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EXECUTIVE SUMMARY 

This project addressed issues of Unexploded Ordnance (UXO) detection, as a key component of 
the land remediation problem.  Remediation is a formidably expensive operation.  Much of the 
cost is a consequence of “dry” holes dug to reveal a benign object instead of the expected 
hazardous UXO, and of holes dug in the wrong location, or made much larger than they ought, 
thanks to faulty localization of the ordnance.   

The concept proposed for development in the present project is based on the fact that most UXO 
uses ferrous steel.  Its ferromagnetic and conducting properties both distort the earth’s static 
magnetic field and generate a secondary field in response to a time-dependent exciting field.  The 
proposal and initial statement of work set out to develop a single instrument combining target 
detection and accurate localization (via passive magnetic gradiometry of the earth’s-field 
distortion) with target-clutter discrimination (using the response to a broadband exciting field).  
No such single instrument exists today.  The proposed instrument was to incorporate a full tensor 
magnetic gradiometer inside a three-axis excitation field source.  With the source turned off, the 
gradiometer enables detection and localization.  With the source turned on at closer range, the 
gradiometer measures the broadband response of the object and a classification algorithm, 
developed independently at Duke University, would decide whether the object was a UXO or 
not. 

Early on in the program, it was recognized that the passive measurement system component is 
more fully advanced than the multi-axis, broadband excitation component.  In order to address 
the greater technical risk that the latter presents, the program was re-scoped to focus exclusively 
on the multi-axis, broadband system. 

In any “active” system—that is, one that uses a source to generate an excitation field and detects 
the secondary field caused by the response of an object—a key issue is suppressing the direct 
coupling of the excitation field to the sensor.  This problem is exacerbated when the sensor is a 
gradiometer making differential measurements of the magnetic field at separate locations. 

Another challenge is to make an excitation field source that illuminates the object along three 
different axes.  In particular, it is difficult to make the source both compact and energy-efficient, 
especially when the object of interest is buried at some distance from the source. 

The difficulties presented by these challenges led to a reconsideration of the system design: 
instead of a gradiometer, we used a three-axis magnetometer, and we further reduced the three-
axis source to a single-axis source.  The expectation was that measuring the object’s response in 
three axes might mitigate the loss of information from reducing the number of excitation axes. 

We implemented the broadband excitation in two different systems.  One, called a “frequency-
domain” (FD) system, uses continuous-wave sinusoidal excitation at selectable frequencies 
covering the band from a few tens of Hertz (Hz) to a few hundred kilohertz (kHz).  The other, 
called a “time-domain” (TD) system, uses a pulsed excitation field that excites a broad spectrum 
simultaneously.  Each has theoretical and practical advantages and drawbacks that have been 
discussed in the literature (particularly in the context of geophysical exploration systems), 
without a real resolution concerning their relative merits. 

An initial set of measurements on selected UXO (supplied as GFE) and clutter items proved too 
small to determine the efficacy of target-clutter discrimination.  A program review also showed 
that the data were collected at different signal to noise ratio (SNR) levels, rendering 
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interpretation highly ambiguous.  Work was suspended and then resumed with instruction from 
the Program Office to focus narrowly on collecting a broad set of data, all at the same SNR, in 
order to assess the efficacy of broadband, multi-axis discrimination. 

Defining SNR for an active system is not a trivial problem.  For example, an FD system 
illuminating the test object at different frequencies yields responses whose individual SNR 
depends on the frequency.  Furthermore, a definition of SNR suitable for an FD system is not 
appropriate for a TD system where the measurement is inherently broadband, unlike the 
collection of discrete narrow-band measurements of the FD system.  Considerable effort went 
into defining measures of SNR appropriate for FD and TD systems.  Such measures were defined 
and verified to yield meaningful results.  The development of these SNR definitions is, in itself, a 
key result of the program, since these definitions may be used in assessing data collected by any 
FD or TD system in existence or in development. 

Data were collected on a larger sample of UXO and clutter items.  All data were collected at 
ranges from the sensor to the test object that yielded an SNR of five, as a fiducial standard.  Data 
consisted of a training set—data collected from each of the types of UXO in known orientations, 
with ground truth—used to train the classification algorithms, and a test set—data collected from 
both clutter and UXO, in arbitrary orientations, with the objects not identified to the classifiers.  
Duke trained their algorithms, developed independently and based on an algorithm applying 
variational Bayes statistics and a Gaussian mixture model to the data, on the training set and then 
tested them against the test set. 

The models ranked the unknown test set from lowest to highest in order of likelihood of being 
UXO.   

The FD results are not encouraging.  A total of 27 objects, eight UXO and nineteen clutter, were 
tested with the FD system.  If one simply divides the ranked list at the center into two segments 
and identifies the higher-likelihood segment as UXO and the lower-likelihood segment as clutter, 
one will have correctly identified exactly half the UXO and half the clutter items: the algorithm 
and data combine to give the result of a coin toss.   

At first, the result of the algorithm applied to the TD system data (using 24 objects, seven UXO 
and seventeen clutter) looks even worse: only one UXO is identified correctly, and six are 
misidentified.  However, simply inverting the output of the Duke algorithm yields six of seven 
UXO identified correctly, for a successful UXO identification rate of 85.7% and a successful 
clutter identification rate of 64.7%.  Interpreted as conventional detection and false alarm 
probabilities, one obtains a detection rate of 85.7% at a false alarm rate of 35.3%. 

Using internal R&D funds, Quantum Magnetics had developed its own classification algorithms 
in the context of developing an advanced portal for concealed weapon detection.  An initial look 
at that algorithm—performed at Quantum’s expense, and hence not part of this formal report—
suggests that the data provide more discriminatory power than the Duke algorithms were able to 
use.  The concept of multi-axis, broadband response measurements may yet enable significant 
remediation cost reductions via improved target-clutter discrimination. 
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1 Implement the improved transmitter amplifier and the ferrite calibration 
method on the SERDP system for subsequent measurements. 

1.1 Improved Transmitter Amplifier 

In the closeout proposal, we proposed to borrow a new, improved transmitter amplifier from an 
internal program and use it in conjunction with the rest of the SERDP system for measurements 
in the proposed work.  We ended using the new power amplifier designed for the Army landmine 
contract.  The new transmitter amplifier design injects less noise into the system than the existing 
amplifier and thus produces cleaner excitation waveforms.  However, while testing the efficacy 
of the power amplifier in the system, it failed due to a critical sense pin, used in part to protect 
the amplifier, which had a bad solder joint that led to the failure.  We have only recently 
completed the repair of the power amplifier and have not tested it yet in the system.  In the 
meantime, we decided to proceed and carry out the work with the existing power amplifier due 
to time constraints.  

1.2 Ferrite Calibration and Correction 

The ferrite calibration for the frequency-domain system was also investigated.  Since ferrite is 
purely ferromagnetic and nonconductive, it produces a negative constant in-phase (real part) 
response and a zero quadrature (imaginary) response at all frequencies.  Using it to baseline the 
system response may help calibrate out spurious inductive effects present in the response curve, 
particularly at high frequencies, by performing a phase adjustment.  In other work, we have 
obtained good success utilizing a ferrite toroidal core to calibrate out broadband systematic phase 
errors in inductive pickup systems.  By measuring the phase error at each frequency and then 
correcting it at the receiver, one can account for the systematic phase errors.  Once phase 
correction is applied, subsequent measurements of the ferrite core yield classic response curves 
and the system is calibrated. 

In the FD system we operate the magnetoresistive (MR) sensors near the center of the excitation 
coil, in high axial field.  To accomplish this, we wind a small bucking coil around the sensor and 
drive current in it to null the source field at the sensor.  Phase and amplitude must both be 
accurate to attain an effective null.  Perfect phase matching is difficult because the error signals 
are small and extraction of phase numerically from small signal levels can lead to inaccuracies. 
Given that, we get fairly good matching except at the lowest and highest frequencies.  As an 
example, measurement of a brass ring should produce an ideal L-R response, but as shown in 
Figure 1, the response departs from expected at higher frequencies in both components.  The 
quadrature response fails to trend toward zero at high frequency, and the in-phase response does 
not trend to a constant asymptote. 

We attempted to use the ferrite core technique to calibrate out the errors.  Figure 2 shows the raw 
response of the ferrite core without system background subtraction (see Section 2.2.1 for a 
discussion of measurement procedure and background subtraction).  Figure 3 shows the same 
response with background subtraction.  It is clear that the quadrature response departs at low and 
high frequencies from the expected zero value.  We measure the phase correction required to 
bring the quadrature response at each frequency to zero and apply the corrections to both in-
phase and quadrature components.  Figure 4 shows the uncorrected and corrected response 
curves and Table 1 lists the phase required to attain the expected zero-phase quadrature response. 
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Real and Imaginary response for a Brass ring
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Figure 1.  Response of a brass ring showing high-frequency errors. 
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Figure 2.  Response of a ferrite toroidal core without background subtraction. 
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Real and Imaginary response for a Ferrite Core 
(with background subtract)
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Figure 3.  Same ferrite core response with background subtraction. 

Frequency (Hz) Phase Correction (º) 
6.49 21.38 

10.91 13.53 
31.00 4.54 
50.08 2.85 
86.37 1.89 

149.47 0.98 
254.92 0.68 
446.43 0.16 
762.19 0.15 

1302.08 0.09 
2272.72 -0.27 
3906.26 -0.26 
6944.43 0.24 

12500.00 -0.81 
20833.35 -0.78 
41666.66 -2.05 
62500.03 -1.66 
85034.26 -1.98 

Table 1.  Phase correction vs. frequency as determined from ferrite core data. 
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Uncorrected and Corrected Ferrite Response Curves
(Theoretical Corrections - not measured) 
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Figure 4.  Phase-corrected ferrite response curves. 

