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EXECUTIVE SUMMARY 

 

 

 Much of human society and its infrastructure has been designed and built on a key 

assumption: that future climate conditions at any given location—including average temperature, 

precipitation, sea level, and the frequency and intensity of extreme events—will be similar to 

those experienced in the past. This assumption affects infrastructure design and maintenance, 

emergency response management, and long-term investment and planning. As evidence 

accumulates that climate change already is affecting human society and the built environment, 

however, this assumption has become less and less tenable. 

 

 The Department of Defense (DoD) is responsible for vast amounts of built and natural 

infrastructure at its permanent installations and other sites. This infrastructure is necessary for 

maintaining military readiness and supporting daily operations, and it is subject to requirements 

related to basic tenets of asset stewardship. Given its worldwide presence, the different spatial 

and temporal scales upon which it bases its decisions, and its previous missions, DoD requires 

useful and actionable climate information over a range of scales to serve a variety of purposes. , 

However, the provisioning of actionable climate information to decision-makers and 

practitioners—especially at spatial scales relevant to decision-making—is in its infancy. 

Although a vast amount of climate information is available at different spatial scales and 

temporal resolutions, corresponding information on its utility and appropriateness of use in a 

decision-making context is lacking.  

 

 This primer on the appropriate use of climate information for non-experts was 

commissioned by the Strategic Environmental Research and Development Program (SERDP) as 

an outgrowth of a set of five funded research projects investigating decision-making in DoD and 

its relationship to available and needed climate information at appropriate spatial and temporal 

scales. Focusing on applications to vulnerability and impact assessments and adaptation 

planning, it provides information for selecting climate information and downscaled climate 

products. The information is presented at a level useful for action officers within the Office of 

the Secretary of Defense, military service headquarters, installation oversight commands, 

planners at different levels, and key installation managers who have a range of knowledge about 

and experience with climate change, climate modeling, and the application of climate 

information to built and natural infrastructure management planning, maintaining military 

readiness and installation-based operations, and other related types of decision-making.  

 

 The impacts research community, much of which has been funded by SERDP since 2009 

in support of DoD climate-related research needs, also requires a better understanding of the use 

of high-resolution climate information. For that reason, this primer provides a summary of 

available climate information and a broad outline of the ways such information can be 

incorporated into vulnerability and impact assessments, climate resilience and preparedness 

considerations, and adaptation planning from a research perspective. 

 

 This document also includes a summary of the state of the science, our understanding of 

the appropriate use of that science in the context of decision-making, and a description of current 
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and future research topics that clearly explain why climate is changing, how climate projections 

are generated, what types of climate impacts are studied, and how the results can be used in 

further analyses to inform planning, general decision-making, and impacts research. 

 

 Because the most appropriate climate inputs for any given application depend on the 

nature of both risk tolerance and associated vulnerabilities, this is not intended as a prescriptive 

guidance document that outlines the “best” climate models, methods, or projections to use in any 

planning exercise. Instead, our goal is to convey a basic understanding of climate change, global 

climate models, and future scenarios to place the use of high-resolution climate information into 

an appropriate context. We then focus on the available downscaling methods used to generate 

high-resolution climate projections at the local to regional scale, with the goal of outlining our 

current understanding of their appropriate use (or non-use) in decision-making and impacts 

research. We also offer recommendations as to appropriate use of downscaled model output for 

some regions with specific geographic or terrain features that constrain viable choices. 

 

 The ultimate goal of this document is to help DoD users—and by extension those 

conducting the impacts research that informs potential decisions—to make useful decisions 

informed by the state of the science in a rapidly changing climate. We recognize, however, that 

this is just a first step. Moving forward, it is imperative that a closer and continuing dialogue 

occur between the climate modeling and user communities to advance our scientific 

understanding of the climate system in a manner that incorporates user needs into the design of 

scientific experiments, and that periodically provides users with updated guidance on how to 

apply credible climate information for decision-making purposes and impacts research. 
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1  THE CHANGING CLIMATE 

 

 

 Much of human society and its infrastructure has been designed and built on a key 

assumption: that future climate conditions at any given location—including average temperature, 

precipitation, sea level, and the frequency and intensity of extreme events—will be similar to 

those experienced in the past. In scientific and engineering terms, this assumption can be termed 

stationarity. This assumption underlies infrastructure design and maintenance, emergency 

response management, and long-term investment and planning, in which both past decisions and 

future plans rely on historical records of heat and cold, drought and flood, hurricanes and storm 

surges, or other aspects of long-term climate. 

 

 Today, however, this assumption of 

stationarity is becoming problematic. Increasing 

emissions of carbon dioxide, methane, and other 

heat-trapping greenhouse gases from human 

activities, primarily the burning of fossil fuels and 

changing land use, are building up in the 

atmosphere. In many areas, human-induced 

climate change is interacting with and exacerbating 

both new and existing patterns of natural 

variability and climate- and weather-related 

phenomena. Such phenomena range from rising 

seas and stronger storm surges along the coasts to 

more frequent heavy precipitation events across the 

midlatitudes to extreme heat inland. These and 

other consequences of human-induced climate change are expected to become even more 

widespread and pronounced over time, as the planet responds to past emissions and as more heat-

trapping gases continue to build up in the atmosphere as a result of present and future human 

choices. 

 

 

1.1  REGIONAL CLIMATE CHANGES IN THE UNITED STATES 

 

 The global climate is changing as a result of human emissions of heat-trapping gases. In 

the United States, annual and seasonal temperatures have increased by 1.3 to 1.9°F (0.7 to 1.1°C) 

since records began in 1895, with the greatest increases occurring since the 1970s (Walsh et al. 

2015). (As temperatures have increased, the frost-free season has lengthened, and both extreme 

heat days and multi-day heatwaves have become more frequent and more intense.) Since long-

term records in the state began in 1925, Alaskan temperatures have already warmed nearly twice 

as fast as those in the contiguous United States (CONUS); this disproportionate warming of the 

Arctic compared to midlatitudes is expected to continue in the future as the extent of sea ice and 

land-based ice and snow declines. Precipitation is also changing; as the atmosphere warms, more 

water evaporates from oceans, lakes, and rivers, increasing the average amount of precipitation 

associated with midlatitude storms, tropical storms, and even hurricanes. Higher levels of water 

vapor in the atmosphere have already increased the frequency of heavy rainfall and precipitation 

    Stationarity and Climate Change 
 

Stationarity signifies that statistics of climate 

conditions (e.g., temperature, precipitation) 

remain the same when averaged over a 

sufficiently long time period and that the future 

will be similar to the recent past. However, 

climate model projections and observations over 

the past few decades indicate that this no longer 

the case, and that we will continue to experience 

non-stationarity as a result of human-induced 

climate change over the coming century and 

beyond. This change includes shifts in the means, 

variance, and distribution functions that we now 

use to represent climate conditions. 
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events across much of the United States over the past 50 years, particularly in the Midwest and 

the Northeast. 

 

 Over the coming century, global average temperatures are projected to continue to 

increase at a rate of change that could exceed by a factor of 50 that experienced between the end 

of the last Glacial Maximum (commonly referred to as the last ice age) and the current warm 

interglacial period of today (Clark et al. 2016). 

 

 Projections of the Earth’s future climate are calculated by global climate models (see 

Section 2.3). These models use a range of standard representative concentration pathways 

(RCPs) or Special Report on Emission Scenarios (SRES) scenarios as input, each of which 

corresponds to a specific pathway of carbon and other heat-trapping gas emissions or 

concentrations from human activities (see Section 2.2). For many regions, the magnitude and rate 

of change often depend on the scenario used, with higher emissions or concentrations 

corresponding to greater and/or more rapid change. In coming decades, for example, average 

temperature increases in the United States on the order of 2 to 4°F (1.1 to 2.2°C) are projected 

under lower to higher scenarios, respectively. By end of the century, temperature increases 

ranging from 5 to 10°F (2.8 to 5.6°C) are projected under lower to higher scenarios (Walsh et al. 

2015). These future scenarios represent the largest uncertainty in projections of temperature 

toward the end of this century, emphasizing the role of human decisions in determining future 

change (see Section 2.4).  

 

 Climate change is also expected to affect precipitation and flood risks. Winter and spring 

precipitation will likely increase across Alaska and the northern half of North America, including 

the more northern CONUS states. Summer rainfall is likely to decrease (and summer drought 

risk is expected to increase) across the southern Great Plains and in the Southwest. Observed 

trends in the frequency of heavy rainfall and precipitation events are likely to continue, and as 

sea level rises (with global estimates ranging from 8 inches to 6.6 feet [0.2 to 2 meters] by 2100; 

Walsh et al. 2015) coastal flood risks will also increase. 
 

 

1.2  CLIMATE CHANGE AND SPATIAL SCALES 

 

 Climate models—first known as general circulation models—were initially developed to 

model the energy budget of the earth system and the impact of external factors such as solar 

input and greenhouse gas emissions. Over the past two decades, these models have become 

progressively more complex. Now referred to as global climate models (GCMs), their 

capabilities have increased to incorporate more aspects of the dynamics, chemistry, and biology 

of the atmosphere, biosphere, and oceans.  

 

 GCMs divide the atmosphere, ocean, and land surface up into millions of discrete cells to 

solve numerical equations representing the physical, biological, and chemical phenomena in 

each, using state-of-the-art supercomputers. The model resolution (i.e., the size of the cells) has 

been progressively refined. Current GCMs operate at spatial resolutions of approximately 40 to 

100 square miles (or 100 to 250 km2) per cell, as both historical data and future projections 



 

5 

indicate that regional- and local-scale changes in climate will frequently differ from continental-

scale and global climate means (see Figure 1).  
 

Most of the adaptation, impacts, and 

mitigation needs for the Department of Defense 

(DoD) and similar federal agencies are at scales 

much smaller than the resolution of even the latest 

GCMs. Instead, climate information at these smaller 

spatial and temporal scales can be obtained using 

downscaling methods. Downscaling climate 

projections introduces new information―either from 

observations (in the case of statistical downscaling) 

or from higher-resolution dynamical modeling (in the 

case of dynamical downscaling)―and combines this 

information with GCM output to generate higher-

resolution information from coarser-resolution fields 

consisting of local weather and climate 

characteristics like temperature, humidity, and 

precipitation. For many applications, climate 

information from global and regional models must 

also be empirically bias corrected before the output 

can be used directly to quantify impacts. This 

typically consists of using empirical data to identify and remove the offset in the absolute value 

of historical model output compared to observations, a process that is typically internalized in 

most statistical downscaling approaches. 

 

     Model Bias and Bias Correction Approaches 

 

All dynamical climate models (both regional and global) aim to reproduce the 

observed climate system.  While they do a good job, there remain errors or 

biases in the models.  Bias refers to the difference between what the model 

simulates as the observed climate and the actual observed climate. In general, 

biases are determined on a variable basis (e.g., one determines the bias in surface 

temperature).   

Bias Correction: In general these biases need to be removed to use the results 

of the global or regional models in impacts assessments.  Removing the biases 

by correcting the climate model results based on observations is known as bias 

correction.  A number of different approaches are used to do this, and these are 

described in the sections on statistical downscaling.  

 

    

  

 

FIGURE 1  Spatial Scale of Global 

Models, Regional Models, and Impact 

Assessments. This image compares the 

scale at which most GCMs operate with 

the scale of a regional model and the 

local scale at which decisions are 

frequently made. The local scale 

represents a factor of 100 increase in 

resolution over the current GCMs. 
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1.3  GOALS AND CONTENT OF THIS DOCUMENT 

 

 Given the magnitude and rate of present-

day and future climate change, it is becoming 

increasingly relevant for action officers, 

planners, and managers to incorporate climate 

information into long-term planning. “Account 

for climate change in future planning” is more 

easily said than done, however. A great deal of 

information is available, ranging from historical 

observations to future projections. For some 

applications, it may seem that too much input 

must be incorporated to be practical; for others, it 

may seem that none of the available resources 

meet known needs.  

 

 This document attempts to identify 

appropriate climate data and climate information 

for vulnerability and impact assessments and 

impacts-related research. The Strategic 

Environmental Research and Development 

Program (SERDP) commissioned this primer on 

the most appropriate use of climate information 

by non-experts as an outgrowth of five funded 

research projects investigating decision-making 

in the DoD and its relationship to available and 

needed climate information at appropriate spatial and temporal scales. In it, we describe 

appropriate uses of high-resolution climate information, including when not to use such 

information. We also summarize available future climate information and outline how such 

information can be incorporated into vulnerability and impact assessment, climate resilience and 

preparedness considerations, and adaptation planning. 

 

 Because the most appropriate climate inputs for any given application depend on the 

nature of both risks and vulnerabilities, this is not intended to be a guidance document that 

identifies the “best” climate projections to use in any planning exercise. Instead, our goal is to 

convey a basic understanding of climate change, global models, future scenarios, and the 

downscaling methods used to generate high-resolution climate projections at local to regional 

scales, as well as the appropriate use of such methods based on our understanding of these 

approaches today. As scientific understanding progresses and the application of climate 

projections to impact assessment and decision-making becomes more advanced, this 

understanding should be updated to account for new approaches to modeling, downscaling, 

implementation, and interpretation of climate-related information. 

 

 

     Types of Climate Change Information 

Available for Decision Framing 
 

• Global-scale climate model evaluations 

organized by the World Climate Research 

Programme (WCRP): This type of output is 

produced by GCMs. The most recent 

evaluations, CMIP3 and CMIP5, provide output 

from a large ensemble of different climate 

models, forcing conditions, and outputs for 

estimating likely climate change impacts at 

global, continental, and broad regional scales. 

• Regional-scale dynamic downscaling: This 

type of output is produced using regional-scale 

climate models with information from GCMs 

applied at the boundaries. The North American 

Regional Climate Change Assessment Program 

(NARCCAP) database is one of the best-known 

examples of this type of information. 

• Empirical statistical downscaling methods or 

models (ESDMs): This type of output is 

produced using statistical downscaling methods 

that combine information from GCMs and 

empirical observations. It encompasses a large 

variety of methods and datasets.  
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1.4  CLIMATE CHANGE INFORMATION USE IN VULNERABILITY AND 

IMPACT ASSESSMENTS 

 

 Vulnerability as adopted by the 

Intergovernmental Program on Climate Change 

(IPCC) (Fussel and Klein 2006) is best 

understood as an “integrated vulnerability of a 

particular system over a specified time horizon to 

anthropogenic climate change.” Vulnerability in 

the context of climate change is defined by the 

IPCC (Houghton et al. 2001) as the degree to 

which a system is susceptible to or unable to 

cope with adverse climate change, including 

climate variability and extremes. Thus, 

vulnerability assessments require knowledge of 

the character, magnitude, and rate of climate 

change to which a system is exposed; the 

system’s sensitivity; and the system’s adaptive 

capacity.  

