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Presentation Overview

• Basic Theory

• Implementation Examples

• Limitations, Pitfalls, and How to Avoid Them

• Case Studies

• Wrap-Up

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Definitions

Current: A flow of electric charge: the charge is most often carried by ions in the Earth

Potential: A measure of the electrical potential energy on a unit charge at any point in the Earth

Electrode: An electron conductor (usually a metal) that is used to make electrical contact with the 
Earth. Used for injecting current and for measuring potential. 

Transfer resistance: The ratio of the potential measured to the current injected between electrodes

Conductivity: An intrinsic property of the Earth that quantifies ease at which current can flow. 
Resistivity is the inverse of conductivity.

Forward modeling: A numerical method used to simulate transfer resistance measurements

Inversion: A numerical method to estimate the most probable conductivity structure of the Earth 
matching simulated transfer resistances with observed transfer resistances

Imaging/Tomography: A method integrating forward modeling and inversion to produce a 2D, 3D, or 
4D image of the conductivity of the Earth from electrodes placed along boundaries (commonly defined 
by the Earth surface and/or boreholes)

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentBasic Theory
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Previous Related RITS

• Distribution of In Situ Amendments (Spring 2014)

https://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_s

ervices/ev/erb/rits/pastrits.html

RITS 2017: Advances in BioremediationBasic Theory

https://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/ev/erb/rits/pastrits.html
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Presentation Overview

►Basic Theory

• Implementation Examples

• Limitations, Pitfalls, and How to Avoid Them

• Case Studies

• Wrap-Up

Objective: Familiarize the participants

with geophysical imaging and how it works

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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What is Electrical Resistivity Tomography (ERT)?

Basic Theory RITS 2017: Geophysics Strategy/Remediation Performance Assessment

(Inversion) 

Data Processing 

Medical Imaging Analog: Electrical Impedance Tomography

Electrodes

Data Collection

Courtesy Sarah Hamilton

Tomographic Image

(http://www.marquette.edu/mscs/facstaff-hamilton.shtml

Source: Hamilton et al., 2012.

http://www.marquette.edu/mscs/facstaff-hamilton.shtml
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Surface electrode lines

What is ERT? (cont.)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

(Inversion) 

Data Processing 

Subsurface Imaging: Electrical Resistivity Tomography

Data Collection

Tomographic Image

Basic Theory
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Amp Meter

How Does ERT Work?
Data Collection Concept

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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How Does ERT Work?
Data Collection Hardware

• Autonomous operation (facilitates 

monitoring)

• Multi-channel – many potential pairs 

per current injection (enables rapid 

data collection)

• Remote accessibility (facilitates 

autonomous imaging)

• No metal casing

• In-borehole electrodes okay in 

screened zone

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Basic Theory
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What are we measuring and why do we care?

• ERT images the electrical conductivity distribution of the subsurface

• Electrical conductivity is governed by several properties important to remediation performance

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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How Does ERT Work?
Data Processing

• Datasets are inverted to recover “images” of electrical 

properties

• Static images show absolute properties

• Time-lapse images show changes over time

• ERT images conductivity ( earth) or resistivity ( earth)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Time-Lapse Difference Imaging

–Plume is masked by geologic heterogeneity

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Time-Lapse Difference Imaging (cont.)

• Plume is revealed by subtracting out pre-injection background, removing 

unrelated spatial contrasts; i.e., we removed the haystack

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Key Points: ERT Can Be Used in Characterization, Remediation, and 
Monitoring Phases of Your Project

Characterization

• Identify primary geologic boundaries (2D and 3D)

‒Porosity, surface area, and saturation

Remediation

• Determine distribution and migration of remedial amendments (2D, 3D, 4D)

‒Amendment induced changes in fluid conductivity

Monitoring

• Determine when and where the subsurface is changing (2D, 3D, 4D)

‒Fluid conductivity, precipitation, saturation

• Autonomous, low cost

• With supplementary information (e.g., sample data), can identify what is changing …

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentBasic Theory
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Presentation Overview

• Basic Theory

►Implementation Examples

• Limitations, Pitfalls, and How to Avoid Them

• Case Studies

• Wrap-Up

Objective: Familiarize participants with a range of 

example applications, requirements, costs, and 

auxiliary data requirements using brief field examples

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Gravel and Cobbles (coarser)

Backfill (finer)

Native Material

Geologic Characterization of a Shallow Sedimentary System:
Hanford Site Near Richland, WA 

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentImplementation Examples
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Hanford 300 Area

What can this image tell us about the subsurface, in addition to the 

location of apparent strata boundaries?

