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Abstract 
 

Propeller wash induces high shear stresses on seafloor which may cause sediment resuspension 
in DoD harbors.  In order to improve our understanding of the sediment erosion, transport, dispersion, 
and re-deposition processes, it is desirable to use advanced computational fluid dynamics models to 
provide detailed resolution of the velocities and bottom shear stresses induced by the propeller wash 
in confined shallow water basins.  In the present study, the Finite-Analytic Navier-Stokes code has 
been employed to solve the Reynolds-Averaged Navier-Stokes equations in conjunction with advanced 
near-wall turbulence model for several propeller-wash sceanarios involving a DDG-51 ship with twin-
screw propellers and a tugboat with two ducted propellers.  This enables us to evaluate the effect of 
water depth, ship speed, propeller rotating speed, and pier wall configuration on the propeller-induced 
shear stresses distributions. 
 
 
1.0 Introduction 

 
In the present study, the Finite-Analytic Navier-Stokes (FANS) code has been employed 

for propeller wash study in Navy harbors.  The FANS code solves Reynolds-Averaged Navier-
Stokes (RANS) equations together with advanced turbulence models in general curvilinear 
coordinate systems using overset (chimera) grids.  The overset grid system greatly facilitated the 
simulation of arbitrary relative motions among various computational grid blocks such as those 
encountered wave-current-body interactions and vortex-induced vibrations.  The FANS code 
consists of the following main components:  (1) finite-analytic method for the solution of 
compressible and incompressible Reynolds-Averaged Navier-Stokes (RANS) equations and 
energy equation in general curvilinear coordinates; (2) dynamic chimera domain decomposition 
technique for overlapped, embedded, or matched grids including relative motions; (3) near-wall 
Reynolds stress (second-moment) and two-layer k-ε turbulence models for turbulent boundary 
layer and wake flows; (4) large eddy simulation for unsteady chaotic eddy motions, (5) linear and 
nonlinear wave effects; (6) level-set method for interface-capturing between two different fluids, 
(7) detailed propeller flow simulations or interactive coupling with propeller performance 
programs, (8) coupling with six-degree-of-freedom motion program for ship, structure, wave, and 
current interactions, and (9) multi-processor parallelization for large-scale CFD applications.  The 
combination of these methods provides a unique capability for modeling complex fluid flow and 
heat transfer around practical three-dimensional configurations including viscous and violent free 
surface effects.   

 
The FANS code has been used extensively for the simulation of ship motions under very 

shallow water conditions.  Chen et al. (1998, 2000) performed berthing simulations for DDG-51 and 
AOE-6 ships with underkeel clearance ranging from 5-20% of the ship draft.  Chen and Huang (2003) 
and Huang and Chen (2003) also performed time-domain simulation of berthing operations involving 
a modular hybrid pier (MHP) with 2 mooring dophins, two moored LHD ships, one berthing LHD 
ship, a tug boat, 7 fenders and 12 mooring lines.   In these simulations, a very shallow water depth of 
28 ft was intentionally chosen to confine the underkeel clearance of the moored and docking ships to 
1 ft or 3.7% of the ship draft (= 27ft).   The FANS code has also been used in Chen, Lin and Huang 
(2002a, 2002b) and Chen, Lin, Liut and Huang (2003) for the study of multiple-ship interactions in 
dredged navigational channels. More recently, the FANS code has also been used by Huang and Chen 
(2007, 2010) for site-specific passing ship effects on a docked ship moored to a floating pier in Norfolk 
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harbor.  These simulation results clearly demonstrated the capability of the FANS code to model 
complex interactions between Navy harbor facilities and their client ships in a real waterfront ambience 
including site specific conditions such as sea bed bathymetry, shorelines, harbor geometry, navigation 
channels, hull shapes, and arbitrary ship motions. 

 
In addition to the simulation of multiple-ship interactions, the FANS code has also been 

used extensively for a wide range of fluid-structure interaction problems including propeller-ship 
interactions (Chen and Lee, 2004; Lee and Chen, 2005; Pontaza, Chen and Lee, 2006), greenwater 
and extreme slamming of ship in random waves (Chen and Chen, 2014), wet-deck slamming (Chen 
and Yu, 2007), LNG tank sloshing (Chen, 2011), hurricane wave loads on offshore platform and 
jack-up structure (Chen, 2010, 2013), vortex-induced vibration of deep water risers (Huang, Chen 
and Chen, 2010, 2011, 2012) and riser interferences (Chen, Chen and Huang, 2013), and scour 
around bridges (Chen, 2002, Briaud, Chen, Li and Nurtjahyo, 2004; Chen, Briaud and Chen, 
2006). 

 
In the FANS code, the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for 

incompressible flow in curvilinear coordinates are formulated in general curvilinear coordinates
( , ) ( , , , )i t tξ ξ η ς= : 

 
                                                                                                            (1) 

                                                        (2) 

 
where Ui and ui represent the mean and fluctuating velocity components, and gij is conjugate metric 
tensor.  t is time, p is pressure, and Re = UoL/ν is the Reynolds number based on a characteristic length 
L, a reference velocity Uo, and the kinematic viscosity ν.  Equation (1) represents the continuity 
equation and equation (2) represents the mean momentum equation.  The equations are written in tensor 
notation with the usual summation convention assumed.  The subscripts, ,j and ,jk, represent the 
covariant derivatives. 

 
In the present study, the two-layer turbulence model of Chen and Patel (1988) is employed to 

provide closure for the Reynolds stress tensor .  In this approach, the Reynolds stresses are related 
to the corresponding mean rate of strain through an isotropic eddy viscosity ν t: 
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The quantity / / Ret t1 R 1   ν= + represents the effective viscosity.  In the fully turbulent 
flow region away from the solid walls, the standard k-ε model is employed to solve the transport 
equations for turbulent kinetic energy k and its dissipation rate ε : 

 

, ,
,

j ij
j j

k i

k 1U k g k G 0
t R

ε
 ∂

+ − − + = ∂  
                                                                  (6) 

, ,
,

2
j ij

j j 1 2
i

1U g C G C 0
t R k kε ε

ε

ε ε εε ε
 ∂

+ − − + = ∂  
                                                (7) 

 
where the eddy viscosity ν t  and the production term G are given by: 

 

;
2

ij mn
t t im jn

kC     G=2 g g S Sµν ν
ε

=                                                                          (8) 

 
The effective viscosities in Equations (6) and (6) are taken as / / Re /k t k1 R 1   ν σ= + and 

/ / Re /t1 R 1   ε εν σ= + , respectively. 
 
In the present two-layer approach (Chen and Patel, 1988), the dissipation rate in the near 

wall region is determined from the turbulent kinetic energy and the dissipation length scale ε to 
account for the wall effects: 

 
/

; exp( / )
3 2

y
k     C y 1 R Aε ε

ε

ε  = = − − 


                                                         (10) 

 
Using this relationship, the turbulent kinetic energy can be determined from Equation (6) 

with the following eddy viscosity distribution: 
 

; exp( / )t yC k    C y 1 R Aµ µ µ µν  = = − −                                                     (11) 
 

The constants C , Aµ and Aε are given in Chen and Patel (1988) are chosen to yield a 
smooth distribution of eddy viscosity between the two regions. 

 
The above equations are solved numerically using the finite-analytic method developed by 

Chen and Chen (1984), Chen, Patel and Ju (1990), Chen, Bravo, Chen and Xu (1995) and Pontaza, 
Chen and Reddy (2005).  A detailed description of the finite-analytic method is provided later in 
the FANS-3D Users’ Guide section. 
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2.0 Simulation Scenarios for DDG-51 Ship 
 

FANS simulation were performed for a DDG-51 ship as shown in Figure 1 under two 
different water depths (10.0588 m and 11.5824 m) and two different propeller rotating speeds (26 
and 51 rpms).  The length of the DDG-51 ship is 142.04 m (466 ft) and the designed draft is 9.4488 
m.  The diameter of the twin-screw propellers is 5.4864 m (18 ft), and the center of propeller axis 
is located at 5.7912 m below the mean water level.  For the shallow water case with 10.0584 m 
(33 ft) water depth, the underkeel clearance is only 0.6096 m (2 ft) beneath the sonar dome and 
the minimum gap between the propeller tip and the sea bottom is 1.524 m (5 ft).  The propeller 
rotating speed is 26 rpm when the ship speed is 5 knots.  The ship speed increases to 10 knots 
when the propeller is rotating at 51 rpm.  Detailed information of DDG-51 ship and P4876 
propellers are summarized in Table 1. 

 
 
 

   

 

Figure 1. DDG-51 ship and P4876 propeller geometry 
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Case # 1 2 3 4 
Ship length L (m) 142.04 

(466 ft) 
142.04 
(466 ft) 

142.04 
(466 ft) 

142.04 
(466 ft) 

Ship Draft (m) 9.4488 
(31 ft) 

9.4488 
(31 ft) 

9.4488 
(31 ft) 

9.4488 
(31 ft) 

Water depth, H (m) 10.0584 
(33 ft) 

11.5824 
(38 ft) 

10.0584 
(33 ft) 

11.5824 
(38 ft) 

Underkeel clearance (m) 0.6096 
(2 ft) 

0.6096 
(2 ft) 

2.1336 
(7 ft) 

2.1336 
(7 ft) 

Propeller Diameter, D (m) 5.4864 
(18 ft) 

5.4864 
(18 ft) 

5.4864 
(18 ft) 

5.4864 
(18 ft) 

Distance between Propellers 
(m) 

9.8755 
(32.4 ft) 

9.8755 
(32.4 ft) 

9.8755 
(32.4 ft) 

9.8755 
(32.4 ft) 

Distance from ship stern to 
propeller (m) 

4.8768 
(16 ft) 

4.8768 
(16 ft) 

4.8768 
(16 ft) 

4.8768 
(16 ft) 

Propeller Depth (depth of the 
propeller axis) 

5.7912 
(19 ft) 

5.7912 
(19 ft) 

5.7912 
(19 ft) 

5.7912 
(19 ft) 

Distance from center of 
propeller axis to bottom 

4.2672 
(14 ft) 

4.2672 
(14 ft) 

5.7912 
(19 ft) 

5.7912 
(19 ft) 

Forward Thrust (N) 47314 47314 175307 175307 
Ship speed (knots) 5 5 10 10 
Propeller rpm, n 26 26 51 51 
Propeller advance coefficient 1.082 1.082 1.103 1.103 
Characteristic velocity, nD 
(m/s) 

2.3774 2.3774 4.6634 4.6634 

Reynolds number based on 
propeller diameter D 

1.115 x 107 1.115 x 107 2.187 x 107 2.187 x 107 

Reynolds number based on 
ship length L 

3.262 x 108 3.262 x 108 6.245 x 108 3.262 x 108 

 
Table 1. Propeller information for DDG-51 ship in FANS simulation 
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2.1 FANS Model Simulation Results for DDG-51 Ship 
 

Figure 2 shows the computational domain and multi-block overset grids used in the present 
study.  The overset grid system consists of 15 computational blocks and 7 phantom grid blocks 
with a total of 2,369,549 grid points covering half of the solution domain. A near-wall spacing of 
5.4864 × 10-6 m was used near the sea bottom to provide accurate resolution of the turbulent 
boundary layer flow.  Since the first grid point is located within the laminar sublayer, it allows us 
to calculate the shear stresses on the seabed directly without relying on the wall-function 
approximations.    

 
All calculations were performed for 4,000 time steps (i.e., 100 propeller revolutions) using 

12 CPUs on a Linux cluster.  For the 5 knots cases, the ship travels a total of 230.8 seconds and a 
total distance of 594 m.  When the ship speed was increased to 10 knots, it took approximately 
117.7 seconds for the ship to travel a total distance of 605 m over 100 propeller revolutions.  The 
simulation results clearly indicated that the propeller-induced shear stresses reached a periodic 
pattern in less than 50 propeller revolutions.      

 
 

 
 

   
 

Figure 2. Computational domain and numerical grids 
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2.2 Disturbed Velocity Profiles 
 

Figure 3 shows the predicted velocity contours and velocity vectors adjacent to the sea 
bottom.  For completeness, the velocity vectors at the keel plane is also shown in Figure 4 to 
provide a more detailed understanding of the three-dimensional flow field induced by the ship 
motions.  For simplicity, the velocities are normalized by a characteristic velocity Vo = nD given 
in Table 1, where n is the propeller rotating speed (rps) and D is the propeller diameter (m).  It 
should be noted that the ship is traveling in the negative x-direction on an earth-fixed frame.  This 
is equivalent to a positive current in the x-direction on a ship-fixed reference frame.  It is clearly 
seen from Figures 3 and 4 that there is a strong flow acceleration beneath the sonar dome when 
the water is forced to pass through the narrow underkeel clearance below the sonar dome.  This 
resulted in positive velocities (in the opposite direction of the ship motion) and high shear stresses 
beneath the sonar dome. 
 
 

   
 

(a) Case 1: V=5 knots, H=10.0584 m, ω = 26 rpm 
 

  
 

(b) Case 2: V=5 knots, H=11.5824 m, ω = 26 rpm 
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(c) Case 3: V=10 knots, H=10.0584 m, ω = 51 rpm 
 

  
 

(d) Case 4: V=10 knots, H=11.5824 m, ω = 51 rpm 
 
Figure 3. Longitudinal velocity contours and velocity vectors near seabed 
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Figure 4. Velocity profiles at the keel plane 

 
 

It is seen from Figures 4(b) and 4(d) for the deep water cases with H = 11.5824 m, a 
significant portion of the flow is pushed underneath the bow due to local flow acceleration around 
the sonar dome.  This produces a large flow recirculation region (in earth-fixed reference frame) 
at the keel plane with a fairly weak return flow near the sea bottom.   

 
When the water depth was reduced to H = 10.0584 m, there is a much larger resistance to 

push the flow beneath the sonar dome.  Consequently, most of the surrounding water tends to move 
laterally around the sonar dome and the flow recirculation near the seabed was confined to a fairly 
small region immediately downstream of the bow as shown in Figures 4(a) and 4(c).  It is clearly 
seen from Figures 3(a) and 3(c) that the ship induced a strong trailing water flow (in the same 
direction of the ship motion) beneath the ship keel which extends beyond the propeller plane and 
well into the far wake.  It should be remarked that the high velocity (and high shear stress) regions 
around the bow and mid-ship are induced by the ship hull movement, but not directly related to 
the propeller wash.  It is also worthwhile to note that the effect of propeller thrust and torque are 
confined to the ship stern and wake regions.   

 
Figure 5 shows the propeller induced velocity distribution along the center plane of the 

propeller axis.  The axial velocity contours at five selected cross-sections are also shown in Figure 
6 to provide a better understanding of the swirling flow pattern induced by the propeller rotation.  
It is seen that the propeller rotation induced strong swirling flow immediately downstream of the 
propeller.   The axial flow induced by the propeller thrust force remains strong for more than 15 
propeller diameters behind the ship stern even though a rather coarse grid was used in the far wake.  
This strong axial flow is expected to carry the suspended sediment for a long distance downstream 
of the twin-screw propellers.  
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(a) Case 1, V=5 knots, H=10.0584 m          (b) Case 2, V=5 knots, H=11.5824 m 
 
 

  
 

(c) Case 3, V=10 knots, H=10.0584 m          (d) Case 4, V=10 knots, H=11.5824 m 
 

Figure 5. Axial velocity contours and velocity vector plots around the propeller 
 
 

In addition to the axial flow profiles in Figures 5 and 6, the swirling flows at selected cross-
sections are also shown in Figure 7 to provide a complete description of the three-dimensional 
flow field induced by the propeller rotation.  It is seen that the propeller induced swirling flow 
patterns are quite similar immediately downstream of the propeller.  However, the propeller swirl 
is somewhat stronger in the far wake for shallow water cases with H = 10.0584 m.   It is also 
interesting to note that there is a second pair of counter-rotating vortices near the center plane of 
symmetry.   This vortex pair was generated in the narrow gap region around the sonar dome, and 
remains visible in the far wake.   

 
A detailed examination of the velocity profiles near sea bottom (see Figures 3 and 4) 

indicated that the propeller wash effect is negligible for the deep water cases since the swirling 
flow decreases quickly in the radial direction away from the propeller tip as shown in Figure 7. 
The effect of propeller wash grew considerably stronger under shallow water conditions when the 
minimum gap below the propeller tip was reduced from 3.048 m (10 ft) to 1.524 m (5 ft). 
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(a) Case 1, V=5 knots, H=10.0584 m              (b) Case 2, V=5 knots, H=11.5824 m 
 

  
 

(c) Case 3, V=10 knots, H=10.0584 m                  (d) Case 4, V= 10 knots, H=11.5824 m 
 

Figure 6. Propeller induced flow field at selected stations 
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(a) Case 1, V=5 knots, H=10.0584 m                 (b) Case 2, V=5 knots, H=11.5824 m 
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(c) Case 3, V=10 knots, H=10.0584 m                (d) Case 4, V=10 knots, H=11.5824 m 
 

Figure 7. Propeller induced swirling flows 
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2.3 Estimated Bottom Shear Stresses 
 

Figure 8 shows the shear stress distributions on the sea bottom for all four test cases 
considered in the present study.  It should be noted that different color bar scales were used since 
the bottom shear stresses for Case 2 are considerably smaller than the other three cases.  In general, 
the bottom shear stress increases with the propeller rpm and ship speed.  Under deep water 
conditions, the maximum shear stress occurred beneath the sonar dome due to strong flow 
acceleration through the narrow passage between the sonar dome and sea bottom.  High shear 
stress regions were also observed around the mid-ship due to large block coefficient of the DDG-
51 hull cross-section area.  It is seen that the propeller induced shear stresses are not as high as 
those induced by the ship motion.  Furthermore, the propeller wash effects are confined to a rather 
small region directly below the twin-screw propellers.  For shallow water cases with H = 10.0584 
m, the highest shear stress also occurred underneath the sonar dome.  However, the shear stresses 
in the stern region are also very high due to the presence of strong underkeel current (see Figure 
4) induced by the ship motion.   

 
 

  
(a) Case 1, V=5 knots, H=10.0584 m                 (b) Case 2, V=5 knots, H=11.5824 m 

 

  
(c) Case 3, V=10 knots, H=10.0584 m                 (d) Case 4, V=10 knots, H=11.5824 m 

 
Figure 8. Shear Stress distribution on the seabed 
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Figure 9 shows the surface plots of seabed shear stress distributions under different water 
depths and different ship speeds.  For clarity, the shear stress scales were adjusted for each case to 
provide a detailed comparison of the shear stress patterns in the bow, mid-ship, propeller, and ship 
stern regions.  As noted earlier, the highest shear stress occurred beneath the sonar dome for all 
four test cases considered.  For deeper water cases, the propeller induced shear stresses are 
considerably smaller than those induced by the ship hull motion.  However, the bottom shear stress 
distributions changed drastically when the water depth was reduced to H = 10.0584 m with a very 
small underkeel clearance of 0.6096 m.   The high shear stresses in the ship wake regions were 
induced primarily by the trailing water in the narrow gap between the keel and seabed.  The 
simulation results clearly demonstrated that the blockage effect (i.e., block coefficient) of the ship 
hull in shallow water is the dominant parameter in determining the sea bottom shear stress 
distributions. 
 

