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Project Summary 
 
 

The principal focus of this project was on developing new statistical algorithms for 
analysis of electromagnetic induction (EMI) and magnetometer data measured at actual 
former bombing ranges. To address this challenge, four key technologies have been 
developed: 
 
 

• Active learning: Active learning is a framework whereby the labeled (training) 
data used to design a classifier are defined in situ directly on the site under test. 
This is performed using information-theoretic measures, in which one asks which 
signatures from the site under test would be most informative for classifier design 
if the associated labels could be acquired. These labels are then acquired via 
excavation. In this framework one assumes no a priori labeled (training) data, and 
the initial phase of excavation is performed for the purpose of learning an 
algorithm. Once the information-theoretic measure indicates that no further 
information is available from further excavations, the excavations for the purpose 
of learning are terminated. At this point, using the acquired labeled data, a dig list 
is provided, defining an ordered list of which items are most likely to be UXO. 
Since the output of this process is defined in terms of the probability of being 
UXO, a risk-based analysis may also be employed, to define when to stop 
excavating (when the risk analysis indicates that the expected cost is minimized 
by leaving the remaining items unexcavated). 

 
• Concept drift: In the above discussion it was assumed that no labeled (training) 

data were available. However, in practice one may have labeled data, for example 
from previous excavations at different former ranges. The challenge is that the 
data from a previous site may not be entirely relevant for the new site under test. 
Speaking in a statistical sense, the site under test may be characterized as one 
“concept”, and there may be a “concept drift” from this new site relative to data 
from previous sites analyzed previously. Therefore, the objective is to learn the 
“concept drift” between the site of interest and previous sites, and once this 
statistical relationship is understood/learned, one may appropriately utilize 
previous existing labeled data. In concept-drift-based learning, one again employs 
active learning, whereby an initial set of excavations are performed for the 
purpose of learning. However, in this context one is interested in learning the 
inter-relationship between the current site under test and previous labeled data 
sets that are available. The final dig list, after excavation for the purpose of 
learning, utilizes all of the excavated labeled data from the site of interest, as well 
as an appropriately weighted version of the labeled data from previous sites. In 
this sense the algorithm learns to appropriately utilize all available data. 

 
• Semi-supervised learning: Most existing classification algorithms are 

supervised. This implies that a set of labeled data are provided to the classifier, 
from which learning is constituted. The classifier so learned is then applied one by 



one to each of the unlabeled signatures, for which a classification (UXO/non-
UXO) is desired. In UXO sensing one typically has access to all of the unlabeled 
data simultaneously (since all of the data are collected at once, typically). 
Therefore, there is an opportunity to place the classification of any given 
signature within the context of all other unlabeled signatures (since all unlabeled 
data are available simultaneously). When one takes account of the properties of 
the unlabeled data when learning a classifier, this is termed semi-supervised 
learning. Duke has developed novel semi-supervised algorithms, and applied 
them successfully to measured UXO data. 

 
• Sensor management: The active-learning and concept-drift algorithms address 

the issue of what is termed, in the statistics community, “incomplete” or 
“missing” data. Specifically, the unlabeled data from a given site of interest is 
“missing” labels, and in that sense it is “incomplete”. The active-learning 
framework seeks to fill in missing data in an optimal manner, with targeted 
(information-theory-based) excavations, for the purpose of learning the statistical 
characteristics of the new site under test. Another form in which missing data is 
manifested is if only a subset of sensors is deployed in a given region. For 
example, assume that EMI and magnetometer sensors are available. A given 
portion of a site may be interrogated by EMI, another region by magnetometer, 
and a third by both of these sensors. There is “missing data” in those regions for 
which only one of the two sensors is deployed. Similar issues may exist for the 
spatial sample rate of the data, even for a single sensor: If data are sampled in 
spatial increments Δx, there is missing data, for example, at finer sample rates. 
We may again employ information theory to optimally deploy additional sensors, 
with the purpose of optimally completing the data, and deployment of additional 
sensors is terminated when the expected information gain saturates. This 
framework has been developed for multi-sensor UXO sensing. 
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Abstract – When sensing subsurface targets, such as landmines and unexploded 

ordnance (UXO), the target signatures are typically a strong function of environmental 

and historical circumstances. Consequently, it is difficult to constitute a universal 

training set for design of detection or classification algorithms. In this paper we develop 

an efficient procedure by which information-theoretic concepts are used to design the 

basis functions and training set, directly from the site-specific measured data. 

Specifically, assume that measured data (e.g., induction and/or magnetometer) are 

available from a given site, unlabeled in the sense that it is not known a priori whether a 

given signature is associated with a target or clutter. For N signatures the data may be 

expressed as N,iii y, 1}{ =x , where xi is the measured data for buried object i and yi is the 

associated unknown binary label (target/non-target). Let the N xi define the set X. The 

algorithm works in four steps: (i) The Fisher information matrix is used to select a set of 

basis functions for the kernel-based algorithm, this step defining a set of n signatures 

XB ⊂n that are most informative in characterizing the signature distribution of the site; 

(ii) the Fisher information matrix is used again, to define a small subset XX ⊂s , 

composed of those xi for which knowledge of the associated labels yi would be most 

informative in defining the weights for the basis functions in Bn; (iii) the buried objects 

associated with the signatures in Xs are excavated, yielding the associated labels yi, 

represented by the set Ys; and (iv) using Bn, Xs and Ys a kernel-based classifier is 

designed, for use in classifying all remaining buried objects. This framework is discussed 

in detail, with example results presented for an actual buried-UXO site. 
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I. INTRODUCTION 
 

It is well known that sensor signatures of buried targets such as landmines and 

unexploded ordnance (UXO) are a strong function of their history and soil environment. 

