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Environmentally Adaptive UXO Detection and
Classification Systems

1 Abstract

This final report addresses the problem of detecting and classifying underwater munitions using data
collected from synthetic aperture sonar (SAS) systems. The first portion of this report discusses
an adaptive scheme for UXO detection. Our detection hypothesis is that the presence of munitions
in the sonar backscatter collected from a hydrophone array will inherently lead to a low-rank
component in the pulse compressed data from multiple pings. A statistical hypothesis test is
developed to determine when this low-rank component is present using the Generalized Likelihood
Ratio Test (GLRT).

The second portion of this report addresses the problem of discriminating UXO from non-UXO
objects using manifold learning principles when applied to data collected from SAS systems. This
effort addresses the second and third tasks in our SEED proposal which involve the development
of feature extraction and classification strategies for this problem. Our classification hypothesis is
that the sequence of measurements collected from an object in a linear SAS survey results in data
that lies in some low-dimensional subspace which is locally linear but globally non-linear, i.e. the
data is assumed to lie on a low-dimensional manifold embedded in a high-dimensional space. The
coordinates on that low-dimensional manifold and their behavior can then be used to discriminate
among various UXO and non-UXO objects that may be encountered in practice. With this goal in
mind, techniques are developed to not only learn the low-dimensional manifold but to also provide
an out-of-sample embedding for newly acquired training data. The manifold features from the
training set are then used to construct local linear subspaces for representing each newly embedded
testing feature. A statistically motivated technique is then used to select the most likely class label
by finding the class which best represents the data.

Test results for both the detector and classifier are then presented using an experimental data
set which was designed to collect sonar data from underwater objects in a relatively controlled
and clutter-free environment. Additionally, various experiments are conducted to observe the pro-
posed system’s robustness to various forms of mismatch that may enter the data collection process.
Results are presented using standard performance metrics such as probability of detection (Pd),
probability of correct classification (Pcc), probability of false alarm (Pfa), as well as Receiver Op-
erating Characteristic (ROC) curve and confusion matrix characteristics.

The results of these studies show that the detector, although applied in fairly ideal conditions,
is capable of discriminating sonar returns of objects lying on the seafloor from the background with
a probability of detection of Pd = 98% and an average of 2.4 false alarms per image (with each
image covering approximately 20 m2). Images of the likelihood ratio produced by the detector also
demonstrate its ability to localize each object on the seafloor. Classification results generated using
the same experimental data set demonstrate the ability of the proposed classification technique
to accurately discriminate the sonar returns of UXO objects from those of non-UXO objects with
a probability of correct classification of Pcc = 93%. Moreover, the proposed method is able to
correctly classify nearly 70% of the testing data for the ‘real’ UXO which was not included during
the training process, demonstrating the relative robustness of the proposed method.

2 Objective

Detection, classification, and remediation of military munitions and unexploded ordnance in shallow
water is of utmost importance to many DoD agencies owing to the severity of threats they pose
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to humans and the environment. The problem is technically challenging due to variability in
environmental conditions as well as obscuration of the munitions. Thus, new methods are needed
to rapidly and reliably assess large areas that are potentially contaminated with munitions and
detect, localize, and identify each individual threat with a high degree of accuracy. To this end,
this research addresses an important shortcoming of the existing Automatic Target Recognition
(ATR) algorithms that use sonar data by developing new environmentally adaptive algorithms for
the detection and classification of military munitions in shallow underwater environments using
data collected from low frequency broadband SAS systems.

Specifically, one of the technical objectives addressed in this work concerns the development
and preliminary testing of an adaptive detection technique using a GLRT and its application to
the detection of munitions using low frequency sonar data. For this problem, the hypothesis is
that the presence of an object in the sonar backscatter collected from a synthetic aperture array
will lead to time delayed and scaled versions of a similar response which will manifest itself in the
form of a strong low-rank component in the data. The presence of this low-rank representation can
give one an indication of which areas of the field may possibly contain munitions and subsequent
classification and further analysis may then be conducted in those areas. As the model proposed
in this work contains a number of deterministic but unknown variables, we employ the use of the
GLRT [1] which implements a likelihood ratio test by replacing these unknown quantities with their
maximum likelihood (ML) estimates. This leads to a test statistic that remains invariant to certain
linear transformations of the data. This means that the detector remains robust to transformations
of the data that fall within this specific transformation group.

The second technical objective addressed in this work concerns the development and prelimi-
nary testing of a feature extraction and classification technique using manifold learning principles
and their applications to the discrimination among various UXO and non-UXO objects using low
frequency sonar data. The proposed methods are designed around the manifold learning framework
[2] which assumes that the data lies in some unknown low-dimensional subspace which is locally
linear. These low-dimensional features and their aspect-dependent behavior on the manifold can
then be used to discriminate the data from one object type from another. With this objective in
mind, manifold training using the Laplacian Eigenmaps (LE) algorithm [3] was adopted. This al-
gorithm can be easily extended to include previously unseen testing data to yield an out-of-sample
embedding technique. This features allows us to not only embed new points on the manifold but to
also track changes in the manifold as data is collected. Once these manifold features have been ex-
tracted, the training features from each object type are then used to construct linear subspaces for
locally representing each extracted feature. A minimum error criterion for classification is then pro-
posed based on maximum likelihood (ML) principles which selects the class which best represents
the data.

The performance of the proposed methods is then demonstrated using both simulation as well as
by applying it to a data set (PondEx09 and PondEx10) collected in a freshwater pond consisting of
a rail system collecting sonar backscatter from multiple munitions. Experiments are also conducted
to test the proposed system’s robustness to various modes of mismatch such as discrepancies in the
material properties of the object. Metrics such as probability of detection, probability of correct
classification, false alarm rate, as well as ROC curve and confusion matrix characteristics will be
used to evaluate the performance of the proposed method.

3 Background

Underwater Unexploded Ordnance (UXO) and Munitions Constituents (MC) pose serious risk
of harm to humans, marine life and the environment. Automatic detection and classification of
these underwater threats is, however, a very challenging problem due to many complicating factors
including: (a) highly variable operating and environmental conditions (e.g., lakes, ponds, rivers,
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gulf, or open ocean); (b) variations in target features as a function of range, grazing angle, and
orientation with respect to the sensor platform as well as its size and composition; and (c) targets
may be partially, or fully buried, or obscured by marine growth and vegetation. This particular
research responds to SERDP SON MRSEED-14-01 in Wide Area and Detailed Surveys for rapid
and highly efficient detection and classification of underwater UXO and MC from sonar returns by
developing novel adaptive ATR algorithms that remain robust to a wide range of environmental
conditions found in contaminated sites.

In many areas such as machine learning, ATR, and information retrieval/data mining, one is
interested in extracting low-dimensional data that is truly representative of the properties of the
data from a very high dimensional (ambient) space. Among the manifold learning methods are
Isometric Feature Mapping (ISOMAP) [4],[5], Locally Linear Embedding (LLE) [6],[7], Maximum
Variance Unfolding (MVU) or semi-definite embedding [8], and Laplacian Eigenmaps [3]. The gen-
eral principle behind Isomap is to use geodesic distances (not Euclidean distance which obscures the
intrinsic manifold structure) on a graph together with classical Multidimensional Scaling (MDS).
Unlike ISOMAP [4] which is a global approach, i.e. preserves geometry at all scales, LLE and
Laplacian Eigenmaps are local approaches in that they attempt to only preserve the local geometry
of the data by mapping nearby points on the manifold to nearby points in the low-dimensional rep-
resentation. Similar to ISOMAP and LLE, MVU [8] also belongs to the class of spectral embedding,
however, it exploits different geometrical properties. ISOMAP is based upon geodesic distances,
LLE on the coefficients of local linear reconstructions, and Laplacian eigenmaps on the discrete
graph Laplacian, whereas MVU is based on estimating and preserving local distances and angles.
In spite of their similarities, in [8] it was shown that, for cases where the sampled manifold is not
isometric to a convex subset of Euclidean space, ISOMAP produces totally different results than
that produced by MVU. Additionally, these methods exhibit other problems including inability to
deal with highly curved manifolds and out-of-sample extension for nonisometric manifolds. The
latter implies that they fail to provide a feature mapping (explicit or implicit) to map new data
points that are not included in the original training set.

4 Materials and Methods

In this section, we give a brief review of the theory that motivates the detection, feature extraction,
and classification algorithms studied in this project. More specifically, we will begin by reviewing
the theory of the GLRT-based detection method and its application to low frequency SAS data.
We then give a review of the manifold-based feature extraction and manifold domain classification
techniques used to discriminate various UXO targets from other object types.

4.1 A GLRT-Based Approach to Matched Filter Detection

4.1.1 Motivation

In this section we give a review of the theory behind the techniques used to detect the presence of
objects in sonar backscatter from the seafloor. For this application, we assume that sonar data is
collected by translating one (or more) receiver elements in along-track as the transmitter ensonifies
the target area as is depicted in Figure 1 (a). Let x[n,m] denote the observed sonar backscatter at
temporal sample (range) n and ping (along-track) m after matched filtering the received waveform
with a replica of the transmit signal. If a target in the field is present at a range r and produces
the response h[n], then in the absence of other returns (such as direct bottom reflections and
multipath effects) it is assumed that the matched filtered response at ping m can be written as
x[n,m] = θmh[n−τm]+w[n,m]. That is, we assume that the response observed at ping m is simply
a time-delayed, scaled version of the target response plus additive noise w[n,m]. The time delay τm
is due to the increase in path length as the sensor moves in along-track. Specifically, if the sensor

6



Target 
Area

Ping m

dm

rm

Along-Track

Range

r

⎨
⎧

⎩

(a) Synthetic Aperture Data Collection

Matched Filter 
Response

Response After 
Accounting

for Delay

(b) Matched Filter Response With and Without Accounting for Delay.