     
(a) Case 1, V=5 knots, H=10.0584 m               (b) Case 2, V=5 knots, H=11.5824 m 

 

     
(c) Case 3, V=10 knots, H=10.0584 m             (d) Case 4, V=10 knots, H=11.5824 m 

 
Figure 9. Surface plots of shear stresses on the seabed 
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For completeness, enlarged views of the seabed shear stress distributions around the twin-
screw propellers and the ship stern regions are also shown in Figure 10 to provide a detailed 
assessment of the propeller wash effects.  In addition, the maximum shear stresses at various 
locations of the seabed were also summarized in Table 2.  It is clearly seen that the propeller-
induced shear stresses are much smaller than the hull-induced shear stresses under shallow water 
conditions.  The maximum shear stress in the ship wake exceeded 8.9 Pa for Case 3 when the ship 
speed was 10 knots.  Even for the lower speed case with V = 5 kts (Case 1), the bottom shear stress 
in Case 1 still reached nearly 2.5 Pa in the ship wake.  The maximum shear stresses in ship wake 
region are about 3 times of those induced by the propeller rotation.   It is quite obvious that the 
large blockage effect of sonar dome under shallow water condition is the primary cause of the 
strong trailing water and high shear stresses in the narrow gap between the ship keel and sea 
bottom.  However, it should be remarked that the shear stress induced by the ship hull is strongly 
dependent on the ship size, hull form, and the water depth.  Therefore, it will be necessary to 
perform numerical simulations for each individual ship in order to quantify the water depth effect 
for different type of ships. 
 

    
(a) Case 1, V=5 knots, H=10.0584 m               (b) Case 2, V=5 knots, H=11.5824 m 

   
(c) Case 3, V=10 knots, H=10.0584 m             (d) Case 4, V=10 knots, H=11.5824 m 

 
Figure 10. Surface plots of seabed shear stresses around the twin-screw propellers 



17 

Case # 1 2 3 4 
Bow 3.02 Pa 1.09 Pa 10.53 Pa 3.57 Pa 

Mid-ship 0.51 Pa 0.39 Pa 1.85 Pa 1.46 Pa 
Propeller 0.85 Pa 0.18 Pa 3.00 Pa 0.85 Pa 

Ship wake 2.49 Pa 0.14 Pa 8.94 Pa 0.37 Pa 
 

Table 2. Maximum shear stresses in different regions of the seabed 
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3.0 Simulation Scenarios for Tugboat with Ducted Propellers 
 

FANS simulations were also performed for a tugboat with two ducted propellers as shown 
in Figure 11 at a constant water depth of 9.144 m (30 ft) under three different flow conditions: (1) 
propeller blowing to open water, (2) propeller blowing toward a pier wall, and (3) propeller 
blowing parallel to a pier wall.  Since the detailed geometries of the tugboat and propellers used 
in the experiments are not available, it was necessary to use a simple barge-shaped tugboat as 
shown in Figure 10.  The length of the barge is 28.65 m (94 ft), the beam is 10.36 m (34 ft), and 
the designed draft is 3.35 m (11 ft).   Also, the database of a similar ducted propeller was used to 
represent the actual propellers used in the experiments.  The propeller diameter is scaled to 2.286 
m (7.5 ft) and the hub diameter is 0.38 m (1.25 ft).  The outside shroud diameter is approximately 
2.54 m (100 in.).  The two ducted propellers are located at a distance of 15.24 m (50 ft) from the 
tugboat stern, and at a depth of 4.88 m (16 ft) beneath the free surface.  The center-to-center spacing 
between the left and right propellers is 4.88 m (16 ft).  The minimum clearance between the shroud 
and the seabed is approximately 3.00 m (9.83 ft).  In all three simulation scenarios, the propellers 
are operated at 200 rpm under bollard-pull condition with zero forward speed.  Detailed 
information of the barge-shaped tugboat, ducted propellers, and harbor configurations are 
summarized in Table 3. 
 

 
 

 

Figure 11.  Tugboat and ducted propeller geometry   
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Case # 1 2 3 
Ship length L (m) 28.65 (94 ft) 28.65 (94 ft) 28.65 (94 ft) 
Ship Beam B (m) 10.36 (34 ft) 10.36 (34 ft) 10.36 (34 ft) 
Ship Draft (m) 3.353 (11 ft) 3.353 (11 ft) 3.353 (11 ft) 
Water depth, H (m) 9.144 (30 ft) 9.144 (30 ft) 9.144 (30 ft) 
Distance from ship bow to pier 
wall at waterline (m) 

1.8288 (6 ft) Open water 1.8288 (6 ft) 

Distance from ship stern to pier 
wall at waterline (m) 

Open water 30.48 m (100 ft) Open water 

Clearance between ship sidewall 
and Pier wall (m) 

Open water Open water 1.524 (5 ft) 

Underkeel clearance (m) 2.997 (9.833 ft) 2.997 (9.833 ft) 2.997 (9.833 ft) 
Propeller Diameter, D (m) 2.286 (7.5 ft) 2.286 (7.5 ft) 2.286 (7.5 ft) 
Distance between Propellers (m) 4.8768 (16 ft) 4.8768 (16 ft) 4.8768 (16 ft) 
Distance from ship stern to 
propeller (m) 

15.24 (50 ft) 15.24 (50 ft) 15.24 (50 ft) 

Propeller Depth (depth of the 
propeller axis) 

4.8768 (16 ft) 4.8768 (16 ft) 4.8768 (16 ft) 

Distance from center of 
propeller axis to bottom 

4.2672 (14 ft) 4.2672 (14 ft) 4.2672 (14 ft) 

Ship speed (knots) 0 0 0 
Propeller rpm, n 200 200 200 
Characteristic time, To (s) 0.3 0.3 0.3 
Characteristic velocity Uo (m/s) 1.016 1.016 1.106 
Reynolds number based on 
characteristic length Lo (= 1 ft) 

2.647 x 105 2.647 x 105 2.647 x 105 

Reynolds number based on 
propeller diameter D 

1.488 x 107 1.488 x 107 1.488 x 107 

 
Table 3. Propeller information for tugboat in FANS simulation 

 
 
 

Three different harbor configurations were considered in the present tugboat propeller 
wash study as shown in Figure 12.  In the first test case, the tugboat is pushing against a pier wall 
(with a 1.83 m clearance at the waterline) and the ducted propellers are blowing to open water.  
For the second test case, the propeller is blowing toward a pier wall located at 30.48 m (100 ft) 
downstream of the ship stern.  It should be noted that the distance between the propeller center and 
the pier wall is 45.72 m (150 ft) since the propeller is located at 15.24 m (50 ft) upstream of the 
ship stern.  The third test case is similar to Case 1, but the tugboat is aligned in parallel to another 
pier wall as shown in Figure 12(c).  The minimum distance between the tugboat sidewall and the 
pier wall is 1.52 m (5 ft).  As noted earlier, the rotating speed (200 rpm) of the ducted propellers 
and the water depth (30 ft) remain the same for all three test cases. 
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(a) Propeller blowing to open water 

 

           
(b) Propeller blowing to pier wall 

 

  
(c) Propeller blowing parallel to pier wall 

 
Figure 12. Harbor configurations for tugboat propeller wash simulations 
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3.1 FANS Model Simulation Results for Tugboat with Ducted Propellers 
 

Figure 13 shows the computational domain and multi-block overset grids for Case 3 with 
propeller blowing parallel to the pier wall.  The overset grid system consists of 47 computational 
blocks and 9 phantom grid blocks with a total of 7,070,832 grid points for the entire solution 
domain.   A total of 14 grid blocks were used for each ducted propeller to provide detailed 
resolution of the propeller-induced flow field around the propeller blades, hub, shroud, and near-
wake regions.  The tugboat is surrounded by a single body-fitted grid block, and the far field is 
divided into 18 overlapping rectangular grid blocks.  The computational load was distributed 
among 35 CPUs on a Linux cluster. 
 

 
 

 
Figure 13. Computational domain and numerical grids 

 
 

For simplicity, calculations for Cases 1 and 2 were performed for only one-half the solution 
domain using Neumann boundary conditions on the plane-of-symmetry (y = 0).  The overset grid 
system for Case 1 consists of 24 computational blocks and 5 phantom grid blocks.  The grids 
around the ducted propeller and the tugboat are identical to those used in Case 3, but only 9 
computational blocks are needed to cover the far-field.   The total number of grid nodes is 
3,351,587, and the workload was distributed to 18 CPUs.   
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The propeller and tugboat grids for Case 2 with propeller blowing toward a pier wall are 
also identical to those used in Cases 1 and 3.  However, it was necessary to refine the far-field grid 
in front of the pier wall to provide accurate resolution of the turbulent boundary layer around the 
pier wall.  The overset grid for this case consists of 29 computational blocks and 5 phantom grid 
blocks, with 14 rectangular grid blocks covering the far-field.  A total of 4,736,735 grid points was 
used for one-half of the solution domain, and the workload was distributed among 23 CPUs on a 
Linux cluster.   

 
For all three test cases, a near-wall spacing of 3.048 × 10-6 m (10-5 ft) was used next to the 

sea bottom to provide accurate resolution of turbulent boundary layer flow.  Since the first grid 
point is located within the laminar sublayer, it allows us to calculate the shear stresses on the 
seabed directly without relying on the wall-function approximations.  All calculations were 
performed for 12,500 time steps (i.e., 500 propeller revolutions) with a time increment of 0.012 
sec.  

 
 
3.2 Disturbed Velocity Profiles 
 

Figures 14 and 15 show the predicted velocity contours on the vertical and horizontal 
propeller center planes, respectively, for Case 1 with propeller blowing to open water.  For 
completeness, the velocity contours on the free surface are also shown in Figure 15 to provide a 
more detailed understanding of the three-dimensional flow field induced by the ducted propellers 
under bollard-pull condition.  For simplicity, the velocities (U, V, W) are normalized by a 
characteristic velocity Uo = nLo given in Table 3, where n is the propeller rotating speed (rps) and 
the characteristic length Lo is chosen to be 0.3048 m (1 ft).  Also, the characteristic time is defined 
as To = Lo/Uo = 1/n such that the propeller turns one revolution over one characteristic time.  For 
present simulations with the propellers rotating at 200 rpm, the corresponding characteristic time 
and velocity scales are To = 0.3 sec and Uo = 1.016 m, respectively.  

 
It is clearly seen from Figures 14 and 15 that the propeller wake extends all the way to the 

downstream edge of the computational domain (about 76 m behind the ducted propellers) in less 
than 300 propeller revolutions.  The propeller wake flow spreads both horizontally and vertically 
over several propeller diameters.  It is seen from Figure 14 that the propeller-induced velocities 
are considerably stronger near the free surface due to local flow acceleration in the narrow 
clearance between the propeller blades and the tugboat bottom surface.  It should be noted that the 
tugboat blockage effect is strongly affected by its stern shape and cross-sectional geometry in the 
propeller wake regions.  The blockage effect of the present barge-shaped tugboat tends to be higher 
than the other ship-shaped tugboats since the block coefficient of a rectangular flat-bottom barge 
is considerably larger than other tugboat cross-sectional geometries.   
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Figure 14. Axial velocity contours on the vertical propeller center plane at t/To = 100, 200, 300, 
400 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water 

 
 
 

As shown in Table 3, the minimum distance between the propeller shroud and the sea 
bottom is 3.0 m, which is only about 1.3 times of the propeller diameter.  Due to the relatively 
small underkeel clearance, strong propeller-induced current were observed near the sea bottom 
approximately 6-10 propeller diameters downstream of the propellers during the initial stage of 
the propeller wash simulation.  The high shear stress region was found to extend to more than 20 
propeller diameters downstream at later stage as the propeller wake grows considerably longer and 
wider after t/To = 400.  It is worthwhile to note that the propeller-induced flow is highly three-
dimensional and strongly affected by the tugboat and sea bottom in confined harbor with shallow 
water depth.  
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(a) Propeller plane, t = 30 sec                         (b) free surface, t = 30 sec 

 
(c) Propeller plane, t = 90 sec                           (d) free surface, t = 90 sec 

 
(e) Propeller plane, t = 150 sec                      (f) free surface, t = 150 sec 

 
Figure 15. Axial velocity contours on the horizontal propeller center plane (left) and free surface 

(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 1 with propeller blowing to open water 
 
 
 

In the second test case, FANS simulation was performed for the same tugboat and ducted 
propellers in Case 1 but the propellers were blowing to a pier wall located at 30.48 m (100 ft) 
downstream of the tugboat stern.  Figures 16 shows the velocity contours on the vertical propeller 
center plane, while the velocity contours on the horizontal propeller plane and the free surface are 
shown in Figure 17.  It is seen from Figure 16 that the propeller-induced flow reached the pier wall at 
about t/To = 132, and was deflected by the pier wall and spread both horizontally and vertically along 
the pier wall.  This produced a stagnation flow region with high impact pressure on the pier wall as 
shown in Figure 18.   
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Figure 16. Axial velocity contours on the vertical propeller center plane at t/To = 100, 132, 200, 

300, 400 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall 
 

 
The combination of shallow water depth and downstream pier wall resulted in a drastically 

different flow pattern near sea bottom in comparison with that observed earlier for the open water Case 
1.  More specifically, the high velocity region is shifted further downstream closer to the pier wall due 
to the adverse pressure gradient in front of the pier wall and the deflection of the propeller wake.  This 
resulted in a shift of high shear stress region toward the pier wall.  Furthermore, the deflection of 
propeller flow momentum also produced another high shear stress region in the vicinity of the pier 
wall. 
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(a) Propeller plane, t = 30 sec                         (b) free surface, t = 30 sec 

  
(c) Propeller plane, t = 90 sec                         (d) free surface, t = 90 sec 

  
(e) Propeller plane, t = 150 sec                         (f) free surface, t = 150 sec 

 
Figure 17. Axial velocity contours on the horizontal propeller center plane (left) and free surface 
(right) at t/To = 100, 300 and 500 (To = 0.3 sec); Case 2 with propeller blowing toward pier wall 
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Figure 18. Pressure contours on pier wall and sea bottom, t/To = 160 and 320; Case 2 with propeller 
blowing toward a pier wall 

 
 
 

FANS simulations were also performed for the third test case with the ducted propellers 
blowing parallel to a pier wall.  Due to the asymmetric harbor configuration, it was necessary to 
calculate the flow over the entire solution domain.  Furthermore, unlike the counter-rotating propellers 
in Cases 1 and 2, we consider two identical right-handed propellers here with both propellers rotating 
in the same direction.   Figures 19 and 20 show the velocity contours on the vertical propeller planes 
for the right (near pier wall) and left (away from pier wall) propellers, respectively.   Furthermore, the 
velocity contours at horizontal propeller center plane and free surface are also shown in Figure 21 to 
provide a more detailed description of the complex three-dimensional flow induced by the twin 
propellers.  It is clearly seen that the propeller wake flow is strongly affected by the presence of the 
parallel pier wall.  In general, the velocity induced by the right propeller is much stronger because the 
propeller-induced radial flow momentum is deflected by the pier wall and redirected toward the axial 
direction along the pier wall.  On the other hand, the wake flow induced by the left propeller is 
somewhat weaker than those observed in Cases 1 and 2. 
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Figure 19. Axial velocity contours behind the right propeller (near pier wall); Case 3 with propeller 

blowing parallel to pier wall 
 

 

 

 

 

 
 

Figure 20. Axial velocity contours behind the left propeller (away from pier wall); Case 3 with 
propeller blowing parallel to pier wall 
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(a) Propeller plane, t = 30 sec                         (b) free surface, t = 30 sec 

 
(c) Propeller plane, t = 60 sec                         (d) free surface, t = 60 sec 

 
(e) Propeller plane, t = 90 sec                         (f) free surface, t = 90 sec 

 
(g) Propeller plane, t = 120 sec                         (h) free surface, t = 120 sec 

 
(i) Propeller plane, t = 150 sec                         (j) free surface, t = 150 sec 

 
Figure 21. Axial velocity contours on the horizontal propeller center plane (left) and free surface 
(right) at t/To = 100, 200, 300, 400 and 500; Case 3 with propeller blowing parallel to pier wall 
  

For completeness, three-dimensional views of the propeller-induced flow at the horizontal 
propeller center plane and four selected axial stations are also shown in Figure 22 to provide a complete 
description of the propeller wake evolution.  It is clearly seen that the swirling flow behind the right 
propeller is strongly affected by the pier wall as well as the left propeller.  In addition to the deflection 
of swirling flow momentum by the pier wall, there is also a very strong interaction between the left 
and right propellers as shown in Figure 23.   For Cases 1 and 2, the propeller-induced swirling flows 
are affected primarily by the flat bottom surface of the tugboat.  For the co-rotating propellers 
considered in Case 3, however, there is a partial suppression of the swirling flow momentums in the 
overlap region between two propeller wakes.  This resulted in a deflection of the weaker left propeller 
wake (away from the pier wall) toward the sea bottom as shown in Figure 22. 
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Figure 22. Axial velocity contours at horizontal propeller center plane (top) and selected cross-
sections (bottom); Case 3 with propeller blowing parallel to pier wall 
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(a) Case 1, X = − 12.19 m, t = 150 sec 

 
(b) Case 2, X = − 12.19 m, t = 150 sec 

 
(c) Case 3, X = − 12.19 m, t = 150 sec 

 

Figure 23. Propeller-induced swirling flows (normalized by Uo) at t/To = 500  
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3.3 Estimated Bottom Shear Stresses 
 

Figure 24 shows the shear stress distributions on the sea bottom for Case 1 with propeller 
blowing to open water.  In general, the shear stresses are high during the initial transient period (less 
than 100 propeller revolutions) after impulsive start of the propeller rotation. As the propeller wakes 
grow longer and wider, the high shear stress region is pushed downstream and eventually reached a 
nearly periodic pattern after 400-450 propeller revolutions.   At t/To = 500,  the high shear stress region 
is observed between 5-10 propeller diameters downstream of the propeller and the maximum shear 
stress is about 4.0 Pa at X/D = 8.9.  It is interesting to note that there are several high pressure regions 
because the propeller wake flow is highly unsteady in confined water depth under bollard-pull 
condition. 