 

 Vulnerability assessments include 

assessments of impacts from anthropogenic 

climate change, the effects of any mitigation  

action, and adaptation. Fussel and Klein 

(2006) further divide vulnerability 

assessments into two segments or 

“generations.” The first-generation 

vulnerability assessment includes impacts 

primarily from climate change, and the 

second-generation vulnerability assessment 

focuses on the adaptive capacity of the system 

and the impacts of additional non-climate 

drivers. In some cases, as noted in the box 

above, future uncertainty in these non-climate 

drivers may outweigh or even overwhelm the 

impacts of climate change on a given system. 

 

To illustrate, Figure 2 shows a schematic of 

interactions that take place primarily between 

the climate and socioeconomic processes that 

lead to determination of vulnerability, 

exposure, and risk. This schema was used in 

both the IPCC Special Report on Extremes 

(SREX) (Field et al. 2012) on the effects of 

extreme weather and climate events and in the IPCC Working Group 2 Report (Birch et al.  

  

    Role of Climate Information in Complex 

Systems 
 

The emerging non-stationarity of the climate 

baseline over multidecadal timescales relevant to 

human decision-making and infrastructure design 

poses a significant challenge for future planning. At 

the same time, however, it is important to recognize 

that the impacts of climate change on a complex 

system will be significantly modified by other 

factors—many of which may have nothing to do 

with climate, and some of which may mean that 

climate change is not the most important 

uncertainty in planning for the future of a given 

system or set of infrastructure. For example, studies 

such as Jones et al. (2015) have established that, by 

the mid-21st century, population distribution 

changes in the United States will be as important as 

likely climate changes in determining population 

exposure to extreme heat. 

 

   

 

FIGURE 2  Interactions between the Climate 

and Socioeconomic Processes That Lead to 

Determination of Vulnerability, Exposure, and 

Risk (based on Oppenheimer et al. 2014, 

Chapter 19, Emergent Risks and Key 

Vulnerabilities, Figure 19-1) 
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2014) on impacts, adaptation, and vulnerability. Risk of climate-related impacts results from the 

interaction of climate-related hazards with the vulnerability and exposure of human and natural 

systems. Changes in both the climate system and socioeconomic processes are central drivers of 

the core components that constitute risk. Definitions of terms are provided in the box below. 

 

 The use of climate information for impact 

and vulnerability assessments in decision-

framing has followed both top-down and bottom-

up approaches. In a top-down decision process, 

global-scale climate models are used to generate 

downscaled projections at spatial scales of 

interest; then they are bias corrected and applied 

(e.g., as input to a hydrological or a pavement 

performance model) to estimate the impact on a 

desired endpoint due to climate change. 

However, Garcia et al. (2014) noted that this 

process often allots significantly more effort and 

resources to assessing the climate impacts while 

ignoring other uncertainties that could be more 

important for near- and medium-term decision 

making. In a bottom-up approach, on the other 

hand, the vulnerability of the system is identified first, and then the expected climate impacts are 

mapped onto this domain to evaluate potential risks to the assessed system. This facilitates the 

assessment of a broader range of decision-relevant uncertainties, including climate, from a user 

perspective and has been shown to be useful, for example, in assessing the impacts of climate 

change on hydrological resources and its vulnerability (Garcia et al. 2014). The challenge with 

the bottom-up approach is that if a new vulnerability is identified, then the whole process has to 

be repeated. 

 

 Figure 3 illustrates an approach that begins with a decision-making framework and 

focuses on establishing system vulnerability before applying specific climate scenarios. The 

example concerns the vulnerability of a water resource system; it is taken from the University of 

Massachusetts SERDP project (RC-2202; Brown et al. 2012). The approach links bottom-up 

vulnerability assessments with multiple sources of climate information. In this approach, a 

climate “stress test” is applied to a system to determine, for example, what combinations of 

change in temperature and precipitation lead to unacceptable system performance. This describes 

the system vulnerability. Then various sources of climate change information may be overlaid on 

the results of the stress test to determine the likelihood of system failure given the suite of 

climate change scenarios. This approach eliminates the need to use only specific sets of climate 

scenarios; instead, a wide range of climate scenarios from a variety of sources was used 

(Figure 2), showing that under a subset of the CMIP3 scenarios, projected change would result in 

system failure. 

    Definition of Terms in Figure 1 
 

Exposure: The presence of people or important 

infrastructures in potential harm’s way.  

Hazard: The potential occurrence of a natural or 

human-induced physical event that may cause 

injury, damage, etc. 

Risk: Represented by the following expression: 

(Probability of Event) × Consequences. Risk results 

from the interaction of vulnerability, exposure, and 

hazard. 

Vulnerability: The propensity to be adversely 

affected, or susceptibility to harm. Numerous 

factors determine vulnerability, including wealth, 

social status, gender, and age. 

 

   



 

9 

 

 

  

 

FIGURE 3  Results of a Stress Test for the Colorado 

Spring Water System. The blue region represents the 

system resilient region. Green circles and purple 

crosses represent scenarios from the CMIP3 and 

CMIP5 datasets, respectively. The scale indicates the 

likelihood that the system will be able to meet the 

requirements for water use. Low values (red) indicate 

failure to meet the system requirements, while high 

values (blue) indicate success. 
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2  THE BASIS FOR FUTURE PROJECTIONS 

 

 

 Despite the proliferation of climate projections at spatial scales ranging from individual 

weather stations to tens of miles, produced by both regional climate models and empirical 

statistical downscaling models, identifying the most appropriate inputs to a specific application 

remains a challenge. The time horizon, the physical geography, the nature and cost of risk versus 

resilience, and even the degree of uncertainty in climate projections and in other aspects of the 

future all act together to determine the type of information that is needed and the limits of what 

can be accomplished with that information. 

 

 In this section, we review the extent to which climate projections are required—or not—

for various applications; discuss the emission and concentration scenarios that encompass a 

range of possible futures from human choices regarding energy and land use; and end by 

explaining how GCMs are used to simulate the impacts of these scenarios on the various regions 

of the world, thus forming the basis for the future projections that can then be downscaled to 

impact-relevant spatial and temporal scales. 

 

 

2.1  WHAT TYPE OF CLIMATE INFORMATION IS REALLY NEEDED? 

 

 The need for credible information about future climate to aid in decision making is 

becoming more urgent, as recently recognized by the U.S. government (GAO 2015). However, 

there are many different sources of information and methods to choose from. Over the last few 

decades, a number of different methods for developing future climate scenarios have been 

developed. Carter et al. (2007) present an excellent overview of different means of representing 

future climate conditions. These range from simple sensitivity analyses—wherein the climate 

variables are systematically changed by incremental amounts and the responses of impacts 

models are then tested—to analogs based on past recorded conditions that may be considered 

representative of the future, such as using the Dust Bowl conditions in the 1930s in the central 

Great Plains to predict how current agricultural production would fare were such an event to 

occur again (Easterling et al. 1993). For near-term climate changes in the next 10 years or so, a 

useful approach for observed trends in, for example, temperature and precipitation that are 

significant and consistent with longer-term projected changes (Hurrell et al. 2010) is to 

extrapolate current historical trends to estimate future changes. In general, however, the use of 

output from climate modeling experiments to quantify impacts over multi-decadal timescales, 

often downscaled to a higher resolution, has dominated the field of climate impacts assessment. 

 

 It is important to point out that, for some analyses, quantitative information about the 

future may not be necessary. For example, knowing that summer temperatures will increase in a 

region, without knowing by exactly how much, could provide sufficient incentive to adapt to 

heat stress. The response of the public health department might be similar regardless of the exact 

numbers attached to the future projections: establish cooling centers, educate the public, and 

reduce the amount of highly absorptive land cover that exacerbates extreme heat conditions. In 

addition, even if clear trends in climate are not observed, exploring a system’s resilience to 

current conditions can be informative. Frequently, human systems are not well adapted to current 
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climate and weather hazards, let alone to projected future increases. The infrastructure 

destruction in New York and New Jersey in 2013 due to Hurricane Sandy is a case in point. 

 

 For other applications, however, detailed high-resolution climate projections may be 

useful to determine potential impacts and to scale appropriate preparedness actions. Such 

applications include those where science is able to provide trusted quantitative projections and 

when such information is needed for planning. Temperature and precipitation extremes often fall 

into this category, in which science is able to generate information through a combination of 

global modeling and downscaling and the agency or system requires such information to make 

robust decisions. Examples might include storm-sewer pipe diameter, where the cost of 

installation depends on the frequency of future heavy precipitation; rail transportation lines, 

where the choice of best material depends on the range of temperature extremes expected over 

the duration of the installation; or sea-level rise, where protection of coastal infrastructure may 

depend on both the amount of rise expected over a given time horizon and the risk of storm 

surge. In Section 3 we summarize available inputs and tools for these and other such situations to 

provide the reader with the necessary information to make decisions based on a solid 

understanding of the science and available scientific tools. 

 

 Quantitative climate projections often can be used as input to other models that translate 

impacts into additional quantitative information that is directly relevant to future planning. 

Examples include:  

• Hydrological models, which can translate climate projections into 

streamflow, drought or flood risk, or groundwater levels; 

 

• Infrastructure integrity assessments, which through damage 

models/fragility curves translate climate information into risk of exceeding 

design thresholds or the need to alter maintenance plans;  

 

• Agriculture or crop models, in which climate projections can inform 

everything from crop choice to water management strategies;  

 

• Energy demand models, which estimate future need for heating in winter and 

cooling in summer, the energy for which tends to be provided by distinctly 

different sources; and  

 

• National security frameworks to assess the impacts of a changing climate on 

food, water, and energy security here in the United States and around the 

world.  

 

In all of these cases, it is usually possible to identify quantitative projections to use as input to 

calculate projected changes and the associated uncertainty surrounding those changes over the 

coming century. More often than not, those quantitative projections are derived from GCMs 

driven by future emission or concentration scenarios. 
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2.2  FUTURE EMISSION AND CONCENTRATION SCENARIOS 

 

 Human choices contribute to a range of plausible climate futures. The IPCC scenarios are 

intended to cover that range. These scenarios are neither predictions nor forecasts. Instead, the 

scenarios offer a systematic approach to model socioeconomic pathways for the rest of the 

century and beyond. Which scenario—if any—eventually becomes reality will depend on the 

choices being made by human society now, and over the next few decades. 

 

 Two major approaches to developing  scenarios of future emissions or concentrations of 

greenhouse gases have been used, the first embodied in the Special Report on Emissions 

Scenarios (SRES; Nakicenovic and Swart 2000) and the second in the more recent scenarios 

referred to as RCPS (Moss et al. 2010). The SRES scenarios use socioeconomic modeling to 

inform potential emissions trajectories, while the RCP scenarios are named after the radiative 

forcing that would result from each scenario (e.g., RCP 8.5 corresponds to an increase of 

8.5 watts per square meter at the tropopause, the boundary between the troposphere or lower 

atmosphere and the stratosphere) and are based on an internally consistent set of socioeconomic 

assumptions (including demographics and energy use). Despite differences in development and 

nomenclature, both SRESs and RCP scenarios encompass coherent, internally consistent, and 

plausible descriptions of a possible future state of the world (Carter et al. 2007); for the user, it 

makes little difference how the original scenarios are framed if the end goal is climate projection. 

Within both the SRESs and the RCP family of scenarios, however, the specific scenarios used 

can have a substantial impact on the resulting analysis. 

 

 Uncertainties in socioeconomic development, energy use, and resulting human emissions 

of greenhouse gases result in substantial uncertainties in the magnitude of future climate change. 

These uncertainties increase as they are projected further out into the future (e.g., more than 

30 years). At the higher end of the scenarios, atmospheric carbon dioxide levels under the 

RCP 8.5 scenario reach more than 900 parts per million by 2100. At the lower end, under 

RCP 2.6, policy actions to reduce carbon dioxide emissions below zero before the end of the 

century (i.e., to the point where humans are responsible for a net uptake of carbon dioxide from 

the atmosphere) keeps atmospheric carbon dioxide levels below 450 parts per million by 2100. 

Projected increases in global mean temperature under the RCP scenarios by the end of the 

century range from 2 to 8°F (1 to 5°C), depending on the RCP scenario used. For the United 

States, as illustrated in Figure 4, projected increases range from 3.5°F (2°C) under the lower 

RCP 2.6 scenario to nearly 10°F (5.5°C) under the higher RCP 8.5 scenario.  

 

 

2.3  GLOBAL CLIMATE MODELS  

 

 Scientists have amassed a vast body of knowledge regarding the physical world. Unlike 

many areas of science, however, scientists who study the Earth’s climate cannot build a “control 

Earth” and conduct experiments on this Earth in a lab. To experiment with the Earth, scientists 

instead use accumulated knowledge to build climate models, or “virtual Earths.” In studying 

climate change, these virtual Earths allow scientists to integrate and evaluate different kinds of 

knowledge of how the climate system works. The models can be used to test scientific 

understanding of how the Earth’s climate responded to past changes (e.g., the transition from the   
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last Glacial Maximum to our 

current warm interglacial 

period) and to develop 

projections of future changes 

(e.g., the response of the 

Earth’s climate to human 

activities). 

 

 The most complex of type of 

climate models are three-

dimensional GCMs. These 

physically based models 

include the explicit solution of 

energy, momentum, and mass 

conservation equations at 

millions of points 

encompassing the 

atmosphere, land, ocean, and 

cryosphere in every time step. 

The original atmosphere-

ocean modeling components 

of GCMs were known as 

general circulation models, 

after their ability to simulate 

the circulation of the atmosphere and ocean. More recently, capabilities for the explicit 

simulation of the biosphere and atmospheric chemistry have been added to GCMs; these models 

are typically referred to as global climate models or, if they also include dynamic carbon cycles, 

as Earth system models (ESMs). Today’s GCMs and ESMs encapsulate the great expanse of 

current understanding of the physical processes involved in the climate system, the interactions 

of these processes, and the performance of the climate system as a whole. They have been 

extensively tested relative to observations and can reproduce the key features found in the 

climate of the past century. 

