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Active Tensor Magnetic Gradiometer System 

Final Report for Project MM-1514 

By David V. Smith, Jeffrey D. Phillips, and S. Raymond Hutton 

Introduction  

This report summarizes the work and results achieved under SERDP project MM-1514 entitled, “Active 
Tensor Magnetic Gradiometer System.”  The objective of the project was to prove the concept of an 
active tensor magnetic gradiometer system (ATMGS) using physics-based models and systems-based 
real-world simulations.  Positive outcomes of this feasibility study were identified as:  (1) a conceptual 
design at a functional system block diagram level, containing specific engineering design and 
operational parameters, and (2) a theoretical framework for analyzing and interpreting system data.  
Conceptual designs for an active magnetic gradient measurement system are based upon the existing 
tensor magnetic gradiometer system (TMGS) developed under project MM-1328 entitled, “Evaluation, 
Modification, and Testing of the Very Early Time Electromagnetic (VETEM) System, the High 
Frequency Sounder (HFS), and the Tensor Magnetic Gradiometer System (TMGS) for UXO Detection, 
Imaging, and Discrimination.”  The TMGS developed under MM-1328 was successfully tested at the 
Standardized Test Site at Yuma Proving Ground, Arizona, in 2005 over the Calibration Grid, a small 
test area seeded with inert ordnance and clutter.  By modifying the prototype TMGS with an active 
magnetic source, unexploded ordnance (UXO) surveys can be performed in two modes simultaneously 
– passive and active.  In the passive mode, tensor data will be acquired for all target and natural 
anomalies over an area.  At the same time, tensor data will be acquired for an alternating magnetic field 
at a precisely driven frequency.  In this active mode, data will be acquired only for targets in the near 
zone of the field generator.  Active mode data can be used to identify the target’s remanent 
magnetization.  By simultaneously measuring static anomalies in a search area and active anomalies in 
closer proximity to the instrument, this approach has the potential to segregate UXO and clutter.  By 
separating a target’s remanent and induced magnetization, discrimination of UXO-like targets and 
scrap-like clutter can be improved (Billings, 2002). 
 
Three distinct but related methods were used in this feasibility study.  First, numerical computer models 
and simulations of various possible configurations of an ATMGS were developed and implemented.  
Simulation data were used as the basis for developing data processing and analysis routines.  Second, 
theoretical approaches to analyzing ATMGS data were investigated.  Third, engineering analyses were 
undertaken of sensors and interface electronics to determine those modifications necessary to implement 
a prototype ATMGS. 
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Modeling and Simulations 

Modify Forward Computer Models 

Because no instrumentation development or empirical experiments were proposed, a successful 
outcome depended on a realistic simulation of the TMGS with an active source. The ATMGS simulator 
was built upon the systems-based TMGS simulator already developed using ITT’s Interactive Data 
Language (IDL)1 because it has all the necessary features: 

• Platform geometry: wheelbase, wheel diameter, array location and height, GPS location and 
height 

• Array geometry: sensor geometry and baseline separation 
• Sensor properties: axis offsets, inorthogonalities, noise 
• System properties: sample rate, channel gains, noise 
• Site size: variable dimensions 
• Irregular (fractal) terrain model of relief 
• Ground magnetization (natural anomalies as a vector field) 
• Earth’s main magnetic field model with diurnal variation 
• Platform trajectory: variable line spacing with interactive speed and steering controls 
• Targets: location, depth, magnetization vector 
• Outputs: 12 vector components, 5 measured gradients, 6 true gradients, true total magnetic field 

at centroid of array, roll, pitch, fluxgate sensor location (x, y, z of each axis), array location (x, y, 
z of centroid), GPS location (x, y, z), and time base. 

 
Relevant parameters of the simulation – 12 vector components, roll, pitch, fluxgate sensor location (x, y, 
z of each of 12 axes), array location (x, y, z of centroid), and time base – were used in the forward 
model that calculates the secondary field caused by a target at each of the 12 sensor locations.  A 
dimensioned drawing of the physical model of the conceptual ATMGS is shown in figure 1.  The 
dimensions of the sensor array are fixed, and the separation distance between individual coil pairs is 
shown.  The primary field coil is helical, concentric with the fluxgate array, and has its mid-height in the 
plane of the individual sensing coils.  The figure shows a 1.5 m diameter coil with 5-windings.  The 
modeled coil has a finite height and thickness, both of which depend on the diameter of the wire 
specified.  In this report, reference is made to individual triaxial magnetometers as Head 1, Head 2, 
Head 3, and Head 4.  The layout of the heads and the sensing directions of the individual fluxgate coils 
are illustrated in figure 2.  Note that different coil pairs are used in the longitudinal and lateral directions 
for the x- and y-vector baselines. 
 
Limitations and assumptions include that inorthogonalities of the sensor axes in the array reference 
frame are taken as zero, and that the magnetic field values were not converted to the bin-number/error-
voltage format of the real TMGS.  We made the assumption that empirically measured calibration 
coefficients for the real system are sufficiently accurate to orthogonalize the axes and to convert from 
raw voltages to magnetic field magnitudes. 
 
                                                           
1 Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. 
Government. 
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Figure 1.  Physical model of the ATMGS with dimensions shown.  Coil separation distances are 
measured to the center of fluxgate sensing coils. 
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Figure 2.  Nomenclature and coordinate convention used for the magnetometer heads and sensing axes.  
The inner and middle coils of the array sense different components, depending on the orientation of the 
magnetometer heads.  The z-component is always sensed by the outer coils. 

 

Modify TMGS Simulator 

The original simulator was modified to include several software modules: 
• Targets as spheroids: location (x, y, z), length (radius a), diameter (radius c), azimuth and dip of 

radius a, and magnetic permeability; 
• Primary field generator (solenoid): coil diameter, height, wire gauge, number of turns, current, 

frequency; 
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• Primary field at target location: magnetic field components (Bx, By, Bz) calculated at target 
location using Biot-Savart law for the modeled solenoid; and 

• Spheroidal induction: magnetization vectors (Mx, My, Mz) of a spheroid with radii a and c and 
azimuth and dip of radius a in an external magnetic field (Bx, By, Bz). 

 
We made the assumption that the magnetic field at the spheroidal target’s centroid is uniform over 
volume of target.  This assumption is valid for small spheroids at distances approximately the diameter 
of the solenoid, but does not hold for closer targets or large spheroids.  We assume the error in our 
simulations is negligible, although we offer no proof.  This assumption was made to avoid the 
computational complexity and demands of an arbitrary spheroid in a non-uniform magnetic field.  We 
also assume that, for typical UXO bodies, the total magnetization of a solid spheroid model is close to ( 
to within 10 percent) that of a spheroidal shell model (Billings, 2002; Butler, 2001; Altshuler, 1996).  
Again, this assumption was made to avoid increased computational complexity. 
 

Perform Simulations 

The simulator can perform an unlimited number of scenarios with varied targets and terrains.  This 
research concentrated on a very limited set of scenarios in order to develop and investigate data 
processing, analysis, and interpretation techniques.  The following parameters constituted the standard 
scenario: 

• Site dimensions:  10 by 10 meters, 
• Trajectory: 0.25 m line spacing, traveling south-to-north at 2 m/s, 
• Targets:  six 60-mm spheroids at 0.2 m depth, equally spaced, 
• Target orientations:  three at 0 azimuth and 0, 30, 60 degrees dip; three at 90 azimuth and 0, 30, 

60 degrees dip; 
• Terrain:  fractal surface with +/- 10 cm relief. 