Supplementary Information

• Water table at ~10 m

• Previously excavated to ~4 m

• Coarse surface materials (cobbles, gravel)

Other

• Field time: about 6 man-hours

• Office time: about 3 man-hours

• 64 electrode array
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Imaging Amendment Transport and Distribution in Fractured Rock 
Formations: Naval Air Warfare Center, Trenton NJ

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Problem

Understanding fluid flow in fractured rock systems is critical for

remediation design, but notoriously difficult

Objective

Demonstrate cross-hole 4D ERT imaging to

monitor fluid transport within the fracture zone

(ESTCP ER-201118: PI Lee Slater)

Supplementary Information

• Saturated fractured rock (low-grade coal/shale formation)

• Borehole televiewer logs; various geophysical logs

to determine fracture contacts at borehole locations,

strike, dip

• Saline tracer will increase bulk conductivity of occupied fracture(s)

Naval Air Warfare Center

Trenton NJ

Injection

Well

Implementation Examples

Source: Robinson et al., 2015. Groundwater.
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Multi-Purpose ERT/Packer/Sampling System and Baseline ERT Image 

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Implementation Examples

Source: Robinson et al., 2015. Groundwater.
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Time-Lapse Difference Imaging Results and Cost 

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Results

• Tracer distribution captured with time, verified via sampling

• Migrates through fracture zone captured in baseline image

• Demonstrates capability to monitor 3D fluid flow in fractured systems

Costs

• 7 integrated packer/electrode/sampling arrays

– 96 hours + $5K materials 

• Array installation: 32 hours

• Baseline characterization: 8 hours

• Time Lapse 8 frames: 16 hours

• Utilized existing boreholes

Source: Robinson et al., 2015. Groundwater.

Conductivity Change 

Isosurfaces Superimposed 

on Baseline Image

Implementation Examples
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4D Real-Time Imaging of Stage-Driven Groundwater/Surface Water Interaction: 
Problem and Objective (Hanford Site Near Richland, WA)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Problem

Former waste infiltration ponds and trenches caused an active uranium plume

Supplementary Information

• River water chemistry enhances uranium desorption from sediments

• Stage variations and high permeability sediments result in active

groundwater/surface water interaction

• River water specific conductance is approximately

½ of groundwater-specific conductance

Objective

Use time-lapse ERT to image stage driven river water intrusion patterns
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Implementation Examples
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4D Real-Time Imaging of Stage-Driven Groundwater/Surface Water Interaction: 
Monitoring System

• 320 electrodes

• Field setup time: ~60 man hours

• Office setup time: ~40 man hours

• Capital cost: ~$100 K 

• Survey time: ~ 6 hours (no labor required)

• Inversion time: ~ 5 minutes (no labor required)

• Monitoring duration: 6 months

• Fully autonomous operation

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentImplementation Examples
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4D Real-Time Imaging of Stage-Driven Groundwater/River Water Interaction: Time-
Lapse Difference Imaging Results (Hanford Site Near Richland WA)

Stage
Stage

Marker
3D Time-Lapse ERT 

Imaging Results

Source: Johnson et al., 2015. Water Resources Research.

Comments

• Baseline image at low stage (when aquifer is 

occupied by groundwater)

• Images show decrease in bulk conductivity caused 

by intruding river water

• Results show groundwater/river water interaction 

governed largely by high permeability paleochannel

Implementation Examples



23

Evaluating the Performance of Shear Thinning Fluids for Accessing Low 
Permeability Zones: Problem

Problem

TCE contamination in low-permeability sediments

(Joint Base Lewis McCord Golf Course, Bremerton, WA)

Note: Shear thinning fluid viscosity decreases as 

shear stress increases (i.e., tends to be more viscous 

when pushed through high permeability sediments 

and less viscous when pushed through low-

permeability sediments … enables penetration into 

low permeability sediments.