Figure 1: Collection of data using a synthetic aperture and the matched filter response with and
without accounting for delays due to increasing path length.

has been displaced by a distance dm in along-track and assuming no platform motion, the range at
ping m can be related to the range of the target at the CPA as rm =

√
r2 + d2m. Since this time

delay only depends on the range and geometry of the aperture, it can be accounted for and its effect
removed from the matched filtered data by lagging the time series at each ping accordingly. Figure
1 (b) gives an example of the matched filter response of an object sitting proud on the seafloor
as well as the response that results after accounting for and removing the effects of time delays.
From this response one can see that, from ping to ping, one tends to observe scaled replicas of the
same target response. Inherent in this assumption, however, is that the sonar observes the target
over a relatively small range of aspects such as in linear SAS applications. One would expect this
assumption to be less applicable in applications such as circular SAS where the sonar observes the
target over all aspect angles.

Although this model of the data is fairly simplistic, there are certain quantities that remain
unknown. One, the matched filter response of the target h[n] is unknown as it can vary depending
on many things including target type and composition, range, aspect angle, properties of the
transmission medium, whether the target is lying proud on the seafloor or it is buried, etc. Moreover,
the scaling of the target response is unknown as the intensity of the sonar return will vary from
ping to ping. Finally, the noise process w[n,m] is assumed to be zero-mean white Gaussian noise
but its variance σ2 is assumed to be unknown as its second-order statistics can vary depending on
the environment in which data is being collected. To account for these unknown quantities, we
employ the GLRT which replaces each unknown variable with its ML estimate.

4.1.2 Development of the Detection Statistic

Recalling the arguments given in Section 4.1.1, we begin by assuming that we’ve collected the set
of vectors {x[m]}Mm=1 with the vector x[m] = [x[0,m] x[1,m] · · · x[N − 1,m]]T ∈ RN representing
the length-N matched filtered response collected at ping m. Predicting and removing the time delay
τm from each ping, we assume that the response can be expressed as x[n,m] = θmh[n] +w[n,m] so
that the sequence of vectors x[1], . . . ,x[M ] follows the linear model

x[m] = θmh + w[m] , m = 1, . . . ,M

In this equation, the vector h = [h[0] · · · h[N − 1]]T ∈ RN contains the response of the target and

w[m] = [w[0,m] · · · w[N − 1,m]]T ∈ RN is a vector of random noise with distribution w[m]
iid∼
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N (0, σ2I). Defining the data matrices

X = [x[1] x[2] · · · x[M ]] ∈ RN×M (1)

W = [w[1] w[2] · · · w[M ]] ∈ RN×M (2)

this representation can be alternatively expressed as X = hθT + W where θ = [θ1 θ2 · · · θM ]T ∈
RM . Since there exists a scaling ambiguity in the outer product hθT , there is no loss in generality
to assume that the vectors h and θ both have unit length (||h|| = ||θ|| = 1) and that there exists a
scalar λ ≥ 0 such that the model of our observation can be written X = λhθT + W. So to review,
we assume that the data matrix containing our observations, X, consists of the unknown rank-one
matrix λhθT plus a matrix containing iid realizations of zero-mean, Gaussian distributed noise
with unknown variance σ2. Given this model, we are interested in testing the null hypothesis that
our observations consist of noise alone by considering the hypothesis test

H0 : λ = 0 (No Target)

H1 : λ > 0 (Potential Target Present) (3)

Given the assumptions of this model, the data matrix X has the probability density function
(PDF)

f(X;λ,h,θ, σ2) =

M∏
i=1

f(x[m];λ,h, θm, σ
2) =

1

(2πσ2)NM/2
exp

{
− 1

2σ2
||X− λhθT ||2F

}
(4)

where ||A||2F = tr
(
ATA

)
denotes the Frobenius norm of matrix A. The first step in the compu-

tation of any GLRT involves finding the ML estimates of the unknown parameters. Taking the
negative logarithm of the expression given in (4) and removing data and parameter-independent
constants, maximizing likelihood is equivalent to minimizing the expression

`(λ,h,θ, σ2) = NM ln(σ2) +
1

σ2
||X− λhθT ||2F (5)

Looking at this expression, it is clear that the values of λ, h, and θ must be chosen such that the
squared error ||X−λhθT ||2F is minimum. Let ν denote the largest singular value of matrix X with
corresponding left and right singular vectors u and v, respectively, found by taking the Singular
Value Decomposition (SVD) of matrix X. Then by the Eckart-Young theorem [9], the matrix νuvT

is the rank-one matrix that minimizes squared error [10], i.e.

νuvT = arg min
rank(X̃)=1

||X− X̃||2F

Accordingly, it follows that λ̂ = ν, ĥ = u, and θ̂ = v are the ML estimates of these parameters.
Substituting these estimates into the expression given in (5) and minimizing over the parameter
σ2, one obtains the expression

σ̂21 = arg min
σ
`(ν,u,v, σ2) =

1

NM
||X− νuvT ||2F

Using properties of the SVD, we note that νvT = uTX so that this expression can be written as

σ̂21 =
1

NM
||X− νuvT ||2F =

1

NM
||X− uuTX||2F =

1

NM
||(I − Pu)X||2F =

1

NM
tr(XTP⊥uX)

where Pu = uuT denotes the orthogonal projection matrix onto the one-dimensional subspace 〈u 〉
and P⊥u = I−Pu denotes the projection onto its orthogonal complement subspace 〈u 〉⊥. Likewise,
under the null hypothesis that λ = 0 one similarly obtains the estimate

σ̂20 = arg min
σ
`(0,u,v, σ2) =

1

NM
tr(XTX)
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Figure 2: Block diagram of the implementation of the test statistic in (6)
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Figure 3: Multiplication by the orthogonal matrices Q1 and Q2 rotates h and θ in RN and RM ,
respectively.

Substituting these estimates into the expression given in (4), one obtains the GLRT

Λ =

max
λ,h,θ,σ2

f(X;λ,h,θ, σ2)

max
σ2

f(X; 0,h,θ, σ2)
=

(
σ̂20

σ̂21

)NM
2

Taking a monotonically increasing function of this likelihood ratio, we can finally express the test
statistic as

Λ̃ = Λ
2

NM − 1 =
tr
(
XTPuX

)
tr
(
XTP⊥uX

) =

∑M
m=1 x[m]TPux[m]∑M
m=1 x[m]TP⊥ux[m]

(6)

Figure 2 gives a block diagram of the implementation of the test statistic given in (6). The SVD of
the data matrix X is first computed. Its leading left singular vector u is then extracted and used
to construct the projection matrices Pu and P⊥u . The test statistic given in (6) is then measured
by computing the ratio of total energy of X that lies in the subspace 〈u 〉 to the total energy that
lies in the subspace 〈u 〉⊥. The higher the percentage of energy that lies in 〈u 〉 relative to the total
energy in X, the more evidence in support of the conclusion that there is indeed a strong rank-one
component present in the data.

4.1.3 Invariance Properties of the Detector

As is commonly the case in statistical hypothesis testing, there exists a natural group of transfor-
mations that leave both the hypothesis testing problem in (3) and test statistic in (6) invariant,
i.e. both the test statistic and detection problem itself remain unchanged upon replacing X with
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Figure 4: The rank-one matrix hθT used for simulation and the probability of detection versus
SNR for both detection techniques at a false alarm probability of Pfa = 1× 10−3.

X̃ = g(X). In this case, the problem remains invariant to the group of transformations

G =
{
g : g(X) = cQ1XQT

2 ; c ∈ R,QT
1 Q1 = Q1Q

T
1 = IN ,Q

T
2 Q2 = Q2Q

T
2 = IM

}
That is, the detection problem itself is invariant to or unchanged by scaling as well as both pre
and post-multiplication by any N × N and M ×M orthogonal matrix Q1 and Q2, respectively.
As depicted in Figure 3, pre and post multiplying the rank-one matrix hθT by these orthogonal
matrices to produce the new rank-one matrix Q1hθ

TQT
2 = (Q1h) (Q2θ)T simply corresponds to

a rotation of the vectors h and θ in their corresponding spaces. This implies that it is not the
particular shape of the vectors h and θ that matters but only their energy ||h||2 and ||θ||2. This
is no doubt a consequence of the fact that both h and θ were treated as unknown quantities in
the derivation of the likelihood ratio. From a practical standpoint, this means that if a particular
target produces the response and scaling vectors h and θ, respectively, and a transformation of
that target such as rotation in aspect or translation in range produces the new vectors h̃ and θ̃
but the energy remains conserved (i.e. each pair is related through multiplication by an orthogonal
matrix) then the ability to detect that target will remain unchanged.

4.1.4 Simulation

In this section we provide some simulation results to demonstrate the usefulness of the test statistic
given in (6). In this simulation we assume the presence of a target that produces the response h[n]
and ping-to-ping scaling θm given as

h[n] = e−0.05n sin

(
2πn

10

)
, n = 0, . . . , N − 1

θm =
1

2

(
1− cos

(
2π

m− 1

M − 1

))
, m = 1, . . . ,M
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Figure 5: The assumed and observed target responses as well as the probability of detection versus
SNR for both detection techniques at Pfa = 1× 10−3.

with N = 128 and M = 50. Again, given the invariances of this problem, the particular choice
in these two expressions is completely arbitrary. These two expressions are used to construct the
vectors h and θ which are both subsequently normalized such that ||h|| = ||θ|| = 1. Data is then
generated as X = λhθT + W with matrix W containing iid realizations of a zero-mean normally
distributed random variable with variance σ2 = 0.1. Figure 4 (a) displays an image of the rank-one
matrix hθT used in these simulations.