Although Figure 4 shows that the quadrature response is nulled, the high-frequency departure of 
the in-phase response from the expected constant value is not corrected at all.  In fact, the in-
phase ferrite response is unaffected by the phase correction at high frequencies: phase correction 
in this manner is ineffective.   

We verified that applying the same phase correction to the brass ring data of Figure 1 hardly 
changes either the in-phase or quadrature response at high frequency.  For this reason, we did not 
apply the phase correction to subsequent UXO and clutter data sets. 

At this time the cause of the systematic response errors is still uncertain.  Given the constraints 
on remaining project funding, it was decided to curtail the search for the cause in the interest of 
obtaining and analyzing UXO data within the project budget.  If the phase (and/or gain) errors 
are consistent from one data set to the next, they should not affect the utility of the data for 
discriminating between UXO and clutter. 

2 Measure MR-sensor system noise across the system bandwidth and 
cancellation of the primary field using improved transmitter amplifier. 

2.1 MR Sensor Noise Characterization 

We characterized the noise performance of the sensor in the standard way.  First, we calibrated 
the system by injecting a pilot tone of known field magnitude and measuring the through-
response to establish a field to voltage transfer function.  Then we measured the voltage noise 
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floor, converted it to spectral density and finally converted to field noise spectral density via the 
transfer function. 

We drove the source coil with a signal of amplitude Vin = 0.200 Vp-p at a frequency f = 147.0 Hz.  
The source coil current was measured using the arrangement depicted in Figure 5.  At this 
frequency, the reactance of the source coil is in the sub-milliohm range and is negligible 
compared to the 4.4 Ω current-monitor resistor.  We lose no accuracy in assessing the circulating 
coil current using this method. 

R = 4.4 Ω

I = 0.206 Arms

Baxial = 34.0 µTrms 

Vs = 0.910 Vrms 
 Vin = 0.200Vp-p 

Vout = 2.292 Vrms 

 
Figure 5.  Experimental arrangement used to measure the system noise. 

The sense voltage Vs = 0.910 Vrms yields a coil current I = Vs/R which evaluates to be 
I = 0.910 Vrms/4.4 Ω = 0.206 Arms.  To find the injected B-field, we employ the in-plane axial 
field equation for the source coil given by 

r
NIB o

axial 2
µ

=  

Our coil design has N = 4 turns and radius r = 6.0 in = 0.1524 m.  Using these values in the field 
equation gives 

( )

( ) rms

rms

axial T
m

A
A
mT

B µ
π

0.34
152.02

206.01044 7

=
⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⋅⋅
=

−
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MR Sensor System Noise Measurement (w/ 147 Hz Pilot Tone)
Pilot = 2.292 Vrms     Noise = 3.44 µVrms    VSD = 4.98 µVrms/Hz1/2
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Figure 6.  MR sensor calibration and noise measurement plot. 

The voltage response of the system was measured to be Vout = 2.292 Vrms resulting in a transfer 
function given by 

T
V

T
VTF

rms

rms

µµ
06741.0

00.34
292.2

==  

Next, we measure the averaged broadband voltage noise spectral density with the source input 
set to zero and obtain 

Hz
VV rms

n
µ98.4=  

We find the magnetic field noise spectral density 

Hz
pT

V
T

Hz
V

B rmsrms
noise 87.73

06741.0
198.4 =⋅=

µµ
 

This result establishes a limit to the minimum level magnetic signal we are capable of measuring 
in a finite sampling interval with equivalent averaging.  Depending on the signal sampling rate 
and number of points, the absolute field limit can be determined. 

This result applies to both frequency domain and time domain implementations of the sensor. 

2.2 Frequency-domain (FD) system 

2.2.1 System Description and Operation 

The frequency domain system is depicted in the schematic diagram of Figure 7 and its 
specifications are presented in Table 2.  Noise performance of the sensor is discussed in a later 
section. 
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Win XP /  Labview 

1 2 3
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Figure 7.  Block diagram of the FD system. 

COMPONENT FUNCTION 
Breakout Box Provides connectivity between acquisition board and system hardware 
2 Channel Low Pass 
Filter 

f cutoff < 2 f source , these filters smooth the D/A-generated waveforms that drive the source 
and compensation circuits 

Power Amplifier Provides broadband high current to source coil 
VCCS Voltage Controlled Current Source that drives the compensation coil 
Amplifier (49.6dB) Differential In/Single-Ended Out with 49.6 dB gain and flat response across full band of 

interest: boosts output of MR sensor 
Bandpass Filter BP filter: f L = ~ 2 Hz; f H = ~ 1.7 MHz; gain of 3 dB flat across pass band 
Power Distribution Provides ±12Vdc and ±5Vdc to the various circuits above 
DC Power Supply Supplies ±48 Vdc / ±12Amax to the power amplifier 
D/A and A/D Board High speed D/A and A/D board (via Labview™ programming) drives both the 

compensation coil and the source coil and digitizes the output of the BPF (MR boost) 
and the voltage across the source coil current sense resistor 

Win XP/Labview Labview running under Windows XP controls (via A/D and D/A board) source field and 
compensation field (both amplitude and phase accurately) 

MR Sensor Honeywell™ Magneto-Resistive multi-axis sensor, Model HMC1002 
Source Coil Produces B-field to elicit eddy current response from the target 
Compensation Coil Produces B-field to cancel the source field at the location of the MR sensor (weakly 

coupled to the source coil) 

Table 2.  Functional description and specification of FD system components. 
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The system uses stepped frequencies, as given in Table 1.  We must produce a magnetic null at 
the sensor for each frequency.  This involves matching amplitude and phase at each frequency of 
operation.  Table 3 presents the calibration algorithm used in human-readable “pseudo-code”. 

 Begin:   #  amplitude and phase compensation calibration 
Set Freq to fmax  
Set Comp Control Voltage (CCV), vcc = 0 
Set Source Control Voltage (SCV), vsc   
Adjust to max response to obtain, Vsc 
Record vsc and Vmax  #corresponding to highest field we can achieve given high  

#  frequency impedance load limitations 
 
# Now let’s iterate through frequencies to obtain nulling parameters 
For  fi  in (f1 f2 f3 … fm): 

         Set source_match_cond_met = comp_match_cond_met = false 
         Set Freq fi 

Set CCV off 
Set SCV = vsc,i  
While (source_match_cond_met == false): 

 If (Vmax – Vs,i) <= acceptable null threshold (~0.002 Volt): 
  Set source_match_cond_met = true 

Record vsc,i and Vs,i  
  Set SCV off 
  Set CVV = vcc,i 
  While (comp_match_cond_met  == false): 

If (Vmax – Vc,i) <= acceptable null threshold (~0.002 Volt): 
    Set comp_match_cond_met = true 

Record vcc,i and Vc,i 
Meas_rel_phase_diffs(φc,i , φs,i) 
Set φc,i = φs,i + π 
Set SCV = vsc,i 
Set CCV = vcc,i 
Set φc,i 
Meas_atten_level (dB) 
Append_cal_values_to_file (fi ,vsc,i , vcc,i , φc,i , φs,i , dB)  

   Else: 
vcc = vcc + β(Vmax – Vc,i)    # feedback prop to error 

Else: 
  vsc = vsc + α(Vmax – Vs,i)    # feedback prop to error 
 
End:  # System is now calibrated in amplitude and phase 

 
Table 3. System calibration algorithm in “pseudo-code”. 

Figure 8 shows the Labview user window for the calibration procedure for the two-axis sensor.  
It displays the status and the compensation values as they are determined by the algorithm of 
Table 3.  Of the quartet of graphs in the upper left of the display, the lower left shows the current 
drive needed to null the earth’s field at the sensor.  The upper leftmost graph displays the source 
drive matching minimization; as the algorithm iteratively approaches the solution, the residual 
tends toward zero.  The two right-hand graphs of the quartet show the drive values of the 
compensation coil.  The pair of graphs at the lower right of the display show the phase of the 
compensation coil drive which approaches 90º as the source field is nulled. 
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Figure 8.  Example of a two-axis sensor calibration window during auto-calibration. 

Once the calibration sequence completes, the software presents a review window to see how well 
the calibration did.  Figure 9 is an example of a single-axis review window.  The left-hand 
graphs show the calculated transfer function as a function of frequency; the upper right-hand 
graph shows the DAC output gain; and the lower right-hand graph shows the resulting 
attenuation of the source coil field, with a numerical display of the average attenuation, in dB, 
below. 

 
Figure 9.  Compensation review window (single-axis sensor example). 
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Prior to measuring a target, we perform a background (or null target) measurement, stepping 
through the frequencies.  We generally collect a second set of background data and subtract it 
from the first.  If the subtraction yields a null, that indicates that the system is working properly.  
If not, we repeat the background run.  With a target in place we collect data.  We then subtract 
the background from the target data, yielding only the perturbations related to the target as 
shown in Figure 10 for a typical target run.  The Figure shows, in the large left-hand panel, the 
in-phase (green) and quadrature (red) target response, together with the scalar amplitude 
response (blue).  We produce in-phase and quadrature data and save the run-specific data to a 
file.  This includes amplitudes, phases, frequencies, raw data, subtracted data and the like for 
each sensor axis. 

 
Figure 10.  Target response function after subtracting instrumental background. 