 
 

  
 

  
 

  
 

 Figure 24. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; 
Case 1 with propeller blowing to open water  
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Figure 25 shows the shear stress distributions on the sea bottom for Case 2 with propeller 
blowing to a pier wall.  Before the propeller wake reaches the pier wall, the shear stress pattern for 
Case 2 is very similar to that observed in Case 1 with propeller blowing to open water.   After the 
propeller wake impinges on the pier wall at about t/To = 130, another high shear stress region was 
developed in front of the pier wall as seen in Figures 25(c)-(f).  As noted earlier, the pier wall forced 
the propeller wake to spread in both the horizontal and vertical directions.  Due to the propeller wake 
impingement and lateral spread, the high shear stress region gradually shifted downstream. At t/To = 
500,  the high shear stress region is observed near the pier wall with a maximum shear stress of about 
4.2 Pa at X/D = 15.3 behind the duct propellers.  It should be noted that the pier wall drastically altered 
the shear stress pattern even though the maximum shear stress is only slightly higher than that observed 
earlier in Case 1 with the propellers blowing to open water.   
 

  
 

  
 

  
 

Figure 25. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 2 
with propeller blowing to pier wall  

Figure 26 shows the shear stress distributions on the sea bottom for Case 3 with propellers 
blowing parallel to a pier wall.  It should be noted that a different color bar scale was used in Figure 
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26 since the bottom shear stresses for Case 3 are several times higher than those observed in Cases 
1 and 2.  During the initial stage of simulation, a high shear stress region was developed around 
the tugboat stern region similar to those observed in Cases 1 and 2.  As the propeller wake grew 
longer and wider, another high shear stress region was developed along the parallel pier wall as 
seen in Figure 26(b)-(c).   

 
 

  
 

  
 

  
 

Figure 26. Shear Stress distribution on the seabed at t/To = 100, 200, 300, 400, 460 and 500; Case 3 
with propeller blowing parallel to pier wall  

 
As shown earlier in Figures 19-23, there is a very strong interaction between the left and 

right propellers when the two right-handed propellers are rotating in the same direction.  
Consequently, the weaker left propeller wake (away from pier wall) was pushed closer to the sea 
bottom, while the stronger right propeller wake (near pier wall) was deflected slightly upward to 
the free surface.  It is interesting to note that the weaker left propeller wake actually produced 
considerably higher shear stresses in the near field because it is much closer to the sea bed than 
the stronger right propeller wake as seen in Figure 22.   In the far field, there is another high shear 
stress region adjacent to the parallel pier wall.  A detailed examination of the propeller-induced 
flow field indicates that the second high shear stress region was produced by the stronger right 
propeller wake.  At t/To = 500,  the high shear stress regions is observed near the pier wall with a 
maximum shear stress of about 10.4 Pa at X/D = 16.3 behind the duct propellers. 

A detailed comparison of the velocity and shear stress distributions for Cases 1-3 clearly 
illustrates that the sea bed shear stresses induced by the ducted propellers are strongly affected by 
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the harbor configuration as well as the propeller rotating directions.  Furthermore, as demonstrated 
in the DDG-51 ship and P4876 propeller wash study, the shear stresses on the sea bottom also 
depend strongly on the water depth, ship geometry, underkeel clearance, ship speed, propeller type, 
and propeller operating conditions.  In order to provide detailed shear stress distributions for 
different ships under site-specific harbor configurations, it is desirable to perform propeller wash 
study by solving the Navier-Stokes equations directly in conjunction with advanced turbulence 
models. 
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4.0 FANS-3D Users’ Guide 

The FANS-3D code was developed by Dr. Hamn-Ching Chen and his students and 
collaborators over the past twenty-five years.  It is a general purpose CFD code for the numerical 
solution of the Navier-Stokes equations governing laminar and turbulent flows in body-fitted 
curvilinear grids.  The code employs multi-block overset (chimera) grids including fully-matched, 
arbitrarily embedded, and/or overlapping grids to facilitate detailed resolution of unsteady laminar and 
turbulent flows around complex geometries involving arbirtray body motions as well as fluid-structure 
interactions.  Communication between grid components is achieved by Lagrange interpolation at the 
fringes.  The code is fully coupled with the hole-making and donor-finding algorithm, allowing for the 
relative movement of the grid blocks at each time step for time-domain simulation of fluid-structure 
interaction problems including violent free surface motions.   

 
The underlying theory of the local-analytic-based discretization (also known as finite analytic 

based discretization) is briefly presented in the following.  A complete description of the formulation, 
including the numerical solution of well-established 2D and 3D benchmarks is documented in Pontaza, 
Chen, and Reddy (2005).  Additional published work on the theory of the discretization method is due 
to Chen and Chen (1984), Chen, Patel, and Ju (1990), and Chen, Bravo, Chen and Xu (1995). 
 
4.1 Theory and Numerical Algorithm of FANS Code 
 

The finite-analytic method was developed by Chen, Patel, and Ju (1990), Chen, Bravo, Chen 
and Xu (1995) and Pontaza, Chen and Reddy (2005) for accurate numerical simulation of the time-
dependent incompressible Navier-Stokes equations.  To briefly describe the formulation, consider a 
two-dimensional domain partitioned into equal sized non-overlapping elements, Ωe.  We linearized the 
Navier-Stokes equations in each element and write 
 

     in Ωe                                  (12) 

 
Where ∂h/∂t is a discrete representation of the temporal operator (e.g., a backward Euler representation) 
and  is a discrete gradient operator in space.  Momentarily treating L(U,P) as known and constant 
over the element, we see that the linearized momentum equations are non-homogeneous advection-
diffusion equations. 
 

Treating each of the momentum equations as a transport equation for the associated velocity 
component, we use the natural solution of the linearized equation as boundary conditions along the 
edges of the square element and solve the associated equations by the method of separation of variables 
to obtain local analytic interpolants in terms of unknown neighboring nodal values of the velocity 
components. The interpolant may be written as follows 
 

          in Ωe                                                          (13) 

The local analytic interpolants ,  are functions of the local velocity field and respond 
analytically to local flow conditions. In addition, the interpolants satisfy zeroth and first-order 
consistency requirements, and are always positive. These properties ensure that spurious energy modes 
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are non-existent in the scheme, and render it stable at high Reynolds numbers.  Plots of one of the 
coefficients for different flow conditions in a single element are shown in Figure 27.  A more detailed 
description of the finite analytic functions is given in Pontaza, Chen, and Reddy (2005) and Chen and 
Chen (1984). 
 

 
Figure 27.  Finite analytic function associated with a node placed a (x,y)=(-1,0), for an element in (x,y) 

[-1,1]× [-1,1], for different flow conditions. 
 

The interpolants satisfy (locally) the linearized momentum equations and a collocation scheme 
is adopted to form the discrete equations.  In other words, the local analytic functions are only evaluated 
at the center of the element to yield coefficients that make up the stencil relating the center value to its 
neighbors.   
 

If the pressure field is known a priori the pressure gradient may be evaluated and a set of 
discrete equations for each interior nodded can be written using Equation (13).  These equations can 
be assembled to yield a banded, un-symmetric, definite, matrix system.  When augmented with suitable 
boundary conditions, the system can be solved (in an iterative manner with respect to the linearization) 
to yield the nodal velocity values in a time-marching procedure. 
 

In general, however, the pressure field is not known a priori and must be computed such that 
the velocity field is divergence-free. This is achieved by projecting the velocity field onto a divergence-
free space by means of a discrete Poisson equation for the pressure.  The discrete representation of the 
divergence operator is constructed such that a strong velocity-pressure coupling is achieved, effectively 
avoiding spurious pressure solutions for the co-located node arrangement, where nodal degrees of 
freedom for velocities and pressure share the same locations. The projection is directly applied to 
boundaries as well, so that no artificial boundary conditions for the pressure are necessary. Thus, 
pressure is consistently computed at the boundaries. 
 

The momentum and discrete pressure Poisson equation are solved sequentially in an iterative 

∈
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manner. The method has been shown to be second-order accurate in velocities and pressure (Pontaza, 
Chen, and Reddy; 2005).  Convergence properties of the method are illustrated in Figure 28.  When 
Equation (13) is used as an interpolant, the interpolation is fourth-order accurate, as shown in Fig. 
28(a).  When Equation (13) is used as a collocation discretization procedure the error decays at a 
second-order rate as show in Figures 28(b) and 28(c) for linear and nonlinear equations.  Figure 28(d) 
shows second-order accuracy in velocities and pressures, indicating good velocity pressure coupling 
by the segregated solution approach implemented.   
 

In practical implementations we seldom encounter square domains. The general procedure 
consists of constructing the local analytic interpolants in a mapped space. In this manner, we can handle 
skewed or curvilinear elements with a unified approach. The method has proven robust in the presence 
of severe mesh skews and high aspect ratio cells (Pontaza, Chen, and Reddy; 2005).  

 
Figure 28.  Convergence curves for verification studies of the finite analytic functions as (a) 
interpolants and as (b), (c), (d) a collocation discretization procedure. 
 

For time-accurate solutions, the time derivative is represented here by second-order accurate 
truncated expansions in time domain.  Specifically, the time integration scheme corresponds to the 
generalized α-method family of time integrators.  The family is generated by varying a single-free 
integrator parameter, ρ, for high frequency damping.  Unresolved high frequencies (due to the choice 
of the time step size) are damped out according to the value of ρ.  The choice ρ = 1.0, corresponds to 
the trapezoidal rule, which is well known to have no damping for high frequency modes that may excite 
odd-even mode oscillations.  High frequency damping is allowed by decreasing the value of ρ.  
Additional documentation on this particular family of time integrators is given by Chung and Hulbert 
(1985) and by Dettmer and Peric (2004).  The discrete pressure gradient operator is represented using 
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standard second-order accurate finite-differences in each spatial direction. 
 
 Extension to the three-dimensional case is straightforward and is achieved by superimposing 
two-dimensional local analytic solutions, such that the three-dimensional equations are satisfied 
locally.  Details of the derivation were first presented by Chen, Patel and Ju (1990) and Chen, Bravo, 
Chen and Xu (1995), and are also outlined by Pontaza, Chen, and Reddy (2005).  The resulting stencil 
relates one nodal unknown to its 19 neighbors, and is thus a 19-point finite analytic stencil.   
 
 For turbulent flows modeled through the numerical solution of the Reynolds-averaged Navier-
Stokes (RANS) equations described earlier in Equations (5) – (11).  In the two-layer k-ε model, the k-
ε model is patched together with a k-l model used in the near-wall region.  Thus, the near-wall region 
is computed directly and adequate grid resolution must be used there.  Additional details can be found 
in Chen and Patel (1988).   
 
 The discretization procedure for the turbulent transport equations is exactly the same used for 
the momentum equations described earlier, as these equations can always be written in the standard 
form given by Equation (13).  This is certainly a major advantage of the formulation, as no special 
treatment is needed for the turbulence transport equations.  
 
 
 
4.2 FANS-3D Software Documentation and Execution 
 

  In the present study, the FANS-3D code was employed for the propeller wash simulations of 
both DDG-51 ship and tugboat cases as described in previous sections.  The computer code 
executables, numerical grids, input files, simulation results, and animation movies for all seven 
propeller wash scenarios were delivered to Dr. Pei-Fang Wang of SPAWAR-Pacific.  The deliverables 
are organized in seven tar (tape archive) files as follows:  
 

1. ddg51_5kt_33ft.tar.gz: DDG-51 ship at 5 kts and 33 ft water depth 
2. ddg51_5kt_38ft.tar.gz: DDG-51 ship at 5 kts and 38 ft water depth 
3. ddg51_10kt_33ft.tar.gz: DDG-51 ship at 10 kts and 33 ft water depth 
4. ddg51_10kt_38ft.tar.gz: DDG-51 ship at 10 kts and 33 ft water depth 
5. tugboat_case1.tar.gz: tugboat sceanrio 1 with propeller blowing to open water 
6. tugboat_case2.tar.gz: tugboat sceanrio 2 with propeller blowing to pier wall 
7. tugboat_case3.tar.gz: tugboat scrarnio 3 with propeller blowing parallel to pier wall 

 
Each folder contains the following set of files that must be written by the users  

1. gridgen0.dat (or plot3d0.dat), this file contains the multi-block numerical grids in 
either GRIDGEN or PLOT3D format.  The file format is given later. 

2. inputblk.dat, this file assigns a name to each of the computational grid blocks and contains 
information regarding their size (both active and phantom grids are listed). 

3. inputmpd.dat, this file contains the multi-processor distribution information. 
4. input.dat, this is the control program file, where the user may specify, for example, the 

Reynolds number, the time step size, relaxation factors, etc. 
5. overset.in, this is the control file for the hole-cutting and donor-searching program 
6. *.bcs, files containing the boundary condition input for each block in each process, a total of 

“number of processes” files must be present.   
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In all FANS-3D simulations, it is necessary to construct first the numerical grid for each test 

case.  The name of the grid file is specified in inputblk.dat. The grid file may be written in either 
GRIDGEN or PLOT3D format as follows: 
  
(A)  GRIDGEN format (iformat = 1) 

 
! read the volume grid from gridgen0.dat file (specified in inputblk.dat) 
! each block has size nxi_GL, net_GL, nzt_GL 
 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
ijkst_GL=ijkpos_GL(nbk_GL) + 1 
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
read(10,*) nbk_dum,nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk,GL) 
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
      (yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
           (zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL) 
end do 
 
(B) PLOT3D format (iformat = 2) 

 
! read the volume grid from plot3d0.dat file (specified in inputblk.dat) 
! each block has size nxi_GL, net_GL, nzt_GL 
 
read(10,*) ndum 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
read(10,*) nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL) 
end do 
do nbk_GL=1,nblocks_GL + nphantoms_GL 
ijkst_GL=ijkpos_GL(nbk_GL) + 1 
ijknd_GL=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL) 
read(10,*) (xref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
      (yref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL), & 
           (zref_GL(ijk_GL),ijk_GL=ijkst_GL,ijknd_GL) 
end do 
 

As the simulation progresses and the grids move and rotate with respect to one another, the 
grid motions (e.g., ship motion and propeller rotation) are updated based on the reference configuration 
in gridgen0.dat (or plot3d0.dat).  In the above pseudo-code statements nblocks_GL and 
nphantoms_GL are the number of active (computational) blocks and the number of phantom blocks, 
respectively; which were already read from inputblk.dat.  More details of the input files and their 
contents will be given in the following sections, in the context of the example problems. 
 

4.3 FANS-3D Code Parallelization 

 
 The FANS-3D code is a general purpose CFD code allowing for the numerical solution of the 
Navier-Stokes equations governing incompressible flow in body-fitted grids.  The code allows for 
multi-block overset (chimera) grids, which can be fully-matched, arbitrarily embedded, and/or 
overlapping with each other.  Communication between grid components is achieved by Lagrange 
interpolation at the fringes.  The code is fully coupled with the hole-making and donor-finding 
algorithm, allowing for the relative movement of the grid blocks at each time step for time-domain 
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simulation of fluid-structure interaction problems including violent free surface motions.   
 
 The FANS-3D code is written in Fortran 90/95 standard with dynamic memory allocation and 
is fully parallelized using MPI bindings.  It employs a general data management strategy which allows 
single or arbitrarily large groups of consecutive or non-consecutive blocks to be assigned to different 
processors.  This enables us to achieve optimal load balancing when dealing with multi-block 
structured grids with vastly different dimensions among different grid blocks as shown below. 
 
 Given a multiple block structured grid with N blocks of different sizes, we would like to 
distribute the workload amongst P processes.  For example, consider the case N = 7 as shown in Figure 
29.   

 
Figure 29.  Multiple block structured grid showing N = 7 blocks, which are to be distributed among P 
≤ 7 processes.   
 The minimum number of processes allowed in the parallelized code is P = 2 and the maximum 
for this case would be P = 7, which would imply that each block is assigned to a single process.  Having 
observed the above constraints, the code allows the user to distribute the load in any other manner.  
Below are some examples (by no means exhaustive) of valid load distributions, where we fix the 
number of available processors: 
 
Example #1: 
P=2 
P1:{1,2,3} and P2:{4,5,6,7} 
In this example process 1 is assigned blocks {1,2,3} and process 2 is assigned blocks {4,5,6,7}. 
 
Example #2: 
P=3 
P1:{1,4}, P2:{2,5}, and P3:{3,6,7} 
In this example non-consecutive numbered blocks are assigned to different processors.  This is 
particularly advantageous, as the user need not order the blocks in any particular manner during and 
after the grid generation process.   
 

The load distributions should be such that the load is almost the same amongst all processes.  
This is not a requirement in the code, but is recommended to make efficient use of the computational 
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resources.   
 
 The information on load distribution is read in through the file inputmpd.dat, and is as 
follows for example #1 and #2 respectively. 
 
Example #1: 
3  4                             % blocks per process for each process 
 
1  2  3                         % global block numbers for each process 
4  5  6  7 
 
Example #2: 
2  2  3                         % blocks per process for each process 
 
1  4                             % global block numbers for each process 
2  5   
3  6  7 
 
 The above input is all that is needed by the code for it to understand and schedule the loads 
amongst the different processes.  In addition, each processes expects one boundary condition file, 
containing boundary condition information for all the blocks it was assigned.  The format of the 
boundary condition file is discussed in Appendix A.   
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4.4 Computer Platforms, Compilation, and Execution 

 

The FANS-3D code has been tested on platforms with Linux as the operating system, with Intel Fortran 
90/95 compilers and MPICH implementations.  Specifically, in the Dell clusters at Texas A&M Civil 
Engineering Department, IBM clusters at Texas A&M Supercomputing Facility, Linux clusters at U.S. 
Army Research Laboratory (ARL) High Performance Computing cluster, and the Cray XE6m 
(Copper) cluster at Department of Defense High Performance Computing Modernization Program 
(DoD HPCMP).  The FANS code and executable can be installed on a wide variety of Unix and Linux 
clusters with Message-Passing-Interface (MPI) libraries for parallel computations using multiple 
processors. For simplicity, we will summarize only the procedures to compile and execute the code on 
the Copper cluster at DoD Open Research Systems in the following sections.  
 
The FANS-3D code consists of 18 Fortran 90 files, each with a specific function.  A list of the files 
accompanied with a brief description is as follows: 
 
• main.f90, is the master control file where all other subroutines are called from.  The program 

follows a modular-style programming by making use of Fortran 90 modules, which are invoked 
and used in this file. 

