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Abstract 
 
 
Objective 
 
In a rapidly changing, non-stationary world it is imperative for natural resource managers to 
understand how biotic communities may respond to a range of environmental disturbances. 
Predicting how these disturbances may affect the overall stability of biotic communities is of 
particular interest and is shifting the historical emphasis on species-level dynamics to a new focus 
on species’ interconnections within large, complex communities. Network models are quickly 
becoming the ecologist’s tool-of-choice for studying multi-species interconnections within biotic 
communities. Network graphs, which represent species as ‘nodes’ and interconnections as ‘edges,’ 
are powerful yet intuitive tools for documenting and visualizing species’ connections at the system 
level. In addition, graph theory provides a mathematical framework for quantifying network 
structure and testing hypotheses on network assembly and stability; however, two key knowledge 
gaps currently limit the utility of the network approach. First, ecologists have so far focused on 
discrete mutualistic plant-pollinator or host-parasite interactions, or on antagonistic predator-prey 
interactions, but associations that are less easily classified (e.g., commensalism) or that are diffuse 
(i.e., realized through an intermediary) also can have strong influences on community structure 
and methods to incorporate them are now needed. Second, ecological network theory can predict 
how an acute extinction event (i.e., node removal) will influence the overall network, but it does 
not yet predict how ecological networks will respond to chronic environmental disturbances (i.e., 
those that do not cause acute extinctions). Chronic disturbances, such as physicochemical habitat 
degradation, are pervasive. And in an uncertain future, these types of chronic disturbances are 
likely to pose significant challenges to Department of Defense (DoD) managers. The project 
objective was to address each of these two knowledge gaps—accounting for multiple types of 
species’ associations and predicting network responses to chronic disturbances—using North 
American freshwater fishes as a model system. 
 
Technical Approach 
 
The project incorporated an exceptionally large, standardized, pre-existing database of fish co-
occurrences (the combined Environmental Monitoring and Assessment Program, and National 
Rivers and Streams Assessment datasets) within three United States (U.S.) biogeographic regions: 
the Mid-Atlantic coast, Mississippi River basin, and Pacific Northwest. In each region, fish co-
occurrence networks were built for sampling sites that had been objectively classified, using a 
standardized scoring system based on benthic macroinvertebrates, as least, moderately, or severely 
disturbed. Different metrics of network stability, including connectivity and modularity, were then 
used to gauge network responses to environmental disturbance (i.e., comparisons among least, 
moderately, and severely disturbed sites). Species’ extinction (i.e., node deletion) experiments 
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were also used to simulate network responses to species’ extirpations and to detect secondary 
effects on the remaining species. Finally, a spatially-explicit framework to study and model 
species’ associations within dendritic river networks was explored by superimposing the spatially-
implicit fish networks on spatially-explicit, digital stream network maps. 
 
Results 
 
Network responses to chronic environmental disturbance were variable among biogeographic 
regions and in general, less clear than expected. Median node degree and closeness centrality did, 
however, change in a consistent, predictable manner with disturbance: degree decreased and 
closeness centrality increased with increasing disturbance. Together, these indicators suggest that 
fish co-occurrence networks become smaller (i.e., fewer species and fewer links among species) 
and more compact (i.e., shorter average distances among species’ nodes) as disturbance increases. 
Notably, the identities of species’ hubs (i.e., most highly connected species) did not change as the 
networks became smaller; decreasing degree values were attributable to deletions of peripheral 
species with low connectivity. In all networks, distinct modules of highly interconnected species 
were detected and the numbers of modules tended to increase with disturbance. Functional traits 
analyses showed that the morphological, ecological, and life-history characteristics of species 
within modules were highly similar, suggesting that modules may be repetitive functional ‘motifs’. 
If these modules are functionally redundant, they may increase overall network stability; 
perturbations that disrupt part or all of a module may be compensated for by an independent 
module. Extinction simulations identified individual species that may be most vulnerable to 
primary and secondary extinctions, depending on the algorithm used to simulate disturbance (e.g., 
species least tolerant of pollution or species at sites closest to a major DoD facility). 
 
Benefits 
 
This Limited Scope project was a unique opportunity to generate new understanding of ecological 
networks within stream ecosystems and to begin to develop a process for incorporating this 
knowledge in conservation planning. Overall, we did not find definitive or easily generalizable 
results, but we did succeed in demonstrating an explicit process to quantify network structure and 
dynamics using widely available data on species’ co-occurrences. Lessons learned are germane to 
most U.S. streams, as our sample data were broadly representative of stream conditions and fishes 
found throughout the U.S., as well as other types of ecosystems where the requisite co-occurrence 
data can be obtained. Results should be of particular value to DoD managers as they prepare to 
contend with uncertain environmental conditions in the future, given that fishes comprise the 
largest taxonomic group of at-risk vertebrate species on DoD property and thousands of kilometers 
of stream and river habitat are in close or immediate proximity to one or more DoD facilities. 
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Objective 
 
The overarching goal of this Limited Scope project was to help Department of Defense (DoD) 
managers and the scientific community to prepare and plan for the effects of future environmental 
disturbances on the biota of stream and river ecosystems, using freshwater fishes as a model 
system. To do so, we studied fish co-occurrence networks within three major biogeographic 
regions of the United States. A co-occurrence network is a system of connections among species 
that can be used to detect interdependencies and/or to predict whether the effect of a disturbance 
is likely to be isolated to a single locale within the network, or to propagate throughout the network 
(see ‘Background’ below). Within ecology and environmental science, network analysis is 
emerging as a leading tool to study and model complex, highly interactive systems (Bascompte 
2009; Proulx et al. 2005; Tylianakis et al. 2010). Our work sought to quantify the overall stability 
of fish co-occurrence networks, relative to a gradient of environmental disturbance, and to 
characterize the most critical functional roles and linkages within the networks. In the following 
pages, we explain how the novel, preliminary framework that we have developed may ultimately 
provide new tools to predict how stream and river biota may respond to future changes, and to 
establish specific management objectives that will protect the most essential structural and 
functional components of ecological networks. 
 
Our Limited Scope project was responsive to each of the two major objectives specified in 
RCSON15-01: New Paradigms for Managing Species and Ecosystems in a Non-Stationary World 
(SON objectives 1 and 2). First, co-occurrence network or ‘ecological network’ research is a 
cutting-edge and rapidly growing sub-field of community ecology that can provide ‘emerging 
theoretical and applied understanding . . . to address management challenges associated with. . 
.potential futures within relevant, testable, and adaptable conceptual frameworks’ (SON objective 
2). Second, by identifying dimensions of fish networks that have proven either robust or vulnerable 
to recent environmental disturbances, our methods and results can potentially help to predict and 
characterize the fish assemblages that DoD managers may be responsible for ‘25 or more years 
from now in a non-stationary world’ (SON objective 1). 
 
Specific Research Objectives of this Limited Scope project were to: (A) build networks of linked, 
co-occurring fish species within three biogeographic regions; (B) quantify network stability and 
responses to environmental disturbance via empirical observations; (C) create a spatially-explicit 
framework to study and model fish co-occurrence within dendritic river networks (DRNs); and 
(D) use extinction ‘experiments’ to simulate network responses to species and/or site removals. 
Specific Research Tasks performed under each Objective were to: 
 

A1. Specify fish co-occurrence network topology in each of the three biogeographic regions. 
A2. Build non-weighted, undirected, unipartite network graphs in each region. 
A3. Build weighted, directed, unipartite graphs of the co-occurrence networks in each region. 
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B1. Stratify sample sites by environmental disturbance level (‘least’, ‘moderate’, or ‘severe’). 
B2. Build independent fish co-occurrence networks for least, moderately, and severely 

disturbed sites in each biogeographic region. 
B3. Compare network connectivity among least, moderately, and severely disturbed sites. 
B4. Compare network modularity (i.e., the tendency for small, highly interconnected 

subgroups to form within the larger network) among least, moderately, and severely 
disturbed sites. 

C1. Convert spatially-implicit, unipartite networks to spatially-explicit, bipartite networks. 
C2. Reassess the previous unipartite and bipartite results within a spatially-explicit context. 
D1. Perform ‘node deletion’ (i.e., species extinction) experiments to assess how fish co-

occurrence networks may respond to extinction events. 
 

By completing each of the above Research Tasks, we answered five Key Research Questions: 

1. Does fish network connectivity, as an index of overall network stability, change 
predictably when exposed to environmental disturbance in the form of chronic habitat 
degradation? 

2. Does network modularity change in response to environmental disturbance? 
3. Are modules within fish co-occurrence networks comprised of functionally similar 

species and if so, what are the common functional characteristics of their constituent 
species? 

4. Do indicators of fish network stability have distinct spatial signatures when the unipartite 
fish co-occurrence networks are expressed as spatially-explicit, bipartite, DRNs? 

5. Does the loss of a particular species or group of species pose a unique risk to network 
stability? 

 
Links between each of the above Research Tasks, Key Research Questions, and their respective 
RCSON15-01 objectives and research needs are illustrated in Fig. 1. 
 
Ecological network analysis is a germane topic in ecological and environmental research. And the 
exploratory analyses detailed herein were conducted entirely with pre-existing data (see ‘Methods 
and Materials’ below). For these reasons, we did not explicitly target any particular DoD facility. 
However, lessons learned through this Limited Scope project may be highly relevant to DoD for 
at least two reasons. First, fishes comprise the largest group of vertebrate ‘species at risk’ on DoD 
property (36% of all at-risk vertebrates; NatureServe 2011). Our fish-specific results may therefore 
enhance DoD efforts to manage a relatively large number of high conservation priority species. 
Second, an abundance of stream and river ecosystems occur in close or immediate proximity to 
DoD facilities. In each of the three biogeographic regions that were studied – the East Coast 
(Chesapeake Bay to Savannah River, GA), the Mississippi River Basin, and the Pacific Northwest 
– there are between 34 and 145 DoD facilities (Fig. 2), many of which lie within a 10 km radius 
of fish-bearing streams/rivers. Also, a large amount of stream/river habitat lies entirely within the 
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boundaries of some DoD facilities. For instance, 588 km of stream channel occur within the 
grounds of Fort Bragg (NC) and 1,174 km occur within the Yakima Training Center (WA). Thus, 
the footprint of DoD activities on stream and river fishes of the U.S. is potentially very large. 
 

 
 

Figure 1. Links between each of the proposed Research Tasks, Key Research Questions and 
the RCSON15-01 objectives and research needs. Research Tasks A1, A2, and A3 are not 
directly linked to any of the SON objectives or research needs, but were prerequisite to each 
of the subsequent Research Tasks. Note that the major Research Tasks deviate slightly from 
the original Limited Scope Proposal; node deletion experiments were performed for both 
unipartite and bipartite networks and were therefore changed from Task B5 to Task D1. 
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Figure 2. Map of DoD facilities (shown as stars) within each of the three major 
biogeographic regions included in this Limited Scope project: the East Coast, the 
Mississippi River Basin, and the Pacific Northwest. Total numbers of facilities are 
shown in parentheses for each biogeographic unit. 

 
 
By demonstrating the methods used to build and analyze ecological networks, then showing that 
these networks can be used to detect environmental disturbances and/or to predict their potential 
effects on species within the networks, we believe that our Limited Scope project sets the stage for 
a full Strategic Environmental Research and Development Program (SERDP) proposal. To date, 
most ecological network research has focused on basic theory, with little attention paid to applied 
conservation questions (Tylianakis et al. 2010). We anticipate that a full SERDP project will allow 
us to achieve four future objectives: (1) confirming that pair-wise links within the unipartite 
networks do (or do not) reflect true biological associations; (2) testing a hypothesis of functional 
motif redundancy among network modules (see ‘Results and Discussion’); (3) extending the 
simulation algorithms used in this study to better incorporate chronic or gradual disturbances and 
spatial dynamics within DRNs; and (4) building user-friendly tools to make the network analyses 
and visualizations widely accessible to managers and conservation practitioners. 
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Background 
 
 
In a rapidly changing, non-stationary world it is important to understand how biotic communities 
respond to environmental disturbances (Blois et al. 2013). Efforts to enhance this understanding 
have recently been motivated by questions regarding the stability of biotic communities (Allesina 
and Tang 2012; Melián and Bascompte 2002; Thébault and Fontaine 2010; Tylianakis et al. 2010). 
These efforts are shifting the scientific community’s focus from a historical emphasis on the 
dynamics of individual populations (Harrison 1979; Holling 1973) to a more holistic emphasis on 
the interconnections among large numbers of co-occurring species (Proulx et al. 2005). For 
example, researchers may now seek to predict whether an extinction event within a food-web is 
likely to trigger a cascade of secondary or tertiary extinctions, or whether functional redundancies 
(e.g., alternative hosts or food resources) may act as extinction buffers (Allesina et al. 2009; Dunne 
et al. 2002b; Lafferty and Kuris 2009; Rodriguez-Cabal et al. 2013; Saterberg et al. 2013). 
 
The network model is a powerful tool for studying complex, multi-species interconnections within 
biotic communities (Bascompte and Jordano 2007; Newman 2003; Proulx et al. 2005). Network 
graphs, in which species are depicted as ‘nodes’ and co-occurrences are depicted as ‘edges’ or 
‘links’ (Fig. 3), are an intuitive way to visualize species’ connections at the system level (Fortuna 
and Bascompte 2008; Poisot et al. 2012). And graph theory provides a rigorous mathematical 
framework to quantify network structure and test hypotheses on network assembly and stability 
(Albert and Barabási 2002; Gross and Yellen 2006; Newman et al. 2000). For instance, the 
distribution of species ‘degree’ (the number of edges connecting a focal species to other species, 
also referred to as ‘connectivity’) can be used to gauge the overall ‘robustness’ (the tendency to 
remain a cohesive network, rather than breaking into disconnected fragments that are themselves 
less likely to persist in the future) of the network to extinction events (i.e., node deletions) (Albert 
et al. 2000). Ecological networks often exhibit power-law degree distributions, with many poorly 
connected species and a few highly connected ‘hub’ species (Camacho et al. 2002; Jordano et al. 
2003; Montoya and Solé 2002). Theory predicts that these power-law networks will be robust to 
disturbance because random extinctions will tend to remove weakly connected nodes, leaving hub 
species and their links intact (Jordán 2009; Tylianakis et al. 2010). However, these same networks 
may quickly become unstable if a hub species is removed (Solé and Montoya 2001). Co-
occurrence networks can also be used to address questions that are not amenable to more 
conventional statistical methods. For example, ecologists often use ordination or clustering to 
identify highly associated groups of species, then attempt to model group affinities as a function 
of independent predictor variables (Gotelli and Ellison 2004). These multivariate tools work well 
in some applications, such as quantifying and explaining biodiversity gradients (McGarvey and 
Ward 2008; Niu et al. 2012), but they do not address interconnectedness and system-level stability 
as effectively as some network metrics (Carstensen et al. 2013). 
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Figure 3. Three network graphs built from the same presence-absence matrix (inset lower left, 
with species represented as rows, sites represented as columns, and species’ presences at a 
given site represented by an ‘x’). The non-weighted, undirected, unipartite graph at upper-left 
(A) shows spatially-implicit links (co-occurrences) among species (gray circles). A weighted 
and directed, unipartite graph is shown for the same co-occurrence data at center (B); solid 
lines indicate (+) links, dashed lines reflect (-) links, and line thickness indicates link strength. 
The graph in (B) is also spatially-explicit; species’ nodes are located at the centroids of their 
regional distributions (i.e., locations within the shaded river basin). A spatially-explicit, 
bipartite graph is shown at right (C); sampling sites (black numbered boxes) are located along 
the dendritic river network (heavy gray lines) and superimposed species’ nodes are positioned 
as in (B), but links are only drawn between species and their known locations. 

 
 
Yet despite much recent progress in ecological network research, two key knowledge gaps remain 
before network analyses can realize their full potential in natural resource management. First, most 
ecological network studies have focused solely on mutualistic plant-pollinator or host-parasite 
associations, or on antagonistic predator-prey links (Allesina and Tang 2012; Dunne et al. 2002a; 
Olff et al. 2009; Sauve et al. 2014; Thébault and Fontaine 2010). These discrete associations are 
directly observable and have therefore proven useful in empirical tests of network structure and 
stability. However, associations that are less conspicuous (e.g., commensalism) or that are diffuse 
(realized through an intermediary) can also have important influences on community structure 
(Callaway and Pennings 2000; Pianka 1974; Saterberg et al. 2013) and methods to incorporate 
them in ecological networks are needed, but currently lacking (Araújo and Rozenfeld 2014; 
Bascompte and Jordano 2007; Poisot et al. 2012; Thébault and Fontaine 2010). Second, a mature 
body of theory to predict ecological network (biotic community) responses to environmental 
disturbances, particularly chronic disturbances, does not yet exist (Melián and Bascompte 2002; 
Tylianakis et al. 2010; Tylianakis et al. 2007). Network models and graph theory are rooted in 
studies of communication and transmission networks, such as the internet and the spread of 
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infectious disease (Albert and Barabási 2002; Gross and Yellen 2006), and it is not yet clear which 
properties of these systems are directly applicable to ecological networks (Proulx et al. 2005; 
Tylianakis et al. 2010). For example, disturbance and node deletion are often synonymous 
concepts in network studies (Albert et al. 2000; Allesina et al. 2009; Callaway et al. 2000). But in 
ecological systems, richness (the number of nodes) may actually increase in response to 
disturbance (Connell 1978; Huston 1979; Olden et al. 2004; Rodriguez-Cabal et al. 2013). 
 