 

 CMIP5 GCMs have a spatial resolution ranging from about 30 to 200 miles (or 50 to 

300 km; here, resolution refers to the width and length of the average grid cell). Most of the 

simulations were performed with models that have a resolution of 60 miles (or 100 km) or more, 

but a few selected simulations use higher-resolution models. In general, these models can 

generate mean temperature changes at regional scales with a fair degree of confidence and mean 

precipitation with less confidence (IPCC 2013). However, because of their relatively coarse 

spatial resolution the models fail to capture features of climate that are driven by processes or 

physical features of the earth system that operate at smaller spatial scales. These include the 

influence of terrain and coastal environments; sub-grid-scale phenomena such as spatial 

variability of precipitation, tornadoes, and thunderstorms; and other similar severe weather 

phenomena. At larger spatial scales, the models successfully simulate, but cannot fully replicate, 

the observed temporal variability and global impact of semi-periodic climate cycles such as the 

El Niño Southern Oscillation (ENSO) events. As described further in the box below, the next 

 

FIGURE 4  Projected Changes in U.S. Annual Mean 

Temperature. Projected changes in annual mean temperature 

as simulated by CMIP5 GCMs under the RCP lower (2.6), 

intermediate (4.5, 6.0), and higher (8.5) scenarios for the period 

2071-2099 as compared to 1970-1999. Source: NOAA 

NCDC/CICS-NC (Walsh et al. 2015). 
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generation of global models incorporates higher resolutions (25 to 50 km) that better resolve 

topography and its effects on synoptic weather, and are improving model ability to simulate 

hurricanes and other storms. 

 
    Future of GCMs 
 

Today’s GCMs require enormous computing resources to capture the geographical details of climate. Currently, 

the typical spatial resolution of GCMs run over 150 years is about 1.5 degrees latitude and longitude. For CMIP6, 

the next generation of such simulations, typical resolutions will increase to 1 degree for century-long simulations. 

Already, experimental atmosphere-only simulations have been run at a resolution of 15 miles (25 km).  

Over the next decade, computer speeds are predicted to increase another thousand-fold or more, permitting 

GCMs to explore even more details of the climate system. As these analyses become available, they could greatly 

enhance understanding of severe weather trends in the changing climate thanks to improved treatment of 

orographic effects on weather patterns. A 2012 National Academy study, Advancing Climate Modeling 

(Bretherton et al. 2012), estimated that global models could be run in long-term mode (i.e., producing multiple 

decades’ worth of output) at about 5-mile (or 10-km) resolution within the next 7 to 8 years. These runs will 

enable new findings from high-resolution downscaling studies through either dynamical or statistical 

downscaling. 

 

   
 

 

2.4  UNCERTAINTY 

 

 Projected changes in future climate are subject to important uncertainties in the 

magnitude, timing, and distribution of that change. These uncertainties can be grouped into three 

primary categories, as follows (Hawkins and Sutton 2009, 2011; Ekstrom et al. 2015): natural 

variability, human uncertainty (as expressed by emission or concentration scenarios), and 

scientific uncertainty (as captured by global model simulations). 

 

 Natural variability is the result of interactions between components of the climate 

system such as the atmosphere, the ocean, and the biosphere. Some aspects of variability are 

somewhat periodic, such as ENSO; others are random or chaotic. These natural variations in the 

climate system cause temperature, precipitation, and other aspects of climate to vary from year to 

year and even decade to decade, causing them to be an important source of uncertainty over 

shorter timescales ranging from 0 to 30 years. Recent studies indicate that natural variability 

could contribute to uncertainty at even longer timescales up to 50 years on local to regional 

spatial scales up to 60 miles (or 100 km; Deser et al. 2014). To address uncertainty due to natural 

variability, future projections should focus on changes occurring over climatological timescales 

of two to three decades, rather than the changes projected to occur by a given year or even 

decade.  

 

 Future emissions or human uncertainty, as expressed by the future emission or 

concentration scenarios described in Section 2.2, captures the way future climate change will 

respond to emissions from human activities that have not yet occurred. Ranges of emissions, 

concentrations, and resulting temperatures are simply different ways of measuring and 

expressing uncertainty in possible future changes as a function of human choices. Although all 

scenarios are intended to be plausible, the actual pathway or magnitude of emissions could be 
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altered by policy changes triggered by, for example, severe weather events in which climate 

change may be perceived as a contributing factor, or new technologies for capturing carbon from 

the atmosphere that become commercially viable. Nonetheless, the substantial range between 

higher and lower scenarios is sufficient to illustrate the potential range of changes that may be 

expected, and how these changes depend on future emissions. 

 

 Over shorter time horizons, there is little difference between the magnitude of change 

projected under a higher or a lower scenario. Near-term climate change is insensitive to scenarios 

for two reasons: (1) the inertia in the climate system response to emissions and (2) the inertia of 

energy infrastructure response to policy changes. Scenario uncertainty becomes most important 

over the second half of the century as the various scenarios within the SRES and RCP families 

diverge. It is evident in temperature-related projections—both means and extremes—and in some 

regions its impact can also be seen in patterns of seasonal and heavy precipitation (Solomon et 

al. 2011). While scenarios cover a broad range of future change, no single scenario can be judged 

to be more likely than the others at this time. To address human uncertainty, decisions should 

assess the consequences of multiple scenarios to appropriately bound risk if the planning horizon 

is longer than 30 years. Further recommendations are provided in Section 4. 

 

 Climate Model Uncertainty, as expressed by the range of projections from multiple 

GCMs, addresses how the Earth’s climate system will respond to increased concentrations of 

greenhouse gases in the atmosphere. Differences between the GCMs reflect the limitations of 

scientific ability to simulate the climate system. Model uncertainty can be parametric (how does 

the model represent physical processes, such as cloud formation and precipitation, that occur at 

spatial and/or temporal scales far smaller than the model can resolve?) and structural (are all the 

processes in the model correctly represented, and are any relevant processes missing?).  

 

 Although it is certainly suggestive of model ability, or lack thereof, the magnitude of 

model biases in climatological values does not necessarily correlate with model ability to 

reproduce observed and simulate future change. Studies have found, for example, that the order 

in which GCMs would be ranked from best to worst based on their average biases in 

climatological temperature is not the same as when the these GCMs are ranked based on their 

ability to simulate observed temperature trends (Jun et al. 2008; Giorgi and Coppola 2010). For 

most purposes, the use of a multi-model ensemble of GCM simulations with an equally weighted 

mean generally provides a more robust picture of future conditions than any one model or small 

subset of models (Weigel et al. 2010; Raisanen et al. 2010; Tebaldi and Knutti 2007). Further 

recommendations are provided in Section 4. 

 

 Future projections can be selected to specifically address each of these three sources of 

uncertainty and combinations thereof. Figure 5 illustrates how the relative importance of these 

three sources changes, depending on what timeframe is considered. Over nearly all timescales, 

model uncertainty remains important.  

 

 Over timescales shorter than a few decades, changes in global and regional temperature 

and other climate indicators are relatively unaffected by differences in future emissions or 

concentration scenarios. Therefore, when assessing potential climate change impacts within the 

next 30 years or so, choice of emission or concentration scenario is virtually irrelevant. The  
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TEMPERATURE

 

PRECIPITATION

 

FIGURE 5  Relative Importance of Different Sources of Uncertainty in Future Climate 

Projections over Time. Relative importance of natural variability (orange), human or scenario 

uncertainty (green) and scientific or modeling uncertainty (blue) in determining the uncertainty 

in projected future annual mean temperature (left) and cumulative annual precipitation (right) 

over North America. Source: Hawkins and Sutton (2009, 2011). 

 

 

natural variability of climate, however, plays a dominant role in near-term uncertainty and can be 

addressed by either using ensembles generated from multiple models or using a single model 

ensemble that captures climate variability at these timescales and spatial scales.  

 

 Over longer timescales, beyond about 30 years, scenario uncertainty becomes 

increasingly important. For most questions, at least two future bounding scenarios should be 

used to cover a range of possible outcomes and answer important questions. For example, what 

is the full range of plausible change, including scenario uncertainty? What is the likely minimum 

amount of change to which a system will have to adapt under a lower scenario (i.e., identifying 

minimum adaptation thresholds)? What is the maximum amount of change that can be expected 

under a higher scenario, and what are the boundaries of the change (maximum and minimum)? 

The choice of bounding scenarios should reflect the type of decision being made, the time 

horizon over which the decision has to be operative, and the decision-makers’ tolerance for risk. 

In some cases, it may be possible to only use one scenario, in which case a higher-end scenario is 

recommended for two reasons: (1) despite the recent Paris Accord, the higher-end scenario is the 

trajectory we have been following most closely for the last decade or more, and (2) if one can 

adapt to the higher-end scenario, then one can likely adapt to lower-end ones. However, a more 

robust approach would include multiple scenarios generated using multiple models to cover a 

range of model uncertainties and emission or concentration uncertainties. 

 

 In addition to natural variability and human and climate model uncertainty, local or 

downscaling uncertainty results from the many factors that interact to determine how the climate 

of one specific location will respond to global-scale change over the coming century. To address 

local uncertainty, GCM simulations are typically downscaled to a finer resolution, as discussed 

in Section 3.  
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3  INTRODUCTION TO DOWNSCALING 

 

 

 Regional climate change impact assessments evaluate the potential effects of climate 

change on issues of interest to that region. Such issues could consist of projected changes in crop 

yield or livestock production; geographic or phenological shifts in a specific invasive or at-risk 

plant, animal, or bird species; impacts on the functionality of the regional ecosystem as a whole; 

changes in water or energy supply; or impacts on climate-sensitive economic sectors. These 

assessments’ results provide key input to the development of robust strategies to increase the 

resilience of both human and natural systems to coming change. They also provide important 

guidance regarding the allocation of limited resources to encourage adaptation and support 

resilience in vulnerable areas.  

 

 Some regional impact assessments can be 

performed using GCM output; however, many 

more assessments (see, for example, 

Hayhoe et al. 2004; Wuebbles et al. 2010) are 

informed by regionally specific climate 

information. The resolution of such information 

must be much finer than that of the typical GCM, 

because climate change impacts relevant to 

stakeholders tend to occur at small scales—often, 

to specific facilities or locations. This limitation 

is particularly acute in two situations: first, when 

estimating changes at the tails of the distribution 

of daily values; and second, when topography 

and geographical features not fully resolved by 

the climate model are key drivers for locally 

relevant atmospheric phenomena.  

 

 To overcome this discrepancy in scale, a 

broad suite of dynamical and statistical 

methods—collectively known as downscaling 

techniques—have been developed to translate 

climate model output into the spatial (and 

sometimes even temporal) scales required to 

answer the urgent needs of decision-makers. This 

includes developing inputs that can be directly 

used as input to impact, environmental process, 

and adaptive response models. Downscaling methods convert GCM output into projections that 

are more representative of regional-scale changes, both in terms of spatial resolution and by 

capturing key phenomena that occur at these smaller spatial scales.  

 

 In this section, we describe the nature and components of dynamical and empirical-

statistical downscaling models; we list examples of datasets where downscaled information is 

    

 
Two common approaches are used for downscaling 

climate projections: (a) dynamic downscaling using 

higher-resolution physical models and (b) empirical 

statistical downscaling methods and models 

(ESDMs). Dynamic downscaling methods usually 

use GCM output fields as boundary conditions and 

simulate climate variables at spatial resolutions 

generally a factor of 5–10 higher than the original 

GCM. Statistical downscaling methods train an 

empirical model on historical climate data and 

historical GCM simulations for a few selected 

climate variables, then use this model to downscale 

future GCM simulations to the spatial and temporal 

scale of the observations. The spatial scale of 

ESDM projections is limited only by the availability 

of historical data to train the models. 
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readily accessible; and we end with a comparison of the relative strengths and limitations of each 

type of downscaling.  

 

 

3.1  DYNAMICAL DOWNSCALING 

 

 Limited-area climate models play an 

important role beyond that of the global model. 

They resolve processes that occur below the 

spatial scale, or grid size, of a global model; they 

are able to model complex terrain including 

complex coastlines as well as processes that are 

affected by changes in land use and land cover; 

and they can simulate hydrology at scales of 

interest to decision-making. The models can be 

used for dynamical downscaling in two ways: 

first, through use of a limited-area model driven 

by GCM inputs after the GCM simulation has 

finished; and second, through a variable-

resolution model at the global scale that “zooms 

in” on the area of interest during its calculations. 

The first approach is typically referred to as 

regional climate modeling, whereas the second 

approach is often known as variable-resolution 

modeling. Both are said to be “dynamic” because 

they directly simulate the dynamics of the regional 

climate system. 

 

  High-resolution models were initially 

based on weather prediction models. Now, many 

new sub-models have been added so that the 

models perform better over timeframes of years to 

decades. Regional models are similar to GCMs in 

many ways. Both global and regional models are 

physical models that can directly simulate many 

different processes affecting the atmosphere, 

ocean, and land surface at the spatial scale of the 

grid cells being used (as illustrated in Figure 6). 

Both types of models use a series of equations and 

parameters to describe smaller-scale processes, 

such as cloud formation or atmospheric 

turbulence, that the model cannot resolve. In addition, both output a series of three-dimensional 

fields that include temperature, humidity, and a host of other variables such as winds, clouds, and 

pressure levels throughout the atmosphere. Like global models, regional climate models (RCMs) 

continue to evolve, both by increasing resolution (as fine as 0.6 to 1.2 miles or 1 to 2 km in some  

  

    RCM Evaluation 
 

Assessing a regional model’s performance is 

difficult and time-consuming, but often necessary to 

appropriately caveat its results.  Although a robust 

set of regional climate model (RCM) projections 

will have to include multiple boundary conditions 

from different GCMs, multiple future scenarios, and 

potentially multiple regional models, the uncertainty 

from different parameterizations can be successfully 

tested using a single model, as many regional-scale 

climate models have a number of parameterizations 

for key physical processes (e.g., Leung et al. 2013; 

Bruyere et al. 2014). For example, it is valuable to 

understand which model processes might be driving 

projected changes to determine whether or not 

model outputs make sense. This is especially 

important when RCMs differ significantly from 

global model simulations and even disagree with 

each other.  

A growing body of literature has demonstrated that 

regional-scale climate models add value to the 

projections generated by the original GCM (Castro 

et al. 2005; Di Luca et al. 2012; Wang et al. 2015), 

and that these models can reduce model-

observational differences or biases in the host 

climate models, often significantly (Mearns et al. 

2012; Bukovsky et al. 2013; Leung et al. 2013; 

Wang et al. 2015; Torma et al. 2015). Higher-

resolution models can also improve the spatial-

temporal patterns of change (Di Luca et al. 2012; 

Wang et al. 2015). A challenge from a user’s 

perspective is that, just as in the case of global 

models, no single “best” RCM can meet all needs. 