In addition to evaluating the likelihood ratio in (6), its performance is compared to that of the
clairvoyant detector which has a priori knowledge of the response vector h. Assuming that the
scaling vector θ is still unknown, employing the GLRT results in the following likelihood ratio [10]
for the clairvoyant detector

ΛMF =
M(N − 1)

M

tr
(
XTPhX

)
tr
(
XTP⊥h X

) (7)

where Ph = hhT and P⊥h = I − Ph represent the orthogonal projection onto the one dimensional
subspace 〈h 〉 and its orthogonal complement, respectively. Although the expressions in (6) and (7)
look equivalent, the difference is that (7) uses the known signal h to build its projection matrices
while (6) uses the singular vector u corresponding to the largest singular value. It is well known
[10] that the test statistic given in (7) is distributed as ΛMF ∼ FM,M(N−1)(λ

2/σ2) where Fν1,ν2(δ)
denotes a noncentral F -distribution with ν1 and ν2 degrees of freedom and noncentrality parameter
δ.

Simulating both test statistics under the null hypothesis (λ = 0), a threshold was chosen for
each detector to achieve a false alarm probability of Pfa = 1 × 10−3. Figure 4 (b) compares the
probability of detection (Pd) for both the detector given in (7) (denoted “Matched Filter”) as well
as that given in (6) (denoted “Adaptive Matched Filter”) as a function of the signal-to-noise ratio
(SNR) defined to be SNR = 10 log10(λ/σ

2). From the results of this simulation one can see that
the Matched Filter given in (7) outperforms its adaptive counterpart given in (6). This is to be
expected given the fact that the Matched Filter has a priori knowledge of the target response. To
see what happens when this is not the case, a simulation was conducted in which there exists a
mismatch between the assumed target response used to construct (7) and the actual target response
that is used to generate the data. The plot shown in blue in Figure 5 (a) shows the target response
h[n] used to build the projection matrices used in the computation of (7). However, the plot shown
in red in Figure 5 (a), which is simply a delayed version of the plot given in blue, is used to generate
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Figure 6: Block-diagram of the proposed feature extraction and classification system for UXO
discrimination.

the data matrix X, i.e. there is model mismatch in the target response. Figure 5 (b) once again
compares the probability of detection for both methods at Pfa = 1 × 10−3 in the presence of this
mismatch. From this figure one can see that the mismatch in target response does indeed cause a
degradation in performance for the Matched Filter given in (7). However, the Adaptive Matched
Filter in (6), which makes no a priori assumptions about the target response, exhibits the same
performance as observed in Figure 4 (b) and is unaffected by this mismatch. Thus, from the results
in Figures 4 (b) and 5 (b) one can conclude that, if one is able to predict the true target response
with high confidence, then the Matched Filter given in (7) is clearly superior. In this application
however, the target response can depend on many things including target type, composition, aspect
angle, range, degree of burial, as well as different environmental factors and is therefore very difficult
to predict a priori. For this reason, we choose to employ the Adaptive Matched Filter in (6) for
the detection of underwater munitions given its robustness to the effects of model mismatch.

4.2 Manifold-Based Classification

This section gives a review of the manifold-based feature extraction and classification techniques
used to classify low frequency sonar returns. Figure 6 gives a block-diagram of the entire process
consisting of 4 intermediate stages. After acquiring and pre-processing the data to prepare it for
the classification process, the first step involves extracting features by embedding the data on the
manifold. The goal of the feature extraction step is to produce a set of low dimensional observations
that are able to provide adequate discrimination between UXO and non-UXO objects. Extracting
features and reducing the dimension of the original (e.g., frequency-aspect) data not only alleviates
some of the computational burden of the algorithm but can also result in a reduced space where
classification can be done more accurately. Once features have been extracted, the next stage
involves classifying the data as one of L possible object types. Each branch of the classifier is
constructed from each unique object type and its ability to represent the extracted features is
measured using a discriminant function. Finally, a classification label is assigned to the data based
on a minimum error criterion [11].
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4.2.1 Feature Extraction Using Manifold Learning

As described above, the first step in the proposed classification algorithm, as shown in Figure 6, is
to perform feature extraction and dimensionality reduction using manifold learning. More specifi-
cally, Laplacian Eigenmaps [3] is used to embed the high-dimensional data onto a low-dimensional
manifold. For this problem, it is assumed that we are given a set of N labeled training patterns
{xi}Ni=1 with each xi ∈ RD belonging to one of L different objects or classes. Given this set of data,
we wish to define a mapping f : RD → Rd with d� D such that the feature vector yi = f (xi) ∈ Rd
captures the general behavior of the data over a low-dimensional manifold. Laplacian Eigenmaps
is an algorithm that attempts to achieve this by defining features such that if the data points xi
and xj are near one another in the original high-dimensional space then their corresponding feature
representations yi and yj will be near one another in the lower dimensional space as well.

Given this overall goal of maintaining relationships among neighboring data points in both
spaces, the Laplacian Eigenmaps algorithm achieves this by first defining a weighted graph. The
edges or neighboring points on this graph can be set by selecting the K nearest neighbors to each
point. Each edge relating the data point xi to xj is then weighted using

wij =

{
k(xi,xj) if nodes i and j are connected

0 otherwise

for some symmetric continuous function k(·, ·), typically chosen to be the Gaussian k(xi,xj) =

exp
{
− ||xi−xj ||2

σ2

}
. Given this graph connecting each point to its nearest neighbors, we then wish

to find the set of coordinates Y = [y1 · · · yN ] ∈ RN that embed each data point on the real line
R by minimizing the objective function

J(Y) =
N∑
i=1

N∑
j=1

wij ||yi − yj ||2 (8)

Once again, the motivation behind this cost function is to produce a set of coordinates that are
near one another if their corresponding data points are near one another in the original high
dimensional space. Enforcing additional constraints that remove several trivial solutions associated
with minimizing (8) yields the optimization problem

min
Y∈Rd×N

YLYT (9)

s.t.
YDYT = I
YD1 = 0

where L = D −W is the graph Laplacian, W is a symmetric matrix with elements [W]ij = wij ,

D = diag
{∑

j wj1, . . . ,
∑

j wjN

}
, and 1 = [1 · · · 1]T is an all-one vector. The first constraint

in (9) removes an arbitrary scaling factor in the embedding while the second eliminates a trivial
solution which maps all features to a value of 1. The solution to (9) can be found [3] by solving
the generalized eigenvalue problem Ly = λDy and setting the coordinates equal to the eigenvector
corresponding to the smallest eigenvalue λ. This process can be extended to embed the data
in a d-dimensional space by extracting the eigenvectors associated with the smallest d non-zero
eigenvalues.

Although this technique gives one the ability to learn the structure of an underlying manifold
in the training data, the theory described above does not directly allow one to extract features for
novel testing data. That is, the method does not allow one to embed unseen data on the manifold.
One could simply attempt to achieve this by adding new rows and columns to the weight matrix
W corresponding to the new data points and solving (9) every time one extracts new features.

13



However, this would change the solution to (9) attained during training, i.e. adding new data
would modify the structure of the manifold. Moreover, the algorithm is not directly capable of
synthesizing data in the original high-dimensional space based on its corresponding location on the
manifold. Therefore, we seek a method that is able to embed test data on the manifold without
modifying the structure of the manifold and is also capable of synthesizing data from the manifold.

To embed novel testing data onto the manifold, we employ the use of a latent (unseen) variable
approach [12] which combines the advantages of nonlinear dimensionality reduction methods such
as Laplacian Eigenmaps with those of latent variable models. For this method we assume that there
exists a pair of datasets Xs ∈ RD×N and Xu ∈ RD×M representing data previously seen during the
training process and the unseen novel testing data, respectively. With these two datasets defined,
we then wish to find an embedding Yu ∈ Rd×M for the unseen data while leaving the embedding
Ys ∈ Rd×N for the training data unchanged. The most natural way to accomplish this is to extend
the problem in (9) by modifying the objective function as

F (Yu) = tr

(
[Ys Yu]

[
Lss Lsu
Lus Luu

] [
YT
s

YT
u

])
= tr

(
YsLssY

T
s

)
+ 2tr

(
YsLsuY

T
u

)
+ tr

(
YuLuuY

T
u

)
(10)

where Lss and Luu are the graph Laplacians for Xs and Xu, respectively, and Lsu = LTus is the
graph Laplacian shared between them. Using the two differentiation identities

dAXT

dX
= A

dXAXT

dX
= 2XA

one may solve for the unknown feature matrix Yu by taking the derivative of (10) and setting it
equal to the zero matrix O, i.e.

dF (Yu)

dYu
= 2YsLsu + 2YuLuu = O

Solving this expression under the constraint that Ys remains fixed leads to the solution

Yu = −YsLsuL
−1
uu (11)

If we now consider a single novel testing sample (i.e. M = 1) so that x = Xu ∈ RD and
y = Yu ∈ Rd, then the two graph Laplacians used in embedding this data point on the manifold
are simply given by Lsu = −wsu = − [k(x,x1) · · · k(x,xN )]T ∈ RN and Luu = `uu = 1Twsu =∑N

i=1 k(x,xi). Substituting these expressions into the solution given in (11) yields the feature
vector

y = f(x) = − 1

`uu
YsLsu =

Yswsu

1Twsu
=

N∑
i=1

k(x,xi)∑N
j=1 k(x,xj)

yi

Using these results for the purposes of both embedding and reconstructing data points on the
manifold finally suggests the pair of analysis and synthesis relationships

y = f(x) =

N∑
i=1

k(x,xi)∑N
j=1 k(x,xj)

yi (12)

x = g(y) =

N∑
i=1

k(y,yi)∑N
j=1 k(y,yj)

xi (13)

Thus, new data points are embedded onto the low-dimensional manifold (analysis) and recon-
structed (synthesis) using a convex combination of the samples used in the training set.
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Figure 7: Performing classification on the manifold using the extracted sequence of features Yu.

4.2.2 Manifold-Based Classification Using Local Linear Representations

As discussed at the beginning of this section, the guiding principle behind many manifold learning
algorithms is that the data lies on a low-dimensional manifold which parameterizes the inherently
non-linear behavior of the data. However, it is often assumed that the manifold is locally linear so
that, at least on small enough scales, one may measure distances between neighboring points using
Euclidean means. In keeping with this same philosophy, we seek a classification method that relies
on local measures when deciding the class label of the object. This is achieved by constructing
local linear subspaces using the training data for each object type and selecting the one that is best
capable of representing the data.