• global.f90, is where all global variables are defined. 
• sflow.f90, defines flow parameter variables such as the turbulence model coefficients. 
• sinput.f90, reads-in all the program control inputs, allocates memory, and distributes the load 

among processors. 
• geocoeff.f90, computes and stores the geometric coefficients associated with a well-defined 

transformation. 
• facoeff.f90, computes the 19-point stencil finite-analytic coefficients. 
• moment.f90, solves the moment equations for the velocity components. 
• pressub.f90, computes the 19-point stencil for the pressure Poisson equation, assembles and 

solves the associated system of equations.   
• turbsub.f90, solves the turbulence model equations.   
• sources.f90, computes the source functions for the governing equations. 
• boundary.f90, computes and assigns boundary conditions 
• snorms.f90, computes various metrics, such as residual norms, outer iteration norms, time 

stepping norms, to establish convergence of the iterative solution procedure and time marching 
procedure. 

• gmotions.f90, grid motions file to control and impose how the grids move relative to each other 
and compute the grid velocities.   

• datamgmt.f90, contains the subroutines for the multi-block data management. 
• graphics.f90, generates output files for visualization. 
• sclean.f90, deallocates memory. 
• overset.f90, grid interpolation program for overset grids. 
• dwssub.f90, computes directional short-crested waves. 
 
The code is to be compiled by linking the Fortran 90/95 compiler with a MPI library or by using a 
Fortran 90/95 MPI wrapper (e.g., mpiifort, mpif90 or ftn).  When using MPI as a library, the 
following is used to compile the code on DoD HPCMP Copper cluster. 
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prompt%> module swap PrgEnv-pgi PrgEnv-intel 
prompt%> ftn –openmp –O2 –o fans3d.exe {list of Fortran files}  
 
The code is simply run by typing the following at the prompt or giving the following command in the 
batch-job file (e.g., for PBS or LSF queue managers) 
 
prompt%> aprun –n {number of processors} ./fans3d.exe > fans3d.out 
 
It should be noted that the simulation results for all seven propeller wash sceanarios described earlier 
can be reproduced by uploading the corresponding tar files to DoD HPCMP Copper cluster and 
executing the following four commands (using tugboat_case3.tar.gz as an example):  
 

1.0 Unzip *.tar.gz file.  The code executable and input data files will be saved in a newly 
created folder tugboat_case3 
 

      Prompt%> tar xzf tugboat_case3.tar.gz 
 

2.0 Change programming environment from the default 'pgi' to 'intel' Fortran 
 
      Prompt%> module swap PrgEnv-pgi PrgEnv-intel 
 

3.0 Switch to working directory 
 
      Prompt%> cd tugboat_case3 
 

4.0 Submit job to the batch queue (with appropriate project number in the job control 
file) 

 
      Prompt%> qsub submit_pbs 
 
 
4.5 FANS-3D Data Export 
 

On FANS-3D output the following files are written out to visualize the solution using the 
commercial flow visualization software such as FIELDVIEW, TECPLOT, or MATLAB: 

 
1. force.dat, x, y, and z forces exerted on the propeller blades, ship hull surface, and/or other 

solid surfaces. 
2. motion.dat, time history of six-degree-of-freedom ship motion 
3. overset.out, output file containing grid interpolation information. 
4. fans3d.out, output file for monitoring of convergence history.  
5. restart_xyz.dat, instantaneous grid restart file for continuation run 
6. restart_q{number}.dat, instantaneous flow field restart file for continuation run. 
7. movie_x{number}.dat, three-dimensional output to visualize the entire grid at time step 

{number}. 
8. movie_q(number}.dat, three-dimensional output to visualize instantaneous velocity and 

pressure fields at time step {number}. 
The force.dat contains ASCII data files in column format.  It can be read directly into 
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TECPLOT or MATLAB or other compatible software for 2D line plots of the (x, y, z) forces and 
moments (with respect to the gravity or center of rotation).  For problem involving six degree-of-
freedom (heave, sway, surge, pitch, yaw, and roll) motions under hydrodynamic loadings such as wave 
and current, the code will also output the motion histories in motion.dat file, which is also in ASCII 
column data format.  

 
The overset.out is an ASCII file containing grid interpolation information such as 

interpolation stencils and interpolation coefficients for the multi-block overset grid system.  The 
fans3d.out is also in ASCII format.   It is used to monitor the convergence histories of all flow 
variables.  These files are useful for debugging of the input data files. 

 
The restart files restart_xyz.dat and restart_q*.dat are unformatted file which are 

used internally by the FANS-3D code for continuation runs.  The code will automatically read in the 
restart files if the users wish to continue a previous simulation for a longer duration.   

 
The movie_x*.dat and movie_q*.dat output files were written in standard PLOT3D 

format as follows: 
 
! PLOT3D grid output (movie_x{number}.dat) for flow visualization 
write(54) nblocks_GL 
write(54) 
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL) 
 
do nbk_GL=1,nblocks_GL 
   ijkst=ijkpos_GL(nbk_GL)+1 
   ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)    
   write(54)(xp(ijk),ijk=ijkst,ijknd), & 
            (yp(ijk),ijk=ijkst,ijknd), & 
            (zp(ijk),ijk=ijkst,ijknd), & 
            (iblank(ijk),ijk=ijkst,ijknd) 
end do 
 
 
! PLOT3D flow output (movie_q{number}.dat) for flow visualization 
write(55) nblocks_GL 
write(55) 
((nxi_GL(nbk_GL),net_GL(nbk_GL),nzt_GL(nbk_GL)),nbk_GL=1,nblocks_GL) 
 
do nbk_GL=1,nblocks_GL 
   ijkst=ijkpos_GL(nbk_GL)+1 
   ijknd=ijkpos_GL(nbk_GL)+nxi_GL(nbk_GL)*net_GL(nbk_GL)*nzt_GL(nbk_GL)  
   write(55) alpha,fsmach,reynolds,time       
   write(55)(rho(ijk),ijk=ijkst,ijknd), & 
            (rho(ijk)*u(ijk),ijk=ijkst,ijknd), & 
            (rho(ijk)*v(ijk),ijk=ijkst,ijknd), & 
            (rho(ijk)*w(ijk),ijk=ijkst,ijknd), & 
            (pr(ijk),ijk=ijkst,ijknd) 
end do 
 
The PLOT3D grid output files (movie_x*.dat) contain the coordinates (x, y, z) and blanking 
information (iblank) for every grid point in the multi-block overset grid system.   The corresponding 
flow variables including density, momentum, and pressure (ρ, ρu, ρv, ρw, p) are stored in PLOT3D 
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output files (movie_q*.dat).  These data files can be imported directly into the commercial software 
FIELDVIEW for flow visualization and saved in animation video files (in avi format).  The movie data 
files can also be imported into the commercial TECPLOT software using the ‘PLOT3D Loader’ option. 
Typical results include the velocity contours, velocity vector plots, and pressure contours.  Other 
derivated quantities such as shear stresses and vorticities can also be calculated using the user-defined 
functions in FIELDVIEW and TECPLOT. The users may consult the FIELDVIEW and TECPLOT 
manuals for additional information on the post-processing of PLOT3D data. 
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4.6 Example Case 1: DDG-51 Ship and P4876 Propeller Wash Study 

 

In this section, we present an example test case for the DDG-51 propeller wash study.  The 
problem demonstrates the many capabilities of the FANS-3D formulation and implementation, which 
include: embedded and non-matching grids, relative motion between grid components, load 
distribution among different processes, high Reynolds number flows, and robustness in the presence 
of high aspect ratio skewed meshes.   

 
The computational domain and multi-block overset grids for this case was shown earlier in 

Figure 2.  The length of the DDG-51 ship is 142.04 m (466 ft) and the designed draft is 9.4488 m. The 
diameter of the twin-screw P4876 propellers is 5.4864 m (18 ft), and the center of propeller axis is 
located at 5.7912 m below the mean water level.  Calculation was performed for a shallow water case 
with water depth H = 10.0584 m (33 ft).  Under this condition, the underkeel clearance is only 0.6096 
m (2 ft) beneath the sonar dome and the minimum gap between the propeller tip and the sea bottom is 
1.524 m (5 ft).   The twin-screw propellers are rotating at 51 rpm when the ship speed is 10 knots. 

 
A commercial grid generation software GRIDGEN was used to generate the overset grid 

system for the DDG-51 ship and the 5-blade P4876 propeller.  As noted earlier, the composite grid 
consists of 15 computational blocks and 7 phantom grid blocks with a total of 2,369,549 grid points 
covering half of the solution domain.  There are 5 blocks for 5 propeller blades, 3 blocks for propeller 
shaft and near-wake regions, 1 block for ship, and 6 blocks for the far field.  The 15 blocks are shown 
in different colors in Figure 2.  In addition, there are 7 phantom grids (not shown) that are needed to 
adequately perform the hole-cutting.  The end-user does not need to be concerned with phantom grids, 
as they do not enter into the actual computations, and hence do not need to be listed in the multi-
processor input file or the boundary condition input files.  

 
In this particular run, the five propeller blades, the shaft block, are assigned to three processes, 

the ship is assigned to the fourth process, the propeller near-wake region is divided into two blocks and 
assigned to two separate processes, and the far field grids are decomposed into six blocks and assigned 
to six different processes.  For this example, the file inputblk.dat contains the following data 
 
! Geometry input file (second line, no more than 40 characters) 
gridgen0.dat 
  1               ! 1: Gridgen format, 2: Plot3d format 
 15   7           ! nblocks + nphantom (including phantom grid) 
 
 62  41  41 
propeller01 
 
 62  41  41 
propeller02 
 
 62  41  41 
propeller03 
 
 62  41  41 
propeller04 
 
 62  41  41 
propeller05 
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 38  21 122 
shaft01 
 
 28  32 122 
shaft02 
 
 65  21 122 
shaft03 
 
121  35  41 
ship01 
 
 34  81  77 
basin01 
 
 34  81  77 
basin02 
 
 34  81  77 
basin03 
 
152  65  21 
ocean01 
 
 77  65  42 
ocean02 
 
 77  65  42 
ocean03 
 
  3  41  61 
phantom01 
 
  3  41  61 
phantom02 
 
  3  41  61 
phantom03 
 
  3  41  61 
phantom04 
 
  3  41  61 
phantom05 
 
  2   2   2 
phantom06 
 
  2   2   2 
phantom07 
 

This input specifies that the name of the composite grid file is gridgen0.dat, and it is in 
GRIDGEN format.  There are 15 computational blocks and 7 phantom blocks, for a total of 22 blocks.  
Then, for each of the fifteen computational blocks we must specify their (i, j, k) sizes and assign to 
them a name, which must be consistent with the names used in the overset.in input for the hole-
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cutting and donor-search algorithm.   
 
The file overset.in contains the input necessary for the hole-cutting and donor-search 

program.  The format of this file is not discussed here, and the interested reader may consult the 
Chimera Overset Structured Mesh-Interpolation Code (COSMIC) users’ manual (Chen, 2009).  The 
input file used for this case is shown in Appendix B. 
 
 The file inputmpd.dat contains the information necessary for the code to distribute the load 
among the different processes, as described in the previous section.  For this particular case, the file 
has the following information 
 
% number of blocks per process, for each process 
2 2 2 1 1 1 1 1 1 1 1 1 
                                
 1 2          % global block number per process, for each process 
 3 4 
 5 6 
 7  
 8 
 9 
10 
11 
12 
13 
14 
15 
 

Note that only active (computational) blocks are listed in this input, i.e. phantom blocks do not 
need to be distributed as they do not represent any computational load.  In this particular case, we 
assign propeller blades 1 and 2 (propeller01, propeller02) to first process, blades 3 and 4 
(propeller03, propeller04) to the second process, blade 5 and the first shaft block 
(propeller05, shaft01) to the third process.   The remaining 9 computational blocks (2 shaft 
blocks, 1 ship block, 3 basin blocks, and 3 ocean blocks) are assigned to processes #4 - #12 with only 
one single block in each process.    
 
 The input.dat file is the main control input file and is as follows 
 
1           % MTURB      flag for laminar (0) or turbulent (1) flow 
1           % INCOMP     flag for incompressible (1) or compressible (0) flow 
0           % IFSURF     flag for (1) free surface flow (0) no free surface 
2.1868E7    % RE         Reynolds number  
0.04        % TAU        time step size  
0.0         % AMP_RHO    frequency damping parameter: 0.0 <= AMP_RHO <= 1.0 
1.0E-08     % TOL1       L2 vel tol to stop time stepping 
1.0E-03     % TOL2       L1 res tol to stop outer iterations 
1           % ITIMEST    starting time step to compute 
12500       % ITIMEND    ending time step to compute 
1            % MAXIT_LS   max allowable ADI sweeps for level-set function 
3            % MAXITER    max allowable outer iterations 
2            % MAXSWP_U   max allowable number of momentum eqns ADI sweeps 
2            % MAXSWP_PR  max allowable number of pressure eqn  ADI/SIP 
sweeps 
2            % MAXSWP_KE  max allowable number of k-epsilon eqns ADI sweeps 
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6            % MAXIT_DIVU max projections of velocity field onto div-free 
space 
0.60         % RFU     relaxation factor for velocities (due to nonlinearity) 
0.30         % RFP     relaxation factor for pressure (due to u-p decoupling) 
0.010        % RFKE    relaxation factor for turbulent k.e. and dissipation 
0.5          % RFPHI   relaxation factor for level-set function 
0            % ITIME_BCS  flag to indicate (1) time dependent bcs 
 
fans.grd     % GEOFILE    geometry input file (HCC: not used in this version) 
ddg.bcs      % BCSFILE    boundary conditions input file 
 
1            % IACT_PLOT  flag to activate (1) visualization output 
100          % ISKP_PLOT  time intervals for vis and restart 
 
1            % IACT_ANIME flag to activate (1) animation output 
0            % IBGN_ANIME time step number at which animation begins 
4            % ISKP_ANIME multiples at which sol is written out for animation 
 
0            % ISOL_PR    (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn 
 
-5.0         % UMIN 
 5.0         % UMAX 
-10.         % PMIN 
 10.         % PMAX 
 0.050       % TKEMAX 
 0.02        % TVISMAX 
-0.5         % PHILSMIN 
 0.5         % PHILSMAX 
 
1.0          % FROUDE    Froude number (gravity acts in negative z-direction) 
0.0020       % EWIDE     representative grid size 
 
0.0          % RFG       geometry distortion relaxation parameter 
 
0.0 0.0 0.0  % UINF, VINF, WINF   inflow velocities 
-1.103143 0. 0.  % UBODY, VBODY, WBODY   body velocities (ship speed)  
 
1            % IMOVE      (0) fixed grid, (1) moving grid 
 
0  0  0      % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)  
 
1   12    % NPROP (#propellers), NMVPROP (max #blocks moving with propeller) 
 
1    1    % IPROP (propeller ID), IROT (1: clockwise, -1: counter-clockwise) 
12   6    % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 
1 2 3 4 5 6 7 16 17 18 19 20  % moving propeller block ID (propeller #1) 
 
 

Most of the entries of the input file are self-descriptive, but we further elaborate on each of 
them in the following: 
• MTURB, is a flag to specify whether to numerically solve the Navier-Stokes equations directly 

(laminar flow or DNS) or to solve the Reynolds-averaged Navier-Stokes equations with the near-
wall two-layer k-epsilon model.   

• INCOMP, is a flag to specify whether flow is incompressible or compressible.   
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• IFSURF, is a flag to specify whether it is necessary to update free surface.  For this case, the free 
surface effect is ignored.   

• RE, is the Reynolds number.  For this case, it is based on the propeller diameter and the propeller 
rotating speed.   

• TAU, is the value for the time step size.  In this case the angular velocity of the propeller is such 
that one revolution is completed in one unit of time.   

• AMP_RHO, is the high-frequency damping parameter for the second-order accurate family of time 
integrators, as described in the formulation section. 

• TOL1, tolerance of L2 velocity-norm to stop time stepping when the steady state is reached. 
• TOL2, tolerance of L1 velocity-residuals to stop outer iterations within each time step. 
• ITEMEST, is the starting time step of the computation.  A value of 1 is specified for new runs.  If 

the value is greater than 1, the code will read-in restart files from previous runs and continue the 
computation to the new ending time step. 

• ITEMEND, is the ending time step the user wishes to compute, for the previously specified value 
of the time step size. 

• MAXIT_LS, is the maximum allowable Alternating-Directional-Implicit (ADI) sweeps for the 
level-set function. 

• MAXITER, is the maximum allowable number of outer iterations on a given time step.  For time 
accurate solutions this value must be greater than one, to allow for good velocity-pressure coupling 
and hence time accuracy of the flow field. 

• MAXSWP_U, MAXSWP_P, MAXSWP_KE, is the maximum allowable number of inner iterations 
on a given outer iteration, to iteratively solve the momentum, pressure, and turbulence transport 
equations, respectively. 

• MAXIT_DIVU, is the maximum allowable number of projections of the velocity field onto a 
divergence-free space on a given outer iteration.   

• RFU, is the relaxation factor for the velocity field.  The optimal values lie in the range [0.4, 1.0], 
although lower values may be needed for complex problems.   

• RFP, is the relaxation factor for the pressure field.  Also, in accordance with well-established 
practices, we find that optimal values lie in the range [0.1, 0.8], although higher values may also 
be used and lower values may also be needed.   

• RFKE, is the relaxation factors for the turbulent transport variables.  We find that typically optimal 
values lie in the range [0.01, 0.5].  Although lower values may be needed. 

•  RFPHI, is the relaxation factors for the level-set function.  We find that typically optimal values 
lie in the range [0.2, 1.0].   

• BCSFILE, is a string specifying the name of the family of boundary conditions files.  The family 
must have “number of processors” members.  In this particular case, since there are 12 processes 
involved, we must have 12 files (ddg00.bcs ~ ddg11.bcs) ready.   

• GEOFILE, is a string specifying the name of the grid file.  It is not needed in this version since the 
grid name has already been specified in inputmpd.dat. 

• IACT_PLOT, ISKP_PLOT, are control flags to activate the output and to control how frequently 
the output files are updated.  The output is in PLOT3D format for visualization using commercial 
software such as FIELDVIEW, TECPLOT or other compatible flow visualization tools. 

• IACT_ANIME, IBGN_ANIME, ISKP_ANIME, are control flags to write out a movie, which is 
to be processed by the software FIELDVIEW.  For this case, the movie corresponds to grid 
coordinates and grid blanking values, density, velocity vectors, and pressure on every point in the 
flow field.   
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• ISOL_PR, is a flag for pressure solvers.  The pressure can be solved using either tridiagonal matrix 
algoritm (TDMA-ADI) or strongly-implicit method (SIP-7pt). 

• UMIN, UMAX, PMIN, PMAX, TKEMAX, TVISMAX, are limiters on the velocity, pressure, and 
turbulent transport variables.  These are set to high values, and are just a safeguard against a poor 
initial guess, which may cause the fields to oscillate violently in the initial stages of the iterations.   