As with global models, regional model inter-

comparisons illustrate the importance of using 

multiple regional models to capture a good range of 

model uncertainty. 
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 studies; more commonly 6 to 7 miles, 

or 10 to 12 km) and by improving the 

representation of physical processes in 

the model. In contrast to global 

models, however, regional models 

cover only a limited area. At the 

boundaries of this high-resolution 

area, dynamical downscaling models 

require input from a gridded three-

dimensional representation of the 

global atmosphere. This input 

commonly comes from GCM output, 

but it also can originate from global 

weather model output.  

 

 The most widely available 

dynamically downscaled output was 

generated under the NARCCAP using 

CMIP3 output to provide boundary 

conditions. The NARCCAP dataset 

includes one forcing scenario (the 

mid-high SRES A2 scenario), and 

multiple regional-scale models at a 

spatial resolution of 50 km for the 

periods 1971–2000 and 2041–2070 

(Mearns et al. 2013). NARCCAP 

output has already been extensively used in impacts research (see Mearns et al. [2015] for a 

review). The ongoing North American Coordinated Regional Downscaling Experiment (NA-

CORDEX) is performing similar simulations using multiple CMIP5 GCMs and multiple RCMs 

at a spatial resolution of 25 km based on one or two forcing scenarios (RCP higher 8.5 

and lower 4.5) for the time period 1950 to 2100 (see WCRP undated).  

 

 

3.2  EMPIRICAL STATISTICAL DOWNSCALING  

 

 The field of empirical statistical downscaling encompasses a broad range of techniques, 

from simple approaches that can be calculated in a spreadsheet to complex stochastic models 

with computational demands approaching those of a RCM. They range from methods that simply 

correct for bias (the difference between the historical model simulation and observations) to 

methods that develop relationships between local weather and the larger-scale  

atmospheric conditions simulated by global models. Statistical techniques run from simple linear 

regression (e.g., Wilby and Wigley 2000) to more complex applications based on weather 

generators (Wilks and Wilby 1999), canonical correlation analysis (e.g., von Storch et al. 1993), 

artificial neural networks (e.g., Crane and Hewitson 1998), inhomogeneous Markov models 

(e.g., Vrac et al. 2007; Fu et al. 2013), and non-parametric kernel density estimators.  
  

 

FIGURE 6  Typical Set of Processes and Spatial Scales 

Modeled by a Regional-Scale Climate Model. The 

models calculate circulation in the atmosphere, cloud 

processes, precipitation, and land-atmospheric and 

ocean-atmospheric processes on a limited portion of 

the Earth. 
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 An ESDM typically uses 

statistical relationships to translate 

GCM output into high-resolution future 

projections. High-resolution climate 

model simulations can be developed 

based on different types of 

observational data, as long as there is a 

record of sufficient length (typically 

20 years or more) to cover as large a 

range in weather conditions as possible. 

A record that is too short can create 

sampling problems, wherein the 

statistical model is trained on a set of 

conditions that do not encompass the 

full range of weather at that location. 

Inputs can include weather station data, 

which corresponds to an individual 

location or gridded data; this can be 

derived from weather station data that 

has been smoothed and interpolated 

onto a regular grid, from reanalysis or 

other types of assimilation that merges 

multiple data sources and models to 

produce a single dataset, or even from 

satellite datasets. In ESDMs, local 

conditions are assumed to be a function 

of three factors: larger-scale 

atmospheric conditions and weather 

systems that vary from day to day; 

local topographical, coastal, and 

geographical factors that do not vary 

much over time; and day-to-day 

variability (noise) that averages out 

over time.  

 

 There are two approaches to 

training a statistical downscaling 

model. The first approach establishes a 

relationship between large-scale 

atmospheric features (which can 

include temperature, precipitation, 

humidity, pressure, winds, and more) 

and the observed variables of interest. 

The second approach takes the variables of interest from a host GCM (i.e., temperature, 

precipitation) and disaggregates these values onto the spatial scale of the observations. The 

difference between observations and GCM simulations at the scale of the observations is then 

    ESDM Evaluation 
 

ESDM performance can be evaluated in at least three distinct 

ways. Each of these methods yields different information 

regarding the ability of the ESDM to simulate historical and/or 

future change. 

First, when downscaled climate projections are compared the 

historical observations used to train the model for the same 

time period used in training, the difference between modeled 

and observed variables yields insight into the goodness of fit of 

the statistical model. Second, when the same comparison is 

conducted for an independent time period not used in training, 

the difference between modeled and observed variables yields 

insight into the generalizability of the statistical model. Neither 

difference is expected to be zero; in the first case that would 

signify over-fitting of the statistical model, and in the second, a 

perfect sampling of natural variability far beyond the length of 

typically available observational datasets.  

A third way to evaluate ESDMs is through the “perfect model” 

experiment, where ESDM-based future projections based on 

coarsened GCM output fields can be compared to future 

projections from the original high-resolution version of the 

same GCM (Dixon et al. 2016). This approach yields insight 

into the stationarity of the statistical model, at least in 

comparison to the GCM, which can vary by region, by variable, 

and by quantile (e.g., averages versus extremes).  

Downscaled historical simulations should not be compared to a 

different observational dataset than that used in training, as the 

same information can be derived much more transparently by 

simply comparing the two observational datasets. Climate 

projections generated for one dataset are not intended to match 

observations from a different dataset or a different location. 

Downscaled simulations should not be compared to a time 

series that includes both data points used to train the model and 

data points that were not, because that would make it 

impossible to differentiate between goodness-of-fit versus 

generalizability. Last, downscaled simulations should not be 

evaluated over non-climate time periods: a day, a year, or even 

a decade. Over short time frames, observations and model 

simulations do not match—and should not be expected to 

match—because climate models generate their own patterns of 

natural variability. Essentially, climate models represent an 

“alternate Earth,” with the same emissions of heat-trapping 

gases from human activities and the same overall patterns of 

natural variability, but different day-to-day and year-to-year 

conditions.  
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represented with a statistical model. Regardless of which approach is used, the result is a 

statistical model that can transform GCM outputs into projections at the scale of the original 

observations. These can range from hourly observations at a single weather station or set of 

stations to monthly values for a gridded dataset covering an entire region or country. 

 

 Empirical statistical downscaling models are often flexible, enabling them to be tuned to 

obtain finer-resolution output for targeted variables and for selected locations. Because they are 

easy to use, they tend to lend themselves to a wide variety of applications to assess the impacts 

of climate change (e.g., Kattenberg et al. 1996; Hewitson and Crane 1996; Giorgi et al. 2001; 

Mearns et al. 2001; Wilby et al. 2004; and references therein). Such methods have been used to 

provide the basis for regional climate assessments for various states, regions, and government 

agencies (e.g., Hayhoe et al. 2004, 2008, 2010; USGCRP 2009; Steinschneider et al. 2015; for a 

review of the use of these methods over North America, see Mearns et al. 2014). The most 

widely available statistically downscaled datasets and models are summarized in Table 1. 
 

 

3.3  COMPARISON OF DYNAMICAL AND STATISTICAL DOWNSCALING 

METHODS  

 

 There have been a number of reviews and assessments of downscaling techniques over 

the last several decades (e.g., Giorgi and Mearns 1991; Wilby and Wigley 1997; Giorgi et al.  

2001; Christensen et al. 2007; Mearns et al. 2014; Ekstrom et al. 2015); some of these reviews 

also provide recommendations for proper use. As Ekstrom et al. (2015) point out, a key aspect of 

any downscaling method is its ability to simulate realistic climate and physically plausible 

change. Table 2 combines information from many of these sources along with our own expert 

judgment to summarize the primary strengths and limitations of each. 

 

 In general, the information derived from GCMs, RCMs, and ESDMs is useful for impact 

assessments. GCMs and RCMs rely primarily on physical process-based descriptions of 

atmospheric phenomena. These may be limited by deficiencies in current scientific 

understanding of some of the atmospheric phenomena, but they have been shown to reproduce 

most of the key features of the observed atmosphere (IPCC 2013). ESDMs rely on a combination 

of observations and statistical models. Although limited by the assumption that historical 

relationships between observations and GCM simulations maintain their validity in the future, 

more complex ESDMs are able to reproduce many of the higher-resolution features of a 

physically based model (Dixon et al. 2016). In this section, we expand on the primary strengths 

and challenges of each method. 

 

 Compared to global models, the RCMs used in dynamical downscaling operate at a 

much higher spatial resolution and provide meaningful output that can be archived at less than 

daily frequency and at grid resolutions that can be up to a factor of 10 higher. This offers a 

number of opportunities not available in GCM output, including the ability to explore projected 

changes in extremes in precipitation, temperatures, and other relevant indicators (Tripathi and 

Dominguez 2013). Methods for generating these extremes from model projections are rapidly 

evolving (Wang et al. 2016); however, further research is necessary to make this into a useful 

product for decision support. In addition, higher resolution also implies an extremely high  
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TABLE 1  Summary of Widely Used Statistical Downscaling Methods, an Example of Each 

Method, and Characteristics of Available Outputsa 

Statistical Method 

Sample Dataset or 

Model Using This 

Methodb 

 

Geographic 

Extent and 

Spatial 

Resolution 

Temporal 

Resolution Variables 

     

Delta:c Differences between 

GCM historical and future 

projections are added to 

historical observations 

WorldCLIM dataset 

 

Global (from 

1/120 to 1/60 

degrees) 

Monthly by 

decade from 

2020s to 

2080s 

Maximum, minimum 

temperature; 

precipitation; and 

bioclimatically 

active variables (see 

WorldClim 

[undated] for list) 

     

Bias Correction:d The 

difference or bias between 

the historical GCM and 

observations is used to 

correct historical and future 

GCM projections 

MBC (monthly bias 

correction) model 

corrects mean + 

standard deviation 

N/A N/A Maximum, minimum 

temperature; 

precipitation 

     

Empirical Quantile 

Mapping:d,e Historical data 

are used to correct monthly 

GCM output and 

observations; monthly model 

bias corrected using an 

empirically determined value 

for each quantile (e.g., by 

subtracting one cumulative 

distribution from the other, 

as in the CDFT, EDQM 

models) 

BCSD (bias 

correction—spatial 

disaggregation) 

dataset 

CONUS and 

southern Canada 

(1/8 degrees) 

Monthly and 

daily (by 

sampling from 

daily 

observations) 

outputs 

1950–2099 Maximum, minimum 

temperature; 

precipitation; 

monthly hydrology; 

and wind 

     

Parametric Quantile 

Mapping:f Historical data are 

used to correct daily GCM 

output; daily model bias is 

removed by a parametric 

(fitted) correction for each 

quantile 

ARRMv1 

(asynchronous 

regional regression 

model) dataset 

CONUS (1/8 

degrees), 

Alaska (1/2 

degrees), North 

and Central 

America 

(individual 

weather 

stations) 

Daily 

1960–2099 

Maximum, minimum 

temperature; 

precipitation; 

humidity (at stations 

only); derived 

temperature and 

precipitation 

thresholds and other 

secondary indicators 
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TABLE 1  (Cont.) 

 

Statistical Method 

Sample Dataset or 

Model Using This 

Methodb 

 

Geographic 

Extent and 

Spatial 

Resolution 

Temporal 

Resolution Variables 

     

Constructed Analogs: 

Historical observations are 

used as an analog for model-

simulated climate; a spatial 

matching scheme is used to 

select an appropriate analog 

days from observations and 

replace the GCM-simulated 

day with its climate 

LOCA (localized 

constructed 

analogs) dataset 

CONUS (1/16 

degrees) 

Daily 

1950-2100 

Maximum, minimum 

temperature; 

precipitation 

     

Weather Generator:g 

Monthly GCM data is bias-

corrected using linear 

regression, then a stochastic 

weather generator is used to 

produce daily output 

SDSM (statistical 

downscaling model) 

available as 

personal computer 

software 

Global 

(individual 

weather 

stations) 

Daily 

 

Maximum, minimum 

temperature; 

precipitation 

     

Canonical Correlation 

Analysis:g Corrects GCM 

output using a statistical 

model that quantifies the 

relationships between two 

multivariate sets of variables 

including both upper-air and 

surface 

ESD4ALL model 

(empirical statistical 

downscaling for all) 

available as R code 

Global 

(individual 

weather 

stations) 

Daily 

 

Maximum, minimum 

temperature; 

precipitation 

 
a This table summarizes several of the commonly used statistical methods that have been used to develop 

high-resolution climate projections for the United States, in approximate order of complexity from simple to 

more complex. For each method, the table also provides an example of a dataset or a readily accessible 

software package or model description that uses that statistical method or approach. This list is not 

comprehensive; it is simply intended to illustrate the range of available information. 

 
b Sources: WorldCLIM—WorldCLIM (undated); MBC and NBC—Sachindra et al. (2014); BCSD— 

Reclamation et al. (2014); ARRM—USGS (undated); LOCA—Pierce (undated); SDSM— 

(www.sdsm.org.uk); ESD4ALL—inside-R (2016). 

 

 

Footnotes continued on next page. 
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TABLE 1  (Cont.) 

