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The T -matrix formally encodes the full scattering response of an acoustic target. From it, one
may construct the scattered waveform for any given incident waveform. Through a combination
of forward modeling, simulated inversions, and processing of real data, this report details basic
validation of the approach for characterizing targets of interest. Data set include some collected
during Strategic Environmental Research and Development Program project MM-1507 using Florida
Atlantic University’s 160-channel towed bottom-scanning sonar platform, as well as some collected
in the small-scale test bed acoustic facility at NSWC PCD.
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I. INTRODUCTION

This document serves two purposes. First, it is an
interim report describing work to date in support of val-
idating the T -matrix approach to acoustic target charac-
terization. Second, it is the requested white paper dis-
cussing the utility of our methods if confined to realistic
data, for example a single pass of the bottom-scanning
sonar (BOSS) sensor with 15 to 30 cm position error. A
full and considered answer to the white paper question
requires a deep look at existing data, constraints from
simulations, and examination of possible geometries for
future BOSS data collects that will better support the
utility of our methods. A focused summary of the an-
swer to this question, referring back to all of the prior
material, is contained in the concluding Sec. VIII.

The T -matrix description of scattering from buried tar-
gets requires knowledge of the sediment properties. In
Sec. II we discuss how these properties can be extracted
from the angle dependence of the direct return. In App.
A we discuss in some detail our attempts to use exist-
ing MM 1507 BOSS data to this end. At present, the
available platform parameter ground truth is inconclu-
sive (e.g., undocumented channel indexing and gain fac-
tors), and we propose near-future measurements that will
provide definitive tests.

In Sec. III we summarize the T -matrix representation
of target scattering. The T -matrix, in principle, provides
a universal description of all target-scattering responses,
and we propose that its coefficients could be strongly
correlated to key target identifying features, such as res-
onances that lead to strong changes in some T -matrix
parameters and not others. The T -matrix is also most
appropriate at lower frequencies, where the target diam-
eter is comparable to wavelength (typically, a few kHz).
At high frequency there are very large number of non-
negligible T-matrix coefficients, and it becomes more
appropriate to use ray-based scattering theory instead.

Note that lower frequency enables better sediment pene-
tration, supporting the utility of our approach.

In Sec. IV we specialize the general theory to scattering
from targets in a homogeneous medium, and buried in a
sediment half-space. We compare simulated scattering
responses in the two cases, and how the T -matrix en-
ters the geometry of the scattered field. We also present
simulated T -matrix parameter inversion results, demon-
strating the key importance of measurement aperture
(transmitter–receiver angular diversity) in stabilizing in-
versions.

In Sec. V we begin our discussion of real data by
briefly reviewing the properties of chirp pulse waveforms,
and the pulse compression operation required to isolated
distinct scattering returns. In Sec. VI we use this the-
ory to analyze BOSS data collected using a 4-in sphere.
The standoff is such that the angular aperture is very
small, and the data is essentially pure backscatter, which
then severely restricts the T -matrix parameter informa-
tion that can be extracted.

In Sec. VII we describe NSWC laboratory scale tank
data in which a very large angular aperture is available.
The full scattering amplitude f(θ) for a spherical target
is extracted, which directly encompasses all T -matrix in-
formation. This data also explicitly illustrates the im-
portance of transmitter-receiver angular diversity.

Finally, as alluded to above, in Sec. VIII we summarize
our findings to date, and discuss near-future BOSS plat-
form data collection that will start to fill in the gaps in
validating our approach. We also make some suggestions
for relatively simple changes to the BOSS geometry that
could greatly enhance the angular aperture and signifi-
cantly enhance the utility of the T -matrix approach.
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FIG. 1: Reflection coefficient for ρ2/ρ1 = 3, c2/c1 = 2.
The coefficient becomes complex, but with unit magnitude,
beyond the critical (total internal reflection) angle θc =
sin−1(c1/c2).

II. MODELING BACKGROUND: SEDIMENT
PROPERTIES

Sediment acoustic propagation properties will impact
scattering from buried targets. As such, robust inter-
pretation of scattered signals (including standard image
focusing) will benefit from proper bottom-sediment mod-
eling. These properties may in principle be extracted
through a separate set of direct, bottom-reflection mea-
surements.

A. Water–sediment transmission and reflection
coefficients

For a uniform half space the reflection and transmis-
sion coefficients, for a plane wave incident on medium 2
from medium 1, are given by [1]

R =
cos(θ)− (ρ1/ρ2)

√
(c1/c2)2 − sin2(θ)

cos(θ) + (ρ1/ρ2)
√

(c1/c2)2 − sin2(θ)

T = 1 +R

=
2 cos(θ)

cos(θ) + (ρ1/ρ2)
√

(c1/c2)2 − sin2(θ)
, (2.1)

in which θ is the angle of incidence (measured from the
normal), ci are the sound speeds, and ρi are the mass
densities. The transmitted ray angle θT is determined,
as usual, by Snell’s law,

sin(θT )

sin(θ)
=
c2
c1

(2.2)

The critical angle, defined by sin(θc) = c1/c2, repre-
sents the total internal reflection angle when the sedi-
ment sound speed exceeds that of water, as is typical.

zT zR

RTr

Tx Rx

θ

FIG. 2: Bottom reflection geometry for effective point trans-
mitter (Tx) at height zT , receiver at height zR, and horizontal
separation rRT . The angle of incidence θ is given by (2.4).

For θ > θc one makes the replacement

cos(θT ) =

√
1− (c2/c1)2 sin2(θ)

→ i

√
(c2/c1)2 sin2(θ)− 1, (2.3)

so that T and R become complex. Consistent with total
reflection, R = eiφR has fixed unit magnitude, |R| = 1,
for all θ ≥ θc, with φR generating a phase shift in the
reflected signal. The transmitted wave becomes evanes-
cent, reducing the visibility of buried targets. Figure 1
shows a plot of R for physically motivated parameter val-
ues.

To invert for the sediment properties (with water prop-
erties c1, ρ1 assumed known) it would clearly be benefi-
cial to have incident angles spanning θc [2]. The singular
behavior of R in its vicinity should make it readily iden-
tifiable, providing a direct estimate of c1/c2. The param-
eter ρ1/ρ2 could then be estimated via an optimized fit
of (2.1) to the data over the full range of angles.

In a real measurement, the incident wave is approx-
imately spherical rather than planar, and this must be
accounted for in extracting R. Consider, then, idealized
point receiver and transmitter at height zR and zT , re-
spectively, separated by horizontal distance rRT (see Fig.
2). For wavelengths short compared to the measurement
dimensions, a geometrical optics/ray tracing approach is
valid, and the reflected ray angle is given by

tan(θ) =
rRT

zR + zT
, (2.4)

and one obtains the total direct-plus-reflected signal

ϕ̂(xR, ω) = Â(ω)

[
eiklD

4πlD
+R(θ)

eiklR

4πlR

]
. (2.5)

where Â(ω) is the overall outgoing spherical wave ampli-
tude, k = ω/c1 is the wavenumber in the fluid, and

lD =
√
r2RT + (zR − zT )2

lR =
√
r2RT + (zR + zT )2 (2.6)

2
Distribution A / Approved for public release



are the direct and reflected ray path lengths, respectively.
Equivalently, in the time domain, one obtains

ϕ(xR, t) = Re

[
1

4πlD
P (t− lD/c1) +

R(θ)

4πlR
P (t− lR/c1)

]
,

(2.7)
where P (t) is the positive frequency part of the transmit-
ted pulse waveform:

P (t) =

∫ ∞
0

dω

2π
A(ω)e−iωt. (2.8)

Assuming that the travel time difference (lR − lD)/c1 is
much larger than the inverse bandwidth of the pulse, af-
ter pulse compression [where A(ω) is replaced in (2.8) by

Ŝ∗(ω)Â(ω), where Ŝ is used to remove rapid phase vari-

ation of Â] the two contributions (2.7) can be separated
(from each other, as well as from any other bounces, e.g.,
from the fluid surface). From the known geometry, one
may then obtain R(θ) from the ratio R/lR. From a re-
ceiver array one may then extract R(θ) over some range
of θ.

