

USER’S GUIDE
FANS Simulation of Propeller Wash at Navy Harbors

and
FANS-3D User’s Guide

ESTCP Project ER-201031

AUGUST 2014

Hamn-Ching Chen, Ph.D.
Texas A&M University

Pei-Fang Wang, Ph.D.
Space and Naval Warfare Systems Center Pacific
Environmental Quality Branch

 Distribution Statement A

This document has been cleared for public release

ii

CONTENTS

1.0 Introduction ... 1

2.0 Simulation Scenarios for DDG-51 Ship .. 4

2.1 FANS Model Simulation Results for DDG-51 Ship .. 6
2.2 Disturbed Velocity Profiles .. 7
2.3 Estimated Bottom Shear Stresses ... 14

3.0 Simulation Scenarios for Tugboat with Ducted Propellers Error! Bookmark not defined.

3.1 FANS Model Simulation Results for Tugboat with Ducted Propellers 21
3.2 Disturbed Velocity Profiles .. 22
3.3 Estimated Bottom Shear Stresses ... 32

4.0 FANS-3D Users’ Guide ... 36

4.1 Theory and Numerical Algorithm of FANS Code ... 36
4.2 FANS-3D Software Documentation and Execution .. 39
4.3 FANS-3D Code Parallelization .. 40
4.4 Computer Platforms, Compilation, and Execution .. 43
4.5 FANS-3D Data Export ... 44
4.6 Example Case 1: DDG-51 Ship and P4876 Propeller Wash Study 47
4.7 Example Case 2: Tugboat and Ducted Propeller Wash Study 55

5.0 References .. 61

Appendix A. Structure of the boundary condition input A-Error! Bookmark not defined.

Appendix B. COSMIC input file for DDG-51 and P4876 propeller wash study B-Error!
Bookmark not defined.

Appendix C. COSMIC input file for tugboat and ducted propeller wash study C-1

iii

TABLES

Table 1. Propeller information for DDG-51 ship in FANS simulation .. 5

Table 2. Maximum shear stresses in different regions of the seabed .. 17

Table 3. Propeller information for tugboat in FANS simulation .. 19

iv

FIGURES

Figure 1. DDG-51 ship and P4876 propeller geometry Error! Bookmark not defined.

Figure 2. Computational domain and numerical grids Error! Bookmark not defined.

Figure 3. Longitudinal velocity contours and velocity vectors near seabed 8

Figure 4. Velocity profiles at the keel plane . .. 9

Figure 5. Axial velocity contours and velocity vector plots around the propeller Error!
Bookmark not defined.

Figure 6. Propeller induced flow field at selected stations Error! Bookmark not defined.

Figure 7. Propeller induced swirling flows .. 13

Figure 8. Shear Stress distribution on the seabed ... 14

Figure 9. . Surface plots of shear stresses on the seabed ... 15

Figure 10. Surface plots of seabed shear stresses around the twin-screw propellers 16

Figure 11. Tugboat and ducted propeller geometry Error! Bookmark not defined.

Figure 12. Harbor configurations for tugboat propeller wash simulations 20

Figure 13. Computational domain and numerical grids ... 21

Figure 14. Axial velocity contours on the vertical propeller center plane at t/To = 100, 200, 300,
400 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water 23

Figure 15. Axial velocity contours on the horizontal propeller center plane (left) and free surface
(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water . 24

Figure 16. Axial velocity contours on the vertical propeller center plane at t/To = 100, 132, 200,
300, 400 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall 25

Figure 17. Axial velocity contours on the horizontal propeller center plane (left) and free surface
(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall
.. 26

Figure 18. . Pressure contours on pier wall and sea bottom, t/To = 160 and 320; Case 2 with propeller
blowing toward a pier wall ... 27

Figure 19. Axial velocity contours behind the right propeller (near pier wall); Case 3 with propeller
blowing parallel to pier wall ... 28

Figure 20. Axial velocity contours behind the left propeller (away from pier wall); Case 3 with
propeller blowing parallel to pier wall .. 28

Figure 21. Axial velocity contours on the horizontal propeller center plane (left) and free surface
(right) at t/To = 100, 200, 300, 400 and 500; Case 3 with propeller blowing parallel to pier wall
.. 29

Figure 22. Axial velocity contours at horizontal propeller center plane (top) and selected cross-
sections (bottom); Case 3 with propeller blowing parallel to pier wall .. 30

Figure 23. Propeller-induced swirling flows (normalized by Uo) at t/To = 500 31

Figure 24. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case

v

1 with propeller blowing to open water ... 32

Figure 25. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 2
with propeller blowing to pier wall ... 33

Figure 26. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 3
with propeller blowing parallel to pier wall ... 34

Figure 27. Finite analytic function associated with a node placed a (x,y)=(-1,0), for an element in
(x,y) [-1,1]× [-1,1], for different flow conditions 37

Figure 28. Convergence curves for verification studies of the finite analytic functions as (a)
interpolants and as (b), (c), (d) a collocation discretization procedure .. 38

Figure 29. Multiple block structured grid showing N = 7 blocks, which are to be distributed among P
≤ 7 processes .. 41

∈

1

Abstract

Propeller wash induces high shear stresses on seafloor which may cause sediment resuspension
in DoD harbors. In order to improve our understanding of the sediment erosion, transport, dispersion,
and re-deposition processes, it is desirable to use advanced computational fluid dynamics models to
provide detailed resolution of the velocities and bottom shear stresses induced by the propeller wash
in confined shallow water basins. In the present study, the Finite-Analytic Navier-Stokes code has
been employed to solve the Reynolds-Averaged Navier-Stokes equations in conjunction with advanced
near-wall turbulence model for several propeller-wash sceanarios involving a DDG-51 ship with twin-
screw propellers and a tugboat with two ducted propellers. This enables us to evaluate the effect of
water depth, ship speed, propeller rotating speed, and pier wall configuration on the propeller-induced
shear stresses distributions.

1.0 Introduction

In the present study, the Finite-Analytic Navier-Stokes (FANS) code has been employed

for propeller wash study in Navy harbors. The FANS code solves Reynolds-Averaged Navier-
Stokes (RANS) equations together with advanced turbulence models in general curvilinear
coordinate systems using overset (chimera) grids. The overset grid system greatly facilitated the
simulation of arbitrary relative motions among various computational grid blocks such as those
encountered wave-current-body interactions and vortex-induced vibrations. The FANS code
consists of the following main components: (1) finite-analytic method for the solution of
compressible and incompressible Reynolds-Averaged Navier-Stokes (RANS) equations and
energy equation in general curvilinear coordinates; (2) dynamic chimera domain decomposition
technique for overlapped, embedded, or matched grids including relative motions; (3) near-wall
Reynolds stress (second-moment) and two-layer k-ε turbulence models for turbulent boundary
layer and wake flows; (4) large eddy simulation for unsteady chaotic eddy motions, (5) linear and
nonlinear wave effects; (6) level-set method for interface-capturing between two different fluids,
(7) detailed propeller flow simulations or interactive coupling with propeller performance
programs, (8) coupling with six-degree-of-freedom motion program for ship, structure, wave, and
current interactions, and (9) multi-processor parallelization for large-scale CFD applications. The
combination of these methods provides a unique capability for modeling complex fluid flow and
heat transfer around practical three-dimensional configurations including viscous and violent free
surface effects.

The FANS code has been used extensively for the simulation of ship motions under very

shallow water conditions. Chen et al. (1998, 2000) performed berthing simulations for DDG-51 and
AOE-6 ships with underkeel clearance ranging from 5-20% of the ship draft. Chen and Huang (2003)
and Huang and Chen (2003) also performed time-domain simulation of berthing operations involving
a modular hybrid pier (MHP) with 2 mooring dophins, two moored LHD ships, one berthing LHD
ship, a tug boat, 7 fenders and 12 mooring lines. In these simulations, a very shallow water depth of
28 ft was intentionally chosen to confine the underkeel clearance of the moored and docking ships to
1 ft or 3.7% of the ship draft (= 27ft). The FANS code has also been used in Chen, Lin and Huang
(2002a, 2002b) and Chen, Lin, Liut and Huang (2003) for the study of multiple-ship interactions in
dredged navigational channels. More recently, the FANS code has also been used by Huang and Chen
(2007, 2010) for site-specific passing ship effects on a docked ship moored to a floating pier in Norfolk

2

harbor. These simulation results clearly demonstrated the capability of the FANS code to model
complex interactions between Navy harbor facilities and their client ships in a real waterfront ambience
including site specific conditions such as sea bed bathymetry, shorelines, harbor geometry, navigation
channels, hull shapes, and arbitrary ship motions.

In addition to the simulation of multiple-ship interactions, the FANS code has also been

used extensively for a wide range of fluid-structure interaction problems including propeller-ship
interactions (Chen and Lee, 2004; Lee and Chen, 2005; Pontaza, Chen and Lee, 2006), greenwater
and extreme slamming of ship in random waves (Chen and Chen, 2014), wet-deck slamming (Chen
and Yu, 2007), LNG tank sloshing (Chen, 2011), hurricane wave loads on offshore platform and
jack-up structure (Chen, 2010, 2013), vortex-induced vibration of deep water risers (Huang, Chen
and Chen, 2010, 2011, 2012) and riser interferences (Chen, Chen and Huang, 2013), and scour
around bridges (Chen, 2002, Briaud, Chen, Li and Nurtjahyo, 2004; Chen, Briaud and Chen,
2006).

In the FANS code, the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for

incompressible flow in curvilinear coordinates are formulated in general curvilinear coordinates
(,) (, , ,)i t tξ ξ η ς= :

 (1)

 (2)

where Ui and ui represent the mean and fluctuating velocity components, and gij is conjugate metric
tensor. t is time, p is pressure, and Re = UoL/ν is the Reynolds number based on a characteristic length
L, a reference velocity Uo, and the kinematic viscosity ν. Equation (1) represents the continuity
equation and equation (2) represents the mean momentum equation. The equations are written in tensor
notation with the usual summation convention assumed. The subscripts, ,j and ,jk, represent the
covariant derivatives.

In the present study, the two-layer turbulence model of Chen and Patel (1988) is employed to

provide closure for the Reynolds stress tensor . In this approach, the Reynolds stresses are related
to the corresponding mean rate of strain through an isotropic eddy viscosity ν t:

i j ij ij

t
2u u 2 S g k
3

ν− = − (3)

with (), , ;ij ik j jk i ij i j
k k

1 1S g U g U k= g u u
2 2

= + (4)

where ijS represent the contravariant components of the rate-of-strain tensor, and k is the turbulent
kinetic energy. Substituting Equation (3) into Equation (2) yields:

, ,
,

i
j i ij ij jk i

j t jk
j t

U 2 1U U g p k 2 S g U 0
t 3 R

ν∂ + + + − − = ∂
 (5)

0=i
i,U

() 01
=−+++

∂
∂ i

jk,
jk

j,
ij

j,
jii

j,
j

i

Ug
Re

pguuUU
t

U

jiuu

3

The quantity / / Ret t1 R 1 ν= + represents the effective viscosity. In the fully turbulent
flow region away from the solid walls, the standard k-ε model is employed to solve the transport
equations for turbulent kinetic energy k and its dissipation rate ε :

, ,
,

j ij
j j

k i

k 1U k g k G 0
t R

ε
 ∂

+ − − + = ∂
 (6)

, ,
,

2
j ij

j j 1 2
i

1U g C G C 0
t R k kε ε

ε

ε ε εε ε
 ∂

+ − − + = ∂
 (7)

where the eddy viscosity ν t and the production term G are given by:

;
2

ij mn
t t im jn

kC G=2 g g S Sµν ν
ε

= (8)

The effective viscosities in Equations (6) and (6) are taken as / / Re /k t k1 R 1 ν σ= + and

/ / Re /t1 R 1 ε εν σ= + , respectively.

In the present two-layer approach (Chen and Patel, 1988), the dissipation rate in the near

wall region is determined from the turbulent kinetic energy and the dissipation length scale ε to
account for the wall effects:

/

; exp(/)
3 2

y
k C y 1 R Aε ε

ε

ε = = − −

 (10)

Using this relationship, the turbulent kinetic energy can be determined from Equation (6)

with the following eddy viscosity distribution:

; exp(/)t yC k C y 1 R Aµ µ µ µν = = − − (11)

The constants C , Aµ and Aε are given in Chen and Patel (1988) are chosen to yield a
smooth distribution of eddy viscosity between the two regions.

The above equations are solved numerically using the finite-analytic method developed by

Chen and Chen (1984), Chen, Patel and Ju (1990), Chen, Bravo, Chen and Xu (1995) and Pontaza,
Chen and Reddy (2005). A detailed description of the finite-analytic method is provided later in
the FANS-3D Users’ Guide section.

4

2.0 Simulation Scenarios for DDG-51 Ship

FANS simulation were performed for a DDG-51 ship as shown in Figure 1 under two
different water depths (10.0588 m and 11.5824 m) and two different propeller rotating speeds (26
and 51 rpms). The length of the DDG-51 ship is 142.04 m (466 ft) and the designed draft is 9.4488
m. The diameter of the twin-screw propellers is 5.4864 m (18 ft), and the center of propeller axis
is located at 5.7912 m below the mean water level. For the shallow water case with 10.0584 m
(33 ft) water depth, the underkeel clearance is only 0.6096 m (2 ft) beneath the sonar dome and
the minimum gap between the propeller tip and the sea bottom is 1.524 m (5 ft). The propeller
rotating speed is 26 rpm when the ship speed is 5 knots. The ship speed increases to 10 knots
when the propeller is rotating at 51 rpm. Detailed information of DDG-51 ship and P4876
propellers are summarized in Table 1.

Figure 1. DDG-51 ship and P4876 propeller geometry

5

Case # 1 2 3 4
Ship length L (m) 142.04

(466 ft)
142.04
(466 ft)

142.04
(466 ft)

142.04
(466 ft)

Ship Draft (m) 9.4488
(31 ft)

9.4488
(31 ft)

9.4488
(31 ft)

9.4488
(31 ft)

Water depth, H (m) 10.0584
(33 ft)

11.5824
(38 ft)

10.0584
(33 ft)

11.5824
(38 ft)

Underkeel clearance (m) 0.6096
(2 ft)

0.6096
(2 ft)

2.1336
(7 ft)

2.1336
(7 ft)

Propeller Diameter, D (m) 5.4864
(18 ft)

5.4864
(18 ft)

5.4864
(18 ft)

5.4864
(18 ft)

Distance between Propellers
(m)

9.8755
(32.4 ft)

9.8755
(32.4 ft)

9.8755
(32.4 ft)

9.8755
(32.4 ft)

Distance from ship stern to
propeller (m)

4.8768
(16 ft)

4.8768
(16 ft)

4.8768
(16 ft)

4.8768
(16 ft)

Propeller Depth (depth of the
propeller axis)

5.7912
(19 ft)

5.7912
(19 ft)

5.7912
(19 ft)

5.7912
(19 ft)

Distance from center of
propeller axis to bottom

4.2672
(14 ft)

4.2672
(14 ft)

5.7912
(19 ft)

5.7912
(19 ft)

Forward Thrust (N) 47314 47314 175307 175307
Ship speed (knots) 5 5 10 10
Propeller rpm, n 26 26 51 51
Propeller advance coefficient 1.082 1.082 1.103 1.103
Characteristic velocity, nD
(m/s)

2.3774 2.3774 4.6634 4.6634

Reynolds number based on
propeller diameter D

1.115 x 107 1.115 x 107 2.187 x 107 2.187 x 107

Reynolds number based on
ship length L

3.262 x 108 3.262 x 108 6.245 x 108 3.262 x 108

Table 1. Propeller information for DDG-51 ship in FANS simulation

6

2.1 FANS Model Simulation Results for DDG-51 Ship

Figure 2 shows the computational domain and multi-block overset grids used in the present
study. The overset grid system consists of 15 computational blocks and 7 phantom grid blocks
with a total of 2,369,549 grid points covering half of the solution domain. A near-wall spacing of
5.4864 × 10-6 m was used near the sea bottom to provide accurate resolution of the turbulent
boundary layer flow. Since the first grid point is located within the laminar sublayer, it allows us
to calculate the shear stresses on the seabed directly without relying on the wall-function
approximations.

All calculations were performed for 4,000 time steps (i.e., 100 propeller revolutions) using

12 CPUs on a Linux cluster. For the 5 knots cases, the ship travels a total of 230.8 seconds and a
total distance of 594 m. When the ship speed was increased to 10 knots, it took approximately
117.7 seconds for the ship to travel a total distance of 605 m over 100 propeller revolutions. The
simulation results clearly indicated that the propeller-induced shear stresses reached a periodic
pattern in less than 50 propeller revolutions.

Figure 2. Computational domain and numerical grids

7

2.2 Disturbed Velocity Profiles

Figure 3 shows the predicted velocity contours and velocity vectors adjacent to the sea
bottom. For completeness, the velocity vectors at the keel plane is also shown in Figure 4 to
provide a more detailed understanding of the three-dimensional flow field induced by the ship
motions. For simplicity, the velocities are normalized by a characteristic velocity Vo = nD given
in Table 1, where n is the propeller rotating speed (rps) and D is the propeller diameter (m). It
should be noted that the ship is traveling in the negative x-direction on an earth-fixed frame. This
is equivalent to a positive current in the x-direction on a ship-fixed reference frame. It is clearly
seen from Figures 3 and 4 that there is a strong flow acceleration beneath the sonar dome when
the water is forced to pass through the narrow underkeel clearance below the sonar dome. This
resulted in positive velocities (in the opposite direction of the ship motion) and high shear stresses
beneath the sonar dome.

(a) Case 1: V=5 knots, H=10.0584 m, ω = 26 rpm

(b) Case 2: V=5 knots, H=11.5824 m, ω = 26 rpm

8

(c) Case 3: V=10 knots, H=10.0584 m, ω = 51 rpm

(d) Case 4: V=10 knots, H=11.5824 m, ω = 51 rpm

Figure 3. Longitudinal velocity contours and velocity vectors near seabed

9

Figure 4. Velocity profiles at the keel plane

It is seen from Figures 4(b) and 4(d) for the deep water cases with H = 11.5824 m, a
significant portion of the flow is pushed underneath the bow due to local flow acceleration around
the sonar dome. This produces a large flow recirculation region (in earth-fixed reference frame)
at the keel plane with a fairly weak return flow near the sea bottom.

When the water depth was reduced to H = 10.0584 m, there is a much larger resistance to

push the flow beneath the sonar dome. Consequently, most of the surrounding water tends to move
laterally around the sonar dome and the flow recirculation near the seabed was confined to a fairly
small region immediately downstream of the bow as shown in Figures 4(a) and 4(c). It is clearly
seen from Figures 3(a) and 3(c) that the ship induced a strong trailing water flow (in the same
direction of the ship motion) beneath the ship keel which extends beyond the propeller plane and
well into the far wake. It should be remarked that the high velocity (and high shear stress) regions
around the bow and mid-ship are induced by the ship hull movement, but not directly related to
the propeller wash. It is also worthwhile to note that the effect of propeller thrust and torque are
confined to the ship stern and wake regions.