 
The following parameters modeled the ATMGS system: 

• Planar cross array with paired magnetic component baselines of 35.36, 45.96, and 52.56 cm, 
• Towed platform with dimensions of the cart used for tests at YPG, 
• Sample rate:  900 Hz, and 
• Sensor noise:  16 pT/Hz1/2. 

 
A graphical representation of a non-standard simulation run with 11 targets is shown in figure 3, where 
the targets are shown in red and the trajectory of the array is shown in green.  The trajectory is irregular 
because of terrain effects. 
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Figure 3.  Example graphical user interface of a simulation run.  Interactive controls are in the left panel.  
The targets and array trajectory are displayed in the right panel. 

 

Analyze Simulation Data 

Data files generated by the simulations were processed in Geosoft’s Oasis montaj.  This software has 
the capability of handling extremely large data sets efficiently, and contains tools for filtering, gridding 
and displaying time-series and spatial data.  Oasis montaj was used to generate data sets containing 
position (x, y, z) and measured gradients (Gij).  USGS software was used to determine target location 
using Euler and Helbig analyses.  IDL programs were used to calculate induced moments (Mx, My, Mz) 
at each location where the primary field was at a minimum or maximum.  The maxima and minima 
were selected because dB/dt is zero.  Therefore, magnetostatic equations can be applied.  Knowing the 
location of the primary field generator, the array centroid, and the target, we made estimates of the 
target’s spheroidal geometry based upon the spatial variation of the induced magnetic moments.  The 
data flow diagram is given in figure 4. 
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Figure 4.  Data flow diagram for ATMGS data processing and analysis. 

 

Theory and Algorithms 

Evaluate Multiple-Euler Algorithms and Helbig’s Method 

Although Euler and Werner multiple-source algorithms have proven useful for locating UXO sources, 
they provide no additional physical property information about the sources. To determine the magnetic 
dipole moments and the magnetization (or elongation) directions of the sources, another approach is 
required. A first step we investigated involves implementing Helbig’s method (Helbig, 1963), which 
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uses the first moments of magnetic vector components to estimate total magnetization directions. By 
using Helbig’s method to estimate the total magnetization directions at the Euler source locations for 
each of the dual-mode data sets, it should be possible to separate the induced component of the 
magnetization from the remanent component for each source. Using the estimated source locations and 
the estimated magnetization directions, we can perform a linear inversion to estimate the magnetic 
susceptibility, the remanent magnetization, and the magnetic dipole moments of the sources. 
 
Helbig’s method has been successfully applied to geological problems (Schmidt and Clark, 1997, 1998), 
and has been implemented by the USGS for total-field magnetic data (Phillips, 2005, Phillips and 
others, 2007). It works best on dipole sources that have adequate horizontal separation for the first 
moments to be reliably estimated. Application of Helbig’s method to the passive mode data of the tensor 
survey should be straightforward, providing estimates of total magnetization directions and magnetic 
dipole moments for the sources. Application to the active mode data should allow separation of the total 
magnetization into induced and remanent components, but will involve the complication that the 
inducing field direction varies over the source distribution. 
 
The total magnetization of a magnetic source is the vector sum of the remanent magnetization and the 
induced magnetization.  The Helbig method, as implemented by Phillips (2005), is useful for estimating 
the horizontal positions and the total magnetization directions of compact magnetic sources from 
measured or calculated magnetic vector field components. 
 
In the following exposition (Phillips and others, 2007) we extend the Helbig method in several ways.  
First, we show how the method can be modified so that magnetic gradient tensor measurements can be 
used instead of magnetic vector component measurements.  Next, we show how, given the horizontal 
positions of the sources, a simplified version of the Euler equation, applied in windows, can be used to 
estimate the depths to the compact sources under the assumption that they are magnetic dipoles.  
Finally, we show how a linear least-squares fit to the data can be used to determine the dipole moments 
of the sources. 
 
This extended Helbig approach can be used to locate and characterize compact magnetic sources such as 
ore bodies, UXO, and abandoned wells. It may also prove useful for removing some cultural noise, such 
as strong, localized anomalies produced by steel buildings, from aeromagnetic data. 
 
The Helbig Method 
 
In the Helbig method (Helbig, 1963; Schmidt and Clark, 1997, 1998; Phillips, 2005), the first moments 
of vector magnetic field components are used to estimate the direction of the total magnetization.  The 
magnetic field components can be derived from total-field magnetic data using Fourier filters.   
 
Using the Helbig integrals, total magnetization directions can be estimated in small data windows 
centered on each grid node of the magnetic vector field component grids.  If the central grid node lies 
over a compact source that can be represented by a magnetic dipole, then the calculated magnetization 
direction will accurately predict the total magnetization direction of the dipole, and the direction will 
remain relatively constant as the window size is increased in small steps.  On the other hand, if the 
central grid node does not lie over a source, the calculated total magnetization direction will change 
with increasing window size.   
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We can locate the grid nodes where the estimated magnetization direction is relatively insensitive to 
window size by setting a threshold for the maximum allowable angular change in the direction between 
successive window sizes, then counting the number of successive window sizes that produce solutions 
with angular changes below this threshold.  Grid nodes with large counts identify source locations; 
those with small counts identify source-free areas.  With this approach, the Helbig method can be used 
to estimate the horizontal positions of the compact sources as well as their total magnetization 
directions. 
 
By averaging the magnetization directions for the solutions that fall below the threshold, we get an 
estimate of the total magnetization direction at each grid node.  This estimate will be accurate only at 
grid nodes that lie over sources, that is, those with large counts.  However, between sources the 
estimated magnetization directions will be continuous.  This means that the Helbig method can also be 
used to produce a continuous estimate of the magnetization direction over a magnetic survey area, 
which can then be sampled at source locations determined using a second method, such as Euler 
deconvolution (Reid and others, 1990). 
 
The Helbig method is based on the observation (Helbig, 1963) that the vector components (mx, my, mz) 
of the total magnetization of a compact source can be estimated from the first moments of the vector 
components (Bx, By, Bz) of the anomalous magnetic field produced by the source.  Here we use the 
convention of geomagnetism that the x-axis points north, the y-axis points east, and the z-axis points 
down.  The first moments are evaluated as infinite integrals over the horizontal plane. 
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The other two first moments are zero, as are the integrals (mean values) of Bx, By, and Bz over the plane.  
We refer to these five integrals as Helbig’s vanishing integrals. 
 
Phillips (2005) has shown that, in order to estimate total magnetization directions using the integrals of 
equation set (1) within a finite data window, it is necessary to satisfy Helbig’s vanishing integrals within 
the finite window by removing a planar surface from the magnetic vector component within the 
window.  This assures that the mean values of the components are zero within the window, and that the 
vanishing moments are approximately zero. 
 
Extending the Helbig Method to Magnetic Gradient Measurements 
 
This requirement to estimate and remove planar surfaces from each magnetic vector component in the 
finite data window, while computationally straightforward, does represent a burden when many 
overlapping data windows of different sizes are used in the analysis.  In an attempt to relax this 
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requirement, we can consider using first- or second-order derivatives of the magnetic vector components 
for Helbig analysis.  First-order derivatives of the components are measured directly by tensor magnetic 
gradiometer systems, such as those currently being evaluated for application to the detection of UXO 
and for commercial mineral exploration. 
 