 

 
c
 The delta method is the oldest method used to generate higher-resolution information from GCM output. It 

has been in use since the mid-1980s, and it is still in use today. For temperature (mean, maximum, and 

minimum) the difference between the relevant future time period and the current period is calculated and then 

that change is added to observed temperature data. Most often, monthly mean changes are calculated and then 

added to observed data at monthly down to daily timescales. Thus, only the mean change in temperature is 

used and only the mean of the future distribution is changed, not its shape (which may affect the realism of 

the probability of extremes at either tail of the distribution). For precipitation, the change is usually calculated 

as a percentage change in precipitation. The observed precipitation (monthly or daily) is multiplied by the 

ratio of the future precipitation to the current precipitation from the model. If this ratio is used to modify daily 

observed data, several limitations occur. First, the frequency of precipitation is not changed, but the variance 

is (increased if the ratio is greater than 1 and decreased if it is less than 1). An example of application of this 

method is the SNAP (Scenarios Networks for Alaska-Arctic and Planning) dataset 

(https://www.snap.uaf.edu/methods/downscaling). See Mearns et al. (2001) for a more detailed view of the 

delta approach. 

 
d
 A number of statistical downscaling models incorporate bias correction into their framework. Such methods 

first use historical observations to correct the bias in the GCM (or RCM) by empirically mapping the monthly 

distribution of GCM values onto the observed distribution. Spatial disaggregation is then used to achieve finer 

spatial scales. Some examples of the models that belong to this class are bias correction–spatial 

disaggregation (BCSD), monthly bias correction (MBC), nested bias correction (NBC), and kernel density 

distribution mapping. The BCSD model developed by Wood et al. (2002) used monthly averaged GCM 

calculated temperature and precipitation output. The model output is bias corrected using gridded 

observations (e.g., Maurer et al. 2008) that are scaled to the grid size of the model. The bias corrected model 

output is then scaled to the spatial scale of interest, typically the point of observations that are sub-grid scale 

to the model. A final step performs time disaggregation using daily patterns from observational datasets to 

scale the monthly projections. The MBC (Johnson and Sharma 2012) is similar in concept to the BCSD, in 

that the monthly averaged mean and standard deviation of the precipitation from the GCM downscaled to an 

observational location is corrected with observed precipitation. The bias corrections for the future climate are 

assumed to be the same as the past climate for this method (i.e., stationarity is assumed). In addition, the NBC 

(Johnson and Sharma 2012) bias corrects the monthly mean and standard deviations of the downscaled 

precipitation, as well as correcting the autocorrelation lag between the present and the next month and 

correcting an annual precipitation autolag for the present year compared to the next. These methods are 

commonly applied in hydrological assessments (Sachnidra et al. 2014). Some evidence is emerging that the 

stationarity assumption may hold under some conditions in the future (Teutschbein and Seibert 2013). 

 
e Cumulative distribution function (CDF) based approaches attempt to downscale the entire statistical 

distribution of the variable to a local distribution rather than a mean value of a climate variable or its standard 

deviation. The EDQM method uses the difference between the observed CDF and modeled CDF for the 

present to calculate a correction that is applied to modify the projected CDF from a GCM (Li et al. 2012). The 

CDFt method is different in that a weather typing scheme is used to correlate a synoptic-scale CDF with a 

locally observed CDF to obtain a downscaled or transformed CDF. As explained by Michelangeli et al. 

(2009), “the CDFt method assumes that there is a translation available for translating a CDF of a GCM 

variable (e.g., temperature) to a local scale CDF.” KDDM first estimates a PDF of a distribution (e.g., 

temperature from observations and a model) using a non-parametric method and integrates the PDF into the 

CDF. The transfer function is then built using these empirical CDFs (McGinnis et al. 2015). 

 

 

Footnotes continued on next page. 
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TABLE 1  (Cont.) 

 

 
f Parametric quantile mapping is similar to empirical, except that the bias correction is accomplished by 
ranking observed daily and historical model-simulated daily values by month, then fitting a parametric 
equation to their quantile-quantile (q-q) relationship. This approach generalizes the relationship between 
observations and model simulations to an extent that permits the use of daily, rather than monthly, inputs. A 
widely used example of this method is the asynchronous regional regression model (ARRM v1; 
Stoner et al. 2012), which uses piecewise linear regressions to build monthly q-q relationships based on daily 
data; as such, it is expected to better represent the tails of the distribution than approaches based on monthly 
simulations alone. ARRM can be applied to both gridded and individual weather station observations, which 
enables the downscaling of additional variables including maximum, minimum, and daily average humidity 
and solar radiation. 
 
g
 Canonical correlation analysis and the statistical downscaling model (SDSM; Wilby et al. 2002) differ from 

the models described above in that the predictands and predictors are not the same variables. The SDSM uses 
linear multiple regression to relate large-scale upper air variables (e.g., 500 mb heights, humidity, vorticity) to 
the local impact variable of interest (e.g., daily temperature or precipitation, or both). Regression coefficients 
are determined using reanalysis data for the large-scale variables and point observations for the predictands. 
These relationships are then applied to future GCM outputs. These techniques generally reproduce well the 
current point observations, but as with all of the empirical techniques, it is assumed that the relationships 
between the predictors and predictands do not change with climate change. In addition, the explanation of 
variance (for the predictands) is not perfect. Typical R2 values for temperature are about 0.8 and are even less 
for precipitation. 

 

 

    When is an RCM useful? 
 

The utility of running a dynamic downscaling model 

to generate climate projections for decision support 

systems at regional and local scales can be determined 

by asking:  

(1) Do the RCMs reduce the model-observational 

errors (bias) of the projections made by the host 

GCMs at the regional scale?  

(2) Do the RCMs add significant value to the 

projections generated by the GCMs, primarily 

through the addition of previously unresolved 

physical phenomena?  

(3) Does higher grid resolution lead to a better 

outcome in projections (i.e., improve the answers 

to questions 1 and 2)? 

In general, the RCMs have been shown to add value 

compared to the GCM that provided the model 

boundary and initial conditions (Di Luca et al. 2015, 

2016; Wang et al. 2015); they reduce the overall bias 

and are able to simulate physical processes or 

phenomena that might otherwise not be resolved. 

However, this depends on the region being assessed 

and sometimes on the variable being evaluated. A 
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computational burden and expense, necessitating 

carefully designed numerical experiments and 

analyses (see box to the right). 

 

 From a scientific perspective, RCMs are subject to many of the same limitations as 

GCMs. Model structure determines which processes are included in the model and how they are 

modeled. No matter how high the resolution of the regional model, physical processes that are 

unknown or that are incorrectly represented may always need to be addressed. Like GCMs, 

RCMs also require bias correction before using their output in impact assessments. 

 

 RCMs also have their own unique sources of scientific uncertainty. One of the most 

important is their need for boundary conditions. In the case of downscaling, these boundary 

conditions are generated by a GCM. Boundary conditions are imprecise because they cannot be 

applied to every grid cell of the regional model at every time step. Most regional models operate 

at a much higher resolution in both space and time than does a global model. Discovering how to 

“fill in the gaps” in these boundary inputs—and merge them into the regional model without 

making it unstable—is a challenging problem. Recent advances in global climate modeling that 

use continuously variable numerical gridding techniques offer one approach to addressing some 

of the issues related to downscaling from GCMs and resulting error from the model boundaries 

in RCMs. Other approaches—such as a hybrid dynamical-statistical technique that combines the 

advantages of resolving small-scale dynamics of using a dynamical downscaling technique from 

a GCM with the computational advantages of statistical technique—are under development 

(Walton et al. 2015).  

 

 The statistical models used in ESDM generally provide a close match to historical 

conditions, since statistical models are trained from observations. This bias removal is successful 

at the temporal scale of the downscaling—that is, seasonal downscaling removes seasonal biases, 

whereas daily downscaling removes daily biases. In addition, ESDMs are generally cost and time 

efficient (although the computational demand does increase with the complexity of the method). 

Depending on the model used, hundreds of years of climate projections can be statistically 

downscaled using the same computing resources required to run only a few years of an RCM.  

 

 Statistical methods, however, also are limited by observations, in at least four ways. First, 

it is only possible to develop projections for variables that have already been observed for a 

number of years and for the scale at which they were observed. For some regions of the world, 

insufficient data are available to use statistical models for downscaling. Second, statistical 

models cannot be used for important climate variables, such as soil moisture or stream 

temperature, if they are observed infrequently or in a limited number of locations. Third, in 

developing the relationships between large-scale and local climate, statistical methods do not 

typically resolve any of the physical processes responsible for this relationship (although some of 

these relationships may be implied by the predictors chosen from the global model). Statistical 

models are trained to reproduce the net effect of all real-world processes, regardless of what they 

may be. Thus, statistical downscaling models may match high-resolution observations better than 

RCMs, because statistical models are not limited by scientific understanding of the fine-scale 

physical processes that affect climate. For the same reason, however, they also can incorporate 

false signals, like observational error, into the relationship. Last, statistical methods are based on 

more detailed description of these regional 

dependencies is provided in Section 4. 
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the fundamental assumption that the relationship between large-scale climate and local climate 

remains stationary over decades—an assumption that may not always be justified if, for example, 

climate change alters local feedback processes that affect the relationship between local and 

large-scale climate. 
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4  RECOMMENDATIONS/GUIDELINES 

 

 

 Choosing which climate projections or methods to use depends on the question being 

asked. Some studies only seek to understand the sensitivity of a given system or region to a range 

of plausible future changes in mean climate. For these, published climate projections (for 

example, those used in the Third U.S. National Climate Assessments [Melillo et al. 2014] and in 

the atlas of climate projections produced by the IPCC Working Group I [van Oldenborgh et al. 

2013]) or even historical trends can inform adequate estimates of projected changes in regional 

temperature, precipitation, or sea level. Other studies seek to quantify the projected impacts of 

climate change for a given timeframe or range of future scenarios. Many of these require 

quantitative climate projections as inputs, raising questions about model and scenario selection.  

 

 Our strongest recommendation for users who require high-resolution climate information 

is that they work with individuals conversant with the various methods discussed in this 

document. Although we provide general guidance here, users who are unfamiliar with climate 

science should seek out individuals with a level of expertise in the use of future climate 

information from multiple approaches and/or datasets. That being said, this section also provides 

initial guidance to assist in identifying appropriate climate inputs for impact assessments from 

either a research or a decision-making context and interpreting the results. 

 

 Climate Models: In most cases, it is best to use output from multiple GCMs, although 

model output obtained from multiple ensemble simulations generated by a single GCM will also 

cover a substantial uncertainty range, better representing natural variability. Using different 

models with different physical parameterizations can cover a broader range of model uncertainty. 

When selecting GCM outputs individually, it is best to favor those with a long development 

history that are well-documented in the literature. In most cases (a notable exception being the 

Arctic), attempting to identify a subset of “better” models based on their performance over a 

region will not necessarily improve future accuracy. The ability of global models to reproduce 

average temperature or precipitation at the regional scale may have little or nothing to do with 

their ability to simulate a globally averaged climate. Thus, to select a model for a particular 

region, it is necessary to evaluate the GCM’s accuracy in projecting regional-scale changes for 

the region of interest. Although there is no agreed-upon number of acceptable GCMs required 

make up a representative ensemble, using at least a few GCMs from different modeling centers 

with long development histories may be sufficient to encompass the greater part of model-related 

uncertainty.  

 

 Future Scenarios: RCP scenarios form the basis for climate model projections of the 

future. Individual RCP scenarios have no likelihood attached to them. As a result, there is no 

intrinsic reason to expect a midrange scenario to be more probable than a higher or lower one. 

For projections beyond several decades, in most cases it is best to use a range of plausible 

scenarios to reflect the human choices that may lead to different emissions pathways. When 

using statistical downscaling, it is recommended to use output from at least two future scenarios 

spanning a range from higher to lower to capture the uncertainty in how human choices affect 

climate. Dynamic downscaling output is often limited to a higher scenario and should provide 

the upper boundary for making assessments. If more than one scenario is available from dynamic 
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downscaling, it is appropriate to use output corresponding to both a higher and lower scenario. 

Quantifying impacts under a higher scenario provides insight into the impacts that might be 

avoided by reducing emissions, while quantifying impacts under a lower scenario establishes a 

minimum requirement for adaptation, even if such reductions were to occur. 

 

 Downscaling: It is not possible to provide clear recommendations for different 

downscaling methods that are appropriate for all assessment and planning efforts. Different 

methods do produce different high-resolution climate changes (Vavrus and Behnke 2014) and 

new approaches, such as a “perfect model” framework, are advancing the state of the science in 

downscaling inter-comparison and evaluation (Dixon et al. 2016). In general, however, a 

downscaling method should be selected based on its ability to credibly resolve spatial and 

temporal scales relevant to the question at hand. As previously discussed, two broad types of 

downscaling models, dynamical (regional climate) and statistical, represent the state of the 

practice. Both have advantages and limitations that can help in identifying the most appropriate 

method for a given question. For example, for annual or seasonal means, a simple delta ESDM 

approach could be adequate. For annual to monthly values, a monthly ESDM approach such as 

bias correction–spatial disaggregation could be used. For annual to daily values, a daily ESDM 

approach such as an asynchronous regional regression model (available from the U.S. Geological 

Survey [USGS] GeoData Portal [Stoner et al. 2012]) or a RCM (available from the NARCCAP: 

www.narccap.ucar.edu) should be used. Variables that do not have regular historical 

observations or that are highly dynamical in nature (such as wind direction and speed, solar 

radiation, and humidity) should use datasets derived from dynamical downscaling based on 

RCMs. 

 

 Uncertainty: For most questions, it is important to consider and quantify uncertainty in 

future climate projections. Section 2 describes the primary sources of uncertainty in future 

projections. Using an ensemble of model simulations produced from a range of climate models 

driven by different future scenarios and timescales is the most commonly adopted method for 

assessing model uncertainty. Quantification of uncertainty across different climate model 

simulations can be accomplished through various methods, such as simply representing the range 

of the climate change across the models, looking at the results via percentiles of the data 

(e.g., via box plots representing the basic distribution of the results), or producing relatively 

sophisticated probabilistic models from the multiple climate model results (see Tebaldi and 

Knutti 2007). More recently, appreciation has increased for the uncertainty contributed by 

internal variability, which can be represented by different realizations from the same global 

model; however, at this stage, few climate models provide large ensembles representing internal 

variability (see Deser et al. 2012). 

 

 Climate projections from climate models (and resulting impacts) should always be 

grouped separately by future scenario to avoid conflating the uncertainty due to human 

choices—which is not easily quantified, especially in probabilistic terms—with that due to 

model uncertainty. It is also important to recognize that downscaling techniques themselves can 

potentially add to the uncertainty; it has been established that different downscaling techniques 

result in different quantitative details of the climate change (e.g., Wilby et al. 1999; 

Mearns et al. 1999; Vavrus and Behnke 2014). It is not often, however, that multiple means of 

downscaling are produced, compared, and combined with the uncertainties from the global 
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models. Often the multiple uncertainties in the future climate are used as input to impacts 

models, and then the effect of the uncertainty from the climate on the impacts is analyzed and 

quantified (e.g., Katz 2002). The impact or process models themselves, as alluded to previously, 

also contribute to the combined uncertainty of model output, often significantly. Moreover, the 

temporal and spatial resolution requirements of such models may often exceed what can be 

provided by downscaled data products. 

 

 

4.1  RECOMMENDED APPROACH 

 

 We cannot recommend a single approach even for the simplest of applications. It is 

feasible, however, to construct a set of options that could be desirable given the current state of 

knowledge. The authors who produced this document acknowledge that the development of 

recommendations should be an ongoing activity, and papers such as this one should be treated as 

living documents in need of frequent updating. There is a paucity of specific research or 

guidance documents on how and when to use different types of high-resolution information on 

climate. The IPCC Task Group on Data and Scenario Support for Impacts and Climate Analysis 

(TGICA) has provided some recommendations in various guidance documents over time, 

including one for use of RCM results (Mearns et al. 2003) and for statistical downscaling (Wilby 

et al. 2004). Ekstrom et al. (2015) provides more recent guidelines and emphasizes the concepts 

of climate realism (model skill) and physical plausibility of change in considering the use of 

different methods. They pose a series of questions about the nature of the planned use of the 

climate information that overlaps with many of our discussions in this document. However, they 

avoid providing overly detailed recommendations, as do we. Our recommendations are based on, 

first, identifying a set of criteria that can be used to broadly classify the problems a user would 

encounter; and next, for each of these criteria, addressing the suitability of using a particular 

method or an appropriate set of methods. The color-coding in Table 3 should be considered a 

qualitative ranking and an expert judgment based on our collective knowledge. The following 

section uses illustrative examples to assist in the interpretation of information in Table 3. 