In a more accurate model, the (frequency dependent)
transmitter radiation pattern, and receiver sensitivity
pattern, must enter (2.3), making P (t) → P (t; θ) angle-
dependent. Absent a full characterization of these, one
can only hope that the additional angular dependence
is weak enough that it suffices to considering only am-
plitude ratios for different θ, obtained by dividing out
a single, unknown, overall amplitude. The assumption
is most critical for bottom reflections because the di-
rect ray arrives at a substantially different angle from
the buried target reflection, and likely interacts much
more strongly with the platform structure. One may
thereby extract R(θ)/R(θ0), where θ0 is some reference
angle. This, too, should suffice to extract the desired
ratios c1/c2 and ρ1/ρ2. For example, for small θ one
obtains R(θ) = R0[1 +R2θ

2 +O(θ4)] where

R0 =
1− ρ1c1/ρ2c2
1 + ρ1c1/ρ2c2

R2 =
(ρ1/ρ2)(c1/c2 − c2/c1)

1− (ρ1c1/ρ2c2)2
. (2.9)

If the platform is fully calibrated, then both R0 and R2

may be extracted from the measurement, and one obtains

ρ1
ρ2

c1
c2

=
1−R0

1 +R0

ρ1
ρ2

c2
c1

=
1−R0(R0 + 4R2)

(1 +R0)2
, (2.10)

and hence

c1
c2

=

√
1−R2

0

1−R0(R0 + 4R2)

ρ1
ρ2

=

√
(1−R0)[1−R0(R0 + 4R2)]

(1 +R0)3
. (2.11)

if the platform is uncalibrated, then with adequate band-
width to resolve direct and reflected returns, we can ex-
ploit the geometry based acoustic response ratio between
in-plane and boresite ensonification to estimate the inci-
dent level along rRT . This allows one to extract both
R0 and R2 from the small θ region, and thereby both
desired ratios. Larger θ, preferably including θc are then
required for a full inversion [5].

B. Measurement constraints and existing results

In a recent publication, Williams demonstrates the
ability to remotely sense sediment properties via acoustic
forward scattering measurements [4]. Potential compli-
cating factors such as frequency dependent reflection co-
efficients and spherical vs. plane wave modeling issues are
considered from a theoretical and implementation per-
spective. Williams concludes that in situ measurement
of sediment properties has been demonstrated. For a ded-
icated remote sensing experiment based solely on BOSS
system data, the sonar may have to be flown closer to the
bottom than is typical of its operation. If there are im-
plementation or deployment difficulties with operating in
this close-in measurement mode, then the measurement
could be performed sporadically—swooping down for a
brief time period to measure a wider range of incident
angles than otherwise available.

III. MODELING BACKGROUND:
SCATTERING AND THE T -MATRIX

A. Acoustic equation and Green function

The acoustic equation of motion for the pressure field
ϕ(x, t) takes the form

1

ρc2
∂2t ϕ−∇ ·

(
1

ρ
∇ϕ
)

= S (3.1)

where S(x, t), ρ(x), and c(x) are the source, mass density
and sound speed fields, respectively. In the frequency
domain this takes the form

−∇ ·
(

1

ρ
∇ϕ̂
)
− ω2

ρc2
ϕ̂ = Ŝ, (3.2)

in which Fourier transform pair ϕ, ϕ̂ is defined by

ϕ̂(x, ω) =

∫
dtϕ(x, t)eiωt

ϕ(x, t) =

∫
dω

2π
ϕ̂(x, ω)e−iωt, (3.3)

and similarly for S. The formal solution to (3.2) is

ϕ̂(x) =

∫
d3x′g(x,x′)Ŝ(x′), (3.4)

3
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FIG. 3: Schematic illustration of background and scattered
(outgoing wave) fields. The former represent the field in the
absence of the scatterer, while the latter represent the cor-
rections to the field due to the presence of the scatterer. The
two fields are expanded in a set of basis functions according to
(3.8) and (3.9), and related via (3.12) through the T -matrix.

in which the Green function g satisfies,

∇ ·
[

1

ρ
∇g(x,x′)

]
+
ω2

ρc2
g(x,x′) = −δ(x− x′). (3.5)

In an infinite, homogeneous medium, one obtains the free
Green function

g0(x− x′) =
ρ

4π|x− x′|
eik|x−x

′|, (3.6)

with wavenumber k = ω/c.
In general (3.1) will fail if there are non-fluid elements

in the medium, such as solid elastic scatterers. However,
in what follows we will only require the Green function
for the background fluid medium for which (3.1) is valid
everywhere.

B. Scattering in a homogeneous background

The so-called T -matrix encodes, for any given fre-
quency, the full scattering responses of a target for all
possible incident waves. The T -matrix is most simply
defined first for a target lying in an infinite, homoge-
neous medium, and the definition is then extended to
certain classes of inhomogeneous media, including sedi-
ment models of interest to the underwater UXO problem.

To describe scattering, the acoustic field is first sep-
arated into background and scattered components (see
Fig. 3),

ϕ̂(x) = ϕ̂b(x) + ϕ̂s(x), (3.7)

in which, by definition, ϕ̂b is the field generated by the
given source in the absence of the scatterer, and ϕ̂s cor-
rects for the presence of scattered waves. Let the scat-
terer be centered on a point xs [6]. It is assumed that φb
is smooth and regular in a neighborhood of xs, including
the entire volume occupied by the scatterer, and admits
a convergent expansion,

φ̂b(x) =
∑
n

Anξn(x− xs) (3.8)

in terms of a conveniently chosen set of basis functions
ξn(x) which are all regular at the origin. Similarly, the
scattered field is assumed to admit a convergent expan-
sion,

φ̂s(x) =
∑
n

Bnψn(x− xs), (3.9)

outside a sufficiently large neighborhood of the scatterer.
The functions ψn will generally be singular somewhere
inside this neighborhood. Both sets of basis functions
are solutions to the homogeneous acoustic equation (3.2)

with Ŝ ≡ 0. For targets that are not too far from spher-
ical, convenient basis function choices are the spherical
waves,

ξlm(x) = jl(kx)Ylm(θ, φ)

ψlm(x) = h
(1)
l (kx)Ylm(θ, φ), (3.10)

in which (x, θ, φ) are spherical coordinates for x centered
on the origin, jl(z) are the spherical Bessel functions
(which are indeed regular, varying as zl near the origin),

h
(1)
l (z) the spherical Hankel functions (which indeed di-

verge as 1/zl+1 at the origin), and Ylm are the spherical
harmonics [1].