To develop Helbig equations for derivatives of the magnetic vector components, we can use integration-
by-parts on the integrals of (1).  For example, the mx component can be expressed as either 
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If the vertical component Bz of the magnetic field decays more rapidly than the square of the distance, 
which is the case for all compact magnetic sources, then the first terms in the square brackets are zero.  
It follows that (1) can be rewritten in terms of second moments of first derivatives of the magnetic 
vector components as, 
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The partial derivatives represent components that can be directly measured with a tensor magnetic 
t system.  In terms of standard symmetric tensor notation, gradien
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The second derivative terms cannot be measured directly, but they can be calculated from the vector 
components or from the tensor magnetic gradient components.  The integrals can be evaluated in finite 
data windows without removing any surfaces or constants from the second derivative terms. 
 
As with the first derivative case, components estimated using a finite window fall into multiple sets.  
One set of components is estimated from the integrals starting with 1/2π, one from the integrals starting 
with 1/4π, and one from the integrals starting with 1/12π.  The three sets produce magnetization vectors 
with identical directions but slightly different magnitudes.  Details are given in the section, 
“Supplemental Summary of Helbig’s Non-Vanishing Integrals” on page 17. 
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The Euler Equation 
 
In the previous section, we showed how the Helbig method can be extended to work with tensor 
magnetic gradient components instead of vector magnetic field components.  In either case, the Helbig 
method can provide estimates of the horizontal source locations and total magnetization directions of 
the compact sources.  To fully characterize the sources, their depths and magnetic moments must be 
estimated. 
 
If the horizontal locations (x0, y0) of a dipole source are known, the Euler equation (Reid and others, 
1990) can be used to estimate the depth z0 of the dipole and a constant β representing interference from 
adjacent sources. 
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Here n=3 for a dipole source and T is the total field anomaly.  This equation can be solved in the least-
squares sense using data in small windows (3x3, 5x5, 7x7, …) centered on the known horizontal 
location of each dipole source.  The solution that produces the shallowest z0 is probably the best. 
 
An alternative approach would involve solutions using the vector components (Bx, By, Bz) computed for 
the Helbig method and the magnetic potential (V) computed as the negative of the first vertical integral 
of Bz:  
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In this case n=2 for a dipole source. 
 
For the case of magnetic gradient tensor measurements or calculated derivatives of vector components, 
there are three Euler equations (Zhang and others, 2000): 
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or, equivalently 
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These equations are analogous to (6), so n=3 for a dipole source. 
 
In a second approach, mentioned earlier, the Helbig method can be used to provide a continuous 
estimate of the total magnetization direction throughout the survey area, then this estimate can be 
sampled at source locations determined using a second magnetic source location method.  Candidates 
for this second method include full Euler deconvolution as described by Reid and others (1990), various 
modifications of Euler deconvolution using Hilbert transforms and multiple sources, and non-Euler 
approaches using special functions such as the total gradient or the local wavenumber (Phillips and 
others, 2007). 

 

Dipole Moments 
 
Once the total magnetization directions, the horizontal locations, and the depths of the sources have 
been established, the dipole moments of the sources can be estimated by linear least-squares inversion.  
For example, if Ui(x,y) represents the calculated field component or tensor component of the i-th source 
with unit dipole moment and O(x,y) is the observed field component or tensor component produced by 
all N sources, then the unknown dipole moments mi will satisfy  
 

∑
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+=
N

i
ii cyxOmyxU

1

),(),(      (10) 

 
in the least-squares sense, where c is an unknown constant. 
 
Examples 
 
Example 1 – Using (Noise-Free) Magnetic Field Components 
 
To test the method, we used the three dipole sources described in table 1.  The calculated field 
component grids are shown in figure 5a.  The grids have a sample interval of 0.05 m. 
 
The Helbig method was applied to the field components using the following approach.  The Helbig 
integrals of (1) were evaluated in small windows centered on each grid node and having odd dimensions 
increasing from 3x3 to 25x25.  For field components, a planar surface was removed from the 
component data within each window before the integration.  The algorithm looked for successive 
solutions with increasing window size for which the total magnetization direction varied by less than a 
specified threshold of one degree in this case.  For the grid nodes corresponding to the three dipole 
sources, at least 11 successive solutions with variations of less than one degree were found.  For all 
other grid nodes, the number of successive solutions with variations of less than one degree was far 
fewer, between zero and six.  To estimate the total magnetization direction, the successive solutions 
with variations of less than the threshold were averaged.  The results, for averages with more than six 
solutions, are shown in table 2. 
 
The simplified Euler equation (7) was used to estimate the depths of the sources.  The equation was 
evaluated in windows of odd sizes from 3x3 to 13x13 centered on the sources.  The shallowest solution 
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for each source was selected.  A magnetic potential calculated from the true sources was used.  Results 
are shown in the “depth” column of table 2. 
 
The dipole moments were estimated from the three field components using a least-squares inversion, 
and are shown in the “moment” column of table 2.  The calculated components from the estimated 
sources in table 2 are shown in figure 5b. 
 
Example 2 – using (noise-free) tensor magnetic gradient components 
 
The three dipole sources of table 1 were used to calculate the tensor magnetic gradient components 
shown in Figure 6a.  The Helbig integrals in (4) were evaluated in small windows centered on each grid 
node and having odd dimensions increasing from 3x3 to 25x25.  For tensor gradient components, a 
mean value was removed from the gradient component data within each window before the integration.  
Again the algorithm looked for successive solutions with increasing window size for which the total 
magnetization direction varied by less than a specified threshold of one degree.  The only solutions 
found were at the grid nodes corresponding to the three dipole sources.  At these nodes between 8 and 
10 successive solutions with variations of less than one degree were found.  To estimate the total 
magnetization direction, the successive solutions with variations of less than the threshold were 
averaged.  The results are shown in table 3. 
 
The Euler equations in (8) were used to estimate the depths of the sources.  The equations were 
evaluated in windows of odd sizes from 3x3 to 13x13 centered on the sources.  The shallowest solution 
for each source was selected.  Magnetic field components calculated from the true sources were used.  
Results are shown in the “depth” column of table 3. 
 
The dipole moments were estimated from the five independent gradient tensor components using a 
least-squares inversion, and are shown in the “moment” column of table 3.  The calculated gradient 
tensor components from the estimated sources in table 3 are shown in figure 6b. 
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Table 1. Dipole source parameters used to test the method. 
 
source easting northing depth inclination declination moment
1 1.0 1.0 0.20 0 30 0.020 
2 2.0 1.0 0.25 60 -30 0.025 
3 1.5 2.0 0.30 90 0 0.030 
 
Table 2. Results of inversion using the magnetic field components. 
[The eastings, northings, inclinations, and declinations are from Helbig analysis.  The depths are from 
Euler analysis.  The dipole moments are from least-squares inversion] 
 
source easting northing depth inclination declination moment
1 1.0 1.0 0.191 0.427 30.063 0.0182 
2 2.0 1.0 0.247 60.149 -29.881 0.0294 
3 1.5 2.0 0.300 89.454 4.108 0.0400 
 
Table 3. Results of inversion using the tensor magnetic gradient components. 
[The eastings, northings, inclinations, and declinations are from Helbig analysis.  The depths are from 
Euler analysis.  The dipole moments are from least-squares inversion] 
 
source easting northing depth inclination declination moment
1 1.0 1.0 0.200 0.071 30.055 0.0201 
2 2.0 1.0 0.250 60.154 -30.056 0.0300 
3 1.5 2.0 0.300 89.738 -1.541 0.0400 
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A