2.2.2 Hardware modifications  

We modified the cable connecting the source coil to the amplifier.  We also switched from a wire 
with twisted pair to a wire with twisted quad, in order to reduce the cable inductance by roughly 
50%. 

As mentioned above, an unsuccessful attempt was made to switch the previous power amplifier 
and use the latest PA05 power operational amplifier design currently used in a system developed 
in another project for landmine detection.  

2.2.3 Software development 

Calibration software   
The calibration routine that we implement steps through each drive frequency to determine the 
compensation field values needed to null the source field.  During further assessment of the 
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method, we determined the system Transfer Function (TF).  It was found that the process could 
be further optimized to determine more accurate compensation values.  After establishing a more 
accurate TF response, we now obtain an average cancellation of 69 to 70 dB across the 
frequency band.  Our previous best was 60 dB.   These results are summarized in Figure 11.  

 
Figure 11.  System noise with source field compensation between 10 Hz and 100 kHz showing 

improvement between the new (red squares) and old (blue diamonds) methods. 

Temperature drift characterization  
It had been observed that, from run to run, there was some variance in acquired background or 
null run acquisitions.  We pursed two options for addressing this drift.  The first was to allow 
sufficient time between runs enabling all electronics to cool down.  The second was to run 
repeatedly back-to back essentially heating up the system to an equilibrium point (running hot).  
Comparing the data sets for various cool down times versus the data sets running the system 
repeatedly, it was clear that running the system hot produced the most repeatable results.  As a 
result, we now collect larger data sets throwing out the first 15 runs or so and averaging the data 
we consider to be taken at the equilibrium temperature.   

Background subtraction  
Applying the temperature drift reduction method discussed above, we now have a greatly 

improved background subtraction.  Previously we collected an averaged background containing a 
drift component.  This was then subtracted from data, which also included a drift component.  

Now collecting background and target data free from the drift component, we are able to achieve 
a substantially better background subtraction, essentially improving our system noise floor.   

Figure 12 shows the noise floor measured at each drive frequency between 10 Hz and 100 kHz 
measured with field compensation on and no target. 

It is worth noting, however, that this is not a realistic way of running the system in the field.  
Ultimately, it would be essential to address the temperature drift of the PA05 amplifier, which 
we suspect to be the source of the temperature drift problem. 
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Figure 12.  FD system noise floor as a function of frequency. 

Signal-to-noise ratio (SNR) computation algorithm 
The total energy in a spectrum can be approximated by the sum of signal energies from each of 
the contributing frequencies in that spectrum.  In this calculation, the signal is the magnitude of 
the sensor output before it is decomposed into in-phase and quadrature components.  The 
approximation approaches the exact value for a very large number of frequencies in a finite 
bandwidth.  The SNR definition that we adopt in this work is the ratio of signal power to noise 
power or equivalently the ratio of signal energy to noise energy: 

SNR = Ps/Pn = Es/En.       (1) 

To compute the energy in a signal at a given frequency, one must divide the signal power by the 
spectral bin width, which depends on the sampling time.  We collect data at 18 frequencies with 
variable sampling rate.  For each frequency, we sample at a different rate fs but with a fixed 
number of samples, N, thus using a variable sampling time.  In each case, the spectral bin width 
is fs/N = ∆f.  For 18 frequencies, we then have 18 corresponding bin widths.  We could estimate 
the total energy in the operational bandwidth but that would be less than suitable given that we 
have 85 kHz of bandwidth but only 18 frequencies.  To address that, we interpolate both the 
signal and the spectral bin width data sets.  With the a priori knowledge of the structure of the 
signal amplitude envelope across the band, the noise, and the variable bin width curve, we can 
easily perform the interpolation and generate 85,000 signals and 85,000 spectral bin widths 
across the bandwidth.  The interpolation allows us essentially to perform a numerical integration 
to compute the total energy across the band for the signal as well as the noise spectra. 

Each energy (ignoring the impedance since the SNR ratio will eliminate it) term is computed as 

i

i
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The energies are then summed up 
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where k = 85000.  Next, we do the same thing for the noise spectrum with the noise energy 
collected in the absence of a target. 
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and finally we compute the energy ratio 

n

s

E
ESNR = .           (5) 

This is the classic Signal-to-Noise ratio and is typically a ratio of powers (energies).  We can 
take the square root of this if we wish to express our SNR in terms of signal voltage to noise 
voltage 

n

s
PV E

ESNRSNR ==             (6) 

We used a single turn copper ring at 3 inches above the sensor and measured its response.  We 
repeated this for twice the standoff, corresponding to 23 = 8 reduction in signal for a dipole-like 
sample. We then computed the SNR in each case. 

Standoff SNRPower SNRVoltage 

3 in 3487.0 59.0 
6 in 54.9 7.41 

The reduction in SNRV is 59.0/7.41 = 7.96 ≅ 8, which confirms that (1) the estimate of the 
relative signal strength, determined from the integrated energy, is correct, and (2) the noise 
energy is not dependent upon the presence of a target. If it had been, we would not have obtained 
the 1:8 reduction.  

2.3 Time-domain (TD) system 

2.3.1 System Description and Operation 

The time domain system is depicted in the schematic diagram of Figure 13 and described in 
Table 4. 
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Comp Coil 
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Coil
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(49.6dB)

A/D’s   0 1
Pulse Amplifier

Power Dist VCCS
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(Comp Coil Driver)

D I/O Pulse Gate

Filter 
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Figure 13. TD system block diagram. 

COMPONENT FUNCTION 
Breakout Box Provides connectivity between acquisition board and system hardware 
2 Channel Low 
Pass Filter 

f cutoff < 2 f source , these filters provide a quiet DC signal to drive the compensation circuits 

Pulse Amplifier Provides pulsed power to source coil 
VCCS Voltage Controlled Current Source that drives the compensation coil 
Amplifier (49.6dB) Differential In/Single-Ended Out with 49.6 dB gain and flat response across full band of 

interest: boosts output of MR sensor 
Band Pass Filter BP filter with f L = ~ 2 Hz; f H = ~ 1.7 MHz; gain of 3 dB flat across pass band 
Power Distribution Provides ±12Vdc and ±5Vdc to the various circuits above 
DC Power Supply Supplies ±48 Vdc / ±12 Amax to the power amplifier 
D/A and A/D Board High speed D/A and A/D board (via Labview™ programming) drives the DC Earth’s Field 

compensation coils, drives the Set/Reset, drives the Pulse Gate and digitizes the output of 
the BP filter, the signal of interest 

Win XP/Labview Labview running under Windows XP controls (via A/D and D/A board) source pulse field 
and DC Earth’s Field compensation, collects and processes TD data. 

MR Sensor Honeywell™ Magneto-Resistive multi-axis sensor; Model HMC1002 
Source Coil Produces Pulsed B-field to elicit transient eddy current response from the target 
Compensation Coil Produces B-field to cancel the Earth’s field at the location of the MR sensor (weakly 

coupled to the source coil) 

Table 4.  Functional description and specifications of TD system components. 
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The Time Domain system is relatively simple in principle.  The MR sensor must be forced into 
favorable magnetic domain alignment prior to every measurement to insure repeatability.  We 
facilitate this with the sensor set/reset strap and driver hardware controlled by Labview. The 
set/reset pulse is shown in Figure 14.  Figure 15 shows the pulsed field ramp for each of the two 
cases of a set or reset state to demonstrate the phase reversal of the output. Once the sensor 
magnetic domains have been realigned, we initiate a measurement by enabling the pulse gate, 
which then turns on the pulse driver, essentially shorting the source coil across a charged bank of 
capacitors.  Once the pulse gate is turned off we acquire data of the eddy current decay.  We 
average several pulses back to back with set/reset operations in between each excitation pulse.  
This becomes our background time series.  Then we measure a target.  We subtract the 
background from the target response and repeat to obtain averaged results.   A typical run is 
shown in Figure 16.  The critical issue here is the reproducibility of the pulse gate sequence and 
timing.  This is accomplished with sufficient reproducibility through Labview. 

 
Figure 14.  Symmetric set/reset pulses. 

 
Figure 15.  Pulsed source field ramps, showing alternating symmetry (traces superimposed for 

display purposes). 
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Figure 16.  Typical TD background-subtracted response output. 

2.3.2 Hardware modifications 

While testing the system, we noticed an asymmetry in the magnetic field generated by our source 
coil as the polarity is switched to apply the field in opposite directions.  Field switching is 
typically performed by pulsing the coil in one direction and acquiring data, then pulsing the coil 
in the opposite direction while switching the polarity of the sensor, and taking data again.  The 
two resulting data sets are then summed to remove any electronics offsets.  However, the 
asymmetry adds noise to the signal instead of removing it.  Rather than spend time and resources 
to try to diagnose and fix the problem, we decided to apply the field only in one direction and 
remove any remaining DC offset in software.   

The Set/Reset (S/R) pulse was also improved to insure that the sensor return repeatably to its 
highest sensitivity state after it is hit with the large source field.  The initial S/R redesign used 
two ultra low resistance dual channel MOSFETs in order to produce a tightly controlled turn-on 
and turn-off S/R pulse.  The motivation is to return the sensor to its highest sensitivity state in the 
shortest time possible in order to start recording the response field of a target as early as possible.  
The redesigned S/R allows tight control of the S/R pulse length and the ability to turn it off 
sharply (essentially creating a square pulse) and quickly remove the longer decay from the 
original design, as shown in Figure 17.  