Examples: xanthan gum, guar gum)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

TCE-Contaminated

Muddy Gravels and Sands

Screened PVC Casing
2 in.      4in.

Implementation Examples
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Evaluating the Performance of Shear Thinning Fluids for Accessing Low 
Permeability Zones: Objective

Problem

TCE contamination in low-permeability sediments

(Joint Base Lewis McCord Golf Course, Bremerton, WA)

Objective

Evaluate the use of shear thinning fluids for delivering remedial 

amendments to low-permeability zones

Procedure

1. Inject conservative tracer with water

2. “Rinse” with groundwater

3. Inject conservative tracer with shear thinning fluid

4. Compare

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Injection wellSource: Truex et al., 2011. Groundwater Monitoring and Remediation.

Implementation Examples
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Evaluating the Performance of Shear Thinning Fluids for Accessing Low 
Permeability Zones: Approach

Problem

TCE contamination in low-permeability sediments

(Joint Base Lewis McCord Golf Course, Bremerton, WA)

Objective

Evaluate the use of shear thinning fluids for delivering remedial 

amendments to low-permeability zones

Approach

Use ERT difference tomography to image amendment penetration 

with and without shear thinning fluid

Question

• Why should difference imaging work?

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Evaluating the Performance of Shear Thinning Fluids for Accessing Low 
Permeability Zones: Results

• Steady state = no further penetration with continued 
pumping

• Positive changes in conductivity indicate presence of 
bromide tracer

• Significantly improved penetration with shear thinning fluid 
(Xanthan)

• Results validated with monitoring well samples

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Bromide Bromide + Xanthan

Injection Well

Conductivity Diff. (S/m)

-0.005 0.0 0.005

Steady Change in Conductivity

Implementation Examples

Source: Truex et al., 2015. Groundwater Monitoring and Remediation.
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Evaluating the Performance of Shear Thinning Fluids for Accessing Low 
Permeability Zones: Cost

• Used existing screen sampling wells

• ~4 hours field setup

• ~12 hours office time

• ~$25K for ERT instrument

• ~$ 5K for project-specific hardware (electrode cables, etc.)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Source: Truex et al., 2015. Groundwater Monitoring and Remediation.

Bromide Bromide + Xanthan

Injection Well

Conductivity Diff. (S/m)
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Implementation Examples
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Key Points: What Can ERT Do for You?

• Provide geologic boundaries for 

conceptual site model 

development

• Image when and where the 

subsurface is changing in 2D or 

3D (e.g., amendment delivery)

These capabilities are all accessible …

• Except commercial real-time imaging

• Different contractors have different levels of 

capability

How does the RPM ensure success? 

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Implementation Examples
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Presentation Overview

• Basic Theory

• Implementation Examples

►Limitations, Pitfalls, and How To Avoid Them

• Case Studies

• Wrap-Up

Objective: Familiarize participants with the limitations and 

pitfalls of geophysical imaging using field examples. Point 

to tools and resources that minimize risk.

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Pros

• Minimally invasive

• Relatively low cost

• Can cover a large area

• ‘Sees’ in between wells

• Good at the “when and where”

Cons

• Indirect – Correlation or interpretation is required

• Limited resolution

• Not good at the “what” 

 Not an either/or proposition!

Geophysics is most powerful when used in 

combination with conventional measurements!

Understanding Resolution and Implications:
Developing Realistic Expectations

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentLimitations, Pitfalls, and How To Avoid Them

Note: There is NO 

such thing as 

geophysical X-ray 

vision! No silver 

bullets!
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Understanding Resolution and Implications:
Consequences of Limited Resolution

• Images are smeared versions of reality

• Small-scale features unresolved

• Averaging (highs under-predicted, lows are 
over-predicted)

• Laboratory-scale measurements do not 
translate directly to field scale

• Resolution decreases with distance from 
electrodes

• Prior information can improve resolution
(with great care!)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

3D Images
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Recognizing Overinterpretation

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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How to Avoid Pitfalls: The Feasibility Assessment

RED FLAGS:

• Highly detailed images/small features far from electrodes

‒ Indicative of data overfitting

• Quantitative interpretations 

‒Maps of contaminant concentrations

‒Maps of porosity, saturation, mineralogy

‒Maps of bioactivity

• Interpretation without any supporting information

• Sounds Complicated! How is the RPM to avoid the pitfalls?

