target 
variables (DNI or PO) in the historical data that correspond to the nearest neighbors.  In this case 
the kNN neighbors are defined in terms of the following variables: 

• DNI data and derived variables thereof. These consist of: 
a. The average (AVG) and standard deviation (STD) of 𝑘𝑘𝐷𝐷for the 30-, 60-, 90- and 

120- minutes that precede 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑒𝑒. 
b. The min (MIN), max (MAX) and the slope (SLOPE) max − min values of 𝑘𝑘𝐷𝐷 in 

the same time intervals. 
• PO data and derived variables thereof. These consist of the same variables as in the case 

of DNI. 
• Clear-sky index from the 40 trackers for the time 𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

The kNN model was optimized using the exhaustive search method explained in the Appendix 
C.2. The target variable for this forecast is not the DNI in the future but the step change between 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + [15, 45] and 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. This approach makes the model more sensitive to large changes in the 
irradiance and produces better forecasts. The actual predicted DNI is calculated as: 

𝑫𝑫�𝒌𝒌𝒌𝒌𝒌𝒌(𝒕𝒕) =  (𝜹𝜹𝒌𝒌𝒌𝒌𝒌𝒌(𝒕𝒕) + 𝒌𝒌𝑫𝑫(𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)) × 𝑫𝑫𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕) (1) 

where the step change 𝛿𝛿𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡) is computed with the kNN model, and 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) is the theoretical 
clear-sky DNI computed with the model explained in Appendix B. The model was trained and 
optimized with the data shown in blue in Figure 7. 
 
 

 



 

12 
 

 
The optimal kNN model is not the same for the 15-, 30- and 45-minute horizons. It differs in 

terms of the set of variables to use as neighbors and the number of neighbors used to forecast the 
step changes. Table 2 lists the optimal parameters for each case. 
 

 
 

4.1.2 Subtask 2b: Evaluate sky-imaging data and develop dedicated forecast for location 

The sky-images were evaluated to create meaningful inputs for the forecasting algorithms. The 
first task to achieve this objective was to translate the image data into some numerical values that 
the forecasting algorithms can ingest. To do so, the three color channels – Red (R), Green (G) and 
Blue (B), and the ratio of Red to Blue were processed using the following operators: average, 
standard deviation and entropy. Figure 8 illustrates how the average and entropy values can be 
used to identify the type of cloud cover. The figure shows a clear demarcation for these values 
between cloudy periods and clear-sky periods. 
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In this example the image features were computed for the entire sky regardless of the cloud 
motion. However, we expected that sections in the sky image that show clouds moving toward the 
sun were better predictors for the DNI in the intra-hour horizons. To take this into account, for 
each image we determined the apparent cloud direction by comparing the image against the 
preceding one. The outcome of this algorithm is a velocity vector that characterizes the average 
cloud motion as illustrated in Figure 9. With this knowledge we computed the image features 
introduced above for different sections of the sky image as shown in Figure 6 above. 

 

 
 
These image features were then used to discriminate between clear and cloudy periods.  We 

used this information to update the optimal kNN forecasts. 
 

4.1.3 Subtask 2c: Automate sky imager forecast provision and supervise operation 

In this subtask we created several scripts to register and manage the sky images received from 
the remote sky cameras. The sky cameras are configured to record images every minute and 
transmit them via FTP to our servers at UCSD. Once the images are available at the server, 
dedicated scripts move the images into a tree structure to facilitate image retrieval. The image files 
are organized in folders that follow the structure: location or camera id >year >month >day (see 
Fig. 10). The image path and respective UTC timestamp are also inserted into a MySQL database. 
Forecasting scripts retrieve the necessary images using the database and process them following 
the algorithm explained in Section 4.1.2. 
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4.1.4 Subtask 2d: Analyze short-term forecasting skills 

In this section we assessed the forecasting performance of the forecasting models that predict 
DNI 15, 30 and 45 minutes ahead of time. In total we created three models in this task: 

• The persistence forecast denoted as 𝐷𝐷�𝑝𝑝𝑝𝑝𝑝𝑝; 
• The kNN model introduced in Section 4.1.1 and denoted as 𝐷𝐷�𝑘𝑘𝑘𝑘𝑘𝑘; 
• The kNN model that uses sky image features to discriminate between clear and cloudy 

periods, denoted as 𝐷𝐷�𝑘𝑘𝑘𝑘𝑘𝑘+𝐼𝐼𝐼𝐼𝐼𝐼. 
The forecasting performance for these models was analyzed for the testing set (data in orange 

in Figure 7). A single month was selected for testing the forecast given that is the only period for 
which we had sky images. However, in that month the data shows all levels of variability as the 𝑘𝑘𝐷𝐷 
step changes show in the bottom plot of Figure 7. The forecasting performance was quantified 
using the error metrics described in Appendix A. The error metrics for the testing set are listed in 
Table 3. The listed values show that the kNN model without image information already shows 
substantial forecasting skill (above 20 %). When image features are included in the forecasts that 
skill improves by 1 to 2%. 

Another deliverable for this task is the assessment of the forecasting performance for ramp 
control. Ramps are sudden step changes in the irradiance and power generation that result from 
passing clouds.  For DNI and CPV power generation, such events can result in changes of more 
than 50% in the irradiance value and are very difficult to predict.  Nevertheless, a good forecasting 
model should perform well for such events. In order to assess the performance of the kNN model 
used in this project we computed the ramp magnitude (the absolute value of step changes in the 
DNI clear-sky index time series). Then we computed the root-mean-square error (RMSE) for 
forecasts binned by the ramp magnitude value. RMSE is a frequently used measure of the 
differences between values predicted by a forecasting model the values actually observed. The 
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results for this analysis are listed in Table 4 for the ramp bins: 10 to 25%, 25% to 50%, and 50% to 
100%. A 50% ramp in the 30-minute forecast, for instance, means that |𝑘𝑘𝐷𝐷(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚) −
𝑘𝑘𝐷𝐷(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)| = 0.5. 

We define the ramps in terms of clear-sky index in order to remove deterministic variations 
from this analysis. Otherwise deterministic DNI variations at low solar elevations would be 
recorded as ramps. 
 

 
 

 
 
The first row in the table indicates the number of ramps in each bin. As expected large ramps 

are more frequent for larger forecasting horizons.  The RMSE errors listed are much larger than the 
ones in Table 3 since they reflect the models’ performance in rarer but extreme events.  The results 
show the Persistence model has smaller RMSE than the kNN for small ramps. But as these 
increase the accuracy of the kNN model surpasses persistence by a large margin. For the largest 
ramps the kNN model with images reduces the error by 30 to 55% relative to persistence. 
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4.1.5 Subtask 2e: Evaluate forecasting uncertainty 

Another goal for this project is to estimate the prediction intervals (PI) for the forecast. A PI is 
an estimate of the interval in which a future measured value will fall, given by a lower and an 
upper bound. The PI combined with the point forecasts PI provide information about the 
forecasting uncertainty and are very important for operational planning. Popular approaches to 
quantify PIs often rely on the assumption of normality, but in this case such assumption is not 
always true. For example, whenever irradiance or power output approach their natural limits the 
distribution of possible outcomes will tend to asymmetric distributions such as the gamma, or the 
exponential distributions. For this reason, we defined the PIs empirically using the extreme values 
for the individual forecasts produced by the kNN forecasting model. 

In order to assign a confidence level to these intervals we computed the PI coverage probability 
(PICP), that is, the probability that the actual irradiance is within the range defined by the PI. A 
second metric used to measure the quality of the prediction intervals is the PI normalized average 
width (PINAW). If PINAW is large and approaches the maximum possible range, the PI will have 
little value: it is trivial to say that the future irradiance will be between its possible extreme values. 
Thus, the goal is to maximize PICP while minimizing PINAW. Figure 11 indicates how the PIs are 
calculated and gives examples of good and bad PIs. 
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Table 5 lists the PICP and PINAW obtained for the kNN model with sky image features. For 
comparison the table also lists those values for the persistence model. In that case the PIs are 
created by using the standard deviation of the DNI time series in the 120 minutes that precede 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Figure 12 shows the kNN forecasts in solid blue and the respective intervals for three days 
in the testing data set. 
 
 

 
 
 

 
 

5   Phase 3.0 Intra-day solar forecasting 
5.1   Task 3.1: Remote sensing enhanced by stochastic learning algorithms 

Similarly to the intra-hour forecast presented in the previous section, the intra-day solar 
forecast also targets the forecasting of ramps in the solar resource. However, for these horizons the 
cloud information in sky images is too short-lived (sky images are useful for horizons below 30 to 
45 minutes). An alternative to sky images that allows for a much larger field of view are the 
images acquired by the Geostationary Operational Environmental Satellite system (GOES) as 
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explained in Section 3. Another source of relevant data for the intra-day forecast comes from 
numerical weather prediction (NWP) models. Specifically, we use data from the North American 
Mesoscale Forecast System (NAM). Thus, the set of predictors includes local telemetry and remote 
sensing (satellite images and NAM forecasts). 