• PHILSMIN, PHILSMAX, are limiters for the level-set function.  They are set to high values, and 
are just a safeguard against a poor initial guess, which may cause the fields to oscillate violently in 
the initial stages of the iterations.   

• EWIDE, is a representative grid size used specifying the transitional zone thickness adjacent to the 
air-water interface. 

• RFG, is a geometry distortion parameter.  The default value is 1 for orthogonal or nearly-
orthogonal grids, but may be reduced to improve convergence for highly-skewed grids.  The 
relaxation parameter does not affect accuracy for orthogonal grids and has negligible effects for 
nearly-orthogonal grids.   

• UINF, VINF, WINF, are the values of (x,y,z) components of the free-stream velocity.  For this 
case, the ambient current velocity is zero.   

• UBODY, VBODY, WBODY, are the values of (x,y,z) components of the body velocity (i.e., ship 
speed) normalized by the characteristic velocity nD, when n is the propeller rotating speed and D 
is the propeller diameter, .  For this case, the ship is traveling in negative-x direction with a 
normalized speed equals to the propeller advance coefficient J=V/nD.   

• IMOVE, is a flag for grid motion.  A value of 0 is specified for fixed grid system.  The value is 
set to 1 for moving grid in this case since the ship is moving at constant forward speed and the 
propeller is also turning.   

• NBODY, NFBODY, MBLK, are the number of body for force/moment integration, maximum 
number of surfaces for force/integration, and the maximum number of blocks with six-degree-of-
freedom motions.  These parameters are not needed for the propeller wash study considered in the 
present study. 

• NPROP, is the number of propellers.  A value of 1 is specified for single-screw propeller.  The 
value is set to 2 for twin-screw propellers.  In this case, we set NPROP = 1 since the computation 
was performed for only one-half of the solution domain.  A value of 2 should be specifed for fully 
domain calculations involving twin-screw propellers. 

• NMVPROP, is the maximum number of grid blocks rotating with any propellers. 
• IPROP, is the propeller ID.  For twin-screw propellers, the propeller rotating directions and the 

computational grid blocks associated with each propeller can be defined separately. 
• IROT, is a flag specifying the propeller rotating direction.  A value of 1 indicates that the propeller 

is rotating in clockwise direction.  For counter-rotating twin-screw propellers, it is convenient to 
straightforward to specify IROT = −1 for the second propeller rotating in counter-clockwise 
direction.  Also, it is convenient to change the signs of IROT if the same propellers are under the 
crash-astern condition.  

• IMVPROP, is the total number of grid blocks (including phantom grids) rotating with a given 
propeller.  In this case, there are 5 propeller blade blocks, 2 shaft/hub blocks, and 5 phantom blocks 
(one for each propeller blade) rotating with each propeller.  The identification numbers of the 
rotating grid blocks are specified in the next line.  

• ISHAFT, is the block identification number of the shaft grid block.  This allows the users to specify 
the center or rotation for each propeller.  
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 Since the workload is distributed to 12 processors for parallel execution, it is necessary to write 
12 separate boundary condition files (ddg00.bcs~ddg11.bcs) which are included in the 
ddg51_10kt_33ft.tar.gz for the present case.  The boundary condition files follow the format 
outlined in Appendix A.  Below we discuss, as an example, the boundary conditions specified for one 
of the propeller blades. 
 
propeller01                                   % global block #1 
    1    6   62   41   41    0                % mb,nfabcs,ni,nj,nk 
 
    2                                         % No. of two-layer regions     
    1    1    3    1   62    1   21    1   41 % nreg,iedy,idist,(i,j,k) 
    2    2    0    1   62   20   41    1   41 % nreg,iedy,idist,(i,j,k) 
 
    1                                         % No. of free surface regions 
    1    3    1   62    1   41    1   41      % nLSreg, nLS, (i,j,k) 
        
    1    1                                    % Face #1 
    4    4    4    4    4    4    4           % (u,v,w,p,k,epsilon,phiLS) 
    1   41    1   41                          % (i,j,k) range  
    2    1                                    % Face #2 
    4    4    4    4    4    4    4 
    1   41    1   41 
    3    1                                    % Face #3 
    9    9    9    2    1    3    3 
    1   62    1   41 
    4    1                                    % Face #4 
    4    4    4    4    4    4    4 
    1   62    1   41 
    5    1                                    % Face #5 
    9    9    9    2    1    3    3 
    1   62    1   41 
    6    1                                    % Face #6 
   11   11   11   11   11   11   11 
    1   62    1   41 
 
   14    2   64   41                          % nbk_GL,i,j,k for pressure 
datum 
 

The first line lists the blockname for block identification.  The second line specifies that this 
is block #1 for the given process, it has 6 faces with boundary conditions and the (i, j, k) dimensions 
of the block are 62 × 41 × 41.  The fourth line indicates that 2 regions need to be identified to apply 
the near-wall two-layer k-epsilon turbulence model.  The following two lines specify the two-layer 
model types (iedy, near-wall or outer), the identification (idist) of each wall boundary, and the (i, 
j, k) range of the specific region.  The eighth line indicates that there is only one region for level-set 
function (phiLS) specification.  The free surface solver option (nLS) and the (i, j, k) range for that 
region are specified in the next line.  It should be remarked that these free surface boundary conditions 
are not used in this case since the free surface effect is neglected with the flag IFSURF = 0. 
 

Then, for each face, we read the face number and the number of sections in the face.  For each 
section on a given face, we read 7 boundary conditions associated with each of the 7 field variables: 
(u, v, w, p, k, ε, phiLS), and the surface limits on that face. 
 
 Faces #1 and #2 (i-min and i-max, respectively) of the blade block receive interpolation 
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information, and thus all the field variables have boundary condition #4.  Face #3 (j-min) is the solid-
surface of the blade, for which (u, v, w) are assigned the grid velocity due to the rotation of the blade, 
p is linearly extrapolated, turbulent kinetic energy is zero on the wall, and the Neumann boundary 
conditions are used for turbulent energy dissipation and level-set function. Face #4 (j-max) receives 
interpolation information and all field variables have boundary condition #4.  Face #5 (k-min) is part 
of the shaft’s solid-surface and its boundary conditions are identical to those on face #3 for a solid-
wall.  Face #6 (k-max) is a branch cut around the blade tip where the flow variables are updated by 
averaging the adjacent nodal values on either side of the branch cut plane.  
 

For this example run the flow field is initialized with calm water condition and the propeller is 
allowed to rotate for 100 revolutions.  The ship travels at a constant forward speed of 10 knots and the 
propeller rotating speed is 51 rpm (0.85 rps). The flow conditions correspond to an advance coefficient 
J=1.103 and a Reynolds number of 2.1868 × 107 based on the propeller diameter.  This corresponds to 
a Reynolds number of 6.245 × 108 based on the ship length and ship speed.  The RANS equations are 
solved with the near-wall two-layer k-ε turbulence model.   
 
As noted earlier, the PLOT3D grid output files (movie_x*.dat) contain (x, y, z, iblank) for the 
multi-block overset grids, while the PLOT3D flow output files (movie_q*.dat) contain the flow 
variables (ρ, ρu, ρv, ρw, p).  These data files can be imported directly into FIELDVIEW for flow 
visualization and post-processing.  Typical results include the velocity contours, velocity vector plots, 
and pressure contours as shown in Figures 2-7.  Other derivated quantities such as shear stresses and 
vorticities can also be calculated using the user-defined functions in FIELDVIEW. Figure 8 shows the 
shear stresses on the sea bed which can be readily obtained by evaluating the velocity gradients 
adjacent to the bottom boundary using the following formula: 
 

                                                    (14) 

 
where q is the velocity magnitude, µ is the dynamic viscosity of the seawater, and ∆n is the normal 
distance from the wall.  The same shear stress data can also be plotted using another commercial code 
MATLAB as shown in Figure 9. 
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4.7 Example Case 2: Tugboat and Ducted Propeller Wash Study 

 

In the second test case, we consider a tugboat boat with two ducted propellers under bollard-pull 
condition (i.e., zero forward speed) as shown earlier in Figures 11-13.  The composite grid was 
generated by the commercial grid generation software GRIDGEN.  It consists of 47 computational 
blocks and 9 phantom grid blocks with a total of 7,070,832 grid points.  There are 4 blades for each 
propeller, and each blade is divided into 2 overlapping computational blocks.  Each ducted propeller 
assembly is surrounded by 5 computational blocks covering the upstream, downstream, inner and outer 
regions between the propeller shaft and the shroud.  In addition, two near-wake cylindrical grid blocks 
(one for each propeller) are added to provide accurate resolution of the propeller wake flows.  The 
tugboat is surrounded by a single boundary-fitted grid block, and the far-field is covered by 18 
overlapping rectangular grid points.  A near-wall spacing of 10-6 ft was used near the sea bottom to 
provide accurate resolution of the turbulent boundary layer flow.  This allows us to calculate the shear 
stresses on the seabed directly without relying on the wall-function approximations.    
 
 The composite grid load is now distributed among thirty-five processes and we consider the 
bollard-pull (zero tugboat speed) condition with the ducted propellers blowing parallel to a pier wall.  
The file inputblk.dat contains the following data 
! Geometry input file (second line, no more than 40 characters) 
gridgen0.dat 
1                 ! 1: Gridgen format, 2: Plot3d format 
 47   9           ! nblock + nphantom0 (including phantom0 grid) 
 
 62  35  42 
propeller01a 
 
 62  35  42 
propeller02a 
 
 62  35  42 
propeller03a 
 
 62  35  42 
propeller04a 
 
 29   4   5 
tip01a 
 
 29   4   5 
tip02a 
 
 29   4   5 
tip03a 
 
 29   4   5 
tip04a 
 
 21  57 122 
duct01a 
 
 66  24 122 
duct02a 
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 53  35 122 
duct03a 
 
 53  23 122 
duct04a 
 
 21  79 122 
duct05a 
 
 40  41 122 
wake01a 
 
 62  35  42 
propeller01b 
 
 62  35  42 
propeller02b 
 
 62  35  42 
propeller03b 
 
 62  35  42 
propeller04b 
 
 29   4   5 
tip01b 
 
 29   4   5 
tip02b 
 
 29   4   5 
tip03b 
 
 29   4   5 
tip04b 
 
 21  57 122 
duct01b 
 
 66  24 122 
duct02b 
 
 53  35 122 
duct03b 
 
 53  23 122 
duct04b 
 
 21  79 122 
duct05b 
 
 40  41 122 
wake01b 
 
 20 116  95 
ocean01 
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 20 116  95 
ocean02 
 
 20 116  95 
ocean03 
 
 20 116  95 
ocean04 
 
 20 116  95 
ocean05 
 
 20 116  95 
ocean06 
 
 20 116  95 
ocean07 
 
 20 116  95 
ocean08 
 
 20 116  95 
ocean09 
 
 20 116  95 
ocean10 
 
 20 116  95 
ocean11 
 
 20 116  95 
ocean12 
 
 20 116  95 
ocean13 
 
 20 116  95 
ocean14 
 
 20 116  95 
ocean15 
 
 16 116  95 
ocean16 
 
151  37  33 
ocean17 
 
151  37  33 
ocean18 
 
107  34  61 
barge01 
 
  3  31  41 
phantom01a 
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  3  31  41 
phantom02a 
 
  3  31  41 
phantom03a 
 
  3  31  41 
phantom04a 
 
  3  31  41 
phantom01b 
 
  3  31  41 
phantom02b 
 
  3  31  41 
phantom03b 
 
  3  31  41 
phantom04b 
 
  2   3   2 
phantom05 
 
The file inputmpd.dat contains the information necessary for the code to distribute the load among 
the thirty-five different processes.  For this particular case, the file has the following information 
 
% number of blocks per process, for each process (excluding phantom grids) 
4 4 1 1 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
                                
 1  5  2  6     % global block number per process, for each process 
 3  7  4  8 
 9 
10 
11 
12 
13 
14 
15 19 16 20 
17 21 18 22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
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38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
 
We make the remark once more, that only active (computational) blocks are listed in this input, i.e. 
phantom blocks do not need to be distributed as they do not represent any computational load.  In this 
particular case, there are 47 actives blocks including 14 blocks for each ducted propeller assembly, 2 
blocks for propeller near-wakes, 1 block for the tugboat, and 18 blocks for the far-field.  To balance 
the workload for each process, we assign two blade and two tip blocks to a single processor.  More 
specifically, the first 8 computational blocks (#1 - #8) consist of 4 blade and 4 tip grids for the first 
ducted propeller are assigned to processes #0 (master process) and #1, while the other 8 blade/tip blocks 
(#15 - #22) for the second ducted propeller are assigned to processes #8 and #9 as seen in the 
inputmpd.dat file.  The remaining 31 computational blocks containing the ship, shroud, near-
wake, and far-field grids are assigned to 31 different processes.  As noted earlier, the user need not 
order the blocks in any particular manner during and after the grid generation process.   
 
The input.dat file (the main control input file) requires only minor modifications, relative to the 
DDG-51 ship case.  The most notable difference is that there are two co-rotating propellers in the 
present full-domain simulation.  For each ducted propeller, there are 12 rotating grid blocks (4 blade 
surface blocks, 4 blade tip blocks, and 4 phantom grids).  It is straightforward to specify the rotating 
direction, shaft block ID, and the IDs of rotating grid blocks associated with each propeller in the 
following input.dat file. 
 
1          % MTURB      turbulence model: (0)laminar (1)k-epsilon (2)LES 
1          % INCOMP     flag for incompressible (1) or compressible (0) flow 
0          % IFSURF     flag for free surface flow (1) or no free surface (0) 
2.6468E5   % RE         Reynolds number (L=1ft, U=1ft/s, T=L/U=1s) 
0.04       % TAU        time step size 
0.0        % AMP_RHO    frequency damping parameter: 0.0 <= AMP_RHO <= 1.0 
1.0E-08    % TOL1       L2 vel tol to stop time stepping 
1.0E-03    % TOL2       L1 res tol to stop outer iterations 
1          % ITIMEST    starting time step to compute 
12500      % ITIMEND    ending time step to compute 
1          % MAXITER_LS max allowable outer equation for level-set eqn  
6          % MAXITER    max allowable outer iterations 
2          % MAXSWP_U   max allowable number of momentum eqns ADI sweeps 
2          % MAXSWP_PR  max allowable number of pressure eqn ADI/SIP sweeps 
2          % MAXSWP_KE  max allowable number of k-epsilon eqns ADI sweeps 
2          % MAXIT_DIVU max projections of velocity field onto div-free space 
0.4        % RFU       relaxation factor for velocities (due to nonlinearity) 
0.2        % RFP       relaxation factor for pressure (due to u-p decoupling) 
0.001       % RFKE       relaxation factor for turbulent k.e. and dissipation 
0.5         % RFPHI      relaxation factor for level set funtion 
0           % ITIME_BCS  flag to indicate (1) time dependent bcs 
 
fans.grd    % GEOFILE    geometry input file (HCC: not used in this version) 
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prop.bcs    % BCSFILE    boundary conditions input file 
 
1           % IACT_PLOT  flag to activate (1) visualization output 
100         % ISKP_PLOT  time intervals for vis and restart 
 
1           % IACT_ANIME flag to activate (1) animation output 
0           % IBGN_ANIME time step number at which animation begins 
20          % ISKP_ANIME multiples at which sol is written out for animation 
 
0           % ISOL_PR    (0)TDMA-ADI, (1)SIP-7pt solver for pressure eqn 
 
-30.        % UMIN 
 30.        % UMAX 
-200.       % PMIN 
 200.       % PMAX 
 1.0        % TKEMAX 
 0.01       % TVISMAX 
-30.        % PHILSMIN 
 30.        % PHILSMAX 
 
1.0         % FROUDE    Froude number (gravity acts in negative z-direction) 
0.003       % EWIDE     representative grid size 
 
0.0         % RFG       geometry distortion relaxation parameter 
 
0.0 0.0 0.0 % UINF, VINF, WINF   inflow velocities 
0.0 0.0 0.0 % UBODY, VBODY, WBODY   body velocities (ship speed) 
1           % IMOVE (0) fixed grid, (1) moving grid      
 
0  0  0     % NBODY (#bodies), NFBODY (#surfaces), MBLK (#blocks for 6-dof)  
 
2   12   % NPROP (#propellers), NMVPROP (max #blocks moving with a propeller) 
 
1    1     % IPROP (propeller #1), IROT (1: clockwise, -1: counter-clockwise) 
12  10     % IMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 
1 2 3 4 5 6 7 8 48 49 50 51   % moving propeller block ID (propeller #1) 
 
2    1     % IPROP (propeller #2), IROT (1: clockwise, -1: counter-clockwise) 
12  24     % NMVPROP (no. of moving propeller blocks), ISHAFT (shaft ID) 
15 16 17 18 19 20 21 22 52 53 54 55  % moving propeller ID (propeller #2) 
 

The file overset.in needs to be suitably modified for the hole-cutting and donor-search 
algorithm, and is provided in Appendix C.  New boundary condition files need to be created for the 
new tugboat and ducted propeller geometries.  In addition, the boundary condition files for the far-field 
need to be modified slightly to enforce the no-slip boundary conditions on pier walls.  All 35 boundary 
condition files are included in tugboat_case3.tar.gz zipped folder. 

 
For this example run the flow field is initialized with calm water condition and the propeller is 

allowed to rotate for 500 revolutions under bollard-pull condition with zero forward speed.  The 
simulation was performed for 12,500 time steps with a time increment of 0.04 To, where To is a 
characteristic time for the propeller to turn one revolution.  For simplicity, the characteristic length Lo 
was chosen to be 1 ft so the full scale tugboat and propeller grids (in ft) can be used directly without 
rescaling.  This gives a Reynolds number of 2.647 × 105 based on the characteristic length Lo = 1 ft 
when the propeller is rotating at 200 rpm.  The corresponding Reynolds number based on the propeller 
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diameter is 1.488 × 107 based on the propeller diameter.  The RANS equations are solved with the 
near-wall two-layer k-ε turbulence model.   
 