 
Figure 17.  Original S/R pulse 
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From run to run, however, we observed that the sensor does not always return to the same 
sensitivity state after a S/R.  This issue was resolved by recognizing that the original “square” 
S/R pulse was actually setting the magnetic domains with the initial spike but then unsetting 
them with the harsh falling-edge transition of the pulse, yielding varied sensitivity states.  We 
solved this problem by putting a capacitor in series with the S/R strap on each side.  This allows 
the S/R spike to discharge smoothly to zero without disturbing the alignment of the domains, as 
shown in Figure 18.     

Additionally, we increased the value of the power resistor in series with our source coil.  This 
enabled us to decrease the time it takes the current to fully decay from the coil.  Currently, it 
takes 4.2 microseconds to completely drain the current from the coil and start the measurements, 
as shown in Figure 19.   

 

 
 

Figure 18.  Improved S/R pulse.   

 
Figure 19.  Left: Sensor output as a function of time as the capacitors dump charge into the coil.  
Right: Detailed view of the current decaying fr om the source coil.  It takes 4.2 microseconds for the 
sensor output to go from its maximum to zero.   

To simplify the sensor operation, we now apply the S/R only before the source pulse.  We 
examined the sensor output for several runs without using a S/R after the field pulse and saw no 
saturation of the sensor, which has a dynamic range of ±2 gauss.  Not applying a S/R after the 
source field pulse also allows us to start taking date even earlier than before. 

2.3.3 Software development (V. 3) 

Acquisition  
After developing a much better understanding of the system hardware, we developed a new 
sequence for the TD data acquisition. First, we null the earth’s field by sending a DC voltage to 
the sensor’s offset strap.  Second, we hit the sensor with a Set/Reset/Set to return it to the same 
sensitivity as before the run.  Third, we pulse the coil.  Fourth, we acquire the data without target 
(background) and with target.  And fifth, we average the data by repeating steps 2 through 4, 



 

                                                                                
 18 

summing the results, and dividing by the number of runs.  The background data is thus 
subtracted from the target run. 

Removing DC offsets  
Each data set is in effect a decay curve.  The initial amplitude decays in time to an asymptotic 
value.  We select a window of data that is in the asymptotic regime, average the data in that 
window, and consider the average value as the DC offset.  We then subtract that value from each 
data point in our data set. 

Triggering data acquisition after initial pulse  
We start collecting data on the rising edge pulse, which allows us to observe the full field 
behavior.  Data can also be collected on the falling edge of the pulse.  The collected data 

exhibited interesting behavior.  There is a delay of 3.8 microseconds between the closing of the 
FET and the current beginning to drain off through our power resistors 

(

  

 

Figure 20: left).  Additionally there is a distinct hump characteristic to the field decay curve 

(

  

 

Figure 20: right).  
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Figure 20. Left: Sensor output while FET is open and then closed. Right: expanded view, showing 
details during current drainage. 

We can start collecting data 49.6 microseconds after the start of the source field pulse, which is 
approximately 0.8 microseconds after the current begins to drain out of the coil.  However, in 
order to improve the A/D resolution and in turn the averaging, we choose to wait until the sensor 
output is at or below 2 Volts.  This only requires us to wait 2.2 microseconds (instead of 0.8) 
after the current begins to drain out of the coil.  

SNR computation algorithm  
The total energy in a spectrum can be approximated based on the sum of energies from each of 
the contributing frequencies in that spectrum.  The approximation approaches exactitude for a 
very large number of frequencies in a finite bandwidth.  The SNR, by definition, is the ratio of 
signal power to noise power, which is equivalent to the ratio of signal energy to noise energy. 

SNR = Ps/Pn = Es/En      (7) 

To compute the energy in a signal at a given frequency, we divide the signal power by the 
spectral bin width.  The spectral bin width depends upon the sampling time.  We collect 5000 
points at a sampling rate of 5 x 106 samples/second.  The resulting spectral bin width is fs/N = ∆f.  
Noise computations are similar to those discussed in the FD system. 

3 Evaluate and tabulate the maximum range allowing UXO/clutter characterization for 
discrimination for both Time-Domain and Frequency-Domain systems.  Generate 
response curves for different UXO and clutter items at a constant SNR.  This includes 
modifying the acquisition software to calculate the response SNR in real time.   

The purpose of this task is to determine the maximum standoff range at which the FD and TD 
systems can measure the wideband response of various UXO and clutter targets with a 
reasonable SNR.  As discussed in the proposal, an SNR = 5 was agreed upon as a reasonable 
value at the On-Site Review Meeting held in September 2004.  Thus, all maximum standoff 
ranges for wideband characterization of all UXO and clutter quoted in this task refer to an SNR = 
5 for all targets and clutter.  The SNR for a wideband response curve was calculated as discussed 
above.  We also note that for the TD system, only the part of the decay curve for which the SNR 
exceeds 1 is kept as valid data.  The late-time data where the signal becomes buried in the noise 
is not included in the SNR calculation. 

3.1 Measurement setup  

The data were collected using a wooden test bed. The sensor head was placed on top of the test 
bed and the target on a sliding platform underneath the sensor.  The sliding platform allows 
smooth variation of the target-sensor distance while keeping the centers of the coil and target 
aligned along the same vertical.  For UXO objects, the direction of measurements is nose toward 
the northeast axis of the test bed.  The clutter items were also marked with an arrow and 
measurements were performed with the arrow toward the northeast axis of the test bed.  All 
standoff ranges were measured from the target's center of mass to the magnetic sensor location in 
the center of the transmit coil. 
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The maximum standoff range was determined in the following manner.  Measurements of the 
wideband response were performed for each target at three different standoffs.  For each 
measurement, the standoff and the SNR were recorded.  Then, the SNR versus standoff was 
plotted and fit to a curve function.  The standoff for SNR = 5 was then estimated using the curve 
fit function.  This accuracy of this method was verified using the 81 mm shell.     

The results are summarized in Table 5 below for all UXO and selected clutter items.   The 
standoff ranges are reported in centimeters.  It is noteworthy that when the active system is 
operated in a detection mode (narrow frequency mode), it is capable of “seeing” the targets at 
much greater distances.  The UXO and clutter targets used in these measurements are shown in 
Figure 21, while Figure 8 shows the clutter items used in the characterization standoff study and 
Figure 23 shows other clutter items for which data were taken.  
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Target TD Standoff (cm) FD Standoff (cm) 

20 mm 9.3 11.2 
40 mm 18.8  18.4 
57 mm 23.4 22.2 
60 mm 19.7 21.5 

“Gnarly” 60 mm  19.1 20.7 
81 mm 29.7 25.1 

81 mm nose up 34.1 36.6 
81 mm nose down 35.6 39.3 

105 mm 31.9 36.1 
155 mm 38.7 39.4 
CL0093 12.7 11.4 
CL0094 15.5 13.6 
CL0095 10.6 10.5 
CL0096 12.6 12.2 
CL0097 7.6 9.3 
CL0099 16.7 14.6 
CL0100 10.0 10.9 
CL0101 14.4 11.5 
CL0102 17.1 13.7 
CL0103 26.5 20.8 
CL0104 23.2 17.3 
CL0105 19.0 15.2 
CL0106 18.8 14.7 

Table 5. Characterization standoff range for TD and FD systems corresponding to a response 
SNR = 5. 
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Figure 21.  UXO targets used in the measurements of characterization standoff range. 

 

 

Figure 22. Clutter items used in the measurements of characterization standoff range.  A 1″ scale 
bar is shown in the lower left hand corner.  
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Figure 23.  Other clutter items used in the study. 

 

The wideband response curves for all these UXO and clutter items have been measured with 
both the time-domain (TD) and frequency-domain (FD) systems.   The TD instrument is a 2-axis 
system (in-plane and out-of plane axes) while the FD system is a 3-axis system.  With the present 
FD hardware, however, we still have a cross-axis coupling issue.  As a result, we cannot collect 
data across all three axes simultaneously.  We can collect simultaneous data across two axes only 
and then take data across the third axis separately.  This cross-axis coupling can be resolved with 
further hardware development but, per SERDP instructions, we needed to use the remaining 
resources to characterize the system rather than do more hardware development.      

A summary of the 27 targets used is provided below:  

UXO: 20 mm, 40 mm, 57 mm, 60 mm, 81 mm, 105 mm, 155 mm, 155 mm.  Although Figure 21 
shows one 155 mm shell only, we did have two distinct 155 mm artillery shells. 

Clutter: CL0093, CL0094, CL0096, CL0099, CL0100, CL0101, CL0102, CL0103, CL0104, 
CL0105, CL0106, CL107, CL108, CL109, CL110, CL111, CL112, CL113, CL114. 

All measurements were performed across a “T”-shaped grid, as shown in Figure 24.  The grid 
measurements are important because they provide spatial information, and this plays an 
important role in reducing ambiguity when doing the parameter inversion.  The measurement 
script is as follows: 

UXO training data –We measure the response across the grid for UXO targets at orientations of 
0, 90, 180 degrees in the Y-Z plane (0 deg representing target alignment along the Z-axis). The 
targets are at a depth corresponding to an SNR of at least 5.  The X- and Y-axes are in the 
horizontal plane while the Z-axis is out of the plane. 

UXO blind data - Measure the response of same UXO targets across the grid with targets at 
random angle orientation in the Y-Z plane.  UXO targets do not have to be at the same depth as 
in Step 1 but SNR should at least 5. 