 

 

4.2  ILLUSTRATIVE EXAMPLES OF IMPACT AREAS IMPORTANT TO THE 

U.S. DEPARTMENT OF DEFENSE  

 

 A complete description of the many ways in which climate projections can be utilized to 

quantify future impacts is beyond the scope of this section. Instead, we provide some examples 

of impacts sectors of concern to DoD, for which climate projections would be feasible and 

developing assessments and adaptation plans would be desirable. 

 

 

4.2.1  Human Health 

 

 Human health, which is affected by heat stress, is important to the military for performing 

work and exercise outdoors. Wet bulb globe temperature (WBGT)—which combines the effects 

of temperature, humidity, solar radiation, and winds—is used to measure different variables that 

affect heat stress levels (Yaglou and Menard 1957; Budd 2008). A system of specific work-rest  
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TABLE 3  Evaluation of Available Downscaling Models and Output and Their Limitations 

 

 

Empirical Statistical Downscaled Datasets   

Descriptions GCMs 

Delta 

 Correction 

 

Empirical 

Quantile 

Mapping 

Bias 

Correction 

Parametric Quantile 

Mapping 

Weather 

Generator 

Constructed 

Analogues KDDM NARCCAP CORDEX 

RCM 

Dataset: 

SERDP 

                      

Model Names Many Delta BCSD, EDQM 

CDFt 

MBC ARRM V1 SDSM CR, LOCA KDDM Multiple 

Models 

 Multiple 

Models 

WRF V3.2 

Source CMIP3/5 Hijmens Maurer/Wood   Stoner/Hayhoe Wilby Hidalgo McGiniss Mearns Gutowski 

Mearns   

Kotamarthi  

Computer Storage Format NetCDF 

Output 

NetCDF Output NetCDF Output   NetCDF Output PC Code     NetCDF 

Output 

Netcdf 

Output 

Netcdf 

Output  

Temporal Res [IN] Daily Monthly Monthly Monthly Daily Monthly Daily Daily 3 hours/ 

6 hours 

3 hours 3hours 

Temporal Res [OUT] Daily Monthly Daily Monthly Daily Daily Daily Daily daily  3 hours  3hours  

Spatial Resolution 1 degree to 

2.5 degrees 

Grid:  

30 sec. to 10 min. 

Grid: 1/8 degree Same as obs. Grid: 1/8 degree and 

individual stations 

Individual 

stations 

Grid: 

1/8 degree 

NARCCAP 

grid 

Grid: 50 km Grid: 

25 km 

Grid: 12 km 

Output Variables Many T(avg) T(max) T(max) T(max) T(max) T(max) T(max) 53  66 80 

    Pr T(min) T(min) T(min) T(min) T(min) T(min)       

      Pr Pr Pr Pr Pr Pr       

          RH (max/min)            

Applications                      

Can I use the absolute 

values that come from these 

sources, or do they have to 

be bias-corrected?               

 

      

            

Is this method/data 

adequate for...              

 

      

 Annual and seasonal 

mean temperature and/or 

precipitation? 

 

 

 

 

             

 

      

 Annual temperature and 

precipitation extremes?               

 

      

 Daily mean precipitation            

 Decadal temperature and 

precipitation extremes? 

 Daily temperature and 

precip extremes               

 

      

 Hurricanes, winter 

storms, and other types 

of large-scale extreme 

weather events?               
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flag days has been established (white, green, yellow, red, and black) with activity restrictions 

progressively increasing, based on different values of WBGT. On black flag days (WBGT > 

90°F) all outdoor activity must cease. Whereas temperature, humidity, and solar radiation can be 

calculated by some statistical models for airport weather stations with long-term observations of 

these variables, incorporating changes in wind speed would require output from a RCM.  

 

 

4.2.2  Hydrology 

 

 Hydrology related to military installations involves water resource availability, surface 

runoff, groundwater, lake levels, and the maintenance of wetlands. Climate impacts on water 

resources often may be studied using high-resolution projections as input to water resource 

models. At minimum, these models require information about current and future temperature and 

precipitation on differing timescales, which can be obtained from a broad range of statistical 

downscaling models. Additional variables may include solar radiation, wind, and humidity, 

many of which would require RCM simulations. 

 

 

4.2.3  Ecology 

 

 Climate change impacts on high-impact ecological systems and services relevant to the 

DoD include coastal inundation, flooding, and wildfires (Grimm et al. 2013). These and other 

ongoing changes in climate are expected to influence the spatial ranges occupied by species, 

phenology shifts, and composition of the species in an ecosystem. Temporal changes in the 

climate, such as the onset of winter and diurnal cycle of temperature and precipitation intensity 

also are expected to affect species and ecological processes. To assess the impact of these 

climate changes on ecosystems requires temperature maxima and minima, diurnal temperature 

profiles, shifts in seasonal cycles, precipitation intensity and frequency changes, and estimates of 

the risk of wildfires and coastal flooding. Some of these variables are available directly from 

downscaling models, and others can be derived using model output (e.g., potential for wildfires).  

 

 

4.2.4  Built Infrastructure 

 

 Infrastructure will be affected by a number of different weather and climate phenomena, 

including flooding due to high precipitation and, in the case of coastal locations, storm surges; 

extreme storms (e.g., hurricanes); extreme winds (from, e.g., tornadoes and other extreme 

storms); high temperatures that can warp rails, melt asphalt, and limit airplane take-offs; and 

heating and cooling degree-days affecting energy demand. The latter can be calculated from 

maximum and minimum daily temperatures. However, data on changes in severe storms 

(including hurricanes) are difficult to retrieve from most climate model output and often require 

specialized higher-resolution RCM simulations that incorporate storm surge models to obtain 

robust estimates of storm surge heights.  
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4.2.5  Available Climate Data for DoD Needs and Their Limitations 

 

 Table 3 provides a snapshot of the available data products and some of their limitations 

as of the writing of this report. The availability of climate model output at high-spatial and high-

timescale resolution is rapidly improving; this information should be updated as needed. The 

information in Table 3 primarily refers to the needs of the high-resolution climate model output 

user discussed earlier; other users may find the limitations discussed here restrictive or irrelevant.  

 

 Each column in Table 3 columns summarizes some of the widely—and primarily 

freely—available datasets based on GCM output, empirical downscaling methods, and dynamic 

downscaling. A few are still in development (e.g., NA-CORDEX) and hence are missing some 

details. Of note is the first column, which describes the most widely available repositories of 

GCM output generated for the last two IPCC Assessment reports, CMIP3 and CMIP5. Other 

than the differences in the design of the numerical experiments that generated the dataset for 

CMIP3 and CMIP5 and the number of models included in each repository, the primary 

difference between CMIP3 and CMIP5 is in the future scenarios used. CMIP3 simulations 

are based on the emission scenarios developed in the 1990s, referred to as SRESs 

(Nakicenovic et al. 2000). CMIP5 simulations are based on the RCP scenarios described in 

Section 2.1.1.  

 

 The third through seventh columns of Table 3 list datasets generated by various empirical 

downscaling methods that are widely used by the climate impact community. Some are available 

as a data product from either the developer or from a data server (e.g., WorldClim); others are 

software packages that require the user to perform the calculations to generate the required 

output (e.g., CDFt [Vrac and Michelangeli 2012]). The tenth through twelfth columns list 

available or soon-to-be-available high-spatial-resolution dynamically downscaled output. 

NARCCAP was produced using one SRES A2 scenario, and 50-km resolution and is widely 

used. CORDEX is a planned successor to NARCCAP; its spatial resolution varies from 50 to 

25 to 10 km, and is currently a work in progress. The SERDP downscaling product is available at 

12-km spatial resolution using two RCP scenarios. Some details of the type of technique, output 

formats, and time and spatial resolutions are listed in the top half of Table 3. It is always best to 

refer to the original data source to confirm details and obtain further details; many of these 

datasets are frequently updated and modified.  

 

 In the second half of Table 3, we attempt to provide some preliminary guidelines for the 

application of these datasets to answer a particular question. The first row describes the further 

processing of the data that may be necessary before it will be suitable for use in an application. 

The most significant of these adjustments is adjusting the data to account for calculated 

differences between the model output and historical weather datasets (referred to as bias in the 

downscaling community). Most empirical downscaling method (EDM) output is bias corrected 

and is ready to use. RCM-generated output is most often not bias corrected and thus a correction 

may be necessary before the output can be used. NARCCAP temperature and precipitation data 

soon will be bias corrected using the KDDM approach and will be available at the NARCCAP 

website. Some effort will be required to collect climate data for a particular installation or region 

and to calculate the model bias from historical simulations performed by the model, which are 

generally included in these databases. Some recent RCM output uses bias correction a priori for 
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projections and may not need this adjustment; as before, please refer to the model data repository 

website for further clarification. The next three rows show the appropriateness of using a 

selected model output to obtain a selected climate variable or statistics. The appropriateness is 

color-coded; warm colors (red, yellow) are used to represent caution and green is used to express 

suitability of the model. This classification is based on the current state of knowledge and is 

qualitative in scope. We expect this to be a dynamic process, so the color assigned to a particular 

model/model output could change in the future. For example, the availability in the next decade 

or so of GCMs with spatial resolution of ~25 km could conceivably fill many of the needs listed 

here without the need for further downscaling.  

 

 

4.3  REGIONAL DESCRIPTIONS OF CLIMATE AND CLIMATE MODELING 

CONSIDERATIONS 

 

 Each geographic region of the United States has its own unique climate characteristics 

that are determined by factors such as latitude, proximity to bodies of water, presence of 

complex terrain, and global atmospheric circulation patterns. Regional climate concerns are 

highly dependent on time of year because the nature of weather phenomena varies during the 

different seasons. Figure 7 shows the scales of atmospheric motion in relation to predominant 

weather phenomena. The main meteorological scales interest of in assessing regional weather 

and climate-related impacts in the United States are the synoptic scale (100 to 2,000 km) and the 

mesoscale (1 to 100 km). The mesoscale may be further subdivided into the course mesoscale 

(10 to100 km) and the fine mesoscale (1 to10 km), as indicated in Figure 7. For example, 

precipitation during the winter in the CONUS is mostly due to midlatitude cyclones on the 

synoptic scale, on the order of a 1,000 km in size. By contrast, precipitation during the summer 

occurs mostly in the form of smaller, more localized convective thunderstorms on the mesoscale. 

Spring and fall are transition periods when thunderstorms occur in association with midlatitude 

cyclones. 

 

 A very first important step to inform what type of downscaling tool is most appropriate 

for a particular place is to identify the specific meteorological phenomena that are most relevant 

to weather- and climate-related impacts. The relative importance of the physical representation 

of meteorology and climate in that place maybe important considerations in this endeavor. 

Dynamical downscaling is generally preferable if the underlying meteorological phenomena that 

drive climate-related impacts of interest occur on the mesoscale and if there is specific need to 

characterize precipitation extremes or other types of variables related to severe weather 

(e.g., wind gusts, flash flooding). Precipitation extremes associated with the most severe weather 

require atmospheric modeling on spatial scales on the order of a kilometer to explicitly represent 

thunderstorm-scale dynamics. At present, dynamical downscaling applications at this 

“convective-permitting” scale for climate impact assessment are mostly in the experimental 

research phase. However, it is possible to consider changes in the atmospheric environmental 

conditions in terms of thermodynamics and dynamics, to derive that from coarser-resolution 

model information, and to use this information to infer how severe weather phenomena will 

change (e.g., Trapp et al. 2007).  
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 Evaluation of GCM outputs 

and downscaled projections 

provides some insights into the 

performance of these models over 

specific regions of the country 

(Mearns et al. 2012; 

Loikith et al. 2015; Pryor and 

Barthelmie 2013; Wang and 

Kotamarthi 2015). Generally 

speaking, coarse-grid GCMs 

generally underperform in 

simulating historical climate over 

highly variable terrain. Similarly, 

EDM underperforms over coastal 

regions, and RCMs underperform 

over the southwestern United 

States. As these model biases are 

identified, physics-based models 

(GCMs and RCMs) implement new 

parameterizations that improve the 

model performances when the bias can be attributed to a particular physical phenomenon in the 

model (see Figure 8 in Wang and Kotamarthi 2014). Some other biases related to spatial 

resolution (e.g., terrain and coastal regions) can be reduced by using models at higher spatial 

resolutions (e.g., Di Luca et al. 2012; Wang and Kotamarthi 2014; Wang et al. 2015). 

 

 Given the complexity of climate phenomena experienced over various parts of the United 

States, it would be difficult to come up with a set of recommendations that are region specific. 

Instead, in Table 4 we highlight aspects that may be useful to the reader and present a possible 

method for selecting models and model outputs based on the geography of the region of interest, 

in reference to meteorological scales in motion in Figure 7.  

 

 Table 4 describes the recommended use of downscaled model products for regions with 

specific geographic features. This table is not designed to specify which would be a “better” or 

“best” product to use, but rather to suggest the suitability of using a particular downscaled 

product as a function of meteorological scales of motion. 

 

 

  

 

FIGURE 7  Scales of Atmospheric Motion in Reference to 

Meteorological Phenomena. Source: Bolhun (2016) . 



 

36 
 

TABLE 4  Recommendation Table on the Use of Climate Datasets based on Regional Featuresa 

Scale 
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Global scale: ~3,000 km or more, 

weeks to months (general circulation 

structure, jet stream position) 

         

Synoptic scale: 100–3,000 km, 

days to weeks (highs and lows, 

midlatitude cyclones, monsoons, 

atmospheric teleconnections) 

         

Course mesoscale-α, β:  

10–100 km, hours to days 

(katabatic winds, weather fronts, 

mesoscale convective systems, 

tropical cyclones, sea breeze 

circulations) 

         

Fine mesoscale-γ: 1–10 km, hours 

to minutes 

(supercell thunderstorms, tornadoes, 

gust fronts, air mass thunderstorms, 

mountain-valley winds, mountain 

snowfall) 

         

 
a In reference to meteorological scales of motion and phenomena in Figure 7. 