For example, radar and seismic sensing of landmines is a strong function of the soil 

properties [1]. Electromagnetic induction (EMI) and magnetometer [2,3] sensors are 

typically less sensitive to soil properties when the target is of high metal content, such as 

UXO. However, the complexity of the UXO sensing problem is strongly influenced by 

which ordnance are present, on how the ordnance impacted the soil, and on the 

surrounding man-made conducting clutter and UXO fragments. All of these issues are 

dependent on the history of a given UXO site.  

 

These characteristics of the subsurface-sensing problem significantly complicate 

design of detection and classification algorithms, since it is difficult to define a set of 

landmine or UXO sensor signatures that are, for algorithm-training purposes [4], 

generally representative (for all landmine and UXO sites). In this paper we investigate a 

technique whereby detection and classification algorithms may be designed for sensing 

buried landmines and UXO without requiring a separate training set of representative 

target and clutter signatures. The approach is based on the realization that, when sensing 

landmines and UXO, one will eventually excavate buried targets based on the sensor 

data. The approach developed here chooses which items to excavate initially, based on 

their importance in design of the associated detection and classification algorithm. 

 

Let {xi}i=1,N  represent the known measured signatures of the N subsurface objects 

at a given site, with the set of all xi denoted as X. Further, let {yi}i=1,N  represent the 

associated unknown binary labels (target/non-target) of the signatures, to be determined 

in the detection phase. We here develop a kernel-based classifier, by which an observed 

signature or feature vector x is classified using the function 

∑
=

+=
n

i
oii wKwf

1
),()( bxx      (1) 

where bi is the ith basis function, wi are scalar weights, wo is a scalar offset or bias, and 

K(x,bi) is a general kernel that defines the similarity of x to bi. For a prescribed threshold 
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t, x is deemed associated with the +1 class if tf ≥)(x , and associated with the -1 class if 

f(x)<t, and by varying the threshold t one yields the receiver operating characteristic1 

(ROC) [4]. Algorithms that utilize the form in (1) include the support vector machine 

(SVM) [5-6], the relevance vector machine (RVM) [7], kernel matching pursuits (KMP) 

[8], as well as many other related algorithms [9-11].  

 

In design of a classifier of the form in (1), the bi typically come from a separate 

training set, for which the associated labels yi are known. In this case the goal is to design 

a classifier of the form in (1) that correctly identifies the labels of the training data (when 

x=bi for any i), with the hope that this will generalize to data x not observed while 

training. The aforementioned variability of subsurface-target signatures makes the idea of 

utilizing a separate training set undesirable and often impractical.  

 

 In the approach taken in this paper, the set of basis functions niin ,1}{ == bB is 

selected from the set of observed data X, i.e. XB ⊂n . This is done because such basis 

functions will be well matched to the data to be classified, vis-à-vis other data that may 

have come from a different site. The set nB is defined by selecting those signatures from 

X that are most representative of the measured data from the site of interest, using 

fundamental information-theoretic considerations to be detailed below. Note that the 

labels (identities) of the subsurface objects associated with nB  are not required at this 

point. Having defined the basis set for (1), we must determine the associated model 

weights niiw ,1}{ =  and wo (denoted collectively by the vector w), and for this task we 

require labeled data. Therefore, we define a subset of signatures XX ⊂s  for which 

knowledge of the associated labels Ls would be most informative in the context of 

defining the model weights. The set of signatures Xs is again determined via information-

theoretic metrics detailed below. Note that the sets nB and Xs may overlap, but they are in 

general distinct. After excavating the items associated with Xs, yielding Ls, the algorithm 

                                                           
1 Rigorously speaking, the ROC was originally developed for a likelihood-ratio test [4], and therefore what 
we consider here is arguably ROC-like. For notational convenience, throughout we refer to such as an 
ROC.  
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in (1) is trained as usual [8] and then applied to sXx∉ . The key point is that the training 

set (Xs,Ls) is determined adaptively on the observed site-dependent data, via fundamental 

information-theoretic metrics.  

 

We demonstrate using measured EMI and magnetometer data from an actual 

UXO site that the sets Xs and Ls are often of small dimension, thereby minimizing the 

amount of excavation required for algorithm design. Once the algorithm has been 

designed, the fact that it is well matched to the environment often yields a significant 

reduction in the false-alarm rate, thereby ultimately reducing the total number of 

excavations (i.e. the false-alarm probability is reduced, and therefore less excavation is 

required of clutter).  
 

The remainder of the paper is organized as follows. In Sec. II we discuss the 

selection of basis functions nB  and labeled data Xs. We present in Sec. III example 

results on EMI and magnetometer detection of UXO from an actual UXO site. The work 

is summarized in Sec. IV.  

 

II. ACTIVE CLASSIFIER DESIGN 
 
A.  Model structure 

 

The decision function in (1), using n basis functions, may be expressed concisely 

as [8] 

)(),()( 0,
1

, xwbxx n
T
nn

n

i
iinn wKwf φ=+= ∑

=

                                (2) 

where  
T

nn KKK )], (),...,,(),, ( ,1[)( 21 bxbxbxx =φ                                 (3) 

T
nnnnnn wwww ]  ,  ,  , ,[ ,2,1,0, L=w                                         (4) 

Assume that the basis set },...,,{ 21 nn bbbB =  is known. Moreover, assume that the item 

associated with signature xi is excavated (this is termed an “experiment”), from which we 
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learn the associated label yi, where by construction yi=1 for one class and yi=-1 for the 

other class (target/no-target). The label found by the experiment is related to the 

prediction )(xnf  by  

iin
T
niy ε+= )(xw φ                                                 (5) 

where )( ixε  is the error term resulting from imperfections in the model. In algorithm 

design one desires weights w that minimize the error observed on training data, for which 

the data and labels are known. If the training data are well matched to the subsequent 

testing data, then the algorithm is likely to constitute a robust detection procedure. As 

indicated above, in many subsurface-sensing problems it is impractical to have a separate 

training set, with this addressed by the information-theoretic techniques discussed below. 
 