Work conducted under this Limited Scope Project addressed each of these two challenges – the 
lack of methods to account for species’ associations that cannot easily be classified as obligate 
mutualisms or predator-prey associations and the lack of theory to predict network responses to 
chronic environmental disturbance – using North American freshwater fishes as a model system. 
Research Tasks A1-A3 (see ‘Objectives’ and Fig. 1 above) sought to determine which fish species 
pairs have significantly positive and/or negative associations. This was an efficient way to infer 
the strength and direction of species’ associations at large spatial scales, when direct observation 
is not feasible (Araújo and Rozenfeld 2014; Veech 2006). Research Tasks B1-B4 constituted what 
we believe is the first empirical, large-scale study of chronic environmental disturbance effects on 
network structure and stability. We focused primarily on two indicators of network stability: 
connectivity and modularity (Bascompte and Jordano 2007; Olesen et al. 2007). Through Research 
Task B5, we demonstrated how dynamic network analyses could be used by DoD managers to 
simulate future extinction events and their effects on ecological networks. Finally, under Research 
Tasks C1-C2, we performed a preliminary, spatially-explicit analysis of bipartite networks that 
were mapped to DRNs. These spatially-explicit analyses provide both general insight to the 
stability of ecological networks and site-specific knowledge that can be directly applied in local 
management and conservation programs. 
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Materials and Methods 
 
 
Study Areas and Fish Data 
 
We built fish co-occurrence networks in each of three biogeographic regions: the East Coast, the 
Mississippi River Basin, and the Pacific Northwest. Three criteria were used in selecting these 
regions. First, each region has a distinct fish fauna with a unique evolutionary history (Hocutt and 
Wiley 1986; Smith et al. 2010). By comparing regions, we sought to distinguish fish network 
patterns that are specific to a given assemblage or environment from those that are common to all 
regions and may therefore reflect convergent underlying processes. Second, future environmental 
threats and challenges are expected to differ among regions. For instance, forecasted increases in 
annual temperature and water yield throughout much of the Upper Mississippi River Basin (Jha et 
al. 2004) may facilitate enhanced corn (ethanol) production, but at the cost of elevated rates of 
nutrient (nitrogen and phosphorous) application and runoff (Secchi et al. 2010). Urbanization 
impacts on upland streams and rivers (and their resident biota) throughout the East Coast region 
are likely to increase as sea-level rise (Sallenger et al. 2012) pushes coastal residents further inland 
(Rogers and McCarty 2000). And diminished snowpack has begun to alter the timing and 
magnitude of stream flows (higher in winter and spring, lower in summer and fall) throughout the 
Pacific Northwest (Miles et al. 2000; Mote et al. 2003). Thus, by including the three regions in this 
study, will hoped to ensure that our results are robust and relevant to managers with diverse 
concerns. Third, each region contains a large number of DoD facilities and an abundance of 
streams and rivers that are near a DoD site (see Fig. 2); lessons learned in this project should 
therefore be directly relevant to DoD managers. 
 
Fish co-occurrence networks were built using standardized field samples from the Environmental 
Monitoring and Assessment Program (EMAP; USEPA 2002) and the National Rivers and Streams 
Assessment (NRSA; USEPA 2013) databases, which are both publicly available through the 
United States Environmental Protection Agency (USEPA). EMAP was the first national-scale 
survey of fish assemblage structure, as well as aquatic invertebrates, water chemistry, and physical 
habitat, within streams and rivers of the conterminous United States (Hughes et al. 2000). NRSA 
was the successor to EMAP (USEPA 2013). Sample site locations in both programs were selected 
a priori through a stratified random sampling design that accounted for differences among major 
types of river and stream ecosystems, or ‘ecoregions’; by randomly selecting sample sites within 
each ecoregion, USEPA was able to (i) perform statistically robust assessments of the health of 
the complete population of streams and rivers within each ecoregion, and (ii) scale the regional 
assessments up to overall, national-scale summaries of stream and river health (USEPA 2002). 
Importantly, standardized field protocols were prepared prior to the start of the EMAP and NRSA 
sampling schedules (each of which was distributed over multiple years) and field crews were 
rigorously trained prior to sampling events (Lazorchak et al. 2000; Lazorchak et al. 1998; USEPA 



11 
 

2007, 2010). A large number of preliminary samples and data analyses were also used to ensure 
that the final, standardized sampling methods would be adequate to fully characterize biotic and 
abiotic conditions at each sample site (Cao et al. 2001; Hughes et al. 2002; Reynolds et al. 2003). 
The combined EMAP/NRSA dataset is now the largest, most spatially extensive record of 
standardized fish, invertebrate, and physicochemical stream and river data ever assembled in the 
conterminous United States (see Fig. 4). Additional information on the regional distributions of 
individual fish species were obtained from the NatureServe database ‘Digital Distribution of 
Native U.S. Fishes by Watershed, Version 3.0’ (NatureServe 2010). 
 
 

 
 

Figure 4. Map of the NRSA/EMAP sampling sites (shown as points). Major 
biogeographic regions are indicated by shaded polygons. The total number of 
sampling sites within each region is shown in parentheses. 

 
 
 
Research Tasks A1-A3: Building the Fish Co-occurrence Networks 
 
Network topology – the ‘blueprint’ of species co-occurrences at individual sampling sites that all 
network graphs were built from – was specified by combining EMAP/NRSA fish samples within 
presence-absence matrices.1 Separate presence-absence matrices were compiled for each of the 
three biogeographic regions, with the following regional dimensions (i.e., total number of fish 
species × total number of sampling sites): East Coast = 227 species × 437 sites; Mississippi = 339 

                                                            
1 Note that species’ absences can correctly be inferred for EMAP/NRSA samples because standardized protocols 
with known detection efficiency were used (see Study areas and fish data). Failure to observe a species at a given 
site is therefore truly informative; the EMAP/NRSA data are not subject to the limitations of presence-only data. 
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species × 1323 sites; Pacific Northwest = 60 species × 498 sites. Presence-absence matrices were 
then converted to ‘edge lists’ (i.e., two-column tables representing associations between species 
pairs) for use in building unipartite networks. Unipartite networks and their graphs were then 
constructed from the regional edge lists in each of the three biogeographic regions. We first built 
non-weighted, undirected, unipartite graphs in each region. Next, we added ‘weights’ and 
‘directions’ to the unipartite networks. To do so, we used the probabilistic co-occurrence model of 
Veech (2013, 2014). 
 
The ‘probabilistic model of species co-occurrence’ (Veech 2013, 2014) provides a systematic and 
quantify tool to infer the direction (i.e., positive versus negative co-occurrence patterns) and 
overall significance or strength of every pair-wise species’ association within a given dataset (i.e., 
edge list). Briefly, the probabilistic model of co-occurrence calculates the number of ways that two 
species can co-occur at exactly j number of sampling sites, given that each species occurs at N1 
and N2 number of sites out of a total of N. From this, the model calculates the probability that two 
species would co-occur at more than (i.e., positive associations) or fewer than (i.e., negative 
associations) the observed number of sites where the two species do, in fact, co-occur (Veech 
2013). All co-occurrence probability calculations were performed with the ‘cooccur’ package 
(Griffith et al. 2014) in R (R Core Team 2016). 
 
Importantly, the probabilistic model of co-occurrence can be influenced by spatial scaling artifacts 
(Veech 2006, 2013). We therefore performed a series of preliminary co-occurrence probability and 
unipartite network comparisons, using four different spatial scales, to identify an optimal scale (or 
scales) for the remainder of the network analyses. These spatial scales were represented by U.S. 
Geological Survey ‘Hydrologic Units’ within the National Watershed Boundary Dataset (USGS 
2013). Using a large subset (approximately 1/3 of all samples) of the Mississippi River Basin 
dataset, we performed a full suite of co-occurrence and unipartite network analyses at the ‘HUC0’ 
(largest spatial units), ‘HUC2’, ‘HUC4’, and ‘HUC6’ (smallest spatial units) scales. 
 
Results of the spatial scale comparisons were highly variable, confirming the importance of spatial 
scale in co-occurrence and network analyses. For example, we plotted three of the parameters from 
power-law models of network degree distribution (power-law model constants, exponents, and 
coefficients of determination; see below for review of the importance of network degree 
distributions and power-law models) and network modularity values (see below) for subsets of 
data that were partitioned at each of the four spatial scales (Fig. 5). Moreover, we repeated this 
comparison for networks that were built using all data, as well as networks that were built 
exclusively from significant paired species’ associations (inferred from the probabilistic co-
occurrence model). We observed large differences in overall results among all four scales (Fig. 5). 
Upon closer inspection of the fish database, however, we observed that sample sizes within the 
HUC6 spatial units (i.e., decreasing the size of the sub-drainages used as ‘replicates’ in co-
occurrence and network analyses) were generally too small to support robust network analyses, 
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particularly when comparing networks that were further subdivided by disturbance level (see 
below). At the opposite extreme, we did not perform network analyses at the HUC0 scale because 
these spatial units were too large (e.g., the entire Mississippi River Basin or Columbia River Basin) 
to satisfy the core assumption of ‘access to all potential co-occurrence sites’ that is invoked by the 

Figure 5. Effects of spatial scale on four unipartite network metrics: the constants (‘PowerA’), 
exponents (‘PowerB’), and coefficients of determination (‘PowerR2’) from power-law degree 
distribution models, and mean modularity. Results are partitioned by spatial scale (HUC0 – 
HUC6) and by separation into distinct networks for complete datasets (‘all species pairs’), all 
significant species’ pairs, significantly negative pairs, and significantly positive pairs using 
the probabilistic model of co-occurrence (see main text). 
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probabilistic model of co-occurrence (see Veech 2013). We therefore performed all of our analyses 
at the HUC2 and HUC4 spatial scales, repeating all data analysis procedures at each scale. (Results 
are appended with ‘HUC2’ or ‘HUC4’ labels throughout the remainder of this Final Report.) We 
also repeated all co-occurrence and network analyses using a ‘five or more occurrences per 
species’ criterion to minimize bias in the co-occurrence significance results that may result from 
including species with too few observed occurrences (i.e. < 5) to reliably estimate co-occurrence 
probabilities. This second set of more conservative test results is indicated throughout the Final 
Report by a ‘5+’ label. An example of a weighted unipartite graph is shown at the HUC2 scale for 
all co-occurring fishes within the Ohio River Basin in Fig. 6. Additional examples of weighted 
unipartite graphs are shown for each of the three biogeographic regions, at both the HUC2 and 
HUC4 scales, in Appendix A. 
 

 
Figure 6. Weighted unipartite graph for the Ohio River Basin fish network. The 
size and color of each node depict its degree (i.e., connectivity) and module 
membership (colors are arbitrary, showing only mutual membership within 
modules; see below), respectively. The thickness and color of each link depict edge 
weights (thicker lines represent larger weights) and directions (black lines = 
positive associations, grey lines = negative associations). 

 
 
Sixteen network metrics were then calculated for each of the unipartite networks (see Appendix B 
for definitions of all network metrics). We began by focusing on the degree values of individual 
nodes within the networks, calculating both the maximum and median degree within each network. 
Next, we fit a power-law model to the complete, cumulative degree distribution from each network 
(power-law degree distributions are often associated with robust networks; see ‘Research Tasks 
B1-B5’ below), noting the alpha (α) value and p-value from a Kolmogorov–Smirnov (K-S) test of 
model fit. Truncated power-law models (i.e. power-law models that only consider the region of 



15 
 

greatest curvature in cumulative distributions, effectively truncating the complete distributions at 
an empirically determined minimum x-value) were also fit to the network degree distributions, 
noting the minimum x-values, as well as the truncated α and truncated K-S p-values. We then 
calculated the maximum and median betweenness centrality of each node within the networks, as 
well as the maximum and median closeness centrality of each node. The global clustering 
coefficient was calculated for each network, in addition to the maximum and minimum local 
clustering coefficients. Finally, modularity and the number of distinct modules were calculated, 
using a ‘simulated annealing’ algorithm (Newman 2006; Olesen et al. 2007). All unipartite 
networks were built and analyzed with the ‘igraph’ package (Csárdi and Nepusz 2006) in R. 
 
 
Research Tasks B1-B4: Measuring and Modeling Unipartite Network Stability 
 
Tasks B1-B2 – Stratify sample sites by environmental disturbance level then build independent 
fish co-occurrence networks for sites in ‘good’, ‘fair’, and ‘poor’ condition 
 
A major objective of this Limited Scope project was to empirically document changes in network 
structure and stability, relative to an environmental disturbance gradient. To accomplish this, we 
applied the three disturbance rankings – ‘good’, ‘fair’, or ‘poor’ condition – that were assigned by 
USEPA to individual EMAP/NRSA sampling sites. This classification system was designed to 
provide an integrated measure of disturbance that would account for multiple types of 
anthropogenic activities. USEPA assigned each sample site to one of the three disturbance 
categories using standardized scoring rubrics for both physicochemical data (e.g., nutrient 
concentrations, turbidity, substrate characteristics, and riparian habitat quality; USEPA 2002, 
2013) and benthic macroinvertebrate data (Herlihy et al. 2008; Stoddard et al. 2008; Stoddard et 
al. 2006; USEPA 2016). Initially, we planned to use the site disturbance rankings based on 
physicochemical data. However, upon closer inspection of the data, we learned that the 
physicochemical variables used to classify sites was not entirely consistent among the NRSA and 
EMAP surveys (see Lazorchak et al. 1998; USEPA 2007, 2016). We therefore used the benthic 
macroinvertebrate data to classify sites by a uniform system of disturbance ranks, following the 
detailed method outlined in Herlihy et al. (2008), Stoddard et al. (2008), and USEPA (2016). 
Notably the use of benthic invertebrates may have been an unexpected strength of our study, as 
invertebrate-based biological assessments a well-documented history of use in freshwater ecology 
and are thought to better reflect chronic disturbances through time than discrete water quality 
samples (e.g. Chessman 1995; Growns et al. 1997; Hawkins et al. 2000). Among East Coast 
sample sites, we found 0.35, 0.30, and 0.35 of all sampling sites to be in good, fair, and poor 
condition, respectively. Among Mississippi River Basin sites, 0.35, 0.25, and 0.40 of all sites were 
identified as being in good, fair, and poor condition. Among Pacific Northwest sites, 0.66, 0.16, 
and 0.18 of all sites were in good, fair, and poor condition. 
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Following procedures outlined above, we built new unipartite networks for sites in good, fair, and 
poor condition, in each of the three biogeographic regions, then re-calculated each of the 16 
network metrics (see Appendix B) for the new networks using ‘igraph’ in R. This process was 
repeated for the complete compliment of data management factors described above (i.e. by spatial 
scale, for significantly positive and negative co-occurrences, and for both complete species’ lists 
and ‘5+ occurrences’ lists). This repetitive process allowed us to examine network structure from 
multiple perspectives and to evaluate whether some network analysis results were unique to (or 
artifacts of) a particular data management scheme. However, partitioning the large yet finite fish 
datasets among so many competing factors did lead to many data analysis iterations (i.e., 
combinations of biogeographic region, spatial scale, disturbance level, etc.) where the data were 
no longer sufficient to complete all network analyses. These data-insufficient iterations are 
indicated by ‘gaps’ among the summary bar charts shown in Appendix C and Appendix D. 
 
 
Task B3 – Compare connectivity among ‘good’, ‘fair’, and ‘poor’ condition networks 
 
Our plan to assess network connectivity was rooted in the concept of node degree and the 
importance of the cumulative degree distribution. At the species level, connectivity is the number 
of associations that a focal species shares with other species, also known as species’ degree. At the 
network level, connectivity becomes an integrated measure of species’ interconnectedness and can 
be expressed as the frequency distribution of edges (i.e., the degree distribution) between all co-
occurring species. Connectivity is central to network stability for the following reason: theory 
predicts that a network with many weakly connected species and a few highly connected species, 
which will exhibit a power-law degree distribution, is less likely to be ‘damaged’ by a random 
extinction event (i.e., odds are that a weakly connected species will be lost, with minimal effects 
on remaining species) than a network with many highly connected species, which should exhibit 
degree distributions with truncated power-law or exponential curves (Bascompte and Jordano 
2007; Jordán 2009; Tylianakis et al. 2010). More specifically, the loss of a weakly-connected 
species may have isolated effects, but the loss of a highly-connected hub species may split the 
network into fragments (Albert et al. 2000; Camacho et al. 2002; Solé and Montoya 2001). 
 
In each biogeographic region, we compared networks in good, fair, and poor condition to assess 
whether connectivity, as represented by the shape of the degree distributions, changes in a 
consistent way with disturbance level. Because connectivity and species’ degree were so central 
to our project, we also calculated three alternative measures of node connectivity – betweenness 
centrality, closeness centrality, and clustering coefficients (see Appendix B) – then compared these 
among the good, fair, and poor condition networks. Connectivity calculations were performed as 
above using the ‘igraph’ package in R. 
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Task B4 – Compare modularity among ‘good’, ‘fair’, and ‘poor’ condition networks 
 
Network modularity is the tendency for nodes (i.e., species) to cluster together within small but 
highly interconnected sub-networks, or ‘modules’ (Olesen et al. 2010). It is central to ecological 
network stability because modules are often thought to consist of species with similar functional 
roles, and those roles may not exist elsewhere in the network (Dalsgaard et al. 2008; Olesen et al. 
2007). If this is generally true, modules can potentially serve as fundamental conservation units: 
losing a complete module and its functional role(s) may cause the collapse of an entire network, 
and so a prudent management strategy would be to ‘save a piece’ of each module (Olesen et al. 
2007; Tylianakis et al. 2010). 
 
Following the logic described above for connectivity analyses, we compared modularity among 
networks in good, fair, and poor condition to assess whether modularity differs in a predictable 
way with increasing level of disturbance. Modularity was calculated for each of the networks (3 
biogeographic regions × 3 disturbance levels) using the Q metric and a ‘spectral partitioning’ 
optimization algorithm (Newman 2006). All modularity calculations were performed as above 
using ‘igraph’ in R. 
 