B  

Figure 5.  A, X (north), Y (east), and Z (vertical) magnetic field components produced by the three test 
dipoles of table 1.  Circles indicate the dipole locations.  B, Magnetic field components produced by the 
solution dipoles of table 2. 
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A

B  

Figure 6.  A, Five independent components of the magnetic gradient tensor for the three test dipoles of 
table 1.  Circles indicate the dipole locations.  B, Magnetic gradient tensor components produced by the 
solution dipoles of table 3. 
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Supplemental  Summary of Helbig’s Non-Vanishing Integrals 

  
Let the bivariate moments of function f(x,y) be expressed as 
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and let derivatives of the magnetic field components be expressed as 
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Then the components of the total magnetization for a compact source can be expressed in terms of the 
bivariate moments of the field components, the first horizontal derivatives of the field components, and 
the second horizontal derivatives of the field components as 
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To estimate mx, my, mz using small data windows, it is best to use square windows.  To approximately 
satisfy Helbig’s vanishing integrals, planar surfaces should be removed from the field components Bx, 
By, Bz within the window; mean values should be removed from the first horizontal derivatives of the 
field components Bxx, Bxy, Byx, Byy, Bzx, Bzy within the window; and nothing needs to be removed from 
the second horizontal derivatives within the window.  Even with these corrections, numerical 
experiments show that the various estimates for each magnetization component are not equivalent when 
finite windows are used. 
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There is one set of total magnetization components that can be estimated from the field components: 
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There are two sets that can be estimated from the first horizontal derivatives of the field components: 
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In a given window, these two magnetization vectors will have equivalent directions but different 
magnitudes.  There are three sets that can be estimated from the second horizontal derivatives of the 
components: 
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These three magnetization vectors will have equivalent directions but different magnitudes in any given 
window.   
 
It follows that in order to estimate total magnetization direction from the field components, you must 
have Bz and either Bx or By.  In order to estimate total magnetization direction from the first horizontal 
derivatives of the field components, you must have both Bzx and Bzy, and one of Bxx, Byy, Bxy, or Byx.  In 
order to estimate total magnetization direction from the second horizontal derivatives of the field 
components, you must have both Bzxx and Bzyy, and one of Bxxx, Byyy, Byxx, or Bxyy, or you must have Bzxy 
(Bzyx) and either Bxxy (Bxyx) or Byxy (Byyx).  
 

Develop Active-Mode Algorithms 

The primary field generator is synchronized with the data acquisition system so that secondary fields are 
measured at primary field maxima and minima, when dB/dt is zero.  A target’s location and static 
magnetic moment (remanent moment) are first estimated using Euler and Helbig methods.  Knowing the 
primary coil current and radial vector to a target, one can calculate the induction field at the target’s 
location.  The induction field causes the target’s total moment to rotate, which is simultaneously 
measured by the TMGS array.  The demodulated active signal can locate ferrous targets with small or 
negligible remanent magnetization, as shown in figure 7. 
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Figure 7.  Four 20-mm spheres buried 0.02 m deep along a single line were simulated here.  The four 
spheres have the same magnetic permeability but different remanent magnetization (increasing from left 
to right).  The top plot shows the z-component of head 1.  Separation of the active signal (blue) from the 
static signal (purple) is achieved by simple high-pass and low-pass filtering, respectively.  The inductive 
response for the four spheres is identical, but the static magnetic anomaly (bottom plot) from each 
differs according to their magnetic moments. 

 
Figure 8 shows plots of the ATMGS received signal (red) and the static (green) and active (blue) 
waveforms for the head 1 z-component along a line over three targets in the standard model.   
The bottom panel plots the rectified active signal (magenta) and its demodulation or envelope (gray).  
The primary field oscillation can be seen in the close-up in figure 9.  The low-pass signal is the static 
magnetic field over the targets. A vector sum of the three orthogonal magnetic components of a single 
magnetometer head produces a total field map, as shown in figure 10.  The total field data can be 
processed and gridded using standard potential field algorithms, such as those contained in the 
magmap.omn and ux-detect.omn utility menus in Oasis montaj.  By contrast, the envelope provides a 
means of mapping isolated ferrous targets with sharp definition, as illustrated in figure 11. 
 
 

 21



 
 

Figure 8.  Example of simulated data along line over three 60-mm targets in the standard model.  Shown 
are the received signal from head 1 z-component (red), the static signal (green), the active signal (blue) 
and the rectified (magenta) and demodulated signal (gray). 

 
 

 
 

Figure 9.  Close up of simulation data over a single 60-mm target in the standard model. Shown are the 
received signal from head 1 z-component (red), the static signal (purple), the active signal (blue) and the 
rectified (magenta) and demodulated signal (gray). 
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Figure 10.  Map of head1 z-component only of static anomalies of six 60-mm targets in the standard 
model. 
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Figure 11.  Demodulated (envelope) active component of six isolated 60-mm targets in the standard 
model. 

 
This research project investigated what information can be gleaned from the active signals and the 
active signal gradients Gij calculated by differencing opposite pairs of magnetometer axes and dividing 
by their baseline separation.  A following section describes analysis of active tensor data in an attempt 
to separate the remanent and induced magnetization of a ferrous body.  This section describes research 
into determining the spheroidal geometry of a target from active magnetic gradient data, and thereby 
discriminate UXO-like targets from scrap-like targets. 
 

Develop Discrimination Algorithms 

The problem of discrimination using magnetics has focused mainly on estimating the remanent 
magnetic moment of a target by looking at the magnitude and direction of its dipole moment and 
plotting those values against what would be expected of a purely induced moment in a degaussed target 
in the Earth’s ambient field (Billings, 2002).  The assumed degaussing occurs as shock demagnetization 
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when the ordnance item strikes the ground.  This method has been shown to improve discrimination of 
intact UXO and clutter by 50 percent. 
 
We take a different approach that uses all the information provided by the ATMGS.  Because six 
discrete magnetic gradients Gij are measured simultaneously at 900 readings per second, it is possible to 
pick the Gij that occur at minima and maxima of the primary drive field over a target.  At these instants, 
the primary field is at maximum magnitude and dB/dt is zero.  Therefore, purely magnetostatic 
equations apply to the magnetic induction of a spheroidal body.  As noted before, intact UXO can be 
adequately approximated by a spheroid, and a hollow spheroid can be adequately approximated by a 
solid spheroid.  A simple thresholding technique on the magnetic z-components can isolate the Gij used 
to invert for the instantaneous magnetic moment.  The result of this selection over a single target is 
shown in figure 12, in which different colors correspond to the z-component of different magnetometer 
heads. 
 
At each of the measurement locations, the six Gij are inverted to solve for the magnetic moment (Mx, 
My, Mz) at the target location.  A comparison of the inversion solutions (Ms) to the true induced 
moments (Mi) is plotted in figure 13.  This is for the ideal case of no noise and horizontal, flat terrain.  
The agreement, though quite close, is not exact.  The addition of system noise and terrain effects causes 
further divergence between the ideal and the more realistic cases, as illustrated in figure 14.  The worst 
case combines system noise and terrain effects. 
 
Having determined the induced moment at each measurement location, we find it possible to invert to a 
spheroidal model using the following procedure: 

• Knowing the location and attitude of the sensor array and primary coil at each measurement 
point, calculate the r-vectors to the target’s location. 