B. Selection of basis functions 

 

If we assume that the iε  in (5) are Gaussian and independent with variance 2
iσ , then 

the Fisher information matrix associated with X and nB  is expressed as [12] 

  

∑∑ =
−

=
− σ=σ=

N

i
T

ininii
N

i
T
ninin 1 ,,

2
1

2 )()( φφφφ xxM                                                  (6) 

 

where )(, inin xφφ ≡ . Note that in computing Mn we do not require the labels associated 

with Bn and X (this is a result of the fact that the model in (2) is linear in the weights wn). 

As discussed by Fedorov [12], the Fisher information matrix in (6) is associated with the 

uncertainty in the model weights w, as defined through all N measured xi and the basis 

Bn. By appending a new basis function to )(⋅nφ , one obtains  









⋅φ

⋅
=⋅

+
+ ) (

)(
)(

1
1

n

n
n

φ
φ                                                       (7) 

where ), ()( 11 ++ ⋅=⋅φ nn K b  and Xb ∈+1n , nn Bb ∉+1 . Following (2), we can write from 

1+nφ  the augmented classifier 1+nf , for which the Fisher information matrix is found to be 
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where )(1,1 inin x++ φ≡φ . The expression in (8) is again associated with fitting the model to 

the N measured xi, but now using an (n+1)-dimensional basis Bn+1, vis-à-vis the n-

dimensional basis Bn in (6). We develop a metric which compares (6) and (8), thereby 

quantifying the information gain by adding the new basis bn+1.  

 

There are many ways of comparing the information content reflected by Mn and 

Mn+1, and here we employ the so-called D-optimal procedure [12], defined as the 

determinant of the information matrix. The logarithm of the determinant of M is denoted 

qn, and it may be shown that  

)(ln 11 ++ += nnn rqq b                                                         (9) 

where  

∑∑∑ = +
−−

= +
−

= +
−

+ φσφσ−φσ=
N

i ininin
N

i
T

inini
N

i ininr
1 ,1,

21
1 ,,1

2
1

2
,1

2
1  )( φφ Mb               (10) 

Since nN ≥  the matrix Mn is full rank and its inverse exists (assuming that n of the 

vectors Niin ,1)}( =x{φ  are linearly independent). Under these conditions, it can be shown 

that 0>r , and therefore rln  in (9) is generally valid. Note that if r(bn+1)=0, then  Mn+1 is 

rank-deficient, and we delete the basis function from the candidate 

set and proceed to select from the remaining ones (however, we haven’t found r(bn+1)=0 

in practice). 

 

It is known from information theory [13] that the inverse of nM  gives the Cramer-

Rao lower bound (CRLB) of the covariance matrix of the estimate of nw  and the 

reciprocal of qn lower bounds the product of its eigenvalues. The CRLB is here the 

actual covariance, assuming the Gaussian model. A larger qn implies low variances of the 

components of nw . Given the nth order decision function nf , qn is fixed, and one relies 

on maximization of )(ln 1+nr b  to obtain a large value of  qn+1. This can be achieved by 
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conducting a “greedy” search for the new 1+nb  in X with the previously selected support 

data excluded  

)(lnmaxarg ,1 bb BbXb r
nn ∉∈+ =                                              (11) 

Using the procedure outlined above, basis elements bn are added until the information 

gain reflected in qn+1-qn is no longer deemed significant. Note from (9)-(10) that 

evaluation of (11) does not require knowledge of the target labels yi, and therefore no 

excavation is required to determine the basis Bn. The greedy method is suboptimal, but in 

practice often provides good results. 

 

C. Selection of labeled data, for model training 
 

Assume that the procedure discussed above selects n bases from the observed data 

X. We now require labeled data to optimize the associated model weights w. In a manner 

analogous to the previous discussion, we select those Xx ∈i  for which knowledge of the 

associated labels yi would be most informative in the context of defining w. Those xi that 

are so selected define a subset of signatures XX ⊂s , and these items are excavated to 

yield the respective set of labels Ls. The set of signatures and labels (Xs, Ls) are then used 

to define the weights w in a least-squares sense, and the resulting model f(x) is used to 

specify which of the remaining signatures sXx∉  are likely targets of interest.  

 

Assume that there are J signatures in Xs, denoted Xs,J. We quantify the 

information context in Xs,J in the context of estimating the model weights w, and further 

ask which Jsi ,Xx ∉  would be most informative if it and its label were added for 

determination of w. Analogous to (6), we have  

∑ ∈
−σ=

Jsii
T

ininiJsn
,: ,,

2
, )(

Xx
XM φφ                                                  (12) 

The expressions in (6) and (12) both employ an n-dimensional basis set XB ⊂n . The 

distinction is that in (6) we are interested in defining Bn, and we sum over all observed 

signatures {xi}i=1,N. By contrast, in (12) the basis set Bn is known and fixed, and we are 

only summing over those signatures Xs,J for which knowledge of the associated labels is 

most informative in defining the model weights w.  
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After adding a new signature Xx ∈i , Jsi ,Xx ∉ , we now have 1, +JsX  and Mn is 

updated as 
T

ininiJsnJsn JJJ 111 ,,
2

,1, )()(
+++

−
+ σ+= φφXMXM                      (13) 

where iJ+1 represents the index of the new signature selected for Xs,J+1. Using the matrix 

identity det(A+FFT)=det(I+FTA−1F)det(A), one obtains from (13) 

               )(ln)()(
1,1, +

+=+ JiJsnJsn qq xXX ρ                                        (14) 

with 

1111 ,,
1

,
2 )(1)(

++++

−−σ+=ρ
JJJJ inJsn

T
inii φφ XMx                                       (15) 

Care is needed with regard to evaluating the inverse of Mn, since if J<n the matrix is rank 

deficient. We have considered addressing this in either of two ways. A standard approach 

for inversion of such matrices is to add a small diagonal term to Mn, such that its inverse 

exists. Alternatively, by construction one can assume that the items associated with the 

basis Bn are all associated with Xs,J, yielding a minimum of n labeled data and therefore 

assuring that the matrix is full rank. We have examined both procedures, and they yield 

comparable results. We use the second approach in all examples presented in Sec. III. 