 

 

4.3.1  Technical Terminology in Reference to Regional Climate Descriptions 

 

 The following technical meteorological and climate terms are relevant to one or more 

region discussed in the following sections. All terms are italicized where they occur in the 

regional descriptions: 

 

• Air mass thunderstorm: Localized area of convective precipitation on the 

mesoscale. Develops with differential heating of land surface, for example due 

to the presence of mountains.    

 

• Arctic outbreak: Onset of extremely cold temperatures, typically below 0°F. 

Occurs as an air mass from the polar region moves into the midlatitudes 

during the winter. May last several days to a week or more. 

 

• Atmospheric rivers: Long streams of moisture in the lowest levels of the 

atmosphere that originate directly from the tropics and subtropics. Typically 

occur in association with extreme precipitation events, particularly on the west 

coast of the United States. 
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• Atlantic Multidecadal Oscillation (AMO): Decadal variability in sea surface 

temperatures and climate patterns in the Atlantic basin. 

 

• El Niño Southern Oscillation (ENSO): Periodic warming of sea surface 

temperatures in the eastern tropical Pacific Ocean. Causes shifts in tropical 

rainfall across the entire Pacific basin and changes in atmospheric circulation 

patterns in the midlatitudes of both hemispheres.   

 

• Gust front: Gust of wind that defines the leading edge of an outflow boundary 

of a thunderstorm. 

 

• Katabatic winds: Downslope winds from mountains ranges or high plateaus. 

 

• Lake effect snow: Narrow line of snowfall that occurs downwind of the Great 

Lakes, due to evaporation of warm water from the lake into a cold, dry 

airmass and formation of clouds as air rises and cools downwind of the lakes. 

 

• Madden Julian Oscillation: Large eastward-propagating area of both intense 

and suppressed tropical rainfall that occurs in the Indian and Pacific Oceans 

and varies on a timescale of 60 to 90 days. 

 

• Mesoscale convective system: Organized, isolated convective weather system 

that occurs during the warm season on the spatial scale of 10–100 km. 

Characterized by heavy precipitation and strong winds in its leading 

convective line lasting on the order of tens of minutes and followed by a 

period of relatively lighter precipitation lasting approximately several hours.  

 

• Microburst: Sudden gust of wind due to a thunderstorm downdraft. Lasts on 

the order of minutes. 

 

• Midlatitude cyclone: Synoptic-scale weather system that occurs in the 

midlatitudes, associated with fronts that define sharp spatial changes in 

temperature, moisture, winds, and precipitation. Typically has a lifetime of 

several days to a week. 

 

• Monsoon: Regularly occurring wet period during the middle to latter part of 

the summer, with the majority of precipitation occurring due to thunderstorms.   

 

• Squall line: Narrow band of heavy, convective precipitation and strong winds 

that typically occurs in association with the passage of cold front. 

 

• Straight-line winds: Very strong winds (possibly exceeding hurricane force) 

that occur with the gust front of a squall line or mesoscale convective system. 
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• Supercell thunderstorm: Compact, rotating thunderstorm with a spatial scale 

of 1–10 km. Has a prolonged updraft that may result in hail or tornadoes. May 

last as long as several hours.   

 

• Tropical cyclone: Very intense storm that forms over warm water, associated 

with extremely low pressure. Heavy rainfall occurs in bands around the core, 

or “eye,” of the storm. The most well-developed tropical cyclones with 

sustained winds exceeding 75 mph are referred to as hurricanes in the Atlantic 

Ocean, typhoons in the North Pacific Ocean, and cyclones in the South Pacific 

Ocean. 

 

• Tropical easterly wave: Low-pressure trough that travels in an easterly 

direction in the tropics, associated with cloudiness and convective 

precipitation.  

 

• Warm sector: In the structure of a midlatitude cyclone, the area ahead of cold 

front and behind a warm front. Convective thunderstorms in association with 

midlatitude cyclones are favored to occur in this sector. 

 

 

4.3.2  Southwest, Including Coastal Southern California 

 

 Most of the Southwest United States experiences two seasonal maxima in precipitation. 

The cool season precipitation maximum comes from midlatitude cyclones that travel west from 

the Pacific Ocean. These produce regionally widespread precipitation, including snowfall in 

mountain ranges. The strongest winter precipitation events may tap atmospheric rivers from the 

subtropical Pacific Ocean. The hottest and driest time of year occurs in late spring to early 

summer (May through June), before the onset of the North American monsoon. During the time 

preceding the monsoon, the subtropical ridge that occurs directly over the region brings 

heatwaves that may exceed 110°F. During the North American monsoon in late summer (July 

through August), air-mass thunderstorms form in conjunction with the diurnal cycle of heating 

of the terrain. These may occasionally organize into squall lines and mesoscale convective 

systems on the most active convective days; these bring a greater proportion of precipitation to 

locations at relatively greater distance from mountain ranges (e.g., cities like Phoenix and Las 

Vegas). Monsoon severe weather dangers include heavy rain, flash flooding, microbursts, 

lightning, dust storms (haboobs), and hail. Lightning may also trigger wildfires, especially during 

the initiation phase of the monsoon. Although tropical cyclones do not impact the Southwest 

United States directly, on occasion the remnant lows of tropical cyclones that originate in the 

eastern tropical Pacific may cause widespread, heavy precipitation between late summer and 

early fall (August through October).  

 

 Of these phenomena, a model’s fidelity in reproducing monsoons is the most important 

factor in assessing the type of model dataset to use. ESDMs that are designed to produce daily 

output and use quantile mapping or constructed analogs for temperature and precipitation to the 

GCM output produce a dataset that is more representative for the region. RCM outputs also have 

less bias in simulating the precipitation over this region as compared to GCMs (e.g., Figure 2 in 
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Liang et al. 2006; Figure 4 in Kawazoe and Gutowski 2013; Wang and Kotamarthi 2015). 

Simple ESDMs such as delta, MBC, BCSD, SDSM, and EDQM may not be suitable for 

application over this region. In some instances, the assistance of an expert on climate in this 

region may be necessary to choose an appropriate dataset.  

 

 

4.3.3  Great Plains 

 

 Midlatitude cyclones are the predominant weather phenomenon in the Great Plains during 

winter, producing regionally widespread precipitation including rain, snow, and ice storms. 

Blizzards are a particular danger because they produce high winds on the relatively flat terrain of 

the Great Plains. The most extreme cold occurs during Arctic outbreaks, when temperatures may 

fall well below 0°F. Severe weather associated with convection occurs during the transition 

seasons of fall and spring within the warm sector of maturing midlatitude cyclones. A unique 

combination of cold, dry air from Canada; warm, dry air from the Mexican Plateau; and warm, 

moist air from the Gulf of Mexico creates an atmospheric environment suitable for the 

development of squall lines and supercell thunderstorms. Late spring (April through May) is the 

time of year with maximum precipitation and danger from severe thunderstorms in the central 

Great Plains (Oklahoma, Kansas, Nebraska). The affected area shifts toward the northern Great 

Plains (South Dakota, North Dakota) in June and July. Particular dangers include strong 

tornadoes (Enhanced Fujita Scale [EF] level 3 and above), flash flooding, and hail. During 

summer, most precipitation occurs as a result of mesoscale convective systems. Although these 

systems typically are not associated with tornadoes, they can produce similarly damaging 

straight-line winds and heavy precipitation. The hottest and driest time of the year, and the time 

most likely to experience heatwaves exceeding 100°F, is typically mid- to late summer when the 

subtropical ridge is most likely to be directly overhead.  

 

 The Great Plains experience a wide variety of weather conditions and most models have 

difficulty reproducing mesoscale convective systems. Analysis of the GCMs participating in 

CMIP5 indicates that the models in general have a dry bias over this region for both summer and 

winter (Sheffield et al. 2013). Outputs from RCMs tend to have higher bias than GCMs over this 

region; as a result, some caution should be exercised in using these model outputs over this 

region, especially when the model representation of the clouds is based on parameterizations 

developed using observations, which is usually above 4-km grid resolution in RCMs. Sensitivity 

tests using 4 km with convective parameterization turned off show that the bias in precipitation 

can be reduced (Wang and Kotamarthi 2014). As shown in Tables 2 and 3, bias correction 

methods are employed by EDSMs to generate projected datasets over this region and generally 

provide reasonable results for the future projections. RCM output may need to be bias corrected 

before use in an application for a future time period.  

 

 

4.3.4  Midwest 

 

 Midlatitude cyclones are the predominant factor in Midwestern weather. Similar to those 

in the Great Plains, these cyclones cause regionally widespread precipitation—mostly during 

fall, winter, and spring—including snow and ice storms. Arctic outbreaks with extremely cold 
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temperatures below 0°F are possible during the winter. Localized lake-effect snowfall may occur 

downwind of the Great Lakes (specifically Lake Superior, Lake Michigan, and Lake Erie) in 

conjunction with cold air outbreaks. The areas most influenced by these three lakes are on the 

northern side of Michigan’s Upper Peninsula, on the western side of Michigan’s Lower 

Peninsula, in northeastern Ohio, and in western Pennsylvania. Although thunderstorms in the 

Midwest tend not to be as severe as those in the Great Plains, more organized convection in the 

form of squall lines, supercell thunderstorms, and mesoscale convective systems can occur any 

time from late spring to early fall. Severe weather dangers associated with thunderstorms include 

flash flooding, tornadoes (although these typically are not as severe as those in the Great Plains), 

hail, lightning, and straight-line winds. Heatwaves exceeding 100°F can occur in mid- to late 

summer when the subtropical ridge is directly overhead.  

 

 GCM and RCM simulations have a fairly low bias over this region, although they do tend 

to have a dry bias over a region that includes the Great Plains and some of the Midwest 

(Sheffield et al. 2013). The eastern half of the Midwest generally shows a small wet bias in the 

winter and a dry bias in the summer in the CMIP5 models. RCMs tend to amplify these trends 

more than GCMs do. ESDM methods that employ bias corrections perform reasonably well over 

this region, as do more advanced EDSMs such as parametric quantile methods. No systematic 

evaluation of EDSM and RCM downscaling results have been performed for this region. 

Although the EDSM methods can provide a large ensemble of projections quickly, RCMs are 

necessary to provide climate variables beyond daily average temperature and precipitation and 

are often the only methods that provide enough data to understand precipitation and temperature 

extremes.  

 

 

4.3.5  Northeast 

 

 Midlatitude cyclones are also predominant in the weather of the Northeast. These cause 

regionally widespread precipitation, mostly during fall, winter, and spring. A particular type of 

midlatitude cyclone in this region is the Nor’easter, in which an area of surface low pressure 

travels parallel to the coastline. This type of storm system produces widespread, heavy snow 

and/or possibly ice in the form of sleet and freezing rain, to the north and east of the surface low 

center. These midlatitude cyclones tend to be the strongest in the CONUS because they draw 

energy from the warm waters of the Gulf Stream off the East Coast. Arctic outbreaks with 

temperatures below 0°F occur during winter, often in association with Nor’easter events. 

Localized lake-effect snowfall may occur downwind of the Great Lakes (specifically Lake Erie 

and Lake Ontario) in conjunction with Arctic outbreaks. The most area most climatologically 

impacted by the lake is the western part of New York State in the vicinity of Buffalo, directly 

east of Lake Ontario. From spring to fall, most severe convective weather results from squall 

lines that form ahead of cold fronts. Although supercell thunderstorms and mesoscale convective 

systems can occur, these are typically weaker than those in the Great Plains and the Midwest. 

This results in comparatively less danger of strong tornadoes and straight-line winds. Heatwaves 

exceeding 100°F can occur in mid- to late summer, when the subtropical ridge is directly 

overhead. Tropical cyclones that originate in the Atlantic Ocean may affect the Northeast 

anytime during the tropical cyclone season (June through November). Although tropical 

cyclones that affect the Northeast are usually not classified as strong hurricanes (Category 3 and 
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above on the Saffir-Simpson scale), they can still be quite damaging if they are relatively slow 

moving, as Hurricane Sandy was. Coastal cities in the Northeast, especially New York City, are 

particularly vulnerable to storm surges from midlatitude cyclones such as Nor’easters and from 

tropical cyclones. 

 

 Analysis of the GCMs participating in the CMIP5 that includes Northeast, much of the 

Midwest, and the Southeast indicates that the models in general have a small dry bias over this 

region during winter, and small wet bias during summer (Sheffield et al. 2013). Surface 

temperature trends show a slight warm bias in both winter and summer. RCM results follow 

these trends and, as we indicate in Table 4, most datasets are appropriate after making necessary 

bias corrections. 

 

 

4.3.6  Southeast and Gulf Coast 

 

 During the fall, winter, and spring, midlatitude cyclones are the predominant factor in 

weather in the southeastern United States. Depending on the location of a given event, various 

types of precipitation are possible, including widespread rain or frozen precipitation (snow, sleet, 

and freezing rain) and convective thunderstorms. Thunderstorms in the Southeast may include all 

forms of organized convection, squall lines, supercell thunderstorms, and mesoscale convective 

systems, and can produce dangerous heavy rain, flash flooding, hail, strong tornadoes, straight-

line winds, and lightning. These dangers are maximized in mid- to late spring (March–April), 

prior to the season of most severe weather in the Great Plains. Compared to other regions in the 

eastern and central United States, the absolute amount of precipitation in the Southeast tends to 

be higher because more moisture is transported from the surrounding warm Atlantic Ocean and 

Gulf of Mexico. Heatwaves, during which temperatures may exceed 100°F for days, are possible 

anytime during the summer. Because of the relatively high humidity in the Southeast, measures 

of heat that account for the presence of atmospheric moisture (e.g., heat index) are more accurate 

than those based on temperature alone, in terms of quantifying their impact on human health and 

comfort. Of any region in the contiguous United States, the Southeast is most susceptible to the 

direct impacts of tropical cyclones, which can make direct landfalls along the entire length of the 

coastline from the Gulf Coast to the Eastern Seaboard. These tropical cyclones can be strong 

hurricanes (Saffir-Simpson scale of 3 and above), with attendant storm surge along the coast, 

strong winds, and heavy rainfall. Low-lying coastal cities in the Southeast are particularly 

vulnerable to tropical cyclones. New Orleans is probably the most vulnerable of all because of its 

low elevation and close proximity to multiple bodies of water that can inundate the city with 

storm surge, as illustrated by Hurricane Katrina in 2005. 