In this task we seek to create DNI forecasts for 60 to 360 minutes using these two data sources. 
The activities for this task are divided in 5 subtasks. Below we report on the progress of each one. 

 
5.1.1 Subtask 3a: Develop a regional sector model for the Fort Irwin location 

In this subtask we have developed two models to predict DNI in 15 min steps out to 360 
minutes: 

1. An artificial neural network (ANN) model that ingests NAM data to produce DNI 
forecasts from 30 to 360 minutes. The ANN models uses the NAM data introduced in 
Section 3. 

2. A kNN model similar to the one used to forecast DNI intra-hourly in the previous 
section. The only difference in that in this task we replaced the information from the 
sky images with information retrieved from satellite imagery. 

The inclusion of the ANN model that uses NAM data only is an important benchmark: it will 
allow us to quantify forecasting accuracy when no local telemetry is available. Figure 13 shows the 
DNI data used in this task and identifies training data and testing data. Contrary to the intra-day 
forecasts, all the data sources are available at every time instance, thus we segregate training days 
from testing days randomly in order to include data from every season in those sets. 
 

5.1.2 Subtask 3b: Validate model with ground telemetry 

In this subtask we validated the forecasting models using ground telemetry (data shown in 
orange in Figure 13). 
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Again we used the persistence model introduced in Appendix C.1 as a reference model.  Table 
6 lists the error metrics for the models. Again, by using local telemetry and selecting the optimal 
set of predictors the kNN model shows substantial forecasting skill. The ANN model with NAM 
data shows poor skill compared to the kNN model highlighting the importance of local telemetry 
and predictor selection in obtaining the best forecasting performance possible. 
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5.1.3 Subtask 3c: Apply stochastic learning tools for output post-processing 

In this subtask we applied model output statistics (MOS) post-processing to further improve the 
forecasting performance.  The idea behind this task is to take advantage of the error analysis for the 
different forecasting models in order to improve the accuracy. 

In this project we combine all the different forecasts available (persistence, ANN, kNN) using a 
least-squares minimization to obtain a new forecast: 

𝑫𝑫�𝑴𝑴𝑴𝑴𝑴𝑴 =  𝒘𝒘𝟏𝟏𝑫𝑫�𝒑𝒑𝒑𝒑𝒑𝒑 +  𝒘𝒘𝟐𝟐𝑫𝑫�𝑨𝑨𝑵𝑵𝑵𝑵  +  𝒘𝒘𝟑𝟑𝑫𝑫�𝒌𝒌𝒌𝒌𝒌𝒌 +  𝜶𝜶 (2) 
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The goal of the least-squares is to find the weights (w1, w2 and w3) and constant α that 
minimize the error between 𝐷𝐷�𝑀𝑀𝑀𝑀𝑀𝑀 and the measured DNI. This process was applied to the training 
data and the performance of 𝐷𝐷�𝑀𝑀𝑀𝑀𝑀𝑀 was, as before, assessed using the testing data set. The error 
metrics for this model are also listed in Table 6. These results show that model output post-
processing improves forecasting skill over the other models and should be used in the real-time 
forecasting. 

 
5.1.4 Subtask 3d: Deliver intra-day forecasts to PI system (or equivalent) 

The purpose of this task was to transmit the intra-day forecast to the plant managers, for 
instance, by inserting the forecast into a PI system historian.  From there the interested parties 
could assess the forecast.  To accomplish this goal, once the forecast was created every 15 minutes, 
we made available at the web portal the forecasted data in a comma separated values (csv) file. 
Figure 14 explains how the file can be accessed and shows a preview of the csv file contents. 

 

 
 
5.1.5 Subtask 3e: Deliver intra-day forecasts to Web portal 

The models explained here were deployed in real time in our servers at UCSD. The output of 
the forecasting models was saved into a MySQL database. Several other plotting and error 
quantification scripts were then ran to create plots and diagnose tables for displaying in the web 
portal. Figure 5 (above in Section 3.2) illustrates real-time data shown in the web portal developed 
for this project. 
 

6   Phase 4.0: Solar and Power Output forecasting 
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6.1   Task 4.1: Day ahead solar availability forecasts 

This task consists of models that predict DNI and power output (PO) for the next day. The goal 
for these models was not to predict these variables to a fine granularity; instead the models predict 
longer trends in the target variables. For instance, forecast the aggregated level of DNI or PO for 
the following day, the onset and length of cloudy periods for the next day, etc. Such predictions are 
very important to determine the expected power generation for the next day as requested by the 
regulating entities and independent system operators whose job is to schedule resources to balance 
the electric grids. 

Specifically the goal of this task was to create DNI forecasts at 10 am (local time) for the next 
24 to 36 hours, as exemplified in Fig. 15. The data granularity for these forecasts is 1 hour. The 
forecasting algorithm uses historical data available at the issuing time and also data from numerical 
weather prediction models (NWP) that cover the 24 to 36 forecasting window. The activities for 
this phase are divided in three subtasks. Below we report on the activities for each one. 
 

 
 
 
6.1.1 Subtask 4.1a: Train algorithms using locally generated and our own solar resource data 

As in previous cases, we started this subtask by assembling several data sets necessary for the 
day-ahead forecast as indicated by Fig. 15. In the first place, we acquired from SOITEC DNI 
measurements. The data set was then augmented with forecasted data from the NAM model 
introduced in Section 3. Given that the goal of this task was to produce day-ahead solar DNI 
forecasts at 10:00 PST (18:00 UTC) we used only the NAM forecasts produced in the last daily 
update (18Z). 
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Figure 13 above in Subtask 3b shows the DNI data obtained from the sensors at Fort Irwin. 
Data in blue was used for training the different forecasting algorithms. Data in orange was used to 
assess the forecasting performance. 

To illustrate the relationship between NAM’s GHI data and local DNI data Figure 16 shows the 
DNI data for a few days and the corresponding GHI forecasted data obtained from the NAM model 
for the 13 nodes nearest to Fort Irwin. 

 

 
 
After collecting the data, the different irradiance variables (NAM’s GHI and DNI) were 

normalized using the clear-sky model described in Appendix B. This operation removes 
deterministic trends from the training data and usually improves the forecasting performance. 
 
Forecasting Models 

In this section we explain the different forecasting models developed in this subtask.  The first 
model used is the persistence algorithm given by Equation 10 in Appendix C. 

Given that the assumption of persistence is not very accurate for the day-ahead forecast we also 
create a non-linear model from the NAM forecasted data. This model uses the GHI NAM 
predictions for the nodes closest to Fort Irwin. Using the training data set we normalized NAM’s 
GHI for the 13 nodes using clear-sky GHI values and then averaged this variable across all nodes. 
The resulting value is denoted as 〈𝑘𝑘𝐺𝐺〉. 

By plotting measured DNI against 〈𝑘𝑘𝐺𝐺〉 as in Fig. 17 we estimated the best curve that maps 
NAM’s data into the target variable. This process resulted into the following piecewise function: 

𝑫𝑫�𝑵𝑵𝑵𝑵𝑵𝑵 =  �
𝟕𝟕𝟕𝟕𝟕𝟕.𝟑𝟑〈𝒌𝒌𝑮𝑮〉𝟑𝟑.𝟒𝟒𝟒𝟒𝟒𝟒, 𝒊𝒊𝒊𝒊  〈𝒌𝒌𝑮𝑮〉 <  𝟏𝟏.𝟎𝟎𝟎𝟎

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
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The final class of models trained in this task consists of machine learning models, more 
specifically, the kNN model. In this model neighbors are defined in terms of the NAM’s GHI and 
cloud cover forecasts for the 13 nodes. Time instances that exhibited similar behavior in terms of 
NAM forecast were tagged as neighbors.  Then, using the DNI data from the training set that 
corresponds to those neighbors we computed the predicted irradiance for the next 24 to 36 hours by 
aggregating the measured DNI data. The optimal kNN model was then obtained using the 
algorithm explained in the Appendix C.2. 

The optimization process indicated that, out of the 26 variables available, the kNN achieved the 
lowest forecasting error if only 17 are used (Fig. 18(right)) and that the optimal number of 
neighbors is 10. Figure 18(left) shows the convergence of this optimization process. Figure 
18(right) shows the NAM data selected to establish the optimal set of neighbors. 