We then assessed whether network modules reflected consistent themes in aggregated functional 
traits. Functional traits analysis, which replaces the traditional community ecology emphasis on 
taxonomic identity with information on the functional roles that individuals and species play within 
ecosystems, has become one of the most prolific and powerful tools for explaining patterns in fish 
assemblage structure (e.g. Blanck et al. 2007; Cilleros et al. 2016; Frimpong and Angermeier 2009; 
Goldstein and Meador 2004; Hoeinghaus et al. 2007; McGill et al. 2006; Meador and Brown 2015; 
Olden et al. 2006; Winemiller and Rose 1992). To perform the traits-based analyses, we first 
compiled a master database of species-level functional traits. This database included trait 
characters for 637 fish species, distributed throughout the continental U.S. It was assembled by 
first querying major repositories of fish traits data, including the FishTraits (Frimpong and 
Angermeier 2009) and FishBase (www.fishbase.org) databases, followed by regional atlases (e.g. 
Freshwater Fishes of Virginia; Jenkins and Burkhead 1994) and ultimately, searches in the 
primary and secondary literature. In total, 250 sources were consulted in preparing the master fish 
traits database. The complete database included 30 traits, many of which were not available across 
all 637 fish species (i.e., the final traits matrix included many data gaps). From these 30 traits, we 
selected 13 traits that were reasonably complete and represented multiple types of functional and 
life-history characteristics (e.g. body size, reproductive behavior, habitat use, and feeding 
behavior), for use in our analyses. The final list of traits included: maximum total length; maximum 
total length at female sexual maturity; female age at sexual maturity; maximum fecundity; egg 
diameter; maximum longevity; parental care (ordinal scale ranging from 0−4); typical holding 
depth (demersal, epibenthic, benthopelagic, pelagic); primary adult habitat (pool, channel, riffle, 
backwater, lake, estuary); adult feeding behavior (herbivore, detritivore, insectivore, planktivore, 
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piscivore, omnivore, parasitic); egg laying strategy (broadcast spawn, egg hider, nest builder, 
cavity spawner, attachment, live bearer); primary spawning season (spring, summer, fall, winter); 
and migratory behavior (anadromous, potadromous, catadromous, sedentary/non-migratory). 
Traits data were prepared for multivariate analysis following standard methods (e.g., Laliberté and 
Legendre 2010; Pla et al. 2012). The final standardized species × traits matrix in each of the three 
biogeographic regions was then converted to a Gower distance matrix for use in subsequent 
functional traits analyses. Gower distance is the preferred distance metric in functional traits 
analysis because it can accommodate multiple data types (continuous, ordinal, and categorical) 
and is robust to missing values within species × traits matrices (Laliberté and Legendre 2010; 
Podani et al. 1999). Gower distance matrices were calculated with the ‘FD’ package (Laliberté et 
al. 2014) in R. 
 
A two-stage process was then used to assess whether observed modularity patterns within the 
unipartite networks could reasonably be attributed to the functional traits of species within each 
module. First, cluster analyses (based on the Gower distance matrices) were used to partition 
species within datasets into ‘functional clusters.’ Because our goal was to assess the hypothesis 
that network modules reflect differences in species’ functional traits, we sought to detect 
‘congruence’ between species’ clusters based on functional traits and on network modularity. 
Thus, we began with the assumption that the number of functional trait clusters should be 
equivalent to the number of modules for a given dataset. We did not, however, bias our analyses 
by specifying a priori which functional cluster a species should belong to. Rather, we used k-
means cluster analysis, with the number of prior clusters equivalent to the observed number of 
modules in a given network, to organize species by functional traits and to search for similarity or 
congruence between the two classification methods (i.e. network modules versus functional traits 
clusters). K-means cluster analyses were performed with the ‘FD’ package in R. 
 
In the second stage of the functional traits assessment, Principle Coordinates Analysis (PCoA) was 
then used to ordinate and visualize network modules and their constituent species within 
multivariate functional traits spaces. Results from the functional traits k-means cluster analyses 
(used above to assess congruence between network module classifications and functional traits 
classifications) were not included in these ordinations. Rather, we used the first two PCoA axes to 
summarize functional traits for the species within each module and to assess whether modules had 
distinct or broadly overlapping functional profiles that could potentially explain observed 
modularity patterns within the unipartite networks. To visualize the functional traits of the 
modules, we plotted the constituent species of each module, as well as the centroid of each module 
(i.e., the average x and y coordinates of all individual species’ points within a given module, 
calculated within a 2-dimensional Cartesian coordinate system where the first two PCoA axes are 
used as the x and y coordinates), along the first two PCoA axes. These plots were generated as 
‘hypervolumes’ in which kernel density estimates (i.e., continuous probability distributions along 
each of the two PCoA axes) for each module were inferred (treating species within each module 
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as samples) and used to generate 2-dimension boundaries (essentially 95% confidence regions) 
about the functional traits space occupied by each network module (Blonder et al. 2014). 
Functional hypervolumes were built and plotted with the ‘hypervolume’ package (Blonder et al. 
2014) in R. 
 
 
Research Tasks C1-C2: Bipartite Networks and Spatially-explicit Analyses 
 
Task C1 – Build bipartite networks 
 
Bipartite networks and their graphs were constructed using the same data schemes described above 
for unipartite networks: EMAP/NRSA fish were assigned to the three biogeographic regions then 
partitioned among sub-drainages at the HUC2 and HUC4 spatial scales. Each of the 16 network 
metrics calculated for unipartite networks (see Appendix B) was again calculated for bipartite 
networks, focusing exclusively on site-level calculations, rather than species-level calculations. 
When working with bipartite networks (i.e., two distinct types of nodes), metrics that are calculated 
at the individual node-level (e.g., degree, betweenness centrality, and local clustering coefficient) 
can be calculated for both types of nodes. We only considered site-level metrics because our intent 
for the bipartite network analyses was to determine whether bipartite networks can provide novel 
understanding of fish assemblage structure when using site-level information to ‘map’ the bipartite 
networks to spatially-explicit, dendritic river networks (see below). All bipartite networks were 
built and analyzed with the ‘bipartite’ package (Dormann et al. 2008) in R. 
 
The bipartite networks were then converted to spatially-explicit network maps (e.g., Fig. 3C) by: 
(1) appending the x and y coordinates (i.e., longitude and latitude) for each sampling site to their 
corresponding network nodes; (2) appending the x and y coordinates interpolated for the regional 
(i.e., within a given HUC2 or HUC4 sub-drainage) centroid of each species’ range to its respective 
bipartite node; and (3) superimposing the spatially-explicit, geo-referenced graphs on top of their 
respective drainage basin and stream networks maps (i.e., sample sites were aligned atop their true 
locations on the stream network maps). However, it was immediately apparent that these spatially-
explicit bipartite graphs contained too much ‘noise’ to be useful for visualization purposes. For 
example, a spatially-explicit bipartite graph of all significantly positive links within the Kanawha 
River Basin is shown in Fig. 7 (note that this graph was much less dense than the complete network 
graph with all co-occurring species, which is not shown here). The dense series of network links 
illustrated in this map clearly precludes any novel or intuitive visual insight. Thus, we based all of 
the spatially-explicit bipartite analyses on explicit ‘flow-path’ distance measures within the stream 
network itself (see ‘Task C2’ below). 
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Figure 7. Spatially-explicit map of the bipartite fish network in the Kanawha River 
Basin (WV). Only significantly positive co-occurrences are shown. All sample sites 
nodes are rendered as dark grey ovals and are superimposed upon their true 
geographic locations with the basin’s stream network (medium grey arcs/polylines 
within the light grey basin polygon). Species’ nodes are depicted as red, blue, and 
green ovals, illustrating the three species’ modules that were detected within this 
network. Note that the dense matrix of links/edges within the graph makes it 
difficult or to search for meaningful spatial patterns. 

 
 
 

Task C2 – Conduct spatially-explicit network analyses (unipartite and bipartite networks) 
 
Individual species within a network have specific, unique characteristics that characterize their 
network ‘positions’ or roles. For example, a species’ degree value is the number of co-occurring 
species that share a connection with it. Such species-specific characteristics may be related to the 
spatial location (i.e., latitude and longitude) of a species’ geographic range, relative to the 
geographic center of the network. Thus, we expected that the degree of a given species within a 
unipartite network and the distance between the centroid of that species’ geographic range and the 



21 
 

center of the physical boundary of the network (e.g., a given HUC unit) should be inversely related. 
That is, a species whose range is far from the geographic center of the network should have a lower 
degree value; it should be connected to relatively few other species because its range is either small 
or ‘peripheral’ to the geographic center of the network. We tested this hypothesis using Mississippi 
River Basin data at the HUC2 sub-drainage scale as a case-study. First, we delineated species’ 
overall ranges within the Mississippi River Basin using shapefiles of each species’ native range 
from NatureServe (http://explorer.natureserve.org/). Next, we used the NatureServe range 
shapefiles to interpolate the ‘centroid’ (i.e., geographic center) of each species’ range, as well as 
its cumulative range size. Specifically, we calculated the geographic location of the centroid of 
each species’ range as a discrete point in Cartesian space, using both the NatureServe ranges (i.e., 
2-D areal polygons) and a polyline file of the stream and river network within each polygon, 
represented by the 1:100,000 scale National Hydrograph Dataset Plus, version 2; McKay et al. 
2015). Range size estimates incorporated both the summed areas (km2) of all polygons within a 
species’ native range and the combined length (km) of all internal stream segment polylines within 
its range. Two distance measures were then used to quantify geographic distance within the 
unipartite networks: (1) straight-line Euclidian distance from the polyline range centroid to the 
polyline HUC2 centroid (i.e., the center of the entire physical river network); and (2) straight-line 
Euclidian distance from the polygon range centroid to the polygon HUC2 centroid (i.e., the center 
of the aggregated range polygon; see (e.g., see Fig. 3B). Two metrics of range size were also 
calculated: the total area of the combined range polygon and the total length of all stream segments 
within the range polygon. 
 
We then tested for spatial patterns within the unipartite network for Mississippi River Basin fishes, 
using four of the previously described, node-specific (i.e., species-specific) unipartite network 
metrics: node degree, the local clustering coefficient, betweenness centrality, and closeness 
centrality (see Appendix B). To make closeness centrality scale positively with node-level 
connectivity (i.e., node degree), as did the local clustering coefficient and betweenness centrality, 
we re-scaled it as 1 – closeness centrality. Two specific predictions/hypotheses were tested. The 
first was that each of the four network metrics should decrease as the distance between a given 
species’ range centroid and the overall center of the Mississippi Basin increases. This was a test 
of whether species become less well-connected within the unipartite network as their ranges move 
further from the geographic center of the entire river basin. Second, we tested whether each of the 
four network metrics was positively related a species’ range size, anticipating that wide-ranging 
species will be more highly connected to other species within the network. For each combination 
of a species’ geographic range estimate and a network metric, we used simple linear regression to 
test for a significant relationship. In this scheme, 16 separate regression models were tested within 
each of three HUC2 sub-drainages in the Mississippi Basin. All linear regression analyses were 
performed using the R base package (R Core Team 2016). 
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Spatially-explicit analyses of the bipartite network for Mississippi River Basin fishes were based 
on flow-path distances among sample sites (i.e., species’ occurrence locations) superimposed on 
the stream network. For every sampling site within the Mississippi basin, we calculated the 
downstream flow-path distance from that site to the outlet of its parent sub-drainage, at both the 
HUC2 and HUC4 scales. Flow-path distance is equivalent to the one-dimensional length that a 
parcel of water must travel to move from a given sampling site to the basin outlet. This provided 
a quantitative and ecologically meaningful way for us to test whether the structure of the bipartite 
networks varied in a predictable manner with spatial position in the physical, dendritic stream 
network. Because longitudinal position within the stream network is a fundamental predictor of 
fish assemblage structure (e.g. Matthews 1998; McGarvey and Hughes 2008), we were confident 
that flow-path distance would be an ideal metric for tracking spatial effects within the dendritic 
river network. All flow-path distances were calculated using the National Hydrograph Dataset Plus 
(v. 2; 1:100,000 scale) streams network (McKay et al. 2015) and standard routing and network 
functions in ArcGIS version 10.3 software (Environmental Systems Research Institute, Redlands, 
California). Linear regression analysis was then used to test for significant relationships between 
flow-path distance and three bipartite network metrics, each of which was calculated for site nodes, 
rather than species’ nodes. Focusing on site nodes, rather than species’ nodes was prudent because 
the individual sampling sites have a true geographic location and can therefore be evaluated 
relative to another discrete location within the dendritic stream network (i.e., the outlet) without 
introducing abstract measures of space or location, such as species’ centroids. The three network 
metrics included degree, betweenness centrality, and closeness centrality. Linear regressions were 
also performed using either longitude or latitude, measured at each sampling site in decimal 
degrees, as spatial predictor variables; this allowed us to test for general north-to-south and east-
to-west patterns within the bipartite networks. All linear regression analyses were performed using 
the R base package (R Core Team 2016). 
 
Because the numbers of individual sampling sites that were previously assessed as being in good, 
fair, or poor condition were highly variable, we did not perform separate regression analyses for 
subsets of the data that were exclusive to a single disturbance level. We did, however, use analysis 
of covariance (ANCOVA) to test for significant interaction effects between the primary spatial 
predictor variable (flow-path distance, longitude, or latitude) and disturbance level in each of the 
significant models. Thus, we tested whether the slopes of the primary relationships between 
predictor and response differed among the three disturbance levels. Similarly, we used ANCOVA 
to test for significant interaction effects with HUC identity; these tests assessed whether the slopes 
of the primary relationships varied among HUC2 or HUC4 scale sub-drainages within the larger 
Mississippi River Basin. ANCOVA was performed using the R base package (R Core Team 2016). 
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Research Task D1: Node Deletion/Extinction Experiments (Bipartite and Unipartite) 
 
Simulated extinction (i.e., node deletion) experiments were performed for bipartite and unipartite 
networks. Bipartite experiments were conducted in four HUC4-scale river basins: the Susquehanna 
River Basin (Pennsylvania, HUC-0205), the Savannah River Basin (Georgia, HUC-0306), the 
Kanawha River Basin (West Virginia and Virginia, HUC-0505), and the Great Miami River Basin 
(Ohio, HUC-0508). These four river basins were selected because each had a relatively large 
number of fish samples collected within it and each had a major DoD facility located within it 
(Susquehanna – Joint Base McGuire-Dix-Lakehurst; Savannah – Fort Gordon; Kanawha – 
Radford Army Ammunition Plant; Great Miami – Wright-Patterson Air Force Base). Thus, spatial 
proximity to a major DoD facility was included as a potential stress gradient in the bipartite 
extinction experiments. Notably, the bipartite experiments were only performed using complete 
networks. We did not perform independent experiments for networks that had previously been 
partitioned by disturbance categories (see above). This was prudent because our goal was to 
demonstrate a flexible and adaptable method to anticipate future changes in overall network 
structure, not to predict if or how future disturbance may differentially impact sites and/or species 
exposed to varying levels of contemporary disturbance. Furthermore, fish sample sizes in the 
NRSA/EMAP dataset were generally not large enough to support extinction experiments across 
multiple levels of contemporary disturbance. 
 
For every sample site within each of the four bipartite networks used in node deletion experiments, 
we recorded the site-specific degree value (i.e., the number of fish species linked to that site) and 
calculated the distance to the nearest major DoD facility (see previous paragraph) as a straight-
line, ‘as the crow flies’ Euclidian distance. Site-specific degree values were previously calculated 
when building the bipartite networks and stored for subsequent use. Distances between sampling 
sites and DoD facilities were calculated for spatially-explicit points (i.e., sample sites and the 
centers of each DoD facility) using ArcMap GIS software (Albers equal area projection, NAD83). 
 
Three different ‘extinction algorithms’ were then used to conduct the bipartite node deletion 
experiments. First, we deleted sites one at a time from each of the four experimental bipartite 
networks according to their site-specific degree values, proceeding from the highest degree (i.e., 
site with the largest number of linked species) to the lowest, until all sites were eliminated and the 
networks were effectively destroyed. In this way, we sought to simulate worst case scenarios in 
which sites with the greatest potential to serve as overall network hubs were selectively eliminated. 
Second, we sequentially deleted sites that were closest to their respective local DoD facility. This 
algorithm simulated a simple disturbance effect that was generated by the respective DoD facility 
and projected outward in a concentric manner (i.e., an equivalent effect with increasing distance 
along all directional vectors). Third, we deleted sites from the bipartite networks in random order. 
These random deletions provided baselines for comparison with the two ‘directed’ extinction 
algorithms. For each of the four experimental networks, we performed 1000 random deletion 
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experiments (i.e., sequentially deleting all species within the network and repeating the process 
1000 times), then averaged the results (see next paragraph). As each of the extinction simulations 
was performed, we documented species that were severed from all sites of known occurrence and 
therefore became ‘secondary’ extinctions (i.e., no remaining habitat for a given species within the 
respective bipartite network). All bipartite extinction experiments were performed using the 
‘bipartite’ package of Dormann et al. (2008) in R, with additional custom code written by the 
authors to facilitate storage and visualization of the experimental results. 
 
Following the approach of Memmott et al. (2004), we plotted the proportion of remaining species 
(one minus the number of secondary extinctions) as a function of site deletions for each of the four 
experimental networks. This provided an intuitive assessment of the potential robustness of each 
network to secondary extinctions of resident fish species. When multiple site deletions are 
predicted to result in few or no secondary extinctions, the network is considered robust; species 
have sufficiently broad distributions to survive disturbances that eliminate some of their habitat. 
This robustness may be indicated by plots of site deletions and remaining species counts with 
convex shapes (i.e., secondary extinctions remain rare until a large number of sites are lost). 
Alternatively, a consistent linear plot suggests that secondary extinctions may be highly responsive 
to progressive site deletions. By this logic, the ‘area under the curve’ (AUC) of a site deletion vs. 
remaining species plot can be used as an index of network robustness; it is a direct measure of the 
proportion of species remaining in the network, with higher values indicating fewer extinctions 
(Memmott et al. 2004). 
 
