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1 Introduction

The goal of this work is to develop robust algorithms to precisely determine the position of a handheld

UXO sensor as it is swept above a suspected UXO object. It is critical that the sensor position be known

precisely because research results have established that one of the most important factors in using UXO

sensor data to characterize buried targets is precise knowledge of the sensor location and attitude while

the data are being collected.

To assist in tracking the sensor position, an inertial measurement unit (IMU) is integrated with the

sensor to record the sensor motion. Specifically, the sensor accelerations in the x-, y-, and z-coordinate

directions are recorded, as well as the rotation rates about those axes. The algorithms under development

are intended to determine the position and attitude of the handheld UXO sensor using the information

recorded by the IMU.

The IMU accelerometers and angular rate sensor are most accurate during different types of motion

and have different limitations. The accelerometer measurements are quite stable over long time periods,

but are prone to errors due to saturation in response to very quick motions. The angular rate sensors,

on the other hand, are quite accurate over short time periods, including during quick motions, but tend

to suffer from drift over long time periods. Thus, the angular rate sensor can be used to compensate for

the accelerometer saturation during quick motions and the accelerometer can be used to compensate for

the angular rate sensor drift over long time periods. Adaptive error mitigation algorithms, which exploit

these differences in the accelerometers and angular rate sensors are developed. These algorithms employ

a feedback loop to use the more accurate sensor (accelerometer or angular rate) to mitigate errors in the

less accurate sensor (accelerometer or angular rate).

System identification has been explored as a means to directly model the errors in the measured

quantities (acceleration and angular rate). In this approach, the IMU is viewed as a black box with some

unknown transfer function that relates the true quantity (acceleration or angular rate) to the quantity

reported by the IMU. In other words, in this approach the IMU is viewed as a filter that alters the true

accelerations and angular rates. System identification attempts to determine the transfer function of the

unknown filter from known input and output data, and thus model the relationship between the observed

data (output) and the ground truth (input(.
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Figure 1: Body frame and earth frame geometry. (X,Y) represent the earth frame coordinates

and (x’,y’) represent the body frame coordinates.

2 Iterative Integration Algorithm for Velocity Stabilization

The purpose of the velocity stabilization algorithm is to use the accelerometer and angular rate measure-

ments together to estimate the sensor’s velocity. Each of the sensors has its limitations. The accelerom-

eter measurements are quite stable over long time periods, but are prone to errors due to saturation in

response to very quick motions. The angular rate sensors, on the other hand, are quite accurate over

short time periods, including during quick motions, but tend to suffer from drift over long time periods.

The velocity stabilization algorithm uses both the accelerometer and the angular rate measurements to

produce a stabilized velocity. The stabilization algorithms presented here were inspired by application

notes obtained from XBow, the IMU manufacturer.

The velocity stabilization algorithm operates in the body frame, meaning the measured quantities

and the stabilized velocities are measured relative to the orientation of the IMU. After determining the

stabilized velocities in the body frame, they are transformed to the earth frame at which point they can be

compared to the ground truth. The relationship between the body frame and the earth frame is illustrated

in Fig. 1.

2.1 Angle (Attitude) Stabilization

An accurate estimate of the sensor’s attitude is important for determining the stabilized velocity because

the attitude of the sensor determines what part of the measured acceleration, if any, is due to gravity.

Here, the approach is described for estimating the pitch angle of the sensor. Estimation of the sensor

roll angle is achieved in a similar manner.

A block diagram illustrating the procedure for stabilizing the pitch angle is shown in Fig.2. In

this depiction, ∆tk denotes the sample separation, θe,pitch is the error signal used to correct the raw angle

θ̂pitch, and Kθ is an adjustable gain parameter. Selection of the gain parameter is described in the Sec. 2.3

After an estimate of the IMU attitude has been found, it is used to subtract the gravity component

from the measured accelerations. The corrected accelerations, with the estimate of the gravity compo-
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Figure 2: Iterative integration correction algorithm for pitch stabilization.

nent removed, can be expressed as

âx′ = ax′cos(θ̄pitch) (1)

ây′ = ay′cos(θ̄roll) (2)

where θ̄pitch and θ̄roll are the stabilized pitch angle and the stabilized roll angle.

2.2 Velocity Stabilization

The velocity stabilization algorithm operates in the body frame. After determining the stabilized velocity

in the body frame the attitude of the sensor is utilized to determine its position in the earth frame.

In the absence of IMU measurement noise, the true velocity of the EMI sensor along the y′ axis

can be determined from either the angular rate sensor data or the accelerometer data. The estimated

velocity inferred from the angular rates measurements is obtained by transforming the angular velocity

to a tangential velocity. In actuality, the IMU measurements contain noise. The resulting relationships

between the estimated velocities and the true velocity can be expressed as

V̂t = Vy′,0 + ng (3)

and

V̂y′ = Vy′,0 + na, (4)

where Vy′,0 denotes the true velocity along y′ direction in the body frame, V̂t represents the velocity

estimate from the angular rate sensor, V̂y′ is the velocity estimate from the accelerometer, ng represents

the noise of angular rate sensor, and na is the noise of accelerometer. Comparing these two quantities

yields an error signal Vy′,e that is used to stabilize the raw velocity V̂y′ . This is process is illustrated in

the block diagram shown in Fig. 3. In this schematic, ∆tk denotes the sample separation and Vy′,s is the

corrected velocity along y′ direction. It should be noted that this approach uses an iterative integration

method to calculate the velocity.

The velocity stabilization algorithm for the x′ direction, shown in Fig. 4, is similar. In order to

stabilize the velocity, two quantities are required, one derived from the accelerometer and one derived

from the angular rate sensor.

Recall that the gravity angles are computed from the accelerations by

θy′ = sin−1(ax′). (5)

Therefore, after stabilization, the angle can be used to determine the acceleration by

aθ = sin(θ̄pitch), (6)
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Figure 3: Iterative integration correction algorithm for velocity stabilization along the y′

axis.

where θ̄pitch denotes the stabilized pitch angle which can be expressed as a function of both wy′ and ax′

in discrete form, namely

θ̄pitch,i+1 = (1−Kθ)
(

θ̄pitch,i + wy′,i∆ti
)

+ Kθ sin−1(ax′), (7)

where Kθ is the adjustable gain, i = 1,2, · · · ,N and N represents the number of snapshots. This relation-

ship describes the algorithm depicted in the block diagram shown in Fig. 2.

Equations (5) and (6) imply that the acceleration aθ is more accurate than âx′ within short time

periods since the angular rate sensor can provide a more accurate measurement than the accelerometer

on a short time scale. Therefore, aθ , which relies primarily on the angular rate sensor, is used to

calculate the velocity on short time scales and âx′ , which is stable over long time periods, is used to

compute the velocity on long time scales. The iterative integration correction algorithm utilized both

of these quantities to produce the stabilized velocity Vx′,s which is stable over both short and long time

periods.

This relations used to stabilize the velocity along the x′ orientation can be expressed as

V̂x′ =

∫

âx′dt = Vx′,0 + na (8)

V̂θ =

∫

âθ dt = Vx′,0 + ng. (9)

The iterative integration correction algorithm for velocity along x′ orientation is shown in Fig. 4. Here,

V̂x′ is the integration of the measured accelerations along the x′ direction, V̂θ denotes the reference

velocity derived from the stabilized angle θ̄pitch, Vx′,e is the error signal, and Vx′,s is the stabilized velocity

in the x′ orientation.

The stabilized velocities are determined in the body frame (x′,y′) and must be utilized in conjunction

with the estimated sensor attitude to transform them to the earth frame (x,y). The velocities in the earth

frame can be written as

V̂x = V̂y′cos(θyaw)−V̂x′sin(θyaw) (10)

and

V̂y = V̂y′sin(θyaw)+V̂x′cos(θyaw). (11)

The stabilized positions in the earth frame are obtained by integrating of the stabilized velocities in the

earth frame:

P̂x =
∫

V̂xdt (12)
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Figure 4: Iterative integration correction algorithm for velocity stabilization along the x′

axis.

P̂y =

∫

V̂ydt (13)

where P̂x and P̂y denote the corrected positions along the x orientation and the y orientation in the earth

frame, respectively.

2.3 Gain Calculation

Each of the stabilization algorithms utilizes a gain parameter to scale the error signal. The performance

of the stabilization algorithm depends on the value of the gain parameter. For the angle stabilization, the

gain Kθ is analogous to the erection rate for a gyroscope. It is used to mitigate the error in the measured

angle which results from the tilt of the angular rate sensor so the true angle can be estimated in the earth

frame.

The optimal value for the gain depends on the noise characteristics of the sensors, so it can be deter-

mined only in the minimum mean square error (MMSE) sense. The method for determining the optimal

value for the gain parameter is the same for each of the iterative integration correction algorithms. This

is explained here using the velocity stabilization algorithm as an example. First, the case in which

there is a single non-adapting gain parameter, termed “Fixed K,” is considered. Then, the case in which

the gain parameter is permitted to vary depending on the characteristics of the sensor motion, termed

“Adaptive K,” is considered.

For the fixed gain case, the optimal gain parameter is calculated as

Kopt = min
K

E
[

(

V̂i −Vi

)2
]

= min
K

lim
N→∞

1

N

N

∑
i=1

(

V̂i −Vi

)2
, (14)

where V̂i, Vi, and N are the velocity estimate, the ground truth corresponding to V̂i, and the number of

samples, respectively.

This approach, which uses a single gain parameter for all time results in an algorithm that is straight

forward to implement. However, the characteristics of the sensor errors are a function of the sensor

motion, so it is anticipated that there would be an advantage to allowing the gain parameter to vary with

the sensor motion. In this case, the sensor motion can be partitioned into several distinct segments, where

each segment is associated with a particular type of motion, and a gain parameter is calculated for each

state. Examples of the partition of a path into segments are shown in Figs. 5 and 6 for the x-coordinate

and the y-coordinate, respectively. These figures illustrate the results of partitioning the sensor path

into three states; turning (blue circle), large acceleration (green asterisk), and small acceleration (red
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Figure 5: Example of the partition of the path along the x orientation.
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Figure 6: Example of the partition of the path along the y orientation.
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Figure 7: Example illustrating choosing Kx.

dot). This partition was done manually; automatic partitioning of the path into states is the subject of

current work.

Since each state of the sensor occupies a block of samples, the calculated K for the t th block of

samples can be expressed as

K̂t
opt = min

K

1

Nt

Nt

∑
i=1

(

V̂i −Vi

)2
(15)

where Nt is the number of samples in the t th block, ∑T
t=1 Nt = N, and T denotes the number of blocks.

Here we assume Nt is large enough to obtain a reasonable estimate of the gain parameter. We also

assume the manual segmentation of the path into states is accurate. Figures 7 and 8 show the root of the

mean square error (RMSE) versus the gain K. The red asterisk denotes the optimal K, which is used in

the following analysis of the measured data.
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2.4 Experimental Results

2.4.1 Sweeping Data

The sweeping measurements consist of the EMI sensor being swept in an arc to simulate the motion an

operator may make with it. The ground truth is taken from the video capture. The measured angular

rates and accelerations are low-pass filtered for D/A conversion, and then any bias in the measurements

is removed.