• Calculate the magnetic field components of the primary coil at the target’s location for each r-
vector. 

• Knowing the r-vectors, the induced moments, and the primary coil magnetic field components, 
invert to a magnetically permeable spheroid at the target’s location. 

 
The result of this procedure on the worst case simulation is given in figure 15 for spheroids with a 
diameter c of 60 mm but differing lengths a.  Plate-like bodies are simulated by oblate spheroids with a 
<< c, whereas rod-like bodies are simulated by prolate spheroids with a >> c.  UXO-like bodies have an 
a:c ratio of between 2 and 4.  Simulation scenarios 1-5 for maximum primary field strength (maxima in 
the active signal) are increasingly prolate, as compared to scenarios 6-9 which are increasingly oblate.  
This pattern repeats for scenarios 10-18, which are solutions for minimum primary field strength 
(minima in the active signal).  Because of symmetry, the positive and negative solutions are very nearly 
identical.  The 60-mm target spheroid is represented by scenario 1 and scenario 10.  Figure 16 shows the 
results plotted against the ratio a:c, where the 60-mm target’s ratio is 2. 
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Figure 12.  Map of maxima/minima of active component selected for inversion to induced moments.  
The locations of different magnetic z-components (red, magenta, yellow, blue) are offset because of the 
physical separation of the fluxgate heads on the array.  The lines are irregular because of terrain effects. 
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Figure 13.  Recovered moments (Ms) versus actual induced moments (Mi).  True moment values are 
slightly greater in magnitude than the moments recovered through inversion. 
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Figure 14.  Effects of noise sources on recovered moments. Solid diamond is noise free; hollow blue 
square is with system noise; yellow triangle is with terrain effects; and red square is with both noise and 
terrain effects. 
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Figure 15.  Recovered spheroid dimensions for modeled spheroids.  Scenario 1 and scenario 10 
represent the 60-mm spheroid.  Scenarios 1-5 are increasingly prolate, whereas scenarios 6-9 are 
increasingly oblate.  Scenarios 1-9 are solutions based on primary field maxima, and scenarios 10-18 are 
from primary field minima. 
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Figure 16.  The ratio of length to width is diagnostic of whether a target is UXO-like or scrap-like.  The 
60-mm target has a ratio of 2. 
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Develop Induced/Remanence Algorithms 

Two Helbig-Euler simulations were run with rectangular source bodies to test the ability of the active 
system to recover the moments, susceptibilities, and Koenigsberger ratios of non-dipole sources.  The 
Koenigsberger ratio Q is defined as the ratio of the remanent magnetization to the induced 
magnetization.  One simulation involved rod-like sources, the other involved plate-like sources. 
 
The rod simulation involved three rectangular rods 5 units long by 1 unit by 1 unit oriented along the 
east, north, and vertical axes, three rectangular rods 3 units long by 1 unit by 1 unit also oriented along 
the east, north, and vertical axes, and three 1-unit cubes.  One unit equals 0.25 m.  The centers of the 
sources were 4 units below the sensors.  The rods had remanent magnetizations oriented along their long 
axes, and the three cubes had remanent magnetizations in the three orthogonal directions.  The remanent 
magnetization intensities were set so that the equivalent dipole moments of the sources were roughly the 
same.  The model is described in table 4. 
 
Table 4. Parameters for the rod model.   

Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect

3.5 2.5 1.0 0.0 0.0 0.078125 1x5x1 

6.5 2.5 1.0 0.0 90.0 0.078125 5x1x1 

9.5 2.5 1.0 90.0 * 0.078125 1x1x5 

3.5 5.0 1.0 0.0 0.0 0.093750 1x3x1 

6.5 5.0 1.0 0.0 90.0 0.093750 3x1x1 

9.5 5.0 1.0 90.0 * 0.093750 1x1x3 

3.5 7.5 1.0 0.0 0.0 0.078125 1x1x1 

6.5 7.5 1.0 0.0 90.0 0.078125 1x1x1 

9.5 7.5 1.0 90.0 * 0.078125 1x1x1 

* Because the inclination is vertical, the declination can take on any value 

A Helbig-Euler inversion on the vector components without any inducing field was able to recover the 
locations and magnetizations of nine equivalent dipole sources (table 5).  The equivalent dipole sources 
for the vertically oriented rods are shallow, but below the tops of the rods.  
 
Table 5. Results of Helbig-Euler inversion on the rod model without any inducing field. 
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Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 1.0761 -2.7667 0.0564 0.068555 1x5x1 

6.5 2.5 1.4324 0.0766 90.1459 0.120341 5x1x1 

9.5 2.5 0.5847 89.8303 22.9334 0.039192 1x1x5 

3.5 5.0 0.9547 -0.1952 0.1755  0.073168 1x3x1 

6.5 5.0 1.1522 0.2337 90.0532 0.111400 3x1x1 

9.5 5.0 0.8358 89.8144 56.1906 0.072610 1x1x3 

3.5 7.5 0.9219 0.9035 0.1408 0.062294 1x1x1 

6.5 7.5 0.9812 0.0367 90.1043 0.073405 1x1x1 

9.5 7.5 0.9952 89.7147 146.2096 0.076875 1x1x1 

 

To simulate the peak response of the active system, a vertical inducing field was applied to the model 
under the assumption that all sources had a Koenigsberger ratio of 1.0.  Table 6 shows the results of a 
Helbig-Euler inversion on the vector components with the inducing field in the downward direction, and 
table 7 shows the results on the vector components with the inducing field in the upward direction.  
Note that the upward-inducing field exactly cancels the field of the three source bodies with vertical 
remanent magnetization.  
 
Table 6. Results of Helbig-Euler inversion on the rod model with downward-inducing field. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 0.9016 52.54576 0.152 0.0691042 1x5x1 

6.5 2.5 1.3690 53.97548 89.669 0.1503845 5x1x1 

9.5 2.5 0.5829 89.47509 -4.957 0.0775733 1x1x5 

3.5 5.0 0.9764 46.90822 0.974 0.1117457 1x3x1 

6.5 5.0 1.1366 47.18464 89.275 0.1494823 3x1x1 

9.5 5.0 0.8284 89.64802 2.382 0.1418990 1x1x3 
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3.5 7.5 1.0266 45.69145 0.225 0.1120025 1x1x1 

6.5 7.5 0.9771 45.00643 91.085 0.1032609 1x1x1 

9.5 7.5 0.9793 89.30260 175.421 0.1486813 1x1x1 

 

Table 7. Results of Helbig-Euler inversion on the rod model with upward-inducing field. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 1.2782 -54.5383 -0.1704 0.1427875 1x5x1 

6.5 2.5 1.3805 -53.9433 90.5759 0.1689254 5x1x1 

9.5 2.5 * * * * 1x1x5 

3.5 5.0 0.9629 -47.0065 0.0201 0.1133776 1x3x1 

6.5 5.0 1.1371 -46.3786 89.8697 0.1578909 3x1x1 

9.5 5.0 * * * * 1x1x3 

3.5 7.5 0.8343 -43.7581 0.0357 0.0754909 1x1x1 

6.5 7.5 0.9796 -44.9590 89.1212 0.1040951 1x1x1 

9.5 7.5 * * * * 1x1x1 

* No values because the inducing field exactly cancels the remanent field. 