Because the unipartite networks were spatially implicit (though spatial information can be included 
as a secondary node attribute; see ‘Task C2’ above for an example), we did not incorporate 
proximity to a DoD facility as a factor in unipartite extinction experiments. Instead, we appended 
ordinal pollution sensitivity values to each species within a given network and used the sensitivity 
values to determine the order of extinction events, progressing from the most to least sensitive 
species. Pollution sensitivity values ranged from 1 (most sensitive) to 7 (least sensitive) and were 
obtained for individual species from published sources (Barbour et al. 1999; Halliwell et al. 1999; 
Jester et al. 1992; Lyons 1992). When multiple sensitivity values were reported for a given species, 
we assigned it the median value, rounding to the lower (more sensitive) value for ties. This 
‘extinction-by-sensitivity’ logic provided the first of three extinction algorithms used in the 
unipartite experiments. The second extinction algorithm was ‘extinction-by-degree’, progressing 
from the most highly connected species (i.e., node with the highest degree) to the least connected. 
The third algorithm was random extinctions. Species’ degree values were previously calculated 
and recorded while building the unipartite networks (see above). All unipartite calculations were 
performed with the ‘igraph’ package (Csárdi and Nepusz 2006) in R, with additional code written 
by the authors to generate random extinction sequences and to visualize the results. 
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Results and Discussion 
 
 
Network Connectivity (Task B3) 
 
Unipartite Networks 
 
Across all biogeographic regions and data combinations, we found little evidence for power-law 
degree distributions when complete unipartite networks (i.e., all nodes and links included) were 
analyzed. P-values from the K-S tests of power-law model fits were consistently < 0.01, 
indicating that the cumulative degree distributions did not conform to power-law curves (see 
Appendix C.4); thus, the power-law model α values (see Appendix C.3) were irrelevant. This lack 
of power-law curvature was also evident in plots of the cumulative degree distributions. 
Cumulative distribution plots were generally linear for complete (‘all links’) datasets (e.g., Fig. 
8A) and for networks that included only significantly positive links (e.g., Fig. 8B; see also first and 
second rows in Appendix A graphs). Notably, the degree distributions for unipartite networks that 
included only significantly negative links often assumed more characteristic power-law shapes 
(e.g., Fig. 8C; see also third row in Appendix A graphs). But in most cases (with several notable 
exceptions in Mississippi Basin and Pacific Northwest streams), the K-S tests confirmed that these 
distributions were not true power-law curves (see Appendix C.4). 
 

 

 
 

Figure 8. Examples of cumulative degree distributions from fish co-occurrence networks. 
Data are shown for the Chesapeake Bay rivers (HUC2-02) network when all species and links 
are included (panel A), when only significantly positive links are included (panel B), and 
when only significantly negative links are included (panel C).  

 
 
Power-law curvature was, however, detected in the right tails of many of the cumulative degree 
distributions when truncated models were fit to the degree data. Truncated power-law tests use a 
‘moving window’ algorithm to search for power-law curvature within isolated regions of the 
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complete degree distribution and they often find locally power-law behavior when only nodes with 
relatively high degree values are included (i.e., degree values larger than the empirically determine 
‘Xmin’ value; see Appendix B). When the Xmin values in truncated model-fit tests were unrestricted 
(i.e., they were free to assume any value up to the maximum observed degree value; see Appendix 
C.5), we detected significant (K-S p-value > 0.05), localized power-law curvature in most of the 
unipartite networks (see Appendix C.7). Interestingly, the Xmin values themselves co-varied with 
disturbance. Specifically, Xmin tended to decrease with increasing disturbance. This suggests that 
species with relatively low degree values may be the first to be removed as disturbance increases; 
this tendency would tend to push the ‘knee’ of the power-law curve down and to the left, effectively 
moving Xmin further left. 
 
In each of the three biogeographic regions, maximum degree values within the unipartite 
networks tended to decrease with increasing disturbance levels (e.g., Fig. 9; see also Appendix 
C.1). This trend was strongest for HUC2 scale networks but was also observed for HUC4 scale 
networks, particularly in East Coast streams. Similarly, the median degree (50th percentile) values 
exhibited a strong inverse trend with disturbance level (see Appendix C.2). This suggested that 
disturbance may, in fact, have a predictable, negative effect on the numbers of species that co-
occur in unipartite networks. 
 

 

 
Figure 9. Examples of maximum species’ degree values from complete (i.e., all species and 
links included) unipartite fish co-occurrence networks in East Coast, Mississippi River Basin, 
and Pacific Northwest streams. Results from HUC2 scale networks are shown with 
comparisons among networks built from all samples and partitioned by disturbance level (good 
vs. fair vs. poor). 

 
 
Maximum betweenness did appear correlated with disturbance in many of the data combinations, 
though the direction (i.e., positive vs. negative) of this correlation was variable (see Appendix C.8). 
Median betweenness exhibited a negative correlation with increasing disturbance at the HUC2 
scale in Mississippi streams when only significantly positive links were included in the network, 
but not for other data combinations (see Appendix C.9). Closeness appeared to be more regularly 
associated with disturbance. For both maximum and median closeness values and across most of 
the data combinations, closeness tended to increase with disturbance (e.g., Fig. 10; see also 
Appendix C.10 and C.11). Global clustering coefficients increased with disturbance for some 
data combinations while decreasing with disturbance in others and the overall trends were mostly 
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nominal (see Appendix C.12). Local clustering coefficients were almost entirely uncorrelated 
with disturbance (see Appendix C.13 and C.14). 
 
 

 
Figure 10. Examples of maximum closeness centrality values from complete (i.e., all species 
and links included) unipartite fish co-occurrence networks in East Coast, Mississippi River 
Basin, and Pacific Northwest streams. Results from HUC2 scale networks are shown with 
comparisons among networks built from all samples and partitioned by disturbance level (good 
vs. fair vs. poor). 

 

 
 
Bipartite Networks 
 
Indicators of node connectivity, including betweenness, closeness, and clustering coefficients were 
also calculated for sampling sites within the bipartite networks (see ‘Building Bipartite Graphs’ 
above). Of these, maximum betweenness and the maximum local clustering coefficient 
demonstrated consistent correlations with disturbance. Maximum betweenness increased at a 
modest yet consistent rate with disturbance in East Coast as well as Mississippi River Basin 
streams (see Appendix D.1). Maximum local clustering coefficients tended to decrease with 
disturbance in East Coast and Mississippi Basin streams (see Appendix D.6). All other bipartite 
metrics appeared unresponsive to disturbance (see Appendix D). For instance, median closeness 
was nearly constant among networks built from good, fair, and poor condition sites (Fig. 11). 
 
 

 
Figure 11. Examples of median closeness centrality values from complete (i.e., all species and 
links included) bipartite fish co-occurrence networks in East Coast, Mississippi River Basin, 
and Pacific Northwest streams. Results from HUC2 scale networks are shown with 
comparisons among networks built from all samples and partitioned by disturbance level (good 
vs. fair vs. poor). 
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Network Modularity (Task B4) 
 
Potential trends in unipartite modularity were observed among several of the data combinations 
(see Appendix C.15). For example, modularity exhibited a uniform increase with disturbance level 
at the HUC2 scale in East Coast streams when all significant links and when only significantly 
negative links were included (Fig. 12A). A similar, though less conspicuous trend (i.e., increasing 
modularity with increasing disturbance) was also observed at the HUC2 scale in Mississippi River 
Basin streams when complete datasets were included in the networks (Fig. 12B). However, no 
trend was observed in Mississippi streams when the networks were limited to significant links. In 
Pacific Northwest streams, we observed a uniform decrease in modularity with increasing 
disturbance at the HUC2 scale (Fig. 12C). In general, modularity was higher for HUC2 scale 
networks than for HUC4 scale networks. Modularity was also generally higher in networks that 
were limited to significant links (‘1-SigAll’, ‘2-SigPos’, and ‘3-SigNeg’ in Appendix C.15) than 
in networks that included all links (‘0-Complete’). However, the number of distinct modules 
within networks did not vary in a predictable manner with any of the factors considered here (see 
Appendix C.16). The number of modules within a unipartite network ranged from 1−6 and these 
modules exhibited clear clustering patterns when identified in the unipartite graphs (see examples 
in Appendix A). 
 
 
 

 
Figure 12. Examples of modularity values from unipartite fish co-occurrence networks in East 
Coast (A), Mississippi River Basin (B), and Pacific Northwest (C) streams. Results from 
HUC2 scale networks are shown with comparisons among networks built from all samples and 
partitioned by disturbance level (good vs. fair vs. poor). 

 

 
 
Modularity within bipartite networks was not responsive to any of the factors included in this 
study (see Appendix D.8). Across all data combinations, site-level modularity remained nearly 
constant, ranging from ~0.2−0.3. Similarly, the number of distinct modules detected within 
bipartite networks was largely constant, ranging from 4−6 and exhibiting no consistent trend with 
any of the data factors (see Appendix D.9). 
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Functional Structure of Network Modules 
 
Here we present detailed functional traits analysis results from the Susquehanna River Basin. The 
Susquehanna is emphasized prominently in our results because it was among the most data-rich 
regions in our Limited Scope project, with sufficient sample replicates to perform all network 
calculations independently for each of the three disturbance levels. Retrospective comparisons also 
showed that the Susquehanna results were often broadly representative of the other networks. 
Thus, the Susquehanna was a useful ‘exemplar’ system for examining functional structure within 
and among the network modules. (The Susquehanna was also used in a detailed study of extinction 
effects within unipartite networks; see ‘Node Deletion/Extinction Experiments’ below.) 
 
Tests of congruence between network module classifications and functional traits k-means cluster 
analysis classifications (see ‘Task B4’ above) in Susquehanna River Basin streams showed that 
agreement between the two classification systems decreased as the number of distinct modules 
increased, with highest congruence occurring when only two network modules were detected. 
However, these congruence values were rarely significant. For 5 of 6 networks that included only 
two modules, the permutation test p-value was > 0.1. (This reflected the fact that classification 
congruence values in the ~0.5 range are no different than random expectation in a series of 50:50 
Bernoulli trials.) In only one instance was the congruence value for a network with two modules 
significant: the observed congruence value for ‘complete network - poor condition sites’ (0.67) 
was significant at p = 0.01 (lower-left panel in Fig. 13). When three or more modules were detected 
in a network, the overall congruence levels were generally lower. The ‘significantly positive links 
- moderate condition sites’ network, which included three modules and had a congruence value of 
0.56, was the sole exception (3rd row, center column panel in Fig. 13). Nevertheless, the relatively 
low congruence values for networks with > 2 modules were all significant (p ≤ 0.01; see Fig. 13), 
reflecting the exponential increase in possible outcomes that occurred when a third and/or fourth 
category was added to the classification system. 
 
Functional hypervolume plots are shown for all (HUC4 scale) network data combinations in the 
Susquehanna River Basin in Fig. 13. In each plot, modules are identified by color, with large 
circles showing the centroid of each module. The small, dark points represent individual species 
within each module, as indicated by matching colors (i.e., red vs. blue vs. green). Light/faded 
points are random ‘pseudo-samples’ drawn from the probability distributions generated by the 
hypervolume program in R (i.e., the kernel density estimates; see ‘Task B4’ above). Solid lines 
delineate confidence regions within functional traits space for each module. 
 
In most hypervolume plots, the unipartite modules exhibited extensive overlap within functional 
traits space. This was particularly true for networks that consisted of only two distinct modules, 
including all of the complete networks (first column in Fig. 13) and all of the networks for poor 
condition sites (bottom row in Fig. 13). Modest separation between the two modules was, however, 
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noted along the first PCoA axis for networks that were restricted to poor condition sites and 
included only significantly positive or significantly negative links (last two plots in bottom row of 
Fig. 13). In these two networks, the modules were separated along a general gradient of size and 
age, with species’ total length, longevity, and fecundity increasing from left-to-right (along the x 
axis/first PCoA axis). A moderate tendency for one of the three modules (i.e., the ‘red’ module) in 
the ‘significantly positive links - moderate condition sites’ network was also observed along the 
first PCoA axis (with same factor loading as above for functional traits). And in three of the 
networks that featured four independent modules (‘significantly positive links - all sites’, see red 
module; ‘significantly negative links-all sites’, see red module; and ‘significantly negative links-
moderately disturbed sites’, see green module), we noted that one module occupied a 
conspicuously small volume of the total functional traits space (see red module in ‘significantly 
positive links - all sites’ and ‘significantly negative links - all sites’ plots; see green module in 
‘significantly negative links - moderately disturbed sites’ plot; Fig. 13). 
 
One plausible interpretation of the ‘small volume’ modules is that they may reflect subsets of 
fishes with specialized ecological roles or life-history and habitat requirements. However, the fact 
that the small volume modules occurred near the centers of their respective hypervolume plots 
may also suggest an alternative explanation: these modules may consist of species that are adapted 
to highly stable environments, where a consistent ‘middle of the road’ functional strategy 
maximizes fitness. Overall, we emphasize that little apparent separation was detected among 
network modules when plotted as hypervolumes in functional traits space (Fig. 13). And we 
suggest this surprising lack of variation may, in itself, be a novel result. If the functional traits 
profiles of distinct network modules exhibit less differentiation than expected under an appropriate 
null model (and we are not currently aware of a precedent or method to build that null model), it 
may suggest that fish co-occurrence networks are comprised of repetitive functional ‘motifs’. 
 
In light of these mixed results, we believe it is unlikely that functional traits act as primary 
determinants of the observed modular structure within the unipartite fish networks. At least two 
other related lines of inquiry should, however, be pursed in future research. First, a priori 
hypotheses that link specific traits or small subsets of traits to environmental conditions in ways 
that may confer selective advantages to individual species should be formulated and tested. We 
used the multivariate hypervolume method (Blonder et al. 2014) to maximize the information in 
our original functional traits matrix, but this indiscriminate approach assumes that all individual 
traits are equally important to biotic assemblages and may therefore be counterproductive, masking 
key functional trends, if only one or several of the functional traits are truly deterministic of the 
modular structure within a network. Second, a framework/method should be devised to test the 
idea that functional traits profiles of distinct network modules may, in fact, be so similar that they 
represent functionally equivalent motifs of species’ characteristics. 
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Figure 13. Functional hypervolume plots for fish co-occurrence networks in the Susquehanna 
River Basin. (See next page for complete caption.) 
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Figure 13 (continued). Functional hypervolume plots for fish co-occurrence networks in the 
Susquehanna River Basin. The three columns represent complete networks, networks 
consisting only of significantly positive links, and networks including only significantly 
negative links, respectively. The four rows represent networks that are inclusive of all fish 
samples and of sites that were previously ranked by disturbance level (i.e., good, moderate, or 
poor condition). In each plot, modules are identified by color, with large circles showing the 
centroid of each module. The corresponding (i.e., same color) small, dark points represent the 
individual species within each module. The light/faded points are random ‘pseudo-’samples 
drawn from the probability distributions generated by the ‘hypervolume’ program (i.e., the 
kernel density estimates; see previous paragraph). And the solid lines/polygons are the 
confidence regions for each module, constructed from the kernel density pseudo-samples. 
Numbers of network clusters detected via simulated annealing (‘× mods’ values) and results 
from the tests of congruence between network module classifications and functional traits k-
means cluster analysis classifications (congruence values and permutation test p-values) are 
also shown at upper-left in each plot. 

 

 
 
Node Deletion/Extinction Experiments 
 
Bipartite Networks 
 
Plots of the remaining numbers of species, relative to the number of simulated site deletions, are 
shown for four river basins: the Susquehanna River, the Savannah River, the Kanawha River, and 
the Great Miami River (Fig. 14). A detailed visual record of the effects of progressive site deletions 
on the Susquehanna bipartite network is shown in Fig. 15. Site deletion vs. species remaining plots 
for the Susquehanna Basin network revealed minimal differences between the three extinction 
algorithms. Curves for extinction-by-site degree (red ‘degree’ plots), extinction-by-distance from 
the nearest major DoD facility (blue ‘distance plots), and random extinction (green ‘random’ plots) 
simulations were similarly convex, with all AUC values close to ~0.8 (Fig. 14). This suggested 
that critical network hubs (i.e., stream sites) may be rare or nonexistent in the Susquehanna Basin. 
However, the extinction-by-degree plots indicated that network robustness may be lower in the 
Savannah, Kanawha, and Great Miami networks; each of the respective site deletion vs. species 
remaining plots exhibited a nearly linear effect of progressive site deletions on secondary species 
extinctions (i.e., species that become entirely isolated from other species via site deletions). 
Vulnerability to secondary extinctions appeared particularly high in the Kanawha Basin, where the 
loss of the six highest degree sites could potentially eliminate > 20% of all fish species within the 
network. This strong potential effect of site degree on secondary extinctions is intuitively 
consistent with conventional wisdom regarding habitat conservation: one should prioritize the 
protection of habitats that host the greatest numbers of species. Interestingly, no major differences 
were observed between plots of extinction-by-distance from DoD facilities and random extinctions 
(Fig. 14). Across all four bipartite networks, the ‘distance’ and ‘random’ plots were similar in 
shape with differences in the respective AUC values ranging from 0.01−0.04. 
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Figure 14. Plots of secondary extinctions in the Susquehanna, Savannah, Kanawha, and Great 
Miami Basin bipartite networks. Simulation results are shown for three extinction algorithms: 
extinction as a function of site connectivity (highest to lowest site-level degree; red symbols), as 
a function of Euclidian distance to the nearest major DoD facility (shortest to farthest distance; 
blue symbols), and random site deletions (average of 1000 simulations; green symbols). In each 
network, greater ‘robustness’ to secondary extinctions is indicated by plots with strongly convex 
shapes; these curves suggest that secondary fish species extinctions may be slow to occur as sites 
are removed from the network. Plots with nearly linear shapes indicate rapid loss of species with 
site removals. Thus, AUC (shown in parentheses for each plot) can be used as a simple index of 
network robustness, with higher AUC values indicating many species that are broadly distributed 
and therefore less vulnerable to extinction via acute habitat loss. 
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Figure 15. Bipartite graphs illustrating sequential, simulated deletions of discrete stream 
sites within the Susquehanna River Basin. (See next page for complete caption.) 
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Figure 15 (continued). Bipartite graphs illustrating sequential, simulated deletions of 
discrete stream sites (i.e., nodes) within the Susquehanna River basin. The original, 
complete fish network graph is shown at top center with sampling sites represented by 
black squares (54 sites) and species represented by red circles (59 species). Species’ 
occurrences at each site are represented by grey lines. Numbers of simulated site deletions 
are shown below each graph (e.g., ‘-5 sites’), ranging from 5 to 50 site deletions. Deletions 
that simulated the progressive loss of the most highly connected sites (i.e., highest to lowest 
site-level degree) are shown in the two left columns. Deletions that simulated site losses as 
a function of proximity to Joint Base McGuire-Dix-Lakehurst (i.e., closest to furthest site 
locations) are shown in the two right columns. 