Figure 9 illustrates the velocities along the x axis in the earth frame after stabilization by the iterative

integration correction algorithm. The velocity along the y axis in the earth frame after correction by

the proposed scheme is shown in Fig. 10. The stabilized velocities closely follow the ground truth,

indicating that the proposed algorithm with either a fixed gain or an adaptive gain effectively avoids the

pitfalls associated with direct integration of the measured accelerations.

The estimated positions obtained by integrating the stabilized velocities are shown in Figs. 11

and 12. These results show that the adaptive gain provides a much better estimate of the sensor po-

sition than the fixed gain. Examining the error in the position estimates as a function of time, as shown

in Figs. 13 and 14, illustrates that the fixed gain algorithm is prone to error accumulation, while the

adaptive gain algorithm does not result in errors that increase with time. However, the remaining error

after applying the algorithm with an adaptive gain does appear to be related to the nature of the sensor

motion.

2.4.2 Linear Data

The linear measurements consist of the sensor moving back and forth in a straight line. Again, the

ground truth is taken from the video capture. The measured angular rates and accelerations are low-pass

filtered for D/A conversion, and then any bias in the measurements is removed.

Figures 15 and 16 illustrate the stabilized velocities in the x and y directions in the earth frame. The

estimated positions obtained by integrating the stabilized velocities are shown in Figs. 17 and 18 and the

errors follow in Figs. 19 and 20. Although the results obtained with the iterative integration correction

algorithms are better than the baseline, and, further, the algorithm with the adaptive gain performs better

than the algorithm with the fixed gain, the position estimates for the linear data are not as good as for

the sweeping data. The source of the errors, and approaches to reduce them are the subject of ongoing

research.
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Figure 9: Stabilized velocities along the x axis with adaptive K and fixed K algorithms.
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Figure 10: Stabilized velocities along the y axis with adaptive K and fixed K algorithms.
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Figure 11: Stabilized positions along the x axis with adaptive K and fixed K algorithms.
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Figure 12: Stabilized positions along the y axis with adaptive K and fixed K algorithms.
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Figure 13: Errors in stabilized positions along the x axis with adaptive K and fixed K algo-

rithms.
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Figure 14: Errors in stabilized positions along the y axis with adaptive K and fixed K algo-
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Figure 15: Calculated velocity along the x axis based on the linear data.
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Figure 16: Calculated velocity along the y axis based on the linear data.
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Figure 17: Calculated position along the x axis based on the linear data.
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Figure 18: Calculated position along the y axis based on the linear data.
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Figure 19: Estimation error of the position along the x axis based on the linear data.
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Figure 20: Estimation error of the position along the y axis based on the linear data.
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2.5 Summary

The iterative integration correction algorithm is an effective approach to improving the sensor position

estimates, particularly when the gain parameter is permitted to adapt to the nature of the sensor motion.

The position errors for the sweeping data are reduced to less than 5 cm. This approach has the benefit

of not making any a priori assumptions about the sensor motion; it is applicable to any sensor motion

path. However, it does assume that the sensor arm is pivoting about the point where the IMU is attached

to it, which may be an inaccurate assumption.
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3 Iterative Integration for Position Calculation

In this section, the iterative integration correction algorithm for calculating the attitude (angles), veloci-

ties, and positions of the hand-held UXO sensor system is presented. The proposed method proceeds in

three steps:

Step 1: Stabilize the pitch and roll angles and use them to remove the effect of gravity to find the true

accelerations in the body frame of the 2-D plane.

Step 2: Calculate the velocities and positions by using the iterative integration correction algorithm.

Step 3: Based on the white noise assumption of the measurement noise, calculate the fixed and adaptive

gains for the iterative integration correction algorithm.

3.1 Sensor Measurement Error Models

The accelerations, â, and angular rates, ω̂ , measured by the IMU in the body frame can be expressed as

âx = ax + bax + nax (16)

ây = ay + bay + nay (17)

âz = az + baz + naz (18)

and

ω̂x = ωx + bωx + nωx (19)

ω̂y = ωy + bωy + nωy (20)

ω̂z = ωz + bωz + nωz, (21)

where the subscripts x, y, and z denote the coordinate axis, a represents the true acceleration, ω repre-

sents the true angular rates, b represents the bias in the measurement, and n represents the measurement

noise, which is modeled as a white Guassian process.

Integration of measured accelerations and angular rates over time yields velocities and angles, and

double integration of accelerations over time produces the positions of the hand-held UXO sensor sys-

tem. Thus, for coordinate direction i the estimated velocity, V̂i, position, P̂i, and angle, θ̂i, are

V̂i = Vi +

∫

baidt +

∫

naidt (22)

P̂i = Pi +

∫ ∫

baidsdt +

∫ ∫

naidsdt (23)

θ̂i = θi +

∫

bω idt +

∫

nω idt, (24)

where Vi, Pi, and θi are the true velocity, positions, and angle along the coordinate direction i. (33)-(25)

indicate that the bias and sensor noise are the primary causes of divergence of the position estimates.

The bias affects the velocity and angle linearly with time, and the positions quadratically. Moreover,

the integration of the noise causes the variance of the estimate to increase proportional to the integration

time,

σ 2
n = t. (25)

This suggests the the integration of the noise creates a boundlessly growing error in the velocities,

positions, and angles determined by integrating the IMU sensor measurements.
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3.2 Stabilized Angle Calculation

To obtain an accurate estimate of velocity, we must first correctly estimate the tilt angles: pitch and roll,

and then combine these corrected tilt angles and the measurement accelerations to remove the effect of

gravity and therefore determine the true accelerations. The corrected accelerations allow us to accurately

calculate the velocities with an efficient method. Since the method for pitch angle estimation is the same

as for roll angle estimation, we only focus on the estimate of the pitch angle in this subsection.

Since a tilt sensor is capable of providing accurate angle measurements over long time periods

while the angular rate sensor can accurately sense the the angular velocity over short time periods, we

utilize the angular rate sensor to record angle changes on short time scales and use the accelerometer

as a tilt sensor to sense the tilt angles, and force the angular rate sensor derived tilt angle to slowly

match the accelerometer angles on long time scales. The algorithm for the pitch angle θx estimation is

described in Fig. 1 in Crossbow’s Application Note, “Measurement of a Vehicle’s Dynamic Motion,”

where ∆ti denotes the sample separation, eθx,i is the error signal and used to correct the raw angle

θ̂x,i = θ̄x,i + ŵy,i∆ti, θ̂ax,i is the reference pitch angle and Kθ is an adjustable gain parameter. Note that

the angular rate sensor sensing the angular velocity around y orientation gives the measurement of the

pitch angle changes, which is along x orientation. It is straightforward to use a similar method to obtain

the corrected roll angle θ̄y.
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Figure 21: Iterative integration correction algorithm for pitch angle calculation.

Consider the geometry shown in Fig. 22 where the body frame and the earth frame are confined to

the same 2-D plane, where R denotes the length of the arm of the hand-held UXO sensor system, xoy

is the coordinate system of the body frame and XOY is the coordinate system of the earth frame. After

calculating the stabilized tilt angles, i.e. θ̄x and θ̄y, we use them to correct the accelerations and thereby

obtain the true accelerations that are level relative to the earth. Thus, the corrected accelerations can be

written as

āx = âxcos(θ̄x) (26)

āy = âycos(θ̄y) (27)

where θ̄x and θ̄y are the stabilized pitch and roll angles, respectively.

3.3 Velocity Stabilization and Position Calculation

In the following discussion, we only consider the body frame shown in Fig. 22. After computing the

stabilized velocities in the body frame, we transform them to the earth frame by using the yaw angle
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and finally obtain the true position by directly integrating the corrected velocities in the earth frame over

time.

x

y

o

Y

X
O

R

z

Figure 22: Geometry of earth frame and body frame. xoy is the coordinate system of the

body frame and XOY is the coordinate system of the earth frame.

Noting that both the tangential velocity of the EMI sensor and the velocity of the IMU along the y

orientation equal the true velocity along y axes in the unbiased and noise-free case and considering (32)

and (33), we have the following relations

V̂t = ŵ ·R = w ·R + bwz ·R + nwz ·R

= Vt + bwz ·R + nwz ·R (28)

= Vy + bwz ·R + nwz ·R

V̂y = Vy +
∫

baydt +
∫

naydt (29)

where Vy =
∫

aydt denotes the true velocity along y direction in the body frame, V̂t = ŵz ·R represents

the estimate of the tangential velocity Vt = wz ·R and R is the length of the arm of the handheld UXO

sensor system, V̂y is the calculated velocity based on the acceleration measurement of the IMU along

y orientation. Comparing these two calculated velocities leads to an error signal eVy
= V̂t − V̂y. It is

notable that, on long time scales, the accelerometer is quite accurate to sense the acceleration; on short

time scales, however, the angular rate sensor is more sensitive than the accelerometer to the changes in

angular rate and therefore can provide accurate measurement of the tangential velocity in the y direction.

Therefore, we should mainly utilize the acceleration to calculate the velocity over long times and exploit

the short term stability of the angular rate sensor to keep the accelerometer drift in check. Thus this error

signal can be used to stabilize the raw velocity V̂y. This is illustrated in Fig. 23, where ∆ti denotes the

sample separation and V̄y,i+1 is the corrected velocity along y orientation. Accordingly, the calculated

incremental velocity at the ith iteration can be expressed as:

V̄y,i+1 = (1−Ky) (V̄y,i + āy,i∆ti)+ KyV̂t,i (30)
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where i = 1,2, · · · ,N and N represents the number of snapshots.
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Figure 23: Iterative integration correction algorithm for velocity stabilization along y axes.

Notice that the calculation of the tangential velocity Vt does not involve the integration method,

which indicates that there is no accumulated error in the process of calculating the tangential velocity.

This therefore can be helpful to improve the estimation performance of the velocity along y orientation.

To obtain the corrected velocity along x orientation, we must find another velocity resulting from

the angular rate sensor to stabilize the velocity along x orientation that is calculated by the measurement

of the accelerometer. Note that the gravity angles are computed from the accelerations:

θx = sin−1(ax). (31)

As is well known, the stabilized pitch angle θ̄x is responsive to the actual rotation of the hand-held UXO

sensor system, and relatively insensitive to its linear acceleration. Therefore, after stabilized, the pitch

angle can be used to determine the acceleration:

aθ = sin(θ̄x) (32)

which is quite sensitive to angular rate and relatively insensitive the linear acceleration, where θ̄x denotes

the stabilized pitch angle that can be written as a function of ŵy as well as âx in discrete form, namely

θ̄x,i+1 = (1−Kθ)
(

θ̄x,i + ŵy,i∆ti
)

+ Kθ sin−1(âx) (33)

where Kθ is the adjustable gain. The corresponding block diagram is shown in Fig. 21.