The movie_x*.dat and movie_q*.dat output files were post-processed using the 
FIELDVIEW flow visualization software.  Typical results include the velocity contours and velocity 
vector plots at selected coordinate surfaces, and pressure contours on the propeller blade and shroud 
surfaces.  The velocity and pressure fields induced by the twin propellers were shown earlier in Figures 
19 -23 for this case.  These velocity contours and velocity-vector plots clearly illustrate that the right 
propeller wake is strongly affected by the parallel pier wall.  Furthermore, there is a strong interaction 
between the left and right propellers with the two ducted propellers rotating in the same rotation.  For 
the co-rotating propellers considered here, there is a partial suppression of the swirling flow 
momentums in the overlap region between two propeller wakes.  This resulted in a deflection of the 
weaker left propeller wake (away from the pier wall) toward the sea bottom as shown in Figure 23.   
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Appendix A: Structure of the boundary condition input 

 
 The structure of the boundary conditions input is best explained by showing the pseudo-code 
used in the program to read the data: 
 
do nbk=1,nblocks 
 
read(LB,'(a40)') blockname0  
                 ! dummy read, blockname specified in inputblk.dat 
read(LB,*) mb,nfabcs(mb),ni_dum,nj_dum,nk_dum,mlamp(mb) 
  
read(LB,*) 
read(LB,*) nregions(mb) 
 
nregs=nregions(mb) 
do nr=1,nregs 
 read(LB,*)nreg,iedy(mb,nr),idist(mb,nr), & 
 read(LB,*)mst1(mb,nr),mnd1(mb,nr), & 
                mst2(mb,nr),mnd2(mb,nr), & 
                mst3(mb,nr),mnd3(mb,nr) 
end do 
 
read(LB,*) 
read(LB,*) nLSregions(mb) 
 
nLSregs=nLSregions(mb) 
do nLSr=1,nLSregs 
      read(LB,*)nLSreg,nLS(mb,nLSr), 
                mst1_LS(mb,nLSr),mnd1_LS(mb,nLSr), & 
                mst2_LS(mb,nLSr),mnd2_LS(mb,nLSr), & 
                mst3_LS(mb,nLSr),mnd3_LS(mb,nLSr) 
end do 
 
read(LB,*) mb,nfabcs(mb),nregions(mb) 
nfbcs=nfabcs(mb) 
do nf=1,nfbcs 
read(LB,*)nfa(mb,nf),nsec(mb,nf) 
nsect=nsec(mb,nf) 
do ns=1,nsect 
read(LB,*)nu(mb,nf,ns),nv(mb,nf,ns),nw(mb,nf,ns),npr(mb,nf,ns), & 
      ntke(mb,nf,ns),ntds(mb,nf,ns),nphiLS(mb,nf,ns) 
read(LB,*)nst1(mb,nf,ns),nnd1(mb,nf,ns), & 
          nst2(mb,nf,ns),nnd2(mb,nf,ns) 
end do 
end do 
 
end do 
read(LB,*) nbk_prd,i_prd,j_prd,k_prd 
close(LB) 
 

Each process expects a boundary condition input file and executes the above given pseudo-
code.  The first read statement is a dummy read of the blockname to provide clarity, while the 
blockname specified earlier in the inputblk.dat file will be used for block identification. 
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The second read statement reads-in the local block number, the number of faces with boundary 

conditions for that block, and the (i, j, k) dimensions of the block.   
 

The third read statement reads-in the number of regions needed to identify near-wall and outer 
regions for the two-layer k-ε model.  For each region, we read the iedy flag, indicating whether the 
region is a near-wall region (a value of 1) or an outer region (a value of 2).  If the region is a near-wall 
region then the value of idist is the block face number on which the wall lies.  We then read the (i, 
j, k) size of the region.   

 
The fourth read statement reads-in the number of regions needed for various treatments of 

level-set function for free surface flows.  For each region, we read the nLS flag, indicating whether the 
free surface should be solved directly using the advection equation for level-set function (a value of 
1), updated using zero-gradient condition (a value of 2, typically used for the near-wall region), or 
skipped (a value of 3, for single-phase regions without air-water interface).  The (i, j, k) size was then 
specified for each region.  For the propeller wash study considered here, the free surface wave effects 
were negligible and the initial level-set function for calm free surface was used throughout the entire 
simulation by specifying nLS = 3. 

 
After defining various regions for the two-layer k-ε turbulence model and the level-set 

function, we then specify boundary conditions for all boundary surfaces in the following order: i = 
imin (Face #1), i = imax (Face #2), j = jmin (Face #3), j = jmax (Face #4), k = kmin (Face #5), and k 
= kmax (Face #6).  For each face, we first read the face number and the number of sections in the face.  
For each section on a given face, we then read 7 boundary conditions associated with each of the 7 
field variables: (u, v, w, p, k, ε, phiLS), and the surface limits on that face.  Once this is done for all 
faces, we proceed to read the block, region, and surface data for the next local block on the same 
processor (if more than one blocks are assigned to the same CPU).  Finally, we must specify where the 
global pressure datum is located.  The information is stored in the variables, nbk_prd, i_prd, 
j_prd, and k_prd.   
 
  A list of available boundary conditions for the velocity components and turbulence field 
variables is given below: 
• #1: Dirichlet boundary condition, which is set by the initial guess or in the initial input  
• #2: linear-extrapolation boundary condition 
• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data   
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6: moving surface boundary condition, assign grid velocities 
• #7, #8: free (not used at the moment) 
• #9: moving surface boundary condition, assign grid velocities  
• #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
• #12: branch cut in higher index, average across branch cut 
• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 
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The following is a list of available boundary conditions for the pressure: 
• #1: free (not used at the moment) 
• #2: linear-extrapolation boundary condition 
• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data   
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6: free (not used at the moment) 
• #7: compute pressure consistenly, using conservation of mass 
• #8, #9, #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
• #12: branch cut in higher index, average across branch cut 
• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 
 

Typical boundary conditions for a stationary wall are either of the following: 
 
1  1  1  2  1  1  3       or 
1  1  1  3  1  1  3 
 

In the first one, pressure is linearly extrapolated at the wall, and in the second it is computed 
consistently at the wall using conservation of mass at the boundary itself.  For highly skewed meshes 
in the near wall region, linear extrapolation is more stable.   

 
At a free-stream inflow the following are valid options: 

 
5  5  5  2  1  1       or 
5  5  5  3  1  1   
 

In the first one, a zero pressure gradient is enforced, and in the second pressure is computed 
consistently at the boundary using conservation of mass.  The second option, where pressure is 
computed consistently, is also valid at the inflow of a channel – where a pressure drop is present.  The 
user can appreciate the versatility of the consistent pressure boundary condition, at it applies to virtually 
any situation where velocities are prescribed.   

 
Similarly, at an outflow, the following are valid options: 

2  2  2  2  2  2       or 
2  2  2  7  2  2 
 

For problems involving free surface, the available boundary conditions for the level-set 
function are listed in the following: 
• #1: free (not used at the moment) 
• #2: linear-extrapolation boundary condition 
• #3: homogeneous Neumann or zero gradient boundary condition 
• #4: interior boundary condition for overset grids, interpolation using donor data   
• #5: prescribed boundary condition, which is specified by initial input or updated in flow solver 
• #6, #7, #8, #9, #10: free (not used at the moment) 
• #11: branch cut in lower index, average across branch cut 
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• #12: branch cut in higher index, average across branch cut 
• #13: collapse-to-axis in lower index, average in circumferential direction 
• #14: collapse-to-axis in higher index, average in circumferential direction 
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Appendix B: COSMIC input file for DDG-51 and P4876 propeller wash study 
 
 
! example input for DDG-51 Ship and P4876 propeller wash study 
 
! global parameters 
 
<global> 
      fringe = 1, 
      quality = 0.01, 
      nquality = 4, 
      eps = 0.001, 
</global>  
 
 
! grid block definition 
 
<block name = "propeller01"> 
       linking_grid_list = <"propeller01","shaft01","shaft02","basin01", 
                            "basin02","propeller05","propeller02","ocean03"> 
</block> 
<block name = "propeller02"> 
       linking_grid_list = <"propeller02","shaft01","shaft02","basin01", 
                            "basin02","propeller01","propeller03","ocean03"> 
</block> 
<block name = "propeller03"> 
       linking_grid_list = <"propeller03","shaft01","shaft02","basin01", 
                            "basin02","propeller02","propeller04","ocean03"> 
</block> 
<block name = "propeller04"> 
       linking_grid_list = <"propeller04","shaft01","shaft02","basin01", 
                            "basin02","propeller03","propeller05","ocean03"> 
</block> 
<block name = "propeller05"> 
       linking_grid_list = <"propeller05","shaft01","shaft02","basin01", 
                            "basin02","propeller04","propeller01","ocean03"> 
</block> 
<block name = "shaft01"> 
       linking_grid_list = <"shaft01","shaft02","shaft03","basin01", 
                            "basin02","propeller01","propeller02", 
                            "propeller03","propeller04","propeller05", 
                            "ocean02","ocean03"> 
</block> 
<block name = "shaft02"> 
       linking_grid_list = <"shaft02","shaft01","shaft03","basin01", 
                            "basin02","propeller01","propeller02", 
                            "propeller03","propeller04","propeller05", 
                            "ocean02","ocean03"> 
</block> 
<block name = "shaft03"> 
       linking_grid_list = <"shaft03","shaft01","shaft02","basin01", 
                            "ship01","ocean02","ocean03"> 
</block> 
<block name = "ship01"> 
       linking_grid_list = <"basin01","basin02","basin03","ocean01", 



B-2 

                            "ocean02","ocean03","shaft01","shaft02", 
                            "shaft03"> 
</block> 
<block name = "basin01"> 
       linking_grid_list = <"basin02","shaft01","shaft02","shaft03", 
                            "ocean01","ocean02","ocean03", 
                            "propeller01","propeller02","propeller03", 
                            "propeller04","propeller05","ship01"> 
</block> 
<block name = "basin02"> 
       linking_grid_list = <"basin01","basin03","shaft01","shaft02", 
                            "shaft03","ocean01","ocean02","ocean03", 
                            "propeller01","propeller02","propeller03", 
                            "propeller04","propeller05","ship01"> 
</block> 
<block name = "basin03"> 
       linking_grid_list = <"basin02","ocean01","ocean03"> 
</block> 
<block name = "ocean01"> 
       linking_grid_list = <"basin01","basin02","basin03", 
                            "ocean02","ocean03"> 
</block> 
<block name = "ocean02"> 
       linking_grid_list = <"ocean01","ocean03","ship01","basin01", 
                            "shaft01","shaft02","shaft03"> 
</block> 
<block name = "ocean03"> 
       linking_grid_list = <"ocean01","ocean02","basin01","basin02", 
                            "basin03","ship01","shaft03","shaft02", 
                            "shaft01"> 
</block> 
<block name = "phantom01"> 
       linking_grid_list = <"phantom01"> 
</block> 
<block name = "phantom02"> 
       linking_grid_list = <"phantom02"> 
</block> 
<block name = "phantom03"> 
       linking_grid_list = <"phantom03"> 
</block> 
<block name = "phantom04"> 
       linking_grid_list = <"phantom04"> 
</block> 
<block name = "phantom05"> 
       linking_grid_list = <"phantom05"> 
</block> 
<block name = "phantom06"> 
       linking_grid_list = <"phantom06"> 
</block> 
<block name = "phantom07"> 
       linking_grid_list = <"phantom07"> 
</block> 
 
 
! hole boundary definition 
  
<boundary name = "phantom01 hole boundary"> 
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          parent_grid = "phantom01", 
          hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 
</boundary>  
 
<boundary name = "phantom02 hole boundary"> 
          parent_grid = "phantom02", 
          hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 
</boundary>  
 
<boundary name = "phantom03 hole boundary"> 
          parent_grid = "phantom03", 
          hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 
</boundary>  
 
<boundary name = "phantom04 hole boundary"> 
          parent_grid = "phantom04", 
          hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 
</boundary>  
 
<boundary name = "phantom05 hole boundary"> 
          parent_grid = "phantom05", 
          hole_cutting_list = <"shaft01","shaft02","basin01","basin02"> 
</boundary>  
 
<boundary name = "phantom06 hole boundary"> 
           parent_grid = "phantom06", 
           hole_cutting_list = <"ship01"> 
</boundary>  
 
<boundary name = "phantom07 hole boundary"> 
           parent_grid = "phantom07", 
           hole_cutting_list = <"ship01","ocean03"> 
</boundary>  
 
<boundary name = "shaft01 hole boundary"> 
           parent_grid = "shaft01" 
            hole_cutting_list = <"basin01","basin02"> 
</boundary>  
 
<boundary name = "shaft03 hole boundary"> 
           parent_grid = "shaft03" 
            hole_cutting_list = <"basin01"> 
</boundary>  
 
<boundary name = "ship01 hole boundary"> 
           parent_grid = "ship01", 
           hole_cutting_list = <"shaft03","basin01","basin02", 
                                "ocean02","ocean03"> 
</boundary>  
 
 
! hole surface definitions 
 
<surface name = "phantom01 hole boundary"> 
         ijk_range =     1,   1,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
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</surface> 
<surface name = "phantom01 hole boundary"> 
         ijk_range =     3,   3,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01 hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom01 hole boundary"> 
         ijk_range =     1,   3,  41,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01 hole boundary"> 
         ijk_range =     1,   3,   1,  41,  61,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom02 hole boundary"> 
         ijk_range =     1,   1,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02 hole boundary"> 
         ijk_range =     3,   3,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02 hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02 hole boundary"> 
         ijk_range =     1,   3,  41,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02 hole boundary"> 
         ijk_range =     1,   3,   1,  41,  61,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom03 hole boundary"> 
         ijk_range =     1,   1,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom03 hole boundary"> 
         ijk_range =     3,   3,   1,  41,   1,  61, 
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         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03 hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom03 hole boundary"> 
         ijk_range =     1,   3,  41,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03 hole boundary"> 
         ijk_range =     1,   3,   1,  41,  61,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom04 hole boundary"> 
         ijk_range =     1,   1,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04 hole boundary"> 
         ijk_range =     3,   3,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04 hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04 hole boundary"> 
         ijk_range =     1,   3,  41,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04 hole boundary"> 
         ijk_range =     1,   3,   1,  41,  61,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   1,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     3,   3,   1,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
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<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   3,  41,  41,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   3,   1,  41,  61,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     1,   1,   1,   2,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     2,   2,   1,   2,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     1,   2,   1,   1,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     1,   2,   2,   2,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     1,   2,   1,   2,   1,   1, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom06 hole boundary"> 
         ijk_range =     1,   2,   1,   2,   2,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     1,   1,   1,   2,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     2,   2,   1,   2,   1,   2, 
         boundary_condition ="cut", 
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         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     1,   2,   1,   1,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     1,   2,   2,   2,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     1,   2,   1,   2,   1,   1, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom07 hole boundary"> 
         ijk_range =     1,   2,   1,   2,   2,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "shaft01 hole boundary"> 
         ijk_range =     1,  38,   3,   3,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "shaft03 hole boundary"> 
         ijk_range =     6,  65,   3,   3,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "ship01 hole boundary"> 
         ijk_range =     1, 121,  21,  21,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
 
!     outer boundary definition  
 
<boundary name = "propeller01 outer boundary">  
           parent_grid  = "propeller01", 
</boundary> 
<boundary name = "propeller02 outer boundary">  
           parent_grid  = "propeller02", 
</boundary> 
<boundary name = "propeller03 outer boundary">  
           parent_grid  = "propeller03", 
</boundary> 
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<boundary name = "propeller04 outer boundary">  
           parent_grid  = "propeller04", 
</boundary> 
<boundary name = "propeller05 outer boundary">  
           parent_grid  = "propeller05", 
</boundary> 
<boundary name = "shaft01 outer boundary">  
           parent_grid  = "shaft01", 
</boundary> 
<boundary name = "shaft02 outer boundary">  
           parent_grid  = "shaft02", 
</boundary> 
<boundary name = "shaft03 outer boundary">  
           parent_grid  = "shaft03", 
</boundary> 
<boundary name = "ship01 outer boundary">  
           parent_grid  = "ship01", 
</boundary> 
<boundary name = "basin01 outer boundary">  
           parent_grid  = "basin01", 
</boundary> 
<boundary name = "basin02 outer boundary">  
           parent_grid  = "basin02", 
</boundary> 
<boundary name = "basin03 outer boundary">  
           parent_grid  = "basin03", 
</boundary> 
<boundary name = "ocean01 outer boundary">  
           parent_grid  = "ocean01", 
</boundary> 
<boundary name = "ocean02 outer boundary">  
           parent_grid  = "ocean02", 
</boundary> 
<boundary name = "ocean03 outer boundary">  
           parent_grid  = "ocean03", 
</boundary> 
 
 
! outer boundary surface definition 
  
<surface name = "propeller01 outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01" 
           donor_ijk_range =  61,  61,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller01 outer boundary"> 
           ijk_range =  62,  62,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01" 
           donor_ijk_range =   2,   2,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller01 outer boundary"> 
           ijk_range =   1,  62,  41,  41,   2,  40, 
</surface> 
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<surface name = "propeller02 outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02" 
           donor_ijk_range =  61,  61,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller02 outer boundary"> 
           ijk_range =  62,  62,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02" 
           donor_ijk_range =   2,   2,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller02 outer boundary"> 
           ijk_range =   1,  62,  41,  41,   2,  40, 
</surface> 
 
 
<surface name = "propeller03 outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03" 
           donor_ijk_range =  61,  61,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller03 outer boundary"> 
           ijk_range =  62,  62,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03" 
           donor_ijk_range =   2,   2,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller03 outer boundary"> 
           ijk_range =   1,  62,  41,  41,   2,  40, 
</surface> 
 
 
<surface name = "propeller04 outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller04" 
           donor_ijk_range =  61,  61,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller04 outer boundary"> 
           ijk_range =  62,  62,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller04" 
           donor_ijk_range =   2,   2,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller04 outer boundary"> 
           ijk_range =   1,  62,  41,  41,   2,  40, 
</surface> 
 
 
<surface name = "propeller05 outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller05" 
           donor_ijk_range =  61,  61,   1,  41,   1,  41, 
</surface> 
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<surface name = "propeller05 outer boundary"> 
           ijk_range =  62,  62,   1,  41,   1,  41, 
           boundary_condition = "periodic", 
           donor_grid = "propeller05" 
           donor_ijk_range =   2,   2,   1,  41,   1,  41, 
</surface> 
<surface name = "propeller05 outer boundary"> 
           ijk_range =   1,  62,  41,  41,   2,  40, 
</surface> 
 
 
<surface name = "shaft01 outer boundary"> 
           ijk_range =   1,   1,   1,  21,   1, 122, 
</surface> 
<surface name = "shaft01 outer boundary"> 
           ijk_range =   1,  38,  21,  21,   1, 122, 
</surface> 
<surface name = "shaft01 outer boundary"> 
          ijk_range =   1,  38,   1,   21,   1,   1, 
          boundary_condition = "periodic", 
          donor_grid = "shaft01" 
          donor_ijk_range =   1,  38,   1,  21, 121, 121, 
</surface> 
<surface name = "shaft01 outer boundary"> 
          ijk_range =   1,  38,   1,  21, 122, 122, 
          boundary_condition = "periodic", 
          donor_grid = "shaft01" 
          donor_ijk_range =   1,   38,   1,  21,   2,   2, 
</surface> 
 