 
 
One important caveat of the bipartite extinction results is the fact that secondary species’ 
extinctions did not occur until all of the sites that a given species was linked to (i.e., that it occurred 
at) were removed from the network. This liberal assumption may be realistic in other types of 
bipartite networks where species’ movements are not highly constrained, such as plant-pollinator 
networks that include many species of flying insects. However, fishes that are constrained to the 
wetted channels of dendritic river networks will necessarily have lesser abilities to ‘search’ for 
alternative nodes (i.e., sites) throughout the complete, remaining network. It is conceivable that 
the loss of upstream and/or downstream sites may isolate a given site from the rest of the physical 
stream network and if this discontinuity is maintained, it may prevent locally occurring species 
from reaching other sites within the network. In effect, deleting a given site from a bipartite fish 
network may have secondary effects on the remaining links (i.e., site-to-species connections) 
within the network, as well as the species losses depicted in Fig. 14. Thus, secondary extinctions 
may occur more rapidly than predicted in Fig. 14. Developing a method to simultaneously predict 
the effects of site deletions within traditional bipartite networks (as presented here) and within 
spatially-explicit dendritic river networks, to produce more realistic, conservative predictions of 
secondary fish species extinction rates, could therefore be an important avenue for future research. 
 
 
Unipartite Networks 
 
Here we present exemplar results from the Susquehanna River Basin. For each of the three 
extinction algorithms (by sensitivity, by degree, and random), six network metrics were calculated 
at each step during the extinction simulations (i.e., after each node/species deletion): the global 
clustering coefficient, median average local clustering coefficient, maximum and median species’ 
degree within the remaining network, and maximum and median species’ betweenness within the 
remaining network. Extinction effects on the global clustering coefficient, with larger values 
indicating dense, highly interconnected networks (see Appendix B), were minimal and generally 
similar among the three extinction algorithms (i.e., nearly parallel plots for ‘sensitivity’, ‘degree’, 
and ‘random’ data) until a threshold of ~22 species extinctions was reached (Fig. 16A). Beyond 
22 extinctions (i.e., moving further right along the x-axis in Fig. 16A), the global clustering 
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coefficient began a distinct downward trend for the extinction-by-degree results, ultimately 
collapsing to a value of zero at 35 extinctions. Global clustering coefficients for the extinction-by-
sensitivity and random extinction results became more erratic at ~20−22 species extinctions, but 
did not exhibit a clear downward trend until ~35−40 species extinctions had occurred. Notably, 
the central tendencies of the extinction-by-sensitivity and random extinction results did not deviate 
from each other; while the random points exhibited wider overall spread, the sensitivity points 
consistently remained near the center of the random results. 
 
Results from the random extinction simulations were generally similar for the median local 
clustering coefficients (i.e., the number of ‘neighbors’ of a focal species that are themselves 
connected, averaged across all species within the network; see Appendix B). Random points 
exhibited increasing spread with an increasing number of species extinctions, ultimately displaying 
a rapid downward trend beyond ~40 extinctions (Fig. 16B). The extinction-by-sensitivity and 
extinction-by-degree results were, however, more dynamic. For example, extinction-by-degree 
results displayed a strong, downward-curving trend through ~23 species’ extinctions, then rapidly 
increased and began a second downward trend until reaching a value of zero (i.e., none of the 
species connected to a given species were themselves directly connected) at 35 extinctions. 
Furthermore, a rapidly declining ‘spike’ was observed in the extinction-by-degree results at ~9 
extinctions before returning to the broader trend at ~11 extinctions (Fig. 16B). This spike was 
particularly interesting because it marked the point at which secondary extinctions (i.e., species 
that had not yet been explicitly deleted in the simulations, but were functionally isolated with no 
remaining links to other species) began to appear in the unipartite networks. (This phenomenon is 
illustrated in the unipartite graphs shown in Fig. 17 below; secondary extinctions, indicated by 
heavy black circles around species’ nodes, first appear in the ‘-9 species’ graph.) Median local 
clustering coefficients for the extinction-by-sensitivity results also reached a threshold at ~8−9 
extinctions, but shifted in the opposite direction; they increased to a nearly constant value before 
dissociating to random behavior at ~20 extinctions, then increasing to constant, perfect clustering 
(i.e., median local clustering coefficients of unity) at 40 extinctions (Fig. 16B). This seemingly 
complex behavior in the extinction-by-sensitivity results may be due to the punctuated elimination 
of subsets of relatively rare, peripheral species with low pollution tolerances. These peripheral 
subsets will tend to decrease the average clustering coefficient if the constituent species are not 
themselves strongly interconnected. Removing them may therefore increase the average clustering 
coefficient. By the same logic, the perfect clustering (i.e., local clustering coefficient of unity) 
observed beyond 40 extinctions suggests a subgroup of highly tolerant species with a high 
incidence of co-occurrence. 
 
Plots of maximum and median species’ degree showed that both values are predictable, linear 
functions of the number of species removed from the network. These plots also confirmed that 
selective extinctions of the most highly connected species will tend to degrade the overall structure 
of the network more rapidly than selective extinctions of the most sensitive species, as well as 
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random extinctions. Extinction-by-degree plots were clearly steeper than extinction-by-sensitivity 
and random extinction plots, for both maximum (Fig. 16C) and median (Fig. 16D) degree values. 
Interestingly, the extinction-by-sensitivity results for maximum degree values were identical to the 
random extinction results, displaying a perfect, negative linear relationship. This suggested that 
progressive losses of the most sensitive species are unlikely to have secondary effects on the most 
highly connected species within a network. 
 
Plots of maximum and median betweenness (i.e., the tendency for many network connections to 
pass through a given node; see Appendix B) also indicated strong differences among the extinction-
by-degree algorithm and the extinction-by-sensitivity and random extinction algorithms. 
Moreover, no similarity was observed in overall trends between the maximum (Fig. 16E) and 
median (Fig. 16F) results. Maximum betweenness decreased with the number of extinctions in a 
variable, yet mostly linear manner for extinction-by-sensitivity and random extinction data, but 
displayed conspicuous ‘wave-like’ spikes for extinction-by-degree data. Tellingly, these spikes 
were congruent with gaps in the extinction-by-degree, maximum degree plot (compare with Fig. 
16C) that represented short lists of highly connected species with the same degree values (i.e., 
eight species each with 55 connections, followed by eight species each with 48 connections, 
followed by six species each with 45 connections, etc.). The maximum betweenness waves spiked 
when only one species remained at a given maximum degree level; this result can be visually 
confirmed by cross-referencing the maximum betweenness and maximum degree values at the 8th, 
16th, 22nd, 29th, and 33rd extinction events. This pattern may indicate that multiple, highly 
connected hub species occur within the network, but are themselves located in different regions of 
the network. In this way, maximum betweenness may increase until a single, most highly 
connected species remains, then rapidly decrease when that species is lost and the network resets 
to a new, lower maximum degree value that is exhibited by several new hub species. The 
extinction-by-degree plot for median betweenness indicated that at the complete network level, the 
median average betweenness value may track a single ‘boom-and-bust wave’ then settle to a nearly 
constant value, located between the 10th and 12th extinctions (Fig. 16F). Random extinction results 
indicated that median betweenness may be a decreasing, albeit highly variable function of the 
number of extinction events. In general, this negative trend in median betweenness was also 
observed in the extinction-by-sensitivity results. However, a clear sequence of relatively low, 
constant values was noted between the 8th and 20th extinction events. This puzzling gap in the 
overall extinction-by-sensitivity pattern may reflect a group of moderately sensitive species with 
uniquely low connectivity. Following the extinctions of the seven most sensitive species, median 
betweenness may be rapidly depressed by a large number of species (12 species in this particular 
instance) that co-occur with only one or several species; upon removal of these poorly connected, 
moderately sensitive species, median betweenness within the remaining network may rise again. 
 
 



38 
 

 
 
Figure 16. Plots of species’ extinction effects on the unipartite fish network of the 
Susquehanna River basin. (See next page for complete caption.) 
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Figure 16 (continued). Plots of species’ extinction effects on the unipartite fish network 
of the Susquehanna River basin. Scatterplots track the effects of sequential (i.e., one at a 
time) extinctions on the global clustering coefficient (A), median average local clustering 
coefficient (B), maximum (C) and median (D) species’ degree, and maximum (E) and 
median (F) species’ betweenness. Three node deletion algorithms are included in each plot: 
extinction due to species’ sensitivity to pollution (i.e. most sensitive species removed first), 
as a function of species’ connectivity/degree (i.e., species with the highest degree removed 
first), and random species extinctions (results from 10 random simulations are shown). 

 
 
One other notable observation that emerged from the unipartite extinction experiments was the 
tendency for cumulative extinctions to have differential effects on modules within the network. As 
larger numbers of species were removed and secondary extinctions increased, these extinctions 
were ‘confined’ to one of the two initial network modules (red nodes enclosed by heavy black 
circles in Fig. 17). No species from the second module (green nodes in Fig. 17) became vulnerable 
to secondary extinctions (i.e., the first instances of green secondary extinctions occurred after 30 
species were removed from the network) until all species from the first module had been removed. 
This suggests that, based solely on the topology of the unipartite network, it may be possible to 
identify the most and least at-risk species. For instance, drawing upon the extinction experiment 
illustrated in Fig. 17, we predict that the most vulnerable fishes in Susquehanna River Basin 
streams may include the Comely Shiner (Notropis amoenus), Swallowtail Shiner (Notropis 
procne), Fantail Darter (Etheostoma flabellare), and Redfin Pickerel (Esox americanus 
americanus). Least vulnerable species may include the Johnny Darter (Etheostoma nigrum), 
Brown Bullhead (Ameiurus nebulosus), and Slimy Sculpin (Cottus cognatus). (See ‘Conclusions 
and Implications for Future Research’ below for further explanation.) 
 
 
Spatially-Explicit Analyses 
 
Unipartite Networks (Mississippi River Basin) 
 
Within each HUC2 sub-drainage of the Mississippi River Basin, we observed substantial variation 
among species in each of the four network metrics (Table 1). Variation was also observed in the 
geographic orientations of species’ ranges and range sizes (Table 1). However, variation in the 
four network metrics was generally unrelated to the geography or spatial orientation of species’ 
ranges. r2 values from most regressions were < 0.1; only those combinations shown in Table 2 
exceed r2 = 0.1. Linear regressions that simultaneously incorporated both range distance and range 
size as a single predictor variable were also explored by multiplying the area of species’ range 
polygons by the inverse of polygon-based distance. This composite variable approach led to 
several additional, significant regression models (see Table 2). The majority (11 of 17) of all 
significant relationships were observed in HUC-0210 (the Missouri River sub-drainage) and of 
these, five included the local clustering coefficient as the significant network metric. 



40 
 

 

 
 

Figure 17. Unipartite graphs (‘ring’ layout) from the extinction-by-degree simulations. Results 
are shown with node colors (red and green) indicating species’ membership within the two 
modules that were originally detected in the complete unipartite network; initial module 
membership was maintained for each of the remaining species as additional extinctions were 
simulated. Unipartite graphs are shown for the complete network (56 species) and at ‘three 
species extinction’ intervals (e.g., ‘- 3 species’). When the number of simulated extinctions 
exceeds 34, the network collapses completely with no remaining links among species. 

 
 
We expected that network metrics would be negatively associated with range distance variables 
(i.e., polyline distance, or ‘PLD’, and polygon distance, or ‘PGD’, in Table 1) and positively 
associated with range size variables (i.e., polyline length, or ‘PLL’, and polygon area, or ‘PGA’, 
in Table 1). However, these expectations were met in only nine (~ 50%) of the significant outcomes 
(see Table 2). Thus, we were not able to determine with a high level of certainty whether species 
with distant and/or small ranges tend to be less well-connected in unipartite co-occurrence 
networks. That said, we did note that all seven of the significant regression relationships 
conformed to the expected direction when node degree was used as the network metric (i.e., 



41 
 

dependent variable) in linear regressions. Node degree increased significantly with increasing 
range size (PGA and PLL in Table 1) and with decreasing range distance (PLD and PGD in Table 
1). Degree also increased significantly as the composite variable increased (PGA × 1/PGD in Table 
2). This is notable because species’ degree is the most intuitive and computationally simple 
indicator of network connectivity that we examined and it is a truly objective measure of the 
connectivity that a focal species shares with its immediate neighbors in a unipartite network. The 
other three metrics of network connectivity that we examined– the local clustering coefficient, 
betweenness centrality, and closeness centrality – were more abstract than node degree and were 
generally not found to be affected by the spatial orientation of a species’ range or its range size. 
 
 
Table 1. Mean values (+/- 1 standard deviation) of species’ network metrics and range characteristics for 
stream fish species occurring in HUC2 sub-drainages of the Mississippi River Basin.  

Network Characteristics† Range Characteristics‡ 

 HUC-0207 HUC-0210 HUC-0211  HUC-0207 HUC-0210 HUC-0211 

Degree 11.9 ± 7.7 9.7 ± 7.6 11.6 ± 7.0 PLD 424.7 ± 186.4 897.1 ± 315.4 508.8 ± 133.5 

LCC 0.668 ± 0.204 0.703 ± 0.239 0.717 ± 0.185 PGD 445.2 ± 173.6 861.4 ± 348.2 663.1 ± 185.0 

BC 32.3 ± 47.3 31.6 ± 63.7 26.8 ± 43.6 PLL 91.45 ± 48.96 91.23 ± 50.74 98.95 ± 48.81 

1-CC 0.991 ± 0.002 0.992 ± 0.002 0.990 ± 0.002 PGA 123.7 ± 67.0 123.8 ± 68.1 130.7 ± 68.1 

  

† Each of the four network characteristics (node degree, the local clustering coefficient [LCC], 
betweenness centrality [BC], and 1 minus closeness centrality [1-CC]) measures the connectedness 
of a species with other species in the unipartite network. 
‡ The range characteristics refer to the distance (km) between the centroid of the species polyline 
range and center of the HUC polyline (PLD), distance between the centroid of the species polygon 
and center of the HUC polygon (PGD), total length (units of 10,000 km) of the species polyline 
(PLL), and total area (units of 10,000 km2) of the species polygon (PGA). 
 

 
Bipartite Networks 
 
At the HUC2 scale, the degree value of the sample site nodes was significantly related to each of 
the three spatial predictors (p < 0.01). As expected, site degree decreased with flow-path distance 
(Fig. 18), reflecting the natural and well-documented tendency for fish species richness to be 
highest at low to mid-elevation sites, relative to smaller, more isolated high-elevation sites (e.g., 
McGarvey and Ward 2008; Schlosser 1987). Site degree also decreased with latitude, mirroring 
the well-documented latitudinal diversity gradient (e.g., Hillebrand 2004; Mittelbach et al. 2007), 
while increasing with longitude (i.e., from east-to-west). ANCOVA also revealed significant 
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interaction effects with HUC identity (indicated by ‘pX-HUC’ values in Fig. 18) in the latitude and 
longitude models, but not in the flow-path distance model. This interesting result suggested that 
‘secondary biogeographical gradients’ in network structure may exist within the large Mississippi 
River Basin (i.e., differences among sub-drainages nested within the larger, complete basin), but 
that flow-path distance may be a more fundamental predictor of network structure that is invariant 
to latitudinal and longitudinal gradients. Significant interactions were not detected for disturbance 
level (see ‘pX-disturb’ values in Fig. 18). 
 
 
Table 2. Significant relationships (r2 > 0.1 and p < 0.05) between species’ network metrics and range 
characteristics within three HUC2 sub-drainages. See Table 1 for abbreviations. 

Region Range  
variable 

Network  
variable 

Std. regress.  
coefficient 

 

Expected 
relationship 

Outcome as 
expected? 

r2 p 

HUC-0207 PGA × (1/PGD) Degree 0.332 + Yes 0.110 0.024 

HUC-0210 PLL Degree 0.567 + Yes 0.320 <0.0001 

 PGA Degree 0.578 + Yes 0.334 <0.0001 

 PLD LCC 0.435 _ No 0.190 0.002 

 PGD LCC 0.431 _ No 0.185 0.003 

 PLL LCC -0.445 + No 0.198 0.002 

 PGA LCC -0.469 + No 0.220 0.001 

 PGA × (1/PGD) LCC -0.623 + No 0.388 <0.0001 

 PGA BC 0.336 + Yes 0.113 0.012 

 PGA × (1/PGD) BC 0.633 + Yes 0.401 <0.0001 

 PLL 1-CC -0.533 + No 0.281 <0.0001 

 PGA 1-CC -0.543 + No 0.287 <0.0001 

HUC-0211 PLD Degree -0.376 _ Yes 0.142 0.008 

 PLL Degree 0.356 + Yes 0.127 0.012 

 PGA Degree 0.342 + Yes 0.117 0.016 

 PGA × (1/PGD) Degree 0.405 + Yes 0.164 0.004 

 PLD LCC 0.362 _ No 0.131 0.012 
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Figure 18. Linear regression results for HUC2 scale models of spatial position and bipartite 
network structure. Three spatial predictor variables (flow-path distance between each 
sampling site and the outlet of its respective river basin, longitude, and latitude) and three 
bipartite network metrics (degree, betweenness centrality, and closeness centrality for each 
site/node within the network) are shown (nine total combinations). For each model, the 
absolute correlation coefficient (|r|overall) and linear model p-value (poverall) are shown at the 
top of the scatterplot. Significance values for ANCOVA interactions with HUC identity 
(pX-HUC) and disturbance level (pX-disturb) are also shown at top. 
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Notably, while each of the site degree models was significant at the HUC2 scale, the strengths of 
the overall correlations were modest. The absolute values of the correlation coefficients (‘|r|overall’ 
values) ranged from 0.28−0.38 and scatterplots of the primary effects (i.e., spatial predictor vs. 
degree) each exhibited a conspicuous triangle shape, with an apparent upper diagonal boundary 
(Fig. 18). These triangular shapes, when observed in univariate scatter plots, have been described 
as ‘constraint spaces’ and are hypothesized to represent upper-limits to the individual-level 
physiological or ecological tolerances that are ultimately reflected in large-scale, biogeographical 
patterns (Brown 1995). In the present context, it is tempting to infer that these constraints may be 
real. For instance, site-level degree within the Mississippi River Basin is clearly influenced by 
factors other than flow-path distance – the variability in degree is too high to reasonably conclude 
otherwise (see upper-left panel in Fig. 18) – but the acutely triangular shape of the scatterplot also 
begs further testing of the hypothesis that as flow-path distance (and the physiological burden that 
accompanies continued residency at far upstream locations within a directed stream network) 
increases, natural limits may be imposed on site-level degree or the numbers of species that can 
potentially co-occur at a given site. 
 