In the sequel, the acceleration aθ is more accurate than âx within short time period since the gyro-

scope can provide a more accurate measurement than the accelerometer on a short time scale. Thereby,

we use aθ that mainly relies on the angular rate sensor to calculate the velocity on short time scale

and use âx that is stable over long time period to compute the velocity on long time scale, and finally

producing the velocity calculation V̄x that is stable over both short and long times. This relation used to

stabilize the velocity along x orientation can be expressed as

∆Vx,i = āx,i∆ti = ax,i∆ti + bax,i∆ti + nax,i∆ti (34)

∆Vθ ,i = aθ ,i∆ti = ax,i∆ti + bθ ,i∆ti + nθ ,i∆ti (35)

where bθ ,i and nθ ,i are the bias and noise of the calculated pitch angle. The iterative integration cor-

rection algorithm for velocity along the x orientation is shown in Fig. 24, in which ∆Vθ denotes the
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reference incremental velocity resulting from the stabilized angle θ̄x, eVx
= V̂x −∆Vθ is the error signal

and V̄x,i+1 is the stabilized velocity along x orientation. Therefore, the incremental velocity along x

orientation is computed as:

V̄x,i+1 = (1−Kx)(V̄x,i + āx,i∆ti)+ Kx (aθ ,i∆ti) . (36)

Because the stabilized pitch angle is only capable of determining the acceleration rather than velocity,

only the incremental velocities derived from the stabilized pitch angle and the acceleration are compared

to produce the error signal eVx
, the correction ability of this scheme is not comparable to that depicted

in Fig. 23. Fortunately, the operator uses the hand-held UXO detector by the way of swinging it side

to side to detect the potential UXO targets in a relatively large region. Therefore, the linear motion of

the hand-held UXO sensor system is seldom encountered. Furthermore, in the final calculation of the

position of the hand-held UXO sensor system, we also consider the measurement error of the yaw angle

and the calculation error due to the integration of the stabilized velocities over time to compute the fixed

and adaptive gains for the correction loop of the iterative integration algorithm. Thus the calculation

error of positions of the hand-held UXO sensor system can be reduced as low as possible.

To obtain the true velocities in the earth frame, we must convert the stabilized velocities from the

body frame (xoy) to the earth frame (XOY ) by exploiting the yaw angle θ̂z. The velocities in the earth

frame can be written as

V̂X (Kx,Ky) = V̄y (Ky)cos(θ̂z)−V̄x (Kx) sin(θ̂z) (37)

V̂Y (Kx,Ky) = V̄y (Ky)sin(θ̂z)+V̄x (Kx)cos(θ̂z) (38)

where V̂X (Kx,Ky) and V̂Y (Kx,Ky) are a function of the adjustable gain Kx and Ky. The relationship

between the body frame and the earth frame is illustrated in Fig. 22. The stabilized positions in the earth

frame can be achieved by the direct integration of the corrected velocities over time:

P̂X (Kx,Ky) =
∫

V̂X (Kx,Ky)dt (39)

P̂Y (Kx,Ky) =

∫

V̂Y (Kx,Ky)dt (40)

where P̂X and P̂Y denote the corrected positions along X and Y orientations in the earth frame, respec-

tively.
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Figure 24: Iterative integration correction algorithm for velocity stabilization along x axes.
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3.4 Gain Calculation

3.4.1 Fixed Gain Calculation

In the case of angle stabilization, the gain Kθ is the erection rate. Just as its name suggests, the gain is

used to erect out the angle errors by moving the estimated angle more toward the angle measurements

derived from the accelerometer measurements. In this section we only focus on the calculation of the

gain for velocity stabilization. Because our final goal is to obtain an accurate position estimate of the

UXO sensor system, for the fixed gain case, we calculate the optimal gains K
(X)
x,opt and K

(X)
y,opt along X

orientation as
{

K
(X)
x,opt ,K

(X)
y,opt

}

= arg min
Kx,Ky

E
[

P̂X (Kx,Ky)−PX

]2

= arg min
Kx,Ky

lim
N→∞

1

N

N

∑
i=1

[

P̂X ,i (Kx,Ky)−PX ,i

]2
(41)

and the optimal gains K
(Y)
x,opt and K

(Y)
y,opt along Y orientation as

{

K
(Y)
x,opt ,K

(Y )
y,opt

}

= arg min
Kx,Ky

E
[

P̂Y (Kx,Ky)−PY

]2

= arg min
Kx,Ky

lim
N→∞

1

N

N

∑
i=1

[

P̂Y,i (Kx,Ky)−PY,i

]2
. (42)

Note that the optimal gains are calculated only in the training phase, and therefore will not increase the

computational burden of positioning the hand-held UXO sensor system in practical applications.

3.4.2 Adaptive Gain Calculation

Obviously, there is no one optimal gain for all types of sensor motion. Therefore, it is necessary to com-

pute the optimal gain for different types of motion to achieve more robust estimates of positions. While

[1] proposed the adaptive T-setting method to switch between two different gains for the computation of

angles, it did not present an efficient method to calculate the optimal gain. Moreover, the calculations

of position of vehicles are more complicated than the computation of attitude since the former involves

the stabilized angle calculation, acceleration correction as well as double integrations of the corrected

acceleration. So, even a small measurement error in the IMU measurements will result in a very large

calculation error in the position estimation.

To calculate the optimal gains in the training phase, we assume that the hand-held UXO sensor

system has two different states, namely abrupt or fast dynamic motion and smooth or slow dynamic

motion: the accelerations larger than the threshold γa or the angular rates larger than γω are deemed

to be in the fast dynamic motion state, otherwise, the accelerations and angular rates are considered to

be in the slow dynamic motion state. In the sequel, from (15) and (21) it follows that the incremental

velocities along x and y orientations can be expressed as

V̄x,i+1 =

{

(1−Ks
x) (V̄x,i + āx,i∆ti)+ Ks

x (aθ ,i∆ti) , āx,i<γa, ω̂y,i<γω ;
(

1−K
f

x

)

(V̄x,i + āx,i∆ti)+ K
f

x (aθ ,i∆ti) , āx,i≥γa, ω̂y,i≥γω .
(43)

and

V̄y,i+1 =

{ (

1−Ks
y

)

(V̄y,i + āy,i∆ti)+ Ks
yV̂t,i, āy,i<γa, ω̂z,i<γω ;

(

1−K
f

y

)

(V̄y,i + āy,i∆ti)+ K
f

y V̂t,i, āy,i≥γa, ω̂z,i≥γω .
(44)
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Thereby, after conversion from the body frame to the earth frame, the calculated velocity along the X

orientation in the earth frame is given by

V̂X

(

K
(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

)

= V̄y

(

K
(X),s
y ,K

(X), f
y

)

cos(θ̂z)−V̄x

(

K
(X),s
x ,K

(X), f
x

)

sin(θ̂z) (45)

and the computed velocity along the Y orientation in the earth frame is written as

V̂Y

(

K
(Y),s
x ,K

(Y), f
x ,K

(Y),s
y ,K

(Y), f
y

)

= V̄y

(

K
(Y),s
y ,K

(Y ), f
y

)

sin(θ̂z)+V̄x

(

K
(Y ),s
x ,K

(Y ), f
x

)

cos(θ̂z). (46)

Thus, the optimal gains along X and Y orientations can be found by

{

K
(X),s
x,opt ,K

(X), f
x,opt ,K

(X),s
y,opt ,K

(X), f
y,opt

}

= arg min
K

(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

E
[

P̂X

(

K
(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

)

−PX

]2

= arg min
K

(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

lim
N→∞

1

N

N

∑
i=1

[

P̂X ,i

(

K
(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

)

−PX ,i

]2

, (47)

and
{

K
(Y),s
x,opt ,K

(Y), f
x,opt ,K

(Y ),s
y,opt ,K

(Y), f
y,opt

}

= arg min
K

(Y ),s
x ,K

(Y ), f
x ,K

(Y ),s
y ,K

(Y ), f
y

E
[

P̂Y

(

K
(Y),s
x ,K

(Y ), f
x ,K

(Y ),s
y ,K

(Y ), f
y

)

−PY

]2

= arg min
K

(Y ),s
x ,K

(Y ), f
x ,K

(Y ),s
y ,K

(Y ), f
y

lim
N→∞

1

N

N

∑
i=1

[

P̂Y,i

(

K
(Y),s
x ,K

(Y ), f
x ,K

(Y ),s
y ,K

(Y ), f
y

)

−PY,i

]2

(48)

where

P̂X

(

K
(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

)

=

∫

V̂X

(

K
(X),s
x ,K

(X), f
x ,K

(X),s
y ,K

(X), f
y

)

dt (49)

and

P̂Y

(

K
(Y ),s
x ,K

(Y), f
x ,K

(Y ),s
y ,K

(Y), f
y

)

=

∫

V̂Y

(

K
(Y),s
x ,K

(Y), f
x ,K

(Y),s
y ,K

(Y), f
y

)

dt. (50)

After finding the optimal adaptive gains, we insert them into (28) and (29) to attain the stabilized velocity

calculations and then find the corrected position calculations by employing (30), (31), (34) and (35).

3.5 Experimental Results

3.5.1 Interpolation of Ground Truth Data

To apply the iterative integration correction technique to practical applications, we must compute the

gains in the training phase because the ground truth is unavailable in practical implementations. How-

ever, the ground truth is recorded by video tracks and its sample rate is generally not equal to that of the

measurement data, causing the number of samples in the ground truth to be different from the number in

the measurement data. In addition, the sample times of the measurement data are not aligned with those

of the video tracks either. These non-ideal conditions will lead to the misalignment errors the gains are

calculated. We here apply the interpolation method to ground truth and align the sample time of the

ground truth with that of the measurement data. Hence we can obtain the same number of the samples

of the ground truth as the measurement data and reduce the misalignment errors.
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3.5.2 Position Calculation

The measurements consist of the EMI being swept in an arc to simulate the motion an operator may make

with it. The ground truth is taken from the video capture. The measured angular rates and accelerations

are low-pass filtered for D/A conversion, and then any bias in the measurements is subtracted.

Fixed Gain Case In this case, the optimal gains are calculated by (26) and (27). Fig. 25 shows the root

mean square error (RMSE) of the calculated positions of the hand-held UXO sensor along X orientation

varying with the gains Kx and Ky. The top and bottom panels of Fig. 26 illustrate the RMSE versus Kx

and Ky, respectively. The star points denote the locations of the optimal gains. It is easy to see from

Fig. 25 and Fig. 26 that the gains do affect the estimation performance of the proposed method. On

the other hand, the RMSE is not very sensitive to the change of gains in a certain wide region around

the optimal gains, thereby allowing the optimal gains to be computed in the training phase and used to

calculate the position in practical applications.

Fig. 27 depicts the RMSE of computing the position of the hand-held UXO sensor system along Y

orientation versus the gains Kx and Ky. The top and bottom panels of Fig. 28 display the RMSE versus

Kx and Ky, respectively. The star points denote the locations of the optimal gains. From Fig. 28 we can

observe that the RMSE increases sightly only when the gains are not close to their optimal values. This

implies that the gains can be determined prior to being used to calculate the position of the hand-held

UXO sensor system in actual applications.
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Figure 25: Root of mean square error versus gains Kx and Ky for calculating position of

hand-held UXO sensor system along X orientation.