 

Having addressed the inverse of Mn, one iteratively maximizes )(ln
1+

ρ
Ji

x  to 

obtain  

)(lnmaxarg
,1 , xx XxXx ρ= ∉∈+ JsJi

                                             (16) 

Note that to define 
1+Ji

x we again do not require the signature labels. The elements of Xs 

are selected iteratively, in a “greedy” fashion as indicated in (16), until the information 

gain is below a prescribed threshold. After J iterations we have defined those signatures 

Xs,J for which knowledge of the labels will best approximate the weights w. These items 

are excavated, yielding the labels Ls,J .  

 

 For the assumptions underlying the linear model in (5), and assuming knowledge 

of Bn and (Xs,J, Ls,J) the optimal estimation for the weights w is expressed as [8,12] 

yΦΦΦw T1T ][ −=      (17) 
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where y represents the set of labels determined via the J excavations 
T},...,,{

21 Jiii yyy=y      (18) 

and the )1( +× nJ  matrix Φ  is defined as 
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x

x
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Φ

φ

φ
φ

      (19) 

where, for example, 
1i

x corresponds to 
1i

y . 

 

 In the classification stage we consider Js ,Xx∉  and compute f(x). For a prescribed 

threshold t, x is deemed associated with the +1 class if tf ≥)(x , and associated with the -

1 class if f(x)<t, and by varying the threshold t one yields the receiver operating 

characteristic (ROC) [4].  The key component of the model f(x) is that it is linear in the 

weights w, which yields a closed-form procedure for selection of Bn and Xs,J, as indicated 

in the previous sections.  

 

III. THEORETICAL MOTIVATION FOR CLASSIFIER DESIGN 

 
In the previous two sections we have presented procedures for selecting basis functions 

for a kernel-based classifier, based on a set of unlabeled data. After designing the basis 

set, we have also addressed selection of which signatures would be most informative for 

classifier training, if the associated signature labels were known. In this section we 

provide theoretical justification for these design procedures, and in Sec. IV example 

results are presented for UXO sensing. 
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A. Basis-function selection 

 

         To simplify notation, we utilize matrix expressions in our derivation. Let the basis 

functions )(⋅nφ  be evaluated for all initially unlabeled data points {xi}i=1,N , and stacked 

to form the matrix T
21 )](),...,(),([~

Nnnnn xxxΦ φφφ= . Let the data labels be denoted 

T
21 },...,,{ Nyyy=y , although these labels are not required when designing the basis 

functions. The difference between the true labels and those output by the classifier (2), 

for all {xi}i=1,N is expressed in vector form as 

 

yΦΦI

yΦΦΦIΦI

yΦΦΦΦIyΦΦΦΦy

1T

T1T
1

T1T
1

T1T

)1(

))((

))(()(

−

−
+

−−

λ
+=

+λ−≈

−=−

nnN

3
nnnnnN

2
nnnnNnnnn

                                   

                                   
~~

~~~~

~~~~~~~~

                           (20) 

where NI  is a NN ×  identity matrix (In is defined similarly), and λ  is a small positive 

number. The equality 3 in (20) is due to the Sherman-Morrison-Woodbury formula. From 

(20) the squared error between the true and estimated labels is 

yΦΦIy 2TT2 )1( −

λ
+≈ nnNne ~~                                                   (21) 

            The expression in (21) shows that for given basis functions )(⋅nφ  we have 

approximately expressed the squared error as a quadratic form of the labels y , with a 

coefficient matrix 2−
nC  with λ+= T

nnNn ΦΦIC ~~ . The approximation can be made as 

accurate as desired by making λ  sufficiently small. Without knowing y , we prefer nC  to 

have large eigenvalues, to make the error 2
ne  small. This is accomplished by making the 

determinant of nC  large. The logarithmic determinant of nC  is 

1
1

4

1
1

3

21
)2(

)det(ln       

)~~det(ln       

)~~1det(ln)det(ln

+
+

+
+
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+==
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n
n
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nnNnnq

MI

ΦΦI

ΦΦIC

                              (22) 
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where equality 3 is due to the property of matrix determinants and equality 4 is due to (6). 

Adding a new basis function to )(⋅nφ , we get )(1 ⋅+nφ  as given in (7). The logarithmic 

determinant of λ+= +++
T
nnNn 111

~~ ΦΦIC  is 

2
12)2(

1
)det(ln +

++
+ λ

+λ
= n

nn
nq MI                                              (23) 

Following the method of obtaining (9)-(10), we can show that )2(
nq  and )2(

1+nq  are related 

by 

λ
φ

+= +
+

)(lnln 1
)2(

)2()2(
1

n
nn

rqq                                               (24) 

with 

∑∑∑ = +
−

+= += ++ φ+λφ−φ+λ=φ
N

i ininnn
N

i
T

inin
N

i innr
1 ,1,

1
11 ,,11

2
,11

)2(  )()( φφ MI          (25) 

where )(, inin xφφ ≡  and )(1,1 inin x++ φ≡φ . Since we wish for a 1+nC  with large 

determinant, we want to make 
λ
φ + )(ln 1

)2(
nr  or equivalently )(ln 1

)2(
+φnr  large, as λ  is a 

constant. 