The T -matrix represents the linear relationship

Bn =
∑
n′

Tnn′(k)An′ (3.11)

between the A and B coefficients that must emerge from
a full solution to the acoustic equation in the presence of
the scatterer. For a spherically symmetric scatterer,

Tlm;l′m′(k) = Tl(k)δll′δmm′ (3.12)

is diagonal and independent of m in the spherical wave
basis, and exact solutions are available for a variety of
examples. In matrix form, (3.12) is written simply as
B = TA.

Since (3.7)–(3.10) refer only to the solutions in the
background medium, the relation (3.12) holds even if the
target is, e.g., an elastic body rather than a fluid body.
The T -matrix is, of course, much more difficult to com-
pute in such cases.

C. Heterogeneous field T -matrix

Suppose now that the target resides in a medium that
is homogenous in the target neighborhood, but not neces-
sarily globally homogeneous. Examples to be discussed

4
Distribution A / Approved for public release



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

x
R

 (m)

Two−layer medium scattered signal
z

R
 = 0.5 m, x

T
 = (0, 0, 0.3) m, z

S
 = −0.5 m

T−matrix parameters: T
0
 = 1, T

01−
 = 0, T

01+
 = 0

 

y R
 (

m
)

0.5

1

1.5

2

2.5

x 10
−3

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

x
R

 (m)

Homogeneous background medium scattered signal
z

R
 = 0.5 m, x

T
 = (0, 0, 0.3) m, z

S
 = −0.5 m

T−matrix parameters: T
0
 = 1, T

01−
 = 0, T

01+
 = 0

 

y R
 (

m
)

1.5

2

2.5

3

3.5

x 10
−3

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

x
R

 (m)

 

y R
 (

m
)

2

3

4

5

6

7

8

9

10

x 10
−4

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2  

x
R

 (m)

 

y R
 (

m
)

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

FIG. 4: Top: Scattered signal magnitude from a sphere at a single frequency f = 5 kHz, modeled by Tl = T0/(2l+1)2, 0 ≤ l ≤ 4,
in a homogeneous space (right; parameters c1 = 1.5 km/s, ρ1 = 1 g/cm3) and buried 0.5 m below the surface in a two layer
medium (left; parameters c2 = 2.0 km/s, ρ2 = 3 g/cm3). In both cases the target lies 0.8 m directly below the horizontally
centered transmitter (magenta dot), which in turn lies 0.2 m below the 4 m × 4 m plane of receiver positions. Bottom: Same
as above, except that, while the target remains at the horizontal origin, the transmitter is now offset horizontally by 1 m in
each direction (magenta dot). The asymmetric transmitter placement induces a similar asymmetry in the scattering intensity
pattern. In particular, the signal peak moves in the opposite direction as the transmitter, as would be expected based on a
specular reflection picture. In both upper and lower pairs of plots there are quantitative, but not qualitative, changes between
left and right.

below include horizontally stratified media, which may
or may not contain other compact scatterers. Local ho-
mogeneity implies that we may continue to expand the
background field (which excludes the effects of the target,
but includes the effects of all other inhomogeneities in the
medium) locally near xs in the form (3.8). However, the
scattered field now has an expansion

φ̂s(x) =
∑
n

BnΨn(x− xs;xs) (3.13)

in which Ψn is a solution to the global acoustic equa-
tion, and the residual xs dependence arises because the
system is no longer translation invariant. The expansion
is uniquely defined by writing, within the local homoge-
neous neighborhood of the target,

Ψn(x;xs) = ψn(x) + ∆ψn(x;xs), (3.14)

where the correction ∆ψn arises from reflections of the
scattered wave ψn that return to the neighborhood of xs.

As such, ∆ψn is assumed to be smooth in the neighbor-
hood of xs, and have a convergent re-expansion,

∆ψn(x;xs) =
∑
n′

Unn′(xs)ξn′(x), (3.15)

in terms of the regular basis functions. Examples of the
matrix U will be presented below.

The free-field T -matrix now relates the full ξn compo-
nent of the field to the scattered field. In matrix form
one obtains,

B = T(A + UB), (3.16)

with solution,

B = TA, T = (T−1 −U)−1. (3.17)

Through (3.17) we have succeeded in expressing the full
solution to the scattering problem in terms of the free

5
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FIG. 5: Same as Fig. 4, except that, in addition to the spherical T -matrix coefficients cited there, one includes nonzero
T00;1,−1 = T1,−1;00 ≡ T01− = 1 and T00;11 = T11;00 ≡ T01+ = −1. The off-diagonal nature of these coefficients means that they
generate an outgoing dipolar wave from a spherically symmetric background wave. The two different transmitter horizontal
positions are again shown by the magenta dot.

field scattering problem, together with the global prop-
erties of the background medium. The existence of such
local scattering relations relies on the spatial locality of
the gradients in the acoustic equations (3.1) and (3.2).

It is important to note that the T -matrix will depend
on the nature of the background medium via the target-
background interaction. For example, buried-target res-
onant spectra will be different from those of a target in
the water column or in air, and this must inform buried-
target classification [7].

IV. FORWARD AND INVERSE MODELING OF
SCATTERING IN A TWO LAYER SYSTEM

A. Two-layer forms for the scattered signal

In order to illustrate the role that different T -matrix
coefficients play in the geometry of the scattered wave,
and the distortion induced by transmission through the
sediment, we compare here simulations of scattering for
targets in free (water-filled) space to those for a target
buried in a sediment half space.

For an isotropic point source S(x) = S0δ(x − xT ), at
position xT in the water column, the background field
takes the form

ϕ̂b(x) =

∫
d2q

(2π)2
eq·(r−rT ) e

l2(q)z−l1(q)zT

χ1(q) + χ2(q)
, (4.1)

where, here and below, the decomposition x = (r, z) of
any 3D position denotes horizontal and vertical coordi-
nates, and

lu(q) =
√
q2 − (ω/cu)2

χu(q) = lu/ρu, (4.2)

where cu, ρu are sound (phase) speed and mass den-
sity in layer u = 1, 2. For q < ω/cu one defines

lu = −i
√

(ω/cu)2 − q2 ≡ −iqz,u.

By expanding (4.1) in the spherical harmonic basis
functions (3.10), the A-coefficients may be reduced to
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FIG. 6: Same as Fig. 5, except that the values T01− = 1 and T01+ = i are used. Altering the magnitude and phase of these
coefficients is seen to rotate the pattern, and change the balance between the two lobes. The two different transmitter horizontal
positions are again shown by the magenta dot.

the 1D integrals

Alm = 2il−mS0βlme
−imφ(TS)

∫ ∞
0

qdqJm(q|rT − rS |)

× Pml [−
√

1− (c2q/ω)2]
el2(q)zS−l1(q)zT

χ1(q) + χ2(q)
,

(4.3)

where xS is the scatterer position, φ(TS) is the hori-
zontal plane azimuthal angle associated with rT − rS ,
βlm =

√
(2l + 1)(l −m)!/4π(l +m)!, Jm(z) is the usual

cylindrical Bessel function, and Pml (x) are the associated
Legendre functions [8].