For comparison purpose, we firstly give the results of the conventional numerical integration method

as baseline in Fig. 29 and Fig. 30. Since the calculation errors of this technique for the computation of

velocity and position are very large, they are not plotted here. It is easy to see from Fig. 29 and Fig. 30
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Figure 26: Top panel: Root of mean square error versus gain Kx for calculating position

of hand-held UXO sensor system along X orientation. Bottom panel: Root of mean square

error versus gain Ky for calculating position of hand-held UXO sensor system along X ori-

entation.

that the conventional integration method fails to provide an efficient estimate for the positions of the

hand-held UXO sensor system due to the measurement errors of sensors. Fig. 31 illustrates the velocity

calculated by the iterative integration correction algorithm along X axes in the earth frame. The ground

truth of the velocity VX is also given for comparison. It is shown in Fig. 31 that the calculated velocity

is very close to its ground truth. The calculation error of the velocity VX is plotted in Fig. 32. It can be

observed from Fig. 32 that the calculation error of the velocity is quite small compared to that of the

baseline. Directly integrating the calculated velocity over time yields the estimate of position, which is

shown in Fig. 33. For comparison, the ground truth is also plotted. From Fig. 33 we can see that the

computed position is nearly completely equal to its ground truth PX . The hand-held UXO sensor system

is not very close to its truth track only when it moves in one single direction in the body frame. This lies

in the fact that in this case the hand-held UXO sensor system move straightly only in the x direction. The

calculation accuracy of the proposed method thereby only relies on the scheme for position calculation

along x orientation, and does not improve by the scheme along y orientation. The calculation error of the

position PX is given in Fig. 34. We can see from Fig. 34 that accumulated errors are nearly completely

removed and the estimation error is quite small compared to the baseline.

The velocity along the Y axis in the earth frame after correction by the proposed scheme is plotted

in Fig. 35, and its calculation error is given in Fig. 36. It can be observed that the new scheme works

very well and the error of the estimated velocity is small compared to the baseline. After integrating

the estimated velocity VY over time, we readily obtain the estimated position of the hand-held UXO

sensor system along Y orientation. The estimated positions along the Y axes is shown in Fig. 37. The

estimation error associated with the estimated position is illustrated in Fig. 38. From Fig. 37 and Fig. 38,
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Figure 27: Root of mean square error versus gains Kx and Ky for calculating position of

hand-held UXO sensor system along Y orientation.

it is easy to see that the new scheme can achieve a quite accurate estimate of the position PY .

Adaptive Gain Case Obviously, there is no one optimal gain for all cases. It is therefore necessary

to find the corresponding optimal gains for different cases. The adaptive optimal gains are calculated

by (38) and (39). In this experiment, we assume the threshold for acceleration is γa = 3inch/sec and

the threshold for angular rate is γω = 0.2rad/sec. In fact, it is quite difficult to determine the thresholds

for acceleration and the angular rate since they rely on the training data and the actual application.

Therefore, the adaptive gains presented in this experiment are optimal only for the given thresholds on

acceleration and angular rate. Fortunately, we can calculate the optimal gains based on the knowledge

of the actual implementation and data collected in the training phase prior to utilizing them in actual

applications.

Fig. 39 and Fig. 40 display the estimated velocity and its error along X in the earth frame. The

ground truth is also plotted for comparison. As is expected, the computed velocity is very close to its

ground truth. This therefore indicates that the proposed method is efficient for the calculation of velocity.

It is shown in Fig. 40 that the estimation error is much lower than that of the baseline shown in Fig. 30.

The calculated position is given in Fig. 41 and its calculation error is plotted in Fig. 42. From Fig. 41

we can observe that the hand-held UXO sensor system is very close to its truth track except when the

hand-held UXO sensor system moves linearly along x orientation. Actually, when moving in a single

direction, the hand-held UXO sensor system merely has the linear motion. Therefore, the proposed

method completely dependents on the calculation along x orientation in the body frame to determine the

position rather than the calculations from both x and y orientations. Thus, the calculation accuracy of the

proposed method in this case is not as high as the case when the hand-held UXO sensor system swings

from side to side. Fig. 42 implies that the calculation error of the proposed method for the position
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Figure 28: Top panel: Root of mean square error versus gain Kx for calculating position of

hand-held UXO sensor system along Y orientation. Bottom panel: Root of mean square error

versus gain Ky for calculating position of hand-held UXO sensor system along Y orientation.

along X orientation is very small and lower than that of the fixed gain case. The calculation error of

the position PX is only around 2.5cm. Comparing Fig. 34 with Fig. 42, we can find that the proposed

method is more accurate and robust in the adaptive gain case than in the fixed gain case because we

use two different gains for the fast and slow dynamic motions to calculate the velocities and positions

and thereby can reduce the accumulated error. Note that the hand-held UXO sensor system move quite

smoothly in this experiment, the improvement of the adaptive gain scheme over the fixed gains scheme

is thereby not very clear.

The stabilized velocity and its calculation error along Y orientation are shown in Fig. 43 and Fig. 44,

respectively. As is clearly depicted in Fig. 43, the calculated velocity is very close to its ground truth.

And the calculation error of the position PY shown in Fig. 44 is very small compared to the baseline.

The calculated position and its computed error along Y orientation are plotted in Fig. 45 and Fig. 46,

respectively. For comparison purpose, we also give the ground truth of the position PY . Fig. 45 shows

that the hand-held UXO sensor system is very close to its truth track as it swings from side to side.

However, when the hand-held UXO sensor system is only in a linear motion, the calculated position is

not as accurate as the case of the nonlinear dynamic motion. This is due to the fact that the proposed

method only relies on the scheme for the calculation of position along x orientation, and does not benefit

from the scheme for the calculation of position along y orientation. When the hand-held UXO sensor

system is in a swinging dynamic motion, however, the performance of the proposed method can be

improved by the two schemes for position calculation and thus achieve a more accurate estimation.

Fig. 46 shows that the calculation error of the estimated position PY is less than 1.8cm. Comparing

Fig. 38 with Fig. 46, we also can see that the proposed method is more accurate and robust in the

adaptive gain case than in the fixed gain case. Again, the improvement of the proposed method in
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Figure 29: Calculated velocity and position along X orientation directly using the conven-

tional integration method.

estimation performance for the adaptive gain case is due to the fact we find the more accurate gains

for the fast and slow dynamic motions of the hand-held UXO sensor system. Because the motion of

the hand-held UXO sensor system is relatively smooth in this experiment, the improved estimation

performance of the adaptive scheme is not dramatically better than that of the fixed gain scheme.

3.6 Summary

A correction algorithm has been developed to accurately calculate the position of the hand-held UXO

sensor system in this report. First, the tilt angles are computed and used to remove the effect of gravity

from the acceleration measurements to obtain the true accelerations that are level relative to the earth.

Utilizing the fact that the tangential velocity equals the velocity along the y orientation in the body frame

and the acceleration derived from the corrected pitch angle equals that recorded by the accelerometer

along the x axes in the body frame, we develop two iterative integration correction algorithms to cal-

culate the velocities. The stabilized velocities are converted from the body frame to the earth frame by

exploiting the yaw angle. Direct integration of the stabilized velocities in the earth frame leads to the

corrected positions. To obtain the accurate estimate of positions, we present algorithms to calculate the

fixed and adaptive gains based on the assumption of white noise. Experimental results from measured

sensor data imply that the proposed method is capable of positioning the hand-held UXO sensor sys-

tem. The estimation errors of positions are around 3cm along the X orientation and 2cm along the Y

orientation for the fixed gains case and around 2.5cm along the X orientation and 1.8cm along the Y

orientation for the adaptive gain case. Thus, the proposed method can provide the accurate calculations

for the positions of the hand-held UXO sensor system.
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Figure 30: Calculated velocity and position along Y orientation directly using the conven-

tional integration method.
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Figure 31: Stabilized velocity along X orientation with fixed optimal gains Kx = 1.9800 and

Ky = 0.2800.
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Figure 32: Calculated error of stabilized velocity along X orientation with fixed optimal

gains Kx = 1.9800 and Ky = 0.2800.
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Figure 33: Stabilized position along X axes with fixed optimal gains Kx = 1.9800 and Ky =
0.2800.
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Figure 34: Calculated error of stabilized position along X axes with fixed optimal gains

Kx = 1.9800 and Ky = 0.2800.
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Figure 35: Stabilized velocity along Y axes with fixed optimal gains Kx = 1.9000 and Ky =
1.8500.
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Figure 36: Calculated error of stabilized velocity along Y axes with fixed optimal gains

Kx = 1.9000 and Ky = 1.8500.
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Figure 37: Stabilized position along Y axes with fixed optimal gains Kx = 1.9000 and Ky =
1.8500.
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Figure 38: Calculated error of stabilized position along Y axes with fixed optimal gains

Kx = 1.9000 and Ky = 1.8500.
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Figure 39: Stabilized velocity along X axes with adaptive optimal gains K
(X),s
x = 1.9950,

K
(X), f
x = 1.5800, K

(X),s
y = 0.0950 and K

(X), f
y = 0.2600.
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Figure 40: Calculated error of stabilized velocity along X axes with adaptive optimal gains

K
(X),s
x = 1.9950, K

(X), f
x = 1.5800, K

(X),s
y = 0.0950 and K

(X), f
y = 0.2600.
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Figure 41: Stabilized position along X axes with adaptive optimal gains K
(X),s
x = 1.9950,

K
(X), f
x = 1.5800, K

(X),s
y = 0.0950 and K

(X), f
y = 0.2600.
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Figure 42: Calculated error of stabilized position along X axes with adaptive optimal gains

K
(X),s
x = 1.9950, K

(X), f
x = 1.5800, K

(X),s
y = 0.0950 and K

(X), f
y = 0.2600.
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Figure 43: Stabilized velocity along Y axes with adaptive optimal gains K
(Y),s
x = 0.5000,

K
(Y), f
x = 1.9900, K

(Y),s
y = 1.9900 and K

(Y ), f
y = 1.9000.
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Figure 44: Calculated error of stabilized velocity along Y axes with adaptive optimal gains

K
(Y),s
x = 0.5000, K

(Y ), f
x = 1.9900, K

(Y ),s
y = 1.9900 and K

(Y), f
y = 1.9000.
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Figure 45: Stabilized position along Y axes with adaptive optimal gains K
(Y),s
x = 0.5000,

K
(Y), f
x = 1.9900, K

(Y),s
y = 1.9900 and K

(Y ), f
y = 1.9000.
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Figure 46: Calculated error of stabilized position along Y axes with adaptive optimal gains

K
(Y),s
x = 0.5000, K

(Y ), f
x = 1.9900, K

(Y ),s
y = 1.9900 and K

(Y), f
y = 1.9000.
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4 Positioning of Handheld UXO Sensor via ZUPT Algorithm

Creating zero-velocity-update points in the data stream is a topic of interest in the applications of the

ZUPT algorithm. In general, the zero-velocity update is realized by simply bringing the target being

tracked to a complete stop. However, since the motion of the UXO sensor is not prescribed, there is

no efficient method to know the zero-velocity points in the positioning of the handheld UXO sensor.