• REQUIRE A FEASIBILITY ASSESSMENT FROM YOUR CONTRACTORS!

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentLimitations, Pitfalls, and How To Avoid Them

REQUIRE A FEASIBILITY ASSESSMENT FROM YOUR CONTRACTORS!
Key

Point
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Pre-Modeling Feasibility Assessment Flowchart

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Limitations, Pitfalls, and How To Avoid Them

Step 2

Simulate Field Data

(forward model) 



35

Example Feasibility Assessment: Imaging a DNAPL Plume 

True conductivity estimated from

• Estimated saturation

• Estimated porosity

• Estimated native and DNAPL fluid conductivity

(See slide 9)

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Groundwater Flow

Vadose Zone
Saturated Zone
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Step 1

Assign Electrical Conductivity

Limitations, Pitfalls, and How To Avoid Them
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Electrical Conductivity (S/m)

0.001 0.10.01

Example Feasibility Assessment: Imaging a DNAPL Plume (cont.)

Step 7: Go/ No-Go Decision

• Does pre-modeling suggest the 

target is sufficiently resolvable 

with electrical imaging?  

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

True Conductivity
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Step 5 (Compare) 

Step 6 (revise survey, add 
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Limitations, Pitfalls, and How To Avoid Them

Steps 2, 3, and 4
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What Conditions Disqualify ERT From Consideration?

1. Excessive grounded metallic infrastructure (pipes, well casing, tanks) within the target zone

2. Imaging target is too deep

• Too far from surface electrodes (rule of thumb: 25% of line length)

• Too expensive/infeasible to install borehole electrodes

• Can be assessed with feasibility study

3. Excessive electrical noise (e.g., near cathodic protection cathodes)

• Can be assessed with simple field test

4. Target feature or process has insufficient electrical conductivity contrast

• Can be assessed with feasibility study

5. Any condition/requirement/expense that disallows adequate placement or electrical coupling of electrodes 
with ground

• “Adequate placement” determined with feasibility study

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentLimitations, Pitfalls, and How To Avoid Them
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Safety Considerations

• ERT instruments are self-regulated

• Can apply several hundred volts to current electrodes, 

if needed

• Maximum ground voltages are lower than electrode 

voltages (typically order of magnitude)

• Electrical safety requirements vary by organization and 

circumstance, ranging from basic training to physical 

barriers to lockout/tagout

• Safety requirements/assessments are project specific, 

but should always be addressed

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Surface Voltage

Limitations, Pitfalls, and How To Avoid Them
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ERT in the Regulatory Context

There are currently no criteria for using ERT directly for regulatory decisions or 

compliance/performance metrics (and rightly so)

– It is an indirect measure of regulated metrics

–There are no standards for imaging or interpretation

However

ERT can improve capability to meet regulatory goals

–Enables improved understanding → improved remediation design

Example: ERT use is encouraged as a support tool by the Washington State Dept. of Ecology, EPA, and DOE on the Hanford Site, 

but is not accepted as a compliance metric

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentLimitations, Pitfalls, and How To Avoid Them
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Key Points: Avoiding Pitfalls and Limitations

• Develop Realistic Expectations, Leverage 

Supporting Data

• Recognize Over-interpretation

and most of all …

• REQUIRE A FEASIBILITY ASSESSMENT 

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentLimitations, Pitfalls, and How To Avoid Them



41

Presentation Overview

• Basic Theory

• Implementation Examples

• Limitations, Pitfalls, and How to Avoid Them

►Case Studies

• Wrap-Up • Objective: Demonstrate the topics 

previously discussed using case studies

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Case 1: Monitoring Vadose Zone Amendment Delivery Surface-Based 
ERT Monitoring: Hanford Site 300 Area, WA