After determining the best set of neighbors the kNN DNI forecast is calculated as 

𝑫𝑫�𝒌𝒌𝒌𝒌𝒌𝒌(𝒕𝒕) =  
𝟏𝟏
𝟏𝟏𝟏𝟏

�𝒌𝒌𝑫𝑫(𝝉𝝉𝒊𝒊) ×  𝑫𝑫𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕)
𝟏𝟏𝟏𝟏

𝒊𝒊=𝟏𝟏

 (3) 

where 𝑘𝑘𝐷𝐷(𝜏𝜏𝑖𝑖) is the DNI clear-sky index from the training  data set that corresponds to the 
neighbors identified by the time 𝜏𝜏𝑖𝑖. 
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6.1.2 Subtask 4.1b:Develop 24 to 36 hour ahead solar forecast generated at 10 a.m. each day 

The three models explained in the previous section were then applied to the data set presented 
above. The NAM model and the kNN model were determined using the training data set and then 
applied to the testing data set. Each model produces forecasts valid for 𝑡𝑡 ∈  [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 24ℎ, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +
36ℎ] where 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 10 am local time. 

The forecasting performance is established using the error metrics explained in Appendix A. 
In the results shown below we report on the error metrics applied to the testing data set since those 
are the results representative of the models’ performance when applied to live data. 

Table 7 lists these metrics for the three models described in the previous section irrespective of 
the forecasting horizon.  The error metrics are in 𝑊𝑊𝑚𝑚−2 2. We also list the values relative to the 
maximum measured DNI (1050 𝑊𝑊𝑚𝑚−2). Those values are denoted by the prefix “r”. 

 

 
 

Finally, we also assessed how the models perform as a function of the forecasting horizon. To 
do so, we segregated the forecasted data into the 24, 25, . . . 36 horizons. Then we computed the 
error metrics for each horizon. 
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Figure 19 shows the forecasting skill obtained in this analysis.  For horizons larger than 33 
hours (that is 7 pm local time in the day after the issuing time) there are no data points due to the 
low solar elevation. The figure shows that the kNN model (𝐷𝐷�𝑘𝑘𝑘𝑘𝑘𝑘) achieves skills close to or above 
30% for all horizons except for 31 hours where that values drops to 7%. The NAM model (𝐷𝐷�𝑁𝑁𝑁𝑁𝑁𝑁) 
achieves skills close to or above 20% for horizons lower than 31 hours. It then drops to negative 
skills. 
 

 
 

As mentioned in the introduction to this phase, the day-ahead forecast is most useful to predict 
the solar availability for the following day. Irradiance availability is computed by integrating DNI 
over the forecasting window 𝑡𝑡 ∈  [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 24ℎ, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 36ℎ], which yields a value in 𝑊𝑊ℎ𝑚𝑚−2. 
By computing this value for the measured and forecasted data we can then access the forecasting 
performance when predicting solar availability. The results from this analysis are listed in Table 8. 
These results again highlight the superiority of the kNN model. 
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6.1.3 Subtask 4.1c:Apply stochastic learning tools for output post-processing 

In this subtask we applied model output statistics (MOS) post-processing to further improve the 
forecasting performance.  Here we proceeded as in Section 5.1.3 and combined all the different 
forecasts available (persistence, NAM, kNN) using a least-squares minimization to obtain a new 
forecast: 

𝑫𝑫�𝑴𝑴𝑴𝑴𝑴𝑴 =  𝒘𝒘𝟏𝟏𝑫𝑫�𝒑𝒑𝒑𝒑𝒑𝒑 +  𝒘𝒘𝟐𝟐𝑫𝑫�𝑵𝑵𝑵𝑵𝑵𝑵  +  𝒘𝒘𝟑𝟑𝑫𝑫�𝒌𝒌𝒌𝒌𝒌𝒌 +  𝜶𝜶 (4) 

The free parameters 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 and 𝛼𝛼 are determined using the training data. The forecasting skill 
as a function of the horizon for this model is shown in Fig. 19, and its error metrics are listed in the 
last row of Table 7. These results show that model output post-processing improves forecasting 
skill over the other models and should be used in real-time forecasting. 

 
6.2   Task 4.2: Prospective power forecasting 

In this task we developed forecasting models to predict the power output (PO) at Fort Irwin for 
the following forecasting horizons: Intra-hour, Intra-Day, Day-ahead and Days-ahead. Figure 1 
shown towards the beginning of this report illustrates the different forecasting windows and 
indicates some of the exogenous data (sky images, satellite images, NAM data) used for the 
different horizons. The models used to predict PO mirror what was done for DNI and explained in 
the previous sections. The activities for this phase are divided in 3 subtasks. Below we report on 
the activities for each one. 
 
6.2.1 Subtask 4.2a: Develop plant power output model for time horizons in phases 2 to 4 

Intra-hour forecasts 
In this subtask we used PO, DNI and solar tracker data obtained from SOITEC to produce PO 

forecasts 15, 30, and 45 minutes ahead of time. Another source of information for this forecast 
consisted of the features derived from sky images. The models used in this case are the ones 
presented in Section 4.1.1 for the intra-hour DNI forecast. 
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The error metrics for the different models for intra-day PO forecast are shown in Table 9 as a 
function of the forecasting horizon.  The error metrics are in kW. We also list the values relative 
to the plant capacity (1000 kW). Those values are denoted by the prefix “r”. 

 

 
 

The results for PO are similar to the results for DNI. However in this case, the kNN model 
without images shows lower skill predicting PO than DNI. When information from the sky-
images is included in the model the forecast improves markedly. 

 
Intra-day forecasts 

In this subtask we developed models to predict PO in 15 min steps from 60 minutes out to 6 
hours following the methodology described in Section 5 for DNI. 
We also applied model output statistics (MOS) to further improve the forecasting skill.  The error 
metrics for the different intra-day PO forecasting models are shown in Table 10 as a function of 
the forecasting horizon. The results in this table show the good forecasting performance for the 
kNN and MOS models. That is, the error metrics for these models are substantial lower than the 
respective values for the reference model. 
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Day-ahead forecasts 

The day-ahead forecasting models for PO were developed using the framework presented in 
detail in Section 6.1. The only difference is that in this case we used measured PO data as the 
target instead of DNI. 

In this case we also developed a model that uses the GHI NAM predictions for the nodes 
closest to Fort Irwin. By plotting measured PO against 〈𝑘𝑘𝐺𝐺〉 as in Fig. 20 we can estimate the 
best curve that maps NAM’s data into the target variable. The model is described by the 
following piecewise function: 

𝑷𝑷�𝑵𝑵𝑵𝑵𝑵𝑵 =  �
𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔 × 𝟏𝟏𝟏𝟏𝟓𝟓 〈𝒌𝒌𝑮𝑮〉𝟔𝟔.𝟔𝟔𝟔𝟔𝟔𝟔, 𝒊𝒊𝒊𝒊  〈𝒌𝒌𝑮𝑮〉 <  𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎

𝟗𝟗.𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟏𝟏𝟏𝟓𝟓, 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
 (5) 
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The optimization of the kNN model indicates that, out of the 26 variables available, the kNN 
achieves the lowest PO forecasting error if only 16 are used (Fig. 21(right)) and that the optimal 
number of neighbors is 10. 
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Table 11 lists the metrics for the three models considering all forecasting horizons. Figure 22 
shows the forecasting skill as a function of the forecasting horizon. The results are very similar 
to the ones presented above for DNI day-ahead forecast.  The figure shows that the kNN model  

 
(𝑃𝑃�𝑘𝑘𝑘𝑘𝑘𝑘) achieves skills above 30% for all horizons. The NAM model (𝑃𝑃�𝑁𝑁𝑁𝑁𝑁𝑁) achieves skills close 
to or above 20% for horizons lower than 31 hours. It then drops to negative skills. 
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Here we also studied the models’ performance in predicting next-day PO availability.  To do 
so, we integrated PO over the forecasting window 𝑡𝑡 ∈  [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 24ℎ, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 36ℎ], which 
yielded a value in Wh. By computing this value for the measured and forecasted data we can then 
access the forecasting performance at predicting power availability.  The results from this 
analysis are listed in Table 12. 

 
 

Just as in the previous case, here we also explored MOS to further improve the forecasting 
performance. MOS was applied to the training data and the performance of 𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀 was assessed 
using the testing data set. The forecasting skill as a function of the horizon for this model is 
shown in Fig. 22 above, and the error metrics for this model are listed in the last row of Table 11 
above. 
 

6.3   Task 4.3: 48-hour ahead DNI and PO forecasts 

The final task in this project consists of developing models that predict the daily average DNI 
and PO two days ahead of time. These models were treated differently than the ones presented 
above since they deal with daily averaged data (night time values excluded).   As such, these 
models provide no information about short-lived DNI and PO dynamics but are useful to 
anticipate daily averages two days ahead of time. As in the 24 to 36-hour forecasts, such 
predictions are important for regulating entities and independent system operators whose job is 
to schedule resources to balance the electric grids. 