Figure 5 shows the propeller induced velocity distribution along the center plane of the

propeller axis. The axial velocity contours at five selected cross-sections are also shown in Figure
6 to provide a better understanding of the swirling flow pattern induced by the propeller rotation.
It is seen that the propeller rotation induced strong swirling flow immediately downstream of the
propeller. The axial flow induced by the propeller thrust force remains strong for more than 15
propeller diameters behind the ship stern even though a rather coarse grid was used in the far wake.
This strong axial flow is expected to carry the suspended sediment for a long distance downstream
of the twin-screw propellers.

10

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V=10 knots, H=11.5824 m

Figure 5. Axial velocity contours and velocity vector plots around the propeller

In addition to the axial flow profiles in Figures 5 and 6, the swirling flows at selected cross-
sections are also shown in Figure 7 to provide a complete description of the three-dimensional
flow field induced by the propeller rotation. It is seen that the propeller induced swirling flow
patterns are quite similar immediately downstream of the propeller. However, the propeller swirl
is somewhat stronger in the far wake for shallow water cases with H = 10.0584 m. It is also
interesting to note that there is a second pair of counter-rotating vortices near the center plane of
symmetry. This vortex pair was generated in the narrow gap region around the sonar dome, and
remains visible in the far wake.

A detailed examination of the velocity profiles near sea bottom (see Figures 3 and 4)

indicated that the propeller wash effect is negligible for the deep water cases since the swirling
flow decreases quickly in the radial direction away from the propeller tip as shown in Figure 7.
The effect of propeller wash grew considerably stronger under shallow water conditions when the
minimum gap below the propeller tip was reduced from 3.048 m (10 ft) to 1.524 m (5 ft).

11

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V= 10 knots, H=11.5824 m

Figure 6. Propeller induced flow field at selected stations

12

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

13

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V=10 knots, H=11.5824 m

Figure 7. Propeller induced swirling flows

14

2.3 Estimated Bottom Shear Stresses

Figure 8 shows the shear stress distributions on the sea bottom for all four test cases
considered in the present study. It should be noted that different color bar scales were used since
the bottom shear stresses for Case 2 are considerably smaller than the other three cases. In general,
the bottom shear stress increases with the propeller rpm and ship speed. Under deep water
conditions, the maximum shear stress occurred beneath the sonar dome due to strong flow
acceleration through the narrow passage between the sonar dome and sea bottom. High shear
stress regions were also observed around the mid-ship due to large block coefficient of the DDG-
51 hull cross-section area. It is seen that the propeller induced shear stresses are not as high as
those induced by the ship motion. Furthermore, the propeller wash effects are confined to a rather
small region directly below the twin-screw propellers. For shallow water cases with H = 10.0584
m, the highest shear stress also occurred underneath the sonar dome. However, the shear stresses
in the stern region are also very high due to the presence of strong underkeel current (see Figure
4) induced by the ship motion.

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V=10 knots, H=11.5824 m

Figure 8. Shear Stress distribution on the seabed

15

Figure 9 shows the surface plots of seabed shear stress distributions under different water
depths and different ship speeds. For clarity, the shear stress scales were adjusted for each case to
provide a detailed comparison of the shear stress patterns in the bow, mid-ship, propeller, and ship
stern regions. As noted earlier, the highest shear stress occurred beneath the sonar dome for all
four test cases considered. For deeper water cases, the propeller induced shear stresses are
considerably smaller than those induced by the ship hull motion. However, the bottom shear stress
distributions changed drastically when the water depth was reduced to H = 10.0584 m with a very
small underkeel clearance of 0.6096 m. The high shear stresses in the ship wake regions were
induced primarily by the trailing water in the narrow gap between the keel and seabed. The
simulation results clearly demonstrated that the blockage effect (i.e., block coefficient) of the ship
hull in shallow water is the dominant parameter in determining the sea bottom shear stress
distributions.

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V=10 knots, H=11.5824 m

Figure 9. Surface plots of shear stresses on the seabed

16

For completeness, enlarged views of the seabed shear stress distributions around the twin-
screw propellers and the ship stern regions are also shown in Figure 10 to provide a detailed
assessment of the propeller wash effects. In addition, the maximum shear stresses at various
locations of the seabed were also summarized in Table 2. It is clearly seen that the propeller-
induced shear stresses are much smaller than the hull-induced shear stresses under shallow water
conditions. The maximum shear stress in the ship wake exceeded 8.9 Pa for Case 3 when the ship
speed was 10 knots. Even for the lower speed case with V = 5 kts (Case 1), the bottom shear stress
in Case 1 still reached nearly 2.5 Pa in the ship wake. The maximum shear stresses in ship wake
region are about 3 times of those induced by the propeller rotation. It is quite obvious that the
large blockage effect of sonar dome under shallow water condition is the primary cause of the
strong trailing water and high shear stresses in the narrow gap between the ship keel and sea
bottom. However, it should be remarked that the shear stress induced by the ship hull is strongly
dependent on the ship size, hull form, and the water depth. Therefore, it will be necessary to
perform numerical simulations for each individual ship in order to quantify the water depth effect
for different type of ships.

(a) Case 1, V=5 knots, H=10.0584 m (b) Case 2, V=5 knots, H=11.5824 m

(c) Case 3, V=10 knots, H=10.0584 m (d) Case 4, V=10 knots, H=11.5824 m

Figure 10. Surface plots of seabed shear stresses around the twin-screw propellers

17

Case # 1 2 3 4
Bow 3.02 Pa 1.09 Pa 10.53 Pa 3.57 Pa

Mid-ship 0.51 Pa 0.39 Pa 1.85 Pa 1.46 Pa
Propeller 0.85 Pa 0.18 Pa 3.00 Pa 0.85 Pa

Ship wake 2.49 Pa 0.14 Pa 8.94 Pa 0.37 Pa

Table 2. Maximum shear stresses in different regions of the seabed

18

3.0 Simulation Scenarios for Tugboat with Ducted Propellers

FANS simulations were also performed for a tugboat with two ducted propellers as shown
in Figure 11 at a constant water depth of 9.144 m (30 ft) under three different flow conditions: (1)
propeller blowing to open water, (2) propeller blowing toward a pier wall, and (3) propeller
blowing parallel to a pier wall. Since the detailed geometries of the tugboat and propellers used
in the experiments are not available, it was necessary to use a simple barge-shaped tugboat as
shown in Figure 10. The length of the barge is 28.65 m (94 ft), the beam is 10.36 m (34 ft), and
the designed draft is 3.35 m (11 ft). Also, the database of a similar ducted propeller was used to
represent the actual propellers used in the experiments. The propeller diameter is scaled to 2.286
m (7.5 ft) and the hub diameter is 0.38 m (1.25 ft). The outside shroud diameter is approximately
2.54 m (100 in.). The two ducted propellers are located at a distance of 15.24 m (50 ft) from the
tugboat stern, and at a depth of 4.88 m (16 ft) beneath the free surface. The center-to-center spacing
between the left and right propellers is 4.88 m (16 ft). The minimum clearance between the shroud
and the seabed is approximately 3.00 m (9.83 ft). In all three simulation scenarios, the propellers
are operated at 200 rpm under bollard-pull condition with zero forward speed. Detailed
information of the barge-shaped tugboat, ducted propellers, and harbor configurations are
summarized in Table 3.

Figure 11. Tugboat and ducted propeller geometry

19

Case # 1 2 3
Ship length L (m) 28.65 (94 ft) 28.65 (94 ft) 28.65 (94 ft)
Ship Beam B (m) 10.36 (34 ft) 10.36 (34 ft) 10.36 (34 ft)
Ship Draft (m) 3.353 (11 ft) 3.353 (11 ft) 3.353 (11 ft)
Water depth, H (m) 9.144 (30 ft) 9.144 (30 ft) 9.144 (30 ft)
Distance from ship bow to pier
wall at waterline (m)

1.8288 (6 ft) Open water 1.8288 (6 ft)

Distance from ship stern to pier
wall at waterline (m)

Open water 30.48 m (100 ft) Open water

Clearance between ship sidewall
and Pier wall (m)

Open water Open water 1.524 (5 ft)

Underkeel clearance (m) 2.997 (9.833 ft) 2.997 (9.833 ft) 2.997 (9.833 ft)
Propeller Diameter, D (m) 2.286 (7.5 ft) 2.286 (7.5 ft) 2.286 (7.5 ft)
Distance between Propellers (m) 4.8768 (16 ft) 4.8768 (16 ft) 4.8768 (16 ft)
Distance from ship stern to
propeller (m)

15.24 (50 ft) 15.24 (50 ft) 15.24 (50 ft)

Propeller Depth (depth of the
propeller axis)

4.8768 (16 ft) 4.8768 (16 ft) 4.8768 (16 ft)

Distance from center of
propeller axis to bottom

4.2672 (14 ft) 4.2672 (14 ft) 4.2672 (14 ft)

Ship speed (knots) 0 0 0
Propeller rpm, n 200 200 200
Characteristic time, To (s) 0.3 0.3 0.3
Characteristic velocity Uo (m/s) 1.016 1.016 1.106
Reynolds number based on
characteristic length Lo (= 1 ft)

2.647 x 105 2.647 x 105 2.647 x 105

Reynolds number based on
propeller diameter D

1.488 x 107 1.488 x 107 1.488 x 107

Table 3. Propeller information for tugboat in FANS simulation

Three different harbor configurations were considered in the present tugboat propeller
wash study as shown in Figure 12. In the first test case, the tugboat is pushing against a pier wall
(with a 1.83 m clearance at the waterline) and the ducted propellers are blowing to open water.
For the second test case, the propeller is blowing toward a pier wall located at 30.48 m (100 ft)
downstream of the ship stern. It should be noted that the distance between the propeller center and
the pier wall is 45.72 m (150 ft) since the propeller is located at 15.24 m (50 ft) upstream of the
ship stern. The third test case is similar to Case 1, but the tugboat is aligned in parallel to another
pier wall as shown in Figure 12(c). The minimum distance between the tugboat sidewall and the
pier wall is 1.52 m (5 ft). As noted earlier, the rotating speed (200 rpm) of the ducted propellers
and the water depth (30 ft) remain the same for all three test cases.

20

(a) Propeller blowing to open water

(b) Propeller blowing to pier wall

(c) Propeller blowing parallel to pier wall

Figure 12. Harbor configurations for tugboat propeller wash simulations

21

3.1 FANS Model Simulation Results for Tugboat with Ducted Propellers

Figure 13 shows the computational domain and multi-block overset grids for Case 3 with
propeller blowing parallel to the pier wall. The overset grid system consists of 47 computational
blocks and 9 phantom grid blocks with a total of 7,070,832 grid points for the entire solution
domain. A total of 14 grid blocks were used for each ducted propeller to provide detailed
resolution of the propeller-induced flow field around the propeller blades, hub, shroud, and near-
wake regions. The tugboat is surrounded by a single body-fitted grid block, and the far field is
divided into 18 overlapping rectangular grid blocks. The computational load was distributed
among 35 CPUs on a Linux cluster.

Figure 13. Computational domain and numerical grids

For simplicity, calculations for Cases 1 and 2 were performed for only one-half the solution
domain using Neumann boundary conditions on the plane-of-symmetry (y = 0). The overset grid
system for Case 1 consists of 24 computational blocks and 5 phantom grid blocks. The grids
around the ducted propeller and the tugboat are identical to those used in Case 3, but only 9
computational blocks are needed to cover the far-field. The total number of grid nodes is
3,351,587, and the workload was distributed to 18 CPUs.

22

The propeller and tugboat grids for Case 2 with propeller blowing toward a pier wall are
also identical to those used in Cases 1 and 3. However, it was necessary to refine the far-field grid
in front of the pier wall to provide accurate resolution of the turbulent boundary layer around the
pier wall. The overset grid for this case consists of 29 computational blocks and 5 phantom grid
blocks, with 14 rectangular grid blocks covering the far-field. A total of 4,736,735 grid points was
used for one-half of the solution domain, and the workload was distributed among 23 CPUs on a
Linux cluster.

For all three test cases, a near-wall spacing of 3.048 × 10-6 m (10-5 ft) was used next to the

sea bottom to provide accurate resolution of turbulent boundary layer flow. Since the first grid
point is located within the laminar sublayer, it allows us to calculate the shear stresses on the
seabed directly without relying on the wall-function approximations. All calculations were
performed for 12,500 time steps (i.e., 500 propeller revolutions) with a time increment of 0.012
sec.

3.2 Disturbed Velocity Profiles

Figures 14 and 15 show the predicted velocity contours on the vertical and horizontal
propeller center planes, respectively, for Case 1 with propeller blowing to open water. For
completeness, the velocity contours on the free surface are also shown in Figure 15 to provide a
more detailed understanding of the three-dimensional flow field induced by the ducted propellers
under bollard-pull condition. For simplicity, the velocities (U, V, W) are normalized by a
characteristic velocity Uo = nLo given in Table 3, where n is the propeller rotating speed (rps) and
the characteristic length Lo is chosen to be 0.3048 m (1 ft). Also, the characteristic time is defined
as To = Lo/Uo = 1/n such that the propeller turns one revolution over one characteristic time. For
present simulations with the propellers rotating at 200 rpm, the corresponding characteristic time
and velocity scales are To = 0.3 sec and Uo = 1.016 m, respectively.

It is clearly seen from Figures 14 and 15 that the propeller wake extends all the way to the

downstream edge of the computational domain (about 76 m behind the ducted propellers) in less
than 300 propeller revolutions. The propeller wake flow spreads both horizontally and vertically
over several propeller diameters. It is seen from Figure 14 that the propeller-induced velocities
are considerably stronger near the free surface due to local flow acceleration in the narrow
clearance between the propeller blades and the tugboat bottom surface. It should be noted that the
tugboat blockage effect is strongly affected by its stern shape and cross-sectional geometry in the
propeller wake regions. The blockage effect of the present barge-shaped tugboat tends to be higher
than the other ship-shaped tugboats since the block coefficient of a rectangular flat-bottom barge
is considerably larger than other tugboat cross-sectional geometries.

23

Figure 14. Axial velocity contours on the vertical propeller center plane at t/To = 100, 200, 300,
400 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water

As shown in Table 3, the minimum distance between the propeller shroud and the sea
bottom is 3.0 m, which is only about 1.3 times of the propeller diameter. Due to the relatively
small underkeel clearance, strong propeller-induced current were observed near the sea bottom
approximately 6-10 propeller diameters downstream of the propellers during the initial stage of
the propeller wash simulation. The high shear stress region was found to extend to more than 20
propeller diameters downstream at later stage as the propeller wake grows considerably longer and
wider after t/To = 400. It is worthwhile to note that the propeller-induced flow is highly three-
dimensional and strongly affected by the tugboat and sea bottom in confined harbor with shallow
water depth.

24

(a) Propeller plane, t = 30 sec (b) free surface, t = 30 sec

(c) Propeller plane, t = 90 sec (d) free surface, t = 90 sec

(e) Propeller plane, t = 150 sec (f) free surface, t = 150 sec

Figure 15. Axial velocity contours on the horizontal propeller center plane (left) and free surface

(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water

In the second test case, FANS simulation was performed for the same tugboat and ducted
propellers in Case 1 but the propellers were blowing to a pier wall located at 30.48 m (100 ft)
downstream of the tugboat stern. Figures 16 shows the velocity contours on the vertical propeller
center plane, while the velocity contours on the horizontal propeller plane and the free surface are
shown in Figure 17. It is seen from Figure 16 that the propeller-induced flow reached the pier wall at
about t/To = 132, and was deflected by the pier wall and spread both horizontally and vertically along
the pier wall. This produced a stagnation flow region with high impact pressure on the pier wall as
shown in Figure 18.

25

Figure 16. Axial velocity contours on the vertical propeller center plane at t/To = 100, 132, 200,

300, 400 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall

The combination of shallow water depth and downstream pier wall resulted in a drastically

different flow pattern near sea bottom in comparison with that observed earlier for the open water Case
1. More specifically, the high velocity region is shifted further downstream closer to the pier wall due
to the adverse pressure gradient in front of the pier wall and the deflection of the propeller wake. This
resulted in a shift of high shear stress region toward the pier wall. Furthermore, the deflection of
propeller flow momentum also produced another high shear stress region in the vicinity of the pier
wall.

26

(a) Propeller plane, t = 30 sec (b) free surface, t = 30 sec

(c) Propeller plane, t = 90 sec (d) free surface, t = 90 sec

(e) Propeller plane, t = 150 sec (f) free surface, t = 150 sec

Figure 17. Axial velocity contours on the horizontal propeller center plane (left) and free surface
(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall

27

Figure 18. Pressure contours on pier wall and sea bottom, t/To = 160 and 320; Case 2 with propeller
blowing toward a pier wall

FANS simulations were also performed for the third test case with the ducted propellers
blowing parallel to a pier wall. Due to the asymmetric harbor configuration, it was necessary to
calculate the flow over the entire solution domain. Furthermore, unlike the counter-rotating propellers
in Cases 1 and 2, we consider two identical right-handed propellers here with both propellers rotating
in the same direction. Figures 19 and 20 show the velocity contours on the vertical propeller planes
for the right (near pier wall) and left (away from pier wall) propellers, respectively. Furthermore, the
velocity contours at horizontal propeller center plane and free surface are also shown in Figure 21 to
provide a more detailed description of the complex three-dimensional flow induced by the twin
propellers. It is clearly seen that the propeller wake flow is strongly affected by the presence of the
parallel pier wall. In general, the velocity induced by the right propeller is much stronger because the
propeller-induced radial flow momentum is deflected by the pier wall and redirected toward the axial
direction along the pier wall. On the other hand, the wake flow induced by the left propeller is
somewhat weaker than those observed in Cases 1 and 2.

28

Figure 19. Axial velocity contours behind the right propeller (near pier wall); Case 3 with propeller

blowing parallel to pier wall

Figure 20. Axial velocity contours behind the left propeller (away from pier wall); Case 3 with
propeller blowing parallel to pier wall

29

(a) Propeller plane, t = 30 sec (b) free surface, t = 30 sec

(c) Propeller plane, t = 60 sec (d) free surface, t = 60 sec

(e) Propeller plane, t = 90 sec (f) free surface, t = 90 sec

(g) Propeller plane, t = 120 sec (h) free surface, t = 120 sec

(i) Propeller plane, t = 150 sec (j) free surface, t = 150 sec

Figure 21. Axial velocity contours on the horizontal propeller center plane (left) and free surface
(right) at t/To = 100, 200, 300, 400 and 500; Case 3 with propeller blowing parallel to pier wall

For completeness, three-dimensional views of the propeller-induced flow at the horizontal
propeller center plane and four selected axial stations are also shown in Figure 22 to provide a complete
description of the propeller wake evolution. It is clearly seen that the swirling flow behind the right
propeller is strongly affected by the pier wall as well as the left propeller. In addition to the deflection
of swirling flow momentum by the pier wall, there is also a very strong interaction between the left
and right propellers as shown in Figure 23. For Cases 1 and 2, the propeller-induced swirling flows
are affected primarily by the flat bottom surface of the tugboat. For the co-rotating propellers
considered in Case 3, however, there is a partial suppression of the swirling flow momentums in the
overlap region between two propeller wakes. This resulted in a deflection of the weaker left propeller
wake (away from the pier wall) toward the sea bottom as shown in Figure 22.