The U -matrix is given by a corresponding 1D integral,

Ulm;l′m′ = il−l
′−mδmm′βlmβl′m

4πc2
ωρ2

∫ ∞
0

qdqe2l2(q)zS

× Pml [−
√

1− (c2q/ω)2]Pml′ [
√

1− (c2q/ω)2]

× χ1(q) + χ2(q)

χ2(q)[χ1(q) + χ2(q)]
,

(4.4)

which depends only on the scatterer vertical coordinate
zS , and is diagonal in m,m′.

For a given T -matrix, the (scattered wave) B-
coefficients may now be computed from (3.17). Fi-
nally, given these coefficients, an isotropic point receiver
R(x) = R0δ(x − xR) will receive a signal in the form of
the sum (3.13)

ϕ̂R = R0

∑
l,m

Blmϕ̂R,lm (4.5)

in which the scattered wave basis functions evaluated at
the receiver position xR are given by the 1D integral

ϕ̂R,lm = im−l−1
2c2
ωρ2

βlme
imφ(RS)

∫ ∞
0

qdqJm(q|rR − rS |)

× Pml [
√

1− (c2q/ω)2]
el2(q)zS−l1(q)zR

χ1(q) + χ2(q)
, (4.6)

where φ(RS) is the horizontal plane azimuthal angle as-
sociated with rR − rS .

For comparisons below, in free space one obtains the
fully analytic forms

Alm = i
ρ1ω

c1
h
(1)
l

(
ω

c1
|xS − xT |

)
Y ∗lm(θ(TS), φ(TS))

ϕ̂R,lm = h
(1)
l

(
ω

c1
|xR − xS |

)
Ylm(θ(RS), φ(RS)), (4.7)
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where h
(1)
l (z) is the spherical Hankel function [8],

θ(TS), φ(TS) are the polar coordinate angles associated
with xT − xS , and θ(RS), φ(RS) are the polar coordinate
angles associated with xR − xS . The received signal is
still given by (4.5), but now with the direct relationship
B = TA replacing (3.16) and (3.17).

B. Examples of computed scattering returns

In Figs. 4–6 we show two-layer and free-space forms
(with medium parameters described in the caption to
Fig. 4) for the magnitude of the scattered signal, obtained
via numerical implementation of (4.3)–(4.7). The signal
is sampled (for a single fixed frequency) on a 4 m ×
4 m horizontal grid 1 m above the sediment, for various
choices of T -matrix parameters. The transmitter is 0.2 m
below this grid, and we compare results for two different
horizontal locations.

Fig. 4 shows results for a spherical target. The T -
matrix takes the form (3.12) with the (somewhat arbi-
trary) choice Tl = T0/(2l+ 1)2, 0 ≤ l ≤ 4, and Tl = 0 for
l ≥ 5. The homogeneous vs. two-layer signals are qualita-
tively similar, but clearly differ quantitatively. Accurate
inference of T -matrix parameters (see below) therefore
requires proper modeling of the sediment.

Figs. 5 and 6 illustrate the role of “off-diagonal” T -
matrix coefficients, specifically those that couple l = 0
(spherically symmetric) and l = 1 (dipolar symmetry)
waves. The coefficients T00;1,±1 and T1,±1;00 are seen to
give rise to a horizontal dipole pattern, with their rel-
ative magnitude and phase determining the orientation
and relative intensity of the two lobes. The coefficients
T00;10 and T10;00, if present, would control the vertical
component of the dipole. Notice that, depending on the
transmitter position, one of the lobes can essentially dis-
appear, and the aspherical character of the target could
be missed. This points again to the need for a wide di-
versity of transmitter and receiver positions for robust
target characterization.

C. Simulated T -matrix inversions from bistatic
measurements

In Sec. II we discussed extraction of sediment acous-
tic propagation properties from reflection data. Here we
will assume, from such a prior inversion procedure, that
the sediment model is known (we use physically reason-
able values c = 1.5 km/s, c2 = 1.7 km/s, ρ1 = 1 g/cm3,
ρ2 = 1.9 g/cm3, and frequency f = 5 kHz throughout),
and use it to investigate inversion of T -matrix param-
eters. We will focus in particular on the influence of
transmitter–receiver diversity and inversion accuracy.

The inversions are performed by minimizing the simple

−6
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y (m)x (m)
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FIG. 7: Oblique view of a notional BOSS data collection ge-
ometry, showing five tracks separated by ∆y = 1.2 m, with
data taken every ∆x = 0.4 m. The blue dashed lines indicate
the 2.4 m span of the BOSS receiver wings.

mean-squared error functional,

E(T,xS ,M) =

NR∑
i=1

NT∑
j=1

[ϕ̂meas(xR,i,xT,j)

− ϕ̂pred(xR,i,xT,j)]
2
, (4.8)

which depends on the target position xS , the T -matrix
parameters T, and the background medium parameters
M through the predicted received waveform ϕ̂pred (com-
puted as described in Sec. IV A).

To obtain sufficient data to extract individual T -matrix
coefficients, one requires a set of bistatic measurements,
with angular diversity sufficient to explore a broad range
of scattering angles θ. A notional measurement protocol
is shown in Fig. 7, in which the platform (with trans-
mitter at the center, and 20 receivers spaced uniformly
along each wing) sweeps an area with track separation
∆y = 1.6 m and data taken at spacing ∆x = 0.4 m along
each track. This type of search pattern would be typ-
ical of an area scan without prior knowledge of target
location.

We begin by considering a single pass over the target,
as illustrated in the top panel of Fig. 8. We have found
that even using an extremely low platform height of 0.5 m
above the sediment (with 0.5 m target depth), the cen-
tered transmitter gives very poor inversion results. In
this figure, therefore, we instead place the transmitter
on one of the wingtips, effectively doubling the bistatic
angular aperture. The inversion results, shown in the
bottom panel of this figure, are far from perfect, but at
least one sees some correlation between truth and esti-
mate. The results are also found to degrade strongly at
more realistic platform heights, say 2 m above sediment.

In Fig. 9, using the same modified BOSS geometry, we
show the drastic improvement obtained using multiple
tracks (with geometry illustrated in the top panel). Even
though the transmitter-receiver separation is always con-
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FIG. 8: Simulated T -matrix inversion results (bottom) using
a single pass of a modified BOSS with a wingtip transmitter
to enhance the bistatic angular diversity (top). The target is
centered 0.5 m below the sediment surface, while the BOSS
platform is centered at 0.5 m above it, and the along-track
spacing is ∆x = 0.1 m. A signal-to-noise ratio (SNR) level
of 30 dB was used. It is clear that even with this enhanced
angular coverage, the inversion results are mediocre at best.

strained to be less than 2.6 m, different T -matrix co-
efficients are sensitive to different “view” angles of the
target. The combination of wide aperture and different
views provided by the multiple tracks (and the overlap-
ping quality of the tracks, relative to the BOSS wingspan,
was also found to be important here) produce decent in-
versions even at 2 m platform height (center panel of the
figure). A platform height of 0.5 m produces essentially
perfect inversions (lower panel).