Background

• Uranium-contaminated vadose zone sediments

• Poly-phosphate amendment shown in laboratory setting to 

bind uranium to sediment

• Field-scale treatability test agreed upon by regulators and 

stakeholders

Approach

• Hanford cleanup contractors design amendment delivery 

system via direct injection and surface infiltration

Case Studies RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Columbia River ~300 m 

Hanford 300 Area: North Pond
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Case 1: Monitoring Vadose Zone Amendment Delivery Surface-Based 
ERT Monitoring: Hanford Site 300 Area, WA (cont.)

Problem

• Monitoring/verification of amendment delivery

Supplementary Information

• Amendment increases saturation and pore fluid 

conductivity

Objective

• Use time-lapse ERT monitoring to image 

amendment distribution over time

• Two surface ERT lines (@ 2.5 m) 

• Real-time Web site delivery for duration of treatment

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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c

Case 1: Monitoring Vadose Zone Amendment Delivery with Real-Time 
Surface-Based ERT Monitoring: Imaging Results

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

animation

Case Studies 
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Case 1: Monitoring Vadose Zone Amendment Delivery with Real-Time 
Surface-Based ERT Monitoring: Imaging Results (cont.)

• Images were delivered in ‘real-time’ (~12 minutes 
from start of survey to image) for 21-day duration

• Demonstrated capability to provide timely feedback 

• Opportunity to optimize delivery process during 
application

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Case Studies 
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Case 1: Monitoring Vadose Zone Amendment Delivery with Real-Time 
Surface-Based ERT Monitoring: Post Analysis

Performance Objective

• Determine when and where amendment arrived

Approach

• Use ERT images to generate break through curves at each imaging pixel

• Choose conservative point on break through curve for arrival time

• Generate break through map of arrival times

• Generate map of average vertical amendment velocity

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Daily ERT Images
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Case Studies 
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Case 1: Monitoring Vadose Zone Amendment Delivery with Real-Time 
Surface-Based ERT Monitoring: Post Analysis (cont.)

Conclusions

• Plugged/slow drip lines were 
compensated by neighbors

• High K, fast break through zone

• Heterogeneous permeability/flow 
velocity

• Sufficient infiltration time for complete 
treatment

NOTES
• Post-test core analysis: phosphate precipitated in upper vadose zone! Why didn’t ERT see this?
• Solute reached water table, phosphate did not
• Excellent example of ERT impact + possible pitfall and need for supporting info

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentCase Studies 

Source: Johnson and Thomle, 2016. 
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Case 1: Monitoring Vadose Zone Amendment Delivery with Real-Time 
Surface-Based ERT Monitoring: Project Cost

• Total Labor Cost: ~260 hrs

– Health and Safety Plan, Inspections, Lock Out Tag Out (LOTO) Training (30 hrs)

– Test Plan (20 hrs)

– QA Plan (20 hrs)

– Field Instrumentation (60 hrs…due to electrode burial req’s)

– Web Site Construction (40 hrs)

– Baseline Data Collection & Processing (6 hrs)

– Time Lapse Data Processing (1 hr, autonomous)

– Post Analysis (40 hrs)

– Final Report (40 hrs)

• Equipment Cost: ~$50 K 

– ~$45 K for 128-Electrode ERT System (non-exclusive cost … system useable for other projects)

– ~$5 K for Materials (electrodes and cables)

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentCase Studies 
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Case 2: Bioremediation Performance Monitoring: 
ESTCP Projects ER-0717 and ER-201579-PR

Background

Brandywine, MD Defense Reutilization Marketing Office 

(DRMO) (Andrews AFB)

• TCE-contaminated groundwater

• Upper 12 m unconfined aquifer

• Spreading to residential neighborhood

• ROD – Enhanced bioremediation

• Amendment injections ~20 ft spacing (~1,000)

• ESTCP Dem/Val effort to monitor two injection points at boundary of 

treatment area

Washington 
D.C. Andrews AFB

Brandywine, MD DRMO

Case Studies RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Case 2: Bioremediation Performance Monitoring:
Monitoring and Validation System Infrastructure (Brandywine, MD)