Given the features extracted from each object type in the training dataset, we wish to classify
a set of newly acquired data to determine which of L different models the data belongs to. Let
Yj ∈ Rd×Nj denote the subset of low-dimensional training feature vectors associated with class or

object type j ∈ [1, L] and let Xu =
[
x
(u)
1 · · · x

(u)
M

]
∈ RD×M denote a sequence of newly-observed

testing data vectors. It is assumed that the columns of matrix Xu form a naturally ordered sequence
and that every column within the matrix corresponds to the same object. In this application, this
sequence of vectors is formed by measuring an object’s acoustic response in a linear synthetic
aperture sonar (SAS) survey thus leading to a sequence of pings from the same object over a range
of aspects. Using (9) to form the set of training feature vectors Y = [Y1 · · · YL] corresponding to
all L classes, the first step in the classification algorithm is to extract features from the manifold
corresponding to the newly acquired testing data. This is accomplished by individually applying

each vector x
(u)
i in Xu to the analysis equation given in (12) using the training features in Y to

produce the set of feature vectors Yu in an unsupervised fashion.
As illustrated in Figure 6, once this set of feature vectors has been extracted from the manifold,

the next step in the classification algorithm involves finding the subset of features in each data
matrix Yj that best match the sequence of extracted features corresponding to Xu. This is accom-
plished by taking a length-M sliding window of the features in Yj and computing the coherence
between the features in that window and the extracted sequence of features in Yu. That is, if we let

Y
(m)
j ∈ Rd×M denote the subset of features corresponding to the mth window, the match between
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these two sets of features is measured by finding the index m∗ that solves the optimization problem

m∗ = arg max
m

∣∣∣〈Y(m)
j ,Yu〉

∣∣∣2
||Y(m)

j ||2F ||Yu||2F
(14)

In this equation, the expression 〈A,B〉 = tr(BTA) represents the inner product between matrices

A and B and ||A||F =
√

tr(ATA) is the Frobenius norm. Figure 7 (a) gives a depiction of this
process for two sequences of features lying on the same manifold. For each class j, the coherence
measure given in (14) is used to identify the subset of features in Yj which provides the best match
with the measured features in Yu. The main purpose behind using the coherence measure in (14)
is to use the a priori knowledge that data is measured in an ordered sequence when defining each
point’s nearest neighbors. In this case, it makes sense to find where the data matrix Yu as a whole
best matches the training data rather than relying on point-wise estimates of proximity through
Euclidean distance. Moreover, by doing so one is in essence able to capture local ping-by-ping
dynamical behavior on the traces in the manifold domain.

Once it is determined where the sequence of features Yu best fits with the training sequence
from each class in Yj , the final stage of the classifier involves assigning a class label to the set
of extracted features. This is accomplished by expressing each feature vector in Yu as a linear
combination of its P nearest neighbors in Yj and finding the class which provides the best fit.
Once again, the nearest neighbors in this case are determined based on the optimal index given
in (14). Figure 7 (b) gives a depiction of this process where each point is connected to its P = 5
nearest neighbors using a dashed line. By finding local linear representations of each data point,
the method is somewhat similar to making inference using other manifold-based techniques such
as Local Linear Embedding (LLE) [6].

For each y
(u)
i in Yu for i = 1, . . . ,M , let Hi,j ∈ Rd×P denote the linear subspace formed from

y
(u)
i ’s P nearest neighbors in Yj . That is, for each object type j ∈ [1, L] and for every sample
i ∈ [1, L], a linear subspace is constructed using the training data that provides the best match
with the extracted features. Note that there can and will be some overlap in the features used to
construct each subspace for nearby samples, i.e. many of the feature vectors used to build Hi,j will
also be used to build Hi+1,j . Given these definitions, it is then assumed that each feature vector

y
(u)
i obeys the following linear model

y
(u)
i = Hi,jθi + ni (15)

where θi ∈ RP is a vector of deterministic but unknown parameters and ni ∈ Rd is a vector
containing as its elements iid realizations of a zero-mean normal random variable with unknown
variance σ2. Thus, in this model the unknown vector θi describes the coordinates in the local
linear subspace Hi,j and the unknown variance σ2 in some sense describes the scale in the error

between measurement and model. Assuming that the sequence of features y
(u)
i for i = 1, . . . ,M are

independently distributed according to the model in (15), the data matrix Yu has the likelihood
function

`j(Yu) =
1

(2πσ2)dM/2
exp

{
− 1

2σ2

M∑
i=1

∣∣∣∣∣∣y(u)
i −Hi,jθi

∣∣∣∣∣∣2
2

}
(16)

where in this case the notation ||x||2 =
√

xTx denotes the `2 norm of the vector x. Replacing the
unknown parameters θi’s and σ2 in (16) with their maximum likelihood (ML) estimates

θ̂i =
(
HT
i,jHi,j

)−1
HT
i,jy

(u)
i (17)

σ̂2 =
1

dM

M∑
i=1

∣∣∣∣∣∣y(u)
i −PHi,jy

(u)
i

∣∣∣∣∣∣2
2

(18)
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results in the likelihood function

`j(Yu) =
1

(2πσ̂2)dM/2
exp

{
− 1

2σ̂2

M∑
i=1

∣∣∣∣∣∣y(u)
i −Hi,j θ̂i

∣∣∣∣∣∣2
2

}

=

(
2π

dM

M∑
i=1

||y(u)
i −PHi,jy

(u)
i ||

2

)−dM/2

exp

{
−dM

2

}
(19)

In expressions (18) and (19), the matrix PHi,j = Hi,j

(
HT
i,jHi,j

)−1
HT
i,j is the orthogonal projection

matrix onto the P -dimensional subspace spanned by the training vectors in matrix Hi,j . Ignoring
all constants that aren’t dependent on the data, one can see from (19) that finding the class index
j that maximizes likelihood is equivalent to finding the class which solves the optimization problem

j∗ = arg min
j

εj(Yu) (20)

with the objective function

εj(Yu) =
M∑
i=1

∣∣∣∣∣∣y(u)
i −PHi,jy

(u)
i

∣∣∣∣∣∣2
2

(21)

Thus, by projecting the observation onto the linear subspace Hi,j through the linear operator
PHi,j , the minimization problem in (20) selects the class which best models the data in the sense
of minimizing the error in representing the data. This process is illustrated in the last stage of the
entire process shown in Figure 6.

5 Results and Discussion

5.1 Dataset Description

To test the ability of the proposed algorithms developed in Sections 4.1 and 4.2, both the detector
and classifier were applied to the PondEx09 and PondEx10 datasets [13] collected at NSWC -
Panama City, FL. The pond facility used in this experiment was designed to collect acoustical
sonar data from underwater objects in a relatively controlled and clutter-free environment. Figures
8 (a) and (b) show the layout of the test setup for both experiments including the relative locations
of the rail-mounted sonar system and the objects in the target field. As can be seen from Figure 8,
both experiments consisted of a 21 m rail system collecting sonar returns from one or more targets
located at a certain range from the rail. In most cases, the object was placed at a range of 10 m
but there were several experiments where the object was located only 5 m from the rail. The 21m
rail the sonar system is mounted on was fixed to eliminate platform motion as the sonar moves
along its track, thereby increasing coherence between successive pings. The sonar transmit signal
is a 6× 10−3 s LFM pulse over 0.5-30 kHz with a 10% taper between the leading and trailing edges
to minimize ringing in the transmitted signals. For the studies conducted in this report, 5 different
object types were used. Table 1 gives a list of the object types used in this study which consists
of three UXO objects of different material properties as well as two non-UXO objects, namely an
aluminum cylinder and pipe.

As can be seen from Figure 8, both experiments involved collecting sonar backscatter from
objects with varying shapes, sizes, and compositions, all of which are located approximately 10 m
from the rail system. Nine total object orientations were used ranging from −80◦ to +80◦ in 20◦

increments where a 0◦ object orientation designates a configuration where the object’s major axes
are parallel to the rail system. Each run of data consists of 800 pings in which the sonar platform
moved along the fixed rail in increments of 0.025 m, transmitting and receiving once for each fixed
position. The data was sampled at 1 MHz and the sonar platform was tilted at a fixed 20◦ grazing
angle for all runs (angle of the sonar main response axis with respect to the horizontal plane).
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Figure 8: Layout of the target fields for the PondEx09 and PondEx10 datasets.

Table 1: Objects in the PondEx09-10 testing dataset

Object Type Class

Aluminum UXO UXO
Steel UXO UXO
Real UXO UXO

Aluminum Cylinder Non-UXO
Aluminum Pipe Non-UXO

5.2 Detection Results

5.2.1 Formation of the Test Statistic

To form detection decisions, each sonar return at a particular ping within the run was first applied
to a pulse compression step by correlating the received waveform with the LFM transmit signal.
Each matched filtered ping was then partitioned into overlapping windows of length N = 281
(cross-track) corresponding to a range resolution of approximately 0.25m. For every 0.25m in the
direction of the rail system (along-track), the time series collected over a M = 100 ping window
were appropriately lagged to account for time delays as discussed in Section 4.1.1. Recalling the
diagram shown in Figure 1 (a), this is accomplished by accounting for the increase in path length
due to the receiver’s translation in along-track. Namely, if the area of the seafloor being tested is
at range r and the received data at ping m has an along-track distance of dm from the point of
closest approach, then the range to the target at ping m is given by rm =

√
r2 + d2m. Since rm > r

for dm > 0, one must appropriately lag the extracted time series to account for the resulting time
delay. After accounting for time delay, all M = 100 pings are stacked as columns to form the data
matrix X given in (1) corresponding to each 0.25m× 0.25m location within the target field. This
was independently done for all L = 5 sensor elements in the linear array and the resulting data
matrices are vertically stacked to form a composite data matrix. That is, if Xi represents the data

matrix collected from sensor i then the composite data matrix Z =
[
XT

1 · · · XL

]T ∈ RLN×M is
formed. This composite data matrix is then applied to the test statistic given in (6) to determine
whether or not that location within the field does indeed contain a target.
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Figure 9: Percentage of energy in each singular component for both target (red) and background
(blue).