It should be noted that a newer version of the BOSS
platform has a 4 m wingspan, and the results above are
therefore consistent with a centered transmitter on this
platform. Doubling the aperture to 4 m by placing the
transmitter on the wingtip should provide an even greater
enhancement, even for the single-pass results (Fig. 8).
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FIG. 9: Simulated T -matrix inversion results using six passes,
with ∆x = 0.4 m along-track spacing between measurements,
of a modified BOSS with a wingtip transmitter to enhance
the bistatic angular diversity (top). For the center plot, the
target is centered 0.5 m below the sediment surface, while
the BOSS platform is centered at 2 m above it. Moderate
inversion accuracy is seen. For the bottom plot the platform
is lowered to 0.5 m above the surface, and essentially perfect
inversion accuracy is seen. A SNR level of 30 dB was used in
both cases.
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This will be explored in greater detail in the near future.

V. ACOUSTIC DATA ANALYSIS
BACKGROUND: PULSE COMPRESSION

To avoid propagation nonlinearities (cavitation, in ex-
treme cases) in the propagation, acoustic pulses, or pings,
are sent out as long chirps, as opposed to sharp, high am-
plitude pings:

S(t) = A(t)eiφ(t) (5.1)

in which the frequency is usually a linear ramp over a
frequency band ωmin ≤ ω ≤ ωmax:

φ(t) = ωmint+
1

2
Kωt2

K =
ωmax − ωmin

T
, (5.2)

where T � 2π/ωmin is the length of the chirp, encom-
passing many cycles. For large T , the local frequency

ω(t) ≡ ∂tφ(t) = ωmin +Kt, (5.3)

varies slowly in time, and the chirp may be thought of
as probing the medium at a series of frequencies. The
amplitude A(t) is smooth, turning on smoothly near the
edges of the band, and acts as a window on the band.
The pulse spectrum

Ŝ(ω) =

∫
dteiωtS(t) (5.4)

has magnitude

Â(ω) = |Ŝ(ω)| ∝ A
(
ω − ωmin

K

)
(5.5)

that is a very similarly shaped window supported on the
band [ωmin, ωmax].

Typical parameters for the BOSS platform are fmin =
3 kHz, fmax = 22 kHz over T = 6.4 ms, so that the chirp
contains (fmin +fmax)T/2 = 80 cycles. The window A(t)
is a linear ramp for the first and last 5% of the chirp, and
flat in between.

For the NSWC PCD scale tank, fmin = 200 kHz,
fmax = 900 kHz over T = 0.36 ms, so that the chirp
contains 200 cycles. The amplitude A(t) takes the form
of a cos2 envelope, turning on and off as sin2(πs/2t0),
0 ≤ s ≤ t0 ' 0.07 ms, where s is the time difference from
the chirp endpoints, and is flat in between.

If one models the received signal as a superposition of
scattered pings,

ϕ(t) =

∫ ct/2

0

drf(r)S(t− 2r/c) (5.6)

where f(r) is the amplitude of the scattering from the
medium at range r, then the signal at time t will be a

superposition of time delayed chirps from a broad set
of ranges spanning a distance cT/2. In order to isolate
different returns, one performs the pulse compression op-
eration using the chirp complex conjugate,

ϕc(t) =

∫ T

0

dt′S(t′)∗ϕ(t+ t′)

=

∫
drf(r)Sc(t− 2r/c), (5.7)

where the compressed pulse

Sc(t) =

∫
dω

2π
e−iωt|Â(ω)|2 (5.8)

has minimal width ∆t ≈ 2π/(ωmax − ωmin) approaching
the Heisenberg limit. As long as targets are well sepa-
rated on the range scale c∆t/2, their returns will appear
in (5.7) as isolated pulses. Thus, the combination of pulse
compression and time windowing allows one to isolated
individual returns. The spectra of these windowed re-
turns may then be computed, thereby isolating the spec-
tral responses (scattering amplitude vs. frequency) of in-
dividual targets.

Note that an approach, alternative to chirps, would be
a stepped frequency source, with longer dwell time on
each frequency. This would likely produce lower SNR
data through time averaging at each frequency. However
sonar platforms are generally moving too quickly relative
to the signal propagation speed to make this approach
sensible, and chirps become the best available option.

VI. DATA ANALYSIS: FREE-FIELD SPHERE
BOSS DATA

A. Pulse compression and beam forming

As our first example of pulse compression processing,
Fig. 10 shows the magnitude of the raw return (5.6) at a
single receiver for a series of 150 chirps launched by the
BOSS platform. The pulse origins are spaced by about 4
cm through the linear motion of the platform. The bot-
tom return forms the major part of the scattered signal,
with scattering from the target of interest (a 4” diameter
sphere, at d = 2.7 m offset at closest approach) appearing
only as a weak ripple on top of this.

The result of the pulse compression operation is dra-
matically different, and is shown in Fig. 11. The narrow
sphere return is now well separated from the bottom re-
turn, corresponding to about 5.3 m depth. As shown in
Fig. 12, a fit to the hyperbolic arc

tm =
1

c

√
d2 + (∆xm)2, (6.1)

where tm is the time delay of ping m, and ∆xm is the
along-track distance from closest approach, is indeed con-
sistent with the above standoff and ping separation.
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FIG. 10: Time-domain back-projection image formed from signal envelope time traces for a series of 150 pings separated by 4
cm. In this unprocessed image, the scattering return from a 4-in diameter sphere at 2.7 m offset appears as a weak ripple on
the bottom-reflection background.

To increase SNR, we now perform the beam-forming
operation

ϕc,beam(t) =

Np∑
m=1

ϕc,m(t− tm), (6.2)

where Np is the number of pings used. The time delay
is designed to line up all of the returns in phase. For a
spherical target, these returns should all be identical (up
to a 1/r geometric spreading factor), and the sum should
therefore increase SNR by a factor of order

√
Np. The

resulting (compressed, beam-formed) waveform is shown
in the upper panel of Fig. 13.

B. Backscattering spectrum

The lower panel of Fig. 13 shows the resulting spec-
trum, along with the chirp spectral window function
(5.5). In order to interpret this spectrum, in relation
to the T -matrix coefficients, one makes use of the plane

wave decomposition

eik·x =
∑
l

il(2l + 1)jl(kx)Pl[cos(θ)], (6.3)

where cos(θ) = k̂ · r̂ and Pl(x) are the Legendre polyno-
mials. Using the far field expansion (which is well obeyed
in this experiment) of the spherical Hankel function,

hl(x) ≈ (−i)l e
ix

ix
, (6.4)

it follows from the basis function representations pre-
sented in Sec. III that the scattered field generated by
an incident plane wave takes the form of an outgoing
spherical wave

ϕ̂(x) ≈ f(r̂;k)
eikr

r
(6.5)

where f is the scattering amplitude, and the unit vector
r̂ defines the observation direction r = x − xS . For a
spherically symmetric scatterer, one obtains from (3.12)
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FIG. 11: Same as Fig. 10 but plotted now are the signal envelope time traces after the pulse compression operation has
been applied. The scattered signal from the sphere is now completely separated from the bottom reflection. Note that the
compression operation, which may be thought of as separately adjusting the time of flight for each frequency component,
thereby causes the time range to shift from that in Fig. 10.

the relation

f(r̂;k) =
1

ik

∑
l

(2l + 1)Tl(k)Pl[cos(θ)], (6.6)

which also depends only on the relative angle θ of the
incident and outgoing directions. Now, for a backscatter
measurement, r̂ = −k̂, one obtains

f(−k̂;k) =
1

ik

∑
l

(−1)l(2l + 1)Tl(k), (6.7)

representing therefore a single linear combination of T -
matrix coefficients for each frequency ω = ck. This is the
function shown in the lower panel of Fig. 13, and it is
therefore seen that it is impossible to extract individual
coefficients from a backscatter measurement alone.