At the HUC4 scale, none of the correlations (|r|overall values) between spatial predictors and site-
level degree exceeded 0.1 and none of the regression models were significant (top row, Fig. 19). 
This was likely an artifact of the HUC4 sub-drainages being too small to encompass meaningful 
spatial gradients in degree values. For example, the triangular shape of the HUC2 scale ‘flow-path 
distance vs. degree’ plot (see Fig. 18) did not emerge until distance exceeded ~2,000 km; at the 
HUC4 scale, none of the flow-path distances were greater than 600 km. Nevertheless, the 
observation that perceived network structure may itself be a function of spatial scale is a useful 
result and the differences in regression models of spatial predictors vs. degree at HUC2 and HUC4 
scales may help to clarify whether characteristic scales in fish co-occurrence network structure do, 
in fact, exist. 
 
Similar to the model for degree, betweenness centrality at the HUC2 scale was a significant, 
negative function of flow-path distance (middle row, Fig. 18). However, the negative linear 
relationship was also a clear function of a modal ‘spike’ that occurred at a flow-path distance of 
~1,500 km; without this spike, the correlation between distance and betweenness would have been 
much weaker. This is a notable observation because it suggests that a relatively small number of 
sites (i.e., nodes) located at mid-point distances along the longitudinal profile of a physical stream 
network (i.e., the modal sites in the middle-left plot of Fig. 18) may have uniquely important roles 
as ‘habitat hubs’ (given that betweenness is a measure of the tendency for many network 
connections to pass through a given node; see Appendix B). These hubs may facilitate connections 
among other sites that themselves have relatively low betweenness centrality values. By the same 
logic, these modal, high-betweenness sites may be uniquely important to the overall integrity of a 
network and therefore worthy of priority in conservation planning. A modal spike in betweenness 
centrality was also evident in the HUC2 scale plots of longitude and latitude, though the overall 
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regression model was not significant for longitude. In this particular scenario, however, a similar 
‘hub’ interpretation may not be warranted because broad variation in latitude will often incorporate 
spatially independent stream networks. It is therefore more tenuous to assume that north-to-south 
shifts in betweenness centrality reflect an underlying, ecologically meaningful gradient such as the 
upstream-downstream dynamic of flow-path distance along a longitudinal river profile. At the 
HUC4 scale, longitude and latitude were both significant predictors of betweenness centrality 
(middle row, Fig. 19). However, given the diffuse nature of the respective scatterplots, we 
concluded that further interpretation of the results was unwarranted. 
 
 

 
 

Figure 19. Linear regression results for HUC4 scale models of spatial position and 
bipartite network structure. All results and plots are formatted as in Fig. 18. 
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At the HUC2 scale, closeness centrality was significantly correlated with each of the three spatial 
predictor variables, while none of the secondary interactions (i.e., HUC identity and/or disturbance 
level) were significant (bottom row, Fig. 18). At the HUC4 scale, only flow-path distance was 
significantly correlated with closeness centrality and neither of the secondary interactions were 
significant (bottom row, Fig. 19). Because closeness centrality is a summative measure of the 
overall distance between a focal node and every other node within the network (i.e., large closeness 
centrality values indicate that a focal node is directly connected to many other nodes and/or nodes 
that are not directly connected are rarely far from the focal node’s neighbors, such that long 
pathways within the network are rare; see Appendix B), it is intuitive that the closeness centrality 
results tended to mirror the node degree results. Closeness was negatively correlated with flow-
path distance and latitude, but positively correlated with longitude. Unlike the other models, 
however, closeness centrality did not exhibit conspicuous triangular or modal patterns. Rather, the 
significance of the HUC2 scale closeness models (despite modest |r|overall values) appeared to 
reflect weak (but perhaps perceptible) trends within relatively large datasets (>500 sites). 
Nevertheless, the significant models do indicate that a relatively small number of sites (i.e., nodes) 
that do not share many species with other sites do exist at ‘high’ positions (i.e., long flow-path 
distances) within the physical stream networks, at more western longitudes, and at more northern 
latitudes. Interestingly, the direction of the significant relationship between flow-path distance and 
closeness centrality was reversed at the HUC4 scale; it became a positive, rather than negative, 
trend (bottom row, Fig. 19). This suggests that the dense cloud of points centered at ~1,500 km 
flow-path distance in the HUC2 closeness centrality model may have obscured a modal closeness 
value, as a locally positive trend could have occurred at lower distance values (e.g., from ~0−1,200 
km; see lower-left plot in Fig. 18). 
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Conclusions and Implications for Future Research 
 
 
Network Responses to Disturbance 
 
This Limited Scope project was originally motivated by the question: “Does ecological network 
structure and/or stability change in a predictable way with chronic environmental disturbance?” 
To answer this question, we used fish co-occurrence data from East Coast, Mississippi River Basin, 
and Pacific Northwest streams to quantify network structure within systems that were minimally 
impacted (‘good’ condition), moderately impacted (‘fair’ condition), or highly impacted (‘poor’ 
condition). Overall our ability to detect and characterize network responses to disturbance was 
modest and most of the potential trends detected in our network data were equivocal. Indicators of 
connectivity and modularity within the networks were often variable among levels of disturbance, 
biogeographic regions, and spatial scales (HUC2 vs. HUC4 scales; see Appendix C and Appendix 
D). However, these differences were most often idiosyncratic and did not reflect clear, ordinal (i.e., 
consistently increasing or decreasing) trends with disturbance. In only several instances did the 
network metrics change in a consistent, predictable way among the three disturbance levels (see 
next paragraph). Furthermore, the large sample sizes that were necessary (and were clearly larger 
than we originally anticipated) to calculate the network metrics prevented us from obtaining robust 
results for many data combinations, particularly in the Pacific Northwest and at the smaller HUC4 
scale (see gaps or missing bars in Appendix C and Appendix D). Thus, we emphasize that our 
results are, despite the considerable effort made to produce them, preliminary and should be 
interpreted with caution. 
 
That said, several notable results with potentially broad management relevance did emerge from 
our analyses. First, individual species’ degree values tended to decrease with increasing 
disturbance. This trend was observed for both maximum and median degree values (see Appendix 
C1 and C2). Thus, we confirmed that the number of fish species that co-occur among a series of 
shared habitats (i.e., sampling sites) is, in most of the systems examined here, an inverse function 
of environmental disturbance. Intuitively, this makes sense as fish species richness has often been 
shown to decrease with disturbance (Matthews 1998). However, it is important to note that species’ 
degree and species richness are not equivalent concepts. Richness is a static, aggregate reflection 
of overall diversity within a single sample or collection of samples, while species’ degree is an 
individual-level measure of association within a collection of samples. Furthermore, while species’ 
degree must ultimately be limited by overall richness (i.e., the number of species that a focal 
species co-occurs with cannot exceed the total number of species in the regional species pool), the 
opposite is not necessarily true: numbers of co-occurring species (i.e., degree) may remain low, 
despite high overall richness, if many species are limited to a relatively small number of localities 
and those localities are not broadly overlapping. Regardless, the fact that species’ degree exhibited 
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a consistent tendency to decrease with increasing disturbance indicates that pair-wise associations 
among fishes are, in fact, diminished or lost as disturbance increases. 
 
Individual species’ closeness values showed the opposite trend: closeness tended to increase with 
disturbance, for both maximum and median closeness values (see Appendix C10 and C11). This 
result was initially unexpected, given the negative trend between species’ degree and disturbance 
noted above. We assumed that lost pair-wise associations would tend to make network distances 
among the remaining species longer (i.e., the number of links needed to connect any two nodes 
within a network should, on average, be greater when there are fewer links and nodes are less well-
connected). But the increasing closeness values indicated that disturbance may diminish the 
frequency of indirect associations (i.e., decrease instances where nodes are separated by multiple 
intermediate links) within fish co-occurrence networks, resulting in networks where all species are 
either directly connected or separated by one or few intermediate links (e.g., two degrees of 
separation, rather than three or four). 
 
Together the species’ degree and closeness results suggest that ecological networks may become 
smaller (i.e., fewer species and among-species links) and more ‘compact’ (i.e., shorter average 
distances among species’ nodes) as disturbance increases. This trend is illustrated in Fig. 20 using 
the Ohio River Basin (HUC2 scale) weighted unipartite networks for complete species data (i.e., 
all links included). Total richness and the median degree values were highest for networks built 
from good condition sites and lowest for networks built from poor condition sites, while median 
closeness was highest in the poor condition network and lowest in the good condition network. 
 
 

 
 

Figure 20. Weighted unipartite graphs for Ohio River Basin fish networks, built from sites in 
good, fair, and poor condition. Node sizes and colors represent node degree values and module 
membership, respectively. Potential hubs are circled. Graphs are as shown in Appendix A. 
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These trends in node degree and closeness provide some new insight to how ecological networks 
may respond to the types of chronic (e.g., gradual instream habitat degradation from grazing or 
non-point source pollution), rather than acute (e.g., toxic spills), disturbances that are most 
common in U.S. streams. Most notably, they suggest that stream fish networks may indeed be 
robust to chronic or gradual disturbances; although the networks became more compact with 
increasing disturbance, we found no evidence that these networks may be prone to rapid collapse. 
The observed changes in overall richness, node degree, and node closeness were of a gradual, 
incremental nature. Also, as disturbance increased, it was primarily the ‘peripheral’ species with 
low degree values that were lost from the networks. For instance, Brook Trout (Salvelinus 
fontinalis), Telescope Shiner (Notropis telescopus), Stonecat Madtom (Noturus flavus), Variegate 
Darter (Etheostoma variatum), Tonguetied Minnow (Exoglossum laurae), and Bigmouth Chub 
(Nocomis platyrhynchus) all had decreasing degree values among good and fair condition sites, 
then were lost from the networks (i.e., degree values of zero) in poor condition sites (see Table 3, 
showing degree values among good, fair, and poor condition sites for all fishes within the Ohio 
River Basin networks). In several instances, species became more highly connected as disturbance 
increased (e.g., Largemouth Bass [Micropterus salmoides], Black Bullhead [Ameiurus melas], and 
White Crappie [Pomoxis annularis]). But in general, we found that species-level responses to 
disturbance were predictable and that rapid, punctuated changes in network structure did not occur. 
 
Furthermore, we noted that the identities of the most highly connected species within the networks 
were largely invariant to disturbance level. For example, Blacknose Dace (Rhinichthys atratulus), 
Central Stoneroller (Campostoma anomalum), Creek Chub (Semotilus atromaculatus), Fantail 
Darter (Etheostoma flabellare), Northern Hog Sucker (Hypentelium nigricans), Bluntnose 
Minnow (Pimephales notatus), Rock Bass (Ambloplites rupestris), and White Sucker (Catostomus 
commersonii) consistently had the highest degree values in good, fair, and poor condition networks 
from Ohio River Basin streams (Table 3). Because the K-S model fit p-values in tests of power-
law degree distributions were generally insignificant for non-truncated degree distributions (see 
Appendix C4), we cannot characterize the fish co-occurrence networks as power-law networks 
sensu stricto. In many instances, however, we did observe a clear tendency for the most highly 
connected species to occur near the centers of the weighted unipartite graphs, where they provided 
high levels of connectivity within their respective network modules and also served as ‘bridges’ 
between modules (see below). This seemed to beg the question of whether these highly connected 
species may in fact serve as network hubs. For instance, three clusters of nodes with high degree 
values were evident in the unipartite graphs for good, fair, and poor condition sites within the Ohio 
River Basin (highlighted by pink circles in Fig. 20). Each of these highly connected, potential hub 
species is listed in Table 4 with its respective module color (as shown in Fig. 20) for good, fair, 
and poor condition networks. 
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Table 3.  Species' degree values for Ohio River Basin stream networks built from good, fair, and poor condition sites. 
Fish species' absences (zero degree values) are indicated by '--' marks. Species are listed by degree (highest to lowest 
'good' values), then in alphabetical order. 

  Degree values    Degree values 
Species Good Fair Poor  Species Good Fair Poor 
Blacknose Dace 102 83 56  Southern Redbelly Dace 28 4 8 
Central Stoneroller 102 83 56  Spotted Bass 28 32 27 
Creek Chub 102 83 71  Variegate Darter 28 22 -- 
Fantail Darter 102 64 56  Yellow Bullhead 28 32 30 
Northern Hog Sucker 102 64 46  Emerald Shiner 24 32 -- 
Bluntnose Minnow 85 83 56  Tonguetied Minnow 24 15 -- 
Greenside Darter 85 64 34  Bigeye Chub 23 4 -- 
Mottled Sculpin 85 44 27  Bigmouth Chub 23 12 -- 
Rock Bass 85 64 46  Cutlip Minnow 23 -- -- 
Smallmouth Bass 85 64 27  Freshwater Drum 23 21 8 
White Sucker 85 64 56  Margined Madtom 23 -- -- 
Bluegill Sunfish 67 64 56  Whitetail Shiner 23 4 -- 
Johnny Darter 67 64 46  Channel Catfish 18 12 -- 
Rainbow Darter 67 54 34  Crescent Shiner 18 -- 1 
Striped Shiner 67 54 46  Gizzard Shad 18 21 8 
Green Sunfish 63 54 56  Orangethroat Darter 18 18 16 
River Chub 63 34 13  Redfin Shiner 18 -- 1 
Rosyface Shiner 63 32 8  Saffron Shiner 18 -- -- 
Brook Trout 54 15 --  Sharpnose Darter 18 4 -- 
Longear Sunfish 54 44 30  Shorthead Redhorse 18 15 8 
Longnose Dace 54 18 13  White Shiner 18 -- -- 
Silverjaw Minnow 54 37 27  Banded Sculpin 15 12 8 
Spotfin Shiner 54 32 27  Flathead Catfish 15 18 -- 
Logperch Darter 48 37 27  Scarlet Shiner 15 -- -- 
Banded Darter 46 32 30  Trout-Perch 15 -- -- 
Blackside Darter 46 32 20  American Brook Lamprey 11 4 1 
Golden Redhorse 46 44 27  Blackstripe Topminnow 11 -- 13 
Telescope Shiner 46 12 --  Bluebreast Darter 11 -- -- 
Black Redhorse 39 32 13  Creek Chubsucker 11 -- 1 
Bluehead Chub 39 4 13  Golden Shiner 11 -- 13 
Brown Trout 39 32 16  Kanawha Minnow 11 -- -- 
Mountain Redbelly Dace 39 12 16  Least Brook Lamprey 11 4 13 
Rosyside Dace 39 4 13  Longhead Darter 11 4 -- 
Silver Shiner 39 18 8  Pearl Dace 11 4 -- 
Stonecat Madtom 39 15 --  Redside Dace 11 21 13 
Sand Shiner 38 15 27  Roanoke Darter 11 -- -- 
Common Carp 36 32 34  Rosefin Shiner 11 4 1 
Common Shiner 36 22 1  Silver Redhorse 11 18 8 
Rainbow Trout 36 4 --  Slimy Sculpin 11 4 -- 
Mimic Shiner 35 15 13  Spottail Shiner 11 4 -- 
Largemouth Bass 28 37 46  Streamline Chub 11 15 -- 
Pumpkinseed Sunfish 28 32 30  Suckermouth Minnow 11 -- -- 
Redbreast Sunfish 28 12 1   Yellow Perch 11 -- 8 

(Continued on next page) 
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Table 3 (continued).  Species' degree values for Ohio River Basin stream networks built from good, fair, and poor 
condition sites. 
 

  Degree values    Degree values 
Species Good Fair Poor  Species Good Fair Poor 
Black Bullhead 5 -- 13  Redear Sunfish 5 -- -- 
Black Crappie 5 4 --  Redfin Pickerel 5 -- 1 
Brook Silverside 5 4 20  River Redhorse 5 -- 1 
Brown Bullhead 5 15 1  Sauger 5 18 8 
Fathead Minnow 5 12 13  Smallmouth Buffalo 5 18 -- 
Kanawha Sculpin 5 -- --  Walleye 5 12 -- 
New River Shiner 5 -- --  Warmouth Sunfish 5 -- -- 
Northern Studfish 5 -- --  White Crappie 5 -- 20 
Quillback Carpsucker 5 15 --           
                  

 
 
 
 

Table 4.  Lists of species 'hubs' within good, fair, and 
poor condition networks for the Ohio River Basin, 
including module membership as shown in Fig. 20. 