30

Figure 22. Axial velocity contours at horizontal propeller center plane (top) and selected cross-
sections (bottom); Case 3 with propeller blowing parallel to pier wall

31

(a) Case 1, X = − 12.19 m, t = 150 sec

(b) Case 2, X = − 12.19 m, t = 150 sec

(c) Case 3, X = − 12.19 m, t = 150 sec

Figure 23. Propeller-induced swirling flows (normalized by Uo) at t/To = 500

32

3.3 Estimated Bottom Shear Stresses

Figure 24 shows the shear stress distributions on the sea bottom for Case 1 with propeller
blowing to open water. In general, the shear stresses are high during the initial transient period (less
than 100 propeller revolutions) after impulsive start of the propeller rotation. As the propeller wakes
grow longer and wider, the high shear stress region is pushed downstream and eventually reached a
nearly periodic pattern after 400-450 propeller revolutions. At t/To = 500, the high shear stress region
is observed between 5-10 propeller diameters downstream of the propeller and the maximum shear
stress is about 4.0 Pa at X/D = 8.9. It is interesting to note that there are several high pressure regions
because the propeller wake flow is highly unsteady in confined water depth under bollard-pull
condition.

 Figure 24. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500;
Case 1 with propeller blowing to open water

33

Figure 25 shows the shear stress distributions on the sea bottom for Case 2 with propeller
blowing to a pier wall. Before the propeller wake reaches the pier wall, the shear stress pattern for
Case 2 is very similar to that observed in Case 1 with propeller blowing to open water. After the
propeller wake impinges on the pier wall at about t/To = 130, another high shear stress region was
developed in front of the pier wall as seen in Figures 25(c)-(f). As noted earlier, the pier wall forced
the propeller wake to spread in both the horizontal and vertical directions. Due to the propeller wake
impingement and lateral spread, the high shear stress region gradually shifted downstream. At t/To =
500, the high shear stress region is observed near the pier wall with a maximum shear stress of about
4.2 Pa at X/D = 15.3 behind the duct propellers. It should be noted that the pier wall drastically altered
the shear stress pattern even though the maximum shear stress is only slightly higher than that observed
earlier in Case 1 with the propellers blowing to open water.

Figure 25. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 2
with propeller blowing to pier wall

Figure 26 shows the shear stress distributions on the sea bottom for Case 3 with propellers
blowing parallel to a pier wall. It should be noted that a different color bar scale was used in Figure

34

26 since the bottom shear stresses for Case 3 are several times higher than those observed in Cases
1 and 2. During the initial stage of simulation, a high shear stress region was developed around
the tugboat stern region similar to those observed in Cases 1 and 2. As the propeller wake grew
longer and wider, another high shear stress region was developed along the parallel pier wall as
seen in Figure 26(b)-(c).

Figure 26. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 3
with propeller blowing parallel to pier wall

As shown earlier in Figures 19-23, there is a very strong interaction between the left and

right propellers when the two right-handed propellers are rotating in the same direction.
Consequently, the weaker left propeller wake (away from pier wall) was pushed closer to the sea
bottom, while the stronger right propeller wake (near pier wall) was deflected slightly upward to
the free surface. It is interesting to note that the weaker left propeller wake actually produced
considerably higher shear stresses in the near field because it is much closer to the sea bed than
the stronger right propeller wake as seen in Figure 22. In the far field, there is another high shear
stress region adjacent to the parallel pier wall. A detailed examination of the propeller-induced
flow field indicates that the second high shear stress region was produced by the stronger right
propeller wake. At t/To = 500, the high shear stress regions is observed near the pier wall with a
maximum shear stress of about 10.4 Pa at X/D = 16.3 behind the duct propellers.

A detailed comparison of the velocity and shear stress distributions for Cases 1-3 clearly
illustrates that the sea bed shear stresses induced by the ducted propellers are strongly affected by

35

the harbor configuration as well as the propeller rotating directions. Furthermore, as demonstrated
in the DDG-51 ship and P4876 propeller wash study, the shear stresses on the sea bottom also
depend strongly on the water depth, ship geometry, underkeel clearance, ship speed, propeller type,
and propeller operating conditions. In order to provide detailed shear stress distributions for
different ships under site-specific harbor configurations, it is desirable to perform propeller wash
study by solving the Navier-Stokes equations directly in conjunction with advanced turbulence
models.

36

4.0 FANS-3D Users’ Guide

The FANS-3D code was developed by Dr. Hamn-Ching Chen and his students and
collaborators over the past twenty-five years. It is a general purpose CFD code for the numerical
solution of the Navier-Stokes equations governing laminar and turbulent flows in body-fitted
curvilinear grids. The code employs multi-block overset (chimera) grids including fully-matched,
arbitrarily embedded, and/or overlapping grids to facilitate detailed resolution of unsteady laminar and
turbulent flows around complex geometries involving arbirtray body motions as well as fluid-structure
interactions. Communication between grid components is achieved by Lagrange interpolation at the
fringes. The code is fully coupled with the hole-making and donor-finding algorithm, allowing for the
relative movement of the grid blocks at each time step for time-domain simulation of fluid-structure
interaction problems including violent free surface motions.

The underlying theory of the local-analytic-based discretization (also known as finite analytic

based discretization) is briefly presented in the following. A complete description of the formulation,
including the numerical solution of well-established 2D and 3D benchmarks is documented in Pontaza,
Chen, and Reddy (2005). Additional published work on the theory of the discretization method is due
to Chen and Chen (1984), Chen, Patel, and Ju (1990), and Chen, Bravo, Chen and Xu (1995).

4.1 Theory and Numerical Algorithm of FANS Code

The finite-analytic method was developed by Chen, Patel, and Ju (1990), Chen, Bravo, Chen
and Xu (1995) and Pontaza, Chen and Reddy (2005) for accurate numerical simulation of the time-
dependent incompressible Navier-Stokes equations. To briefly describe the formulation, consider a
two-dimensional domain partitioned into equal sized non-overlapping elements, Ωe. We linearized the
Navier-Stokes equations in each element and write

 in Ωe (12)

Where ∂h/∂t is a discrete representation of the temporal operator (e.g., a backward Euler representation)
and is a discrete gradient operator in space. Momentarily treating L(U,P) as known and constant
over the element, we see that the linearized momentum equations are non-homogeneous advection-
diffusion equations.

Treating each of the momentum equations as a transport equation for the associated velocity
component, we use the natural solution of the linearized equation as boundary conditions along the
edges of the square element and solve the associated equations by the method of separation of variables
to obtain local analytic interpolants in terms of unknown neighboring nodal values of the velocity
components. The interpolant may be written as follows

 in Ωe (13)

The local analytic interpolants , are functions of the local velocity field and respond
analytically to local flow conditions. In addition, the interpolants satisfy zeroth and first-order
consistency requirements, and are always positive. These properties ensure that spurious energy modes

),(
Re
1)(2

0 PULP
t
UFUUU h

h

=∇−

∂
∂

−=∇−∇•

h∇

),(
8

1
PULUU f

n
nn

αα +=∑

=

{ }8
1=nnα fα

37

are non-existent in the scheme, and render it stable at high Reynolds numbers. Plots of one of the
coefficients for different flow conditions in a single element are shown in Figure 27. A more detailed
description of the finite analytic functions is given in Pontaza, Chen, and Reddy (2005) and Chen and
Chen (1984).

Figure 27. Finite analytic function associated with a node placed a (x,y)=(-1,0), for an element in (x,y)

[-1,1]× [-1,1], for different flow conditions.

The interpolants satisfy (locally) the linearized momentum equations and a collocation scheme
is adopted to form the discrete equations. In other words, the local analytic functions are only evaluated
at the center of the element to yield coefficients that make up the stencil relating the center value to its
neighbors.

If the pressure field is known a priori the pressure gradient may be evaluated and a set of
discrete equations for each interior nodded can be written using Equation (13). These equations can
be assembled to yield a banded, un-symmetric, definite, matrix system. When augmented with suitable
boundary conditions, the system can be solved (in an iterative manner with respect to the linearization)
to yield the nodal velocity values in a time-marching procedure.

In general, however, the pressure field is not known a priori and must be computed such that
the velocity field is divergence-free. This is achieved by projecting the velocity field onto a divergence-
free space by means of a discrete Poisson equation for the pressure. The discrete representation of the
divergence operator is constructed such that a strong velocity-pressure coupling is achieved, effectively
avoiding spurious pressure solutions for the co-located node arrangement, where nodal degrees of
freedom for velocities and pressure share the same locations. The projection is directly applied to
boundaries as well, so that no artificial boundary conditions for the pressure are necessary. Thus,
pressure is consistently computed at the boundaries.

The momentum and discrete pressure Poisson equation are solved sequentially in an iterative

∈

38

manner. The method has been shown to be second-order accurate in velocities and pressure (Pontaza,
Chen, and Reddy; 2005). Convergence properties of the method are illustrated in Figure 28. When
Equation (13) is used as an interpolant, the interpolation is fourth-order accurate, as shown in Fig.
28(a). When Equation (13) is used as a collocation discretization procedure the error decays at a
second-order rate as show in Figures 28(b) and 28(c) for linear and nonlinear equations. Figure 28(d)
shows second-order accuracy in velocities and pressures, indicating good velocity pressure coupling
by the segregated solution approach implemented.

In practical implementations we seldom encounter square domains. The general procedure
consists of constructing the local analytic interpolants in a mapped space. In this manner, we can handle
skewed or curvilinear elements with a unified approach. The method has proven robust in the presence
of severe mesh skews and high aspect ratio cells (Pontaza, Chen, and Reddy; 2005).

Figure 28. Convergence curves for verification studies of the finite analytic functions as (a)
interpolants and as (b), (c), (d) a collocation discretization procedure.

For time-accurate solutions, the time derivative is represented here by second-order accurate
truncated expansions in time domain. Specifically, the time integration scheme corresponds to the
generalized α-method family of time integrators. The family is generated by varying a single-free
integrator parameter, ρ, for high frequency damping. Unresolved high frequencies (due to the choice
of the time step size) are damped out according to the value of ρ. The choice ρ = 1.0, corresponds to
the trapezoidal rule, which is well known to have no damping for high frequency modes that may excite
odd-even mode oscillations. High frequency damping is allowed by decreasing the value of ρ.
Additional documentation on this particular family of time integrators is given by Chung and Hulbert
(1985) and by Dettmer and Peric (2004). The discrete pressure gradient operator is represented using

39

standard second-order accurate finite-differences in each spatial direction.

 Extension to the three-dimensional case is straightforward and is achieved by superimposing
two-dimensional local analytic solutions, such that the three-dimensional equations are satisfied
locally. Details of the derivation were first presented by Chen, Patel and Ju (1990) and Chen, Bravo,
Chen and Xu (1995), and are also outlined by Pontaza, Chen, and Reddy (2005). The resulting stencil
relates one nodal unknown to its 19 neighbors, and is thus a 19-point finite analytic stencil.

 For turbulent flows modeled through the numerical solution of the Reynolds-averaged Navier-
Stokes (RANS) equations described earlier in Equations (5) – (11). In the two-layer k-ε model, the k-
ε model is patched together with a k-l model used in the near-wall region. Thus, the near-wall region
is computed directly and adequate grid resolution must be used there. Additional details can be found
in Chen and Patel (1988).

 The discretization procedure for the turbulent transport equations is exactly the same used for
the momentum equations described earlier, as these equations can always be written in the standard
form given by Equation (13). This is certainly a major advantage of the formulation, as no special
treatment is needed for the turbulence transport equations.

4.2 FANS-3D Software Documentation and Execution

 In the present study, the FANS-3D code was employed for the propeller wash simulations of
both DDG-51 ship and tugboat cases as described in previous sections. The computer code
executables, numerical grids, input files, simulation results, and animation movies for all seven
propeller wash scenarios were delivered to Dr. Pei-Fang Wang of SPAWAR-Pacific. The deliverables
are organized in seven tar (tape archive) files as follows:

1. ddg51_5kt_33ft.tar.gz: DDG-51 ship at 5 kts and 33 ft water depth
2. ddg51_5kt_38ft.tar.gz: DDG-51 ship at 5 kts and 38 ft water depth
3. ddg51_10kt_33ft.tar.gz: DDG-51 ship at 10 kts and 33 ft water depth
4. ddg51_10kt_38ft.tar.gz: DDG-51 ship at 10 kts and 33 ft water depth
5. tugboat_case1.tar.gz: tugboat sceanrio 1 with propeller blowing to open water
6. tugboat_case2.tar.gz: tugboat sceanrio 2 with propeller blowing to pier wall
7. tugboat_case3.tar.gz: tugboat scrarnio 3 with propeller blowing parallel to pier wall

Each folder contains the following set of files that must be written by the users

1. gridgen0.dat (or plot3d0.dat), this file contains the multi-block numerical grids in
either GRIDGEN or PLOT3D format. The file format is given later.

2. inputblk.dat, this file assigns a name to each of the computational grid blocks and contains
information regarding their size (both active and phantom grids are listed).

3. inputmpd.dat, this file contains the multi-processor distribution information.
4. input.dat, this is the control program file, where the user may specify, for example, the

Reynolds number, the time step size, relaxation factors, etc.
5. overset.in, this is the control file for the hole-cutting and donor-searching program
6. *.bcs, files containing the boundary condition input for each block in each process, a total of

“number of processes” files must be present.

40

In all FANS-3D simulations, it is necessary to construct first the numerical grid for each test

case. The name of the grid file is specified in inputblk.dat. The grid file may be written in either
GRIDGEN or PLOT3D format as follows:

(A) GRIDGEN format (iformat = 1)

! read the volume grid from gridgen0.dat file (specified in inputblk.dat)
! each block has size nxi_GL, net_GL, nzt_GL

do nbk_GL=1,nblocks_GL + nphantoms_GL
ijkst_GL=ijkpos_GL(nbk_GL) + 1
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
read(10,*) nbk_dum,nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk,GL)
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
 (yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
 (zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL)
end do

(B) PLOT3D format (iformat = 2)

! read the volume grid from plot3d0.dat file (specified in inputblk.dat)
! each block has size nxi_GL, net_GL, nzt_GL

read(10,*) ndum
do nbk_GL=1,nblocks_GL + nphantoms_GL
read(10,*) nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)
end do
do nbk_GL=1,nblocks_GL + nphantoms_GL
ijkst_GL=ijkpos_GL(nbk_GL) + 1
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
 (yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), &
 (zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL)
end do

As the simulation progresses and the grids move and rotate with respect to one another, the
grid motions (e.g., ship motion and propeller rotation) are updated based on the reference configuration
in gridgen0.dat (or plot3d0.dat). In the above pseudo-code statements nblocks_GL and
nphantoms_GL are the number of active (computational) blocks and the number of phantom blocks,
respectively; which were already read from inputblk.dat. More details of the input files and their
contents will be given in the following sections, in the context of the example problems.

4.3 FANS-3D Code Parallelization

 The FANS-3D code is a general purpose CFD code allowing for the numerical solution of the
Navier-Stokes equations governing incompressible flow in body-fitted grids. The code allows for
multi-block overset (chimera) grids, which can be fully-matched, arbitrarily embedded, and/or
overlapping with each other. Communication between grid components is achieved by Lagrange
interpolation at the fringes. The code is fully coupled with the hole-making and donor-finding
algorithm, allowing for the relative movement of the grid blocks at each time step for time-domain

41

simulation of fluid-structure interaction problems including violent free surface motions.

 The FANS-3D code is written in Fortran 90/95 standard with dynamic memory allocation and
is fully parallelized using MPI bindings. It employs a general data management strategy which allows
single or arbitrarily large groups of consecutive or non-consecutive blocks to be assigned to different
processors. This enables us to achieve optimal load balancing when dealing with multi-block
structured grids with vastly different dimensions among different grid blocks as shown below.

 Given a multiple block structured grid with N blocks of different sizes, we would like to
distribute the workload amongst P processes. For example, consider the case N = 7 as shown in Figure
29.

Figure 29. Multiple block structured grid showing N = 7 blocks, which are to be distributed among P
≤ 7 processes.
 The minimum number of processes allowed in the parallelized code is P = 2 and the maximum
for this case would be P = 7, which would imply that each block is assigned to a single process. Having
observed the above constraints, the code allows the user to distribute the load in any other manner.
Below are some examples (by no means exhaustive) of valid load distributions, where we fix the
number of available processors:

Example #1:
P=2
P1:{1,2,3} and P2:{4,5,6,7}
In this example process 1 is assigned blocks {1,2,3} and process 2 is assigned blocks {4,5,6,7}.

Example #2:
P=3
P1:{1,4}, P2:{2,5}, and P3:{3,6,7}
In this example non-consecutive numbered blocks are assigned to different processors. This is
particularly advantageous, as the user need not order the blocks in any particular manner during and
after the grid generation process.

The load distributions should be such that the load is almost the same amongst all processes.
This is not a requirement in the code, but is recommended to make efficient use of the computational

42

resources.

 The information on load distribution is read in through the file inputmpd.dat, and is as
follows for example #1 and #2 respectively.

Example #1:
3 4 % blocks per process for each process

1 2 3 % global block numbers for each process
4 5 6 7

Example #2:
2 2 3 % blocks per process for each process

1 4 % global block numbers for each process
2 5
3 6 7

 The above input is all that is needed by the code for it to understand and schedule the loads
amongst the different processes. In addition, each processes expects one boundary condition file,
containing boundary condition information for all the blocks it was assigned. The format of the
boundary condition file is discussed in Appendix A.

43

4.4 Computer Platforms, Compilation, and Execution

The FANS-3D code has been tested on platforms with Linux as the operating system, with Intel Fortran
90/95 compilers and MPICH implementations. Specifically, in the Dell clusters at Texas A&M Civil
Engineering Department, IBM clusters at Texas A&M Supercomputing Facility, Linux clusters at U.S.
Army Research Laboratory (ARL) High Performance Computing cluster, and the Cray XE6m
(Copper) cluster at Department of Defense High Performance Computing Modernization Program
(DoD HPCMP). The FANS code and executable can be installed on a wide variety of Unix and Linux
clusters with Message-Passing-Interface (MPI) libraries for parallel computations using multiple
processors. For simplicity, we will summarize only the procedures to compile and execute the code on
the Copper cluster at DoD Open Research Systems in the following sections.