Specifically the goal of this task was to create DNI and PO forecasts at 00:00 (local time) 
two days in the future, as exemplified in Fig. 23. The data granularity for these forecasts is 1 day, 
and the forecast produces as single value:  the daily average of DNI or PO. As in the previous 
cases, the forecasting algorithm used historical data available at the issuing time and also data 
from numerical weather prediction models (NWP) that cover the 48-hour forecasting window. 
 

6.3.1 Subtask 4.3a: Train algorithms using locally generated and our own solar resource 
data 

In this task, the ground telemetry used corresponds to the DNI and PO data illustrated in Fig. 
13. The only difference was that the data was aggregated into daily average values (excluding 
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night time). The input data set was also augmented with forecasted data from the NAM model 
introduced in Section 3. These data were also aggregated into daily average values. All variables 
were normalized using the clear-sky model described in Appendix B. 

In terms of models used to produce the 48-hour ahead forecasts, we used two models:  the 
baseline persistence model and an optimized ANN model (algorithm explained in the Appendix 
C.2). 

 
 
6.3.2 Subtask 4.3b: Validation of the 48-hour ahead forecast models 

After training the ANN forecasts data was produced for the holdout validation data set. As in 
the previous cases, the models’ performance was determined using the suite of metrics 
introduced in the Appendix A. The bulk error metrics are listed in Table 13 for both DNI and 
PO. The results are similar to the ones presented above for DNI and PO day-ahead forecast. The 
table shows that the ANN model (𝑃𝑃�𝐴𝐴𝐴𝐴𝐴𝐴) was achieves skills above 40% for both variables. 
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7   CONCLUSION 
This document describes the technical tasks performed by UCSD for the grant “Concentrated 

PV Forecast System for On-Site Distributed Generation”. The goal of this project was to create 
fore- casting models for DNI and CPV power generation for intra-hour, intra-day and day-ahead 
horizons. The models use both remote sensing data (satellite images and NAM forecasts) and 
local telemetry (irradiance sensor, sky images, etc.) to create optimized machine learning 
forecasts with good forecasting skill. 

Table 14 lists the status for the milestones and deliverables achieved in this project. 
 
 

 
 
Finally, Table 15 lists the success criteria in terms of the forecast skill metric s as defined in 

the in the Demonstration Plan. The metric s is defined as the ratio:  s = (V-U)/V = 1 – U/V. The 
uncertainty U is defined as the standard deviation of a model’s forecast error and the variability 
V is the standard deviation of the solar irradiance step changes. As demonstrated in  [1] this 
metric can be approximated by s = 1− RMSE/RMSEper, where RMSE is the forecast error for the 
new models developed in this project and RMSEper is the error for the reference persistence 
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model. Thus, the values listed in Table 15 correspond the forecasting skill values for the best 
model in the tables above for the intra-hour, intra-day and day-ahead DNI and PO forecast. 

 

 
For shorter time horizons the targeted forecasting skills were not fully achieved. However the 

obtained values are in agreement with the best performing forecasting models published in the 
literature [2]. With respect to longer horizons the Demonstration Plan exceeded the targets. 
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Appendix A 
Error metrics 

The forecasting performance was established by analyzing the forecasting error, that is, the 
difference between the measured and forecasted data. We evaluated the models using error 
metrics commonly found in forecast literature:  mean absolute error (MAE), mean bias error 
(MBE), root mean square error (RMSE), and forecasting skill (s) [1, 3]. 

MBE is a measure of systematic errors (or bias). An unbiased forecasting model, that is, one 
that on average does not under or over predicts the target variable, will have a MBE value close 
to 0. It is an important metric because understanding the overall forecasting bias (over or under- 
forecasting) would allow power system operators to better allocate resources for compensating 
forecasting errors in the dispatch process. 

MAE is the magnitude of the forecasting error. In this metric all errors contribute equally 
regardless of their magnitude. 

RMSE is a measure of random errors and, unlike MAE, it penalizes larger errors. In this 
sense this is a very important metric since one of the goals of this project is to reduce the 
instances of large error associated with large ramps. 

Forecast skill s is a convenient way to benchmark new forecasting models. It measures the 
models’ performance relative to the persistence model. It is a good metric to compare models 
applied to different variables (DNI and PO) since the intrinsic variability of the data is reflected 
in the RMSE for the persistence model: low RMSE for the persistence model implies low 
variability data whereas high RMSE implies high variability. For example, a model that returns 
very low RMSE for a data set comprised of only clear-sky days will have a very low skill since 
the RMSE for the persistence model will also be very low. The ideal forecast will have a low 
RMSE and high forecasting skill. 

Mathematically these error metrics are defined as: 

𝑴𝑴𝑴𝑴𝑴𝑴 =  
𝟏𝟏
𝒎𝒎
�|𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊|
𝒎𝒎

𝒊𝒊=𝟏𝟏

 (6) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 (7) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 (8) 

𝑠𝑠 =  1 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝

 (9) 



 

37 
 

where 𝑦𝑦 is the true value, 𝑦𝑦� is the forecasted value and RMSE𝑝𝑝 is the RMSE of the reference 
model: persistence forecast.  These metrics can be applied to any subset of the data. In all the 
results presented above nighttime values are discarded. 
 
Clear Sky Model 

The clear-sky model returns irradiance and power for a given geographical location and time 
when clouds are absent.  However, even in this condition the irradiance at ground level is 
influenced by other environmental conditions such as the aerosol content and precipitable water, 
which are quantified through the atmospheric turbidity. Several turbidity parameters have been 
introduced with the most popular being the Linke turbidity factor. Many models have been 
developed to estimate the clear-sky irradiance and comprehensive comparisons of some of the 
most popular models can be found in [4, 5]. In this work we used the clear-sky model proposed 
by Ineichen and Perez [6], as it is one of the best performing models, and one of the simplest. It 
requires as inputs the solar elevation and the Linke turbidity. The solar elevation for a given 
latitude and longitude is computed from the sun’s orbital elements. The Linke turbidity is 
obtained from the worldwide monthly averaged maps available at [7] which were created based 
on the algorithm proposed by Remund et al [8]. Figure 24(top) compares the measured DNI 
against the DNI obtained with the Ineichen model for three days Fort Irwin (blue curve). The 
bottom figure compares measured and clear-sky PO (blue curve). Clear-sky PO is obtained from 
the clear-sky DNI by multiplying this value by 960. 
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The figure shows that the DNI clear-sky model obtained with global turbidity factors shows 
the correct shape but not the correct magnitude.  This suggests the following improvement:  for 
each time instance we identified the preceding clear-sky instances using the algorithm  provided 
in [9]. Then we computed a corrective factor that adjusts the Ineichen model to match the 
measured clear-sky DNI and PO. The resulting clear-sky model is shown in orange. As the figure 
illustrates, by taking into account local telemetry we can obtain a clear-sky model that 
approximates measured clear-sky data (first day and the first half of the second day) much more 
closely. 
 

Forecast Models 

Persistence model 

The reference model used throughout this work is the persistence model. Persistence assumes 
that the DNI and PO clear-sky indexes (the ratio between the measured DNI and PO and their 
theoretical clear-sky values) over the forecasting window are the same as those values at the 
forecasting issuing time. Under this assumption, we calculated the persistence model according 
to the following expression: 

𝒚𝒚�𝒑𝒑𝒑𝒑𝒑𝒑(𝒕𝒕) =  𝒌𝒌𝒚𝒚(𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) × 𝒚𝒚𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕),      𝒕𝒕 ∈  𝜴𝜴 (10) 

where 𝑦𝑦 denotes the variable to forecasts (DNI or PO), 𝑦𝑦�𝑝𝑝𝑝𝑝𝑝𝑝 denotes the forecasted value and 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 
denotes the theoretical clear-sky value. Intra-hour and intra-day forecasts are issued continuously 
throughout the day in 15-minute steps, thus 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is an increasing variable in 15-minute steps. 
The 24- to 36-hour ahead forecasts are issued one time daily at 10 am PST, resulting in 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 
10 am (PST), whereas the 48-hour  ahead forecasts are issued at 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  00:00 (PST). Finally 
Ω denotes the forecasting window for each forecast category: 

• Intra-hour forecast Ω = [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 15 min, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 45 min]; 
• Intra-day forecast Ω = [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 1 hour, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 6 hours]; 
• Day-ahead forecast Ω = [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 24 hours, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 36 hours] for the 24- to 36-hour ahead 

forecast, and Ω = [𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 24 hours, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+ 48 hours] for the 48-hour ahead forecast. 
 
 

Machine Learning Models 

In this section we explain in broad strokes the machine learning models used in this project. 
Figure 25 illustrates the process used to train and validate the models. In the training stage we 
used historical data to determine a function that maps the input variables or predictors into the 
output extracted from current and past satellite or sky images, etc. Output data includes the data 
we want to forecast. In this case DNI or PO at the targeted forecasting horizons. 
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In the training process we also included the preprocessing of the data. That includes 
techniques as the normalization of DNI and PO with a clear-sky model. 