 

           Comparing (25) to (10), we find that )2(r  is approximately equal to r  when λ  is 

small. Since λ  can be made as small as desired, the approximation can be made 

arbitrarily accurate. Therefore the basis function obtained in (11) is the one that 

minimizes the determinant of 1+nC  given nC , which in consequence will minimize the 

eigenvalues of 1+nC  , minimizing the squared error 2
1+ne  . 

 

B. Selection of examples for labeling 

 

         Assume the basis functions )(⋅nφ  have been selected in the manner discussed 

above. Moreover, assume we have selected the subset },...,,{
21, JiiiJs xxxX =  of J 

signatures for which the associated labels will be acquired. The Fisher information matrix 
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associated with Xs,J is ∑
=

=
J

k

T
ininJsn kk

1
,,, )( φφXM . The Fisher information matrix for an 

augmented set },,...,,{}{
21, xxxxxX

JiiiJs =U  is 

)()()(}){( ,, xxXMxXM T
nnJsnJsn φφ+=U                                    (26) 

Suppose we have two classifiers, )(}{, ⋅xX UJs
nf  and )(, ⋅Js

nf X , which are trained using 

}{, xX UJs  and Js,X , respectively. We test )(}{, ⋅xX UJs
nf  and )(, ⋅Js

nf X  on x  and examine 

how the two results are related. As given in [14, page 121], we have  

)()]()()()[(1
)]()([)]()([ 1

,

2}{
2

,
,

xxxXMx
xxxx

xX
X

n
T
nnJsn

T
n

n
n

yfyf
Js

Js

φφφφ −+−
−

=−
U

                     (27) 

By using the Sherman-Morrison-Woodbury formula, we obtain 

)()()(1
)()()()(

)(

)]()()([

,
1

,
1

,
1

,
1

1
,

xXMx
XMxxXM

XM

xxXM

nJsn
T
n

Jsn
T
nnJsn

Jsn

T
nnJsn

φφ
φφ

φφ

−

−−
−

−

+
−=

+

 

which is set into (27) to give 

)()()(1
)]()([)]()([

,
1

2
2}{

,
,

xXMx
xxxx

X
xX

nJsn
T
n

n
n

yfyf
Js

Js

φφ −+
−

=−U                                 (28) 

Equation (28) shows that by including x  in the training data set, the squared test error on 

x  will drop by a factor  

)()()(1)( ,
1)2( xXMxx nJsn

T
n φφ −+=ρ                                (29) 

If 1)()2( ≈ρ x , we do not require the label for x , as it does not important for inclusion in 

the training set. On the other hand, if 1)()2( >>ρ x , inclusion of x in the training set is 

important. Therefore, the x that maximizes )()2( xρ  should be selected to seek the 

associated label y. Comparing (29) to (15) we note that )()2( xρ  is exactly equivalent to 

)(xρ , and thus the x  that maximizes )(xρ  is the one that contributes the maximally to 

make the squared test error small. 
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IV. APPLICATION TO UXO DETECTION 

 

The active-training methodology addressed in this paper may be applied to any 

detection problem for which the data labels are expensive to acquire, and for which there 

is no distinct training data. In particular, we consider the detection of buried UXO. For 

UXO remediation, the label of a potential target is acquired by excavation, a dangerous 

and time consuming task. The overwhelming majority of UXO cleanup costs come from 

excavation of non-UXO items. In this context, note that a priori excavations are required 

for the procedure in Sec. II (to obtain labeled training data). However, if the false-alarm 

rate is reduced at the desired detection probability, then overall cleanup costs may 

diminish substantially (i.e., overall, less non-UXO items need be excavated).  

 

The results presented here are for data collected at an actual UXO site: Jefferson 

Proving Ground in the United States. The technique in Sec. II is compared with results 

obtained using existing procedures. Specifically, the principal challenge in UXO sensing 

is development of a training set, for design of the detection algorithm. At an actual UXO 

site there is often a significant quantity of UXO, UXO fragments and man-made clutter 

on the surface.  It has been recognized that the characteristics of the surface UXO and 

clutter is a good indicator of what will be found in the subsurface. Consequently, in 

practice, a subset of the surface UXO and clutter are buried, and magnetometer and 

induction data are collected for these items, for which the labels are obviously known. 

The measured data and associated labels (UXO/non-UXO) are then used for training 

purposes. Of course, the process of burying, collecting data, and then excavating these 

emplaced items is time consuming and dangerous (for the UXO items), with this 

procedure eliminated by the techniques outlined in Sec. II. 
  

 

A. Magnetometer and electromagnetic induction sensors   

 

Magnetometer and electromagnetic induction (EMI) sensors are widely applied in 

sensing buried conducting/ferrous targets, such as landmines and UXO. The 
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magnetometer is a passive sensor that measures the change of the earth’s background 

magnetic field due to the presence of a ferrous target. Magnetometers measure static 

magnetic fields. An EMI sensor actively transmits a time-varying electromagnetic field, 

and consequently senses the dynamic induced secondary field from the target. To 

enhance soil penetration, EMI sensors typically operate at kilohertz frequencies. We here 

employ a frequency-domain EMI sensor that transmits and senses at several discrete 

frequencies [15]. Magnetometers only sense ferrous targets, while EMI sensors detect 

general conducting and ferrous items.  