The FANS-3D code consists of 18 Fortran 90 files, each with a specific function. A list of the files
accompanied with a brief description is as follows:

• main.f90, is the master control file where all other subroutines are called from. The program

follows a modular-style programming by making use of Fortran 90 modules, which are invoked
and used in this file.

• global.f90, is where all global variables are defined.
• sflow.f90, defines flow parameter variables such as the turbulence model coefficients.
• sinput.f90, reads-in all the program control inputs, allocates memory, and distributes the load

among processors.
• geocoeff.f90, computes and stores the geometric coefficients associated with a well-defined

transformation.
• facoeff.f90, computes the 19-point stencil finite-analytic coefficients.
• moment.f90, solves the moment equations for the velocity components.
• pressub.f90, computes the 19-point stencil for the pressure Poisson equation, assembles and

solves the associated system of equations.
• turbsub.f90, solves the turbulence model equations.
• sources.f90, computes the source functions for the governing equations.
• boundary.f90, computes and assigns boundary conditions
• snorms.f90, computes various metrics, such as residual norms, outer iteration norms, time

stepping norms, to establish convergence of the iterative solution procedure and time marching
procedure.

• gmotions.f90, grid motions file to control and impose how the grids move relative to each other
and compute the grid velocities.

• datamgmt.f90, contains the subroutines for the multi-block data management.
• graphics.f90, generates output files for visualization.
• sclean.f90, deallocates memory.
• overset.f90, grid interpolation program for overset grids.
• dwssub.f90, computes directional short-crested waves.

The code is to be compiled by linking the Fortran 90/95 compiler with a MPI library or by using a
Fortran 90/95 MPI wrapper (e.g., mpiifort, mpif90 or ftn). When using MPI as a library, the
following is used to compile the code on DoD HPCMP Copper cluster.

44

prompt%> module swap PrgEnv-pgi PrgEnv-intel
prompt%> ftn –openmp –O2 –o fans3d.exe {list of Fortran files}

The code is simply run by typing the following at the prompt or giving the following command in the
batch-job file (e.g., for PBS or LSF queue managers)

prompt%> aprun –n {number of processors} ./fans3d.exe > fans3d.out

It should be noted that the simulation results for all seven propeller wash sceanarios described earlier
can be reproduced by uploading the corresponding tar files to DoD HPCMP Copper cluster and
executing the following four commands (using tugboat_case3.tar.gz as an example):

1.0 Unzip *.tar.gz file. The code executable and input data files will be saved in a newly
created folder tugboat_case3

 Prompt%> tar xzf tugboat_case3.tar.gz

2.0 Change programming environment from the default 'pgi' to 'intel' Fortran

 Prompt%> module swap PrgEnv-pgi PrgEnv-intel

3.0 Switch to working directory

 Prompt%> cd tugboat_case3

4.0 Submit job to the batch queue (with appropriate project number in the job control
file)

 Prompt%> qsub submit_pbs

4.5 FANS-3D Data Export

On FANS-3D output the following files are written out to visualize the solution using the
commercial flow visualization software such as FIELDVIEW, TECPLOT, or MATLAB:

1. force.dat, x, y, and z forces exerted on the propeller blades, ship hull surface, and/or other

solid surfaces.
2. motion.dat, time history of six-degree-of-freedom ship motion
3. overset.out, output file containing grid interpolation information.
4. fans3d.out, output file for monitoring of convergence history.
5. restart_xyz.dat, instantaneous grid restart file for continuation run
6. restart_q{number}.dat, instantaneous flow field restart file for continuation run.
7. movie_x{number}.dat, three-dimensional output to visualize the entire grid at time step

{number}.
8. movie_q(number}.dat, three-dimensional output to visualize instantaneous velocity and

pressure fields at time step {number}.
The force.dat contains ASCII data files in column format. It can be read directly into

45

TECPLOT or MATLAB or other compatible software for 2D line plots of the (x, y, z) forces and
moments (with respect to the gravity or center of rotation). For problem involving six degree-of-
freedom (heave, sway, surge, pitch, yaw, and roll) motions under hydrodynamic loadings such as wave
and current, the code will also output the motion histories in motion.dat file, which is also in ASCII
column data format.

The overset.out is an ASCII file containing grid interpolation information such as

interpolation stencils and interpolation coefficients for the multi-block overset grid system. The
fans3d.out is also in ASCII format. It is used to monitor the convergence histories of all flow
variables. These files are useful for debugging of the input data files.

The restart files restart_xyz.dat and restart_q*.dat are unformatted file which are

used internally by the FANS-3D code for continuation runs. The code will automatically read in the
restart files if the users wish to continue a previous simulation for a longer duration.

The movie_x*.dat and movie_q*.dat output files were written in standard PLOT3D

format as follows:

! PLOT3D grid output (movie_x{number}.dat) for flow visualization
write(54) nblocks_GL
write(54)
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL)

do nbk_GL=1,nblocks_GL
 ijkst=ijkpos_GL(nbk_GL)+1
 ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
 write(54)(xp(ijk),ijk=ijkst,ijknd), &
 (yp(ijk),ijk=ijkst,ijknd), &
 (zp(ijk),ijk=ijkst,ijknd), &
 (iblank(ijk),ijk=ijkst,ijknd)
end do

! PLOT3D flow output (movie_q{number}.dat) for flow visualization
write(55) nblocks_GL
write(55)
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL)

do nbk_GL=1,nblocks_GL
 ijkst=ijkpos_GL(nbk_GL)+1
 ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)
 write(55) alpha,fsmach,reynolds,time
 write(55)(rho(ijk),ijk=ijkst,ijknd), &
 (rho(ijk)*u(ijk),ijk=ijkst,ijknd), &
 (rho(ijk)*v(ijk),ijk=ijkst,ijknd), &
 (rho(ijk)*w(ijk),ijk=ijkst,ijknd), &
 (pr(ijk),ijk=ijkst,ijknd)
end do

The PLOT3D grid output files (movie_x*.dat) contain the coordinates (x, y, z) and blanking
information (iblank) for every grid point in the multi-block overset grid system. The corresponding
flow variables including density, momentum, and pressure (ρ, ρu, ρv, ρw, p) are stored in PLOT3D

46

output files (movie_q*.dat). These data files can be imported directly into the commercial software
FIELDVIEW for flow visualization and saved in animation video files (in avi format). The movie data
files can also be imported into the commercial TECPLOT software using the ‘PLOT3D Loader’ option.
Typical results include the velocity contours, velocity vector plots, and pressure contours. Other
derivated quantities such as shear stresses and vorticities can also be calculated using the user-defined
functions in FIELDVIEW and TECPLOT. The users may consult the FIELDVIEW and TECPLOT
manuals for additional information on the post-processing of PLOT3D data.

47

4.6 Example Case 1: DDG-51 Ship and P4876 Propeller Wash Study

In this section, we present an example test case for the DDG-51 propeller wash study. The
problem demonstrates the many capabilities of the FANS-3D formulation and implementation, which
include: embedded and non-matching grids, relative motion between grid components, load
distribution among different processes, high Reynolds number flows, and robustness in the presence
of high aspect ratio skewed meshes.

The computational domain and multi-block overset grids for this case was shown earlier in

Figure 2. The length of the DDG-51 ship is 142.04 m (466 ft) and the designed draft is 9.4488 m. The
diameter of the twin-screw P4876 propellers is 5.4864 m (18 ft), and the center of propeller axis is
located at 5.7912 m below the mean water level. Calculation was performed for a shallow water case
with water depth H = 10.0584 m (33 ft). Under this condition, the underkeel clearance is only 0.6096
m (2 ft) beneath the sonar dome and the minimum gap between the propeller tip and the sea bottom is
1.524 m (5 ft). The twin-screw propellers are rotating at 51 rpm when the ship speed is 10 knots.

A commercial grid generation software GRIDGEN was used to generate the overset grid

system for the DDG-51 ship and the 5-blade P4876 propeller. As noted earlier, the composite grid
consists of 15 computational blocks and 7 phantom grid blocks with a total of 2,369,549 grid points
covering half of the solution domain. There are 5 blocks for 5 propeller blades, 3 blocks for propeller
shaft and near-wake regions, 1 block for ship, and 6 blocks for the far field. The 15 blocks are shown
in different colors in Figure 2. In addition, there are 7 phantom grids (not shown) that are needed to
adequately perform the hole-cutting. The end-user does not need to be concerned with phantom grids,
as they do not enter into the actual computations, and hence do not need to be listed in the multi-
processor input file or the boundary condition input files.

In this particular run, the five propeller blades, the shaft block, are assigned to three processes,

the ship is assigned to the fourth process, the propeller near-wake region is divided into two blocks and
assigned to two separate processes, and the far field grids are decomposed into six blocks and assigned
to six different processes. For this example, the file inputblk.dat contains the following data

! Geometry input file (second line, no more than 40 characters)
gridgen0.dat
 1 ! 1: Gridgen format, 2: Plot3d format
 15 7 ! nblocks + nphantom (including phantom grid)

 62 41 41
propeller01

 62 41 41
propeller02

 62 41 41
propeller03

 62 41 41
propeller04

 62 41 41
propeller05

48

 38 21 122
shaft01

 28 32 122
shaft02

 65 21 122
shaft03

121 35 41
ship01

 34 81 77
basin01

 34 81 77
basin02

 34 81 77
basin03

152 65 21
ocean01

 77 65 42
ocean02

 77 65 42
ocean03

 3 41 61
phantom01

 3 41 61
phantom02

 3 41 61
phantom03

 3 41 61
phantom04

 3 41 61
phantom05

 2 2 2
phantom06

 2 2 2
phantom07

This input specifies that the name of the composite grid file is gridgen0.dat, and it is in
GRIDGEN format. There are 15 computational blocks and 7 phantom blocks, for a total of 22 blocks.
Then, for each of the fifteen computational blocks we must specify their (i, j, k) sizes and assign to
them a name, which must be consistent with the names used in the overset.in input for the hole-

49

cutting and donor-search algorithm.

The file overset.in contains the input necessary for the hole-cutting and donor-search

program. The format of this file is not discussed here, and the interested reader may consult the
Chimera Overset Structured Mesh-Interpolation Code (COSMIC) users’ manual (Chen, 2009). The
input file used for this case is shown in Appendix B.

 The file inputmpd.dat contains the information necessary for the code to distribute the load
among the different processes, as described in the previous section. For this particular case, the file
has the following information

% number of blocks per process, for each process
2 2 2 1 1 1 1 1 1 1 1 1

 1 2 % global block number per process, for each process
 3 4
 5 6
 7
 8
 9
10
11
12
13
14
15

Note that only active (computational) blocks are listed in this input, i.e. phantom blocks do not
need to be distributed as they do not represent any computational load. In this particular case, we
assign propeller blades 1 and 2 (propeller01, propeller02) to first process, blades 3 and 4
(propeller03, propeller04) to the second process, blade 5 and the first shaft block
(propeller05, shaft01) to the third process. The remaining 9 computational blocks (2 shaft
blocks, 1 ship block, 3 basin blocks, and 3 ocean blocks) are assigned to processes #4 - #12 with only
one single block in each process.

 The input.dat file is the main control input file and is as follows

1 % MTURB flag for laminar (0) or turbulent (1) flow
1 % INCOMP flag for incompressible (1) or compressible (0) flow
0 % IFSURF flag for (1) free surface flow (0) no free surface
2.1868E7 % RE Reynolds number
0.04 % TAU time step size
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0
1.0E-08 % TOL1 L2 vel tol to stop time stepping
1.0E-03 % TOL2 L1 res tol to stop outer iterations
1 % ITIMEST starting time step to compute
12500 % ITIMEND ending time step to compute
1 % MAXIT_LS max allowable ADI sweeps for level-set function
3 % MAXITER max allowable outer iterations
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP
sweeps
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps

50

6 % MAXIT_DIVU max projections of velocity field onto div-free
space
0.60 % RFU relaxation factor for velocities (due to nonlinearity)
0.30 % RFP relaxation factor for pressure (due to u-p decoupling)
0.010 % RFKE relaxation factor for turbulent k.e. and dissipation
0.5 % RFPHI relaxation factor for level-set function
0 % ITIME_BCS flag to indicate (1) time dependent bcs

fans.grd % GEOFILE geometry input file (HCC: not used in this version)
ddg.bcs % BCSFILE boundary conditions input file

1 % IACT_PLOT flag to activate (1) visualization output
100 % ISKP_PLOT time intervals for vis and restart

1 % IACT_ANIME flag to activate (1) animation output
0 % IBGN_ANIME time step number at which animation begins
4 % ISKP_ANIME multiples at which sol is written out for animation

0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn

-5.0 % UMIN
 5.0 % UMAX
-10. % PMIN
 10. % PMAX
 0.050 % TKEMAX
 0.02 % TVISMAX
-0.5 % PHILSMIN
 0.5 % PHILSMAX

1.0 % FROUDE Froude number (gravity acts in negative z-direction)
0.0020 % EWIDE representative grid size

0.0 % RFG geometry distortion relaxation parameter

0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities
-1.103143 0. 0. % UBODY, VBODY, WBODY body velocities (ship speed)

1 % IMOVE (0) fixed grid, (1) moving grid

0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)

1 12 % NPROP (#propellers), NMVPROP (max #blocks moving with propeller)

1 1 % IPROP (propeller ID), IROT (1: clockwise, -1: counter-clockwise)
12 6 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID)
1 2 3 4 5 6 7 16 17 18 19 20 % moving propeller block ID (propeller #1)

Most of the entries of the input file are self-descriptive, but we further elaborate on each of
them in the following:
• MTURB, is a flag to specify whether to numerically solve the Navier-Stokes equations directly

(laminar flow or DNS) or to solve the Reynolds-averaged Navier-Stokes equations with the near-
wall two-layer k-epsilon model.

• INCOMP, is a flag to specify whether flow is incompressible or compressible.

51

• IFSURF, is a flag to specify whether it is necessary to update free surface. For this case, the free
surface effect is ignored.

• RE, is the Reynolds number. For this case, it is based on the propeller diameter and the propeller
rotating speed.

• TAU, is the value for the time step size. In this case the angular velocity of the propeller is such
that one revolution is completed in one unit of time.

• AMP_RHO, is the high-frequency damping parameter for the second-order accurate family of time
integrators, as described in the formulation section.

• TOL1, tolerance of L2 velocity-norm to stop time stepping when the steady state is reached.
• TOL2, tolerance of L1 velocity-residuals to stop outer iterations within each time step.
• ITEMEST, is the starting time step of the computation. A value of 1 is specified for new runs. If

the value is greater than 1, the code will read-in restart files from previous runs and continue the
computation to the new ending time step.

• ITEMEND, is the ending time step the user wishes to compute, for the previously specified value
of the time step size.

• MAXIT_LS, is the maximum allowable Alternating-Directional-Implicit (ADI) sweeps for the
level-set function.

• MAXITER, is the maximum allowable number of outer iterations on a given time step. For time
accurate solutions this value must be greater than one, to allow for good velocity-pressure coupling
and hence time accuracy of the flow field.

• MAXSWP_U, MAXSWP_P, MAXSWP_KE, is the maximum allowable number of inner iterations
on a given outer iteration, to iteratively solve the momentum, pressure, and turbulence transport
equations, respectively.

• MAXIT_DIVU, is the maximum allowable number of projections of the velocity field onto a
divergence-free space on a given outer iteration.

• RFU, is the relaxation factor for the velocity field. The optimal values lie in the range [0.4, 1.0],
although lower values may be needed for complex problems.

• RFP, is the relaxation factor for the pressure field. Also, in accordance with well-established
practices, we find that optimal values lie in the range [0.1, 0.8], although higher values may also
be used and lower values may also be needed.

• RFKE, is the relaxation factors for the turbulent transport variables. We find that typically optimal
values lie in the range [0.01, 0.5]. Although lower values may be needed.

• RFPHI, is the relaxation factors for the level-set function. We find that typically optimal values
lie in the range [0.2, 1.0].

• BCSFILE, is a string specifying the name of the family of boundary conditions files. The family
must have “number of processors” members. In this particular case, since there are 12 processes
involved, we must have 12 files (ddg00.bcs ~ ddg11.bcs) ready.

• GEOFILE, is a string specifying the name of the grid file. It is not needed in this version since the
grid name has already been specified in inputmpd.dat.

• IACT_PLOT, ISKP_PLOT, are control flags to activate the output and to control how frequently
the output files are updated. The output is in PLOT3D format for visualization using commercial
software such as FIELDVIEW, TECPLOT or other compatible flow visualization tools.

• IACT_ANIME, IBGN_ANIME, ISKP_ANIME, are control flags to write out a movie, which is
to be processed by the software FIELDVIEW. For this case, the movie corresponds to grid
coordinates and grid blanking values, density, velocity vectors, and pressure on every point in the
flow field.

52

• ISOL_PR, is a flag for pressure solvers. The pressure can be solved using either tridiagonal matrix
algoritm (TDMA-ADI) or strongly-implicit method (SIP-7pt).

• UMIN, UMAX, PMIN, PMAX, TKEMAX, TVISMAX, are limiters on the velocity, pressure, and
turbulent transport variables. These are set to high values, and are just a safeguard against a poor
initial guess, which may cause the fields to oscillate violently in the initial stages of the iterations.

• PHILSMIN, PHILSMAX, are limiters for the level-set function. They are set to high values, and
are just a safeguard against a poor initial guess, which may cause the fields to oscillate violently in
the initial stages of the iterations.

• EWIDE, is a representative grid size used specifying the transitional zone thickness adjacent to the
air-water interface.

• RFG, is a geometry distortion parameter. The default value is 1 for orthogonal or nearly-
orthogonal grids, but may be reduced to improve convergence for highly-skewed grids. The
relaxation parameter does not affect accuracy for orthogonal grids and has negligible effects for
nearly-orthogonal grids.

• UINF, VINF, WINF, are the values of (x,y,z) components of the free-stream velocity. For this
case, the ambient current velocity is zero.

• UBODY, VBODY, WBODY, are the values of (x,y,z) components of the body velocity (i.e., ship
speed) normalized by the characteristic velocity nD, when n is the propeller rotating speed and D
is the propeller diameter, . For this case, the ship is traveling in negative-x direction with a
normalized speed equals to the propeller advance coefficient J=V/nD.

• IMOVE, is a flag for grid motion. A value of 0 is specified for fixed grid system. The value is
set to 1 for moving grid in this case since the ship is moving at constant forward speed and the
propeller is also turning.

• NBODY, NFBODY, MBLK, are the number of body for force/moment integration, maximum
number of surfaces for force/integration, and the maximum number of blocks with six-degree-of-
freedom motions. These parameters are not needed for the propeller wash study considered in the
present study.