Fortunately, the IMU measurements provide information regarding the zero-velocity points. The yaw

angular rate sensor provides a more reliable indicator than the accelerometer for the nonlinear motion

case, and the accelerometer provides a more reliable indicator than the angular rate sensor when the

IMU is moved linearly. Therefore, we can use the IMU measurements to determine the zero-velocity

points and apply the ZUPT algorithm to calculate the velocities of the handheld UXO sensor.

4.1 Velocity calculation

For sweeping motion, when the yaw angular rate equals zero, the velocities should also be equal to

zero. Fig. 47 gives the comparison of zero velocity points along X and Y orientations. From Fig. 47

we can observe that the yaw angular rate can provide accurate estimates of the zero velocity points for

sweeping (nonlinear) motion in X and Y directions. Moreover, we also can use the measurement of the

yaw angular rate to determine which motion the handheld UXO sensor is in, namely nonlinear or linear

motion. More specifically, the yaw angular rate is very small for the linear motion but quite large for

the nonlinear motion. The yaw angular rates for linear and nonlinear motions are shown in Fig. 48 and

Fig. 49. It is easy to see in Fig. 49 that the yaw angular rate is very large for nonlinear motion. However,

for linear motion, the yaw angular rate is quite small, as shown in Fig. 48.
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Figure 47: Comparison of zero ve-

locity points in X and Y directions.
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Figure 48: Yaw angular rate of linear

motion of handheld UXO sensor.

With the knowledge of zero velocity points given by the yaw angular rate, we can apply the ZUPT

algorithm to the estimated accelerations to obtain the velocity estimates along X and Y orientations.

However, the accumulated error of velocity due to the error of acceleration in the non-zero velocity

points will be still quite large. To remove the accumulated error in the non-zero velocity points, a

smoothing method is employed here. Assume that a raw acceleration after removing the deterministic
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Figure 49: Yaw angular rate of nonlin-

ear motion of handheld UXO sensor.
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Figure 50: Yaw angle calculation be-

fore de-trended and after de-trended.

bias offset, say âx, can be written as

âx = ax + nax. (51)

Integrating this acceleration over the period [τ1,τ2] results in a velocity estimate:

V̂x(τ2) = Vx(τ2)+
∫ τ2

τ1

nax(t)dt (52)

Suppose Vx(t) = 0, for a fixed time point t = τ1,τ2 (zero-velocity point). Therefore, we have

V̂x(τ2) =

∫ τ2

τ1

nax(t)dt,n̄ax△τ (53)

where △τ = τ2 − τ1 and n̄ax is a constant value. From (4), it follows that

n̄ax =
V̂x(τ2)

△ τ
(54)

Thus, the smoothed acceleration is given as

āx = ax + nax − n̄ax (55)

and the calculated velocity is expressed as

V̂x(t) =
∫ t

τ1

āx(s)ds

= Vx(t)+
∫ t

τ1

nax(s)ds− n̄ax·(t − τ1), t = [τ1,τ2] (56)

From (4) and (7), we see that when t = τ1,τ2, V̂x(t) = 0. When τ1 < t < τ2, V̂x(t) = Vx(t)+ ex(t), where

ex(t) =
∫ t

τ1
nax(s)ds− n̄ax·(t − τ1). Obviously, ex(t) is a small value for a reasonably short time t.

To obtain the true velocity in the earth frame, we must transform the calculated velocity from the

body frame to the earth frame. This transformation requires the yaw angle, which is obtained by in-

tegrating the yaw angular rate over time. Though the yaw angular rate is quite accurate for sweeping
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motion, the calculation of the yaw angle may be not accurate enough for an integration over a long

period. Normally, after low-pass filtering, the measured rate still needs to be de-trended to avoid a large

drift error in the yaw angle calculation. Fig. 50 illustrates the yaw angle calculations before de-trending

and after de-trending. From Fig. 50 we can see that there is not a large drift error in the yaw angle

calculation after de-trending.

After calculating the yaw angle, we can use it to transform the velocities from the body frame to

the earth frame. The relation between the body frame and the earth frame is given in Fig. 51. In the

following, the velocities in the earth frame can be written as

V̂X = V̂y cos(θ̂z)−V̂x sin(θ̂z) (57)

V̂Y = V̂y sin(θ̂z)+V̂x cos(θ̂z) (58)

where θ̂z =
∫

ŵzdt denotes the calculated yaw angle, V̂x and V̂y are the estimated velocities in the body

frame, V̂X and V̂Y are the estimated velocities in the earth frame.
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x y

Figure 51: Geometry of earth frame

and body frame. xoy is the coordinate

system of the body frame and XOY

is the coordinate system of the earth

frame.
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Figure 52: Example of zero-position-

update points. The solid lines are the

actual track of the sensor. The dash

lines are the coordinate axes of the

earth frame.

4.2 Position calculation

Obviously, directly integrating the estimated velocities over time will produce position estimates. How-

ever, if the calculated velocities are not accurate enough, the final position error will be still quite large.

In addition to the zero-velocity points, there are also many zero-position points at which the x-coordinate

is equal to 0 in our applications. An example of zero-position points is shown in Fig. 52. To further

reduce the position estimation error, we use the zero-position-update point to improve the performance

of positioning the handheld UXO sensor. Notice that when the yaw angle is zero, the positions of the

handheld UXO sensor are also exactly equal to zero for the sweeping motion in both X and Y directions.

Thereby, if the yaw angle can be accurately calculated, the zero-position points can also be accurately

determined. In the following, the smoothing method presented in the previous subsection for velocity

calculation can also be employed here to enhance the position calculation. Thus, we first utilize the

Stacy L. Tantum and Leslie M. Collins 40 Duke University



Signal Processing for Handheld Improvements May 22, 2007

calculated yaw angle to determine the zero-position points, then use the smoothing method to accu-

rately calculate the position of the handheld UXO sensor. The scheme for calculating the position of the

handheld UXO sensor is illustrated in Fig. 4.2.
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Figure 53: Scheme for positioning the handheld UXO sensor. ZVP denotes zero-velocity

points. ZPP is zero-position points. ZPPT represents the zero-position-update algorithm.

4.3 Experimental Results

The nonlinear measurements consist of the handheld UXO sensor being swept in an arc, similar to a

motion an operator may make with it. The linear measurements consists of the sensor moving back and

forth in a straight line. The raw measurements of the IMU are low-pass filtered and D/A converted. The
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deterministic bias offset is then removed from the measurements by calibration. Since the sample times

for the ground truth and IMU measurements are not identical, the ground truth is interpolated to the

sample times for the IMU measurements.

4.3.1 Results of sweeping motion

For comparison purpose, we use the results of the conventional numerical integration method as a base-

line, which are shown in Fig. 54 and Fig. 55. It can be observed from Fig. 54 and Fig. 55 that the

direct integration technique fails to correctly calculate velocities and positions, even though the deter-

ministic bias offset has been removed from the measurements. The following results are calculated

from the estimated accelerations, which are obtained by applying the estimated parametric model to the

raw accelerations. The zero-velocity points are determined by searching the points in the yaw angular

rate, which are nearly or completely equal to zero. Similarly, the zero-position points are obtained by

searching the points of the yaw angle calculation that equal or are close to zero.

The calculated velocity in the X direction is shown Fig. 56. The ground truth is also plotted for

comparison. From Fig. 56 we can see that the calculated velocity is very close to its ground truth,

thereby indicating that the ZUPT algorithm can accurately compute the velocity from the estimated

acceleration if the zero-velocity points are also accurately determined. However, the ZUPT algorithm

fails to correctly calculate the velocity from the raw acceleration, even though the zero velocity points

have been accurately obtained. This is clearly shown in Fig. 58. Note that the ZUPT algorithm will not

yield any calculated error at the zero velocity points, but will produce the error at the nonzero velocity

points. The velocities in the Y direction are plotted in Fig. 57 and Fig. 59, which are calculated from

the estimated acceleration and the raw acceleration, respectively. It is indicated in Fig. 57 and Fig. 59

that the ZUPT algorithm can accurately calculate the velocity from the estimated acceleration but fail to

correctly compute it from the raw acceleration, even though the zero-velocity points are well determined.
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Figure 54: Velocity calculated from

raw acceleration by the conventional

numerical integration. Sweeping mo-

tion.
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raw acceleration by the conventional

numerical integration. Sweeping mo-

tion.

Stacy L. Tantum and Leslie M. Collins 42 Duke University



Signal Processing for Handheld Improvements May 22, 2007

30 40 50 60 70 80 90
−80

−60

−40

−20

0

20

40

60

80

100

Time(sec)

V
X
(c

m
/s

ec
)

 

 
Calculated velocity
Ground truth

Figure 56: Calculated velocity along

X orientation based on estimated ac-

celeration. Sweeping motion.
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Figure 57: Calculated velocity along

Y orientation based on estimated ac-

celeration. Sweeping motion.
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Figure 58: Calculated velocity along

X orientation based on raw accelera-

tion. Zero velocity points are accu-

rately determined. Sweeping motion.
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Figure 59: Calculated velocity along

Y orientation based on raw accelera-

tion. Zero velocity points are accu-

rately determined. Sweeping motion.
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To demonstrate the role of the zero-position-update method in improving the position calculation,

we also give the results of directly integrating the estimated velocity. The position directly calculated by

the numerical integration technique along the X orientation is plotted in Fig. 60, and its error is shown

in Fig. 61. Meanwhile, the position calculated by the zero-position-update method is given in Fig. 62

and its calculation error is plotted in Fig. 63. Comparing Fig. 61 and Fig. 63 we can see that the results

of the zero-position-update method are more accurate than that of the direct integration. The maximum

error of the estimated position is only around 2.5cm in X direction for the zero-position-update method,

which is much less than that of the direct integration technique. Fig. 64 and Fig. 65 show the results

of the direct integration method. Fig. 66 and Fig. 67 give the position and calculation error of the

zero-position-update method along Y orientation. From Fig. 65 and Fig. 67, we also can see that the

zero-position-update method can further improve the accuracy of positioning the handheld UXO sensor

in the Y direction. The maximum error of position calculation is less than 2cm.
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Figure 60: Position along X orien-

tation calculated from the estimated

velocity by direct integration method.

Sweeping motion.
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Figure 61: Position error along X ori-

entation calculated from the estimated

velocity by direct integration method.

Sweeping motion.
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Figure 62: Position along X ori-

entation calculated from the es-

timated velocity by zero-position-

update method. Sweeping motion.
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Figure 63: Position error along X

orientation calculated from the es-

timated velocity by zero-position-

update method. Sweeping motion.
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Figure 64: Position along Y orien-

tation calculated from the estimated

velocity by direct integration method.

Sweeping motion.
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Figure 65: Position error along Y ori-

entation calculated from the estimated

velocity by direct integration method.

Sweeping motion.
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Figure 66: Position along Y ori-

entation calculated from the es-

timated velocity by zero-position-

update method. Sweeping motion.