5.2.2 Model Validation

Before applying the detection methodologies to this dataset, it is important to determine whether
the data matches the fundamental assumptions made in Section 4.1 first. More specifically, we are
interested in observing whether the measured response from munitions at multiple pings does in fact
produce a data matrix X which exhibits a large rank-one component. To investigate this, a study
was conducted where the data matrix X was found for all 50 observations of the targets (10 runs
with 5 targets per run at a different orientation) in the PondEx10 dataset as well as for a randomly
selected set of locations corresponding to background. For each instance of the data matrix X, its
thin SVD was computed such that X = UΣVT where U ∈ RN×N and V ∈ RM×N are orthogonal
matrices and matrix Σ = diag (σ1, . . . , σN ) contains the singular values σ1 > σ2 > · · · > σN .
The singular values of this matrix were then used to determine the percentage of energy in each
component using

ηk =
σ2k∑N
i=1 σ

2
i

, k = 1, . . . , N (22)

That is, the value ηk computes the percentage of energy in the kth component by normalizing the
squared singular value σ2k by the squared sum of them all. Figure 9 (a) plots ηk for k = 1, . . . , 10
for all 50 targets in the dataset (shown in red) and for all background locations (shown in blue)
chosen for this test. Likewise, Figure 9 (b) plots the mean (using a solid line) plus or minus one
standard deviation (using a dashed line) for the values of ηk plotted in Figure 9 (a). From the
results shown in both these plots, one can clearly see that a majority of the energy for targets
lies in the largest singular component (k = 1). However, for background the energy tends to be
more uniformly distributed over all the coordinates. Hence, one can conclude that this rank-one
assumption for targets is indeed useful for detection in this application.

5.2.3 PondEx Detection Results

The adaptive matched filter detector given in (6) was then applied to all 10 runs of the PondEx10
dataset and compared to the matched filter detector given in (7) where the target response vector h
was trained using the matched filtered data of the targets from 3 different runs. More specifically,
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Figure 10: Receiver Operating Characteristic (ROC) curve for the PondEx10 dataset.

the training was accomplished by extracting the measured response from each of the 15 targets
in the training set and using the principal left singular vector of the resulting data matrix as an
estimate of the target response vector h in (7). Using all 50 targets in the dataset (10 runs × 5
objects per run) as well as a randomly selected set of locations corresponding to background, Figure
10 displays the Receiver Operating Characteristic (ROC) curve for both detectors. Also depicted in
this figure using small circles is the knee-point of the ROC curve, i.e. the point where Pd+Pfa = 1,
for each method. From the results of this figure, one can see that the adaptive matched filter given
in (6) with a knee-point probability of Pd = 98% outperforms the trained matched filter given in
(7) which achieves a lower knee-point probability of Pd = 92%. Similar to the conclusions made
using the results of Figure 5 (b), this is most likely due to the fact that, even when trained, it
is very difficult to predict the target response from underwater munitions given the wide range of
factors that can play a role.

Both versions of the matched filter detector given in equations (6) and (7) were then applied
to all 10 runs of the PondEx10 dataset with the thresholds for each method set to approximately
achieve an average of two false alarms per image. The detectors were applied to each 0.25m×0.25m
location in the target field of a given run. Overlapping areas that produced a likelihood ratio that
exceeded the threshold for each respective detection method were then grouped into a single contact.
If the location of that contact was within 1m of any of the known target locations in the dataset,
that contact was labeled a target otherwise it was labeled a false alarm. Table 2 compares the
detection and false alarm rates for both matched filter detectors. Although both methods achieve
roughly the same false alarm rate, it is clear from the results of this table that the adaptive matched
filter in (6) is much better at detecting the targets in this dataset. To see why this is so, Figure 11
(a) displays the beamformed SAS image corresponding to a fairly easy run where the objects, each
of which is outlined with a green box in this image, have a 0◦ orientation. For every 0.25m×0.25m
location, Figure 11 (b) displays the image of the likelihood ratio for the adaptive matched filter in
(6) while Figure 11 (c) displays the same for the matched filter detector in (7). Likewise, Figures 12
(a)-(c) display the SAS and likelihood images for a more difficult run with an 80◦ object orientation.
From these images of the likelihood ratio for each method, it is clear that the adaptive matched
filter is not only capable of producing large likelihood ratio values for the targets in each of these
two runs but also performs well at localizing the targets in each case. On the other hand, one can
see that the matched filter also produces relatively high likelihood ratio values but does not do an
adequate job of localizing the targets in the along-track dimension leading to poor performance.
Thus, looking at the results given in Table 2 and Figures 10 – 12, one can see that the adaptive
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(a) SAS Image

(b) Adaptive Matched Filter (c) Matched Filter

Figure 11: Beamformed SAS image with 0◦ object orientation and images of the likelihood ratio
for both versions of the matched filter detector.
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(a) SAS Image

(b) Adaptive Matched Filter (c) Matched Filter

Figure 12: Beamformed SAS image with 80◦ object orientation and images of the likelihood ratio
for both versions of the matched filter detector.

Table 2: Detection performance for both matched filter detectors.

Targets Detected (Pd%) False Alarms per Image

Adaptive Matched Filter 49 (98%) 2.4

Matched Filter 28 (56%) 1.9

matched subspace detector performs very well at detecting the presence of UXO in the sonar returns
collected in SAS applications. However, the high detection performance observed on this dataset
is to be somewhat expected given the simplicity of the experiment, i.e. the lack of complicated
seafloor clutter and the use of a rail to collect sonar returns.

5.3 Classification Results

5.3.1 Feature Extraction and Classification Procedures

(a) Manifold-Based Feature Extraction Process

Before reporting classification results for the PondEx datasets, we begin by giving a brief review
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(a) AC Training Data
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Figure 13: Training data and corresponding manifold for an aluminum cylinder object.

of the entire feature extraction and classification algorithm used to generate the results in this
report. Since the objects in the pond experiments were placed relatively close to one another and
the test facility can create competing backscatter interference, the measured data was first applied
to a post-processing filtering algorithm [14] designed to retain the response of the object of interest
while removing everything else. For this particular application, the original data vector xi referred
to throughout Section 4.2.1 represents the acoustic color response of a particular object at a given
aspect angle (ping) extracted from the spatially filtered data. That is, each element of the vector xi
represents the magnitude of the frequency response over the 30 kHz bandwidth of the sonar system
with a 50 Hz resolution resulting in a set of D = 601 dimensional data vectors in the ambient
space. For all of the object types in the test set except for the real UXO, an acoustic color template
containing the spectral information for that object over the entire 360◦ range in aspect were used to
train the manifold mapping process. That is, the acoustic color templates from L = 4 objects at a
10 m range were used to construct the manifold: two UXO objects (aluminum and steel UXO) and
two non-UXO objects (aluminum cylinder and pipe). Figures 13(a) and 14(a) give two examples
of the training acoustic color data for an aluminum cylinder and UXO object, respectively. The
training acoustic color data from all objects included in the training set are then used together
to form the weight matrix W and graph Laplacian L used in (9). Here, the weighted graph was
constructed by finding the K = 64 nearest neighbors to each training point and weighting them

with the Gaussian k(xi,xj) = exp
{
− ||xi−xj ||

σ2

}
with smoothing parameter σ2 = 2.5. Using the

smallest d = 48 eigenvectors of the graph Laplacian L, the set of coordinates Y associated with
each object type are then used as training features to represent that particular object. Figures 13
(b) and 14 (b) give examples of the first three manifold coordinates for an aluminum cylinder and
aluminum UXO object corresponding to their respective AC data given in Figures 13 (a) and 14
(a), respectively. From these two figures one can see that, although the manifold for each object
does indeed form a definitive track as one moves from one aspect to another, that track is very
complicated and somewhat chaotic.

When applying testing data to the classifier, an FFT is first applied to the filtered sonar returns

and its magnitude taken to produce the unseen testing data x
(u)
i for i = 1, . . . ,M described in

Section 4.2.2. That is, each element of the data vector x
(u)
i gives the magnitude response for the

ith ping at a particular frequency. Given the ping rate and beamwidth of the sonar system used
here, a total of M = 40 sonar returns of the object are used to classify the object corresponding
to a window spanning a range of approximately 20◦ in aspect angle. Figure 15 (a) and (b) give an
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(a) AC Training Data
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Figure 14: Training data and corresponding manifold for an aluminum UXO object.

(a) Time Series (b) Target Strength
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Figure 15: Filtered time series, target strength, and manifold features for an aluminum UXO.

example of the filtered time series and measured acoustic color for an aluminum UXO, respectively.
This acoustic color data is then applied to the synthesis equation given in (13) to extract the first
two manifold features and the resulting features for this UXO object are shown in Figure 15 (c).

(b) Manifold Domain Classification Process

Recalling the discussion given in Section 4.2.2, classification is achieved by first identifying
the sequence of training features for each object type that best matches the extracted features
using the statistical measure given in (14). In the contexts of this problem, this ordered sequence
corresponds to the range of aspect angles observed for a given target so that finding the sequence
that best matches the data in this case boils down to estimating the aspect angle of the target.
Figure 16 gives a demonstration of this process for an aluminum cylinder observed at an 80◦ aspect
angle. The top image in Figure 16 displays the measured acoustic color response for this target,
the middle image displays the corresponding training data for an aluminum cylinder over the entire
360◦ range, and the bottom graph plots the coherence measure in (14) as one slides the measured
response over the entire range of the training data. Note that although Figure 16 displays the raw
acoustic color data for both the measured and training data, recall from Section 4.2.2 and also
Figure 6 that the coherence measure is actually computed in the manifold feature domain. For
this particular example, one can observe that the coherence statistic correctly estimates the true
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Figure 16: Estimating the aspect angle using coherence for a cylindrical object at with 80◦ aspect
orientation.

aspect angle of the target as one observes distinct maxima at 80◦ and 260◦ aspect. The fact that
there does exist two points where the statistic reaches a maximum is clearly due to the rotational
symmetry exhibited by a cylindrical object.