In the testing stage we assessed the forecasting performance by analyzing the forecasting 
error (the difference between the forecasted data and the testing target). Appendix A provides 
detailed information about the quantification of the forecasting error. 

 

 
 

The key step in this process relies in obtaining the appropriate mapping function f (·).  The 
input data x is used to forecast the output variable 𝑦𝑦� (DNI or Power output) at time t + FH. In the 
training stage a mapping function f (·) is determined. In this work we explore a large family of 
stochastic tools to determine f (·). These include:  k-nearest-neighbors (kNN), artificial neural 
networks (ANN) and least squares minimization. 

In the kNN model neighbors are defined in terms of the various predictors available (current 
telemetry, NAM forecasts, etc.) Time instances that exhibit similar behavior in terms of 
predictors are tagged as neighbors. Then, using the DNI or PO data from the training set that 
corresponds to those neighbors we compute the predicted values for the targeted forecasting 
horizon by aggregating the historical data. 

Depending on the case we can have more than 100 variables that can be used as predictors 
(such as in the case of the intra-hour forecast).  In general, the set of variables that defines the 
optimal neighbors (the ones the minimize forecasting error), is a subset of all available variables. 
To determine this set we use an exhaustive search method in which all variables and 
combinations thereof are tested using the training data. Another parameter tested is the number 
of neighbors used in calculating the forecast. Practice shows that using the closest neighbor 
results in poor results, and that a pool of neighbors should be used instead. 

After determining the best set of neighbors the kNN forecast for a target variable y (DNI or 
PO) is calculated as 
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𝒚𝒚�𝒌𝒌𝒌𝒌𝒌𝒌(𝒕𝒕) =  
𝟏𝟏
𝒌𝒌
�𝒌𝒌𝒚𝒚(𝝉𝝉𝒊𝒊) ×  𝒚𝒚𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕)
𝒌𝒌

𝒊𝒊=𝟏𝟏

,   𝒕𝒕  ∈  𝜴𝜴 (11) 

where 𝑘𝑘𝑦𝑦(𝜏𝜏𝑖𝑖) is the clear-sky index from the training  data set that corresponds to the neighbors 
identified by the time 𝜏𝜏𝑖𝑖, and Ω is as defined above for the persistence model. 
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APPENDIX D NREL LETTER 

The attached letter from the National Renewable Energy Laboratory (NREL) contains the results 
of NREL’s review of the performance objective data collection and technical analysis 
methodologies used in the development of the Final Report and the Cost &Performance Report. 
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Date: Monday, November 27, 2017 

 

To: 
 

Patrick Rowe, Soitec 
 

From: 
 

Chris Deline, NREL 
Matt Muller, NREL / Leidos 

 

Subject: 
 

Soitec 1MW Ft Irwin Project Final Report Approval 
 
Dear Patrick, 
 
I have been able to review the final report on the Soitec 1MW Ft Irwin project in collaboration 
with our subject matter expert Matt Muller, who is now working at the 3rd-party engineering firm 
Leidos INC.  NREL’s background on this project was to configure the initial energy production 
model, and to confirm that initial system performance was within expectation, based on a 2015 
site visit, a 2015 performance report and a 2017 follow-on report. 
 
DNV-GL provided data analysis and performance reporting for the 2017 Final Report, including: 
• Final measured vs expected energy generation and system availability 
• Performance degradation assessment 
 
NREL has reviewed the methodology used by DNV-GL, and agrees with the major conclusions 
of the report, namely that over its first 24 months of operation, the Soitec Ft Irwin project has 
experienced negligible degradation (within measurement uncertainty), and has generated energy 
within 1% of modeled expectation. The methodology used to calculate system availability and 
O&M labor man-hours appears sound, with reported O&M labor slightly above the target (2-5 
man-hours per CPV system annually vs. < 2 man-hours target) and system availability below the 
target (96.3% system availability vs 98% target).  These results are consistent with our 
understanding of the site maintenance requirements and of the reported failures of 2-axis tracker 
drive sensors and components. 
 
The Solar Forecasting methodology and results from UCSD have not been reviewed by NREL.  
 
Sincerely, 
 
 
 
Chris Deline 
Engineer, Manager DOE Regional Test Center – NREL site 
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APPENDIX E NREL INITIAL SITE VISIT REPORT 

The attached report from the National Renewable Energy Laboratory (NREL) contains the results of 
NREL’s initial review of the CPV power plant installation in October 2015.    
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Fort Irwin 1 MW Soitec  
CPV Field  
Inspection 

 
 

Inspection and Report completed by: 
 
 
Matthew Muller, NREL, 16253 Denver W Parkway, Golden, CO 
80401, phone: 303-384-6164, email:  matthew.muller@nrel.gov 
 
 
 

Report Reviewed by: 
 
 
Sarah Kurtz and Chris Deline, NREL, sarah.kurtz@nrel.gov, chris.deline@nrel.gov 

 
 

 
 
NOTICE 
 
This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights.  Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
government or any agency thereof. 
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Introduction and Objectives 
 
ESTCP (the U.S. Department of Defense’s environmental research arm) contracted with Soitec to 
install a 
1 MW CPV plant at Ft. Irwin in California which was connected to the grid in September 2015. As part of 
that contract it was agreed that during the operational testing phase (Phase 2), a third party would 
provide a performance review for the first 2 years of the project. Through communication with both 
ESTCP and Soitec, NREL agreed to serve as this third party. The performance review comprises 
measurements of energy and energy production performance using a combination of revenue grade 
meters, meteorological measurement equipment and data storage equipment which has been installed 
by Soitec. Soitec is responsible for delivering an internal PVsyst model, site meteorological data, plant 
performance data and O&M data to NREL for this evaluation. 

NREL’s assessment will be documented with an initial site inspection report and with two annual 
reports. The main activities proposed to be performed by NREL include: 

• A site visit after installation to verify field conditions (power plant installed, locations 
of the meteorological stations, power plant functionality); 

• On-going data quality reviews to ensure data collected is accurate and complete 
during the testing period; 

• Final review of maintenance logs, calibration status and documentation of soiling; 
• Detailed data analysis including energy model validation, system availability, 

degradation analysis and soiling loss analysis; 
• Preparation of performance/validation reports on an annual basis. 

The following report documents NREL’s site inspection that was conducted on October 12, 2015. The 
performance data is also analyzed for the day of the inspection to further validate that the power 
plant was installed and is functioning as expected. The first annual report (due in 2016) will provide a 
more in depth analysis of the PVsyst model that Soitec has provided to NREL as well as the detailed 
data analysis as described above. 
 

Plant Location and Equipment Details 
 

Fort Irwin 1 MW Soitec CPV Installation, (U.S Army National Training Center) 
latitude/longitude 35.2464° N, 116.6819° W 

tracking 40 individually controlled dual axis trackers 
modules 12 CX-M500 modules per tracker (2335 Watts at CSTC) 

system rating at CSTC 40*12*2335 = 1,121,000 Watts 
grid connection (2) 500 kW Advanced Energy Inverters (AE500 TX) 

backup power for tracker stow (1) Caterpillar generator 
direct normal irradiance (2) Kipp & Zonen CHP1 
global normal irradiance (2) NES measurement systems (SOZ1-03) 

wind speed (2) Adolf Thies GmbH&Co KG 
internal module humidity and 

temperature 
(2) Michell PCMini52-3-x25 
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General Inspection of the CPV plant, plant equipment, and wiring 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Plant view from the east side. All trackers were on sun throughout the inspection period. 
 

 
 

Figure 2 Plant view from the west side.  The ground cover is small compacted sand/aggregate 
(1-2 mm size).  The site slopes downward from west to east and includes the drainage ditch 
shown paralleling one row of trackers. 
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Figure 3 Erosion in the aggregate due to a recent storm. The shoe shown in the picture provides 
a relative scale for judging the erosion.  Plant maintenance personnel indicated that recent 
storms were strong for the region. 

 
 

Inverter Inverter 
 
 

Plant 
Switchgear 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 A centrally located concrete pad supports two inverters, the plant switchgear and a 
Caterpillar generator. Both inverters were online during the inspection period.  In the inset in 
the lower right corner one inverter is reading 387 volts and 1,131 amps. Assuming the same 
output for the second inverter the 
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plant is outputting 0.875 MWs at the time of the photograph.  The Caterpillar generator is wired 
into the system switchgear to provide tracker stow capabilities in the event that grid power is lost 
in a high wind event. The inverter pad is surrounded by coarse road grade aggregate and includes 
a road of the same aggregate which leads from the entrance gate to the inverter pad. 