 

 

CL107        Rebar 

CL111 Soda can

CL108 License CL109 Copper plate 

CL112 81 mm fin CL113 155 mm nose CL114 Chicken wire 

CL110  Steel shot put
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Clutter blind data - Measure response of clutter pieces at random angle orientation in the Y-Z 
plane. The targets will be at a depth corresponding to an SNR of at least 5.  There is no preferred 
target orientation in this case.  

 
Figure 24.  Measurement layout showing the plus-shaped grid and measurement points 1, 2, 3, 4, 5, 
6, and 7.  Because of the orientation of the target in the y-z plane, there is symmetry with respect to 
the y-axis and only measurements on one side of the x-axis (i.e., points 6 and 7) need to be recorded. 
 

3.2 Laboratory prototype FD and TD sensors 

3.2.1 FD System 

The system operates over a bandwidth of 5 Hz – 100 kHz and, in a typical scan, about 15 
frequencies are sampled sequentially (i.e., stepped frequency).  This stepped frequency mode of 
operation is not very efficient but it is useful in a laboratory system because it allows one to 
isolate the signal for each frequency separately and analyze it in a more straightforward manner 
using a simple diagnostic tool such as an oscilloscope.  The system comprises four components 
briefly described below. 

Sensor head 
Source coil: [001], 4 turns, diameter = 12” 
Bucking coil: 1” diameter   
Sensor board: 3-axis MR sensor, electronics 

Transmit/Receive electronics 
2.5 Ms/sec, 12 bit National Instruments A/D board 
5 Ms/sec, 16 bit DAC 
Custom low pass filters 

x

y

= measurement point

y

z

Position 1

Position 2

Position 3

Position 4

Position 5

Position 6 Position 7

0 deg

90 deg

Angle w.r.t. target nose

x-y grid for spatial sampling Target is tilted in the zy plane
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VCCS to drive compensation coil 

Wideband amplifier 
Linear DC supply (Vmax = 48 Vpeak; Imax = 12 Apeak ) 
Custom power amplifier (bi-polar bridge design)  
Inductive load at 100 kHz limits current to 7 A  

Computer & software control 
Generates waveforms (up to 40 frequencies if needed) 
Digitally demodulates signal into in-phase (I) and quadrature (Q) at each frequency 
Code for system calibration 
Control parameters input through user interface screen  

Figure 25.  Picture showing FD laboratory system 

3.2.2 TD System 

In this section, we discuss in detail the characteristics of the wideband TD system.  The system 
operates over a bandwidth of 10 µs – 2800 µs and in a typical scan it measures the full decay 
curve.  The system comprises four components briefly described below.  

Sensor head 
Source coil: [001], 6 turns, 16” diameter 
Sensor board: 2-axis MR sensor (Honeywell HMC 1002), electronics 

Transmit/receive electronics 
Same receive electronics as FD system  
Coil driven by 24 V power supply   
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FET switch is closed to ramp up current in transmit  coil to 40 A, left closed for 100 ms, and 
opened in 100 ns to discharge current 
End of current pulse triggers a Set/Reset (3 ms) of sensor, which then triggers data acquisition 

Computer   
Used for data acquisition and hardware control through a National Instruments multi-function 
DAQ board   
Data input to computer is digitized, displayed in near real time on user interface screen, and 
stored  
All control parameters (acquisition time, number of  scans, etc.) are input through this screen. 
 
Representative plots of the testing data taken for the UXO and clutter items listed above can be 
found in Appendix A at the end of this document.  

4 Evaluate and tabulate maximum detection range of UXO targets using passive 
MR system 
Since no work was funded to develop a passive magnetic gradiometer system optimized for this 
particular application, we used an existing system previously developed for other applications 
(i.e., not optimized for UXO detection).  However, when we tried to revive a mothballed 
broadband MR magnetic gradiometer previously developed under another contract, we found 
that the unit was not in a functioning condition.  The only other MR system that was available to 
us was a 3-axis MR magnetometer (not a gradiometer) commercially available from Honeywell 
(Type HMR2300).  Using the Honeywell magnetometer, we measured the magnetic detection 
range (DR) for a threshold signal corresponding to an SNR = 5.  The results are summarized in 
Table 6. 

UXO Type 20 mm 40 mm 57 mm 60 mm 81 mm 105 mm 155 mm 

Range @ SNR=5  0.3 m 0.3 m 1.3 m 0.6 m 1.6 m 1.3 m 1.5 m 
Table 6. Summary of detection ranges for different types of UXO, as measured using a Honeywell 
magnetometer. 

It is noteworthy that in tests conducted in 2005 and sponsored by NVESD, QM was able to 
detect 155 mm shells from a 4.6 m standoff using a fluxgate magnetic gradiometer in motion, 
mounted on a HMMWV.  Considering that the noise floor for an MR sensor is about 50 times 
higher than that of a fluxgate sensor, the corresponding detection range for an MR gradiometer 
can be inferred by scaling the fluxgate standoff by 501/4 since a passive magnetic gradient signal 
is proportional to the inverse fourth power of the distance.  This would correspond to an 
estimated detection range of 1.7 m for a 155 mm shell using an MR gradiometer.  This range 
inferred indirectly is comparable to the detection range obtained using the commercial, off-the-
shelf Honeywell MR magnetometer.    

All these values are significantly lower than those obtained in an earlier task using finite-element 
modeling to simulate the magnetic response of a UXO (e.g., 8 m detection range for a 155 mm).  
A review of the range estimation shows that it relied on a lower noise floor estimate for the 
Honeywell MR sensors than we, in fact, achieved.  In a separate program, funded by DARPA, 
we had commissioned Honeywell to design and fabricate a next-generation MR sensor element, 
which we (and they) had expected to reduce the noise floor by well over an order of magnitude.  
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The finite-element models were evaluated to provide a range prediction based on the expected 
lower noise floor.  In the event, the prototype sensor elements fabricated by Honeywell, while 
displaying some improved characteristics relating to sensitivity to off-axis fields, did not 
improve on the noise floor of their existing commercial models.  

5  Process and analyze measurements from Task 2 to address technical issues   

5.1 EMI Model 

In the ensuing discussion, boldface italic characters represent vectors and un-boldface characters 
are scalars.  Boldface un-italic characters represent tensors.   

For sensors sufficiently distant from the target (relative to the target dimensions), the magnetic 
vector potential may be represented approximately as  

3
oo

R4R
1

4
)( RmmR ×

=×∇=
π
µ

π
µA      (1) 

where m is the magnetic dipole moment and R is the vector from the target center to observation 

point (R = |R|, r = R/R). The associated magnetic field is expressed as ( ) 3/
2
1 RrmrH ⋅=
π

.  The 

dipole approximation in (1) has been applied widely in the context of analyzing magnetometer 
data for sensing buried UXO, and the accuracy of the magnetic-dipole model fit to measured data 
is often excellent.   

The EMI response of simple targets has been represented in terms of a frequency (time) 
dependent magnetic dipole, constituting a generalization of the magnetometer model. In 
particular, the magnetic dipole moment m of a target is represented as incHm ⋅= M  where Hinc 
represents the incident (excitation) magnetic field and M is a tensor that relates Hinc to m. For a 
UXO with axis along the z direction, we may express the magnetization tensor as  
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where z is a unit vector in the z direction, and x and y correspond to orthogonal unit vectors, each 
perpendicular to z. The terms mz(0) and mp(0) account for the induced magnetization produced 
for ferrous targets (valid down to static magnetic-field excitation, 0→ω ) , and the terms in the 
summations account for the frequency-dependent character. It is important to note that an EMI 
sensor operated down to zero (or very low) frequency is distinct from a magnetometer, since the 
excitation magnetic fields are different in these two cases: for a magnetometer the target is 
excited by the earth’s magnetic field, while for the very-low-frequency EMI sensor the excitation 
fields are generally generated by a loop source. Note in (2) the poles at imaginary frequencies 

zkjω  and pijω , these corresponding to the magnetic singularities that generalize the SEM 
method to EMI frequencies.  For simple targets, typically we only require the first term in each 
sum, representative of the principal dipole mode along each of the principal axes. 

Given the excitation magnetic fields Hinc, from which we obtain m using (2), the associated 
magnetic vector potential is computed using (1). If we assume that the EMI source responsible 
for Hinc can be represented, as seen from the target, as a magnetic dipole with moment ms, then 
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3
inc

R2π
1 sts

st
rmrH
)

) ⋅
= , where r) st is a unit vector directed from the source to the target center, with 

this distance represented by R ( Rst =r ).  If we assume that the source and observer coils are co-
located (or nearly co-located), then the total magnetic field observed at the sensor, Hrec, is 
represented by 

stst
st rrrH ))
)

⋅⋅⋅⋅∝ UMUT)( 6
rec

R
ω     (3) 

where the proportionality constant depends on the strength of the dipole source ms and the 
characteristics of the receiver. The 33× unitary matrix U rotates the fields from the coordinate 
system of the sensor to the coordinate system of the target (the x, y, z coordinate system in (3) is 
defined by the orientation of the target), and UT, which is the transpose of U, transforms the 
dipole fields of the target (in the M coordinate system) back to the coordinate system of the 
sensor. Clearly the matrix U contains information about the target orientation (the angles of the 
target θ  and φ  with respect to the sensor coordinate system). 

For the time-domain data, the above frequency-domain analysis is converted analytically into the 
time domain, and the feature extraction is performed directly in the time domain. 