The total magnetization vector for each source changes direction and magnitude as a result of the 
vertical inducing field.  The magnetic susceptibility of each source is given by the magnitude of the 
change in the vertical component of magnetization divided by the inducing field strength.  The 
Koenigsberger ratio Q of each source is the ratio of the remanent magnetization to the induced 
magnetization.  This is equivalent to the ratio of the dipole moment without an inducing field to the 
product of the magnetic susceptibility and the inducing field strength, or to the ratio of the dipole 
moment without an inducing field to the magnitude of the change in the vertical component of 
magnetization.  Table 8 shows the estimated magnetic susceptibility and Koenigsberger ratio for each 
source. 
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Table 8. Estimated magnetic susceptibilities and Koenigsberger ratios for the rod model. 
 

Downward field Upward field Average 
Easting Northing 

susc Q susc Q susc Q 

3.5 2.5 0.058167 1.178594 0.112992 0.606725 0.085579 0.892660

6.5 2.5 0.121465 0.990744 0.136726 0.880158 0.129096 0.935451

9.5 2.5 0.038378 1.021210 0.038378 1.021210 0.038378 1.021210

3.5 5.0 0.081853 0.893898 0.082679 0.884969 0.082266 0.889433

6.5 5.0 0.109198 1.020164 0.114754 0.970772 0.111976 0.995468

9.5 5.0 0.069287 1.047956 0.069287 1.047956 0.069287 1.047956

3.5 7.5 0.079165 0.786883 0.053193 1.171093 0.066179 0.978988

6.5 7.5 0.072978 1.005850 0.073601 0.997336 0.073289 1.001593

9.5 7.5 0.071796 1.070750 0.071796 1.070750 0.071796 1.070750

 

 

 

 

 

 

 

 

 

 

 

Note that the estimated susceptibilities are close to the true susceptibilities of 0.78 to 0.94, and the 
estimated Q-values are all close to the true value of 1.0.  There is no apparent way to distinguish 
between the small cube-like bodies that approximate true dipoles and the rod-like sources. 
 
The plate simulation involved three large rectangular plates of dimensions 5 units by 5 units by 1 unit 
oriented with the normal to the large surface directed along the east, north, and vertical axes; three 
smaller rectangular plates 3 units by 3 units by 1 unit also oriented along the east, north, and vertical 
axes; and three 1-unit cubes.  One unit equals 0.25 m.  The centers of the sources were 4 units below the 
sensors.  The plates had remanent magnetizations oriented along the normal to their larger surfaces, and 
the three cubes had remanent magnetizations in the three orthogonal directions.  The remanent 
magnetization intensities were set so that the equivalent dipole moments of the sources were roughly the 
same.  The model is described in table 9. 
 
Table 9. Parameters for the plate model. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect

3.5 2.5 1.0 0.0 90.0 0.390625 1x5x5 

6.5 2.5 1.0 0.0 0.0 0.390625 5x1x5 
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9.5 2.5 1.0 90.0 * 0.390625 5x5x1 

3.5 5.0 1.0 0.0 90.0 0.421875 1x3x3 

6.5 5.0 1.0 0.0 0.0 0.421875 3x1x3 

9.5 5.0 1.0 90.0 * 0.421875 3x3x1 

3.5 7.5 1.0 0.0 90.0 0.390625 1x1x1 

6.5 7.5 1.0 0.0 0.0 0.390625 1x1x1 

9.5 7.5 1.0 90.0 * 0.390625 1x1x1 

* Because the inclination is vertical, the declination can take on any value. 

A Helbig-Euler inversion on the vector components without any inducing field was able to recover the 
locations and magnetizations of nine equivalent dipole sources (table 10).  The equivalent dipole 
sources for the vertically oriented plates are relatively shallow, and those for the horizontally oriented 
plates are relatively deep. 
 
Table 10. Results of Helbig-Euler inversion on the plate model without any inducing field. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 0.7774 0.0676   89.981 0.2970 1x5x5 

6.5 2.5 0.7160 -0.5427 0.247 0.2464 5x1x5 

9.5 2.5 1.5571 89.8123 -33.665 0.7114 5x5x1 

3.5 5.0 0.9792 -0.0449 90.001 0.4386 1x3x3 

6.5 5.0 0.7851 0.1167 0.354 0.2597 3x1x3 

9.5 5.0 1.1787 89.6944 171.477 0.5159 3x3x1 

3.5 7.5 1.0852 -0.0978 89.981 0.4616 1x1x1 

6.5 7.5 0.8737 0.9159 0.091 0.2781 1x1x1 

9.5 7.50 0.9900 89.4207 170.582 0.3841 1x1x1 
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To simulate the peak response of the active system, a vertical inducing field was applied to the model 
under the assumption that all sources had a Koenigsberger ratio of 1.0.  Table 11 shows the results of a 
Helbig-Euler inversion on the vector components with the inducing field in the downward direction, and 
table 12 shows the results on the vector components with the inducing field in the upward direction.  
Note that the upward-inducing field exactly cancels the field of the three source bodies with vertical 
remanent magnetization.  
 
Table 11. Results of Helbig-Euler inversion on the plate model with downward-inducing field. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 0.7397 41.73358   88.813 0.3548 1x5x5 

6.5 2.5 0.6718 40.81954 1.440 0.2886 5x1x5 

9.5 2.5 1.4978 89.33935 -13.967 1.2983 5x5x1 

3.5 5.0 0.9209 43.15523 90.048  0.5359 1x3x3 

6.5 5.0 0.7983 43.21744 1.092 0.3884 3x1x3 

9.5 5.0 1.1664 89.68020 -153.122 0.9993 3x3x1 

3.5 7.5 1.0118 45.04357 90.955 0.5629 1x1x1 

6.5 7.5 0.9802 45.61699 0.2420 0.5141 1x1x1 

9.5 7.5 0.9814 89.49455 178.788 0.7479 1x1x1 
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Table 12. Results of Helbig-Euler inversion on the plate model with upward-inducing field. 
 
Easting (m) Northing (m) Depth (m) Inc Dec Moment Aspect 

3.5 2.5 0.8002 -39.9867  91.77386 0.4271 1x5x5 

6.5 2.5 0.7629 -40.0210 0.46948 0.3815 5x1x5 

9.5 2.5 * * * * 5x5x1 

3.5 5.0 1.0229 -44.7400 88.68530 0.6514 1x3x3 

6.5 5.0 0.8054 -44.0549 1.61406 0.3927 3x1x3 

9.5 5.0 * * * * 3x3x1 

3.5 7.5 1.1291 -45.6148 88.01538 0.6914 1x1x1 

6.5 7.5 0.7994 -42.7912 1.14784 0.3404 1x1x1 

9.5 7.5 * * * * 1x1x1 

* No values because the inducing field exactly cancels the remanent field. 

Table 13 shows the estimated magnetic susceptibility and Koenigsberger ratio for each source. 
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Table 13. Estimated magnetic susceptibilities and Koenigsberger ratios for the plate model. 
 