30 40 50 60 70 80 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time(sec)

E
rr

or
 o

f P
Y
(c

m
)

Figure 67: Position error along Y

orientation calculated from the es-

timated velocity by zero-position-

update method. Sweeping motion.
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4.3.2 Results of linear motion

The sweeping motion creates a scenario in which the angular rate sensor has a quantity to measure. Thus,

the angular rate data can provide accurate information regarding the zero-velocity points. However,

for linear motion, the yaw angular rate is very small and will not change with the linear motion of

the handheld UXO sensor. Therefore, the zero-velocity points cannot be determined merely by the

yaw angular rate. Fortunately, the accelerometer measures a significant quantity for linear motion.

Therefore, we can determine the zero-velocity points by comparing the acceleration and its integration

quantity. Ideally, The time points at which both the acceleration and its integration are equal to zero can

be considered as the zero-velocity points. Since the acceleration is reasonably accurate for this purpose,

its integration will not lead to a large drift error after de-trending. Thus, the zero-velocity points can

be determined directly from the measured acceleration. The method for determining the zero-velocity

points is illustrated in Fig. 4.4, in which the circle points are potential zero-velocity points obtained

from the acceleration, the star points are the possible zero-velocity points determined by the calculated

velocity. By comparing the circle points with the star points, we can determine the zero-velocity points

accurately. On the other hand, the zero-velocity points along the Y orientation are still obtained by the

yaw angular rate since angular rate sensor is more sensitive to the dynamic motion of the handheld UXO

sensor than the accelerometer. Fig. 4.4 give the ground truth of linear motion. We can observe from

Fig. 4.4 that there exist many zero-position points in the linear motion. Thereby, we can employ these

zero-position points to further improve the accuracy of position calculation.

For comparison, we plot the baselines in Fig. 70 and Fig. 4.4, which are obtained by directly in-

tegrating the raw measurements over time, one time for velocity calculation and twice for position

computation. It can be observed from Fig. 70 and Fig. 4.4 that the numerical integration method fails

to correctly calculate the velocities and positions for the linear motion case. However, with accurate

estimates of acceleration and zero-velocity points, the ZUPT algorithm can accurately compute the ve-

locities along X and Y orientations, which are shown in Fig. 72 and Fig. 73. The angular rate is utilized

to determine the zero-position points in the X direction. However, the zero-position points cannot be

obtained from the angular rate along the Y orientation, and thereby the ZPPT method cannot be em-

ployed to compute the position PY . Fortunately, since the velocity can be accurately calculated from

the accurate measured acceleration, directly integrating the estimated velocities VY over time leads to an

accurate position estimation in Y direction. The estimated positions in X and Y directions are plotted

in Fig. 74 and Fig. 75, respectively. Fig. 74 and Fig. 75 indicate that the positions can be accurately

computed by the proposed scheme. Accordingly, the calculated position errors are given in Fig. 76 and

Fig. 77. It is shown in Fig. 76 and Fig. 77 that the calculated position errors are quite small, only around

0.45cm in X direction and around 2.5cm along Y orientation.

4.4 Summary

This report presented an efficient method for positioning the handheld UXO sensor. This method pro-

ceeds in four steps: First, determining a dynamical system model between the measured acceleration

and its ground truth in the training phase and then apply this model to the measurements to improve the

acceleration estimates. Second, exploiting the yaw angular rate to determine the zero-velocity points for

nonlinear motion, and the acceleration and its integration quantity to find the zero-velocity points for

linear motion, and then implement the ZUPT algorithm to calculate the velocities. Third, the calculated

velocities are transformed from the body frame to the earth frame. Finally, since there are many zero-

position points in the nonlinear motion of the handheld UXO sensor, which can be determined by the

yaw angle, similarly to the ZUPT algorithm, we employ these zero-position points to further improve
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the position accuracy. Experimental results obtained with the measured laboratory quality data indicate

that the method is capable of accurately positioning the handheld UXO sensor.
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numerical integration. Linear motion.
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Figure 72: Calculated velocity along

X orientation based on estimated ac-

celeration. Linear motion.
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Y orientation based on estimated ac-

celeration. Linear motion.
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Figure 74: Calculated position along

X orientation based on estimated ac-

celeration. Linear motion.
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Y orientation based on estimated ac-

celeration. Linear motion.
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5 System Modeling for Improved Acceleration Estimation

In this section, system identification techniques are applied to improve the acceleration estimates. As

mentioned in the previous reports, the errors of the raw acceleration measurements generally consist

of a deterministic bias offset and a stochastic term. The deterministic bias offset can be calculated and

subtracted from the raw measurement. The random noise, however, cannot be removed or reduced by a

calibration procedure. The accuracy of positioning the handheld UXO sensor is expected to be improved

by improving the acceleration estimate.

Consider the system identification problem shown Fig. 5. In general, system identification methods

are classified into two types: nonparametric identification methods and parametric identification meth-

ods. Nonparametric methods typically involve correlation analysis, which estimates a system’s impulse

response, and spectral analysis, and calculates a system’s frequency response. Parametric methods gen-

erally include determining a suitable polynomial model relating the input to the output and estimating

the model parameters. In this report, only parametric methods are considered.

( )u t ( )y t

( )e t

Figure 78: Black box structure. u(t) is the input, y(t) denotes the output and e(t) represents

the model error.

5.1 Parametric methods for system identification

The most general polynomial model is given by

A(q)y(t) =
B(q)

F(q)
u(t)+

C(q)

D(q)
e(t) (59)

where A(q), B(q), C(q), D(q) and F(q) are polynomials in which q denotes the time-domain shift

operator, e.g. q−1u(t) = u(t − 1). In practice, this structure is often too general and one or several

polynomials are often set to zero or unity. The polynomials in 59 are expressed in the following long-

hand and short-hand notations as

A(q) = 1+
na

∑
i=1

aiq
−i = [1,a1, · · · ,ana]

B(q) = b0 +
nb

∑
i=1

biq
−i = [1,b1, · · · ,bnb]

C(q) = 1+
nc

∑
i=1

ciq
−i = [1,c1, · · · ,cnc]

D(q) = 1+
nd

∑
i=1

diq
−i = [1,d1, · · · ,dnd ]

F(q) = 1+
n f

∑
i=1

fiq
−i = [1, f1, · · · , fn f ]
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By fixing one or some polynomials above to zero or unity, the structures listed in Table 1 are obtained, in

which ARMAX means autoregressive moving average with exogenous inputs, ARX means autoregres-

sive with exogenous inputs, OE means output-error, ARMA means autoregressive moving average and

AR means autoregressive. Among these structures, only ARX, ARMAX and OE models are suitable

for this application. The ARX and ARMAX models have some advantages over the other models. The

estimation of the ARX model is the most efficient of the polynomial estimation methods because it is the

result of solving linear regression equations in analytic form. In addition, the solution is unique, mean-

ing the solution always satisfies the global minimum of the loss function. Compared with the ARX

model, the ARMAX model provides more flexibility for the stochastic dynamics. However, the AR-

MAX model and the OE model involve iterative, nonlinear optimization in the identification procedure.

They require excessive computation time and the minimization can get stuck at a false local minimum,

especially when the order is high and the signal-to-noise ratio is low. Therefore, we only focus on the

ARX model in this report. The comparison between the ARX model and the ARMAX model will be

given in the next subsection.

Model Equations

ARMAX A(q)y(t) = B(q)u(t) + C(q)e(t)
ARX A(q)y(t) = B(q)u(t) + e(t)
OE F(q)y(t) = B(q)u(t) + F(q)e(t)

ARMA A(q)y(t) = C(q)e(t)
AR A(q)y(t) = e(t)

Table 1: Polynomial models.

5.2 Model parameter estimation and its applications to acceleration enhancement

As mentioned previously, the input of the black box may be the acceleration, its difference and in-

tegration. Accordingly, the output should be their desired quantities. All the possible input/output

combinations are considered and their results are compared to determine which case is the most suitable

for this application.

These models can be easily determined by the system identification toolbox in Matlab. The order of

the ARX model is determined by the Akaike information criterion (AIC), and the parameters of the ARX

model are calculated in the least squares sense. Fig. 79 and Fig. 80 give the estimated accelerations for

the case where the input of the black box is the measured acceleration while the output is the difference

of its ground truth. In this report, some block of the ground truth, namely samples from 1000 to 4500,

is used as the training data. The total number of samples in the measurements is 5700. The lower case

{x, y, z} denotes the axis directions of the body frame and the upper case {X , Y, Z} represents the axis

directions of the earth frame. From Fig. 79, it can be observed that the measured acceleration along the x

orientation is nearly completely different from its ground truth. However, the estimate is very close to its

ground truth. Especially for the acceleration along y orientation, its estimate is almost completely equal

to its ground truth and much more accurate than its measurement. See Fig. 80, where [8 7 2] represents

na = 8, nb = 7 and nk = 2, and nk denotes the delay from the input to the output. However, for the

cases where the input is the measured acceleration while the output is true acceleration or velocity, the

results are poorer than that of Fig. 79 and Fig. 80, which are plotted in Fig. 81 – Fig. 84. These results

indicate that the first case is the most suitable among them, in which the measurement is the input while

the difference of its ground truth is the output. This is due to the fact that in this case the dynamical

system models the difference relation between the input and the output, thereby implying there is no

Stacy L. Tantum and Leslie M. Collins 52 Duke University



Signal Processing for Handheld Improvements May 22, 2007

accumulated error from the input to the output. Thus, the model is more accurate to determine for this

case than for the other cases.
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Figure 79: Estimated acceleration

along x orientation. ameas is input and
d
dt

atrue is output. na = 8, nb = 7 and

nk = 2.
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Figure 80: Estimated acceleration

along y orientation. ameas is input and
d
dt

atrue is output. na = 7, nb = 6 and

nk = 5.
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Figure 81: Estimated acceleration

along x orientation. ameas is input and

atrue is output. na = 6, nb = 1 and

nk = 1.
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Figure 82: Estimated acceleration

along y orientation. ameas is input and

atrue is output. na = 4, nb = 6 and

nk = 2.

Normally, the ARMAX model is determined by trial and error. At first, we should employ corre-

lation analysis to determine the delay from the input to the output of the dynamical system. Secondly,

we obtain useful information about the model order by observing the the number of resonance peaks

in the nonparametric frequency response function. Generally, the number of peaks in the magnitude

response equals half the order of A(q). Finally, we use the method of trial and error to find the suitable

orders for the polynomials B(q) and C(q) by checking the autocorrelation function (ACF) and partial

autocorrelation function (PACF). Fig. 85 gives the results of correlation analysis and spectral analysis.
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Figure 83: Estimated acceleration

along x orientation. ameas is input and

vtrue is output. na = 4, nb = 6 and

nk = 2.
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Figure 84: Estimated acceleration

along y orientation. ameas is input and

vtrue is output. na = 4, nb = 3 and

nk = 1.