5.2 Feature Extraction 

The EMI models are far more sophisticated than the magnetometer model, reflecting the 
enhanced information content in the EMI data (vis-à-vis the magnetometer), but also leading to 
difficulties with local minima when performing parameter extraction from measured data.  With 
regard to the other parameters in the EMI model, the search range is constrained based on 
previous experience with previously observed data. For example the EMI resonant frequencies 

πω 2/n
zk  and πω 2/n

pi  typically range from a couple hundred to several thousand Hertz, and 
such a range is considered in the parameter inversion.  

Within the context of (2) and (3), we here assume that only one term is required in each sum. 
The parameters to be determined are the approximate target center (constrained via the 
magnetometer inversion), the target orientation (characterized by the unitary matrix U), 
mz(0)/mp(0) (for ferrous targets), mz1/mp1, and 1zω  and 1pω .  These parameters are determined via 
a multi-dimensional gradient search. To circumvent problems associated with local-optimal 
solutions, we consider numerous solutions for the model parameters, based on random 
initializations of the parameters in (2).  We typically find that most of the initializations lead to 
the same minima, while there are also several additional but less frequently visited “stray” 
minima. The final parameters are taken as those that correspond to the minimum mean-square 
error between the measured and model data.  

5.3 Classifier Model Design 

We designed a Gaussian Mixture Model (GMM) to characterize the statistical representation of 
the UXO features.  In the testing phase, we may use this GMM to quantify the likelihood that the 
data under test is similar to the UXO training data.  If the likelihood of a testing item is high it is 
deemed to be UXO-like, and otherwise it is defined to be clutter (because it has a low likelihood 
of being like the UXO items seen when training). The GMM representation used here is semi-
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parametric, which implies that the model is based on a Gaussian structure, but the number of 
mixture components is unknown a priori and is inferred from the training data.  Below, we 
provide details on this model. 

Let v represent a feature vector extracted from the EMI model, as discussed above.  A Gaussian 
mixture model is represented as  

)(=),,( ∑
1=

k

K

k
k pwKp ΘvΘwv      (4) 

where )( kp Θv  is a Gaussian distribution with mean and covariance defined by the associated 
vector kΘ , and wk represents the probability that the kth mixture component is used, with 

1
1

=∑
=

K

k
kw .  If we have N training vectors D= Nnn ,1=}{v , then Bayesian theory may be employed to 

constitute a posterior estimate on the model parameters w andΘ , specifically 
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where the denominator in (5) is computed in principle by “integrating out” the parameters w and 
Θ  in the numerator.  This process is difficult to achieve without approximation, and here we 
utilize the variational Bayes algorithm. 

Our objective is to obtain the posterior probability distribution of the hidden variables θ  based 
on a set of observed variables D= Nnn ,1=}{v .  Here θ  are defined by w andΘ , i.e., },{= Θwθ . 
Since an exact inference of the hidden variables θ  based on the observed variables D is 
intractable for all but the simplest model structures, our goal is to find a tractable variational 
distribution Q(θ ) that closely approximates the true posterior distribution )( Dθp .  

Let p(D) denote the marginal probability of the observed data D. The log-marginal can be written 
as 

)'()()(ln PQKLQLp +=D               (6) 

where 
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and 
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)(

ln)(=)'( ∑
θ
Dθ

θ
θ Q

p
QPQKL              (8) 

with )(' DθpP = . The summations in (7) and (8) are replaced by integrals if the hidden variables 
θ  are continuous.  
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Note that the above expression is true for any approximating variational distribution Q(θ ).  The 
term )'( PQKL  represents the Kullback-Leibler (KL) divergence between the true posterior 

)( Dθp  and its variational approximation Q(θ ).  Our objective is to optimize Q(θ ) to minimize 

the KL divergence between Q(θ ) and )( Dθp .  However, since the posterior density function 

)( Dθp  is known, and is the subject of this analysis, the KL divergence in (8) cannot be 
evaluated.  However, since )'( PQKL  is always non-negative, the term L(Q) forms a lower bound 
of the log-marginal, lnp(θ ).  Consequently, minimization of )'( PQKL with respect to Q is 
equivalent to maximization of L(Q) since the left hand side lnp(D) is independent of the 
variational distribution Q.  All of the terms in (6) can be evaluated, and therefore the Variational 
Bayes (VB) approximation to )( Dθp  reduces to attempting to determine the Q(θ ) that 
maximizes the variational expression L(Q).  

For the sake of tractability, we assume that the hidden variables are independent of each other, 
meaning Q(θ ) may be written in a factorized form as )()( ∏= i ii θQQ θ , where { iθ } is the set of 
disjoint hidden variables indexed by i constituting θ .  In variational inference, we optimize the 
factors of the variational distribution one at a time, cycling sequentially through all factors.  We 
accomplish this by separating out the terms involving a factor Qi( iθ ) (approximating the 
distribution for hidden variable iθ ).  We can therefore maximize the lower bound L(Q) with 
respect to a single factor Qi (assuming all ijjQ ≠,  are temporarily fixed), and then cycling through 
each hidden variable iθ  in turn replacing the current distribution Qi( iθ ) with a revised estimate 

)(*
iiQ θ .   

This iterative VB analysis can be performed efficiently if each Qi( iθ ) is conjugate to the 
likelihood function with all ijjθ ≠,  equal to a constant. Specifically, this conjugacy property 
allows the update equations to be performed analytically, thereby yielding a VB algorithm with 
computational speed commensurate with the widely used EM algorithm employed in ML point 
estimates of the parameters θ .  

5.4 Evaluation of testing data 

As a product of the training process, we have the model 

)(=),,( ∑
1=

k

K

k
k pwKp ΘvΘwv      (9) 

where in principle we may integrate out the parameters w and Θ , since from the VB analysis 
above we have a full posterior density function on these parameters, based on the training data D. 
Any feature vector v under test may be submitted to (9), yielding the likelihood that the item 
under test looks like items seen while training.  The larger this quantity, the more likely it is that 
the item under test was seen while training.  In addition, we may quantify the likelihood that the 
testing item is associated with any particular mixture component in (9).  By understanding the 
training items associated with a given mixture component, one may also infer which training 
item(s), the testing item looks most like, providing an opportunity for classification. 
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5.5 Presentation of results 

The GMM developed for characterization of the EMI-based features v defines the density 

function )(=),,( ∑
1=

k

K

k
k pwKp ΘvΘwv , where this is designed based on the training data. For a 

given testing vector vt, from the testing targets, the likelihood that the vector vt is associated with 
(similar to) the training data is computed via the likelihood 

  )(=),,(=UXObeingofLikelihood ∑
1=

kt

K

k
kt pwKp ΘvΘwv    (10) 

with this used to rank the item likelihood of being a UXO. We may also compute the likelihood 
that the item under test is associated with any of the mixture components, this defined 
by )( ktp Θv . By understanding which training UXOs are most likely for a given mixture 
component, one may infer which UXO type the item under test looks most like. 

Assume that the item under test has been detected as being a UXO, and one wishes to determine 
the mixture component with which it is most probably associated.  Again, by mapping the item 
under test to a given mixture component, and by understanding which training UXO are 
associated with a given mixture component, one may infer which UXO type the item under test 
looks most like. The probability that testing feature vector vt is associated with mixture 
component k is expressed as  

∑
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5.6 Results 
5.6.1 Frequency-domain data  

The VB GMM analysis uses 5 mixture components, of which there are two dominant mixture 
components, and three insignificant ones. Specifically, the results indicate that most of the 
feature vectors for the training data are associated with the same dominant mixture component 
(component 3) while the rest (corresponding to the 57 mm shell) are associated with mixture 
component 4, as seen in Figure 26.  Mixture components 1, 2 and 5 have insignificant 
contributions. 
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Figure 26.  Distribution of mixture components for feature vectors associated with the FD training 
data.  The data index identifies the UXO item used in training, each item measured in each of the 
three cardinal orientations.  Eight training items thus yield twenty-four indices. 

 

We also summarize the results for the training data in Table 7, where we show the log likelihood 
that the data are associated with the entire UXO mixture model, as well as the likelihood of being 
associated with the third and fourth mixture components separately.  Likelihoods are tabulated 
for each cardinal orientation of each UXO item, giving three rows of likelihoods per item. 

These results are not consistent in the sense that the parameters extracted from the model are not 
consistent as a function of target orientation.  Different orientations of the same target yielded 
different parameters for the target model.  This made it very hard to do any classification.  
Moreover, the algorithms used by Duke worked well when only the z-field component is used 
presumably because the other components (i.e., x and y) had weak energy and were often noisy.  
For these reasons, the classification results that will be discussed herein involve the analysis of 
the vertical z-fields only.   
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UXO 
Index 

Log-likelihood from 
UXO Mixture 

Log-likelihood from 3rd 
Gaussian 

Log-likelihood from 4th 
Gaussian 

9.8262 12.9526 0.000181 
6.132 8.0829 0.000238 

 
20 mm 

7.6416 10.0729 0.000169 
4.4677 5.8891 0.000168 
2.6409 3.481 0.00021 

 
40 mm 

0.1032 0.13587 0.000544 
0.005247 1.81E-13 0.038016 
0.007633 9.88E-16 0.055305 

 
57 mm 

0.007185 8.30E-13 0.051987 
5.0982 6.7203 0.000123 
5.129 6.7609 0.000125 

 
60 mm 

5.8127 7.6621 0.000126 
0.56959 0.75071 0.000197 
6.5351 8.6143 0.000179 

 
81 mm 

3.7782 4.9802 0.000135 
8.1113 10.6921 0.000179 
5.7769 7.6149 0.000206 

 
105 mm 

5.5483 7.3136 0.000296 
5.7069 7.5226 0.000171 
7.0992 9.3579 0.000151 

 
155 mm 

6.8867 9.0779 0.000166 
8.5944 11.3289 0.000184 
8.0995 10.6766 0.000166 

 
155 mm 

3.9959 5.2672 0.000217 

Table 7.  Analysis of FD training data showing the log-likelihood that each training-UXO data set 
was generated from the UXO GMM (first result column) and from the third and fourth Gaussian 
mixtures (second and third columns, respectively).  Three rows per item represent the log-
likelihoods measured in each of the three cardinal orientations of the training item. 
 