 
Downward field Upward field Average 

Easting Northing 
susc Q susc Q susc Q 

3.5 2.5 0.235834 1.259416 0.274829 1.080720 0.255332 1.170068

6.5 2.5 0.190986 1.290113 0.242988 1.014017 0.216987 1.152065

9.5 2.5 0.586830 1.212255 0.586830 1.212255 0.586830 1.212255

3.5 5.0 0.366857 1.195554 0.458147 0.957328 0.412502 1.076441

6.5 5.0 0.265441 0.978384 0.273612 0.949164 0.269527 0.963774

9.5 5.0 0.483386 1.067227 0.483386 1.067227 0.483386 1.067227

3.5 7.5 0.399088 1.156531 0.493355 0.935549 0.446222 1.046040

6.5 7.5 0.363011 0.766083 0.235662 0.935549 0.299337 0.850816

9.5 7.5 0.363787 1.055894 0.363787 1.055894 0.363787 1.055894

 

 

 

 

 

 

 

 

 

 

 

Again the estimated susceptibilities are close to the true susceptibilities of 0.39 to 0.42 and the estimated 
Q values are all close to the true value of 1.0.  There is no apparent way to distinguish between the small 
cube-like bodies that approximate true dipoles and the plate-like sources. 
 

Engineering Assessment 

A conceptual block diagram for the ATMGS is shown in figure 17.  Components unique to the ATMGS 
are the Primary Drive Coil and the Active Drive Unit, which contains the Oscillator Circuitry and the 
Drive Current Circuitry.  The drive current circuit has links to the magnetometer control circuitry, for 
feedback control, and to the sample and hold in the data acquisition unit, for monitoring of the primary 
drive current.  The engineering assessment focused on the hardware requirements for the active drive 
unit and the primary drive coil. 
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Figure 17.  Conceptual block diagram of the ATMGS. 

 

Primary Signal Generator 

The object of this task is to design and specify an active constant current drive signal for the ATMGS.  
The requirements for the system are as follows: the system generates a constant amplitude sine wave 
magnetic signal of less than 100 Hz, the amplitude being at least 12 amperes peak (8.5 amperes root-
mean-squared); the amplitude should remain as constant as possible over a varying temperature range, 
with minimum distortion; and the coil should fit the existing TMGS cart.  In the event this last 
requirement changes, the calculations can be repeated for different coil geometries.  A conceptual block 
diagram of the active drive unit is given in figure 18. 
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Figure 18.  Conceptual block diagram of the active drive unit.  Subsystems are labeled NI/PXI, K, I, C, 
and T.  Kalman:  See section, “Possible Sources of Improvement (NI/PXI).” 

 
To achieve the design objective, the following specifications were developed for each subsystem: 
 
Coil Parameters (C) 
For this analysis a square coil having 45 inches (1.143 m) on a side with a 20-turn tight winding is 
assumed.  If a #10 gauge copper wire is used, the coil will have a resistance of approximately 0.3 Ω at 
20oC.  The resistance would increase to approximately 0.38 Ω at 60 oC.  The inductance of the coil 
would be 2.95 mH (Grover web site) giving a reactance of 1.22 Ω at 100 Hz.  Therefore, the total worst 
case impedance would be approximately 1.6 Ω at 60oC and 100 Hz signal input.  This coil design would 
deliver a peak moment magnitude of 15.68 A-m2. 
 
Amplifier Specifications (K) 
A standard class AB audio power amplifier can be used to drive the coil. A typical 4-ohm speaker has a 
dc (direct current) resistance of 3.3 Ω and an inductance of 2-5 mH.  The minimum impedance rating 
for most audio amplifiers is 4 Ω.  Therefore, a noninductive series resistor of approximately 1.7 Ω 
would be added to increase the overall load to 4 Ω, or 0.4 Ω for a 2 Ω load. With a 4 Ω load, the 
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amplifier would have to provide 289 watts of continuous power. Using the conventional two-times 
engineering margin, a 580-watt amplifier at a 4 Ω load is recommended. If a 2 Ω load amplifier is 
available, the wattage would be reduced to 290 watts.  A possible candidate is the Crown Micro-Tech 
2400 Professional Power Amplifier, which can supply 1,050 W into a 2 Ω load. 
 
Current Sensor (I) 
A standard audio amplifier is a constant voltage device.  To make it a constant current system, a voltage 
representing the output current is used as feedback.  Of the current monitoring devices available, a 
magneto resistive device provides the best linearity, zero crossing linearity, isolation and temperature 
compensation.  An example of such a device is the NT-15 from F.W. Bell.  It states a linearity of less 
than 0.1 percent and a bandwidth of 100 kHz. 
 
Sine Wave Source 
The existing National Instruments (NI) PXI system (National Instruments web site) can be used as a 
signal source for the sine wave.  The NI system can also be used as the feedback point.  This provides a 
flexible feedback system for possible improvement exploration, should that be necessary.  The 
inaccuracy of the raw sine wave in LabView (NI’s software development system) was measured at 5E-
10 for a 1-volt output or 0.5 ppb.  Using a 24-bit D/A to output the signal produces an uncertainty of 6E-
8 or 60 ppb.  A 16-bit D/A would be 1.5E-5 or 15 ppm.  
 
Temperature Control (T) 
Another factor requiring compensation would be the thermal expansion of the coil.  With a possible 
increase of 0.13 percent in area over a 40oC temperature range, a feedback control to adjust the current 
to compensate for this is needed.  A temperature probe providing feedback should accomplish this.  The 
resolution of an existing probe is 0.1oC. Over 40oC, this would give a resolution of one part per 1,000.  
This implies a resolution of 1.3E-6 or 1.3 ppm temperature compensation. 
 
Possible Sources for Improvement (NI/PXI) 
The use of the NI /PXI package to develop the appropriate feedback gains and summing allows for the 
possible use of a Kalman filter to increase the accuracy of the current.  A Kalman filter (Simon, 2003; 
Bishop, 2001; Cipra, 1993) provides increased accuracy in the presence of white (Gaussian) noise if the 
system is linear.  Such is the case for this system. 
 
For an active magnetic system, canceling the portion of the magnetic field from the primary drive coil 
would be necessary.  For an ATMGS with the drive coil surrounding the magnetometer array, the field 
strengths and gradients at the sensors would be considerable, as illustrated in figure 19.   
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Figure 19.  The black rectangle represents the array baseplate; the white rectangles represent fluxgate 
heads.  Magnetic field strength is plotted for a 1.0-m diameter coil (red) and a 1.5-m diameter coil 
(blue).  Arrows point to the field strength and gradient at the location of the z-component fluxgate axes. 
 
Three nulling methods are considered: numerical subtraction, a bucking coil, and use of the existing 
feedback coils contained in each ring core sensor. 
 
Numerical Subtraction 
From the design of the controlled sine wave generator, we would have an accurate measure of the drive 
current, hence an estimate of the field strength at the magnetometers.  Using the field strength value and 
scaling it, we can get a value for the field at the magnetometer’s heads.  As long as this field is in the 
range of the existing fields (mainly the Earth’s magnetic field), we can subtract it from the received 
signal. This method would be straightforward to implement in software or post-processing, and success 
could be accurately determined through laboratory experiments.  However, this method would be unable 
to compensate for unexpected changes in field strength or direction, such as would be caused by 
misalignment of the primary coil and the sensor array.  Mechanical deformations and misalignments are 
difficult to control during operation over real terrains.  Just as the sensor array must be calibrated in a 
controlled magnetic environment, the primary coil/array interaction would need to be calibrated in a 
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controlled setting.  Because it is not known how the ring-core fluxgate sensors would perform in a harsh 
magnetic environment (high fields, high gradients, high slew rate), this method is not recommended. 
 