The estimated accelerations along x and y orientations are shown in Fig. 86 and Fig. 87, respectively. It

is indicated in Fig. 86 and Fig. 87 that the accelerations also can be accurately estimated by correctly

establishing a ARMAX model. However, by comparing Fig. 79 and Fig. 80 with Fig. 86 and Fig. 87,

we can see the ARMAX model has no advantage over the ARX model in the estimation accuracy of

acceleration. Furthermore, the determination of the order of the ARMAX model is more difficult than

that of the ARX model.

5.3 Summary

System identification has been explored as a method to mitigate IMU measurement errors. After deter-

mining a system model that relates the measured data to the ground truth, the effects of the IMU system

can be reversed so that the original data is recovered. This is similar to identifying an unknown filter

and then applying an inverse filter to obtain the original data. This approach shows promise for reducing

IMU measurement errors
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Figure 85: Correlation analysis and spectral analysis for ARMAX model.
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Figure 86: Estimated acceleration

along x orientation. ameas is input and
d
dt

atrue is output. na = 5, nb = 8,

nc = 5 and nk = 1.
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Figure 87: Estimated acceleration

along y orientation. ameas is input and
d
dt

atrue is output. na = 11, nb = 11,

nc = 11, and nk = 3.
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6 Board Data Processing (July 2006)

The adaptive error mitigation and system identification algorithms are applied to the “Board Data”

measured in July 2006. This data set, provided by AETC/SAIC, was collected with the ArcSecond

system providing the ground truth. This is a departure from previous data sets where the ground truth

was determined via video capture.

There are four individual data collections, labeled ’AA’, ’BB’, ’CC’, and ’DD’. The ArcSecond

ground truth for each data collection is shown in Figs. 88 though 91. With the exception of data col-

lection ’AA’, the IMU was generally moved in a sweeping motion consistent with handheld sensor

operation. Data collection ’AA’ consists of two segments. In the first segment, the IMU is subjected

to angular rotations (pitch, roll, and yaw) while remaining approximately stationary in (x,y,z). In the

second segment, the IMU is moved in a sweeping motion.

6.1 Adaptive Error Mitigation Algorithms

The adaptive error mitigation algorithms were applied to the measured IMU data. The raw accelerations

after pre-processing (D/A conversion, bias removal, and trend removal) are shown in Fig. 92. The

stabilized velocities and attitude angles (roll, pitch, yaw) follow in Figs. 93 and 94, respectively. The

stabilized velocities are compared to the ground truth (in the Earth frame) in Figs. 95 though 98.

This data collection was not constrained as previous data sets were. Specifically, the sweeping

motion was not constrained to follow an arc with a known radius about a fixed pivot point. Previous

algorithms utilized knowledge of the constraints on the motion. Therefore, the stabilization algorithms

had to be modified so they no longer relied on prior knowledge such as the radius of the sweeping arc.

With this change, the stabilization algorithms are not different for each of the orientations. This change

in the nature of the motion also removed the ability to use zero-position-points to improve the position

estimates. It is still possible to use zero-velocity-points within the algorithms, however, under some

mild assumptions. It is assumed that when the rates of change in all accelerations are very small for an

extended length of time (on the order of several seconds), the IMU is stationary. The rate of change in

the accelerations is utilized rather than the accelerations because it was observed that the accelerations

were not always zero when the IMU was stationary, but they were consistently a steady value. It is

possible for this assumption to be violated if the IMU is truly experiencing constant acceleration. Given

the likely dynamics of the problem, however, it is anticipated that this assumption will not be violated

in typical situations.

The estimated positions (in Earth frame), obtained by integrating the stabilized velocities, are pre-

sented in Figs. 99 through 102. The estimated positions for this data collected are not as accurate as

for previous data collections. (There is a scale/magnitude difference that could not be reconciled). The

estimates show some qualitative resemblance to the ground truth measured by the ArcSecond system,

but performance falls significantly below the desired positioning accuracy.
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Figure 88: ArcSecond ground truth for data set ’AA’.
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Figure 89: ArcSecond ground truth for data set ’BB’.
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Figure 90: ArcSecond ground truth for data set ’CC’.
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(d) (X,Y) Position.
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Figure 91: ArcSecond ground truth for data set ’DD’.
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(a) AA: X Acceleration.
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(b) AA: Y Acceleration.
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(c) AA: Z Acceleration.
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(d) BB: X Acceleration.
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(e) BB: Y Acceleration.
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(f) BB: Z Acceleration.
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(g) CC: X Acceleration.
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(h) CC: Y Acceleration.
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(i) CC: Z Acceleration.
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(j) DD: X Acceleration.
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(k) DD: Y Acceleration.
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(l) DD: Z Acceleration.

Figure 92: Measured accelerations after pre-processing.
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(a) AA: Stabilized X Velocity.
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(b) AA: Stabilized Y Velocity.
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(c) AA: Stabilized Z Velocity.
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(d) BB: Stabilized X Velocity.
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(e) BB: Stabilized Y Velocity.
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(f) BB: Stabilized Z Velocity.
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(g) CC: Stabilized X Velocity.
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(h) CC: Stabilized Y Velocity.
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(i) CC: Stabilized Z Velocity.
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(j) DD: Stabilized X Velocity.
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(k) DD: Stabilized Y Velocity.
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(l) DD: Stabilized Z Velocity.

Figure 93: Stabilized velocities after bias and trend removal.
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(a) AA: Stabilized Roll.
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(b) AA: Stabilized Pitch.
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(c) AA: Stabilized Yaw.
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(d) BB: Stabilized Roll.
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(e) BB: Stabilized Pitch.
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(f) BB: Stabilized Yaw.
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(g) CC: Stabilized Roll.

−50 0 50 100 150 200 250
−40

−30

−20

−10

0

10

20

30

Time [s]

S
ta

bi
liz

ed
 A

ng
le

 [d
eg

]

Stabilized Pitch − Data Set CC

(h) CC: Stabilized Pitch.
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(i) CC: Stabilized Yaw.
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(j) DD: Stabilized Roll.
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(k) DD: Stabilized Pitch.
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(l) DD: Stabilized Yaw.

Figure 94: Stabilized attitude angles (roll, pitch, yaw) after bias and trend removal.
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(a) Stabilized X velocity.
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(b) Stabilized Y velocity.

0 50 100 150 200 250 300
−10

−5

0

5

10

Time [s]

V
el

oc
ity

 [m
/s

]

ArcSecond Truth

Stabilized Z Velocity (Earth Frame) − Data Set AA

−50 0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

Time [s]

V
el

oc
ity

 [m
/s

]

IMU Estimate

(c) Stabilized Z velocity.

Figure 95: Stabilized velocities (in Earth frame) and comparison to ground truth for data set

’AA’.
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(a) Stabilized X velocity.
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(b) Stabilized Y velocity.
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(c) Stabilized Z velocity.

Figure 96: Stabilized velocities (in Earth frame) and comparison to ground truth for data set

’BB’.
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(a) Stabilized X velocity.
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(b) Stabilized Y velocity.
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(c) Stabilized Z velocity.

Figure 97: Stabilized velocities (in Earth frame) and comparison to ground truth for data set

’CC’.
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(a) Stabilized X velocity.
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(b) Stabilized Y velocity.
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(c) Stabilized Z velocity.

Figure 98: Stabilized velocities (in Earth frame) and comparison to ground truth for data set

’DD’.
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(a) Estimated X position.
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(b) Estimated Y position.
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(c) Estimated Z position.

Figure 99: Estimated positions (in Earth frame) and comparison to ground truth for data set

’AA’.
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(a) Estimated X position.
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(b) Estimated Y position.
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(c) Estimated Z position.

Figure 100: Estimated positions (in Earth frame) and comparison to ground truth for data

set ’BB’.
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(a) Estimated X position.
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(b) Estimated Y position.
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(c) Estimated Z position.

Figure 101: Estimated positions (in Earth frame) and comparison to ground truth for data

set ’CC’.
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(b) Estimated Y position.
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(c) Estimated Z position.

Figure 102: Estimated positions (in Earth frame) and comparison to ground truth for data

set ’DD’.
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6.2 System Identification Algorithms

The system identification algorithms were applied to the measured IMU data. The parameter estima-

tion routines, however, failed to converge and produce viable estimates of the underlying system that

modifies the true accelerations to produce the accelerations reported by the IMU. The true accelerations

versus the IMU measured accelerations are shown in Figs.103 through 106. These figures illustrate that

there is no clear relationship between the true and measured accelerations.

6.3 Summary

Adaptive error mitigation and system identification algorithms were applied to the board data collected

in July 2006. Prior to applying the adaptive error mitigation algorithms, they were modified to eliminate

the reliance on prior knowledge of the system’s motion. Specifically, the assumptions of either linear

motion or motion in a perfect arc of known radius about a fixed pivot point were removed. Processing

this data produced results which do not meet the desired sensor positioning performance. It is believed

that not having access to prior knowledge regarding the sensor’s motion adversely impacted algorithm

performance.
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(a) AA: X Acceleration.
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(b) AA: Y Acceleration.
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(c) AA: Z Acceleration.

Figure 103: Comparisons of true and measured accelerations (in IMU body frame) for data

set ’AA’.
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(a) BB: X Acceleration.
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(b) BB: Y Acceleration.
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(c) BB: Z Acceleration.

Figure 104: Comparisons of true and measured accelerations (in IMU body frame) for data

set ’BB’.
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(a) CC: X Acceleration.
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(b) CC: Y Acceleration.
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(c) CC: Z Acceleration.

Figure 105: Comparisons of true and measured accelerations (in IMU body frame) for data

set ’CC’.
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(a) DD: X Acceleration.
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(b) DD: Y Acceleration.
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(c) DD: Z Acceleration.

Figure 106: Comparisons of true and measured accelerations (in IMU body frame) for data

set ’DD’.
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7 APG SAINT Data Processing (September 2006)

The adaptive error mitigation and system identification algorithms are applied to the “APG SAINT

Data” measured in September 2006. This data set, provided by AETC/SAIC, was collected with a

third vendor’s (ENSCO’s) IMU and with the ArcSecond system providing the ground truth. ENSCO’s

processed IMU data agrees very well with the ArcSecond ground truth. The goal of processing this data

set was to test the algorithms developed thus far by comparing their results to the ENSCO’s processed

IMU data.

There were two data collections, morning and afternoon, and each data collection consists of 5 data

sets. The ArcSecond ground truth for each data collection is shown in Figs. 107 through 116. Each data

set consists of the sensor starting in a fixed location, being swept about as if measuring data above a

target of interest, and then returning to the fixed starting location.

7.1 Adaptive Error Mitigation Algorithms

The adaptive error mitigation algorithms were applied to the measured IMU data. The raw accelerations

after pre-processing (D/A conversion, bias removal, and trend removal) are shown in Figs. 117 and 118.