• NPROP, is the number of propellers. A value of 1 is specified for single-screw propeller. The
value is set to 2 for twin-screw propellers. In this case, we set NPROP = 1 since the computation
was performed for only one-half of the solution domain. A value of 2 should be specifed for fully
domain calculations involving twin-screw propellers.

• NMVPROP, is the maximum number of grid blocks rotating with any propellers.
• IPROP, is the propeller ID. For twin-screw propellers, the propeller rotating directions and the

computational grid blocks associated with each propeller can be defined separately.
• IROT, is a flag specifying the propeller rotating direction. A value of 1 indicates that the propeller

is rotating in clockwise direction. For counter-rotating twin-screw propellers, it is convenient to
straightforward to specify IROT = −1 for the second propeller rotating in counter-clockwise
direction. Also, it is convenient to change the signs of IROT if the same propellers are under the
crash-astern condition.

• IMVPROP, is the total number of grid blocks (including phantom grids) rotating with a given
propeller. In this case, there are 5 propeller blade blocks, 2 shaft/hub blocks, and 5 phantom blocks
(one for each propeller blade) rotating with each propeller. The identification numbers of the
rotating grid blocks are specified in the next line.

• ISHAFT, is the block identification number of the shaft grid block. This allows the users to specify
the center or rotation for each propeller.

53

 Since the workload is distributed to 12 processors for parallel execution, it is necessary to write
12 separate boundary condition files (ddg00.bcs~ddg11.bcs) which are included in the
ddg51_10kt_33ft.tar.gz for the present case. The boundary condition files follow the format
outlined in Appendix A. Below we discuss, as an example, the boundary conditions specified for one
of the propeller blades.

propeller01 % global block #1
 1 6 62 41 41 0 % mb,nfabcs,ni,nj,nk

 2 % No. of two-layer regions
 1 1 3 1 62 1 21 1 41 % nreg,iedy,idist,(i,j,k)
 2 2 0 1 62 20 41 1 41 % nreg,iedy,idist,(i,j,k)

 1 % No. of free surface regions
 1 3 1 62 1 41 1 41 % nLSreg, nLS, (i,j,k)

 1 1 % Face #1
 4 4 4 4 4 4 4 % (u,v,w,p,k,epsilon,phiLS)
 1 41 1 41 % (i,j,k) range
 2 1 % Face #2
 4 4 4 4 4 4 4
 1 41 1 41
 3 1 % Face #3
 9 9 9 2 1 3 3
 1 62 1 41
 4 1 % Face #4
 4 4 4 4 4 4 4
 1 62 1 41
 5 1 % Face #5
 9 9 9 2 1 3 3
 1 62 1 41
 6 1 % Face #6
 11 11 11 11 11 11 11
 1 62 1 41

 14 2 64 41 % nbk_GL,i,j,k for pressure
datum

The first line lists the blockname for block identification. The second line specifies that this
is block #1 for the given process, it has 6 faces with boundary conditions and the (i, j, k) dimensions
of the block are 62 × 41 × 41. The fourth line indicates that 2 regions need to be identified to apply
the near-wall two-layer k-epsilon turbulence model. The following two lines specify the two-layer
model types (iedy, near-wall or outer), the identification (idist) of each wall boundary, and the (i,
j, k) range of the specific region. The eighth line indicates that there is only one region for level-set
function (phiLS) specification. The free surface solver option (nLS) and the (i, j, k) range for that
region are specified in the next line. It should be remarked that these free surface boundary conditions
are not used in this case since the free surface effect is neglected with the flag IFSURF = 0.

Then, for each face, we read the face number and the number of sections in the face. For each
section on a given face, we read 7 boundary conditions associated with each of the 7 field variables:
(u, v, w, p, k, ε, phiLS), and the surface limits on that face.

 Faces #1 and #2 (i-min and i-max, respectively) of the blade block receive interpolation

54

information, and thus all the field variables have boundary condition #4. Face #3 (j-min) is the solid-
surface of the blade, for which (u, v, w) are assigned the grid velocity due to the rotation of the blade,
p is linearly extrapolated, turbulent kinetic energy is zero on the wall, and the Neumann boundary
conditions are used for turbulent energy dissipation and level-set function. Face #4 (j-max) receives
interpolation information and all field variables have boundary condition #4. Face #5 (k-min) is part
of the shaft’s solid-surface and its boundary conditions are identical to those on face #3 for a solid-
wall. Face #6 (k-max) is a branch cut around the blade tip where the flow variables are updated by
averaging the adjacent nodal values on either side of the branch cut plane.

For this example run the flow field is initialized with calm water condition and the propeller is
allowed to rotate for 100 revolutions. The ship travels at a constant forward speed of 10 knots and the
propeller rotating speed is 51 rpm (0.85 rps). The flow conditions correspond to an advance coefficient
J=1.103 and a Reynolds number of 2.1868 × 107 based on the propeller diameter. This corresponds to
a Reynolds number of 6.245 × 108 based on the ship length and ship speed. The RANS equations are
solved with the near-wall two-layer k-ε turbulence model.

As noted earlier, the PLOT3D grid output files (movie_x*.dat) contain (x, y, z, iblank) for the
multi-block overset grids, while the PLOT3D flow output files (movie_q*.dat) contain the flow
variables (ρ, ρu, ρv, ρw, p). These data files can be imported directly into FIELDVIEW for flow
visualization and post-processing. Typical results include the velocity contours, velocity vector plots,
and pressure contours as shown in Figures 2-7. Other derivated quantities such as shear stresses and
vorticities can also be calculated using the user-defined functions in FIELDVIEW. Figure 8 shows the
shear stresses on the sea bed which can be readily obtained by evaluating the velocity gradients
adjacent to the bottom boundary using the following formula:

 (14)

where q is the velocity magnitude, µ is the dynamic viscosity of the seawater, and ∆n is the normal
distance from the wall. The same shear stress data can also be plotted using another commercial code
MATLAB as shown in Figure 9.

, 2 2 2

wall

q q q= u v w
n n

τ µ µ∂ ∆
= = + +

∂ ∆

55

4.7 Example Case 2: Tugboat and Ducted Propeller Wash Study

In the second test case, we consider a tugboat boat with two ducted propellers under bollard-pull
condition (i.e., zero forward speed) as shown earlier in Figures 11-13. The composite grid was
generated by the commercial grid generation software GRIDGEN. It consists of 47 computational
blocks and 9 phantom grid blocks with a total of 7,070,832 grid points. There are 4 blades for each
propeller, and each blade is divided into 2 overlapping computational blocks. Each ducted propeller
assembly is surrounded by 5 computational blocks covering the upstream, downstream, inner and outer
regions between the propeller shaft and the shroud. In addition, two near-wake cylindrical grid blocks
(one for each propeller) are added to provide accurate resolution of the propeller wake flows. The
tugboat is surrounded by a single boundary-fitted grid block, and the far-field is covered by 18
overlapping rectangular grid points. A near-wall spacing of 10-6 ft was used near the sea bottom to
provide accurate resolution of the turbulent boundary layer flow. This allows us to calculate the shear
stresses on the seabed directly without relying on the wall-function approximations.

 The composite grid load is now distributed among thirty-five processes and we consider the
bollard-pull (zero tugboat speed) condition with the ducted propellers blowing parallel to a pier wall.
The file inputblk.dat contains the following data
! Geometry input file (second line, no more than 40 characters)
gridgen0.dat
1 ! 1: Gridgen format, 2: Plot3d format
 47 9 ! nblock + nphantom0 (including phantom0 grid)

 62 35 42
propeller01a

 62 35 42
propeller02a

 62 35 42
propeller03a

 62 35 42
propeller04a

 29 4 5
tip01a

 29 4 5
tip02a

 29 4 5
tip03a

 29 4 5
tip04a

 21 57 122
duct01a

 66 24 122
duct02a

56

 53 35 122
duct03a

 53 23 122
duct04a

 21 79 122
duct05a

 40 41 122
wake01a

 62 35 42
propeller01b

 62 35 42
propeller02b

 62 35 42
propeller03b

 62 35 42
propeller04b

 29 4 5
tip01b

 29 4 5
tip02b

 29 4 5
tip03b

 29 4 5
tip04b

 21 57 122
duct01b

 66 24 122
duct02b

 53 35 122
duct03b

 53 23 122
duct04b

 21 79 122
duct05b

 40 41 122
wake01b

 20 116 95
ocean01

57

 20 116 95
ocean02

 20 116 95
ocean03

 20 116 95
ocean04

 20 116 95
ocean05

 20 116 95
ocean06

 20 116 95
ocean07

 20 116 95
ocean08

 20 116 95
ocean09

 20 116 95
ocean10

 20 116 95
ocean11

 20 116 95
ocean12

 20 116 95
ocean13

 20 116 95
ocean14

 20 116 95
ocean15

 16 116 95
ocean16

151 37 33
ocean17

151 37 33
ocean18

107 34 61
barge01

 3 31 41
phantom01a

58

 3 31 41
phantom02a

 3 31 41
phantom03a

 3 31 41
phantom04a

 3 31 41
phantom01b

 3 31 41
phantom02b

 3 31 41
phantom03b

 3 31 41
phantom04b

 2 3 2
phantom05

The file inputmpd.dat contains the information necessary for the code to distribute the load among
the thirty-five different processes. For this particular case, the file has the following information

% number of blocks per process, for each process (excluding phantom grids)
4 4 1 1 1 1 1 1 4 4 1

 1 5 2 6 % global block number per process, for each process
 3 7 4 8
 9
10
11
12
13
14
15 19 16 20
17 21 18 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

59

38
39
40
41
42
43
44
45
46
47

We make the remark once more, that only active (computational) blocks are listed in this input, i.e.
phantom blocks do not need to be distributed as they do not represent any computational load. In this
particular case, there are 47 actives blocks including 14 blocks for each ducted propeller assembly, 2
blocks for propeller near-wakes, 1 block for the tugboat, and 18 blocks for the far-field. To balance
the workload for each process, we assign two blade and two tip blocks to a single processor. More
specifically, the first 8 computational blocks (#1 - #8) consist of 4 blade and 4 tip grids for the first
ducted propeller are assigned to processes #0 (master process) and #1, while the other 8 blade/tip blocks
(#15 - #22) for the second ducted propeller are assigned to processes #8 and #9 as seen in the
inputmpd.dat file. The remaining 31 computational blocks containing the ship, shroud, near-
wake, and far-field grids are assigned to 31 different processes. As noted earlier, the user need not
order the blocks in any particular manner during and after the grid generation process.

The input.dat file (the main control input file) requires only minor modifications, relative to the
DDG-51 ship case. The most notable difference is that there are two co-rotating propellers in the
present full-domain simulation. For each ducted propeller, there are 12 rotating grid blocks (4 blade
surface blocks, 4 blade tip blocks, and 4 phantom grids). It is straightforward to specify the rotating
direction, shaft block ID, and the IDs of rotating grid blocks associated with each propeller in the
following input.dat file.

1 % MTURB turbulence model: (0)laminar (1)k-epsilon (2)LES
1 % INCOMP flag for incompressible (1) or compressible (0) flow
0 % IFSURF flag for free surface flow (1) or no free surface (0)
2.6468E5 % RE Reynolds number (L=1ft, U=1ft/s, T=L/U=1s)
0.04 % TAU time step size
0.0 % AMP_RHO frequency damping parameter: 0.0 <= AMP_RHO <= 1.0
1.0E-08 % TOL1 L2 vel tol to stop time stepping
1.0E-03 % TOL2 L1 res tol to stop outer iterations
1 % ITIMEST starting time step to compute
12500 % ITIMEND ending time step to compute
1 % MAXITER_LS max allowable outer equation for level-set eqn
6 % MAXITER max allowable outer iterations
2 % MAXSWP_U max allowable number of momentum eqns ADI sweeps
2 % MAXSWP_PR max allowable number of pressure eqn ADI/SIP sweeps
2 % MAXSWP_KE max allowable number of k-epsilon eqns ADI sweeps
2 % MAXIT_DIVU max projections of velocity field onto div-free space
0.4 % RFU relaxation factor for velocities (due to nonlinearity)
0.2 % RFP relaxation factor for pressure (due to u-p decoupling)
0.001 % RFKE relaxation factor for turbulent k.e. and dissipation
0.5 % RFPHI relaxation factor for level set funtion
0 % ITIME_BCS flag to indicate (1) time dependent bcs

fans.grd % GEOFILE geometry input file (HCC: not used in this version)

60

prop.bcs % BCSFILE boundary conditions input file

1 % IACT_PLOT flag to activate (1) visualization output
100 % ISKP_PLOT time intervals for vis and restart

1 % IACT_ANIME flag to activate (1) animation output
0 % IBGN_ANIME time step number at which animation begins
20 % ISKP_ANIME multiples at which sol is written out for animation

0 % ISOL_PR (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn

-30. % UMIN
 30. % UMAX
-200. % PMIN
 200. % PMAX
 1.0 % TKEMAX
 0.01 % TVISMAX
-30. % PHILSMIN
 30. % PHILSMAX

1.0 % FROUDE Froude number (gravity acts in negative z-direction)
0.003 % EWIDE representative grid size

0.0 % RFG geometry distortion relaxation parameter

0.0 0.0 0.0 % UINF, VINF, WINF inflow velocities
0.0 0.0 0.0 % UBODY, VBODY, WBODY body velocities (ship speed)
1 % IMOVE (0) fixed grid, (1) moving grid

0 0 0 % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)

2 12 % NPROP (#propellers), NMVPROP (max #blocks moving with a propeller)

1 1 % IPROP (propeller #1), IROT (1: clockwise, -1: counter-clockwise)
12 10 % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID)
1 2 3 4 5 6 7 8 48 49 50 51 % moving propeller block ID (propeller #1)

2 1 % IPROP (propeller #2), IROT (1: clockwise, -1: counter-clockwise)
12 24 % NMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID)
15 16 17 18 19 20 21 22 52 53 54 55 % moving propeller ID (propeller #2)

The file overset.in needs to be suitably modified for the hole-cutting and donor-search
algorithm, and is provided in Appendix C. New boundary condition files need to be created for the
new tugboat and ducted propeller geometries. In addition, the boundary condition files for the far-field
need to be modified slightly to enforce the no-slip boundary conditions on pier walls. All 35 boundary
condition files are included in tugboat_case3.tar.gz zipped folder.

For this example run the flow field is initialized with calm water condition and the propeller is

allowed to rotate for 500 revolutions under bollard-pull condition with zero forward speed. The
simulation was performed for 12,500 time steps with a time increment of 0.04 To, where To is a
characteristic time for the propeller to turn one revolution. For simplicity, the characteristic length Lo
was chosen to be 1 ft so the full scale tugboat and propeller grids (in ft) can be used directly without
rescaling. This gives a Reynolds number of 2.647 × 105 based on the characteristic length Lo = 1 ft
when the propeller is rotating at 200 rpm. The corresponding Reynolds number based on the propeller

61

diameter is 1.488 × 107 based on the propeller diameter. The RANS equations are solved with the
near-wall two-layer k-ε turbulence model.

The movie_x*.dat and movie_q*.dat output files were post-processed using the
FIELDVIEW flow visualization software. Typical results include the velocity contours and velocity
vector plots at selected coordinate surfaces, and pressure contours on the propeller blade and shroud
surfaces. The velocity and pressure fields induced by the twin propellers were shown earlier in Figures
19 -23 for this case. These velocity contours and velocity-vector plots clearly illustrate that the right
propeller wake is strongly affected by the parallel pier wall. Furthermore, there is a strong interaction
between the left and right propellers with the two ducted propellers rotating in the same rotation. For
the co-rotating propellers considered here, there is a partial suppression of the swirling flow
momentums in the overlap region between two propeller wakes. This resulted in a deflection of the
weaker left propeller wake (away from the pier wall) toward the sea bottom as shown in Figure 23.

5.0 REFERENCES

1. Briaud, J.-L. and Chen, H.C. (2006), “Levee Erosion by Overtopping During the Katrina
Hurricane” Proceedings of the Third International Conference on Scour and Erosion,
November 1-3, Amsterdam, The Netherlands.

2. Briaud, J.L., Chen, H.C., Li. Y. and Nurtjahyo, P. (2004), “SRICOS-EFA Method for
Complex Piers in Fine-Grained Soils,” ASCE Journal of Geotechnical and
Geoenvironmental Engineering, Vol. 130, No. 11, pp. 1180-11191.

3. Chen, C.J., Bravo, R.H., Chen, H.C. and Xu, Z. (1995), “Accurate Discretization of
Incompressible Three-Dimensional Navier-Stokes Equations,” Numerical Heat Transfer,
Part B: Fundamentals, Vol. 27, No. 4, pp. 371-392.

4. Chen C.J. and Chen, H.C. (1984), “Finite Analytic Numerical Method for Unsteady Two-
dimensional Navier-Stokes Equations,” Journal of Computational Physics, Vol. 53, pp.
209-226.

5. Chen, C.R. and Chen, H.C. (2014), “CFD Simulation of Extreme Slamming on a
Containership in Random Waves,” The 24th International Ocean and Polar Engineering
Conference, pp. 499-506, June 15-20, Busan, Korea.

6. Chen, H.C. (2002), “Numerical Simulation of Scour Around Complex Piers in Cohesive Soil,”
Proceedings of First International Conference on Scour of Foundations, pp. 14-33, November
17-20, College Station, Texas.

7. Chen, H.C. (2009), “COSMIC – An Overset Grid Interpolation Method for Moving Body
Applications,” American Bureau of Shipping (ABS) Project Final Report, 55 pages, Texas
A&M University, College Station, Texas.

8. Chen, H.C. (2010), “Time-Domain Simulation of Nonlinear Wave Impact Loads on Fixed
Offshore Platform and Decks,” International Journal of Offshore and Polar Engineering, Vol.
20, No. 4, pp. 275-283.

9. Chen, H.C. (2011), “CFD Simulation of Compressible Two-Phase Sloshing Flow in a LNG
Tank,” International Journal of Ocean Systems Engineering, Vol. 1, No. 1, pp. 29-55.

10. Chen, H.C. (2013), “CFD Simulation of Directional Short-Crested Waves on Jack-up
Structure,” International Journal of Offshore and Polar Engineering, Vol. 23, No. 1, pp. 38-
45.

62

11. Chen, H.C., Chen, C.R. and Huang, K. (2013), “CFD Simulation of Vortex-Induced and Wake-
Induced Vibrations of Dual Vertical Risers,” Proceedings of 23rd International Offshore and
Polar Engineering Conference, Anchorage, Alaska, June 30-July 5.

12. Chen, H.C. and Chen, M. (1998), “Chimera RANS Simulation of a Berthing DDG-51 Ship
in Translational and Rotational Motions,” International Journal of Offshore and Polar
Engineering, Vol. 8, No. 3, pp. 182-191.

13. Chen, H.C. and Lee, S.K. (2004), “Time-Domain Simulation of Four-Quadrant Propeller Flow
by a Chimera Moving Grid Approach,” Civil Engineering in the Oceans VI Conference,
October 20-22, Baltimore, Maryland.