  Module color 

Species Good Fair Poor 
Blacknose Dace red blue red 
Bluegill Sunfish green red red 
Bluntnose Minnow red red red 
Central Stoneroller red blue red 
Creek Chub red blue green 
Fantail Darter red green red 
Green Sunfish green red red 
Greenside Darter red green -- 
Johnny Darter green blue blue 
Largemouth Bass -- -- blue 
Mottled Sculpin red -- -- 
Northern Hog Sucker red green blue 
Rainbow Darter green red -- 
River Chub green -- -- 
Rock Bass red green red 
Rosyface Shiner green -- -- 
Smallmouth Bass red green -- 
Striped Shiner green red red 
White Sucker red green red 
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Species that stood out as potential network hubs were widely-distributed, common fishes that are 
often regarded as ecological ‘generalists’ with moderate to high tolerance to habitat alteration and 
other types of disturbances (e.g., Halliwell et al. 1999; Jenkins and Burkhead 1994; Trautman 
1981; Wydoski and Whitney 2003). For this reason, these same species are often de-emphasized 
in biological assessments, which place greater emphasis on rare, sensitive species (e.g., Barbour 
et al. 1999; Fausch et al. 1984; Karr 1981). But our network results offer a different perspective. 
If species with the highest degree values serve as hubs that hold the fish co-occurrence networks 
together, as predicted by theory (Proulx et al. 2005; Tylianakis et al. 2010), then these common 
species may be most important to the overall integrity of complete fish assemblages. 
 
Another observation that suggests a fundamental role for the most highly connected species is the 
fact that they clustered near the centers of the networks, but not in a single location. Rather, they 
were distributed among network modules (see Fig. 20 and Appendix A). Thus, each module 
consisted of one or several high-degree species (i.e., hubs) that allowed more peripheral species to 
remain connected to the network. This is intriguing because the modules themselves did not appear 
to represent subsets of fishes with unique functional trait profiles (as we originally anticipated). 
Instead, the modules consisted, in most cases, of fishes with broadly overlapping functional traits 
(see Fig. 13). Specifically, each module was comprised of a similar mix of feeding behaviors, 
parental care strategies and spawning strategies (see x-axis in Fig. 21), and a similar range of body 
sizes, longevities, and fecundities (see y-axis in Fig. 21).  
 
 

 
 

Figure 21. Functional hypervolume plot demonstrating overlap in functional 
traits space among fish network modules. Functional trait factors that are 
highly associated with each of the two major ordination axes are shown. 
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From a management and conservation perspective, our results may be cause for cautious optimism. 
Differences among networks in good, fair, and poor condition were detectable but not dramatic. 
With increasing disturbance, the networks became smaller and more compact, yet they did not 
collapse into fragments that were fundamentally different than complete, undisturbed networks. 
Additionally, the functional traits analyses suggested that distinct modules within the networks 
may constitute repeated motifs of species’ life histories, feeding behaviors, and body sizes. 
Together, these observations point to a new question: is the relative stability that we documented 
in the fish co-occurrence networks (i.e., modest change in response to disturbance) sustained by a 
highly level of redundancy within the networks? In most of the networks, the putative hubs were 
not singular; within each module, several hubs tended to cluster together, providing potentially 
redundant links to more peripheral, weakly connected species (see Fig. 20 and Appendix A). 
Similarly, the motif pattern observed in many of the functional traits ordination plots (see Fig. 13 
and Fig. 21) may imply that functional redundancy is present in the fish co-occurrence networks. 
If this latter proposition is correct, it would fundamentally challenge the current thinking on 
modularity within ecological networks. Consistent with recent theory, we began this project with 
the expectation that modules would, if detected, serve non-redundant functional roles within the 
larger networks (Olesen et al. 2007; Tylianakis et al. 2010). Thus, a comprehensive management 
strategy would need to protect the unique functional attributes of each module to ensure continued 
system-level function. However, our results suggest a very different possibility. If the functional 
characteristics of network modules are truly redundant, an optimal management strategy might 
be to first ensure that one of the redundant modules will be protected in its entirety. 
 
At a minimum, managers should appreciate that the network approach and tools presented here 
can provide an alternative and perhaps more insightful framework for documenting and predicting 
how biotic assemblages respond to environmental disturbances than traditional biomonitoring 
methods. For example, multi-metric indices and ‘RivPacs’ models are currently two of the most 
widely employed tools for detecting and/or characterizing disturbance effects on freshwater biota 
(e.g., Barbour et al. 1995; Hawkins et al. 2000; Karr 1981; Van Sickle et al. 2005). Indeed, our 
disturbance rankings utilized a national-scale, multi-metric index for stream invertebrates (Herlihy 
et al. 2008; Stoddard et al. 2008; USEPA 2016). When properly calibrated, these tools are effective 
at detecting shifts in the basic structural properties of assemblages, such as changes in species 
richness, the prevalence of tolerant vs. intolerant taxa, and the absence of select indicator species. 
Unfortunately, these tools are rarely rooted in dynamic ecological or systems-level theory; they 
cannot predict (or even recognize) structural responses to no-analogue disturbances, nor can they 
be used to anticipate the secondary or tertiary effects (e.g., secondary extinction resulting from the 
loss of a focal species) that may propagate throughout an assemblage in response to a disturbance. 
We predict that network analysis and graph theory can provide a richer, more meaningful language 
and framework for understanding biotic communities and how they respond to environmental 
disturbance (Tylianakis et al. 2010). They can also provide powerful analytical tools to quantify 
and implement explicit regulatory standards. 
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Dynamic Network Simulations 
 
Unipartite Simulations 
 
Algorithms to simulate and predict network responses to disturbances provide an important 
compliment to observational studies of empirical network structure (Memmott et al. 2004; 
Tylianakis et al. 2010). We performed simulation experiments for both unipartite and bipartite 
networks, where species extinctions were simulated by sequentially removing species from the 
networks and re-calculating a series of network metrics. Unipartite network simulations were 
based on the Susquehanna River Basin (HUC4 scale; see Fig. 22) and led to three general 
conclusions. First, we observed that extinction-by-sensitivity (i.e., removing the most pollution 
intolerant species first) results did not deviate from random extinction events. Each of the six 
network metrics that were evaluated in the unipartite extinction simulations showed extinction-by-
sensitivity results to be fully within the range or spread of the random results (see Fig. 16). The 
sole instance where sensitivity results seemed to deviate from the random results was the ‘flat’ 
sequence of median betweenness values that occurred between 8–15 extinctions (Fig. 16E). Closer 
inspection of the sensitivity values for Susquehanna River fishes did not reveal a clear explanation 
for this unusual result. It did, however, show that the sequence of species removals used in 
extinction-by-sensitivity simulations did not covary with species’ degree values (see Table 5). 
Thus, the extinction-by-sensitivity removals were essentially random with respect to connectivity. 
 
 

 
 

Figure 22. Weighted unipartite graph for the complete Susquehanna River Basin 
stream fish network. Node sizes and colors represent node degree values and module 
membership, respectively. Blue circles identify nodes that are lost as ‘secondary 
extinctions’ when all red hubs (circled in pink) are deleted from the network. 
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Table 5.  Species' sensitivity values, degree values, and module membership for Susquehanna River Basin stream 
fishes. Species are listed by sensitivity (lower values = higher sensitivity), in the order that was used in extinction-by-
sensitivity simulations. Module colors correspond to colors shown in Fig. 22. 

Species Sensitivity Degree Module   Species Sensitivity Degree Module 
Banded Darter 2 42 green  Sand Shiner 4 29 green 
Mottled Sculpin 2 45 green  Slimy Sculpin 4 35 green 
Redside Dace 2 33 green  Common Shiner 4 48 green 
Rosyface Shiner 2 39 green  Fallfish 4 55 red 
Northern Hog Sucker 2 48 green  Creek Chub 4 48 green 
Greenside Darter 2 42 green  Walleye 4 42 green 
River Chub 2 45 green  Central Stoneroller 4 48 green 
Brook Trout 2 42 green  Margined Madtom 4 48 green 
Longnose Dace 2 55 red  Emerald Shiner 4 29 green 
Cutlip Minnow 3 55 red  White Crappie 5 22 red 
Swallowtail Shiner 3 8 red  Largemouth Bass 5 42 green 
Northern Pike 3 8 red  Bluegill Sunfish 5 45 green 
Fantail Darter 3 8 red  Redbreast Sunfish 5 42 green 
White Sucker 3 55 red  Spottail Shiner 5 45 green 
Johnny Darter 3 36 green  Channel Catfish 5 16 red 
Brown Trout 3 45 green  Redfin Pickerel 5 8 red 
Golden Redhorse 3 16 red  Quillback Carpsucker 5 29 green 
Muskellunge 3 22 red  Brown Bullhead 5 35 green 
Shield Darter 3 48 green  Pumpkinseed Sunfish 5 48 green 
Shorthead Redhorse 3 36 green  Black Crappie 5 8 red 
Rainbow Trout 3 22 red  Yellow Perch 5 39 green 
Spotfin Shiner 3 45 green  Banded Killifish 5 16 red 
Chain Pickerel 3 33 green  Bluntnose Minnow 5 48 green 
Smallmouth Bass 3 55 red  Common Carp 6 42 green 
Tessellated Darter 3 55 red  Blacknose Dace 6 55 red 
Mimic Shiner 3 33 green  Yellow Bullhead 6 39 green 
Comely Shiner 4 8 red  Golden Shiner 6 8 red 
Rock Bass 4 55 red   Green Sunfish 6 39 green 
                  

 
 
Second, the extinction-by-degree simulation results, though initially surprising, were driven by 
punctuated and highly predictable losses of network hubs. For example, the most highly connected 
species in the Susquehanna River Basin network were the eight red module nodes concentrated 
near the center of the unipartite graph (enclosed by pink circle in Fig. 22): these included the 
Longnose Dace (Rhinichthys cataractae), Cutlip Minnow (Exoglossum maxillingua), Smallmouth 
Bass (Micropterus dolomieu), Tessellated Darter (Etheostoma olmstedi), White Sucker, Fallfish 
(Semotilus corporalis), Rock Bass, and Blacknose Dace. When each of these eight species had 
been deleted from the network, five of the six network metrics examined in our simulations 
displayed a conspicuous, punctuated response (see Fig. 16B-E). Similarly, when the next 
sequential group of highly connected species (central nodes within the green module in Fig. 22) 
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was deleted from the network, the network metrics again displayed a punctuated response. This 
ability to explain and ultimately predict dynamic network responses to species losses will be 
critical in future efforts to apply network analysis and graph theory within natural resource 
management contexts (Tylianakis et al. 2010). 
 
Finally, we found that it may be possible to predict the secondary effects on individual species, 
including secondary extinctions, of species losses within the network. When the eight most highly 
connected species had been deleted from the Susquehanna River Basin network (red module hubs 
circled in pink in Fig. 22), each of the seven peripheral, relatively weakly connected species within 
the red module (circled in blue in Fig. 22) was completely severed from the network (i.e., became 
extinct). Thus, we could predict that these peripheral species – the Comely Shiner, Swallowtail 
Shiner, Fantail Darter, Golden Shiner (Notemigonus crysoleucas), Black Crappie (Pomoxis 
nigromaculatus), Northern Pike (Esox lucius), and Redfin Pickerel – would likely be the most 
vulnerable to secondary effects of disruptions that eliminate the most highly connected species. 
Interestingly, the extinction-by-degree simulations also predicted that all species within the red 
module shown in Fig. 22 would be lost as secondary extinctions before any species within the 
green module would become vulnerable to secondary extinctions (see nodes enclosed by heavy 
black circles in Fig. 17). This highly modular, compartmentalized vulnerability is itself notable for 
two reasons. First, it could aid conservation efforts by allowing managers to focus exclusively on 
species within one module, rather than the entire network. Second, it hints at a profound level of 
self-organization within in the network. If the network modules are, in fact, functionally redundant 
motifs (as hypothesized above) then the ability to sequester disturbance effects to a single module 
would confer a high level of robustness (i.e., maintaining all functional traits within undisturbed 
modules). This robustness would certainly be a remarkable example of evolutionary efficiency! 
 
 
Bipartite Simulations 
 
The spatially-explicit network analyses did not produce unambiguous evidence of strong spatial 
structure within the fish co-occurrence networks (see Tables 1-2 and Figs. 18-19), but they did 
provide the necessary information to implement spatial extinction algorithms in the bipartite 
network simulations. In these simulations, we removed sampling sites from the DRNs then tracked 
the effects on resident fishes. By running these simulations in four test systems (the Susquehanna, 
Savannah, Kanawha, and Great Miami River Basins), we arrived at two general conclusions. First, 
the extinction-by-degree (i.e., deleting sites with the highest numbers of locally occurring fish 
species first) simulations (red lines in Fig. 14) tended to result in much higher species’ extinction 
rates than random site deletions (green lines in Fig. 14). However, this was not true in all cases; in 
the Susquehanna River Basin, the extinction-by-degree algorithm generated species’ extinctions 
at approximately the same rate as the random deletion algorithm (upper-left panel in Fig. 14). 
Thus, we emphasize that the spatial configuration of stream habitats and their resident fishes can 
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generate complex network dynamics that are not easy to anticipate. We intuitively expected that 
extinction-by-degree simulations would result in the most rapid species losses (i.e., linear trends 
in site deletion vs. remaining species plots, with low AUC values; see Fig. 14). But the 
Susquehanna River Basin results suggest that the spatial arrangement of high- and low-degree sites 
can influence that robustness of an ecological network to species’ extinctions; otherwise, the 
extinction-by-degree trend for Susquehanna simulations would have been more similar to the other 
three systems. 
 
Second, the extinction-by-distance (to the closest major DoD facility) simulations indicated that 
disturbances created by DoD facilities may lead to species’ extinction rates that are no greater than 
random extinction rates. In all four test systems, the extinction-by-distance (blue lines in Fig. 14) 
and random extinction (green lines in Fig. 14) trajectories and AUC values in site deletion vs. 
remaining species plots were similar. This observation is encouraging from a management 
perspective because it suggests that sites closest to the DoD facilities are not uniquely important 
to the overall integrity of their respective fish co-occurrence networks. In future research, it 
may be prudent to replace the Euclidian distance algorithm used here (i.e., straight-line distance 
between the focal DoD facility and each stream site) with a river distance algorithm; literal flow-
path distances between DoD facilities and stream sites could provide more ecologically 
meaningful measures of potential anthropogenic disturbances. For the moment, however, we 
suggest that DoD facilities within the four test systems should not, by simple virtue of their spatial 
orientations within the DRNs, pose undue threats to the regional fish networks. 
 
 
Next Steps 
 
To further advance this work and ensure that it meets its full potential in management applications, 
we propose a mix of modeling and field-based research in four key areas: (1) confirming that pair-
wise links within the unipartite networks do (or do not) reflect true biological associations; (2) 
testing the hypothesis of functional motif redundancy among network modules; (3) extending the 
network simulations to better incorporate chronic/gradual disturbances and spatial dynamics; and 
(4) building user-friendly tools to make the network analyses and visualizations widely accessible. 
 
A first step in future work will be to directly evaluate the network links among species-pairs. 
Testing whether large co-occurrence networks can be used to infer the strength and direction (i.e., 
positive versus negative) of species’ interactions, across a wide range of organismal levels, is 
currently an active area of research (e.g., Araújo et al. 2011; Borthagaray et al. 2014; Cazelles et 
al. 2016; Harris 2016; Kissling et al. 2012; Morueta-Holme et al. 2016; Peura et al. 2015; Poisot 
et al. 2012; Poisot et al. 2015; Williams et al. 2014) and our network results clearly have potential 
to advance this field. While conducting this Limited Scope project, we made an initial effort to 
evaluate individual pair-wise species associations using literature data, but it quickly became 
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evident that a larger, more systematic effort would be needed to complete a meaningful analysis. 
We therefore propose that a series of field-trials to directly test specific network predictions is a 
logical next step to take in advancing ecological network research and applications. 
 
Field-trials would begin by using the unipartite networks that consisted exclusively of significantly 
positive or significantly negative pair-wise associations to generate specific a priori hypotheses 
for testing. For example, Fig. 23 illustrates the weighted unipartite network for good condition 
sites in the Ohio River Basin when only significantly negative associations (as predicted by the 
probabilistic model of co-occurrence; see Veech 2013) are included. In this network, the Bluehead 
Chub (Nocomis leptocephalus; circled in red in Fig. 23) exhibits significantly negative associations 
with nine species: Creek Chub, Greenside Darter (Etheostoma blennioides), Johnny Darter, 
Logperch Darter (Percina caprodes), Longear Sunfish (Lepomis megalotis), Rainbow Darter 
(Etheostoma caeruleum), River Chub (Nocomis micropogon), Silverjaw Minnow (Notropis 
buccatus), and Striped Shiner (Luxilus chrysocephalus). Using established protocols for in situ and 
laboratory trials (e.g., Echelle et al. 1972; Finger 1982; Fisher and Pearson 1987; Grossman et al. 
1998; Reeves et al. 1987), we would directly test for negative interactions between the Bluehead 
Chub and these (infrequently) co-occurring species. This type of direct observational evidence 
could greatly bolster the validity of ecological network research. 
 
 

 
 

Figure 23. Weighted unipartite network of significantly negative associations within 
Ohio River Basin streams in good condition. The Bluehead Chub (circled in red) 
shares negative associations with nine other species. 
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Furthermore, we have already confirmed that the significantly positive and significantly negative 
network results tended to mirror the complete network trends among good, fair, and poor condition 
sites; most of the indicators of network structure that we evaluated did not change in a predictable 
way with disturbance, but degree values and closeness values did. For instance, unipartite networks 
of Ohio River Basin fishes that were built exclusively from significantly positive co-occurrences 
decreased in size (i.e., total number of nodes) from 63 to 52 to 46 species, respectively, among 
sites in good, fair, and poor condition. Thus, we are optimistic that field-trial results could be 
integrated with broader theory on ecological networks and how they respond to disturbance. 
Additionally, if field-trials can confirm which of the network links are truly reflective of direct, 
positive or negative interspecific dynamics, then managers will be able to predict, with a high level 
of confidence, which species are most likely to be positively or negatively influenced by specific 
disruptions within a network. 
 