 

Parametric models have been developed for both magnetometer and EMI sensors 

[16-18]. The target features x are extracted by fitting the EMI and magnetometer models 

to measured sensor data. The vector x has parameters from both the magnetometer and 

EMI data, and therefore in this sense the data from these two sensors are “fused”. The 

one place where these two models have overlapping parameters is in specification of the 

target position. The magnetometer data often yields a very good estimation of the target 

position, and therefore such are used in x. In fact, the target position specified by the 

magnetometer data is explicitly utilized as prior information when fitting EMI data to the 

EMI parametric model. Details on the magnetometer and EMI models, and on the model-

fitting procedure, may be found in [18].  

 

The features employed are as in [18], and the features are centered and 

normalized. Specifically, using the training data, we compute the mean feature vector 

xmean and the variance of each feature component (let 2
iσ  represent the variance of the ith 

feature). Before classification, a given feature vector x is shifted by implementing 

xshift=x-xmean , and then the ith feature component of xshift is divided by iσ to effect the 

normalization. 

 

B. Measured sensor data from the Jefferson Proving Ground 

 

Jefferson Proving Ground (JPG) is a former military range that has been utilized 

for UXO technology demonstrations since 1994. We consider data collected by Geophex, 
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Ltd. in the latest phase (Phase V) of the JPG demonstration. The goal of the JPG V is to 

evaluate the UXO detection and discrimination abilities under realistic scenarios, where 

man-made and natural clutter coexist with UXO items. Our results are presented with the 

GEM-3 and magnetometer data from two adjoining areas, constituting a total of 

approximately five acres. There are 433 potential targets detected from sensor anomalies, 

40 of which are proven to be UXO and the others are clutter. The excavated UXO items 

include 4.2 inch, 60 mm, and 81mm mortars; 5 inch, 57 mm, 76 mm, 105 mm, 152 mm, 

and 155 mm projectiles; and 2.75 inch rockets.  

 

This test was performed with US Army oversight. One of the two JPG areas was 

assigned as the training area, for which the ground truth (UXO/non-UXO) was given. 

The trained detection algorithms are then tested on the other area, and the associated 

ground truth was revealed later to evaluate performance. It was subsequently recognized 

that several UXO types were found in equal number in each of the two areas. This 

indicates an effort to match the training data to the detection data, in the manner 

discussed above, involving burial of known UXO and non-UXO collected on the surface.  

 

Each sensor anomaly is processed by fitting the associated magnetometer and 

EMI data to the parametric models [18], and the estimated parameters define x. In 

addition, the model-fitting procedure functions as a prescreening tool. Any sensor 

anomaly failing to fit well to the model is regarded as having been generated by a clutter 

item. Therefore, a total of 300 potential targets remain after this prescreening stage, 40 of 

which are UXO. In the training area, there are 128 buried items, 16 of which are UXO.  

 

C. Detection results 
 

Before presenting classification results, we examine the characteristics of the 

basis functions selected in the first phase of the algorithm, prior to adaptively selecting 

training data. In Fig. 1 we consider the first three basis functions b1, b2 and b3 selected by 

the first stage of the algorithm. For each feature vector x (from all UXO and non-UXO), 

we compute a three-dimensional vector (K(x,b1), K(x,b2), K(x,b3)). By examining this 

three-dimensional vector for all x, we may observe the degree to which UXO and non-



 16

UXO features are distinguished via the features and kernel. A radial basis function kernel 

is employed here, corresponding to the kernel used to select the basis functions (see 

discussion below concerning the selected kernel). By examining Fig. 1 we observe that 

the UXO and non-UXO features are relatively separated, although there is significant 

overlap, undermining classification performance.  

 

The detection results are presented in the form of the receiver operating 

characteristic (ROC), quantifying the probability of detection (Pd) as a function of the 

false alarm count. We present ROC curves using the adaptive-training approach 

discussed in Sec. II, with performance compared to results realized by training on the 

distinct training region discussed above (the latter approach reflects current practice). 

With regard to conventional training, the algorithm employed is of identical form as (2), 

with model weights determined iteratively using kernel matching pursuits (KMP). Details 

on the KMP algorithm may be found in [8] (we have employed the prefitting algorithm in 

[8]). To make the comparison appropriate, the adaptive training and KMP 

implementation employ an identical radial basis function (RBF) kernel [10]  

]/exp[
2

1),( 22

22
σ

πσ
bxbx −−=K     (30) 

The variance  σ2 is adaptively adjusted after each basis vector is selected before the 

model weights are determined, and it is not related to the labeled training data. In 

particular, a gradient search is applied to refine σ2 with equation (11), by maximizing 

lnr(b).  

 

As indicated above, the designated training area has 128 labeled items, and 

conventionally classifiers are tested on the remaining signatures, in this case constituting 

172 items. As a first comparison, the adaptive technique discussed in Sec. II is employed 

to select J=128 items from the original 300, with these “excavated” to learn the 

associated labels. This therefore defines the set Xs,J  and associated labels Ls,J. The basis 

set Bn is also determined adaptively using the original 300 signatures, and here n=10. The 

performance of the adaptive learning algorithm is then tested on the remaining 172 

Jsi ,Xx ∉  , although these are generally not the same testing examples used via traditional 
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training of the KMP algorithm (the training sets do not overlap completely). For 

comparison, we also show training and testing results implemented via KMP, in which 

the 128 training examples are selected randomly from the original 300 signatures X. 

Performance comparisons are shown in Fig. 2, wherein we present results for active data 

selection (algorithm in Sec. II), KMP results using the assigned 128 training examples, 

and average results for randomly choosing the 128 examples for KMP training (100 

random selections were performed). In addition, for the latter case we also place error 

bars on the results; the length of the error bar is twice the standard derivation of the Pd 

for the associated false-alarm count. Therefore, if the result is Gaussian distributed, 95% 

of the values lie within the error bar.  