For a nonspherical scatterer (6.6) is replaced by

f(r̂;k) =
1

ik

∑
l,m

flm(k)Ylm(θ, φ), (6.8)

where θ, φ are the orientation angles corresponding to
r̂. This form allows for a non-axially symmetric scat-
tered wave. Here flm(k) represents a certain weighted
sum of the Tlm;l′m′(k) over l′,m′ that depends on the
incident wave direction. For a backscatter measurement
r̂ = −k̂ one again obtains a single linear combination
of all the T -matrix coefficients for a given k. Multiple
backscatter measurements for different k produce differ-
ent linear combinations, but this provides at best (for
full 4π angular coverage) only a 2D projection of the full
four-dimensional set of coefficients defined by l,m, l′m′.
Individual coefficients are again impossible to to extract.

We have also analyzed data for multiple receivers and
find that the angular diversity is insufficient to distin-
guish the different returns from pure backscatter at this
standoff. In Sec. IV C we described simulated inversion
results using much closer approaches, and more diverse
sets bistatic measurements, and found that the geomet-
ric requirements for robust inversion are quite stringent.
Specifically, one needs angular diversity sufficient to ex-
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FIG. 12: Hyperbolic fit to the sphere return in Fig. 11. The
red stars show the time bin for the signal maximum in each
time trace. The fit yields a 2.7 m standoff and 4.06 cm spacing
between pings, which accords well with the ground truth.

plore a broad range of cos(θ) in (6.6). A newer, NSF–
sponsored BOSS platform having a 4 m wingspan, might
provide sufficient angular aperture for low enough passes.
This will be explored in more detail in the near future.

VII. DATA ANALYSIS: SCALE-TANK
MEASUREMENTS ON SPHERICAL AND

CYLINDRICAL TARGETS

In order to demonstrate experimentally the added ben-
efit that can be obtained from bistatic data, we discuss
briefly here a set of NSWC high quality laboratory scale

tank data using 3
16

′′
diameter aluminum sphere as a tar-

get. The geometry and parameters of the measurements
are shown in Fig. 14. Figure 15 shows the backscatter
data from receiver R1, while Fig. 16 shows the bistatic
scatter data from receiver R2. In both cases, the receiver
angle refers to the simultaneously rotating position of
R2, and the orientation of the target. The upper panel
each figure shows the compressed pulse, indicating the
microsecond level accuracy with which the acoustic prop-
agation time can be determined. The lower panel shows
the pulse spectrum.

In Fig. 15 the pulse spectrum changes very little with
angle, consistent with the invariance of the backscatter
with sphere orientation. This confirms as well that there
is essentially no T -matrix coefficient information in this
data.

On the other hand, in Fig. 16 one sees very interesting
variation of the scattering amplitude with frequency and
angle. The angular variation becomes less pronounced at
lower frequency, consistent with a more rapid vanishing
of the higher order Tl(k). Figure 17 shows the results of
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FIG. 13: Top: Beam-formed, pulse-compressed time trace,
formed from Np = 51 pings (numbered 200–250 in Fig. 11)
using the time delays generated by the hyperbolic fit in Fig.
12. The vertical dashed lines show the time window of the
return that will be used to generate the scattered spectrum.
The 43.4 kHz sampling rate means that there are only about
100 time bins in this window. Bottom: Spectrum obtained
from the Fourier transform of the of the windowed time trace.
The dashed line shows the normalized frequency window Â(ω)
generated by the pulse compression operation. At low fre-
quency, a/λ� 1, where a = 5 cm is the sphere radius, theory
predicts T0 ∝ (a/λ)2, and Tl ∝ (a/λ)l+1 for l ≥ 1. Thus,
T0, T1 ∝ f2 dominate at low frequency. For 5 ≤ f ≤ 20 kHz
one has 0.17 ≤ a/λ ≤ 0.67. The spectrum indeed displays
this expected trend of increasing backscatter with frequency,
but is difficult to interpret beyond this.

an optimal fit of the data to the series

f(θ, ω) =

lmax∑
l=0

Al(k)Pl[cos(θ)] (7.1)

using maximum Legendre polynomial index lmax = 9.
Here, comparing (6.6), one identifies Al(k) = (2l +
1)Tl(k)/ik. In Figs. 18 and 19 we compare this finite
series to the data, first at the single frequency f = 500
kHz, and then over all frequencies. The results confirm
a poorer fit at higher frequencies, where rapid variation
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FIG. 14: NSWC scale tank geometry. The target S is centered at the origin. Relative to this, the 1′′ transmitter element
T is at radius 42 cm and height −2.26 cm, and the 1′′ backscatter receiver R1 is directly above it at height +2.26 cm. The
1′′ “forward scatter” receiver R2 moves on a track of radius 32.2 cm, also at height +2.26 cm. In the data we describe, the
transmitted linear chirps span the band 200–900 kHz (wavelengths from 7.5 mm to 1.6 mm), and have a cos2 envelope. As the
second receiver rotates, the target rotates along with it.

in the scattering amplitude is evident especially as one
approaches forward angle scattering, which is likely due
to shadowing effects.

We have developed codes that implement the exact an-
alytic solutions for scattering from an elastic sphere. We
have not yet validated these codes with the data shown
in this figure, but will do so in immediate future work.

The essential takeaway from this brief introduction to
the tank data is that transmitter-receiver angular diver-
sity is critical to recovering T -matrix information. It is
seen, for example, that the interesting spectral variations
seen in Fig. 16 really only begin to manifest strongly be-
yond about 45◦.

VIII. CONCLUSIONS

The results described in this document support the
following major conclusions:

1. Bistatic measurements, specifically with a diverse
set of incident and reflection angles enabled by large
measurement aperture, will enable large gains in
key parameter estimation.

(a) Absent large angular aperture, one is mainly
measuring the backscatter amplitude and, as
described in Sec. VI B, this does not con-
tain enough information to usefully resolve T -
matrix coefficients.

(b) BOSS utility: We have verified through sim-
ulation that the newer 4 m wingspan BOSS
platform, flown at sufficiently low altitude,
could provide the necessary aperture, but this

needs to be validated through near-future fo-
cused data collects. A simple way of essen-
tially doubling the aperture would be to place
additional transmitters at the wing tips [? ].

(c) Bottom sediment acoustic properties: there
will be huge gains in inverting the angle-
dependent reflection coefficient R(θ) for sedi-
ment sound speed and density if one is able to
approach the critical angle θc. The attached
document, which details our attempts to use
BOSS datasets to infer bottom sediment prop-
erties, shows that the required data sets do
not yet exist, but they are within reach of a
low-flying 4 m BOSS.

(d) T -matrix coefficients and target discrimina-
tion: As stated earlier, our aim is to corre-
late scattered wave geometry (i.e., multipole
structure of the outgoing wavefront) with tar-
get internal characteristics (e.g., aspect ratio,
identification of vibrational modes). As il-
lustrated, especially by the scale tank data,
this multipole structure can only be accessed
robustly with large aperture. Again, a low-
flying 4 m BOSS, especially one with wingtip
transmitters, may be sufficient. However, this
needs to be validated with real data.