Once the aspect has been estimated for each object type, the final step in the classification

algorithm involves trying to represent each observed feature vector y
(u)
i for i = 1, . . . ,M using

training features local to that observation. To accomplish this, the P = 10 training feature vectors

corresponding to the jth object that are nearest in aspect to y
(u)
i are used to construct the dictionary

matrix Hi,j used in the linear model given in (15). More specifically, if we let
{

y
(i,j)
k

}P
k=1

denote the

P training features from object type j nearest to the extracted test feature y
(u)
i , then this dictionary

matrix is constructed as Hi,j =
[
y
(i,j)
1 · · · y

(i,j)
P

]
∈ Cd×P . Using the same acoustic response given

at the top of Figure 16 of an aluminum cylinder at an 80◦ aspect orientation, Figure 17 (a) and

(b) plot the first two features of y
(u)
i with each aspect corresponding to a green dot. In both of

these plots, the blue dots denote the subset of the trained manifold for two different objects that
best matches the extracted features using (14): Figure 17 (a) shows the manifold for an aluminum
cylinder while Figure 17 (b) shows that for an aluminum UXO. Given the extracted features as
well as the trained manifold for each of these two objects, each red dot in both plots denotes the

estimated feature vector ŷ
(u)
i,j = Hi,j θ̂i = PHi,jy

(u)
i where θ̂i is the least-squares estimate of the

unknown vector θi given in (17). Physically speaking, the vector ŷ
(u)
i,j gives one the best estimate

of the observation y
(u)
i in the linear subspace Hi,j by orthogonally projecting the observation into

that subspace. Note that, given this definition, the optimization problem in (20) and (21) can be
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(a) Aluminum Cylinder Manifold
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(b) Aluminum UXO

Figure 17: Comparing the extracted features to its least-squares estimate ŷ
(u)
i,j = Hi,j θ̂i for two

objects.

expressed the objective function in (21) can be rewritten in terms of these least-squares estimates
as

j∗ = arg min
j

εj(Yu)

εj(Yu) =
M∑
i=1

∣∣∣∣∣∣y(u)
i − ŷ

(u)
i,j

∣∣∣∣∣∣2
2

That is, the classifier selects the object that produces estimates that are the closest to the mea-
sured data. Looking at Figure 17, it is clear that the manifold corresponding to the aluminum
cylinder does a much better job of producing estimates that reflect the extracted features than
those produced by the manifold corresponding the aluminum UXO.

5.3.2 PondEx Classification Results

The proposed classification algorithm was then applied to the PondEx09 and PondEx10 datasets
described in Section 5.1. For this study, training data from only four of the object types at a
10 m range and under proud conditions were used to train the manifold. Those objects include
an aluminum cylinder, aluminum pipe, as well as an aluminum and steel UXO, i.e. no data for
the ’real’ UXO was used to train the manifold. This was done primarily to study whether or not
replicas of different material properties can be used to adequately represent something previously
unseen during training. The trained classifier was then applied to the filtered runs for the objects
listed in Table 1 at a 10 m range and under proud conditions. Figure 18 displays the Receiver
Operating Characteristic (ROC) curve for the classifier when applied to the Pond datasets. This
figure plots the probability of correct classification Pcc (i.e. the percentage of UXO objects that
are correctly classified as UXO) versus the probability of false alarm Pfa (i.e. the percentage of
non-UXO objects that are incorrectly classified as UXO). The knee-point of the classifier (the point
at which Pcc + Pfa = 1) is denoted in this plot using a blue circle in which case one can see that
the classifier achieves a knee-point Pcc = 90%.

Tables 3 and 4 give the classification and identification confusion matrices, respectively, for the
Pond dataset. That is, for the entire set of 81 realizations of each object in the dataset, Table 3
gives the number of realizations classified as being either UXO or non-UXO while Table 4 gives the
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Figure 18: Receiver Operating Characteristic (ROC) Curve for the Pond Dataset.

Table 3: Classification Confusion Matrix
UXO Non-UXO

UXO
Aluminum UXO 76 5

Steel UXO 72 9
Real UXO 56 25

Non-UXO
Aluminum Cylinder 4 77

Aluminum Pipe 6 75

Table 4: Identification Confusion Matrix

Labeled ID
Aluminum UXO Steel UXO Aluminum Cylinder Aluminum Pipe

T
ru

e
ID

Aluminum UXO 52 24 5 0
Steel UXO 35 37 5 4
Real UXO 30 26 11 14

Aluminum Cylinder 0 4 72 5
Aluminum Pipe 4 2 21 54

number of realizations assigned to each of the four object types modeled by the classifier. Overall,
the classifier achieves a correct classification rate of Pcc = 88%. From Table 3, one can see that
the method performs well for the four objects specifically modeled by the classifier, namely the
aluminum UXO, steel UXO, aluminum cylinder, and aluminum pipe, as the classifier achieves a
correct classification rate of Pcc ≈ 93% for those four objects. However, one can also see that the
method doesn’t achieve the same level of performance for the ’real’ UXO with Pcc ≈ 69%. This
is most likely due to the fact that this UXO object was the one object in this test that wasn’t
included in the training set leading to confusion at the classifier. Looking at the results displayed
in Table 4, one can see that for the aluminum UXO, aluminum pipe, and especially the aluminum
cylinder the classifier does a fairly good job of identifying which object type the data belongs to.
However, one can also see that there is a fair amount of confusion for the steel and ’real’ UXO
objects when trying to decide the type of UXO object it corresponds to as approximately half of
the test cases classified as UXO are labeled as being either an aluminum or steel UXO. This may
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be due in part to the similarities among the training data for the aluminum and steel UXO objects
making it difficult to discriminate between the two.

6 Conclusions and Implications for Future Research/Implementation

6.1 Conclusions and Discussions

The objectives addressed throughout the course of this project revolved around the development
and testing of UXO detection and classification algorithms when applied to SAS data. The first task
of this work specifically involved the development of a detection system capable of discriminating
UXO-like objects from seafloor background. For this problem, our detection hypothesis is that the
presence of munitions in the measured data will lead to the presence of a strong low-rank component
in the data. Employing the use of the GLRT results in a matched filter detector that measures
the percentage of energy that lies in the one dimensional subspace spanned by the principal left
singular vector extracted from a data matrix containing the time aligned, pulse compressed data
collected in a linear SAS survey. This test statistic remains invariant to scaling and both pre and
post multiplication by any orthogonal matrix. This means that if changes in the characteristics of
the sonar data due to things such as different environmental factors or different target conditions
can be represented as transformations within this class, then the detector will remain robust. The
performance of the detector is then demonstrated using both simulation as well as by applying it
to data sets (PondEx 09 and PondEx10) collected in a freshwater pond consisting of a rail system
collecting sonar backscatter from multiple munitions. Results of the simulation show that the use
of a matched filter detector that relies on a priori knowledge of the target response will outperform
its adaptive counterpart which computes an estimate of the target response using the singular
value decomposition. However, the invariances of the adaptive matched filter make it more robust
to model mismatch. This idea was explored further using the PondEx datasets by comparing the
performance of the adaptive matched filter to a matched filter whose target response was trained
using measured data of the targets from a few runs. Results of this study show that the adaptive
version of the matched filter detector outperforms its trained counterpart. Once again, this is likely
due to the fact it is very difficult to predict the response from various munitions in practice given
the role various factors can play which in turn leads to high levels of model mismatch. The adaptive
matched filter, on the other hand, attempts to estimate this response using measured data resulting
in a more robust test statistic.

The next two tasks of this work involved the development and testing of a manifold-based feature
extraction and classification strategy for discriminating among various UXO and non-UXO objects.
The proposed feature extraction and classification system is designed based on the assumption that
the data (in this case the AC data collected in a linear SAS survey) lies in some unknown low-
dimensional subspace which is globally non-linear but locally linear. Based on this premise, a feature
extraction technique using the Laplacian Eigenmaps [3] algorithm was proposed which produces a
set of low-dimensional features that respect distances among training points in the high dimensional
space by solving a generalized eigenvalue problem. By extending the algorithm to newly observed
testing data yielded an out-of-sample embedding procedure for the purposes of feature extraction.

Given this set of low-dimensional features, the final task involved the development and pre-
liminary testing of a multi-aspect classification technique used to discriminate among UXO and
non-UXO objects. The first step in the algorithm involves identifying the subset of training features
that best matches the extracted features using a coherence measure. In this particular application,
this process corresponds to estimating the aspect orientation of the object. Once this sequence has
been identified, the set of training features closest to each extracted feature are then used to form a
local linear subspace to represent that feature vector. The most likely class label is then selected by
finding the class that minimizes the error in representing the extracted features. The performance
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of the classifier was then demonstrated on the PondEx datasets using the filtered sonar returns
from several objects collected in a freshwater pond. For this study, the classifier was trained to
discriminate two non-UXO objects (cylinder and pipe) from two UXO objects with different ma-
terial properties. The method was then applied to testing data from these four objects as well as
a ’real’ and unseen (during training) UXO when each object was located 10 m from the rail and
sitting proud on the seafloor. For the four objects modeled by the classifier, the method is able to
correctly classify over 93% of the testing data in these datasets. Moreover, the method is able to
correctly classify nearly 70% of the testing data for the ’real’ UXO object.