 

 RCM outputs do not have a definite bias toward either cold or warm temperatures over 

this region (Wang and Kotamarthi 2015); NARCCAP output has a cold bias for all the seasons 

and a higher spatial resolution simulation has a slight warm bias over this region. Precipitation is 

biased toward dry for all seasons from the RCMs. As we indicate in Table 4, most outputs are 

appropriate and a bias correction should be applied for temperature for further use in 

assessments. This region experiences severe weather from hurricanes, thunderstorms, and 

extreme heatwaves. The models (GCMs and RCMs) predict increasing storm intensity and more 

extensive heat waves. The incidence of hurricanes is also expected to increase. A limited number 
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of high-resolution GCMs (with 50 km or less grid resolution) in the CMIP5 repository can be 

used to estimate changes in hurricane frequency in the future for this region. Most RCM 

simulations do not cover the Atlantic and hence cannot provide any additional information 

beyond that available in the GCMs. EDSM methods are useful for evaluating mean trends over 

this region and do not have any particular skill beyond that of the GCM used for downscaling for 

extreme weather.   

 

 

4.3.7  Mountain West 

 

 The climate of the Mountain West is heavily influenced by the presence of complex 

topography over a relatively large geographic area. The meteorological processes that lead to 

precipitation and severe weather are more terrain dependent than in other regions in the United 

States. During winter, precipitation is mostly associated with midlatitude cyclones. Mountain 

snowfall is caused principally by orographic lift in upslope flow, which cools the air to form 

clouds and precipitation. Downslope drainage flows and radiative cooling in high mountain 

valleys cause extreme low temperatures in winter, well below 0°F. Downslope katabatic 

winds—chinooks and boras—particularly on the east side of the Rockies, are prevalent during 

fall, winter, and spring. Winds during downslope windstorms can be quite severe, on rare 

occasions reaching hurricane force. During the period of the North American monsoon in late 

summer (July–September), similar to the Southwest, air-mass thunderstorms can form in 

association with the diurnal heating of the terrain and associated mountain-valley winds. 

Although these air-mass monsoon thunderstorms typically do not organize and are relatively 

localized to the areas where they develop, they present two unique dangers: (1) lightning and 

microbursts, the first of which may trigger wildfire and second of which may help spread it; and 

(2) heavy precipitation in steep terrain, which leads to severe flash flooding. 

 

 As expected, the primary driver of observed climate features over this region is the 

terrain. Higher-resolution RCM output would be the most appropriate to use. 

 

 

4.3.8  Northwest/Pacific Coast 

 

 This area encompasses the Pacific coastal areas of Washington, Oregon, and northern 

California. A continental maritime climate, this region is one of the wettest in the United States. 

It experiences the majority of its precipitation in fall, winter, and spring in association with 

midlatitude cyclones from the Pacific Ocean. Pacific midlatitude cyclones cause widespread, 

steady precipitation when they occur. Severe weather associated with convective thunderstorms 

is a relatively rare occurrence, compared to other regions of the United States. Orographic lifting 

of air on the westward slope of the Cascade Range (Washington and Oregon) and the Sierra 

Nevadas (California) produces large amounts of snowfall in the mountains. The climate on the 

eastern, lee side of these mountain ranges tends to be much drier due to rain shadowing effects. 

The heaviest precipitation and most severe weather occurs when Pacific midlatitude cyclones 

access atmospheric rivers. During strong atmospheric river events along the Pacific coast, local 

precipitation typically is on the order of several inches of rain or more. Heavy precipitation can 

cause regionally widespread flooding and mudslides in steep terrain. The summer is typically the 
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hottest and driest time of the year, as the North American monsoon does not extend this far 

north. Heatwaves may occur with temperatures exceeding 100°F, especially in interior areas like 

the Central Valley of California that are well inland from the Pacific Coast.  

 

 This region’s climate is dominated by both the influence of the ocean and complex 

terrain. RCM output will be appropriate for use in this region. One study of the CMIP5 model 

ensemble for the Pacific Northwest shows that the models in general produce all the observed 

features of climate over this region for the 20th century, with highest confidence in mean 

temperature and temperature-related statistics, and lower confidence in precipitation and 

precipitation-related statistics (Rupp et al. 2013). Similar biases can be expected to be present in 

the RCM output.  

 

 

4.3.9  Pacific Islands Region 

 

 U.S. Pacific Island territories and military facilities are scattered throughout the Pacific 

Ocean. Because the weather and climate conditions of a particular island or archipelago depend 

largely on its geographic position within the ocean basin, sub-regions are considered separately, 

as described in the following sections. By far the greatest threat to small islands is sea-level rise 

(Nurse et al. 2014). Nurse et al. (2014) also recognized that the risks from climate change as they 

relate to small islands are not uniform for all the islands, and most of the risks arise from global 

changes and are not dependent on local changes. Here we focus on some of the specific weather 

phenomena that are more regional and global in scope and that have influence on small islands. 

The section concludes with a general overview of the applicability of high-resolution climate 

information to mid-ocean islands in general. 

 

 

4.3.9.1  Hawaiian Islands and Midway Islands 

 

 These islands are situated in the central North Pacific in a zone of northeasterly trade 

winds. Little variation in temperature occurs throughout the year, and there is little year-to-year 

variability. Daily highs in coastal areas are in the range of 70 to 90°F and lows are in the range of 

50 to 60°F. The largest Hawaiian Islands (Kauai, Oahu, Maui, and Hawaii) have distinct 

microclimates that occur due to the trade wind regime. In general, the northeastern or windward 

sides of the islands experience the greatest amount of precipitation and are densely vegetated 

with rainforests, whereas the southeastern, leeward sides experience the least precipitation and 

have more desert-like landscapes. The tops of the volcanoes at the center of the islands, for 

example Mauna Kea on Hawaii or Haleakalea on Maui, are higher than 10,000 feet above sea 

level; they are therefore much colder than coastal areas and may experience snow on occasion.  

 

 Two principal meteorological phenomena are triggers for severe weather on these islands. 

Extratropical midlatitude cyclones, known as Kona lows, occur mainly during winter and may 

cause heavy rainfall, flash floods, hail, high winds, and waterspouts. These occur about one to 

three times, on average, in a given year. Central Pacific hurricanes are rarer, but more damaging; 

they occur in summer and autumn and may directly impact the Hawaiian Islands on the order of 

once every 10 or more years. Central Pacific hurricanes tend to be stronger and more frequent in 
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El Niño years when central north Pacific sea surface temperatures are warmer than average. For 

example, Hurricane Iniki, a Category 4 hurricane on the Saffir-Simpson scale, which struck the 

island of Kauai in September 1992, was the most powerful storm ever recorded in the Hawaiian 

Islands. 

 

 

4.3.9.2  Northern Mariana Islands and Guam 

 

 The climate in the Northern Mariana Islands and Guam is tropical wet/dry and the 

weather is generally hot and humid with little seasonal temperature variation. Daily average high 

temperatures are in the mid- to high 80s Fahrenheit and low temperatures in the mid-70s 

Fahrenheit. Most of the annual rainfall usually occurs during the wet season from July through 

November. Northeasterly trade winds are dominant throughout the year. Guam is located in the 

western North Pacific, which is one of the most active tropical cyclone areas of the world due to 

its proximity to the semi-permanent Mei-Yu front off the eastern coast of Asia during the rainy 

season. Frequent disturbances along the front account for heavy rainfall; these may occasionally 

intensify to tropical storm or typhoon status. An average of three tropical storms and one 

typhoon pass within 200 miles of Guam each year. Some may potentially reach super typhoon 

strength or the equivalent of Category 4 or 5 hurricanes on the Saffir-Simpson scale. Typhoons 

may occur anytime during the year, but the highest risk is in October and November. 

 

 

4.3.9.3  Marshall Islands, Micronesia 

 

 Located in the central North Pacific, these islands have tropical wet/dry climates. The 

rainiest months occur in September and October during the passage of the Intertropical 

Convergence Zone (ITCZ). For example, monthly rainfall at Kwajelein Atoll in the Marshall 

Islands is approximately 12 inches during the wettest months and 4 inches during the driest 

months. Periods of heavy precipitation and inclement weather occur with organized tropical 

mesoscale convective systems. Variation of precipitation within the season is also related to the 

Madden-Julian Oscillation. ENSO (El Niño Southern Oscillation) is the principal factor in year-

to-year climate variability; ENSO-related sea surface temperature changes are strongly linked to 

precipitation in the central North Pacific. Typhoons can occur in this part of the Pacific for 

islands located above approximately 5 degrees north latitude, but they are less frequent than in 

the northern Marianas and Guam. 

 

 

4.3.9.4  American Samoa, South Pacific 

 

 Somewhat analogous to Hawaii, but in the southern hemisphere, American Samoa lies in 

a southeasterly trade wind regime. It experiences similar types of wet and dry microclimates as 

Hawaii, as a result of its terrain and the trade winds. Tropical cyclones may occur between 

November and May, and may be major (Category 3 or above on the Saffir-Simpson scale). 

South Pacific tropical cyclones in the vicinity of American Samoa tend to be more common 

during El Niño years.  
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4.3.10  Puerto Rico, Guantanamo Bay, and U.S. Virgin Islands 

 

 Puerto Rico and the U.S. Virgin Islands, along with the islands of Hispanola and Cuba, 

are part of the Greater Antilles chain of islands that ring the northeastern Caribbean Sea. These 

Caribbean islands have tropical wet/dry climates in a northeasterly trade wind regime, with warm 

and humid conditions year round. The dry season is during boreal winter, with the driest months 

being January and February. The wet season is from April to November. During the wet season a 

slight, but pronounced, decrease is present in precipitation during the early to mid-summer; this 

occurs in the Caribbean and the northern part of Central America, and is known as the mid-

summer drought (or canicula, in Spanish). Periods of heavy precipitation with organized 

convection in the wet season occur due to tropical disturbances, principally tropical easterly 

waves. These disturbances may develop into tropical storms and hurricanes, and some of these 

may become major hurricanes (Category 3 and above on the Saffir-Simpson scale). Hurricane 

tracks differ though the course of the wet season. Cape Verde–type hurricanes, which originate 

off the western coast of Africa and traverse the tropical North Atlantic, can occur from July to 

September. Hurricanes from October to November tend to originate more in the central 

Caribbean Sea. Considerable year-to-year variability occurs in North Atlantic basin hurricane 

activity due to the ENSO and the AMO, which modify the background thermodynamic and 

dynamic conditions necessary for hurricane development. 

 

 Few RCM outputs have been generated over the Pacific Islands region (Lauer et al. 

2013). For relatively large islands resolved by GCMs, the GCM output is the main choice for this 

region. If historical observational data exists for the islands, it may be possible to generate output 

using ESDMs for individual weather stations using point-based methods.  

 

 

4.3.11  Alaska 

 

 The state of Alaska has diverse climate regimes that occur as a result of its 

physiogeography and latitude. Alaska has two major mountain ranges that extend from east to 

west. The Alaska Range is immediately north of the Pacific coast and includes Denali (formerly 

Mount McKinley), which is the highest point in North America. The Brooks Range is located 

near the Arctic Circle. Between these mountain ranges is Interior Alaska, defined as the Yukon 

River valley. This is a taiga, or evergreen forest region, of intermontane plateaus. To the north of 

the Brooks Range is the North Slope, a large coastal plain of mostly tundra that extends several 

hundred miles to the Arctic Ocean. Alaska also includes the Aleutian Islands, an archipelago that 

extends more than 1,000 miles south and west of the North American continental landmass. 

Owing to its high northern latitude, Alaska generally experiences a period of constant daylight 

during the summer and constant darkness during the winter. This effect is most extreme in 

Barrow, the northernmost city in Alaska, which is located on the North Slope north of the Arctic 

Circle. Barrow has 24 hours of sunshine every day from early May to the beginning of August 

and 24 hours of darkness every day from late November to near the end of January. 

 

 The area south of the Alaska Range to the Pacific Ocean, including the cities of 

Anchorage and Juneau, is a wet and cold maritime climate. Most of this precipitation comes 

from Pacific midlatitude cyclones that are climatologically favored to occur in association with 



 

46 
 

the semi-permanent Aleutian Low in the North Pacific Ocean. Heavy rain and snow are possible 

with the passage of these midlatitude cyclones; the wettest period is in late summer and early 

autumn. Precipitation near the Pacific Coast may exceed 100 inches per year, on average. The 

strongest midlatitude cyclones may cause winds near to or greater than hurricane force; this is a 

particular concern in areas of the Aleutian Islands. The permanent snow line in the Alaska Range 

is at an elevation of approximately 5,200 feet.  

 

 Interior Alaska, on the northern lee side of the Alaska Range, experiences a 

comparatively much more arid, continental climate. For example, the city of Fairbanks, in the 

Yukon River Valley, receives approximately 10 inches of precipitation per year and 

approximately 40–45% of this precipitation is in the form of snow. Interior Alaska experiences 

large seasonal temperature differences compared to the contiguous United States, with a mean 

annual summer temperature (July) of nearly 70°F and a mean annual winter temperature 

(January) of 20°F. The recorded temperature extremes range from -60°F to 100°F. The coldest 

temperatures in Interior Alaska occur in association with temperature inversions near the surface 

in winter in valleys, due to radiative cooling and downslope drainage flows in clear, calm 

conditions. The North Slope is approximately as dry as Interior Alaska, but daily temperatures 

rarely exceed the freezing level there. The North Slope is comparatively windier, on average, 

than Interior Alaska, because a lack of terrain fails to impede air flows from the Arctic Ocean 

and cause temperature inversions and drainage flows.  

 

 Alaska experiences extreme weather most of the year. Several downscaled datasets for 

this region have been produced using both ESDM and RCMs. An evaluation of the CMIP3 GCM 

output from 15 separate models found that the models that show the best performance over this 

region are the same as the ones that perform best for various other regions of the globe 

(Walsh et al. 2008). An evaluation of 17 simulations from CMIP5 reveals a positive tendency for 

precipitation over winter and on average a negative tendency for precipitation in summer 

(Sheffield et al. 2013). Surface temperatures are similarly biased, with a small negative bias for 

winter and a small positive bias during summer, both with large standard deviations. 

Unfortunately, no comprehensive evaluation has been conducted of the different dynamic 

downscaling methods over this state other than to recognize that population centers in the state 

are close to the coast and dominated by rapidly changing terrain features. This suggests caution 

should be used when using raw coarse grid GCM output without bias correction. Simple ESDM 

methods such as the delta method seem to be preferred by local planners who use the GCM 

output for the state and local communities (SNAP 2016). The SNAP dataset provides monthly 

mean delta corrected projections for large number of CMIP5 model scenarios. The dataset is not 

designed for use to study extremes in precipitation or temperature and is limited by the use of 

delta method, as already described (Table 1). The RCM outputs over this region need further 

evaluation, and available output should be used with bias corrections. 
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