 
<surface name = "shaft02 outer boundary"> 
           ijk_range =   1,   1,   1,  31,   1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 
           ijk_range =  28,  28,   1,  31,   1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 
           ijk_range =   1,  28,   1,   1,   1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 
           ijk_range =   1,  28,  31,  31,   1, 122, 
</surface> 
<surface name = "shaft02 outer boundary"> 
          ijk_range =   1,  28,   1,   31,   1,   1, 
          boundary_condition = "periodic", 
          donor_grid = "shaft02" 
          donor_ijk_range =   1,  28,   1,  31, 121, 121, 
</surface> 
<surface name = "shaft02 outer boundary"> 
          ijk_range =   1,  28,   1,  31, 122, 122, 
          boundary_condition = "periodic", 
          donor_grid = "shaft02" 
          donor_ijk_range =   1,   28,   1,  31,   2,   2, 
</surface> 
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<surface name = "shaft03 outer boundary"> 
           ijk_range =  65,  65,   1,  21,   1, 122, 
</surface> 
<surface name = "shaft03 outer boundary"> 
           ijk_range =   2,  65,  21,  21,   1, 122, 
</surface> 
<surface name = "shaft03 outer boundary"> 
          ijk_range =   1,  65,   1,   21,   1,   1, 
          boundary_condition = "periodic", 
          donor_grid = "shaft03" 
          donor_ijk_range =   1,  65,   1,  21, 121, 121, 
</surface> 
<surface name = "shaft03 outer boundary"> 
          ijk_range =   1,  65,   1,  21, 122, 122, 
          boundary_condition = "periodic", 
          donor_grid = "shaft03" 
          donor_ijk_range =   1,  65,   1,  21,   2,   2, 
</surface> 
<surface name = "shaft03 outer boundary"> 
           ijk_range =   1,  65,   1,   1,   1, 122, 
           boundary_condition = "body", 
</surface> 
 
 
<surface name = "ship01 outer boundary"> 
           ijk_range =   1, 121,  35,  35,   1,  41, 
</surface> 
 
 
<surface name = "basin01 outer boundary"> 
           ijk_range =   1,   1,   1,  81,   1,  77, 
</surface> 
<surface name = "basin01 outer boundary"> 
           ijk_range =  34,  34,   1,  81,   1,  77, 
</surface> 
<surface name = "basin01 outer boundary"> 
           ijk_range =   1,  34,  81,  81,   1,  77, 
</surface> 
<surface name = "basin01 outer boundary"> 
           ijk_range =   1,  34,   1,  81,   1,   1, 
</surface> 
<surface name = "basin01 outer boundary"> 
           ijk_range =   1,  34,   1,  81,  77,  77, 
</surface> 
 
 
<surface name = "basin02 outer boundary"> 
           ijk_range =   1,   1,   1,  81,   1,  77, 
</surface> 
<surface name = "basin02 outer boundary"> 
           ijk_range =  34,  34,   1,  81,   1,  77, 
</surface> 
<surface name = "basin02 outer boundary"> 
           ijk_range =   1,  34,  81,  81,   1,  77, 
</surface> 
<surface name = "basin02 outer boundary"> 
           ijk_range =   1,  34,   1,  81,   1,   1, 
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</surface> 
<surface name = "basin02 outer boundary"> 
           ijk_range =   1,  34,   1,  81,  77,  77, 
</surface> 
 
 
<surface name = "basin03 outer boundary"> 
           ijk_range =   1,   1,   1,  81,   1,  77, 
</surface> 
<surface name = "basin03 outer boundary"> 
           ijk_range =  34,  34,   1,  81,   1,  77, 
</surface> 
<surface name = "basin03 outer boundary"> 
           ijk_range =   1,  34,  81,  81,   1,  77, 
</surface> 
<surface name = "basin03 outer boundary"> 
           ijk_range =   1,  34,   1,  81,   1,   1, 
</surface> 
<surface name = "basin03 outer boundary"> 
           ijk_range =   1,  34,   1,  81,  77,  77, 
</surface> 
 
 
<surface name = "ocean01 outer boundary"> 
           ijk_range =   1, 152,   1,  65,  21,  21, 
</surface> 
 
 
<surface name = "ocean02 outer boundary"> 
           ijk_range =  77,  77,   1,  65,   1,  42, 
</surface> 
<surface name = "ocean02 outer boundary"> 
           ijk_range =   1,  77,   1,  65,   1,   1, 
</surface> 
 
 
<surface name = "ocean03 outer boundary"> 
           ijk_range =   1,   1,   1,  65,   1,  42, 
</surface> 
<surface name = "ocean03 outer boundary"> 
           ijk_range =   1,  77,   1,  65,   1,   1, 
</surface> 
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Appendix C: COSMIC input file for tugboat and ducted-propeller wash study  

 
! example input for tugboat and ducted propellers 
 
! global parameters 
 
<global> 
      fringe = 1, 
      quality = 0.01, 
      nquality = 4, 
      eps = 0.001, 
</global>  
 
 
 
! grid block definition 
 
<block name = "propeller01a"> 
       linking_grid_list = <"propeller01a","tip01a","propeller04a", 
                            "propeller02a","duct02a","duct03a"> 
</block> 
<block name = "propeller02a"> 
       linking_grid_list = <"propeller02a","tip02a","propeller01a", 
                            "propeller03a","duct02a","duct03a"> 
</block> 
<block name = "propeller03a"> 
       linking_grid_list = <"propeller03a","tip03a","propeller02a", 
                            "propeller04a","duct02a","duct03a"> 
</block> 
<block name = "propeller04a"> 
       linking_grid_list = <"propeller04a","tip04a","propeller03a", 
                            "propeller01a","duct02a","duct03a"> 
</block> 
<block name = "tip01a"> 
       linking_grid_list = <"propeller01a","duct03a"> 
</block> 
<block name = "tip02a"> 
       linking_grid_list = <"propeller02a","duct03a"> 
</block> 
<block name = "tip03a"> 
       linking_grid_list = <"propeller03a","duct03a"> 
</block> 
<block name = "tip04a"> 
       linking_grid_list = <"propeller04a","duct03a"> 
</block> 
<block name = "duct01a"> 
       linking_grid_list = <"duct01a","duct02a","duct03a","duct04a", 
                            "barge01","ocean03","ocean04"> 
</block> 
<block name = "duct02a"> 
       linking_grid_list = <"duct02a","duct01a","duct03a","duct05a", 
                            "wake01a","propeller01a","propeller02a", 
                            "propeller03a","propeller04a"> 
</block> 
<block name = "duct03a"> 
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       linking_grid_list = <"duct03a","duct01a","duct02a","duct05a", 
                            "propeller01a","propeller02a", 
                            "propeller03a","propeller04a","tip01a", 
                            "tip02a","tip03a","tip04a","barge01"> 
</block> 
<block name = "duct04a"> 
       linking_grid_list = <"duct04a","duct01a","duct05a","wake01a", 
                            "barge01","ocean04"> 
</block> 
<block name = "duct05a"> 
       linking_grid_list = <"duct05a","duct02a","duct03a","duct04a", 
                            "wake01a","barge01","ocean04"> 
</block> 
<block name = "wake01a"> 
       linking_grid_list = <"wake01a","duct02a","duct03a","duct04a", 
                            "duct05a","barge01","ocean04","ocean05"> 
</block> 
<block name = "propeller01b"> 
       linking_grid_list = <"propeller01b","tip01b","propeller04b", 
                            "propeller02b","duct02b","duct03b"> 
</block> 
<block name = "propeller02b"> 
       linking_grid_list = <"propeller02b","tip02b","propeller01b", 
                            "propeller03b","duct02b","duct03b"> 
</block> 
<block name = "propeller03b"> 
       linking_grid_list = <"propeller03b","tip03b","propeller02b", 
                            "propeller04b","duct02b","duct03b"> 
</block> 
<block name = "propeller04b"> 
       linking_grid_list = <"propeller04b","tip04b","propeller03b", 
                            "propeller01b","duct02b","duct03b"> 
</block> 
<block name = "tip01b"> 
       linking_grid_list = <"propeller01b","duct03b"> 
</block> 
<block name = "tip02b"> 
       linking_grid_list = <"propeller02b","duct03b"> 
</block> 
<block name = "tip03b"> 
       linking_grid_list = <"propeller03b","duct03b"> 
</block> 
<block name = "tip04b"> 
       linking_grid_list = <"propeller04b","duct03b"> 
</block> 
<block name = "duct01b"> 
       linking_grid_list = <"duct01b","duct02b","duct03b","duct04b", 
                            "barge01","ocean03","ocean04"> 
</block> 
<block name = "duct02b"> 
       linking_grid_list = <"duct02b","duct01b","duct03b","duct05b", 
                            "wake01b","propeller01b","propeller02b", 
                            "propeller03b","propeller04b"> 
</block> 
<block name = "duct03b"> 
       linking_grid_list = <"duct03b","duct01b","duct02b","duct05b", 
                            "propeller01b","propeller02b", 
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                            "propeller03b","propeller04b","tip01b", 
                            "tip02b","tip03b","tip04b","barge01"> 
</block> 
<block name = "duct04b"> 
       linking_grid_list = <"duct04b","duct01b","duct05b","wake01b", 
                            "barge01","ocean04"> 
</block> 
<block name = "duct05b"> 
       linking_grid_list = <"duct05b","duct02b","duct03b","duct04b", 
                            "wake01b","barge01","ocean04"> 
</block> 
<block name = "wake01b"> 
       linking_grid_list = <"wake01b","duct02b","duct03b","duct04b", 
                            "duct05b","barge01","ocean04","ocean05"> 
</block> 
<block name = "ocean01"> 
       linking_grid_list = <"ocean02","ocean17","ocean18","barge01"> 
</block> 
<block name = "ocean02"> 
       linking_grid_list = <"ocean01","ocean03","ocean17","ocean18", 
                            "barge01"> 
</block> 
<block name = "ocean03"> 
       linking_grid_list = <"ocean02","ocean04","ocean17","ocean18", 
                            "duct01a","duct01b","duct04a","duct04b", 
                            "barge01"> 
</block> 
<block name = "ocean04"> 
       linking_grid_list = <"ocean03","ocean05","ocean17","ocean18", 
                            "wake01a","wake01b","duct01a","duct01b", 
                            "duct04a","duct04b","duct05a","duct05b", 
                            "barge01"> 
</block> 
<block name = "ocean05"> 
       linking_grid_list = <"ocean04","ocean06","ocean17","ocean18", 
                            "wake01a","wake01b","barge01"> 
</block> 
<block name = "ocean06"> 
       linking_grid_list = <"ocean05","ocean07","ocean17","ocean18", 
                            "wake01a","wake01b","barge01"> 
</block> 
<block name = "ocean07"> 
       linking_grid_list = <"ocean06","ocean08","ocean17","ocean18", 
                            "barge01"> 
</block> 
<block name = "ocean08"> 
       linking_grid_list = <"ocean07","ocean09","ocean17","ocean18", 
                            "barge01"> 
</block> 
<block name = "ocean09"> 
       linking_grid_list = <"ocean08","ocean10","ocean17","ocean18", 
                            "barge01"> 
</block> 
<block name = "ocean10"> 
       linking_grid_list = <"ocean09","ocean11","ocean17","ocean18", 
                            "barge01"> 
</block> 
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<block name = "ocean11"> 
       linking_grid_list = <"ocean10","ocean12","ocean17","ocean18"> 
</block> 
<block name = "ocean12"> 
       linking_grid_list = <"ocean11","ocean13","ocean17","ocean18"> 
</block> 
<block name = "ocean13"> 
       linking_grid_list = <"ocean12","ocean14","ocean17","ocean18"> 
</block> 
<block name = "ocean14"> 
       linking_grid_list = <"ocean13","ocean15","ocean17","ocean18"> 
</block> 
<block name = "ocean15"> 
       linking_grid_list = <"ocean14","ocean16","ocean17","ocean18"> 
</block> 
<block name = "ocean16"> 
       linking_grid_list = <"ocean15","ocean17","ocean18"> 
</block> 
<block name = "ocean17"> 
       linking_grid_list = <"ocean01","ocean02","ocean03","ocean04", 
                            "ocean05","ocean06","ocean07","ocean08", 
                            "ocean09","ocean10","ocean11","ocean12", 
                            "ocean13","ocean14","ocean15","ocean16", 
                            "ocean18","barge01"> 
</block> 
<block name = "ocean18"> 
       linking_grid_list = <"ocean01","ocean02","ocean03","ocean04", 
                            "ocean05","ocean06","ocean07","ocean08", 
                            "ocean09","ocean10","ocean11","ocean12", 
                            "ocean13","ocean14","ocean15","ocean16", 
                            "ocean17","barge01"> 
</block> 
<block name = "barge01"> 
       linking_grid_list = <"duct01a","duct01b","duct04a","duct04b", 
                            "duct05a","duct05b","wake01a","wake01b", 
                            "ocean01","ocean02","ocean03","ocean04", 
                            "ocean05","ocean06","ocean07","ocean08", 
                            "ocean09","ocean10","ocean17","ocean18"> 
</block> 
<block name = "phantom01a"> 
       linking_grid_list = <"phantom01a"> 
</block> 
<block name = "phantom02a"> 
       linking_grid_list = <"phantom02a"> 
</block> 
<block name = "phantom03a"> 
       linking_grid_list = <"phantom03a"> 
</block> 
<block name = "phantom04a"> 
       linking_grid_list = <"phantom04a"> 
</block> 
<block name = "phantom01b"> 
       linking_grid_list = <"phantom01b"> 
</block> 
<block name = "phantom02b"> 
       linking_grid_list = <"phantom02b"> 
</block> 
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<block name = "phantom03b"> 
       linking_grid_list = <"phantom03b"> 
</block> 
<block name = "phantom04b"> 
       linking_grid_list = <"phantom04b"> 
</block> 
<block name = "phantom05"> 
       linking_grid_list = <"phantom05"> 
</block> 
 
 
! hole boundary definition 
  
<boundary name = "phantom01a hole boundary"> 
          parent_grid = "phantom01a", 
          hole_cutting_list = <"duct02a","duct03a"> 
</boundary>  
 
<boundary name = "phantom02a hole boundary"> 
          parent_grid = "phantom02a", 
          hole_cutting_list = <"duct02a","duct03a"> 
</boundary>  
 
<boundary name = "phantom03a hole boundary"> 
          parent_grid = "phantom03a", 
          hole_cutting_list = <"duct02a","duct03a"> 
</boundary>  
 
<boundary name = "phantom04a hole boundary"> 
          parent_grid = "phantom04a", 
          hole_cutting_list = <"duct02a","duct03a"> 
</boundary> 
 
<boundary name = "phantom01b hole boundary"> 
          parent_grid = "phantom01b", 
          hole_cutting_list = <"duct02b","duct03b"> 
</boundary>  
 
<boundary name = "phantom02b hole boundary"> 
          parent_grid = "phantom02b", 
          hole_cutting_list = <"duct02b","duct03b"> 
</boundary>  
 
<boundary name = "phantom03b hole boundary"> 
          parent_grid = "phantom03b", 
          hole_cutting_list = <"duct02b","duct03b"> 
</boundary>  
 
<boundary name = "phantom04b hole boundary"> 
          parent_grid = "phantom04b", 
          hole_cutting_list = <"duct02b","duct03b"> 
</boundary> 
 
<boundary name = "phantom05 hole boundary"> 
          parent_grid = "phantom05", 
          hole_cutting_list = <"ocean01","ocean02","ocean03", 
                               "ocean04","ocean05","ocean06", 
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                               "ocean07","ocean08","ocean09", 
                               "ocean10"> 
</boundary> 
 
<boundary name = "duct01a hole boundary"> 
          parent_grid = "duct01a", 
          hole_cutting_list = <"ocean03","ocean04","barge01"> 
</boundary>   
 
 
<boundary name = "duct04a hole boundary"> 
          parent_grid = "duct04a", 
          hole_cutting_list = <"wake01a","ocean04","ocean03", 
                               "barge01"> 
</boundary>   
   
<boundary name = "duct05a hole boundary"> 
          parent_grid = "duct05a", 
          hole_cutting_list = <"wake01a","ocean04","barge01"> 
</boundary>   
 
<boundary name = "wake01a hole boundary"> 
          parent_grid = "wake01a", 
          hole_cutting_list = <"ocean04","ocean05","barge01"> 
</boundary> 
 
<boundary name = "duct01b hole boundary"> 
          parent_grid = "duct01b", 
          hole_cutting_list = <"ocean03","ocean04","barge01"> 
</boundary>   
 
 
<boundary name = "duct04b hole boundary"> 
          parent_grid = "duct04b", 
          hole_cutting_list = <"wake01b","ocean04","ocean03", 
                               "barge01"> 
</boundary>   
   
<boundary name = "duct05b hole boundary"> 
          parent_grid = "duct05b", 
          hole_cutting_list = <"wake01b","ocean04","barge01"> 
</boundary>   
 
<boundary name = "wake01b hole boundary"> 
          parent_grid = "wake01b", 
          hole_cutting_list = <"ocean04","ocean05","barge01"> 
</boundary> 
 
<boundary name = "barge01 hole boundary"> 
          parent_grid = "barge01", 
          hole_cutting_list = <"ocean01","ocean02","ocean03", 
                               "ocean04","ocean05","ocean06", 
                               "ocean07","ocean08","ocean09", 
                               "ocean10","wake01a","wake01b", 
                               "duct01a","duct01b","duct04a", 
                               "duct04b","duct05a","duct05b"> 
</boundary>  
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! hole surface definitions 
 