 

Before proceeding we note that the ROC curves are generated by varying the 

threshold t, as applied to the estimated label y. For the binary UXO-classification 

problem considered here, by design we choose the label y=1 for UXO and y=0 for non-

UXO. In practice one must choose one point on the ROC at which to operate. A naïve 

choice of the operating point would be 0.5 (i.e., if the classifier maps a testing feature 

vector x to a label y>0.5 the item is declared UXO, and otherwise it is declared non-

UXO). However, we must account for the fact that in practice the number of non-UXO 

items is often much larger than the number of UXO. We have therefore invoked the 

following procedure. 

 

We assume that the error (noise) between the true label (y=1 or y=0) and the 

estimated label is i.i.d. Gaussian with variance of σ2, as in (5). Let N0 and N1 represent 

respectively the number of non-UXO and UXO items in the training set. Considering the 

UXO (y=1) data, an unbiased estimator of the label y will yield a mean of one and a 

minimum variance of σ2/N1. Similarly, considering the non-UXO data (y=0), an unbiased 

estimator of the label y will have zero mean and minimum variance σ2/N0. Let H1 and H0 

correspond to the UXO and non-UXO hypotheses. Based upon the above discussion, we 

model the probability density function of y for the H1 and H0 hypotheses as 
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)(1,)Hp( 1
2

1 NNy /σ=  and )(1,)Hp( 0
2

0 NNy /σ= . Rather than setting the threshold at 

t=0.5, we set the threshold at that value of y for which )Hp()Hp( 01 yy = , yielding 
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1

02
101

2
11 )ln)((

NN
N
NNNNNN

t
−

σ+−−−
=    (31) 

Assuming σ is a small, we omit 
1

02ln
N
N

σ , obtaining 

                                                             
01

1

NN
N

t
+

=      (32) 

 
From (32), the appropriate threshold is t=0.5 only if N0 = N1.  

 

For example, in Fig. 2, only 15 of the 128 actively selected training data are 

UXO, and therefore N1 = 15, N0 = 113. If we set the threshold to be t=0.5, we detect 16% 

of the UXO with two false alarms. By contrast, using the procedure discussed above (for 

which t=0.27), we detect 88% of the UXO with 25 false alarms. The operating point 

corresponding to t=0.27 is indicated in Fig. 2. We similarly plot this point in all 

subsequent ROCs presented below. 

 
          

We observe from the results in Fig. 2 that the active data selection procedure 

produces the best ROC results (for Pd>0.7, which is of most interest in practice), with the 

KMP results from the specified training area almost as good. It is observed that the 

average performance based on choosing the training set randomly is substantially below 

that of the two former approaches, with significant variability reflected in the error bars. 

These results demonstrate the power of the active-data-selection algorithm introduced in 

Sec. II, and also that the training data defined for JPG V is well matched to the testing 

data.  

 

 In the first example we set J=128 to be consistent with the size of the training area 

specified in the JPG V test. The algorithm in Sec. II can be implemented for smaller 

values of J, reflecting less excavation required in the training phase (for determination of 
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target labels). It is of interest to examine algorithm performance as J is decreased from 

128. In this case training is performed using signatures and labels from the J “excavated” 

items, and testing is performed on the remaining 300-J examples. Results are presented 

for the active training procedure and for randomly choosing J training examples (100 

random instantiations), as in Fig. 2. In Figs. 3-5 results are presented for J=90, 60 and 40. 

Using J=90 rather than J=128 results in very little degradation in ROC performance 

(comparing Figs. 2 and 3), with a slight performance drop for J=60, and a more 

substantial drop for J=40. It is interesting to note that with decreasing J, the number of 

test items 300-J increases, therefore increasing the number of false-alarm opportunities. 

This further highlights the quality of the results in Figs. 3-5, vis-à-vis Fig. 2. In all of 

these and subsequent examples, the size of the basis set Bn is n=10. 

 

In the above examples J was specified to be matched to the size of a specified 

training set, or it was varied for comparison to such. However, the procedure in Sec. II 

may be employed to adaptively determine the size of the desired training set Xs,J, based 

on the information gain as J is increased. Specifically, we track )()( 1,, −− JsnJsn qq XX for 

increasing J, and terminate the algorithm when the information gain is minimal. At this 

point, adding a new datum to the training dataset does not provide significant additional 

information to the classifier design.  

 

For the JPG V data, the information gain )()( 1,, −− JsnJsn qq XX  is plotted in Fig. 6 

as a function of J, and the change in information gain is given in Fig. 7 for visualization 

assistance. Based on Fig. 6-7 the size of the training set is set to J=65. In Fig. 8 results are 

shown for J=65, with comparison as before to KMP results in which the J=65 training 

examples are selected randomly. Examining the results in Fig. 8, we observe that the 

active selection of training data yields a detection probability of approximately 0.95 with 

approximately 35 false alarms; on average one encounters about five times this number 

of false alarms to achieve the same detection probability (when selecting the training data 

randomly).  
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V. CONCLUSIONS 
 

There are many remote-sensing problems for which one collects data from a given 

site, and the task is to specify the identity of the object responsible for each signature 

(e.g., detection and classification). Due to the variability and site-dependent character of 

many target signatures, it is often difficult to have reliable training data a priori for 

algorithm design. In this paper we have therefore developed an information-theoretic 

framework in which the training data are selected adaptively from the observed site-

dependent data, without requiring an a priori training set. Specifically, the algorithm 

specifies those signatures for which knowledge of the associated labels (e.g., target/non-

target) would be most relevant in the context of detector design. An “experiment” is then 

performed to learn the target labels, where in the context of landmine and UXO sensing 

this corresponds to excavating the respective buried items. This is a reasonable 

procedure, since landmines and UXO need be excavated ultimately anyway, and 

therefore the algorithm essentially prioritizes the order in which items are excavated, with 

the goal of ultimately excavating fewer non-targets (false alarms) via proper algorithm 

training. The algorithm has been demonstrated successfully on measured magnetometer 

and EMI data from an actual former bombing range, addressing the sensing of UXO. 