14. Chen, H.C., Lin, W.M., and Hwang, Y.W. (2002a), “Turbulent Flow Induced by Multiple-Ship
Operations in Confined Water,” Paper No. EM-2002-123, 15th ASCE Engineering Mechanics
Conference, Columbia University, New York, June 2-5.

15. Chen, H.C., Lin, W.M., and Hwang, Y.W. (2002b), “Validation and Application of Chimera
RANS Method for Ship-Ship Interactions in Shallow Water and Restricted Waterway,” 24th
Symposium on Naval Hydrodynamics, Fukuoka, Japan, July 8-13.

16. Chen, H.C., Lin, W.M., Liut, D. A. and Hwang, W.Y. (2003), “An Advanced Viscous Flow
Computational Method for Ship-Ship Interactions in Shallow and Restricted Waterway,”
MARSIM’03, Japan.

17. Chen, H.C., Liu, T., Huang, E.T. and Davis, D.A. (2000), “Chimera RANS Simulation of
Ship and Fender Coupling for Berthing Operations,” International Journal of Offshore and
Polar Engineering, Vol. 10, No. 2, pp. 112-122.

18. Chen, H.C. and Huang, E.T. (2003), “Time-Domain Simulation of Floating Pier and Multiple-
Vessel Interactions by a Chimera RANS Method,” 7th International Symposium on Fluid
Control, Measurement and Visualization, Sorrento, Italy.

19. Chen, H.C. and Patel, V.C. (1988), “Near-Wall Turbulence Models for Complex Flows
Including Separation,” AIAA Journal, Vol. 26, No. 6, pp. 641-648.

20. Chen, H.C., Patel, V.C. and Ju, S. (1990), “Solutions of Reynolds-Averaged Navier-Stokes
Equations for Three-Dimensional Incompressible Flows,” Journal of Computational
Physics, Vol. 88, No. 2, pp. 305-336.

21. Chung, J. and Hulbert G.M. (1993), “A time integration algorithm for structural dynamics with
improved numerical dissipation: The generalized-α method”, Journal of Applied Mechanics,
60:371-375.

22. Dettmer, W. and Peric, D. (2003), “An analysis of the time integration algorithms for the finite
element solutions of incompressible Navier–Stokes equations based on a stabilised
formulation”, Computer Methods in Applied Mechanics and Engineering, 192:1177-1226.

23. Huang, E.T. and Chen, H.C. (2003), “Ship Berthing at a Floating Pier,” Proceedings of 13th
International Offshore and Polar Engineering Conference, Vol. III, pp. 683-690, Honolulu,
Hawaii.

24. Huang, E.T. and Chen, H.C. (2007), “Influence of Site Specifics on Passing Ship Effects,”
Proceedings of 17th International Offshore and Polar Engineering Conference, Vol. III, pp.
2356-2363, Lisbon, Portugal.

25. Huang, E.T., and Chen, H.C. (2010), “Passing Ship Effects at Typical Waterfronts,” ASCE
PORTS 2010 Conference, Jacksonville, Florida.

26. Huang, K., Chen, H.C. and Chen, C.R. (2010), “Vertical Riser VIV Simulation in Uniform
Current,” ASME Journal of Offshore Mechanics and Arctic Engineering, Vol. 132, No. 3,
Article No. 031101.

63

27. Huang, K., Chen, H.C. and Chen, C.R. (2011), “Numerical Scheme for Riser Motion
Calculation during 3-D VIV Simulation,” Journal of Fluids and Structures, Vol. 27, No.
7, pp. 947-961.

28. Huang, K., Chen, H.C. and Chen, C.R. (2012), “Vertical Riser VIV Simulation in Sheared
Current,” International Journal of Offshore and Polar Engineering, Vol. 22, No. 2, pp.
142-149.

29. Chen, H.C. and Yu, K. (2009), “CFD Simulation of Wave-Current-Body Interactions
Including Greenwater and Wet Deck Slamming,” Journal of Computers and Fluids, Vol.
38, No. 5, pp. 970-980.

30. Lee, S.K. and Chen, H.C. (2005), “The Influence of Propeller/Hull Interaction on Propeller
Induced Cavitating Pressure,” Proceedings of 15th International Offshore and Polar
Engineering Conference, Vol. IV, pp. 596-603, 19-24 June, Seoul, Korea.

31. Pontaza, J.P., Chen, H.C. and Lee, S.K. (2006), “Numerical Simulation of Coupled Ship and
Propeller Flows,” Proceedings of 16th International Offshore and Polar Engineering
Conference, Vol. IV, pp. 468-474, May 28-June 2, San Francisco, California.

32. Pontaza J.P., Chen H.C. and Reddy J.N. (2005), “A local-analytic-based discretization
procedure for the numerical solution of incompressible flows.” International Journal for
Numerical Methods in Fluids, Vol. 49, No. 6, pp. 657-699.

A-1

Appendix A: Structure of the boundary condition input

 The structure of the boundary conditions input is best explained by showing the pseudo-code
used in the program to read the data:

do nbk=1,nblocks

read(LB,'(a40)') blockname0
 ! dummy read, blockname specified in inputblk.dat
read(LB,*) mb,nfabcs(mb),ni_dum,nj_dum,nk_dum,mlamp(mb)

read(LB,*)
read(LB,*) nregions(mb)

nregs=nregions(mb)
do nr=1,nregs
 read(LB,*)nreg,iedy(mb,nr),idist(mb,nr), &
 read(LB,*)mst1(mb,nr),mnd1(mb,nr), &
 mst2(mb,nr),mnd2(mb,nr), &
 mst3(mb,nr),mnd3(mb,nr)
end do

read(LB,*)
read(LB,*) nLSregions(mb)

nLSregs=nLSregions(mb)
do nLSr=1,nLSregs
 read(LB,*)nLSreg,nLS(mb,nLSr),
 mst1_LS(mb,nLSr),mnd1_LS(mb,nLSr), &
 mst2_LS(mb,nLSr),mnd2_LS(mb,nLSr), &
 mst3_LS(mb,nLSr),mnd3_LS(mb,nLSr)
end do

read(LB,*) mb,nfabcs(mb),nregions(mb)
nfbcs=nfabcs(mb)
do nf=1,nfbcs
read(LB,*)nfa(mb,nf),nsec(mb,nf)
nsect=nsec(mb,nf)
do ns=1,nsect
read(LB,*)nu(mb,nf,ns),nv(mb,nf,ns),nw(mb,nf,ns),npr(mb,nf,ns), &
 ntke(mb,nf,ns),ntds(mb,nf,ns),nphiLS(mb,nf,ns)
read(LB,*)nst1(mb,nf,ns),nnd1(mb,nf,ns), &
 nst2(mb,nf,ns),nnd2(mb,nf,ns)
end do
end do

end do
read(LB,*) nbk_prd,i_prd,j_prd,k_prd
close(LB)

Each process expects a boundary condition input file and executes the above given pseudo-
code. The first read statement is a dummy read of the blockname to provide clarity, while the
blockname specified earlier in the inputblk.dat file will be used for block identification.

A-2

The second read statement reads-in the local block number, the number of faces with boundary

conditions for that block, and the (i, j, k) dimensions of the block.

The third read statement reads-in the number of regions needed to identify near-wall and outer
regions for the two-layer k-ε model. For each region, we read the iedy flag, indicating whether the
region is a near-wall region (a value of 1) or an outer region (a value of 2). If the region is a near-wall
region then the value of idist is the block face number on which the wall lies. We then read the (i,
j, k) size of the region.

The fourth read statement reads-in the number of regions needed for various treatments of

level-set function for free surface flows. For each region, we read the nLS flag, indicating whether the
free surface should be solved directly using the advection equation for level-set function (a value of
1), updated using zero-gradient condition (a value of 2, typically used for the near-wall region), or
skipped (a value of 3, for single-phase regions without air-water interface). The (i, j, k) size was then
specified for each region. For the propeller wash study considered here, the free surface wave effects
were negligible and the initial level-set function for calm free surface was used throughout the entire
simulation by specifying nLS = 3.

After defining various regions for the two-layer k-ε turbulence model and the level-set

function, we then specify boundary conditions for all boundary surfaces in the following order: i =
imin (Face #1), i = imax (Face #2), j = jmin (Face #3), j = jmax (Face #4), k = kmin (Face #5), and k
= kmax (Face #6). For each face, we first read the face number and the number of sections in the face.
For each section on a given face, we then read 7 boundary conditions associated with each of the 7
field variables: (u, v, w, p, k, ε, phiLS), and the surface limits on that face. Once this is done for all
faces, we proceed to read the block, region, and surface data for the next local block on the same
processor (if more than one blocks are assigned to the same CPU). Finally, we must specify where the
global pressure datum is located. The information is stored in the variables, nbk_prd, i_prd,
j_prd, and k_prd.

 A list of available boundary conditions for the velocity components and turbulence field
variables is given below:
• #1: Dirichlet boundary condition, which is set by the initial guess or in the initial input
• #2: linear-extrapolation boundary condition
• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6: moving surface boundary condition, assign grid velocities
• #7, #8: free (not used at the moment)
• #9: moving surface boundary condition, assign grid velocities
• #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut
• #12: branch cut in higher index, average across branch cut
• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

A-3

The following is a list of available boundary conditions for the pressure:
• #1: free (not used at the moment)
• #2: linear-extrapolation boundary condition
• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6: free (not used at the moment)
• #7: compute pressure consistenly, using conservation of mass
• #8, #9, #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut
• #12: branch cut in higher index, average across branch cut
• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

Typical boundary conditions for a stationary wall are either of the following:

1 1 1 2 1 1 3 or
1 1 1 3 1 1 3

In the first one, pressure is linearly extrapolated at the wall, and in the second it is computed
consistently at the wall using conservation of mass at the boundary itself. For highly skewed meshes
in the near wall region, linear extrapolation is more stable.

At a free-stream inflow the following are valid options:

5 5 5 2 1 1 or
5 5 5 3 1 1

In the first one, a zero pressure gradient is enforced, and in the second pressure is computed
consistently at the boundary using conservation of mass. The second option, where pressure is
computed consistently, is also valid at the inflow of a channel – where a pressure drop is present. The
user can appreciate the versatility of the consistent pressure boundary condition, at it applies to virtually
any situation where velocities are prescribed.

Similarly, at an outflow, the following are valid options:

2 2 2 2 2 2 or
2 2 2 7 2 2

For problems involving free surface, the available boundary conditions for the level-set
function are listed in the following:
• #1: free (not used at the moment)
• #2: linear-extrapolation boundary condition
• #3: homogeneous Neumann or zero gradient boundary condition
• #4: interior boundary condition for overset grids, interpolation using donor data
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver
• #6, #7, #8, #9, #10: free (not used at the moment)
• #11: branch cut in lower index, average across branch cut

A-4

• #12: branch cut in higher index, average across branch cut
• #13: collapse-to-axis in lower index, average in circumferential direction
• #14: collapse-to-axis in higher index, average in circumferential direction

B-1

Appendix B: COSMIC input file for DDG-51 and P4876 propeller wash study

! example input for DDG-51 Ship and P4876 propeller wash study

! global parameters

<global>
 fringe = 1,
 quality = 0.01,
 nquality = 4,
 eps = 0.001,
</global>

! grid block definition

<block name = "propeller01">
 linking_grid_list = <"propeller01","shaft01","shaft02","basin01",
 "basin02","propeller05","propeller02","ocean03">
</block>
<block name = "propeller02">
 linking_grid_list = <"propeller02","shaft01","shaft02","basin01",
 "basin02","propeller01","propeller03","ocean03">
</block>
<block name = "propeller03">
 linking_grid_list = <"propeller03","shaft01","shaft02","basin01",
 "basin02","propeller02","propeller04","ocean03">
</block>
<block name = "propeller04">
 linking_grid_list = <"propeller04","shaft01","shaft02","basin01",
 "basin02","propeller03","propeller05","ocean03">
</block>
<block name = "propeller05">
 linking_grid_list = <"propeller05","shaft01","shaft02","basin01",
 "basin02","propeller04","propeller01","ocean03">
</block>
<block name = "shaft01">
 linking_grid_list = <"shaft01","shaft02","shaft03","basin01",
 "basin02","propeller01","propeller02",
 "propeller03","propeller04","propeller05",
 "ocean02","ocean03">
</block>
<block name = "shaft02">
 linking_grid_list = <"shaft02","shaft01","shaft03","basin01",
 "basin02","propeller01","propeller02",
 "propeller03","propeller04","propeller05",
 "ocean02","ocean03">
</block>
<block name = "shaft03">
 linking_grid_list = <"shaft03","shaft01","shaft02","basin01",
 "ship01","ocean02","ocean03">
</block>
<block name = "ship01">
 linking_grid_list = <"basin01","basin02","basin03","ocean01",

B-2

 "ocean02","ocean03","shaft01","shaft02",
 "shaft03">
</block>
<block name = "basin01">
 linking_grid_list = <"basin02","shaft01","shaft02","shaft03",
 "ocean01","ocean02","ocean03",
 "propeller01","propeller02","propeller03",
 "propeller04","propeller05","ship01">
</block>
<block name = "basin02">
 linking_grid_list = <"basin01","basin03","shaft01","shaft02",
 "shaft03","ocean01","ocean02","ocean03",
 "propeller01","propeller02","propeller03",
 "propeller04","propeller05","ship01">
</block>
<block name = "basin03">
 linking_grid_list = <"basin02","ocean01","ocean03">
</block>
<block name = "ocean01">
 linking_grid_list = <"basin01","basin02","basin03",
 "ocean02","ocean03">
</block>
<block name = "ocean02">
 linking_grid_list = <"ocean01","ocean03","ship01","basin01",
 "shaft01","shaft02","shaft03">
</block>
<block name = "ocean03">
 linking_grid_list = <"ocean01","ocean02","basin01","basin02",
 "basin03","ship01","shaft03","shaft02",
 "shaft01">
</block>
<block name = "phantom01">
 linking_grid_list = <"phantom01">
</block>
<block name = "phantom02">
 linking_grid_list = <"phantom02">
</block>
<block name = "phantom03">
 linking_grid_list = <"phantom03">
</block>
<block name = "phantom04">
 linking_grid_list = <"phantom04">
</block>
<block name = "phantom05">
 linking_grid_list = <"phantom05">
</block>
<block name = "phantom06">
 linking_grid_list = <"phantom06">
</block>
<block name = "phantom07">
 linking_grid_list = <"phantom07">
</block>

! hole boundary definition

<boundary name = "phantom01 hole boundary">

B-3

 parent_grid = "phantom01",
 hole_cutting_list = <"shaft01","shaft02","basin01","basin02">
</boundary>

<boundary name = "phantom02 hole boundary">
 parent_grid = "phantom02",
 hole_cutting_list = <"shaft01","shaft02","basin01","basin02">
</boundary>

<boundary name = "phantom03 hole boundary">
 parent_grid = "phantom03",
 hole_cutting_list = <"shaft01","shaft02","basin01","basin02">
</boundary>

<boundary name = "phantom04 hole boundary">
 parent_grid = "phantom04",
 hole_cutting_list = <"shaft01","shaft02","basin01","basin02">
</boundary>

<boundary name = "phantom05 hole boundary">
 parent_grid = "phantom05",
 hole_cutting_list = <"shaft01","shaft02","basin01","basin02">
</boundary>

<boundary name = "phantom06 hole boundary">
 parent_grid = "phantom06",
 hole_cutting_list = <"ship01">
</boundary>

<boundary name = "phantom07 hole boundary">
 parent_grid = "phantom07",
 hole_cutting_list = <"ship01","ocean03">
</boundary>

<boundary name = "shaft01 hole boundary">
 parent_grid = "shaft01"
 hole_cutting_list = <"basin01","basin02">
</boundary>

<boundary name = "shaft03 hole boundary">
 parent_grid = "shaft03"
 hole_cutting_list = <"basin01">
</boundary>

<boundary name = "ship01 hole boundary">
 parent_grid = "ship01",
 hole_cutting_list = <"shaft03","basin01","basin02",
 "ocean02","ocean03">
</boundary>

! hole surface definitions

<surface name = "phantom01 hole boundary">
 ijk_range = 1, 1, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",

B-4

</surface>
<surface name = "phantom01 hole boundary">
 ijk_range = 3, 3, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01 hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom01 hole boundary">
 ijk_range = 1, 3, 41, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01 hole boundary">
 ijk_range = 1, 3, 1, 41, 61, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom02 hole boundary">
 ijk_range = 1, 1, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02 hole boundary">
 ijk_range = 3, 3, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02 hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02 hole boundary">
 ijk_range = 1, 3, 41, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02 hole boundary">
 ijk_range = 1, 3, 1, 41, 61, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom03 hole boundary">
 ijk_range = 1, 1, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom03 hole boundary">
 ijk_range = 3, 3, 1, 41, 1, 61,

B-5

 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03 hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom03 hole boundary">
 ijk_range = 1, 3, 41, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03 hole boundary">
 ijk_range = 1, 3, 1, 41, 61, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom04 hole boundary">
 ijk_range = 1, 1, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04 hole boundary">
 ijk_range = 3, 3, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04 hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04 hole boundary">
 ijk_range = 1, 3, 41, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04 hole boundary">
 ijk_range = 1, 3, 1, 41, 61, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom05 hole boundary">
 ijk_range = 1, 1, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 3, 3, 1, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

B-6

<surface name = "phantom05 hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 61,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 3, 41, 41, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 3, 1, 41, 61, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom06 hole boundary">
 ijk_range = 1, 1, 1, 2, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom06 hole boundary">
 ijk_range = 2, 2, 1, 2, 1, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom06 hole boundary">
 ijk_range = 1, 2, 1, 1, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom06 hole boundary">
 ijk_range = 1, 2, 2, 2, 1, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom06 hole boundary">
 ijk_range = 1, 2, 1, 2, 1, 1,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom06 hole boundary">
 ijk_range = 1, 2, 1, 2, 2, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom07 hole boundary">
 ijk_range = 1, 1, 1, 2, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom07 hole boundary">
 ijk_range = 2, 2, 1, 2, 1, 2,
 boundary_condition ="cut",

B-7

 surface_normal = "+ijk",
</surface>
<surface name = "phantom07 hole boundary">
 ijk_range = 1, 2, 1, 1, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom07 hole boundary">
 ijk_range = 1, 2, 2, 2, 1, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom07 hole boundary">
 ijk_range = 1, 2, 1, 2, 1, 1,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom07 hole boundary">
 ijk_range = 1, 2, 1, 2, 2, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "shaft01 hole boundary">
 ijk_range = 1, 38, 3, 3, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "shaft03 hole boundary">
 ijk_range = 6, 65, 3, 3, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "ship01 hole boundary">
 ijk_range = 1, 121, 21, 21, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