• Highly instrumented subsurface monitoring system

• 8 3-port chemical sampling wells

• 7 ERT/chemical sampling wells

• 105 total borehole electrodes

• ER data autonomously collected once every two days for 
2.5 years

• Strategically-timed comprehensive chemical sampling

Injections 3/10/08

ERT

Electrodes

Aqueous

Sample

Ports

Aqueous

Sample

Wells

Monitoring System

GW flow @ 

~10 m/yr

Case Studies RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Case 2: Bioremediation Performance Monitoring:
Amendment and Injection Details (Brandywine, MD)

• Injections occurred via direct push in March 2008

Recipe

• 250 gallons of ABC (Anaerobic Biochem, mixture of lactates, fatty 
acids, and phosphate buffer)

• 3,200 gallons of water

• 466 lbs NaHCO3

• Injectate conductivity 15 mS/cm, pH 8

Procedure

• Direct push injection pipe to 34 feet bgs

• Inject 36 gallons of amendment @ 1 foot intervals

• Total ~ 950 gallons/location

Case Studies RITS 2017: Geophysics Strategy/Remediation Performance Assessment



52

Case 2: Bioremediation Performance Monitoring:
Imaging Results (Brandywine, MD)

Injection Locations
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Case 2: Bioremediation Performance Monitoring: Interpreting the 
Time-Lapse Images using Fluid Conductivity Measurements

~3.5 m bgs

~6.0 m bgs

~8.5 m bgs

Fluid specific conductance 

values collected at 3 depths 

and discrete sample times
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Case 2: Bioremediation Performance Monitoring: Interpreting the 
Time-Lapse Images using Fluid Conductivity Measurements (cont.)

~3.5 m bgs

~6.0 m bgs

~8.5 m bgs

Bulk conductivity difference 

time-series extracted from ERT 

images at sample port locations 
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Case 2: Bioremediation Performance Monitoring: Interpreting the
Time-Lapse Images using Fluid Conductivity Measurements (cont.)

Evidence

• Changes in bulk conductivity and fluid conductivity 
are highly correlated for first two sampling events 
(R2 = 0.87 over all sample ports)

• Last event: increase in bulk conductivity, decrease 
in fluid conductivity…

Interpretation

• Change in solid phase properties between second 
and third sampling event

a) Increase in porosity?

b) Increase in surface area?

c) Metallic mineral precipitation?

RITS 2017: Geophysics Strategy/Remediation Performance Assessment
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Case 2: Bioremediation Performance Monitoring: Interpreting the
Time-Lapse Images using Fluid Conductivity Measurements (cont.)

Other Evidence Supporting Biomineralization

• Contractors note enhanced microbial activity in 5th quarter 

• Sulfide precipitation part of reaction sequence

• Black particulate in several April 2010 samples

• Consistent with aqueous chemistry

Primary Implications and Impacts

• Amendment behavior autonomously monitored in 4D

• Solid phase alterations identified through comparison with fluid conductivity samples 

(simple and inexpensive)

• Demonstrated capability to image biomineralization…important diagnostic indicator for 

performance evaluation

• What about ‘production’ application at larger scales?

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

Johnson et al., 2015. Groundwater.
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Case 2.5: Post-Remediation Assessment:
ESTCP Project ER-201579-PR (Brandywine, MD)

Objectives

1. Identify the long-term geophysical footprint of active bioremediation 
at a VOC contaminated site

2. Determine the significance of the geophysical footprint with respect 
to solid phase mineral transformations and/or biofilms induced by 
the treatment process

3. Demonstrate the use of 1 and 2 above to map gradients in the 
geophysical footprints of biostimulation along a transect crossing 
the boundary of the treatment area at an active remediation site, 
and interpret those gradients in terms of long-term biogeochemical 
impacts
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Brandywine DRMO Field Campaign: June 2016
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Case 2.5: Post-Remediation Assessment:
Crosshole Imaging/Fluid Sampling Arrays (Brandywine, MD)