 

 
 

Figure 5. (Left) Photograph of the wiring inside system combiner box 2A.  (Right) Infrared image 
of the wiring inside the same combiner box. As expected the fuses are at an elevated 
temperature compared to the wiring while all temperatures are within expectations. This 
combiner box is representative of others in the field. 
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Figure 6. One of the 40 dual axis trackers that comprise the 1 MW plant.  A red box outlines one 
of the 12 CX M500 modules that are part of the tracker array.  A black circle highlights tubing that 
runs to each module to provide air drying for the internal module cavity. A red arrow points to 
the tracker control box.  Each tracker has its own control box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 (Left) Each tracker is labeled per its control box enclosure. To the right of the control box 
is an additional enclosure housing air drying equipment shared by 3 trackers.  An air filter can be 
seen protruding from the bottom of the air handling enclosure. (Right) A close up of the air handling 
equipment which is used to maintain module internal air at sufficiently low humidity levels. 
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Figure 8. (Left) The internal visible image of one of the tracker control boxes. On the lower right 
of the image two large black wires are seen exiting the enclosure.  These wires are the current 
carrying conductors that lead to system combiner boxes.  Immediately to the left of these large 
black wires are smaller incoming DC wiring from the tracker array strings.  One of the tracker 
array strings is used to provide feedback for the tracker controller for periodic optimization of 
tracker sun alignment.  In other words the tracker controller optimizes alignment by maximizing 
output of this string.  Note that in other Soitec installations the controller uses the complete 
output of all array strings for feedback but due to electrical requirements at the Ft. Irwin site only 
one string is used.  The typical CX M500 module internal wiring was modified so the voltage was 
reduced by one third and the current was increased by one third.  The controller was not designed 
to accommodate the increased array current and therefore one string was used as feedback 
rather than the complete array. (Right) The infrared image corresponding to the visual image on 
the left.  All wiring and connections in this control box and the other 39 control boxes showed 
acceptable temperature ranges.  In this infrared image the DC current carrying conductors 
incoming from the tracker array are one of the hottest items in the box. This is representative of 
all 40 control boxes. 
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Figure 9 (Left) Visual image from the back of a representative sample of on-sun modules.  (Right) The 
corresponding infrared image for the modules on the left.  In this image the relative color scale is 
identical to Figure 8 but the scale is not shown here because the absolute temperatures are not 
representative.  For this type of broad ranging image with the sun in the background the camera fails 
to accurately measure the absolute temperature.  For example the second row (from the top) of 
modules appears hotter than other modules but this is assumed to be an artifact of camera distance 
and angle when the image was recorded.  What can be concluded from this infrared image is that, 
as expected, the heat sink behind each cell is hotter than the surrounding backplate and the modules 
have a general temperature uniformity.  The general reason for recording this and other module 
infrared images was to look for any hot spots.  No module hot spots were found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. (Left) Red arrows point to grounding wires that connect the tracker pedestal to the left 
and right horizontal yoke tube that supports the array structural ribs.  Although not shown here 
it was verified that each CX M500 module also was grounded. 



 

10 
 

 
 
General inspection of meteorological equipment and factors that can 
impact plant performance 

 
 
 
 
 

Wind  
 
 
GNI 

 

 
 
 
 
 
 
 
 
Sun sensor 

 
 
Internal 
module 
humidity and 
i 

 
 

DNI 
 
 
 
 
 

Figure 11 Two trackers within the 1 MW plant include meteorological equipment.  The tracker 
labels are A1-A17 and B1-B32 where A1-A17 is located in the northeast corner of the plant and 
B1-B32 is centrally located on the southern side of plant.  Each of these trackers contains a global 
normal irradiance sensor and a wind speed sensor on their upper right corner and on the lower 
central edge is a direct normal irradiance sensor and a sensor measuring one module’s internal 
humidity and internal air temperature. Although not in the pictures, the same trackers also 
include measurements of module backplate temperature and ambient temperature. The 
meteorological data acquisition equipment is housed within a separate enclosure attached to the 
pedestal of each of these trackers. Every tracker includes a four quadrant sun sensor that it is 
used as part of the tracking control algorithm. Note that Soitec has informed NREL that the SCADA 
system is currently recording the meteorological measurements from one of the two trackers. It 
is unknown if the data from the other tracker is being recorded by alternate means or if this data 
could be made available. 
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Figure 12. A picture of one of the two meteorological data acquisition enclosures. 
 

 
 

Figure 13 Pictures of the serial numbers and calibration information for the two DNI sensors 
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Figure 14 Pictures of the serial numbers and calibration information for the two internal 
module humidity and air temperature sensors. 
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SN 140003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SN 140029 
 
 
 
 
 
Figure 15. Both DNI sensors show soiling that will impact the resource measurements and 
performance evaluation for the plant.  In the picture of SN 140003 it is difficult to see but minor 
soiling is noted. SN 140029 has readily visible soiling in the photograph that is estimated to be in 
the 1-3% loss range. 
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SN 140003 
 
 
 
 
Figure 16. The alignment sunspot for DNI sensor (SN 140003), the cleaner of the two sensors in 
Figure 15. This misalignment is outside the Kipp and Zonen alignment specifications which can 
result in a false low reading for DNI.  Note that the modules on this tracker indicated that the array 
was accurately aligned with the sun while the DNI sensor was misaligned with the sun. SN 140029 
was within alignment specifications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sunspot on cell 
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Figure 17. (Left) Very light system soiling is present as circled in red.  This minor soiling is 
estimated to result in less than a 1% loss in power output.  This level of soiling is generally 
representative for all the trackers.  The spots are more visible on the lens edge as they better 
contrast the clear glass as compared to the facets of the silicone on glass. (Right) A small number 
of modules showed the hazy soil spots like circled in this image. Maintenance personnel indicated 
that the plant had not been cleaned since commissioning other than by rain events. 

 

 
 
Figure 18. From left to right as copied from Soitec’s installation manual are pictures of a “perfectly 
centered”, “sufficiently centered” and “not acceptable” alignment for the solar cells within the 
CX M500 modules.  For 10 of the trackers, the first row of submodules within each CX M500 was 
visually inspected for cell alignment.  Cell alignment for ~65% of the submodules were within the 
perfect and sufficiently aligned categories while ~35% were unacceptable (the center of the 
sunspot was near or on the edge of the cell).  If a 5% loss is assumed for these misaligned modules 
and the 35% approximation is assumed representative for upper rows on the trackers and the 
other 30 trackers, this equates to a 1.8% loss for the plant due to misalignment. Note that only 
10 trackers were inspected as the tracker elevation position increased throughout the inspection 
period and the remaining 30 trackers were too high for a visual alignment inspection without the 
aid of a ladder. Also note that pictures were taken to record the cell/sunspot misalignment (see 
Figure 17) but the associated images were blurry due to glare and camera angle. 

 
 
System Performance Validation 

 
Soitec provided NREL access to Ft Irwin system and meteorological data and to the pan files 
Soitec developed for applying PVsyst modeling software to Soitec CPV systems. Although future 
reports will provide more details of system performance over time, current analysis is only 
presented for the day of inspection (October 12, 2015). The skies were clear the entire inspection 
day, making this an ideal day for comparing predicted performance with measured performance. 
It should be noted that due to the current and voltage changes in the CX M500 module detailed 
earlier, DC performance for half of each tracker is measured and the total plant performance is 
assumed to be twice the measured value. Currently only DC measurement data has been 
provided to NREL, and therefore only DC performance analysis is conducted. 
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Figure 16 demonstrated that there was misalignment of one of the DNI sensors and figure 15 
demonstrated that there was soiling on both sensors. As the DNI is the primary solar resource 
and has direct implications on any modeling, figure 19 compares system DNI data with DNI data 
from a meteorological station in Las Vegas. The skies were also clear in Las Vegas on the date 
of inspection. The Las Vegas data was shifted by six minutes in order to account for the 
difference in sunrise time between the two locations. Figure 19 also includes the normalized 
system power divided by DNI over the course of the day. 

 

 
 
Figure 19, Ft. Irwin DNI compared to Las Vegas DNI for the date of the inspection.  The Ft Irwin 
data set did not indicate which DNI sensor was used for the data set. The state of soiling of the 
Las Vegas sensor is not known but the Las Vegas meteorological station is expected to be cleaned 
on a weekly basis. There is no consistent shift between the two DNI measurements.  Although 
the two measurements are at two different locations the consistency between the 
measurements provides a broad level check on the validity of the Ft. Irwin DNI measurement. 