! outer boundary definition

<boundary name = "propeller01 outer boundary">
 parent_grid = "propeller01",
</boundary>
<boundary name = "propeller02 outer boundary">
 parent_grid = "propeller02",
</boundary>
<boundary name = "propeller03 outer boundary">
 parent_grid = "propeller03",
</boundary>

B-8

<boundary name = "propeller04 outer boundary">
 parent_grid = "propeller04",
</boundary>
<boundary name = "propeller05 outer boundary">
 parent_grid = "propeller05",
</boundary>
<boundary name = "shaft01 outer boundary">
 parent_grid = "shaft01",
</boundary>
<boundary name = "shaft02 outer boundary">
 parent_grid = "shaft02",
</boundary>
<boundary name = "shaft03 outer boundary">
 parent_grid = "shaft03",
</boundary>
<boundary name = "ship01 outer boundary">
 parent_grid = "ship01",
</boundary>
<boundary name = "basin01 outer boundary">
 parent_grid = "basin01",
</boundary>
<boundary name = "basin02 outer boundary">
 parent_grid = "basin02",
</boundary>
<boundary name = "basin03 outer boundary">
 parent_grid = "basin03",
</boundary>
<boundary name = "ocean01 outer boundary">
 parent_grid = "ocean01",
</boundary>
<boundary name = "ocean02 outer boundary">
 parent_grid = "ocean02",
</boundary>
<boundary name = "ocean03 outer boundary">
 parent_grid = "ocean03",
</boundary>

! outer boundary surface definition

<surface name = "propeller01 outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller01"
 donor_ijk_range = 61, 61, 1, 41, 1, 41,
</surface>
<surface name = "propeller01 outer boundary">
 ijk_range = 62, 62, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller01"
 donor_ijk_range = 2, 2, 1, 41, 1, 41,
</surface>
<surface name = "propeller01 outer boundary">
 ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

B-9

<surface name = "propeller02 outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller02"
 donor_ijk_range = 61, 61, 1, 41, 1, 41,
</surface>
<surface name = "propeller02 outer boundary">
 ijk_range = 62, 62, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller02"
 donor_ijk_range = 2, 2, 1, 41, 1, 41,
</surface>
<surface name = "propeller02 outer boundary">
 ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller03 outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller03"
 donor_ijk_range = 61, 61, 1, 41, 1, 41,
</surface>
<surface name = "propeller03 outer boundary">
 ijk_range = 62, 62, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller03"
 donor_ijk_range = 2, 2, 1, 41, 1, 41,
</surface>
<surface name = "propeller03 outer boundary">
 ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller04 outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller04"
 donor_ijk_range = 61, 61, 1, 41, 1, 41,
</surface>
<surface name = "propeller04 outer boundary">
 ijk_range = 62, 62, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller04"
 donor_ijk_range = 2, 2, 1, 41, 1, 41,
</surface>
<surface name = "propeller04 outer boundary">
 ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "propeller05 outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller05"
 donor_ijk_range = 61, 61, 1, 41, 1, 41,
</surface>

B-10

<surface name = "propeller05 outer boundary">
 ijk_range = 62, 62, 1, 41, 1, 41,
 boundary_condition = "periodic",
 donor_grid = "propeller05"
 donor_ijk_range = 2, 2, 1, 41, 1, 41,
</surface>
<surface name = "propeller05 outer boundary">
 ijk_range = 1, 62, 41, 41, 2, 40,
</surface>

<surface name = "shaft01 outer boundary">
 ijk_range = 1, 1, 1, 21, 1, 122,
</surface>
<surface name = "shaft01 outer boundary">
 ijk_range = 1, 38, 21, 21, 1, 122,
</surface>
<surface name = "shaft01 outer boundary">
 ijk_range = 1, 38, 1, 21, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "shaft01"
 donor_ijk_range = 1, 38, 1, 21, 121, 121,
</surface>
<surface name = "shaft01 outer boundary">
 ijk_range = 1, 38, 1, 21, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "shaft01"
 donor_ijk_range = 1, 38, 1, 21, 2, 2,
</surface>

<surface name = "shaft02 outer boundary">
 ijk_range = 1, 1, 1, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">
 ijk_range = 28, 28, 1, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">
 ijk_range = 1, 28, 1, 1, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">
 ijk_range = 1, 28, 31, 31, 1, 122,
</surface>
<surface name = "shaft02 outer boundary">
 ijk_range = 1, 28, 1, 31, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "shaft02"
 donor_ijk_range = 1, 28, 1, 31, 121, 121,
</surface>
<surface name = "shaft02 outer boundary">
 ijk_range = 1, 28, 1, 31, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "shaft02"
 donor_ijk_range = 1, 28, 1, 31, 2, 2,
</surface>

B-11

<surface name = "shaft03 outer boundary">
 ijk_range = 65, 65, 1, 21, 1, 122,
</surface>
<surface name = "shaft03 outer boundary">
 ijk_range = 2, 65, 21, 21, 1, 122,
</surface>
<surface name = "shaft03 outer boundary">
 ijk_range = 1, 65, 1, 21, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "shaft03"
 donor_ijk_range = 1, 65, 1, 21, 121, 121,
</surface>
<surface name = "shaft03 outer boundary">
 ijk_range = 1, 65, 1, 21, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "shaft03"
 donor_ijk_range = 1, 65, 1, 21, 2, 2,
</surface>
<surface name = "shaft03 outer boundary">
 ijk_range = 1, 65, 1, 1, 1, 122,
 boundary_condition = "body",
</surface>

<surface name = "ship01 outer boundary">
 ijk_range = 1, 121, 35, 35, 1, 41,
</surface>

<surface name = "basin01 outer boundary">
 ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">
 ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">
 ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin01 outer boundary">
 ijk_range = 1, 34, 1, 81, 1, 1,
</surface>
<surface name = "basin01 outer boundary">
 ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "basin02 outer boundary">
 ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">
 ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">
 ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin02 outer boundary">
 ijk_range = 1, 34, 1, 81, 1, 1,

B-12

</surface>
<surface name = "basin02 outer boundary">
 ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "basin03 outer boundary">
 ijk_range = 1, 1, 1, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">
 ijk_range = 34, 34, 1, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">
 ijk_range = 1, 34, 81, 81, 1, 77,
</surface>
<surface name = "basin03 outer boundary">
 ijk_range = 1, 34, 1, 81, 1, 1,
</surface>
<surface name = "basin03 outer boundary">
 ijk_range = 1, 34, 1, 81, 77, 77,
</surface>

<surface name = "ocean01 outer boundary">
 ijk_range = 1, 152, 1, 65, 21, 21,
</surface>

<surface name = "ocean02 outer boundary">
 ijk_range = 77, 77, 1, 65, 1, 42,
</surface>
<surface name = "ocean02 outer boundary">
 ijk_range = 1, 77, 1, 65, 1, 1,
</surface>

<surface name = "ocean03 outer boundary">
 ijk_range = 1, 1, 1, 65, 1, 42,
</surface>
<surface name = "ocean03 outer boundary">
 ijk_range = 1, 77, 1, 65, 1, 1,
</surface>

C-1

Appendix C: COSMIC input file for tugboat and ducted-propeller wash study

! example input for tugboat and ducted propellers

! global parameters

<global>
 fringe = 1,
 quality = 0.01,
 nquality = 4,
 eps = 0.001,
</global>

! grid block definition

<block name = "propeller01a">
 linking_grid_list = <"propeller01a","tip01a","propeller04a",
 "propeller02a","duct02a","duct03a">
</block>
<block name = "propeller02a">
 linking_grid_list = <"propeller02a","tip02a","propeller01a",
 "propeller03a","duct02a","duct03a">
</block>
<block name = "propeller03a">
 linking_grid_list = <"propeller03a","tip03a","propeller02a",
 "propeller04a","duct02a","duct03a">
</block>
<block name = "propeller04a">
 linking_grid_list = <"propeller04a","tip04a","propeller03a",
 "propeller01a","duct02a","duct03a">
</block>
<block name = "tip01a">
 linking_grid_list = <"propeller01a","duct03a">
</block>
<block name = "tip02a">
 linking_grid_list = <"propeller02a","duct03a">
</block>
<block name = "tip03a">
 linking_grid_list = <"propeller03a","duct03a">
</block>
<block name = "tip04a">
 linking_grid_list = <"propeller04a","duct03a">
</block>
<block name = "duct01a">
 linking_grid_list = <"duct01a","duct02a","duct03a","duct04a",
 "barge01","ocean03","ocean04">
</block>
<block name = "duct02a">
 linking_grid_list = <"duct02a","duct01a","duct03a","duct05a",
 "wake01a","propeller01a","propeller02a",
 "propeller03a","propeller04a">
</block>
<block name = "duct03a">

C-2

 linking_grid_list = <"duct03a","duct01a","duct02a","duct05a",
 "propeller01a","propeller02a",
 "propeller03a","propeller04a","tip01a",
 "tip02a","tip03a","tip04a","barge01">
</block>
<block name = "duct04a">
 linking_grid_list = <"duct04a","duct01a","duct05a","wake01a",
 "barge01","ocean04">
</block>
<block name = "duct05a">
 linking_grid_list = <"duct05a","duct02a","duct03a","duct04a",
 "wake01a","barge01","ocean04">
</block>
<block name = "wake01a">
 linking_grid_list = <"wake01a","duct02a","duct03a","duct04a",
 "duct05a","barge01","ocean04","ocean05">
</block>
<block name = "propeller01b">
 linking_grid_list = <"propeller01b","tip01b","propeller04b",
 "propeller02b","duct02b","duct03b">
</block>
<block name = "propeller02b">
 linking_grid_list = <"propeller02b","tip02b","propeller01b",
 "propeller03b","duct02b","duct03b">
</block>
<block name = "propeller03b">
 linking_grid_list = <"propeller03b","tip03b","propeller02b",
 "propeller04b","duct02b","duct03b">
</block>
<block name = "propeller04b">
 linking_grid_list = <"propeller04b","tip04b","propeller03b",
 "propeller01b","duct02b","duct03b">
</block>
<block name = "tip01b">
 linking_grid_list = <"propeller01b","duct03b">
</block>
<block name = "tip02b">
 linking_grid_list = <"propeller02b","duct03b">
</block>
<block name = "tip03b">
 linking_grid_list = <"propeller03b","duct03b">
</block>
<block name = "tip04b">
 linking_grid_list = <"propeller04b","duct03b">
</block>
<block name = "duct01b">
 linking_grid_list = <"duct01b","duct02b","duct03b","duct04b",
 "barge01","ocean03","ocean04">
</block>
<block name = "duct02b">
 linking_grid_list = <"duct02b","duct01b","duct03b","duct05b",
 "wake01b","propeller01b","propeller02b",
 "propeller03b","propeller04b">
</block>
<block name = "duct03b">
 linking_grid_list = <"duct03b","duct01b","duct02b","duct05b",
 "propeller01b","propeller02b",

C-3

 "propeller03b","propeller04b","tip01b",
 "tip02b","tip03b","tip04b","barge01">
</block>
<block name = "duct04b">
 linking_grid_list = <"duct04b","duct01b","duct05b","wake01b",
 "barge01","ocean04">
</block>
<block name = "duct05b">
 linking_grid_list = <"duct05b","duct02b","duct03b","duct04b",
 "wake01b","barge01","ocean04">
</block>
<block name = "wake01b">
 linking_grid_list = <"wake01b","duct02b","duct03b","duct04b",
 "duct05b","barge01","ocean04","ocean05">
</block>
<block name = "ocean01">
 linking_grid_list = <"ocean02","ocean17","ocean18","barge01">
</block>
<block name = "ocean02">
 linking_grid_list = <"ocean01","ocean03","ocean17","ocean18",
 "barge01">
</block>
<block name = "ocean03">
 linking_grid_list = <"ocean02","ocean04","ocean17","ocean18",
 "duct01a","duct01b","duct04a","duct04b",
 "barge01">
</block>
<block name = "ocean04">
 linking_grid_list = <"ocean03","ocean05","ocean17","ocean18",
 "wake01a","wake01b","duct01a","duct01b",
 "duct04a","duct04b","duct05a","duct05b",
 "barge01">
</block>
<block name = "ocean05">
 linking_grid_list = <"ocean04","ocean06","ocean17","ocean18",
 "wake01a","wake01b","barge01">
</block>
<block name = "ocean06">
 linking_grid_list = <"ocean05","ocean07","ocean17","ocean18",
 "wake01a","wake01b","barge01">
</block>
<block name = "ocean07">
 linking_grid_list = <"ocean06","ocean08","ocean17","ocean18",
 "barge01">
</block>
<block name = "ocean08">
 linking_grid_list = <"ocean07","ocean09","ocean17","ocean18",
 "barge01">
</block>
<block name = "ocean09">
 linking_grid_list = <"ocean08","ocean10","ocean17","ocean18",
 "barge01">
</block>
<block name = "ocean10">
 linking_grid_list = <"ocean09","ocean11","ocean17","ocean18",
 "barge01">
</block>

C-4

<block name = "ocean11">
 linking_grid_list = <"ocean10","ocean12","ocean17","ocean18">
</block>
<block name = "ocean12">
 linking_grid_list = <"ocean11","ocean13","ocean17","ocean18">
</block>
<block name = "ocean13">
 linking_grid_list = <"ocean12","ocean14","ocean17","ocean18">
</block>
<block name = "ocean14">
 linking_grid_list = <"ocean13","ocean15","ocean17","ocean18">
</block>
<block name = "ocean15">
 linking_grid_list = <"ocean14","ocean16","ocean17","ocean18">
</block>
<block name = "ocean16">
 linking_grid_list = <"ocean15","ocean17","ocean18">
</block>
<block name = "ocean17">
 linking_grid_list = <"ocean01","ocean02","ocean03","ocean04",
 "ocean05","ocean06","ocean07","ocean08",
 "ocean09","ocean10","ocean11","ocean12",
 "ocean13","ocean14","ocean15","ocean16",
 "ocean18","barge01">
</block>
<block name = "ocean18">
 linking_grid_list = <"ocean01","ocean02","ocean03","ocean04",
 "ocean05","ocean06","ocean07","ocean08",
 "ocean09","ocean10","ocean11","ocean12",
 "ocean13","ocean14","ocean15","ocean16",
 "ocean17","barge01">
</block>
<block name = "barge01">
 linking_grid_list = <"duct01a","duct01b","duct04a","duct04b",
 "duct05a","duct05b","wake01a","wake01b",
 "ocean01","ocean02","ocean03","ocean04",
 "ocean05","ocean06","ocean07","ocean08",
 "ocean09","ocean10","ocean17","ocean18">
</block>
<block name = "phantom01a">
 linking_grid_list = <"phantom01a">
</block>
<block name = "phantom02a">
 linking_grid_list = <"phantom02a">
</block>
<block name = "phantom03a">
 linking_grid_list = <"phantom03a">
</block>
<block name = "phantom04a">
 linking_grid_list = <"phantom04a">
</block>
<block name = "phantom01b">
 linking_grid_list = <"phantom01b">
</block>
<block name = "phantom02b">
 linking_grid_list = <"phantom02b">
</block>

C-5

<block name = "phantom03b">
 linking_grid_list = <"phantom03b">
</block>
<block name = "phantom04b">
 linking_grid_list = <"phantom04b">
</block>
<block name = "phantom05">
 linking_grid_list = <"phantom05">
</block>

! hole boundary definition

<boundary name = "phantom01a hole boundary">
 parent_grid = "phantom01a",
 hole_cutting_list = <"duct02a","duct03a">
</boundary>

<boundary name = "phantom02a hole boundary">
 parent_grid = "phantom02a",
 hole_cutting_list = <"duct02a","duct03a">
</boundary>

<boundary name = "phantom03a hole boundary">
 parent_grid = "phantom03a",
 hole_cutting_list = <"duct02a","duct03a">
</boundary>

<boundary name = "phantom04a hole boundary">
 parent_grid = "phantom04a",
 hole_cutting_list = <"duct02a","duct03a">
</boundary>

<boundary name = "phantom01b hole boundary">
 parent_grid = "phantom01b",
 hole_cutting_list = <"duct02b","duct03b">
</boundary>

<boundary name = "phantom02b hole boundary">
 parent_grid = "phantom02b",
 hole_cutting_list = <"duct02b","duct03b">
</boundary>

<boundary name = "phantom03b hole boundary">
 parent_grid = "phantom03b",
 hole_cutting_list = <"duct02b","duct03b">
</boundary>

<boundary name = "phantom04b hole boundary">
 parent_grid = "phantom04b",
 hole_cutting_list = <"duct02b","duct03b">
</boundary>

<boundary name = "phantom05 hole boundary">
 parent_grid = "phantom05",
 hole_cutting_list = <"ocean01","ocean02","ocean03",
 "ocean04","ocean05","ocean06",

C-6

 "ocean07","ocean08","ocean09",
 "ocean10">
</boundary>

<boundary name = "duct01a hole boundary">
 parent_grid = "duct01a",
 hole_cutting_list = <"ocean03","ocean04","barge01">
</boundary>

<boundary name = "duct04a hole boundary">
 parent_grid = "duct04a",
 hole_cutting_list = <"wake01a","ocean04","ocean03",
 "barge01">
</boundary>

<boundary name = "duct05a hole boundary">
 parent_grid = "duct05a",
 hole_cutting_list = <"wake01a","ocean04","barge01">
</boundary>

<boundary name = "wake01a hole boundary">
 parent_grid = "wake01a",
 hole_cutting_list = <"ocean04","ocean05","barge01">
</boundary>

<boundary name = "duct01b hole boundary">
 parent_grid = "duct01b",
 hole_cutting_list = <"ocean03","ocean04","barge01">
</boundary>

<boundary name = "duct04b hole boundary">
 parent_grid = "duct04b",
 hole_cutting_list = <"wake01b","ocean04","ocean03",
 "barge01">
</boundary>

<boundary name = "duct05b hole boundary">
 parent_grid = "duct05b",
 hole_cutting_list = <"wake01b","ocean04","barge01">
</boundary>

<boundary name = "wake01b hole boundary">
 parent_grid = "wake01b",
 hole_cutting_list = <"ocean04","ocean05","barge01">
</boundary>

<boundary name = "barge01 hole boundary">
 parent_grid = "barge01",
 hole_cutting_list = <"ocean01","ocean02","ocean03",
 "ocean04","ocean05","ocean06",
 "ocean07","ocean08","ocean09",
 "ocean10","wake01a","wake01b",
 "duct01a","duct01b","duct04a",
 "duct04b","duct05a","duct05b">
</boundary>

C-7

! hole surface definitions

<surface name = "phantom01a hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom01a hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01a hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom01a hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01a hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom02a hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02a hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02a hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02a hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02a hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

C-8

<surface name = "phantom03a hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom03a hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03a hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom03a hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03a hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom04a hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04a hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04a hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04a hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04a hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom01b hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,

C-9

 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom01b hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01b hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom01b hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom01b hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom02b hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02b hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02b hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom02b hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom02b hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom03b hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>