Bucking Coil 
A bucking coil would be a separate coil encompassing the entire magnetometer array and driven by a 
scaled, reversed value of the drive current so as to provide a magnetic well where the drive fields are 
neutralized.  Several versions of this are possible. One would use the drive current with the coil wound 
in reverse and the number of turns adjusted to compensate for the difference in the area of the two coils. 
In principle this method is the best, because it would be simple to implement electronically.  Only one 
drive amplifier would be required, and there would be no additional software controls.  On the other 
hand, this method would be difficult to implement mechanically (the sensor array, the primary field coil, 
and the bucking coil would have to be maintained in rigid alignment), it would be difficult to tune or 
adjust, and it would be difficult to wind an accurate, large bucking coil and position it so that all 12 
magnetic axes are nearly nulled.  Furthermore, the primary coil/bucking coil/array interaction would 
need to be calibrated in a controlled setting. 
 
An alternative design would be to drive the bucking coil with another amplifier whose input signal is 
derived from the active drive unit.  This would offer easy current adjustment, with the possibility of 
adjusting the current dynamically.  However, two amplifiers are required, with more complexity in the 
electronics and software development.  Mainly because of difficulties with fabrication and mechanical 
stability, neither of these methods is recommended. 
 
Ring-Core Feedback 
 A variation on the bucking coil would be to use existing ring core feedback circuits and insert bucking 
currents directly to each magnetic field sensor (Magnes and others, 2003).  This scheme can provide 
current compensation to all 12 magnetic components without the need for a large external bucking coil.  
Individual bucking currents would be determined from empirical measurements (nulling tests) in a 
controlled magnetic environment.  Offsetting the advantage this method offers is increased electronic 
complexity and the possibility that tapping into the feedback circuit of the existing interface electronics 
would create unforeseen problems.  Because of its fundamental simplicity, this method is recommended 
as the first approach. 
 

Alternative Sensor Technologies 

In evaluating alternative fluxgate magnetometers, a literature review led to the following technical 
papers deemed most relevant to our engineering evaluation: 

• Advanced Composition Explorer (ACE) Magnetometer Instrument (MAG) (Bartol Research 
Institute, 1994) 

• Development, construction and analysis of the `Orsted' fluxgate magnetometer (Nielsen and 
others, 1995) 

• Digital detection and feedback fluxgate magnetometer (Piil-Henriksen and others,1996) 
• New kind of fluxgate magnetometer probe with enhanced electronic processing (Cruz and 

others, 1998) 
• Fluxgate: Tuned vs. untuned output (Ripka, 1998) 
• Portable fluxgate magnetometer (Ripka and Kaspar, 1998) 
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• Digital Fluxgate for the Astrid-2 satellite (Pedersen and Primdahl, 1999) 
• Ring-core flux-gate magnetometer with microprocessor (Kilić and others, 1999) 
• Magnetic field measurements in space: The NewMag Magnetometer (Bish and others, 2000) 
• Crossfield effect at fluxgate (Ripka and Billingsley, 2000) 
• Comparison of two digital fluxgate magnetometers developed for space application (Magnes and 

Auster, 2001) 
• A digital fluxgate magnetic sensor interface using sigma-delta modulation for weak magnetic 

field measurements (Kawahito and others, 2002) 
• The fluxgate ring-core internal field (Primdahl and others, 2002), and 
• A sigma-delta fluxgate magnetometer for space applications (Magnes and others, 2003). 

 
A miniaturized ATMGS is proposed based upon existing equipment and state-of-the-art practices 
described in the listed articles.  The system would consist of the existing Narod triaxial fluxgate heads 
and cables, a 24-bit analog-to-digital converter (A/D), a digital signal processor (DSP), a 24-bit digital-
to-analog converter (D/A) for the primary drive waveform and bucking-coil current feedback, and a 
wireless communication system to receive commands and send data to a remote computer. 
Commercial 24-bit A/D and D/A units are widely available and cost effective.  They can provide 
flexibility in determining the maximum quantization necessary from the input and feedback signal.  
They are capable of 200 kHz sample rates, should that be necessary.  If time and resources permit, the 
fluxgate interface electronics would be enhanced using one of the methods mentioned in the articles.  A 
DSP can be programmed from a LabView software program.  This provides quick turn-around during 
development.  It also provides an ability to try various methods of signal extraction.  For example, all 
even harmonics or just the 2nd harmonic, use of a FIR filter to cancel all odd harmonics or an analog 
bandpass filter or both, using a fast Fourier transform to analyze the received signal, use of a binning 
technique for feedback control, direct read-out without feedback, and adjustable bandwidth.  The unit 
could be set up to transmit the data wirelessly to a remote station using one of the current technologies 
such as Bluetooth, Wi-Fi, or ZigBee.  ZigBee might not handle the data volume required, but it would 
provide built-in data collision prevention from many sources. 
 
Other sensor types evaluated included the following: 

• Proton and Overhauser magnetometers are scalar instruments, heavy, high power; satellite 
Overhauser weights 1 kg and requires 3 W of power 

• High temperature SQUIDS have lower noise but require liquid nitrogen 
• Hall sensors are noisy and have temperature-dependent offsets 
• Magnetodiodes and magnetoresistors perform no better than Hall sensors of the same size 
• GMI (Giant Magnetoresistors and Giant Magnetoinductance) effects are weak and impractical 
• GMR (Giant Magnetoresistor) has parabolic characteristics and 4 percent hysteresis and 

nonlinearity, expensive electronic compensation is required 
• AMR (Anisotropic Magnetoresistors) work well in the flipping mode, but have high noise. 

 
Based upon the foregoing evaluation of current magnetic sensor technology, keeping the Narod 
Geophysics triaxial ring-core fluxgates in the ATMGS design is therefore recommended. 
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Conclusions 

In this research we have demonstrated the advantages of an active tensor magnetic gradiometer system 
(ATMGS) which operates as a dual-mode survey system.  In the first (static) mode, the ATMGS 
performs as a magnetic gradient system that provides both vector and total field magnetic 
measurements.  These data can be processed using conventional software based upon potential fields 
theory.  In the second (active) mode, the ATMGS measures the secondary magnetic fields produced by 
a primary field generator.  These secondary fields are caused by induced magnetic moments, which 
themselves are function of a target’s composition, location, and shape.  Spheroidal ferrous targets 
closely approximate intact UXO (unexploded ordnance).  Therefore, if a target produces secondary 
fields distinctive of a spheroidal body, it can be classified as UXO-like, as opposed to rod-like or plate-
like bodies.  We have shown that the ATMGS data can be inverted to obtain spheroidal dimensions, and 
that it is possible on this basis to distinguish between the different types of body geometry.  However, 
we have also shown that it is not possible to separate the induced and remanent moments of a 
magnetically permeable body using ATMGS data. 
 
Implementation of the ATMGS in hardware is feasible, but placing fluxgate magnetometers inside a 
powerful primary field coil poses difficult engineering problems.  Foremost is the need to partially or 
fully cancel the primary field at the location of the fluxgate cores.  The most sensible approach is to add 
a cancellation current directly to the fluxgate drive coil.  Whether this can be done successfully with 
existing feedback and interface electronics is unknown.  Designing and fabricating a solenoid centered 
on a large sensor array that can maintain structural rigidity during field deployment would require a 
major effort.  Furthermore, the primary coil/sensor array combination would have to be accurately 
calibrated to compensate for inorthogonalities and asymmetries.  Calibrating the TMGS has proven to 
be both troublesome and time-consuming.  Calibration data must be acquired at a controlled magnetic 
site using specialized experimental assemblies, and data processing to derive accurate calibration 
coefficients has not been streamlined. 
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