2. Looking to the near and further future: Once the
basic utility of T -matrix-derived features is demon-
strated, one can imagine various enhanced data col-
lection platforms and strategies to support their ex-
traction.

(a) Enhanced BOSS: As suggested above, the sim-
plest proposal would be to add wingtip trans-
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FIG. 15: Top: Pulse compressed backscattered returns (receiver R1 in Fig. 14) for a suspended 3
16

′′
diameter aluminum sphere.

Bottom: Backscattered return spectrum. The transmitter and receiver are fixed, but the target rotates by 180◦ (along with
receiver R2). In a perfect measurement on a perfect sphere, there should be no variation with angle. The roughly 0.02 ms
variation in arrival time corresponds to a 3 cm change in acoustic path length. To within experimental tolerance, however, the
spectra are consistently uniform in angle.
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FIG. 16: Top: Pulse compressed bistatic scattered returns (receiver R2 in Fig. 14) for a suspended 3
16

-in diameter aluminum
sphere, taken during the same run as the backscatter data in Fig. 15. The 140◦ angle range is reduced here from 180◦ because
the much brighter direct path begins to dominate the signal. Bottom: Bistatic scattered return spectrum. In a perfect
experiment the pulse arrival times should be independent of angle; the roughly 0.015 ms variation in arrival time corresponds
to a 2 cm change in acoustic path length. The spectra, however, which represent a kind of diffraction pattern, have an interesting
variation, reflecting the nontrivial dependence of the scattering amplitude on θ in (6.6).
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FIG. 17: Real and imaginary parts of the coefficients Tl(k),
l = 0, 1, 2, . . . , 9 obtained from the scale tank data data
(whose magnitude is shown in the lower panel of Fig. 16).

mitters to the 4 m BOSS. These could provide
the added benefit of independently covering
different frequency bands, leading to stronger
ensonification of the environment and hence
stronger scattering returns.

(b) Multiple BOSS platforms, or at least a sep-
arate, independently controlled transmitter:
Obviously, multiple independently controlled
platforms would lead to a huge gain in angu-
lar aperture. Of course this entails enormous
technical difficulties as well, e.g., simultaneous
control and simultaneous geolocation issues.

APPENDIX A: BOSS DATA ANALYSIS IN
SUPPORT OF SEDIMENT INVERSIONS

This effort will consider the feasibility of determining
sediment acoustic properties via remote acoustic mea-
surements. While previous efforts [3, 4] have reported
estimates of sediment properties via acoustic interroga-
tion, this paper focuses on efforts to establish this sensing
capability with in-situ data provided by the BOSS sonar
system.

Figure 20 depicts the acoustic path lengths for the
BOSS system configuration (Fig. 21). An omnidirec-
tional source located 0.72 m aft of the receive array axis
ensonifies the bottom and (assuming smooth surface, ray
tracing theory) the geometric path that obeys the reflec-
tion law (θincident = θreflected) determines the respective
path and delay for a particular source/receiver pair.

Given a dataset of forward-scattered returns, as seen
across an array, we observe a sweep of incident angles as
shown in Fig. 20. When the incident angle passes the
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FIG. 18: Comparisons of the measured and reconstructed [us-
ing the 10 term series (7.1)] real part of the scattering ampli-
tude f(θ, ω) at the single frequency f = 500 kHz. A better
fit would require a much larger value of lmax, illustrating the
increasing complexity of the diffraction pattern at higher fre-
quency, especially as one approaches forward angle scattering
where shadowing effects become strong. The fit has been per-
formed over the limited range of angles 10◦ ≤ θ ≤ 140◦ seen
in the data in Fig. 16, where the direct blast interferes at the
higher end and transmitter-receiver occlusion interferes at the
lower end.

critical angle, defined by sin(θc) = c1/c2 (see Sec. II A)
the magnitude of the reflection coefficient will be unity
and the phase changes in a distinctive way. This depen-
dence on incident angle is shown in Fig. 1. Reflections
past critical will have a distinct phase component that
may be exploited to more accurately determine θc and
hence c2 from element-wise observations, where only am-
plitude variations are observable.

For the present geometry, we have calculated the avail-
able range of incident angle as shown in Fig. 22 for the
cases of:

1. Blue: source is in the same longitudinal position as
the arrays.

2. Red: source displaced 0.72 m backward.

The blue trace was a baseline check that shows the min-
imum critical angle, while the red trace shows the effect
of longitudinal offset. For the array length of ∼ 1.5 m
and height off the bottom of 1.5 m we can achieve a
range of 9◦ ≤ θincident ≤ 25◦. Note that we are achiev-
ing this observable range of θincident by looking at the
data across all the elements of the array. Unfortunately,
for the anticipated sediment sound speed this range of
θincident will only occupy the sub-critical angle regime of
Fig. 1. Nonetheless, with a data set of adequate quality,
we anticipate that an estimate of the reflection coefficient
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FIG. 19: Comparisons of the measured and reconstructed [us-
ing the 10 term series (7.1)] scattering amplitude f(θ, ω) over
all frequencies. The top two panels compare the real parts,
the bottom two the imaginary parts. The fits are again seen
to yield poorer results at higher frequencies at larger forward
angles.

FIG. 20: Acoustic Path Lengths for BOSS Measurement

FIG. 21: Florida Atlantic University’s 160 Channel BOSS
towfish

can be developed by a ratio of direct to surface bounce
returns at incident angles below critical.

1. Data Analysis

NSWC PCD staff are identifying the most suitable
datasets for testing the proposed methodology for esti-
mating reflection coefficients. All of the data that has
been processed so far was collected by Florida Atlantic
University using their 160 Channel BOSS towed system
under SERDP project 1507, and is currently archived
at NSWC PCD. The 160 Channel BOSS has a different
system configuration that the 40 Channel BOSS system
owned by NSWC PCD, and these differences have pro-
duced peripheral challenges over and above dataset se-
lection. In order to develop an estimate of the reflection
coefficient from a selected data set these issues must be
considered:

1. Altitude H above seafloor.

2. Particulars of the seafloor parameters for the ex-
periment.

3. Geometry of the array
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FIG. 22: Incident angle vs. array offset

FIG. 23: Return level with channel gain variability

4. quality of retrieval “reader” software

Our recent experience has shown that retrieval of past
datasets is particularly vulnerable to the quality of ex-
perimental documentation as it relates to system config-
uration parameters such as waveforms and source levels
along with system design parameters such as the wiring
of sensors for both channel allocation and consistent gain
settings. This last point has a strong bearing on our
reported results because the programming of the field-
programmable gate array (FPGA) logic chip that inter-
faces the analog-to-digital converters (ADCs) to the hard
drive storage has imposed two distinct and difficult un-
knowns into the data:

1. The channel indices are unknown (or at least un-
documented) and require an iterative sequence of
requesting data files from the “reader” format in-
terface software (no source code available) and
checking the candidate ordering against timing and

STAVE

ELEMENT

WING = 4 Parallel Staves

STAVE= 20 colinear elements

FIG. 24: BOSS array details

beamforming metrics.