 
The comparative DNI data provided in Figure 19 indicates that the Ft Irwin DNI sensor is 
performing as expected for this type of sensor.  It is noted that the Ft. Irwin data has some minor 
noise in the middle hours of the day as compared to the Las Vegas data.  It is expected that these 
small up and down movements of the DNI in the middle of the day are an artifact of the alignment 
and system tracker performance at the Ft. Irwin site whereas the Las Vegas measurements are 
on a very high accuracy meteorological tracker.  Between the hours of 6 and 7 am and 4 and 5 
pm the Las Vegas DNI data show non-zero values for DNI while the Ft. Irwin data show zero 
values. These periods are indicative of either regions that are outside the Soitec tracker limits or 
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row to row shading of the DNI sensor(the DNI  sensors are on the bottom edge of the trackers). 
The DNI that is not captured by the Ft. Irwin sensor is approximately 1% of the daily total. 

 
Figure 19 also provides the normalized DC output power divided by DNI over the course of the 
inspection day.  As expected the normalized performance peaks in the morning and also in the late 
afternoon when spectral conditions lead to current matching between the top and middle cells 
within the Soitec modules. The morning peak is higher than the afternoon peak due to the cooler 
morning temperatures. From 9 am to 3 pm the normalized performance is somewhat noisy and 
varies between 0.93 and 0.97. The DNI is stable during this time period so it is likely that this 
performance variation is due to variation in sun alignment of the 40 trackers. 
 
Figure 20 provides a comparison between the measured average hourly DC output on October 12, 
2015 and predicted average hourly output using PVsyst and an alternative simple model.  The 
simple model applies a temperature correction based on backplate temperature and the 
nameplate power (-0.15%/C is assumed for the power temperature coefficient).  The model than 
assumes a constant 10% DC loss to account for wiring losses, current mismatch and other losses.  
No spectral or shading losses are accounted for in the simple model. The results show that between 
9 am and 3 pm both models are in close agreement with the measured data.  In the early morning 
and in the late afternoon the simple model overestimates power while PVsyst underestimates 
power. This suggest that shading and spectral corrections are needed in the model but that for this 
particular clear sky day PVsyst  has overly aggressive values for either spectral or shading losses. 
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Figure 20 Comparison of the average measured system DC output with predicted average 
hourly DC output using PVsyst and a simple model. The simple model is a temperature 
correction based on the module backplate temperature (-0.15%/C temperature coefficient) and 
a constant 10% DC loss (wiring, current mismatch, etc.) 
 
 
Site Inspection and System Performance Summary 
 
The 1 MW Ft. Irwin Soitec CPV system was visually inspected on October 12, 
2015. All information recorded during the inspection, including the images 
provided above, document that the system was installed according to the 
governing electric codes and to safety protocols. Site personnel were not able to 
indicate if tracker alignment was considered in the final state for the project but 
~35% of the modules inspected were noted to not be in the optimal alignment 
position. Based on acceptance data measured at NREL for a sub-unit of a CX- M500 
module and the assumption that 35% is representative for the entire plant, 
misalignment losses are estimated to be in the 1-2% range. Concerns were noted 
for DNI sensors capturing the solar resource data for the plant.  One sensor was 
not within the alignment specifications of Kipp & Zonen (the equipment 
manufacturer) while both sensors had visual soiling present. The site maintenance 
personnel were notified of these findings and a request was made to correct the 
alignment and to clean the sensors weekly or biweekly. 
 
For the date of October 12, 2015 measured DC performance data was compared 
against predicted system performance from PVsyst and a simple model 
(measured meteorological data were input into both models).  The modeled and 
measured performance were in close agreement between 9 am and 3 pm.  PVsyst 
underestimated the output outside these hours while the simple model 
overestimated the output. For these hours it assumed that PVsyst is 
overestimating shading or spectral losses while the simple model overestimated 
performance as it did not include either of these effects. 
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APPENDIX F NREL FOLLOW-ON REPORT 

The attached April 17, 2017 report from the National Renewable Energy Laboratory (NREL) 
contains the results of NREL’s review of the first six months of site performance data (June 2016 
to December 2016). 
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Introduction and Objectives 
 

ESTCP (the U.S. Department of Defense’s environmental research arm) contracted with Soitec to install a 
1 MW CPV plant at Ft. Irwin in California which was connected to the grid in September 2015. As part of 
that contract it was agreed that during the operational testing phase (Phase 2), a third party would provide 
a performance review for the first 2 years of the project. Through communication with both ESTCP and 
Soitec, NREL agreed to serve as this third party. The performance review comprises measurements of 
energy and energy production performance using a combination of revenue grade meters, meteorological 
measurement equipment and data storage equipment which has been installed by Soitec. Soitec is 
responsible for delivering an internal PVsyst model, site meteorological data, plant 
performance data and O&M data to NREL for this evaluation. 
 
NREL’s assessment includes an initial site inspection report and two annual reports. This report concludes 
the first annual report. The main activities by NREL have included: 
 
• A site visit after installation to verify field conditions (power plant installed, locations of the 

meteorological stations, power plant functionality); 
• On-going data quality reviews to ensure data collected is accurate and complete during the testing 

period; 
• Final review of maintenance logs, calibration status and documentation of soiling; 
• Detailed data analysis including energy model validation, system availability, degradation 
analysis and soiling loss analysis; 
• Preparation of performance/validation reports on an annual basis. 
 
The following report documents NREL’s evaluation of plant performance compared to the PVsyst model 
that Soitec has provided to NREL for the period of 6/1/2016 through 1/18/2017. No operations and 
maintenance logs were provide to NREL and therefore NREL is unable to provide the complete set of 
analysis that was originally proposed. 
 
 
Plant Location and Equipment Details 

 
Fort Irwin 1 MW Soitec CPV Installation, (U.S Army National Training Center) 

latitude/longitude 35.2464° N, 116.6819° W 
tracking 40 individually controlled dual axis trackers 
modules 12 CX-M500 modules per tracker (2335 Watts at 

CSTC) 
system rating at CSTC 40*12*2335 = 1,121,000 Watts 

grid connection (2) 500 kW Advanced Energy Inverters (AE500 TX) 
backup power for tracker stow (1) Caterpillar generator 

direct normal irradiance (2) Kipp & Zonen CHP1 
global normal irradiance (2) NES measurement systems (SOZ1-03) 

wind speed (2) Adolf Thies GmbH&Co KG 
internal module humidity and temperature (2) Michell PCMini52-3-x25 
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General Review of the Data Provided to NREL 
 

Plant data were provided to NREL for the period of 6/1/2016 – 1/18/2017 for the purpose of validating 
plant performance. The data set included DC power measurements for half of the array for each of the 
40 trackers on the site, two direct normal irradiance (DNI) measurements, 2 wind speed measurements, 
and 2 ambient temperature measurements. These data are consistent with instrumentation that was 
documented in the previous inspection report as shown in Fig. 1. 

 
 
 
 
 

Wind 
 
 
 
 
 
 
 
 

DNI 
 
 
 
 

Fig. 1. DNI and wind sensors are mounted on two trackers within the 1 MW plant. The tracker labels are 
A1-A17 and B1-B32 where A1-A17 is located in the northeast corner of the plant and B1-B32 is centrally 
located on the southern side of plant. Each of these trackers contains a global normal irradiance (GNI) 
sensor but GNI data were not provided to NREL. The original inspection report noted that data were not 
available for one of the trackers but this problem was fixed as the two data streams were included in the 
data sent to NREL. 

 
The data set was reviewed for basic quality issues resulting in the following findings: 

 
1) Power for one of the 40 trackers was reported as “NaN” (Not a Number) from 10/20/16 -1/18/17. It 
is unknown if the tracker or array was having performance issues or if this was the result of a data 
acquisition issue. 

 
2) For ~6% of the measured data points, realistic data were not reported for one DNI sensor or the other. 

 
3) Although it was noted in the site inspection report that the DNI sensors were being allowed to 
unacceptably soil and one was misaligned (see Figs. 2 and 3), there is no indication that these problems 
were addressed or that regular cleaning occurred in the time period under examination. The DNI data 
suggest that each sensor potentially soiled differently over time. The irradiance was summed over the 
data collection period and one sensor reported approximately 2% more available solar energy than the 
other sensor. As it is not expected for a DNI sensor to over report DNI, the higher reported irradiance for 
each time interval was used for performance validation. Additional discussion on sensor soiling is 
included in the validation section. 

 
4) In the case of wind speed and ambient temperature, the two measurements were averaged for each 
time interval for use in the PVSYST validation modeling. 
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SN 140003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SN 140029 
 

 
Fig. 2. (From site inspection) Both DNI sensors show soiling that will impact the resource measurements 
and performance evaluation for the plant. In the picture of SN 140003 it is difficult to see but minor soiling 
is noted. SN 140029 has readily visible soiling in the photograph that is estimated to be in the 1-3% loss 
range. 
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SN 140003 
 

 
 
Fig. 3. (From site inspection) The alignment sunspot for DNI sensor (SN 140003), the cleaner of the two 
sensors in Figure 2. This misalignment is outside the Kipp and Zonen alignment specifications which can 
result in a false low reading for DNI. SN 140029 was within alignment specifications. 