This data collection produced measurements for which a universal pre-processing approach did not

apply. In previous data collections, a set of pre-processing steps could be applied to all the measured

data. For this data collection, that is not the case; the measurements did not consistently improve with

the bias and trend removal. In some instances, pre-processing degraded the measurement quality, as is

illustrated in some of the figures showing the pre-processed IMU measurements. While it is possible

to choose pre-processing parameters and processes individually for each data set so that each set of

measurements has neither a bias nor a trend, it was decided to show the results for a single set of

pre-processing parameters so that the sensitivity to the pre-processing could be shown. The stabilized

velocities and attitude angles (roll, pitch, yaw) follow in Figs. 119 through 122. Obviously, inadequacies

in the acceleration pre-processing lead to difficulties in finding the stabilized velocities, and this is

shown in the results. The stabilized velocities in the Earth frame (East, North) are shown in Figs. 123

though 132.

The difficulties encountered with this data set parallel those encountered with the previous (Board

Data ) data set. Specifically, the sensor motion was not constrained, and algorithm performance de-

graded without the benefit of prior knowledge. The estimated positions (in Earth frame), obtained by

integrating the stabilized velocities, are presented in Figs. 133 through 142. The estimated positions for

this data collected are not as accurate as for previous data collections. (There is a scale/magnitude differ-

ence that could not be reconciled). The estimates show little qualitative resemblance to the ground truth

measured by the ArcSecond system, and performance falls significantly below the desired positioning

accuracy.
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Figure 107: ArcSecond ground truth for data set 1 from the morning collection.
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Figure 108: ArcSecond ground truth for data set 2 from the morning collection.
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Figure 109: ArcSecond ground truth for data set 3 from the morning collection.
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Figure 110: ArcSecond ground truth for data set 4 from the morning collection.
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Figure 111: ArcSecond ground truth for data set 5 from the morning collection.
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Figure 112: ArcSecond ground truth for data set 1 from the afternoon collection.
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Figure 113: ArcSecond ground truth for data set 2 from the afternoon collection.
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Figure 114: ArcSecond ground truth for data set 3 from the afternoon collection.
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Figure 115: ArcSecond ground truth for data set 4 from the afternoon collection.
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Figure 116: ArcSecond ground truth for data set 5 from the afternoon collection.
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(a) Set 1: X Acceleration.
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(b) Set 1: Y Acceleration.
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(c) Set 1: Z Acceleration.
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(d) Set 2: X Acceleration.
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(e) Set 2: Y Acceleration.
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(f) Set 2: Z Acceleration.
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(g) Set 3: X Acceleration.
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(h) Set 3: Y Acceleration.
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(i) Set 3: Z Acceleration.
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(j) Set 4: X Acceleration.
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(k) Set 4: Y Acceleration.
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(l) Set 4: Z Acceleration.
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(m) Set 5: X Acceleration.
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(n) Set 5: Y Acceleration.

400 410 420 430 440 450 460
−2

−1

0

1

2

3

4
x 10

−3

Time [s]

A
cc

el
er

at
io

n 
[m

/s
2 ]

Measured Z Acceleration after Pre−Processing − Data Set 5

(o) Set 5: Z Acceleration.

Figure 117: Measured accelerations after pre-processing.
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(a) Set 1: X Acceleration.
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(b) Set 1: Y Acceleration.
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(c) Set 1: Z Acceleration.
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(d) Set 2: X Acceleration.
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(e) Set 2: Y Acceleration.
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(f) Set 2: Z Acceleration.
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(g) Set 3: X Acceleration.
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(h) Set 3: Y Acceleration.
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(i) Set 3: Z Acceleration.
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(j) Set 4: X Acceleration.
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(k) Set 4: Y Acceleration.
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(l) Set 4: Z Acceleration.
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(m) Set 5: X Acceleration.
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(n) Set 5: Y Acceleration.
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(o) Set 5: Z Acceleration.

Figure 118: Measured accelerations after pre-processing.
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(a) Set 1: Stabilized X Velocity.
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(b) Set 1: Stabilized Y Velocity.
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(c) Set 1: Stabilized Z Velocity.

260 270 280 290 300 310 320
−5

0

5

10

15

20
x 10

−4

Time [s]

V
el

oc
ity

 [m
/s

]

Stabilized X Velocity − Data Set 2

(d) Set 2: Stabilized X Velocity.

260 270 280 290 300 310 320
−4

−2

0

2

4

6

8
x 10

−4

Time [s]

V
el

oc
ity

 [m
/s

]

Stabilized Y Velocity − Data Set 2

(e) Set 2: Stabilized Y Velocity.
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(f) Set 2: Stabilized Z Velocity.
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(g) Set 3: Stabilized X Velocity.
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(h) Set 3: Stabilized Y Velocity.
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(i) Set 3: Stabilized Z Velocity.
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(j) Set 4: Stabilized X Velocity.
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(k) Set 4: Stabilized Y Velocity.
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(l) Set 4: Stabilized Z Velocity.
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(m) Set 5: Stabilized X Velocity.
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(n) Set 5: Stabilized Y Velocity.
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(o) Set 5: Stabilized Z Velocity.

Figure 119: Stabilized velocities after bias and trend removal.
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(a) Set 1: Stabilized X Velocity.
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(b) Set 1: Stabilized Y Velocity.
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(c) Set 1: Stabilized Z Velocity.
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(d) Set 2: Stabilized X Velocity.
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(e) Set 2: Stabilized Y Velocity.
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(f) Set 2: Stabilized Z Velocity.
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(g) Set 3: Stabilized X Velocity.
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(h) Set 3: Stabilized Y Velocity.
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(i) Set 3: Stabilized Z Velocity.

150 160 170 180 190 200 210
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

Time [s]

V
el

oc
ity

 [m
/s

]

Stabilized X Velocity − Data Set 4

(j) Set 4: Stabilized X Velocity.
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(k) Set 4: Stabilized Y Velocity.
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(l) Set 4: Stabilized Z Velocity.
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(m) Set 5: Stabilized X Velocity.
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(n) Set 5: Stabilized Y Velocity.
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(o) Set 5: Stabilized Z Velocity.

Figure 120: Stabilized velocities after bias and trend removal.
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(a) Set 1: Stabilized Roll.
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(b) Set 1: Stabilized Pitch.
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(c) Set 1: Stabilized Yaw.
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(d) Set 2: Stabilized Roll.
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(e) Set 2: Stabilized Pitch.
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(f) Set 2: Stabilized Yaw.
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(g) Set 3: Stabilized Roll.
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(h) Set 3: Stabilized Pitch.
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(i) Set 3: Stabilized Yaw.
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(j) Set 4: Stabilized Roll.
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(k) Set 4: Stabilized Pitch.
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(l) Set 4: Stabilized Yaw.
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(m) Set 5: Stabilized Roll.
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(n) Set 5: Stabilized Pitch.
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(o) Set 5: Stabilized Yaw.

Figure 121: Stabilized attitude angles (roll, pitch, yaw) after bias and trend removal.
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(a) Set 1: Stabilized Roll.
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(b) Set 1: Stabilized Pitch.
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(c) Set 1: Stabilized Yaw.
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(d) Set 2: Stabilized Roll.
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(e) Set 2: Stabilized Pitch.
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(f) Set 2: Stabilized Yaw.
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(g) Set 3: Stabilized Roll.
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(h) Set 3: Stabilized Pitch.
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(i) Set 3: Stabilized Yaw.
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(j) Set 4: Stabilized Roll.
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(k) Set 4: Stabilized Pitch.
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(l) Set 4: Stabilized Yaw.
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(m) Set 5: Stabilized Roll.
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(n) Set 5: Stabilized Pitch.
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(o) Set 5: Stabilized Yaw.

Figure 122: Stabilized attitude angles (roll, pitch, yaw) after bias and trend removal.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 123: Stabilized velocities (in Earth frame) for data set 1, morning collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 124: Stabilized velocities (in Earth frame) for data set 2, morning collection.
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(a) Stabilized East velocity.

310 320 330 340 350 360 370
−4

−3

−2

−1

0

1

2

3
x 10

−5

Time [s]

V
el

oc
ity

 [m
/s

]

Stabilized North Velocity − Data Set 3

(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 125: Stabilized velocities (in Earth frame) for data set 3, morning collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 126: Stabilized velocities (in Earth frame) for data set 4, morning collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 127: Stabilized velocities (in Earth frame) for data set 5, morning collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 128: Stabilized velocities (in Earth frame) for data set 1, afternoon collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 129: Stabilized velocities (in Earth frame) for data set 2, afternoon collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 130: Stabilized velocities (in Earth frame) for data set 3, afternoon collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 131: Stabilized velocities (in Earth frame) for data set 4, afternoon collection.
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(a) Stabilized East velocity.
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(b) Stabilized North velocity.
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(c) Stabilized Down velocity.

Figure 132: Stabilized velocities (in Earth frame) for data set 5, afternoon collection.
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(a) Estimated East position.
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 133: Estimated positions (in Earth frame) and comparison to ground truth for data

set 1, morning collection.
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(a) Estimated East position.
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 134: Estimated positions (in Earth frame) and comparison to ground truth for data

set 2, morning collection.

Stacy L. Tantum and Leslie M. Collins 106 Duke University



Signal Processing for Handheld Improvements May 22, 2007

0 10 20 30 40 50 60 70
0

1

2

3

Time [s]

P
os

iti
on

 [m
]

ArcSecond Truth

Estimated East Position − Data Set 3

310 320 330 340 350 360 370
−10

−5

0

5
x 10

−3

Time [s]

P
os

iti
on

 [m
]

IMU Estimate
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 135: Estimated positions (in Earth frame) and comparison to ground truth for data

set 3, morning collection.
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(a) Estimated East position.
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 136: Estimated positions (in Earth frame) and comparison to ground truth for data

set 4, morning collection.
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 137: Estimated positions (in Earth frame) and comparison to ground truth for data

set 5, morning collection.
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(c) Estimated Down position.

Figure 138: Estimated positions (in Earth frame) and comparison to ground truth for data

set 1, afternoon collection.
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Figure 139: Estimated positions (in Earth frame) and comparison to ground truth for data

set 2, afternoon collection.
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(b) Estimated North position.
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Figure 140: Estimated positions (in Earth frame) and comparison to ground truth for data

set 3, afternoon collection.
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(b) Estimated North position.
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(c) Estimated Down position.

Figure 141: Estimated positions (in Earth frame) and comparison to ground truth for data

set 4, afternoon collection.
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(b) Estimated North position.
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Figure 142: Estimated positions (in Earth frame) and comparison to ground truth for data

set 5, afternoon collection.
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7.2 System Identification Algorithms

The system identification algorithms were applied to the data collected at APG. Again, the estimates of

the system parameters failed to converge. Plots of the measured accelerations versus the true accelera-

tions show characteristics similar to the plots for the Board Data; there is no clear relationship between

the measured and true accelerations.

7.3 Summary

Adaptive error mitigation and system identification algorithms were applied to the IMU data collected at

APG in September 2006. Prior to applying the adaptive error mitigation algorithms, they were modified

to eliminate the reliance on prior knowledge of the system’s motion. Specifically, the assumptions of

either linear motion or motion in a perfect arc of known radius about a fixed pivot point were removed.

Processing this data produced results which do not meet the desired sensor positioning performance. It

is believed that not having access to prior knowledge regarding the sensor’s motion adversely impacted

algorithm performance.
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