The results of the likelihood that the testing data are similar to the UXO training data are shown 
in Table 8, which ranks all the targets (including clutter items).  The table also shows the 
likelihood that the item under testing is associated with any of the individual 3rd and 4th mixture 
components.   When the target indexes are compared with the target truth table, we obtain the 
classification results shown in Figure 27. 
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Target 
Index 

Log-likelihood from
UXO mixture 

Log-likelihood from 
3rd Gaussian 

Log-likelihood from
4th Gaussian 

9 9.5574 12.5983 0.000201 
2 9.0959 11.9899 0.000174 
23 8.436 11.1201 0.000183 
1 7.4288 9.7923 0.000224 
20 6.8672 9.0521 0.000191 
13 6.692 8.8212 0.000167 
22 6.4421 8.4917 0.000174 
5 5.7955 7.6395 0.00019 
15 5.3998 7.1178 0.000214 
18 4.2668 5.6242 0.000181 
19 3.7989 5.0075 0.000186 
14 3.0078 3.9648 0.000246 
3 1.4068 1.8543 0.000428 
11 0.8303 1.0944 0.000117 
12 0.54347 0.71628 0.000108 
4 0.31973 0.42136 0.000163 
26 0.075744 0.099704 0.00031 
27 0.007461 7.82E-12 0.053987 
17 0.001716 0.002041 0.000821 
6 0.000912 0.000866 0.001496 
21 0.000226 0.000237 8.63E-05 
24 0.000187 0.00018 4.09E-05 
25 2.27E-05 9.44E-14 2.07E-05 
7 1.16E-05 8.99E-12 4.98E-05 
10 1.04E-05 1.68E-12 1.45E-06 
8 7.19E-07 2.64E-19 2.49E-06 
16 3.44E-08 2.01E-26 3.62E-10 

Table 8.  Analysis of FD testing data showing log-likelihood that each testing target measurement 
was generated from the UXO GMM (first result column) or generated from the third and fourth 
Gaussian mixture (second and third columns, respectively).  Test objects were only measured in 
one, random orientation, so there is only one row of likelihood estimates per item. 
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Figure 27.  Ranking of targets from least likely to most likely of being a UXO using FD data. 
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5.6.2 Time-domain data 

The VB GMM analysis of the training data with 5 mixture components yields four significant 
mixture components (components 1, 3, 4, 5) and one insignificant one (component 2), as seen in 
Figure 28 which displays the component index versus the data index.  Most of the items are 
associated with the same (most dominant) mixture component.  Most of the feature vectors are 
associated with the same mixture component (component 4), and the rest are associated with 
mixture components 1, 3, and 5. Mixture component 2 has an insignificant contribution. 
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Figure 28.  Distribution of mixture component for feature vectors associated with TD training 
data.  Data index again corresponds to measurements of eight UXO items, each in three cardinal 
orientations. 

 

The results for the training data are summarized in Table 9, where the log likelihood that the data 
are associated with the entire UXO mixture model is shown, as well as the likelihood of being 
associated with the first, third, fourth, and fifth mixture components separately.  As with Table 7, 
so here each UXO item is associated with three sets of likelihoods, corresponding to 
measurements in three cardinal orientations. 

The results of the likelihood that the testing data are similar to the UXO training data are shown 
in Table 10, which ranks all the targets (including clutter items).  The table also shows the 
likelihood that the item under testing is associated with any of the individual 1st, 3rd, 4th, and 5th 
mixture components.  When the target indexes are compared with the target truth table, we 
obtain the classification results shown in Figure 29. 
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Table 9.  Analysis of TD training data showing log-likelihood that each training-UXO data set was 
generated from the UXO GMM and generated from each significant mixture (left to right).  Each 
training item was measured in three cardinal orientations, yielding three rows of likelihoods per 
item. 
 

0.34040.00073 0.008524 0.062632 
0.0007741.45E-09 0.11020.000210.007845 
0.0090710.23168 0.0018110.0082040.1382 

155 
mm 

0.400010.00089 0.0092640.0100960.0729 
0.0121311.95E-05 0.0026590.0899130.014865 
0.0774210.29499 0.0036230.0074650.18715 

155 
mm 

0.0001583.47E-10 0.0006910.121530.016908 
0.000335.69E-09 0.0008330.16530.022996 
0.339740.002353 0.0086450.0063440.062

105 
mm 

 

0.0098731.0693 0.0019030.0030.62637 
0.0107281.0884 0.0019540.0030.63771 
0.0119031.1429 0.002010.0043020.66977 

81mm 

0.009696 0.95938 0.001862 0.00496 0.56239 

0.36912 0.000503 0.011499 0.006144 0.06686 

0.076898 0.3022 0.003505 0.009751 0.19157 
60 mm 

0.008203 0.9879 0.001797  0.57858 

0.00817 0.98423 0.001795 0.003655 0.57643 

0.00823 0.99415 0.001797 0.003717 0.58224 
57 mm 

0.042755 0.60241 0.003 0.006257 0.3602 

0.021072 1.0739 0.002358 0.006252 0.63139 

0.017447 1.0856 0.002269 0.004738 0.6374 
40 mm 

 

0.008293 0.97949 0.001806 0.003598 0.57369 

0.009133 1.0318 0.001859 0.003761 0.60435 

0.008556 1.0015  0.003673 0.58656 
20 mm 
 

Log-lik from
5th Gaussian

Log-lik from 
4th Gaussian 

Log-lik from
3rd Gaussian

Log-lik from 
1st Gaussian 

Log-lik from 
UXO mixture 

UXO 
Index 
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Target 
Index 

Log-lik from 
UXO mixture 

Log-lik from 
1st Gaussian 

Log-lik from 
3rd Gaussian 

Log-lik from 
4th Gaussian 

Log-lik from 
5th Gaussian 

15 0.68842 0.005239 0.002213 1.1732 0.01669 
21 0.67879 0.00528 0.002262 1.1563 0.01786 
19 0.65942 0.004231 0.001942 1.1256 0.010706 
3 0.65808 0.004332 0.002094 1.1224 0.013439 
13 0.64597 0.004925 0.002295 1.1 0.018245 
5 0.63872 0.003995 0.001954 1.0901 0.01074 
11 0.6226 0.003948 0.001863 1.0629 0.0093 
12 0.60958 0.005217 0.002416 1.0366 0.021586 
10 0.60041 0.003974 0.001813 1.0251 0.008585 
14 0.59388 0.003742 0.001823 1.014 0.008603 
26 0.58957 0.003867 0.001797 1.0067 0.008313 
22 0.58445 0.003741 0.001798 0.99793 0.008261 
20 0.57961 0.003623 0.001818 0.9896 0.008472 
16 0.57135 0.006433 0.002149 0.97252 0.01583 
23 0.47588 0.005653 0.002706 0.80451 0.03074 
7 0.46482 0.005427 0.001837 0.79212 0.009393 
24 0.22769 0.006733 0.003405 0.36919 0.062476 
27 0.18945 0.007595 0.003618 0.29882 0.077722 
6 0.081317 0.011143 0.004423 0.090756 0.15013 
17 0.072237 0.008682 0.007738 0.004439 0.38609 
18 0.069196 0.010037 0.004928 0.058026 0.19056 
8 0.067214 0.007328 0.007999 0.003859 0.36035 
4 0.061496 0.006963 0.007563 0.005145 0.32394 
9 0.022427 0.012986 0.001764 0.032445 0.00794 
25 0.013184 0.013646 0.001675 0.01687 0.006573 
1 0.006246 0.038095 0.001508 0.000134 0.003666 
2 0.00213 4.10E-05 0.02993 1.01E-11 5.78E-05 

Table 10.  Analysis of TD testing data showing log-likelihood that each testing target data set was 
generated from the UXO GMM, or from each Gaussian mixture component (right to left).  Each 
test target was measured in only a single, random orientation. 
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Figure 29.  Ranking of targets from least likely to most likely of being a UXO using TD data. 
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5.6.3 Discussion 

Based on the likelihood factor as a ranking factor, the results shown in Figure 27 and Figure 29 
indicate that the classification algorithms worked poorly both for the time-domain and the 
frequency-domain data.  For the sake of discussion, let us define a tentative threshold that 
roughly divides the likelihood scale in Figures 12 and 14 in two halves, where the upper and 
lower halves correspond to most likely and less likely to be a UXO, respectively.   For the FD 
data, only four out of the eight UXO items place in the upper half of the likelihood scale.  The 
difficulty arises mostly from discriminating UXO from small clutter items such as CL099, 
CL093, CL100, CL96, and CL102.  For the TD data, the results are not any better with most of 
the UXO item placing in the lower half of the likelihood scale (i.e., classified as not likely to be 
UXO).1   To put these results in perspective, it is useful to recall that these results have been 
obtained using only one field component, namely the vertical z component.   The algorithm used 
in this analysis did not work well for the x and y components and as such these components were 
not utilized.  What these results may be confirming is that it is not possible to do an adequate 
classification with only one field component, especially with the variety of clutter and sizes used 
in the study.   