 
 
System Performance Validation 

 
Soitec provided NREL access to Ft Irwin 15-minute system and meteorological data (described above) and 
to the .PAN files Soitec developed for applying PVsyst modeling software to Soitec CPV systems. 15- 
minute data were averaged to create hourly files for input to PVSYST. The PVSYST model was run using 
the provided .PAN files and the generalized PVSYST report has been included in the appendix (note that 
the report outputs must be multiplied by 2 in order to reflect the entire plant). The hourly output from 
PVSYST was then compared with the measured plant output. Values reported outside the appendix have 
been scaled by 2 to represent the entire plant.  Fig. 4 presents comparative results for a series of clear sky 
days in June versus September. In June PVSYST and measured power closely agree while in September 
measured power is approximately 7% above the PVSYST predictions. Although there are a number of 
variables that could drive this variation, analysis of the DNI sensors suggest sensor soiling or misalignment 
is a likely cause. Fig. 5 compares the ground based DNI measurements at Ft. Irwin versus an NREL 
Measurement and Instrumentation Data Center (MIDC) station in Las Vegas. The DNI in Las 
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Vegas is nearly 9% higher than in Ft. Irwin, which is not typically expected for clear sky conditions at each of 
these sites. The DNI resource was integrated for the entire reporting period for both Ft. Irwin and Las Vegas. 
The Las Vegas sensor showed 5.8% more available irradiance than the Ft. Irwin sensor. Although this is not 
conclusive, this is consistent with observations during the Ft. Irwin site inspection that the sensors were not 
being cleaned and Soitec had no log or other evidence to indicate that the sensors were cleaned during the 
time period used in this analysis. Further, the Las Vegas station is expected to be cleaned on at least a 
weekly basis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A comparison of the PVSYST predicted power against measured power in two different months. In 
June PVSYT and measured power are similar while in September the measured power is approximately 7% 
above the PVSYST modeled power. 
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Fig. 5. A comparison of the ground DNI measurement at Ft Irwin versus the DNI measurement at a MIDC 
station at the University of Las Vegas. The two locations are approximately 160 km apart. The DNI is 
approximately 9% higher for the Las Vegas station, which is not expected on a clear sky day considering 
both locations are in a similar DNI environment. This is not conclusive but suggests the Ft. Irwin DNI sensor 
may have significant soiling or be misaligned. 

 
Over the entire evaluation period the plant produced 2,725 MWh’s (assuming scaling by 2 as only half to 
modules on each tracker are monitored) while PVSYST (based on the site DNI measurements) predicted 
that the plant would produce 2,676 MWh’s. This is a 1.8% performance improvement above the model 
prediction when no uncertainty is taken into account. There are not enough data to provide an accurate 
uncertainty estimate but the given evidence suggests that the uncertainty is likely dominated by error in 
the site DNI resource. The site inspection (see Figs. 2, 3) showed that the DNI sensors were likely under 
reporting the DNI by 1-3% from soiling and/or from misalignment. Comparison with a Las Vegas DNI sensor 
suggested that the site sensor could be under reporting DNI by nearly 6%. This is consistent with other 
soiling studies for PV systems in southern California which show annual energy losses (uncleaned systems) 
on the order of 2-6%.  Soiling and misalignment of the DNI sensor are not expected to be constant over 
time and therefore it is reasonable to assume that the DNI sensor is under reporting the total available 
energy by 1-6%. Considering this range, the Soitec system could be over performing by 
0.8% or under-performing by as much as 4.2%. Note the following when considering validity of the above 
numbers: 

 
1) PVSYST pan file already assumes a 3% loss due to soiling. 

 
2) These performance numbers depend on the assumption that the second half of each tracker array is 
performing like the measured half. No data are available on the truth of this assumption beyond Soitec of 
DoD verifying that AC metered output is in line with the expectations by the DC measurements. NREL has 
been provided no AC data and therefore cannot complete this verification step. Furthermore, it is suggested 
that for improvement in future validation efforts, that the site DNI sensors be cleaned on a weekly basis 
and that the cleaning dates be maintained in a maintenance log. 
 
3) “NaN” was recorded for one of the trackers from 10/20/16 – 1/18/17 . If this tracker was producing 
energy that was not recorded the measured plant energy production could be approximately 1% higher 
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To further investigate plant performance, the individual DC outputs from each tracker were compared. Fig. 
6 provides the MWhs that were produced from half of the array from each of the 40 trackers. Data were 
reported as “NaN” after 10/20/17 for tracker number 8 and it is unknown if this is due to data acquisition 
problems or problems with the tracker or array. The statistics are as follows for the other trackers when 
number 8 is excluded.  The mean output is 34.1 MWhs, the standard deviation is 0.8 MWhs, and the range 
is from 31.4 through 35.6 MWhs. This range represents an 11.8% variation from the best to worst 
performing tracker. It was noted in the site inspection that not all trackers were optimally aligned and 
therefore this could be a potential cause of the underperforming tracker. Other potential causes are non-
uniform soiling across the plant, higher degradation of modules on the weak tracker, measurement issues, 
non-optimum tracking, or other unknowns. It is recommended that trackers 8, 28, 33, and 38 (as by the 
order given in the data file) be visually inspected to determine if there is a simple explanation and potential 
remedy for the underperformance. 

 
36 
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22 
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Tracker Number 
 

 
 

Fig. 6. Each bar shows the measured MWhs as produced by half of the array for each of the 40 trackers 
of the Soitec plant at Ft. Irwin. 

 
 
System Performance Summary 

 
Performance data from the 1 MW Ft. Irwin Soitec CPV system were provided to NREL spanning 6/1/2016 
through 1/18/2017. The data were reviewed for any quality issues and then an hourly meteorological file 
was generated for running a PVSYST performance simulation. The measured energy output from the plant 
was 1.8% more than the PYSYST modeled output. The model potentially underreports plant output 1-6% 
due to a suspected soiling and/or misalignment of the plant DNI sensors. Consistent cleaning of the 
irradiance sensors would substantially reduce the uncertainty in the validation results. It is recommended 
that for future validation efforts that the plant DNI sensors be cleaned on a weekly basis and that the 
cleaning dates are recorded. It is also recommended that some indication of the AC output of the plant be 
shared with NREL in order to validate the assumption that the plant DC output is twice the measured DC 
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output (In other words no gross failure has been ignored). The data analysis also showed that several of 
the 40 trackers were underperforming relative to the average. The recommendation is that these trackers 
should be visually inspected to determine if there is a simple cause and remedy to the underperformance. 
The energy measurement for one of the trackers is being reported as “NaN” and therefore an effort should 
be made to determine the root cause of this problem. 
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Appendix (PVSYST REPORT) 
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PVSYST V6.39 
 

Grid-Connected System: Near shading definition 
 

Project : 
Simulation variant : 

DOD Fort Irwin 
DOD Fort Irwin 

 
Main system parameters 

Near Shadings 

 
System type   Grid-Connected 

According to strings 

 
 
Electricaleffect 

 
 
25% 

PV Field Orientation 
PV modules 
PVArray 
Inverter 
Inverter pack 
User's needs 

Tracking two axis 
Model 

Nb. of modules 
Model 

Nb. of units 
Unlimited load (grid) 

Concentration  Accept. angle 
CX-M500 MOD-99009 1.0 Pnom 
480  Pnom total 
Sunny Central 500CP  Pnom 
2.0  Pnom total 

o.5•/Lim 1.o• 
2335 Wp 
1121 kWp 
500 kWac 
1000 kW ac 
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PVSYST V6.39 
 

Grid-Connected System: Main results 
 

Project: 
Simulation variant : 

DOD Fort Irwin 
DOD Fort Irwin 

 
Main system parameters 

Near Shadings 

 
System type   Grid-Connected 

According to strings 

 
 
Electricaleffect 

 
 
25% 

PV Field Orientation 
PV modules 
PVArray 
Inverter 
Inverter pack 
User's needs 

Tracking two axis 
Model 

Nb. of modules 
Model 

Nb. of units 
Unlimited load (grid) 

Concentration  Accept. angle 
CX-M500 MOD-99009 1.0 Pnom 
480  Pnom total 
Sunny Central 500CP  Pnom 
2.0  Pnom total 

o.5•/Lim 1.o• 
2335 Wp 
1121 kWp 
500 kWac 
1000 kW ac 

 
Main simulation results 
System Production Produced Energy    1316 MWh 

Performance Ratio PR    75.1 % 

 
 
Specific prod.   1174 kWh/kWp 

 
Normalized productions (pe r nstalledkWp): Nominalpower 1121kWp  Performance Ratio PR 
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PVSYST V6.39 
 

Grid-Connected System: Loss diagram 
 

Project: 
Simulation variant : 

DOD Fort Irwin 
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