• Eight vertical arrays installed via direct push

• Each array includes 24 electrodes and 3 fluid sampling 
ports

• Enables 3D crosshole imaging directly in the ER0717 
injection zone

• Enables 2D crosshole imaging inside and outside of the 
treatment area 

• Enables depth-discrete pore fluid sampling inside and 
outside of treatment zone
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Case 2.5: Post-Remediation Assessment:
Core Sampling/Logging Holes (Brandywine, MD)

Four continuous core boreholes completed with PVC

• Enables direct lab measurement of electrical geophysical 
properties 

• Enables assessment of microbial communities and 
biogeochemical solid phase treatment zone

• Enables 1D geophysical logging profiles

• Critical to relate field-scale images to long-term 
biogeochemical impacts 
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Case 2.5: Post-Remediation Assessment:
Surface Imaging Results (Brandywine, MD)

Surface ERT Arrays

• Larger scale, lower resolution, less expensive imaging

• Enables inspection of the treated-to-untreated transition zone
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Untreated

Treated

72 m-long surface 

imaging arrays with 

electrodes at 1 m 

spacing

Treatment Zone Boundary
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Case 2.5: Post-Remediation Assessment:
Borehole Imaging Results (Brandywine, MD)

• Highest conductivity occurs in the vicinity of the injection well (profile xi-2)
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xi-1

xi-2

xi-3

xi-1 xi-2 xi-3

Treated Untreated
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Case 2.5: Post-Remediation Assessment:
Project Status (Brandywine, MD)

• Long-term geophysics footprint of bioremediated site 
exists and is identified

• Origin of geophysical signature in terms of solid phase 
mineral transformations and/or biofilms (in progress)

• Interpretation of images in terms of long-term 
biogeochemical impacts 
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Presentation Overview

• Basic Theory

• Implementation Examples

• Limitations and Pitfalls

• Case Studies

►Wrap-Up
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Take-Home Messages: What Can ERT Do For You?

• Characterization 

–Remotely, cost-effectively image primary 

geologic boundaries 

• Amendment Emplacement

–Time-lapse image how/where your amendment 

or tracer are migrating

• Monitoring 

–Determine when and where the subsurface is 

changing 

–Autonomous

RITS 2017: Geophysics Strategy/Remediation Performance Assessment

2D Boundaries

Change 

in log10

Cond.

(S/m)

3D

Tracer

migration

Wrap-Up

Gravel and Cobbles (coarser)

Backfill (finer)

Native Material



65

Take-Home Messages: What Else Can ERT Do for You?

• Determine what is happening (with help)

–Requires supplementary information

•e.g., wellbore fluid chemistry, soil samples

–Time-lapse imaging removes ambiguity (removes the haystack)
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Take-Home Messages: How Can You Mitigate Risk of Failure?

• Understand capabilities to 

develop realistic expectations

• Always require a pre-modeling 

feasibility assessment from your 

contractors

RITS 2017: Geophysics Strategy/Remediation Performance AssessmentWrap-Up



67

Resources

• ESTCP Project Reports

• Rutgers/USGS ESTCP Webinars 

– https://www.serdp-estcp.org/Tools-and-Training/Webinar-Series/07-28-2016

– https://www.serdp-estcp.org/Tools-and-Training/Webinar-Series/06-30-2016

• USGS Fractured Rock Geophysical Toolbox

– http://water.usgs.gov/ogw/frgt

• PNNL ERT Imaging Software (E4D)

– https://e4d.pnnl.gov

Tim C. Johnson
Pacific Northwest National Laboratory

Phone: (509)-372-4715  

Email: tj@pnnl.gov

www.pnl.gov

Fred D. Day-Lewis
U.S. Geological Survey

Phone: (860)-487-7402

Email: daylewis@usgs.gov

www.usgs.gov/staff-profiles/frederick-d-day-lewis

Lee D. Slater
Rutgers University – Newark

Phone: (973)-353-5109

Email: lslater@andromeda.rutgers.edu

https://www.ncas.rutgers.edu/lee-slater
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NAVFAC Point of Contact

• Steve Hammett

– (805) 982-4839

–steven.a.hammett@navy.mil
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