The extended sensor bandwidth afforded by the FD and TD sensors did not seem to help, which 
suggests that the signal does not carry significant information at high frequencies/early times.  
This is not totally unexpected considering that UXO items are large bodies and as such much of 
the signal variation occurs at low frequencies/late times.  However, we cannot provide a 
definitive answer on the usefulness of the extended bandwidth based on the present analysis.  To 
do so requires doing an appropriate analysis first and then studying how the results change as the 
bandwidth is adjusted.       

It is also noteworthy that the classification algorithm used in the analysis relies on a dipole 
model, which assumes that the distance between the target and sensor is several times the size of 
the target.    In this work, however, the sensor-target distance is at best 1.5 times the length of the 
target (for small UXO items) due to SNR considerations and in this regime the EMI model used 
is not appropriate.  One indicator is that the parameters extracted from the model are not 
consistent as a function of target orientation, in that different orientations of the same target 
yielded different (often very different) parameters for the target model.   

The likelihood of being associated with a particular mixture component tracks very closely the 
likelihood from the UXO mixture.  Thus, an attempt to do classification of testing data based on 
the mixture components would yield the same results.        

6 Conclusions  
The objective of this work was to examine in the laboratory the potential of wideband EMI, 
multiple field component measurements, and combined frequency-time domain measurements in 
improving UXO/clutter discrimination.  The approach was to build research instruments 

                                                 
1 The main text represents the conclusions of the co-author in charge of the classification effort (L. Carin).  
However, the reader should note that the TD classifier performance seems significantly improved simply by 
inverting the sign of the output: fully 7 out of the 8 UXO appear in the bottom half of the scale, so inverting the 
scale provides a probability of detection of 87.5%.  Whether this is a meaningful result, is debatable.  However, it is 
very unlikely to occur by chance. 
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(frequency-domain and time-domain) using magnetoresistive (MR) sensors, use them to collect 
in-air data (as a function of frequency, position, orientation, and depth) in the laboratory on 
selected canonical targets (both UXO and clutter) and then process the data using modeling tools 
and algorithms.  The data processing was performed entirely by Professor Carin’s group using 
tools and algorithms developed at Duke University. 

To that end, we built and tested two wideband, multi-axis laboratory systems: a FD operating 
over the frequency range 5 Hz – 100 kHz and a TD system with the capability of measuring the 
full decay curve over the time window 10 µs – 2800 µs.  During the course of this program, 
significant effort was required to design and build these prototype systems, which incorporate 
several technological “firsts”: the first truly wideband system (at both high and low frequencies), 
the first multi-component receiver, and the first to incorporate compact, solid-state 
magnetoresistive (MR) sensors.  The development of such a system did not simply amount to an 
assembly of off-the-shelf components but entailed an R&D effort.   

Using these systems, we collected FD and TD data on a set of canonical UXO targets and clutter 
items at various orientations and standoffs.  Signature data were collected by moving the sensor 
over an x-y grid for spatial sampling.  Two types of measurements were made for each target: a 
training data set and a “blind” data set.  For the training data, target ID, standoff depth and 
orientations (0°, 90°, 180°) were made known to Duke for training their algorithms, while the 
blind data collected at random angles was provided without any target, orientation or standoff 
information.  

The goal of this study was to address the following main issues pertaining to the UXO problem: 

1. Define critical parameters for active sensor using research tool.  Parameters include 
number of axes needed in the receiver, optimal bandwidth, and FD versus TD 
performance. 

2. Can an active sensor have sufficient SNR to achieve discrimination? 

An initial study, performed with a small number of targets and clutter, yielded the following 
qualitative results.  The average data correlation decreases as bandwidth increases, indicating 
enhanced classification ability with increasing bandwidth up to 100 kHz.  The result, however, 
was based on a small dataset and may not be true for a larger body of data.  Furthermore, the 
analysis used only UXO data and did not include clutter data.  Thus, the bandwidth analysis 
needed to be performed using signature data from both UXO and clutter. Simulated and 
experimental data suggested that discrimination with z-data only was not likely to be useful, but 
that utility improved with the addition of x- and y-data.  A comparison of the FD and TD results, 
however, was also inconclusive due to the limited amount of data.  After a SERDP Program 
Office review, it was concluded that the results could only be validated with a larger set of 
targets and realistic clutter objects, especially small size fragments.  Another recommendation 
was to insure that the SNR of the response signals be the same across all the UXO targets and be 
equal to at least 5.  It would be useful at this point to point out that the standoff range we refer to 
is the standoff range for characterization, not detection.  Active detection is usually performed at 
a single frequency whereas the AC response for characterization is performed across a wide 
frequency band and, as such, the coil impedance at the highest frequencies limits characterization 
range. 
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Following the recommendations of the Program Office, we then focused on characterization of 
the sensor capabilities using a more extended set of clutter items, as shown in Figures 8 and 9.  
Even though the standoffs were not significantly different from the initial study, the data 
processed by Duke University yielded classification results that are poorer than in the initial 
study, even when utilizing the z- field component only.  From that point of view, we feel that 
even though some data exhibit noise for particular orientations/grid positions, there is still 
significant information in the x- and y-responses for many targets; the Duke study elided all this 
data, regardless of the particular signal to noise ratio.  The effect of bandwidth and the 
comparison of FD and TD instruments were not done because the classification analysis did not 
yield decent results.   

These results could be partly or wholly due to the following: 

1. The models used by Duke do not work well since they do not apply when the distance 
between the sensor and the target is smaller than several times the largest target 
dimension (i.e., the target is not in the dipole limit).  To overcome this difficulty, one 
must utilize more general models that do not make any assumptions on the sensor-
target distance. 

2. The particular mix of UXO and clutter items used in this study contained many 
fragments and small clutter items.  This could present a challenge in the 
discrimination process, especially when using only one field component (the z-
component).  The initial study that yielded better results included only relatively 
larger clutter items.  However, the extended high-frequency system bandwidth ought 
to have been more useful, since the smaller an object, the higher the frequency of its 
response variation.  Furthermore, the constraint of performing all measurements at the 
same (high) SNR value removes another useful piece of discriminatory information: 
the overall signal amplitude, which in the high-frequency limit is proportional to the 
solid angle subtended by the target in the excitation field.  Since small targets were 
measured nearer the system in order to maintain SNR, the total signal amplitude 
variation was much smaller than it would have been, had all targets been measured 
instead at the same distance (for example). 

3.  In this work, the excitation field is applied along one direction only (i.e., the vertical 
direction) while the response signals were measured along all three axes. It is then not 
surprising that the z-axis signal is strong and the x- and y-axes are weak.  To remedy 
this problem, we need to use a multi-axis transmit coil.  The requirement for 
impractically large size and power made us drop our initial attempt to develop such a 
multi-axis coil.  We are aware that other SERDP projects have been working on 
developing a fieldable 3D coil but are not aware of any existing hardware available 
for immediate use.   

Note that the TD results may be more usable than the FD.  While the FD classification results are 
to all intents and purposes identical to a coin toss, the TD results, when inverted, yield a 
probability of detection (correct identification of UXO) of 85.7% and a probability of false alarm 
(incorrectly classifying clutter as UXO) of 35.3%.   Why this should be so is unknown, and we 
do not unequivocally claim significance for the result—let alone claim an understanding of its 
origin.  However, we point out that if the data are truly uncorrelated across item classes, then the 
performance, statistically, converges to that of a coin toss (as the FD results appear to have 
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done).  In that case, it is statistically extremely unlikely for the results to deviate as strongly from 
a coin toss as the TD results did.  Such an unlikely result—seemingly significantly worse than a 
coin toss—probably arises from a systematic effect: either an unaccounted systematic error (such 
as a change in system operation or procedure between taking the training set and the test set) or 
an error in the processing of the test results (a simple, unnoticed inversion of the result).  
Quantum Magnetics observed no change in system performance during acquisition of the TD 
training and test data sets, and Duke University observed no “sign error” in its processing.  Thus, 
the conclusion must remain, to our frustration, ambiguous. 

Quantum Magnetics, in a separate, internally funded project to develop an improved concealed 
weapon detection portal, developed its own classification algorithms.  A preliminary look at 
applying these algorithms to the FD data suggest that they may provide usable detection and 
classification performance, comparable to the inversion of the Duke TD algorithm outputs.  
Quantum Magnetics plans, using internal funds, to carry out a more detailed investigation of this 
prospect in the future.   

The concept of using multi-axis, broadband target response measurements to achieve reliable, 
robust discrimination of buried UXO from buried clutter is not yet demonstrated.  
Magnetoresistive sensor noise has failed to drop as predicted, despite several years of sensor and 
product development by several commercial manufacturers.  However, indications do exist that 
further work on these sensor systems and classification algorithms may yet enable significant 
cost reductions in UXO remediation. 
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APPENDIX A: FD testing data 
 

This appendix presents the complete set of raw FD data collected for all UXO and clutter items.  
Visual inspection of the data may persuade the reader that characteristic differences do exist, that 
can lead to development of an effective classification algorithm.  A separate set of CD ROMs 
includes the data in numerical form, providing an archive for use in further algorithm 
development. 
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APPENDIX B: TD testing data  
 

This appendix presents the complete set of raw TD data collected for all UXO and clutter items.  
Visual inspection of the data may persuade the reader that characteristic differences do exist, that 
can lead to development of an effective classification algorithm.  A separate set of CD ROMs 
includes the data in numerical form, providing an archive for use in further algorithm 
development. 
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