6.2 Proposed Future Research and Development

6.2.1 Task 1: Detector’s Performance Prediction and Optimization

Although the results in Section 5.2 show that the proposed test statistic in (6) is capable of detecting
the presence of an object of interest in SAS data, one of the most difficult tasks in implementing
any likelihood ratio test is defining thresholds that maintain a desired performance level. Most
often, the detection threshold is chosen to maintain a predefined false alarm probability. However,
to do so requires knowledge of the probabilistic behavior of the detector when applied to seafloor
background. In this task, we propose to develop methods for accomplishing false alarm performance
prediction and optimization for the adaptive matched filter detector. More specifically, performance
prediction in this context involves developing theoretical models for how the detector behaves when
applied to any particular background condition by analyzing the null distribution of the test statistic
in (6). Performance optimization then involves developing methods for adapting this distributional
model when encountering new environments.

Performance Prediction

As mentioned above, the first portion of this task involves developing a theoretical model of the
distribution of the likelihood ratio for the purposes of predicting the false alarm rate of the detector.
In the contexts of the statistical model described in Section 4.1.2, this corresponds to finding the
distribution of the test statistic in (6) under the null hypothesis H0 that the scalar λ in (3) is
zero. That is, we seek a univariate probability density f(x) that describes the distribution of the
likelihood ratio Λ̃ under the assumption that the data matrix X in (1) consists of iid realizations
of a zero-mean normal random variable.

Unfortunately, it is often times very difficult to derive an explicit expression for the null density
f(x) in many practical detection problems. However, one can often at the very least derive an
expression for the moment generating function (MGF) φ(t) corresponding to the null distribution
of the likelihood ratio. Given knowledge of a random variable’s MGF, one may then employ methods
such as saddlepoint approximations [15], [16] which approximates the density function f(x) using
the expression

f̂(x) =
1√

2πψ′′
(
t̂
) exp

{
ψ
(
t̂
)
− t̂x

}
(23)

where ψ(t) = lnφ(t) denotes the Cumulant Generating Function (CGF) [17] and the saddlepoint
[16], t̂, is the values of t such that ψ′(t) = x. Note that the notation ψ′ and ψ′′ denote the first and
second-order derivatives of the cumulant generating function, respectively. Thus, for each value of
the dependent variable x in (23), one may approximate the density function of the null distribution
using the CGF ψ(t) and its derivatives. Given a desired false alarm probability of 0 < α < 1, one
may then find the threshold η that approximately achieves this false alarm probability by solving
the equation ∫ ∞

η
f̂(x)dx = α (24)
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where f̂(x) denotes the saddlepoint approximation in (23).

Performance Optimization

One of the possible pitfalls of the analysis given above is its reliance on the assumption that
sonar backscatter from the seafloor background can be modeled as white Gaussian process. Any
deviation from this behavior can result in a false alarm rate which is drastically higher than what
was originally desired and can overwhelm the subsequent classification stage in the ATR algorithm.
For this reason, the second portion of this task involves developing ways of adapting the approxima-
tion in (23) to better match the statistics of the likelihood ratio observed in a new environment. To
accomplish this, let ψ̃(t;β) denote a modification of the CGF used in (23) which is parameterized
by the vector β ∈ RM . Given the fact that derivatives of the CGF evaluated at t = 0 yield the

cumulants of the distribution [17], i.e. ψ(n)(0) = κn with ψ(n) denoting the nth order derivative

of ψ and κn the nth order cumulant, one may adapt the saddlepoint approximation by equating
derivatives of the function ψ̃ with estimated sample cumulants κ̂n. These estimated sample cumu-
lants can be computed using so-called k-statistics [18] which give one a minimum-variance, unbiased
(MVUB) estimate of a random variable’s cumulants. Given a set of likelihood ratio measurements

{Λi}Ni=1 collected from an operating environment and the nth order sample moment

µ̂n =

N∑
i=1

Λni ,

the first few k-statistics are given by

κ̂1 =
1

N
µ̂1

κ̂2 =
1

N(N − 1)

(
Nµ̂2 − µ̂21

)
κ̂3 =

1

N(N − 1)(N − 2)

(
2µ̂31 − 3Nµ̂1µ̂2 +N2µ̂3

)
...

The modified CGF ψ̃ can then be made to match these estimated cumulants by finding the vector
β that solves the constrained optimization problem

min
β∈RM

M∑
m=1

(
ψ̃(m)(0;β)− κ̂m

)2
s.t. ψ̃(0;β) = 0 (25)

Upon finding the optimal parameter vector β∗, one may then substitute the CGF ψ̃(t;β∗) into
(23) to obtain a better estimate of the likelihood ratio’s distribution observed in that particular
environment. One may then adapt the threshold η by once again solving (24) but with the modified
saddlepoint approximation.

6.2.2 Task 2: Adaptive Platform Motion Compensation Adaptive Matched Filter
Detection

Although the results of Section 5.2 show that the detector performed very well when applied to the
PondEx datasets, one of the concerns in its practical application is the effects of platform motion
on the detection performance. Recall from Section 4.1.1 that in the development of the observation
model we had assumed a receiver which collects sonar returns in regularly spaced intervals as it
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travels linearly in along-track. In this ideal scenario, it becomes possible to reliably predict and
account for relative time delays from ping to ping as depicted in Figure 1. This assumption was
appropriate for the PondEx datasets as the hydrophone array was physically anchored to a rail
system. When applied to systems deployed on Unmanned Underwater Vehicles (UUVs), however,
deviations from this linear path due to platform motion will lead to unpredictable time delays,
will invalidate the assumptions made in the development of the detector, and lead to sacrifices in
detection performance as a result. Therefore, the objective of this task is to develop an adaptive
matched filter detector that is capable of accounting for such delays to yield an algorithm that is
more robust to the effects of platform motion and instability. As opposed to alternative corrective
approaches which typically rely on measurements taken from Inertial Measurement Units onboard
the UUV, the proposed approach relies on the raw sonar data itself.

To accomplish this task, we seek a statistically motivated technique for estimating and ac-
counting for unknown time delays present in the data record collected from a SAS system. For
this purpose, we propose to investigate the use of generalized coherence [19] as a means of finding
time delays which maximize the linear dependence among the time series collected over a multiple
ping window. Recall from Section 4.1.2 that in the development of the detector it was assumed
that a SAS system collects multiple length N time series over M pings. Let xn ∈ RN denote

the length N pulse compressed response collected at the nth ping. Assume that the data matrix
Xn = [x0 · · · xn−1] ∈ RN×n contains the pulsed compressed responses from n pings which are pre-
viously coregistered in time and consider adding the vector xn (not coregistered yet) to form the
data matrix X = [Xn xn]. Note that by coregistered we mean that each ping is temporally aligned
with one another such as that shown on the right hand side of Figure 1. Using the properties of

2×2 block matrices, the coherence between the data matrix Xn and the nth ping xn can be written
as

Cn = 1− det(XTX)

||xn||2 det(XT
nXn)

= 1−
(
||xn||2 − xTnXn(XT

nXn)−1XT
nxn

)
det(XT

nXn)

||xn||2 det(XT
nXn)

=
xTnPXnxn

xTnPXnxn + xTnP⊥Xn
xn

(26)

where PXn = Xn(XT
nXn)−1XT

n is the orthogonal projection onto the n dimensional subspace
spanned 〈Xn〉 spanned by the columns of matrix Xn. By projecting onto this subspace, the ratio
in (26) essentially represents the percentage of energy of xn which lies in the subspace 〈Xn〉. The
higher the value of this statistic, the greater the linear dependence among xn and the columns of
Xn.

Given this setup, we then wish to find the lagged version of vector xn that maximizes the
coherence in (26) in the hope that this yields the time delay where the vector xn is most likely
temporally coregistered with the columns of matrix Xn. Consider the vector yn[k] = SkNxn with
SN an N ×N cyclic shift matrix

SN =


0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


Note that the operation SNx cyclically shifts the elements of vector x down by one location while
raising that matrix to the power k and computing SkNx repeats this process k times over. Thus,
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the vector yn[k] is effectively a temporally lagged version of vector xn. Substituting this lagged
vector into (26), one may temporally coregister the vector xn with the columns of matrix Xn by
finding the lag index k which maximizes the coherence statistic

Cn[k] =
yTn [k] PXn yn[k]

yTn [k] PXn yn[k] + yTn [k] P⊥Xn
yn[k]

(27)

Upon finding the optimal lag k∗, one may then add the vector x∗n = Sk
∗
N xn to the matrix Xn and

repeat the process for the vector at the next ping xn+1.
The entire algorithm works as follows. Given an initial pulse compressed response x0, one

begins by constructing the data matrix X1 = x0 ∈ RN . Given the next ping in the sequence, x1,
one computes the statistic C1[k] in (27), selects the lag k that maximizes coherence, and adds the
temporally coregistered vector x∗1 to matrix X1 to yield X2 = [X1 x∗1] ∈ RN×2. The new data
matrix X2 along with the vector from the next ping x2 are used to compute the statistic C2[k] and
its optimally lagged version x∗2 is used to form the data matrix X3 = [X2 x∗2] ∈ RN×3. This process
is repeated untill all M pings have been added to matrix Xn which is subsequently applied to the
detector described in Section 4.1.2.