2. Channel gains are also indeterminate. For the
most recent data set that has been provided
“MediumSand10chan” (medium sand sediment,
and 10 nominally sequential channels extracted) it
has been observed that every fourth element (Fig.
23) has an additional ∼ 18 dB of received level over
and above its neighboring elements. This could be
due to a glitch or feature or could be an inadvertent
interchange of a low and high gain staves. Note that
the reflection coefficient will vary approximately 3
dB across the range of sub-critical angles (Fig. 1).
These issues only apply to the 160 Channel BOSS
and it should be possible to do data collections
specifically aimed at estimation of reflection coef-
ficients with the 40 Channel UUV system that re-
sides at NSWC PCD where there are no unknown
parameters.

a. Hardware geometry and characteristics

Figure 24 shows the general layout of either the port
or starboard sonar array for the BOSS fish of figure 21;
Each wing has 4 parallel staves, and each stave consists
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FIG. 25: Time segmentation for direct and bounce paths
(nchirp=80)

of 20 piezo-ceramic receive elements. The source element
shown in Fig. 20 is an ITC1007. We are still trying to
identify the electroacoustic specifics for the piezo receive
elements. Another point is that given the nominal ge-
ometry of the experiment and the array there will be
four distinct sensor returns at very nearly the same echo
time. This particular geometry increases the difficulty in
untangling the unknown channel indices.

b. Inferring geometry from time segmentation and
interpretation

In order to observe the widest span of θincident the
dataset “MediumSand10chan” was chosen due to its low
flying altitude of about 1.5 m from the bottom surface.
The path length for the assumed geometry can be shown
equal to

PL(x;SRC,RCV ) =
√

∆2
y + x2 (A1)

where x is the array element offset from the longitudinal
CL and ∆y is the longitudinal offset from the array/wing
CL.

For the bottom bounce path the equivalent result is

PL(x; bounce) = 2

√
H2 +

(
PL(x;SRC,RCV )

2

)2

(A2)
Figures 25 and 26 plot an overlay of slightly varying re-

turns against Range = Ct [11]. We plot against R = Ct
because the path lengths within the experiment include
both one way (direct) and two way (bottom bounce)
acoustic paths.

As seen in both figures the first bottom bounce resides
at 3.2 m (1.6 m one-way) and there is a weaker return
centered at ∼ 2 m. These same returns are alternatively

FIG. 26: Time segmentation for direct and bounce paths
(nchirp = 65)

FIG. 27: Time/Element waterfall plot for dechirped returns
(nchirp = 65)

plotted in pseudo-3D “waterfall” mode in Figs. 27 and
28 [12].

This waterfall mode provides distinct observations of
each trace with the potential for more effective visual
dynamic range. Hence, we can overlay the green- and
blue-peak location traces that align with the early and
later returns and along with a geometric prediction based
on (A1) (red trace).

The difference between the respective figure pairs of
[25, 26] and [27, 28] is the time extent of the dechirp-
ing waveform. We initially perturbed the notional pulse
length because we were dissatisfied with the post dechirp-
ing range resolution of Fig. 28 and we found that reducing
the time extent resulted in the sharper post dechirp res-
olution of Fig. 27. In the absence of a formal dechirp
waveform specification (that would also reflect the free-
field transceiver impulse response) we have used an ad-

20
Distribution A / Approved for public release



FIG. 28: Time/Element waterfall plot for dechirped returns
(nchirp = 80)

hoc procedure of iteratively autofocusing towards the
sharpest dechirp signal. An alternate approach would in-
volve identifying another dataset where increased height
off bottom would provide a distinct time gap in the re-
turns between the direct- and bottom-bounce returns.
This would help untangle the ambiguity of the early and
late arrivals and provide a direct experimental measure-
ment for the transceiver impulse response. Other impor-
tant observations that pertain to these figures include

1. The geometric prediction (red trace) is constant
across Figs. 27, 28 but the early return peak loca-
tion (green trace) varies with the FM dechirp spec-
ification: Post-dechirp time delay is affected by the
signal model used in the dechirp.

2. The signal level difference for these first returns
relative to the bottom bounce is roughly what
would be expected by the geometric factor G(f, θ)
discussed in App. B. However, the direct path
PL(x;SRC,RCV ) characteristic (red trace) differs
significantly from the green trace in Figs. 27, 28
The green trace does not agree with any viable
hypothesis; 2 m is too far away for the one-way
SOURCE/RECEIVER path and it is too close to
explain as a round trip from a 1 m distance target.

Figures 29 and 30 show these same time and channel
return in a dB color scale image that emphasizes return
level over the time difference readily seen in the “wa-
terfall”figures. (In fact, the return range was limited to
exclude the first return and improve the dynamic range.)
These plots highlight the close time arrival agreement for
the bottom-bounce model when the altitude and dechirp-
group delay are properly accounted for.

FIG. 29: Normalized return level vs. range and element

FIG. 30: Normalized return level vs. range and element

2. Conclusions and Recommendations

Our familiarity with the 160-channel BOSS data sets
collected under SERDP project 1507 is improving, but
still evolving. Presently there are four major impedi-
ments that must be addressed before we can step through
a self-calibration (Sec. B) and curve-fitting procedure to
estimate the reflection coefficient of the sediment:

1. Channel index indeterminacy: Knowing which data
channel data we are looking at.

2. Gain indeterminacy: Know the gain factor for each
channel.

3. Waveform indeterminacy: A more accurate signal
model for the transceiver impulse response will im-
prove the time resolution and reduce the bias of
the amplitude estimation for the signal processing
sequence.
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FIG. 31: Plane wave at angle to boresite

4. Geometric uncertainty: This involves reconciling
timing and channel index to achieve better agree-
ment with the geometric configuration.

We very much appreciate the time and effort that Rudy
Arrieta has invested in providing us the initial datasets
on such short notice. We anticipate that the above issues
can be shortly resolved to achieve an in-situ Rcoeff es-
timation capability. This remote sensing capability can
then be used to support both of a T -matrix based inver-
sion for detecting buried UXO objects.

APPENDIX B: SELF CALIBRATION

In some experimental setups (Fig. 20) adequate esti-
mates of acoustic source level may not always be avail-
able. In this case, it may still be possible to estimate
the reflection coefficient by determining the (amplitude)
ratio of the bounce to the direct path.

Figure 31 shows a plane wave incident on a piezo el-
ement at an angle to the element’s normal vector. The

same linear model that develops the traditional beam
pattern response for these elements can be extended all
the way to π/2 from boresite which represents a plane
wave traveling “along” the element’s face (alternately
kz = 0).

This response,

G(f, θ) =

∫ yf

yo

∫ xf

xo

ei(kxx+kyy)dxdy, (B1)

where [kx, ky] = 2πf
C [sin(θ), cos(θ)], is shown in Fig. 32

for parameters within the range of experimental data we
are considering. As a result of the relatively small size of
the element as compared to the λ the in-plane response

FIG. 32: Plane Wave response vs G(f, θ)

is no more than 10 dB down from the boresite response.
Moreover, for the configurations under consideration the
geometric factor kL ∼ O(1) (L being the array’s nomi-
nal dimension) is small enough to substantially avoid the
side lobe issue. Hence, assuming G(f, θ) to be a consis-
tent and distinct geometric factor for respective in-plane
(direct) and near-boresite (bounce path) contributions,
provides the potential to determine the ratio.
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