The second area of emphasis in future research will be a closer examination of the hypothesis that 
network modules are repetitive functional motifs and that these motifs may enhance network 
stability by providing functional redundancy. A similar theory was recently demonstrated using 
arthropod community data from the Atacama Desert, Chile by Borthagaray et al. (2014). They 
detected six modules of species, each of which included a similar mix of species’ body sizes and 
trophic behaviors, and that responded similarly to environmental gradients. We predict that 
modules within the fish co-occurrence networks will, upon closer inspection, exhibit specific, 
predictable functional traits patterns: subsets of species with complimentary behaviors and life 
histories that efficiently ‘fill’ the ecological niche space available to them. This is a particularly 
exciting topic for future inquiry because research on the functional traits and life history strategies 
of stream fish assemblages is evolving so rapidly (e.g., Heino et al. 2013; Keck et al. 2014; Logez 
et al. 2013; Logez et al. 2016; Meador and Brown 2015; Mims et al. 2010; Pyron et al. 2011; Troia 
and Gido 2015). More importantly, research on the mechanistic links between fish functional traits 
and major environmental drivers, such as hydrology, can provide a rigorous foundation for 
predicting how fishes will respond to no-analogue environments under climate change (e.g., 
Buisson et al. 2013; McManamay and Frimpong 2015; McManamay et al. 2015; Olden et al. 2010; 
Poff and Allan 1995). Thus, by acquiring a better understanding of the modularity and 
functional traits patterns described in this Limited Scope report, managers may greatly 
enhance their ability to forecast and plan for future disturbances, including perturbations that 
are fundamentally distinct from the three classes of generalized, instream habitat disturbance that 
were considered herein.  
 
A third future objective is to bolster the utility of the network simulations by incorporating more 
realistic disturbances in them and making better use of the spatial DRN information. Simulations 
used in this Limited Scope project were limited exclusively to species’ extinctions and assumed 
that secondary effects (i.e., extinctions) within the network would not be realized until all of the 
links leading to a given species had been deleted (via the primary extinctions enforced under the 
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extinction-by-degree, extinction-by-distance, extinction-by-sensitivity, and random extinction 
algorithms). However, we acknowledge that this assumption is likely inaccurate; species within a 
network will almost certainly experience secondary effects prior to acute extinction events. At 
present, we are unaware of a published precedent or method to incorporate gradual, chronic 
disturbances within network simulations. We therefore propose that developing such capabilities 
would be an important step forward in basic and applied research. A potential pathway forward 
may be to utilize the edge weights within the networks. The probabilistic co-occurrence model 
allowed us to calculate edge weights among species-pairs, as well as the overall direction (positive 
versus negative) of the pair-wise associations, but we did not use them in the present research. If 
edge weights were included in the simulations, it may be possible to multiply them by ‘disturbance 
coefficients’ (e.g., an acute extinction equates to a disturbance coefficient of 1, while the 
coefficient for a more subtle temperature shift that impairs reproductive success is < 1) that reflect 
more subtle and realistic secondary effects. We also propose the addition of more complex, 
ecologically meaningful spatial algorithms in the network simulations. Simple ‘as the crow flies’ 
distances between DoD facilities and stream sites were used in the present simulations. This was 
intended to demonstrate the potential utility of spatial information and site-specific analyses. But 
there is clearly room for improvement. For instance, explicit flow-path distances among sites 
within the DRNs could be used to simulate the effects of instream pollutants. Alternatively, it 
should be possible to identify all segments within a DRN that must be protected to ensure that 
connectivity is maintained for species of special concern (Altermatt 2013). This dynamic, 
spatially-explicit approach to simulating disturbance effects within networks would entail a heavy 
computation burden. But it would also give managers at specific locations (e.g., DoD facilities) 
greater ability to anticipate and plan for changes that are most likely to impact them directly. 
 
The fourth key objective in a future project will be to develop software tools that make the network 
calculations, simulations, and visualizations easier and more widely accessible. Most of the 
procedures described and graphics shown in this Limited Scope report required (semi-)custom 
programming (mostly in the R statistical programming language). Thus, the network methods and 
analyses that we have described are, at the moment, unavailable to much of the conservation and 
management community, as well as the general public. Full implementation of a network-based 
approach to studying and managing co-occurrence networks, in streams or elsewhere, will 
therefore mandate online tools and/or custom software that can automate many of these 
procedures through graphical-user interfaces. We envision the development of a web-based 
toolkit that will allow users to query data through a mapping interface, to specify network 
calculations they wish to perform via drop-down menus and toggle lists, then to visualize and 
download results in familiar formats (e.g., scalable vector graphics and comma-delimited text). As 
a conceptual example, we reference the ClimateWizard (www.climatewizard.org/). 
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Appendix A 
 

Exemplar Graphs and Degree Distribution Plots 
 
 
East Coast/Mid-Atlantic 
 Chesapeake Bay Rivers (HUC2-02) – Combined data (all disturbance levels) 
 Chesapeake Bay Rivers (HUC2-02) – Good condition sites only 

Chesapeake Bay Rivers (HUC2-02) – Fair condition sites only 
Chesapeake Bay Rivers (HUC2-02) – Poor condition sites only 
Susquehanna River (HUC4-0205) – Combined data (all disturbance levels) 

 Susquehanna River (HUC4-0205) – Good condition sites only 
Susquehanna River (HUC4-0205) – Fair condition sites only 
Susquehanna River (HUC4-0205) – Poor condition sites only 

 
Mississippi River Basin 
 Ohio River (HUC2-05) – Combined data (all disturbance levels) 
 Ohio River (HUC2-05) – Good condition sites only 

Ohio River (HUC2-05) – Fair condition sites only 
Ohio River (HUC2-05) – Poor condition sites only 
Kanawha River (HUC4-0505) – Combined data (all disturbance levels) 

 Kanawha River (HUC4-0505) – Good condition sites only 
Kanawha River (HUC4-0505) – Fair condition sites only 

 
Pacific Northwest 
 Pacific Northwest Region (HUC2-17) – Combined data (all disturbance levels) 
 Pacific Northwest Region (HUC2-17) – Good condition sites only 

Pacific Northwest Region (HUC2-17) – Fair condition sites only 
Pacific Northwest Region (HUC2-17) – Poor condition sites only 
Oregon-Washington Coastal (HUC4-1710) – Combined data (all disturbance levels) 

 Oregon-Washington Coastal (HUC4-1710) – Good condition sites only 
Oregon-Washington Coastal (HUC4-1710) – Fair condition sites only 
Oregon-Washington Coastal (HUC4-1710) – Poor condition sites only 
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General Key 
 
Each of the following pages illustrates basic network results for an exemplar dataset. Networks are 
organized by biogeographic region (East Coast, Mississippi River Basin, Pacific Northwest), 
spatial scale (HUC2, HUC4), and level of anthropogenic disturbance (all data combined, ‘good’ 
condition sites only, ‘fair’ condition sites only, and ‘poor’ condition sites only). 
 
For each combination of the above factors (biogeographic region, spatial scale, and disturbance 
level), we present results from one exemplar dataset. These include separate results for complete 
networks (all nodes and links combined, regardless of the significance or weights of the links), 
significantly positive links only, and significantly negative links only. 
 
Each combination includes a weighted unipartite graph at left, illustrating several network 
parameters. The size and color of each node depict its degree (i.e., connectivity) and module 
membership (colors are arbitrary, showing only mutual membership within modules), 
respectively. The thickness and color of each link depict edge weights (thicker lines represent 
larger weights) and directions (black lines = positive associations, grey lines = negative 
associations). Unipartite network modularity values and the number of distinct modules within the 
network at listed at bottom-center for each data combination. Unipartite graphs were rendered 
using the ‘force-directed’ algorithm of Fruchterman and Reingold, which attempts to minimize 
overlap among network links. 
 
Cumulative degree distributions from unipartite networks are plotted for each data combination 
and shown at center. Key power-law model statistics (power-law α values and Kolmogorov–
Smirnov (K.S.) model-fit p-values) are also shown below each of the degree distribution plots, for 
complete power-law models and for truncated (trunc.) power-law models. Xmin values from 
truncated power-law models are shown in parentheses. 
 
Bipartite graphs (spatially-implicit) are shown at right for each data combination. Node ‘types’ in 
the bipartite graphs are indicated by colored symbols: black squares are sampling sites, red circles 
are species. Links (grey lines) within the bipartite networks show which species occur at which 
sites. Bipartite graphs were rendered using a standard ‘2-mode’ layout. 
 
Note that in some instances (i.e., data combinations), samples sizes were insufficient to perform 
network analyses. These cases are noted in the following pages. 
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Appendix B 
 

Network Metric Definitions 
 
 
Node Degree – The degree of a focal node within a network is simply the number of nodes that 

are directly connected to it. In the present unipartite context, the degree of a node is the number 
of species that a focal species co-occurs with. In the bipartite context, the degree of a site (‘node 
type 1’) is the number of species that occur at it, while the degree of a species (‘node type 2’) 
is the number of sites that a species occurs at. (The same ‘site vs. species’ logic applies to all 
other network metrics that can be calculated at the individual node level within bipartite 
networks.) Because degree values are specific to individual nodes, they may exhibit large 
variation within a given network. We have therefore calculated two of the statistical moments 
describing populations of node degree values: maximum and median (50th percentile) degree. 

 
Alpha, Power-Law Degree Distribution (Complete) – Alpha (α) is the exponent of a power-law 

model (y = cx-α) fit to the cumulative degree distribution of a network. In this instance, the 
power-law model is fit to the complete degree distribution (but see truncated power-law models 
below). Note that the α value in a typical power-law model of network degree distribution 
model is negative; positive α values reported here are effectively negative slopes when plotted. 

  
Kol.Smi. P-value, Power-Law Degree Distribution (Complete) – this is the p-value from a 

Kolmogorov-Smirnov test of the null hypothesis that the observed degree distribution (for the 
complete dataset, in this instance) was equivalent to a hypothetical, idealized power-law degree 
distribution that incorporates the same α value and sample size as the observed network. Note 
that small p-values provide evidence against the null hypothesis of equivalent distributions. 
Thus, small p-values suggest that the observed degree distribution does not conform to a 
power-law model (i.e. the power-law model is not a good fit). 

 
Xmin, Power-Law Degree Distribution (Truncated) – Truncating an empirical, cumulative 

distribution prior to fitting one or more probability distributions can help to minimize the effect 
of noise within the empirical data. In this particular case – fitting a power-law model – 
truncating the data is intended to minimize noise in the left-side of the degree distribution, 
where many species with low degree values (i.e., few co-occurrences) may be aggregated. 
Using maximum likelihood, it is sometimes possible to identify a specific point – the Xmin 
degree value – in the cumulative degree distribution at which the overall trend begins to exhibit 
a clear power-law tendency. 

 
Alpha, Power-Law Degree Distribution (Truncated) – This is the exponent (α) of the power-law 

model fit to a truncated degree distribution. 
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Kol.Smi. P-value, Power Law Degree Distribution (Truncated) – This is equivalent to the K-S p-

value described above, but calculated for the truncated degree distribution, rather than the 
complete degree distribution. 

 
Betweenness Centrality – Betweenness centrality is a measure of a node’s centrality within a 

network. It is the sum of all ‘shortest path’ connections between two neighboring nodes that 
intersect a focal node. Nodes with high betweenness may therefore serve as ‘hubs’ within a 
network. The concept of node betweenness is similar to, but subtly different than, node degree. 
We calculated and recorded the maximum and median (50th percentile) betweenness values 
within each network. 

 
Closeness Centrality – Closeness centrality is the reciprocal of the sum of the distances (i.e. 

number of shortest-path links) from a focal node to all other nodes within a network. Large 
closeness values indicate that a focal node is directly connected to many or most other nodes 
in a given network. We calculated and recorded the maximum and median (50th percentile) 
closeness values within each network. 

 
Local Clustering Coefficient – The local clustering coefficient is calculated by first identifying all 

of the neighbors of a given focal node (i.e. nodes that are directly connected to the focal node), 
then observing the number of direct links among those neighbors. Specifically, it is calculated 
by dividing the number of observed neighbor connections by the total possible number of 
neighbor connections. The local clustering coefficient ranges from 0−1and is calculated for 
every node in a given network. We calculated and recorded the maximum and median (50th 
percentile) local clustering coefficients within each network. 

 
Global Clustering Coefficient – The global clustering coefficient is the number of ‘closed triplets’ 

(i.e. three nodes that are fully connected amongst each other, forming a closed triangle) in a 
network divided by the total number of closed and open triplets (i.e. pairs of nodes that are 
connected to a common node but not to each other). It is calculated as a single, average 
clustering coefficient value for an entire network and is also known as ‘transitivity’. As a ratio, 
the global clustering coefficient is constrained to a range of 0−1, with values closer to 1 
indicating dense, highly interconnected networks. 

 
Modularity – Modularity reflects the tendency for a network consist of highly interconnected 

subcomponents – modules – that are only sparsely connected to other modules. Large 
modularity values indicate that two or more distinct modules are more likely to be found within 
a given network, but do not necessarily reflect the number of distinct modules that may exist. 
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No. Modules – This is the number of distinct network modules that was detected using a simulated 
annealing algorithm. 
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Appendix C 
 

Unipartite Network Summary Statistics 
 
 
Unipartite Networks – Species’ Degree, Maximum 
Unipartite Networks – Species’ Degree, 50th Percentile 
Unipartite Networks – Alpha, Power Law Degree Distribution (Complete) 
Unipartite Networks – Kol.Smi. P-value, Power Law Degree Distribution (Complete) 
Unipartite Networks – Xmin, Power Law Degree Distribution (Truncated) 
Unipartite Networks – Alpha, Power Law Degree Distribution (Truncated) 
Unipartite Networks – Kol.Smi. P-value, Power Law Degree Distribution (Truncated) 
Unipartite Networks – Betweenness Centrality, Maximum 
Unipartite Networks – Betweenness Centrality, 50th Percentile 
Unipartite Networks – Closeness Centrality, Maximum 
Unipartite Networks – Closeness Centrality, 50th Percentile 
Unipartite Networks – Global Clustering Coefficient 
Unipartite Networks – Local Clustering Coefficient, Maximum 
Unipartite Networks – Local Clustering Coefficient, 50th Percentile 
Unipartite Networks – Modularity 
Unipartite Networks – No. Modules 
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General Key 
 
Each of the following pages uses a common motif to illustrate a single network summary statistic, 
calculated and plotted in a single chart for all networks. For each of the summary statistics, we 
show the mean average, calculated across replicates (when more than one replicate was available) 
for each combination of data, visualized as a bar chart. Results are organized by three levels. 
 
Each biogeographic region (East Coast, Mississippi River Basin, Pacific Northwest) is indicated 
by a background color, as shown in the ‘Region’ legend at right. 
 
Within biogeographic regions, network statistics are partitioned by spatial scale (HUC2 vs. HUC4, 
indicated by ‘h2’ and ‘h4’ labels along the right-hand margin. Results from networks that included 
all species within a given data combination are also distinguished from results that used the 
conservative ‘five or more occurrences per species’ criterion (see main text) are also distinguished 
in the right-hand margin by ‘All’ and ‘5+’ labels. The ‘E’, ‘M’, and ‘W’ labels in the right-hand 
margin are biogeographic region indicators (i.e. are redundant with the grouping by color). 
 
Networks that were built using all species’ co-occurrences (0-Complete), combined significant 
positive and significantly negative co-occurrences (1-SigAll), significantly positive co-
occurrences only (2-SigPos), and significantly negative co-occurrences only (3-SigNeg) are 
indicated by labels in the top margin. 
 
Finally, networks that were built using data from all sites, regardless of disturbance level (0-All), 
data from minimally disturbed or ‘good’ sites (1-G), data from moderately disturbed or ‘fair’ sites 
(2-F), and data from highly disturbed or ‘poor’ sites (3-P) are indicated by labels at bottom. 
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Appendix D 
 

Bipartite Network Summary Statistics 
 
 
Bipartite Networks – Betweenness Centrality, Maximum (Sites) 
Bipartite Networks – Betweenness Centrality, 50th Percentile (Sites) 
Bipartite Networks – Closeness Centrality, Maximum (Sites) 
Bipartite Networks – Closeness Centrality, 50th Percentile (Sites) 
Bipartite Networks – Global Clustering Coefficient (Sites) 
Bipartite Networks – Local Clustering Coefficient, Maximum (Sites) 
Bipartite Networks – Local Clustering Coefficient, 50th Percentile (Sites) 
Bipartite Networks – Modularity 
Bipartite Networks – No. Modules 
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General Key 
 
Each of the following pages uses a common motif to illustrate a single network summary statistic, 
calculated and plotted in a single chart for all networks. For each of the summary statistics, we 
show the mean average, calculated across replicates (when more than one replicate was available) 
for each combination of data, visualized as a bar chart. Results are organized by three levels. 
 
Each biogeographic region (East Coast/Mid-Atlantic, Mississippi River Basin, Pacific Northwest) 
is indicated by a background color, as shown in the ‘Region’ legend at right. 
 
Within biogeographic regions, network statistics are partitioned by spatial scale (HUC2 vs. HUC4, 
indicated by ‘h2’ and ‘h4’ labels along the right-hand margin. Results from networks that included 
all species within a given data combination are also distinguished from results that used the 
conservative ‘five or more occurrences per species’ criterion (see main text) are also distinguished 
in the right-hand margin by ‘All’ and ‘5+’ labels. The ‘E’, ‘M’, and ‘W’ labels in the right-hand 
margin are biogeographic region indicators (i.e. are redundant with the grouping by color). 
 
Networks that were built using all species’ co-occurrences (0-Complete), combined significant 
positive and significantly negative co-occurrences (1-SigAll), significantly positive co-
occurrences only (2-SigPos), and significantly negative co-occurrences only (3-SigNeg) are 
indicated by labels in the top margin. 
 
Finally, networks that were built using data from all sites, regardless of disturbance level (0-All), 
data from minimally disturbed or ‘good’ sites (1-G), data from moderately disturbed or ‘fair’ sites 
(2-F), and data from highly disturbed or ‘poor’ sites (3-P) are indicated by labels at bottom. 
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