<surface name = "phantom01a hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom01a hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01a hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom01a hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01a hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom02a hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02a hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02a hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02a hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02a hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
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<surface name = "phantom03a hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom03a hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03a hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom03a hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03a hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom04a hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04a hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04a hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04a hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04a hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom01b hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
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         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom01b hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01b hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom01b hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom01b hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom02b hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02b hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02b hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom02b hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom02b hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom03b hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
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<surface name = "phantom03b hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03b hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom03b hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom03b hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom04b hole boundary"> 
         ijk_range =     1,   1,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04b hole boundary"> 
         ijk_range =     3,   3,   1,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04b hole boundary"> 
         ijk_range =     1,   3,   1,   1,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom04b hole boundary"> 
         ijk_range =     1,   3,  31,  31,   1,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom04b hole boundary"> 
         ijk_range =     1,   3,   1,  31,  41,  41, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   1,   1,   3,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     2,   2,   1,   3,   1,   2, 
         boundary_condition ="cut", 
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         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   2,   1,   1,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   2,   3,   3,   1,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   2,   1,   3,   1,   1, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "phantom05 hole boundary"> 
         ijk_range =     1,   2,   1,   3,   2,   2, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct01a hole boundary"> 
         ijk_range =     7,   7,   1,  37,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "duct01a hole boundary"> 
         ijk_range =     7,  21,  37,  37,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct04a hole boundary"> 
         ijk_range =     1,  53,   3,   3,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct05a hole boundary"> 
         ijk_range =     1,  15,  59,  59,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "wake01a hole boundary"> 
         ijk_range =     1,   1,   1,  29,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "wake01a hole boundary"> 
         ijk_range =    36,  36,   1,  29,   1, 121, 
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         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "wake01a hole boundary"> 
         ijk_range =     1,  36,  29,  29,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct01b hole boundary"> 
         ijk_range =     7,   7,   1,  37,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "duct01b hole boundary"> 
         ijk_range =     7,  21,  37,  37,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct04b hole boundary"> 
         ijk_range =     1,  53,   3,   3,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "duct05b hole boundary"> 
         ijk_range =     1,  15,  59,  59,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "wake01b hole boundary"> 
         ijk_range =     1,   1,   1,  29,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "-ijk", 
</surface> 
<surface name = "wake01b hole boundary"> 
         ijk_range =    36,  36,   1,  29,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
<surface name = "wake01b hole boundary"> 
         ijk_range =     1,  36,  29,  29,   1, 121, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
</surface> 
 
 
<surface name = "barge01 hole boundary"> 
         ijk_range =     1, 107,  17,  17,   1,  61, 
         boundary_condition ="cut", 
         surface_normal = "+ijk", 
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</surface> 
 
 
 
!     outer boundary definition  
 
 
<boundary name = "propeller01a outer boundary">  
           parent_grid  = "propeller01a", 
</boundary> 
<boundary name = "propeller02a outer boundary">  
           parent_grid  = "propeller02a", 
</boundary> 
<boundary name = "propeller03a outer boundary">  
           parent_grid  = "propeller03a", 
</boundary> 
<boundary name = "propeller04a outer boundary">  
           parent_grid  = "propeller04a", 
</boundary> 
<boundary name = "tip01a outer boundary">  
           parent_grid  = "tip01a", 
</boundary> 
<boundary name = "tip02a outer boundary">  
           parent_grid  = "tip02a", 
</boundary> 
<boundary name = "tip03a outer boundary">  
           parent_grid  = "tip03a", 
</boundary> 
<boundary name = "tip04a outer boundary">  
           parent_grid  = "tip04a", 
</boundary> 
<boundary name = "duct01a outer boundary">  
           parent_grid  = "duct01a", 
</boundary> 
<boundary name = "duct02a outer boundary">  
           parent_grid  = "duct02a", 
</boundary> 
<boundary name = "duct03a outer boundary">  
           parent_grid  = "duct03a", 
</boundary> 
<boundary name = "duct04a outer boundary">  
           parent_grid  = "duct04a", 
</boundary> 
<boundary name = "duct05a outer boundary">  
           parent_grid  = "duct05a", 
</boundary> 
<boundary name = "wake01a outer boundary">  
           parent_grid  = "wake01a", 
</boundary> 
<boundary name = "propeller01b outer boundary">  
           parent_grid  = "propeller01b", 
</boundary> 
<boundary name = "propeller02b outer boundary">  
           parent_grid  = "propeller02b", 
</boundary> 
<boundary name = "propeller03b outer boundary">  
           parent_grid  = "propeller03b", 



C-14 

</boundary> 
<boundary name = "propeller04b outer boundary">  
           parent_grid  = "propeller04b", 
</boundary> 
<boundary name = "tip01b outer boundary">  
           parent_grid  = "tip01b", 
</boundary> 
<boundary name = "tip02b outer boundary">  
           parent_grid  = "tip02b", 
</boundary> 
<boundary name = "tip03b outer boundary">  
           parent_grid  = "tip03b", 
</boundary> 
<boundary name = "tip04b outer boundary">  
           parent_grid  = "tip04b", 
</boundary> 
<boundary name = "duct01b outer boundary">  
           parent_grid  = "duct01b", 
</boundary> 
<boundary name = "duct02b outer boundary">  
           parent_grid  = "duct02b", 
</boundary> 
<boundary name = "duct03b outer boundary">  
           parent_grid  = "duct03b", 
</boundary> 
<boundary name = "duct04b outer boundary">  
           parent_grid  = "duct04b", 
</boundary> 
<boundary name = "duct05b outer boundary">  
           parent_grid  = "duct05b", 
</boundary> 
<boundary name = "wake01b outer boundary">  
           parent_grid  = "wake01b", 
</boundary> 
<boundary name = "ocean01 outer boundary">  
           parent_grid  = "ocean01", 
</boundary> 
<boundary name = "ocean02 outer boundary">  
           parent_grid  = "ocean02", 
</boundary> 
<boundary name = "ocean03 outer boundary">  
           parent_grid  = "ocean03", 
</boundary> 
<boundary name = "ocean04 outer boundary">  
           parent_grid  = "ocean04", 
</boundary> 
<boundary name = "ocean05 outer boundary">  
           parent_grid  = "ocean05", 
</boundary> 
<boundary name = "ocean06 outer boundary">  
           parent_grid  = "ocean06", 
</boundary> 
<boundary name = "ocean07 outer boundary">  
           parent_grid  = "ocean07", 
</boundary> 
<boundary name = "ocean08 outer boundary">  
           parent_grid  = "ocean08", 
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</boundary> 
<boundary name = "ocean09 outer boundary">  
           parent_grid  = "ocean09", 
</boundary> 
<boundary name = "ocean10 outer boundary">  
           parent_grid  = "ocean10", 
</boundary> 
<boundary name = "ocean11 outer boundary">  
           parent_grid  = "ocean11", 
</boundary> 
<boundary name = "ocean12 outer boundary">  
           parent_grid  = "ocean12", 
</boundary> 
<boundary name = "ocean13 outer boundary">  
           parent_grid  = "ocean13", 
</boundary> 
<boundary name = "ocean14 outer boundary">  
           parent_grid  = "ocean14", 
</boundary> 
<boundary name = "ocean15 outer boundary">  
           parent_grid  = "ocean15", 
</boundary> 
<boundary name = "ocean16 outer boundary">  
           parent_grid  = "ocean16", 
</boundary> 
<boundary name = "ocean17 outer boundary">  
           parent_grid  = "ocean17", 
</boundary> 
<boundary name = "ocean18 outer boundary">  
           parent_grid  = "ocean18", 
</boundary> 
<boundary name = "barge01 outer boundary">  
           parent_grid  = "barge01", 
</boundary> 
 
! outer boundary surface definition 
  
 
<surface name = "propeller01a outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01a" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller01a outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01a" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller01a outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller01a outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
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<surface name = "propeller02a outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02a" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller02a outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02a" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller02a outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller02a outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "propeller03a outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03a" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller03a outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03a" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller03a outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller03a outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "propeller04a outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller04a" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller04a outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller04a" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller04a outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller04a outer boundary"> 
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           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "tip01a outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip01a outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip01a outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip01a outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip01a outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip02a outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip02a outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip02a outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip02a outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip02a outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip03a outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip03a outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip03a outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip03a outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip03a outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip04a outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
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</surface> 
<surface name = "tip04a outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip04a outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip04a outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip04a outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "duct01a outer boundary"> 
           ijk_range =   1,   1,   1,  57,   1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =  21,  21,   1,  34,   1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =  21,  21,  36,  57,   1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =   8,  21,   1,   1,   1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =   1,  21,  57,  57,   1, 122, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =   1,  21,   1,  57,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct01a" 
           donor_ijk_range =   1,  21,   1,  57, 121, 121, 
</surface> 
<surface name = "duct01a outer boundary"> 
           ijk_range =   1,  21,   1,  57, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct01a" 
           donor_ijk_range =   1,  21,   1,  57,   2,   2, 
</surface> 
 
 
<surface name = "duct02a outer boundary"> 
           ijk_range =  66,  66,   1,  24,   1, 122, 
</surface> 
<surface name = "duct02a outer boundary"> 
           ijk_range =   1,  66,  24,  24,   1, 122, 
</surface> 
<surface name = "duct02a outer boundary"> 
           ijk_range =   1,  66,   1,  24,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct02a" 
           donor_ijk_range =   1,  66,   1,  24, 121, 121, 
</surface> 
<surface name = "duct02a outer boundary"> 
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           ijk_range =   1,  66,   1,  24, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct02a" 
           donor_ijk_range =   1,  66,   1,  24,   2,   2, 
</surface> 
 
 
<surface name = "duct03a outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 
           ijk_range =  53,  53,   1,  35,   1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 
           ijk_range =   1,  53,   1,   1,   1, 122, 
</surface> 
<surface name = "duct03a outer boundary"> 
           ijk_range =   1,  53,   1,  35,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct03a" 
           donor_ijk_range =   1,  53,   1,  35, 121, 121, 
</surface> 
<surface name = "duct03a outer boundary"> 
           ijk_range =   1,  53,   1,  35, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct03a" 
           donor_ijk_range =   1,  53,   1,  35,   2,   2, 
</surface> 
 
 
<surface name = "duct04a outer boundary"> 
           ijk_range =   1,   1,   1,  23,   1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 
           ijk_range =  53,  53,   1,  23,   1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 
           ijk_range =   1,  53,  23,  23,   1, 122, 
</surface> 
<surface name = "duct04a outer boundary"> 
           ijk_range =   1,  53,   1,  23,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct04a" 
           donor_ijk_range =   1,  53,   1,  23, 121, 121, 
</surface> 
<surface name = "duct04a outer boundary"> 
           ijk_range =   1,  53,   1,  23, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct04a" 
           donor_ijk_range =   1,  53,   1,  23,   2,   2, 
</surface> 
 
 
<surface name = "duct05a outer boundary"> 
           ijk_range =   1,   1,   1,  56,   1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 
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           ijk_range =   1,   1,  58,  79,   1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 
           ijk_range =  21,  21,   1,  79,   1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 
           ijk_range =   1,  21,  79,  79,   1, 122, 
</surface> 
<surface name = "duct05a outer boundary"> 
           ijk_range =   1,  21,   1,  79,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct05a" 
           donor_ijk_range =   1,  21,   1,  79, 121, 121, 
</surface> 
<surface name = "duct05a outer boundary"> 
           ijk_range =   1,  21,   1,  79, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct05a" 
           donor_ijk_range =   1,  21,   1,  79,   2,   2, 
</surface> 
 
 
<surface name = "wake01a outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 
           ijk_range =  40,  40,   1,  41,   1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 
           ijk_range =   1,  40,  41,  41,   1, 122, 
</surface> 
<surface name = "wake01a outer boundary"> 
           ijk_range =   1,  40,   1,  41,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "wake01a" 
           donor_ijk_range =   1,  40,   1,  41, 121, 121, 
</surface> 
<surface name = "wake01a outer boundary"> 
           ijk_range =   1,  40,   1,  41, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "wake01a" 
           donor_ijk_range =   1,  40,   1,  41,   2,   2, 
</surface> 
 
 
<surface name = "propeller01b outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01b" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller01b outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller01b" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
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<surface name = "propeller01b outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller01b outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "propeller02b outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02b" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller02b outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller02b" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller02b outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller02b outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "propeller03b outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03b" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller03b outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller03b" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller03b outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller03b outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "propeller04b outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
           donor_grid = "propeller04b" 
           donor_ijk_range =  61,  61,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller04b outer boundary"> 
           ijk_range =  62,  62,   1,  35,   1,  42, 
           boundary_condition = "periodic", 
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           donor_grid = "propeller04b" 
           donor_ijk_range =   2,   2,   1,  35,   1,  42, 
</surface> 
<surface name = "propeller04b outer boundary"> 
           ijk_range =   1,  62,  35,  35,   2,  41, 
</surface> 
<surface name = "propeller04b outer boundary"> 
           ijk_range =   1,  62,   2,  35,  42,  42, 
</surface> 
 
 
<surface name = "tip01b outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip01b outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip01b outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip01b outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip01b outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip02b outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip02b outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip02b outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip02b outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip02b outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip03b outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip03b outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip03b outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip03b outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
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<surface name = "tip03b outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "tip04b outer boundary"> 
           ijk_range =   1,   1,   1,   4,   2,  5, 
</surface> 
<surface name = "tip04b outer boundary"> 
           ijk_range =  29,  29,   1,   4,   2,  5, 
</surface> 
<surface name = "tip04b outer boundary"> 
           ijk_range =   1,  29,   1,   1,   1,  5, 
</surface> 
<surface name = "tip04b outer boundary"> 
           ijk_range =   1,  29,   4,   4,   1,  5, 
</surface> 
<surface name = "tip04b outer boundary"> 
           ijk_range =   1,  29,   1,   4,   5,  5, 
</surface> 
 
 
<surface name = "duct01b outer boundary"> 
           ijk_range =   1,   1,   1,  57,   1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =  21,  21,   1,  34,   1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =  21,  21,  36,  57,   1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =   8,  21,   1,   1,   1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =   1,  21,  57,  57,   1, 122, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =   1,  21,   1,  57,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct01b" 
           donor_ijk_range =   1,  21,   1,  57, 121, 121, 
</surface> 
<surface name = "duct01b outer boundary"> 
           ijk_range =   1,  21,   1,  57, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct01b" 
           donor_ijk_range =   1,  21,   1,  57,   2,   2, 
</surface> 
 
 
<surface name = "duct02b outer boundary"> 
           ijk_range =  66,  66,   1,  24,   1, 122, 
</surface> 
<surface name = "duct02b outer boundary"> 
           ijk_range =   1,  66,  24,  24,   1, 122, 
</surface> 
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<surface name = "duct02b outer boundary"> 
           ijk_range =   1,  66,   1,  24,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct02b" 
           donor_ijk_range =   1,  66,   1,  24, 121, 121, 
</surface> 
<surface name = "duct02b outer boundary"> 
           ijk_range =   1,  66,   1,  24, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct02b" 
           donor_ijk_range =   1,  66,   1,  24,   2,   2, 
</surface> 
 
 
<surface name = "duct03b outer boundary"> 
           ijk_range =   1,   1,   1,  35,   1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 
           ijk_range =  53,  53,   1,  35,   1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 
           ijk_range =   1,  53,   1,   1,   1, 122, 
</surface> 
<surface name = "duct03b outer boundary"> 
           ijk_range =   1,  53,   1,  35,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct03b" 
           donor_ijk_range =   1,  53,   1,  35, 121, 121, 
</surface> 
<surface name = "duct03b outer boundary"> 
           ijk_range =   1,  53,   1,  35, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct03b" 
           donor_ijk_range =   1,  53,   1,  35,   2,   2, 
</surface> 
 
 
<surface name = "duct04b outer boundary"> 
           ijk_range =   1,   1,   1,  23,   1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 
           ijk_range =  53,  53,   1,  23,   1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 
           ijk_range =   1,  53,  23,  23,   1, 122, 
</surface> 
<surface name = "duct04b outer boundary"> 
           ijk_range =   1,  53,   1,  23,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct04b" 
           donor_ijk_range =   1,  53,   1,  23, 121, 121, 
</surface> 
<surface name = "duct04b outer boundary"> 
           ijk_range =   1,  53,   1,  23, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct04b" 
           donor_ijk_range =   1,  53,   1,  23,   2,   2, 
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</surface> 
 
 
<surface name = "duct05b outer boundary"> 
           ijk_range =   1,   1,   1,  56,   1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 
           ijk_range =   1,   1,  58,  79,   1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 
           ijk_range =  21,  21,   1,  79,   1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 
           ijk_range =   1,  21,  79,  79,   1, 122, 
</surface> 
<surface name = "duct05b outer boundary"> 
           ijk_range =   1,  21,   1,  79,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "duct05b" 
           donor_ijk_range =   1,  21,   1,  79, 121, 121, 
</surface> 
<surface name = "duct05b outer boundary"> 
           ijk_range =   1,  21,   1,  79, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "duct05b" 
           donor_ijk_range =   1,  21,   1,  79,   2,   2, 
</surface> 
 
 
<surface name = "wake01b outer boundary"> 
           ijk_range =   1,   1,   1,  41,   1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 
           ijk_range =  40,  40,   1,  41,   1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 
           ijk_range =   1,  40,  41,  41,   1, 122, 
</surface> 
<surface name = "wake01b outer boundary"> 
           ijk_range =   1,  40,   1,  41,   1,   1, 
           boundary_condition = "periodic", 
           donor_grid = "wake01b" 
           donor_ijk_range =   1,  40,   1,  41, 121, 121, 
</surface> 
<surface name = "wake01b outer boundary"> 
           ijk_range =   1,  40,   1,  41, 122, 122, 
           boundary_condition = "periodic", 
           donor_grid = "wake01b" 
           donor_ijk_range =   1,  40,   1,  41,   2,   2, 
</surface> 
 
 
<surface name = "ocean01 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean01 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
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</surface> 
 
 
<surface name = "ocean02 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean02 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean02 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean03 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean03 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean03 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean04 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean04 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean04 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean05 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean05 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean05 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean06 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean06 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean06 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
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<surface name = "ocean07 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean07 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean07 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean08 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean08 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean08 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean09 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean09 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean09 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean10 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean10 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean10 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean11 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean11 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean11 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean12 outer boundary"> 
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           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean12 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean12 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean13 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean13 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean13 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean14 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean14 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean14 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean15 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean15 outer boundary"> 
           ijk_range =  20,  20,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean15 outer boundary"> 
           ijk_range =   1,  20,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean16 outer boundary"> 
           ijk_range =   1,   1,   1, 116,   1,  95, 
</surface> 
<surface name = "ocean16 outer boundary"> 
           ijk_range =   1,  16,   1,   1,   1,  95, 
</surface> 
 
 
<surface name = "ocean17 outer boundary"> 
           ijk_range =   1, 151,  37,  37,   1,  33, 
</surface> 
<surface name = "ocean17 outer boundary"> 
           ijk_range =   1, 151,   1,  37,  33,  33, 
</surface> 
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<surface name = "ocean18 outer boundary"> 
           ijk_range =   1, 151,  37,  37,   1,  33, 
</surface> 
<surface name = "ocean18 outer boundary"> 
           ijk_range =   1, 151,   1,  37,   1,   1, 
</surface> 
 
 
<surface name = "barge01 outer boundary"> 
           ijk_range =   1, 107,  34,  34,   1,  61, 
</surface> 
 
 