C-10

<surface name = "phantom03b hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03b hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom03b hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom03b hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom04b hole boundary">
 ijk_range = 1, 1, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04b hole boundary">
 ijk_range = 3, 3, 1, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04b hole boundary">
 ijk_range = 1, 3, 1, 1, 1, 41,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom04b hole boundary">
 ijk_range = 1, 3, 31, 31, 1, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom04b hole boundary">
 ijk_range = 1, 3, 1, 31, 41, 41,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "phantom05 hole boundary">
 ijk_range = 1, 1, 1, 3, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 2, 2, 1, 3, 1, 2,
 boundary_condition ="cut",

C-11

 surface_normal = "+ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 2, 1, 1, 1, 2,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 2, 3, 3, 1, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 2, 1, 3, 1, 1,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "phantom05 hole boundary">
 ijk_range = 1, 2, 1, 3, 2, 2,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct01a hole boundary">
 ijk_range = 7, 7, 1, 37, 1, 121,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "duct01a hole boundary">
 ijk_range = 7, 21, 37, 37, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct04a hole boundary">
 ijk_range = 1, 53, 3, 3, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct05a hole boundary">
 ijk_range = 1, 15, 59, 59, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "wake01a hole boundary">
 ijk_range = 1, 1, 1, 29, 1, 121,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "wake01a hole boundary">
 ijk_range = 36, 36, 1, 29, 1, 121,

C-12

 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "wake01a hole boundary">
 ijk_range = 1, 36, 29, 29, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct01b hole boundary">
 ijk_range = 7, 7, 1, 37, 1, 121,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "duct01b hole boundary">
 ijk_range = 7, 21, 37, 37, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct04b hole boundary">
 ijk_range = 1, 53, 3, 3, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "duct05b hole boundary">
 ijk_range = 1, 15, 59, 59, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "wake01b hole boundary">
 ijk_range = 1, 1, 1, 29, 1, 121,
 boundary_condition ="cut",
 surface_normal = "-ijk",
</surface>
<surface name = "wake01b hole boundary">
 ijk_range = 36, 36, 1, 29, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>
<surface name = "wake01b hole boundary">
 ijk_range = 1, 36, 29, 29, 1, 121,
 boundary_condition ="cut",
 surface_normal = "+ijk",
</surface>

<surface name = "barge01 hole boundary">
 ijk_range = 1, 107, 17, 17, 1, 61,
 boundary_condition ="cut",
 surface_normal = "+ijk",

C-13

</surface>

! outer boundary definition

<boundary name = "propeller01a outer boundary">
 parent_grid = "propeller01a",
</boundary>
<boundary name = "propeller02a outer boundary">
 parent_grid = "propeller02a",
</boundary>
<boundary name = "propeller03a outer boundary">
 parent_grid = "propeller03a",
</boundary>
<boundary name = "propeller04a outer boundary">
 parent_grid = "propeller04a",
</boundary>
<boundary name = "tip01a outer boundary">
 parent_grid = "tip01a",
</boundary>
<boundary name = "tip02a outer boundary">
 parent_grid = "tip02a",
</boundary>
<boundary name = "tip03a outer boundary">
 parent_grid = "tip03a",
</boundary>
<boundary name = "tip04a outer boundary">
 parent_grid = "tip04a",
</boundary>
<boundary name = "duct01a outer boundary">
 parent_grid = "duct01a",
</boundary>
<boundary name = "duct02a outer boundary">
 parent_grid = "duct02a",
</boundary>
<boundary name = "duct03a outer boundary">
 parent_grid = "duct03a",
</boundary>
<boundary name = "duct04a outer boundary">
 parent_grid = "duct04a",
</boundary>
<boundary name = "duct05a outer boundary">
 parent_grid = "duct05a",
</boundary>
<boundary name = "wake01a outer boundary">
 parent_grid = "wake01a",
</boundary>
<boundary name = "propeller01b outer boundary">
 parent_grid = "propeller01b",
</boundary>
<boundary name = "propeller02b outer boundary">
 parent_grid = "propeller02b",
</boundary>
<boundary name = "propeller03b outer boundary">
 parent_grid = "propeller03b",

C-14

</boundary>
<boundary name = "propeller04b outer boundary">
 parent_grid = "propeller04b",
</boundary>
<boundary name = "tip01b outer boundary">
 parent_grid = "tip01b",
</boundary>
<boundary name = "tip02b outer boundary">
 parent_grid = "tip02b",
</boundary>
<boundary name = "tip03b outer boundary">
 parent_grid = "tip03b",
</boundary>
<boundary name = "tip04b outer boundary">
 parent_grid = "tip04b",
</boundary>
<boundary name = "duct01b outer boundary">
 parent_grid = "duct01b",
</boundary>
<boundary name = "duct02b outer boundary">
 parent_grid = "duct02b",
</boundary>
<boundary name = "duct03b outer boundary">
 parent_grid = "duct03b",
</boundary>
<boundary name = "duct04b outer boundary">
 parent_grid = "duct04b",
</boundary>
<boundary name = "duct05b outer boundary">
 parent_grid = "duct05b",
</boundary>
<boundary name = "wake01b outer boundary">
 parent_grid = "wake01b",
</boundary>
<boundary name = "ocean01 outer boundary">
 parent_grid = "ocean01",
</boundary>
<boundary name = "ocean02 outer boundary">
 parent_grid = "ocean02",
</boundary>
<boundary name = "ocean03 outer boundary">
 parent_grid = "ocean03",
</boundary>
<boundary name = "ocean04 outer boundary">
 parent_grid = "ocean04",
</boundary>
<boundary name = "ocean05 outer boundary">
 parent_grid = "ocean05",
</boundary>
<boundary name = "ocean06 outer boundary">
 parent_grid = "ocean06",
</boundary>
<boundary name = "ocean07 outer boundary">
 parent_grid = "ocean07",
</boundary>
<boundary name = "ocean08 outer boundary">
 parent_grid = "ocean08",

C-15

</boundary>
<boundary name = "ocean09 outer boundary">
 parent_grid = "ocean09",
</boundary>
<boundary name = "ocean10 outer boundary">
 parent_grid = "ocean10",
</boundary>
<boundary name = "ocean11 outer boundary">
 parent_grid = "ocean11",
</boundary>
<boundary name = "ocean12 outer boundary">
 parent_grid = "ocean12",
</boundary>
<boundary name = "ocean13 outer boundary">
 parent_grid = "ocean13",
</boundary>
<boundary name = "ocean14 outer boundary">
 parent_grid = "ocean14",
</boundary>
<boundary name = "ocean15 outer boundary">
 parent_grid = "ocean15",
</boundary>
<boundary name = "ocean16 outer boundary">
 parent_grid = "ocean16",
</boundary>
<boundary name = "ocean17 outer boundary">
 parent_grid = "ocean17",
</boundary>
<boundary name = "ocean18 outer boundary">
 parent_grid = "ocean18",
</boundary>
<boundary name = "barge01 outer boundary">
 parent_grid = "barge01",
</boundary>

! outer boundary surface definition

<surface name = "propeller01a outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller01a"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller01a outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller01a"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller01a outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller01a outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

C-16

<surface name = "propeller02a outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller02a"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller02a outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller02a"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller02a outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller02a outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller03a outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller03a"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller03a outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller03a"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller03a outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller03a outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller04a outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller04a"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller04a outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller04a"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller04a outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller04a outer boundary">

C-17

 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "tip01a outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip01a outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip01a outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip01a outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip01a outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip02a outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip02a outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip02a outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip02a outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip02a outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip03a outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip03a outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip03a outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip03a outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip03a outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip04a outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,

C-18

</surface>
<surface name = "tip04a outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip04a outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip04a outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip04a outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "duct01a outer boundary">
 ijk_range = 1, 1, 1, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 21, 21, 1, 34, 1, 122,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 21, 21, 36, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 8, 21, 1, 1, 1, 122,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 1, 21, 57, 57, 1, 122,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 1, 21, 1, 57, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct01a"
 donor_ijk_range = 1, 21, 1, 57, 121, 121,
</surface>
<surface name = "duct01a outer boundary">
 ijk_range = 1, 21, 1, 57, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct01a"
 donor_ijk_range = 1, 21, 1, 57, 2, 2,
</surface>

<surface name = "duct02a outer boundary">
 ijk_range = 66, 66, 1, 24, 1, 122,
</surface>
<surface name = "duct02a outer boundary">
 ijk_range = 1, 66, 24, 24, 1, 122,
</surface>
<surface name = "duct02a outer boundary">
 ijk_range = 1, 66, 1, 24, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct02a"
 donor_ijk_range = 1, 66, 1, 24, 121, 121,
</surface>
<surface name = "duct02a outer boundary">

C-19

 ijk_range = 1, 66, 1, 24, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct02a"
 donor_ijk_range = 1, 66, 1, 24, 2, 2,
</surface>

<surface name = "duct03a outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 122,
</surface>
<surface name = "duct03a outer boundary">
 ijk_range = 53, 53, 1, 35, 1, 122,
</surface>
<surface name = "duct03a outer boundary">
 ijk_range = 1, 53, 1, 1, 1, 122,
</surface>
<surface name = "duct03a outer boundary">
 ijk_range = 1, 53, 1, 35, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct03a"
 donor_ijk_range = 1, 53, 1, 35, 121, 121,
</surface>
<surface name = "duct03a outer boundary">
 ijk_range = 1, 53, 1, 35, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct03a"
 donor_ijk_range = 1, 53, 1, 35, 2, 2,
</surface>

<surface name = "duct04a outer boundary">
 ijk_range = 1, 1, 1, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">
 ijk_range = 53, 53, 1, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">
 ijk_range = 1, 53, 23, 23, 1, 122,
</surface>
<surface name = "duct04a outer boundary">
 ijk_range = 1, 53, 1, 23, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct04a"
 donor_ijk_range = 1, 53, 1, 23, 121, 121,
</surface>
<surface name = "duct04a outer boundary">
 ijk_range = 1, 53, 1, 23, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct04a"
 donor_ijk_range = 1, 53, 1, 23, 2, 2,
</surface>

<surface name = "duct05a outer boundary">
 ijk_range = 1, 1, 1, 56, 1, 122,
</surface>
<surface name = "duct05a outer boundary">

C-20

 ijk_range = 1, 1, 58, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">
 ijk_range = 21, 21, 1, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">
 ijk_range = 1, 21, 79, 79, 1, 122,
</surface>
<surface name = "duct05a outer boundary">
 ijk_range = 1, 21, 1, 79, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct05a"
 donor_ijk_range = 1, 21, 1, 79, 121, 121,
</surface>
<surface name = "duct05a outer boundary">
 ijk_range = 1, 21, 1, 79, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct05a"
 donor_ijk_range = 1, 21, 1, 79, 2, 2,
</surface>

<surface name = "wake01a outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">
 ijk_range = 40, 40, 1, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">
 ijk_range = 1, 40, 41, 41, 1, 122,
</surface>
<surface name = "wake01a outer boundary">
 ijk_range = 1, 40, 1, 41, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "wake01a"
 donor_ijk_range = 1, 40, 1, 41, 121, 121,
</surface>
<surface name = "wake01a outer boundary">
 ijk_range = 1, 40, 1, 41, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "wake01a"
 donor_ijk_range = 1, 40, 1, 41, 2, 2,
</surface>

<surface name = "propeller01b outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller01b"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller01b outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller01b"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>

C-21

<surface name = "propeller01b outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller01b outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller02b outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller02b"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller02b outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller02b"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller02b outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller02b outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller03b outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller03b"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller03b outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller03b"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller03b outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller03b outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "propeller04b outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 42,
 boundary_condition = "periodic",
 donor_grid = "propeller04b"
 donor_ijk_range = 61, 61, 1, 35, 1, 42,
</surface>
<surface name = "propeller04b outer boundary">
 ijk_range = 62, 62, 1, 35, 1, 42,
 boundary_condition = "periodic",

C-22

 donor_grid = "propeller04b"
 donor_ijk_range = 2, 2, 1, 35, 1, 42,
</surface>
<surface name = "propeller04b outer boundary">
 ijk_range = 1, 62, 35, 35, 2, 41,
</surface>
<surface name = "propeller04b outer boundary">
 ijk_range = 1, 62, 2, 35, 42, 42,
</surface>

<surface name = "tip01b outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip01b outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip01b outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip01b outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip01b outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip02b outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip02b outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip02b outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip02b outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip02b outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip03b outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip03b outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip03b outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip03b outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>

C-23

<surface name = "tip03b outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "tip04b outer boundary">
 ijk_range = 1, 1, 1, 4, 2, 5,
</surface>
<surface name = "tip04b outer boundary">
 ijk_range = 29, 29, 1, 4, 2, 5,
</surface>
<surface name = "tip04b outer boundary">
 ijk_range = 1, 29, 1, 1, 1, 5,
</surface>
<surface name = "tip04b outer boundary">
 ijk_range = 1, 29, 4, 4, 1, 5,
</surface>
<surface name = "tip04b outer boundary">
 ijk_range = 1, 29, 1, 4, 5, 5,
</surface>

<surface name = "duct01b outer boundary">
 ijk_range = 1, 1, 1, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 21, 21, 1, 34, 1, 122,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 21, 21, 36, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 8, 21, 1, 1, 1, 122,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 1, 21, 57, 57, 1, 122,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 1, 21, 1, 57, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct01b"
 donor_ijk_range = 1, 21, 1, 57, 121, 121,
</surface>
<surface name = "duct01b outer boundary">
 ijk_range = 1, 21, 1, 57, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct01b"
 donor_ijk_range = 1, 21, 1, 57, 2, 2,
</surface>

<surface name = "duct02b outer boundary">
 ijk_range = 66, 66, 1, 24, 1, 122,
</surface>
<surface name = "duct02b outer boundary">
 ijk_range = 1, 66, 24, 24, 1, 122,
</surface>

C-24

<surface name = "duct02b outer boundary">
 ijk_range = 1, 66, 1, 24, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct02b"
 donor_ijk_range = 1, 66, 1, 24, 121, 121,
</surface>
<surface name = "duct02b outer boundary">
 ijk_range = 1, 66, 1, 24, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct02b"
 donor_ijk_range = 1, 66, 1, 24, 2, 2,
</surface>

<surface name = "duct03b outer boundary">
 ijk_range = 1, 1, 1, 35, 1, 122,
</surface>
<surface name = "duct03b outer boundary">
 ijk_range = 53, 53, 1, 35, 1, 122,
</surface>
<surface name = "duct03b outer boundary">
 ijk_range = 1, 53, 1, 1, 1, 122,
</surface>
<surface name = "duct03b outer boundary">
 ijk_range = 1, 53, 1, 35, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct03b"
 donor_ijk_range = 1, 53, 1, 35, 121, 121,
</surface>
<surface name = "duct03b outer boundary">
 ijk_range = 1, 53, 1, 35, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct03b"
 donor_ijk_range = 1, 53, 1, 35, 2, 2,
</surface>

<surface name = "duct04b outer boundary">
 ijk_range = 1, 1, 1, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">
 ijk_range = 53, 53, 1, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">
 ijk_range = 1, 53, 23, 23, 1, 122,
</surface>
<surface name = "duct04b outer boundary">
 ijk_range = 1, 53, 1, 23, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct04b"
 donor_ijk_range = 1, 53, 1, 23, 121, 121,
</surface>
<surface name = "duct04b outer boundary">
 ijk_range = 1, 53, 1, 23, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct04b"
 donor_ijk_range = 1, 53, 1, 23, 2, 2,

C-25

</surface>

<surface name = "duct05b outer boundary">
 ijk_range = 1, 1, 1, 56, 1, 122,
</surface>
<surface name = "duct05b outer boundary">
 ijk_range = 1, 1, 58, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">
 ijk_range = 21, 21, 1, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">
 ijk_range = 1, 21, 79, 79, 1, 122,
</surface>
<surface name = "duct05b outer boundary">
 ijk_range = 1, 21, 1, 79, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "duct05b"
 donor_ijk_range = 1, 21, 1, 79, 121, 121,
</surface>
<surface name = "duct05b outer boundary">
 ijk_range = 1, 21, 1, 79, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "duct05b"
 donor_ijk_range = 1, 21, 1, 79, 2, 2,
</surface>

<surface name = "wake01b outer boundary">
 ijk_range = 1, 1, 1, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">
 ijk_range = 40, 40, 1, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">
 ijk_range = 1, 40, 41, 41, 1, 122,
</surface>
<surface name = "wake01b outer boundary">
 ijk_range = 1, 40, 1, 41, 1, 1,
 boundary_condition = "periodic",
 donor_grid = "wake01b"
 donor_ijk_range = 1, 40, 1, 41, 121, 121,
</surface>
<surface name = "wake01b outer boundary">
 ijk_range = 1, 40, 1, 41, 122, 122,
 boundary_condition = "periodic",
 donor_grid = "wake01b"
 donor_ijk_range = 1, 40, 1, 41, 2, 2,
</surface>

<surface name = "ocean01 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean01 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,

C-26

</surface>

<surface name = "ocean02 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean02 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean02 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean03 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean03 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean03 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean04 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean04 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean04 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean05 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean05 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean05 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean06 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean06 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean06 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

C-27

<surface name = "ocean07 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean07 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean07 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean08 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean08 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean08 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean09 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean09 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean09 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean10 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean10 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean10 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean11 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean11 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean11 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean12 outer boundary">

C-28

 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean12 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean12 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean13 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean13 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean13 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean14 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean14 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean14 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean15 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean15 outer boundary">
 ijk_range = 20, 20, 1, 116, 1, 95,
</surface>
<surface name = "ocean15 outer boundary">
 ijk_range = 1, 20, 1, 1, 1, 95,
</surface>

<surface name = "ocean16 outer boundary">
 ijk_range = 1, 1, 1, 116, 1, 95,
</surface>
<surface name = "ocean16 outer boundary">
 ijk_range = 1, 16, 1, 1, 1, 95,
</surface>

<surface name = "ocean17 outer boundary">
 ijk_range = 1, 151, 37, 37, 1, 33,
</surface>
<surface name = "ocean17 outer boundary">
 ijk_range = 1, 151, 1, 37, 33, 33,
</surface>

C-29

<surface name = "ocean18 outer boundary">
 ijk_range = 1, 151, 37, 37, 1, 33,
</surface>
<surface name = "ocean18 outer boundary">
 ijk_range = 1, 151, 1, 37, 1, 1,
</surface>

<surface name = "barge01 outer boundary">
 ijk_range = 1, 107, 34, 34, 1, 61,
</surface>