Although the coherence statistic in (27) would no doubt be able to correctly coregister sonar
returns from munitions lying on the seafloor, one of the downsides of the proposed method is that
it will also attempt to correlate data collected from the seafloor background as well. Although one
would expect the improvement in detectability to be greater for target than background, coregis-
tering background data may inadvertently lead to a strong low-rank component in the data and
an increase in the false alarm rate when using the detector in (6). Assuming that the pulse com-
pressed response xn when collected from the background can be modeled as white Gaussian noise
(note that the same assumption was made when developing the detector in Section 4.1.2), then it
is well-known [19] that the coherence statistic in (26) is distributed as Cn ∼ Beta

(
1
2n,

1
2(N − n)

)
with Beta(α, β) denoting a beta distribution with parameters α and β. As this distribution is
only dependent on the parameters N and n, it is worth noting that scale invariance properties of
(26) yield a statistic whose distribution is independent of the white noise variance. Using the fact
that the coherence statistic is beta distributed, one may then use the theory of order statistics [20]
to show that the maximum coherence in (27), C∗n = arg maxk Cn[k], has the probability density
function

fC∗
n
(x) = N

[
I

(
x;

1

2
n,

1

2
(N − n)

)]N−1
f

(
x;

1

2
n,

1

2
(N − n)

)
(28)

where f(x;α, β) and I(x;α, β) represent the density function for a beta distribution and the in-
complete beta function, respectively,

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1

I(x;α, β) =
1

B(α, β)

∫ x

0
tα−1(1− t)β−1dt

Note that, in these two expressions, the term B(α, β) represents the beta function with parameters
α and β

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt

With a time series length of N = 256, Figure 19 gives several examples of the density function
in (28) for various values of n. One can observe from this plot that the larger the value of n, i.e.
the more columns that are included in the data matrix Xn, the higher the maximum coherence C∗n
tends to be. The whole point of this argument is that, by knowing how the statistic C∗n behaves
probabilistically when the data vector xn contains only noise, one can derive a selective sampling
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Figure 19: Probability densities fC∗
n
(x) for the order statistic C∗n = arg maxk Cn[k] with N = 256

and for various values of n.

scheme which chooses if and when one should attempt to coregister the data. Those pings most
likely to contain only noise as predicted by (28) can be removed from the process to avoid the
inadvertent coregistration of background data.

6.2.3 Task 3: Computationally Efficient Manifold-Based Classification using Sub-
space Averaging

Recall from Section 4.2.2 that the manifold-based classifier employed in this work relies on having to
build a local linear subspace 〈Hi,j〉 consisting of P training vectors associated with class j which are

nearest to each extracted feature y
(u)
i . Although the results of Section 5.3 show that this process

is indeed capable of adequately representing the features from different objects for classification
purposes, one of the more prohibitive computational aspects of the algorithm is having to build
the orthogonal projection matrix PHi,j in (21) for all M feature vectors that are used to make a
classification decision. Thus, the goal of this task involves the development and testing of techniques
capable of producing a single projection operator PH̃j

which best approximates the entire collection

of subspaces {Hi,j}Mi=1. By doing so, we will be able to build a more computationally efficient
classification algorithm without having to sacrifice classification performance.

For notational convenience, we will drop the class index j in what follows with the understanding
that this process must be applied to each class. Given the set of subspaces {Hm}Mm=1, let Vm ∈
Rd×P denote a matrix whose columns form a unitary basis for the subspace 〈Hm〉 with Pm = VmVT

m

its idempotent orthogonal projection matrix. Assuming that the dimension of the union of these
subspaces has dimension D = dim

(
∪Mm=1〈Vm〉

)
, we not only wish to find the subspace 〈Vs〉 that

best approximates this collection of subspaces but also wish to determine its optimal dimension s
by solving the optimization problem

(s∗,V∗s) = arg min
s∈[0,D],Vs∈Rd×s

1

M

M∑
m=1

d (〈Vs〉, 〈Vm〉)2 (29)

In [21] the authors suggest using the extrinsic distance metric

d (〈Vs〉, 〈Vm〉) = ||Ps −Pm||F

with the projection matrix Ps = VsV
H
s . This distance metric gives one a measure of how close one

subspace is to another and was shown in [21] to be closely related to the cosines of the principle
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angles between the two subspaces. With this notion of distance, the optimization problem in (29)
can be rewritten as

(s∗,P∗s) = arg min
s∈[0,D],P∈Ps

1

M

M∑
m=1

||P−Pm||2F (30)

where Ps denotes the set of all projection matrices of rank s.
Given the optimization problem in (30), we can begin by considering the simpler problem: given

s ∈ [0, D], find the subspace 〈Vs〉 that minimizes the cost function

E(s) = min
Ps∈Ps

1

M
||P−Pm||2F

= min
Ps∈Ps

tr
[
(P− P̄)T (P− P̄) + P̄− P̄

2
]

(31)

where the symmetric matrix

P̄ =
1

M

M∑
m=1

Pm

is the average of the M projection matrices. Writing the eigendecomposition of this average pro-
jection matrix as P̄ = FKFT , where K = diag (k1, . . . , kD) with 1 ≥ k1 ≥ k2 ≥ · · · ≥ kD, one may
ignore all constant terms and solve (31) by finding the unitary matrix Us that satisfies

max
Us∈Rd×s

UT
s FKFTUs (32)

In [21] it was shown that the solution to (32) is given by any unitary matrix whose column space
is the same as the subspace spanned by the s principal eigenvectors of F, i.e.

U∗s = [f1 f2 · · · fs] = Fs (33)

and the optimal projection matrix is given by P∗s = U∗s (U∗s)
T .

Given the optimal subspace U∗s and its associated projection matrix, the next step involves
finding the optimal subspace dimension s. Plugging this solution into (31), the minimum mean
squared error (MSE) E(s) can be expressed in terms of the eigenvalues of matrix P̄ as

E(s) =

s∑
i=1

(1− ki) +

D∑
i=s+1

ki (34)

As discussed in [21], a simple analysis shows that E(s + 1) ≤ E(s) if ks+1 ≥ 1
2 . Therefore, the

optimal fitting rule amounts to selecting the largest s such that ks >
1
2 . Interestingly, the MSE

expression in (34) admits a bias-variance tradeoff interpretation [21] in which the first term is
the variance due to the selected dimensions of P̄ whereas the second term is a squared-bias cost
associated with the discarded dimensions.

A brief description of the algorithm is as follows. Given the collection of subspaces {Hi,j}Mi=1,

one begins by finding the average subspace matrix P̄ = (1/M)
∑M

i=1 Hi,j . An eigendecomposition
of this matrix is then taken such that P̄ = FKFT and the columns of F are sorted in a descending
order based on their corresponding eigenvalues ki for i = 1, . . . , D. The optimal subspace U∗s in (33)
is then found by retaining those eigenvectors whose eigenvalues are greater than 1

2 . One may then
replace the projection matrix PHi,j in (21) with the orthogonal projection P∗s. As can be seen, the
proposed technique is very ubiquitous in that it non-parametrically determines a subspace which
best represents a given set of measured subspaces. Moreover, the technique admits a natural rule
for determining the optimal subspace dimension to minimize the MSE in the approximation.
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6.2.4 Task 4: Comprehensive Testing & Evaluation

Throughout this two-year research, we shall test and evaluate the performance of the developed
detection and classification methods developed on several real (e.g. TREX13, BayEX, and BOSS)
and synthetic (e.g. PC SWAT) sonar datasets collected in different environmental and background
conditions. The specific issues that will be thoroughly studied include:

1. Developing the theoretical null distribution of the test statistic in (6) for false alarm perfor-
mance prediction. Once again, this involves deriving statistical properties of the likelihood
ratio, such as the CGF ψ(t), under a theoretical assumption that sonar data collected from
the seafloor can be modeled as Gaussian white noise. This will also involve testing the ability
of the saddlepoint approximation in (23) to produce a threshold capable of achieving a desired
false alarm rate. The ability of the theoretical null distribution to achieve this desired false
alarm rate will be tested by applying the technique to different environmental and operating
conditions using the above mentioned datasets.

2. Based on the theoretical CGF ψ(t) determined above, design a modified CGF ψ̃(t;θ) capable
of adapting to the statistical properties of the likelihood ratio observed in a new environ-
ment for performance optimization. This will also involve testing the ability of the cumulant
matching technique in (25) to adapt to changing environmental conditions. The ability of the
proposed adaptive thresholding technique will be tested using the UXO datasets mentioned
above and its ability to achieve a desired false alarm rate will be compared to that based on
the theoretical null distribution.

3. Develop an adaptive temporal coregistration technique based on the principles of generalized
coherence for autonomously accounting for the effects of platform motion to yield a more
robust detection technique. The ability of the proposed technique to adequately correct for
unknown time delays due to platform motion will be tested and the improvement in detection
performance brought by including it as part of the detector will be compared to that where
it is absent. Moreover, we plan to test the background coherence distribution given in (28)
and its ability to selectively remove pings corresponding to background alone by measuring
the improvement in detection performance brought by including it in the algorithm.

4. Apply the proposed subspace averaging and order fitting procedure to the manifold features
used to represent various munitions objects. The main objective of this task will be to reduce
the computational burden associated with defining a projection matrix PHi,j in (21) for every
single feature vector by replacing it with a single projection matrix P∗s using the optimal
subspace in (33) without adversely affecting the performance of the classifier. This will be
investigated by testing gains in computational efficiency versus classification performance and
comparing the results with those obtained using the original method.

5. Investigate the use of model-based simulation software for the purposes of building and
studying the manifold structures corresponding to various UXO and non-UXO objects. This
task will involve working with our counterparts (possibly through a subcontract) at NSWC-
Panama City and/or APL-University of Washington to apply the manifold-based classification
techniques developed here to synthetic physics-based data generated from software suites de-
veloped by each lab. The purpose of this work will be to study if synthetic data can indeed be
used to train manifolds for classification purposes and to compare each algorithm to identify
the pros and cons of each.

6. Prepare first-year interim and final reports to document all the developments and results
of this two-year research. We plan to publish both the theoretical techniques developed
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during this work as well as its application to various UXO datasets in IEEE Transactions and
Journals in related fields.

7. As part of this two-year research, we plan to work very closely with our collaborators at
NSWC-Panama City to transition the developed code for their evaluation and testing on the
Navy’s testbed systems such as the Modular Algorithmic Testbed Suite (MATS). Moreover,
we plan on working with NSWC to apply the developed algorithms to datasets collected from
platforms currently deployed as well as future platforms awaiting seatrials.
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