 

There are several items that deserve further attention. It was demonstrated that the 

gain in information content is a good measure of which items should be excavated for 

learning of associated labels. The results in Figs. 6-8 demonstrated the effectiveness of 

this procedure, although the actual selection of the number of training examples, J, was 

determined in a somewhat ad hoc manner. Further work is required to make this 

procedure more rigorous and automated. 

 

In addition, for the results presented here the detection algorithm was trained 

once using the adaptively determined training set. However, in the subsequent testing 

phase a “dig list” is specified for those items that are deemed to be associated with 

targets of interest (here UXO). Once each item is excavated, and the associated label 

revealed, the algorithm should be successively retrained and applied to the remaining 

data. The order of the dig list - and therefore the order in which we learn the labels of the 



 21

testing data - is also of interest since it may be used to further refine the algorithm 

sequentially, as a given site is cleaned (e.g., of landmines or UXO). 
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Figure Captions 

 

Figure 1.  For the first three basis functions selected, b1, b2, and b3, the three-

dimensional vector (K(x,b1), K(x,b2), K(x,b3)) is plotted. Considered are feature vectors x 

for all UXO and non-UXO targets considered in this study.  

 

Figure 2. Receiver operating characteristic (ROC) curves based on 128 training 

examples, for which the target labels were known. In one case the training set was 

carefully designed a priori, and in the other the training examples were chosen adaptively 

using the algorithm of Sec. II. For comparison, results are also shown when the 128 

training examples are chosen randomly, 100 times. In the latter case average results are 

shown, as well as the associated range of variability.  The indicated point on the ROC 

corresponds to (32). 

 

Figure 3.  As in Fig. 2, but now results are only shown for adaptive training-data 

selection (Sec. II) and for random selection. In the latter case results are presented as in 

Fig. 1. Results are shown for J=90 training examples.  

 

Figure 4.  As in Fig. 3, with J=60.  

 

Figure 5.  As in Fig. 4, with J= 40. 

 

Figure 6.  Information gain of adding a new datum, as a function of the number of the 

training examples J, selected adaptively.  

 

Figure 7.  Difference in the information gain, as a function of the number of training 

examples J.    

 

Figure 8.  ROC curves based on J=65 training examples, comparing the adaptive 

procedure (Sec. II) to random training data selection. Number of training examples 

chosen based on Figs. 6-7.  
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Abstract

To achieve good generalization in supervised learning, the training and testing exam-
ples are usually required to be drawn from the same source distribution. In this paper we
propose a method to relax this requirement in the context of logistic regression. Assuming
Dp and Da are two sets of examples drawn from two different distributions T and A (called
concepts, borrowing a term from psychology), where Da are fully labeled and Dp partially
labeled, our objective is to complete the labels of Dp. We introduce an auxiliary variable µ
for each example in Da to reflect its mismatch with Dp. Under an appropriate constraint
the µ’s are estimated as a byproduct, along with the classifier. We also present an active
learning approach for selecting the labeled examples inDp. The proposed algorithm, called
migratory logistic regression (MigLogit), is demonstrated successfully on simulated data as
well as on real measured data of interest for unexploded ordnance (UXO) cleanup.

1 Introduction

In supervised classification problems, the goal is to design a classifier using the training exam-
ples (labeled data) such that the classifier predicts the labels correctly for unlabeled test data.
The accuracy of the predictions is significantly affected by the quality of the training examples,
which are assumed to contain essential information about the test instances for which predic-
tions are desired. A common assumption utilized by learning algorithms is that the training
examples and the test instances are drawn from the same source distribution.

As a practical example, consider the detection of a concealed entity based on sensor data
collected in a non-invasive manner. This problem is of relevance in several practical problems,

1
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for example in the medical imaging of potential tumors or other hidden anomalies. In the con-
text of remote sensing, one is often challenged with the problem of detecting and characterizing
a concealed (e.g., underground) target based on remotely collected sensor data. In an example
that will be considered explicitly in this paper, consider the detection of buried unexploded
ordnance (UXO) (Zhang et al. 2003). An unexploded ordnance is a bomb that did not explode
upon impact with the ground, and such items pose great danger if disturbed (excavated) with-
out care. Sensors used for detecting and characterizing UXO include magnetometers and elec-
tromagnetic induction (Zhang et al. 2003). In designing an algorithm for characterization of
anomalies detected by such sensors, to determine if a given buried item is UXO or clutter, one
typically requires training data. Such training data typically comes from other former bombing
sites that have been cleaned, and there is a significant issue as to whether such extant labeled
sensor data are relevant for a new site under test. The challenge addressed in this paper in-
volves learning the relevance and relationship of existing labeled (training) data for analysis of
a new unlabeled or partially labeled data set of interest. This type of problem has significant
practical relevance for UXO sensing, for which results are presented on measured data, as well
as for the aforementioned classes of problems, for which there is uncertainty concerning the
appropriateness of existing labeled data for a new set of unlabeled data of interest.

To place this problem in a mathematical setting, let T (x, y) be the probability distribution
(or concept, borrowing a term from psychology 1) from which test instances (each including a
feature vector x and the associated class label y) are drawn. The goal in classifier design is to
minimize a loss function L(y, ζ(x)), which is a quantitative measure for the loss incurred by
the classifier when it predicts ζ(x) for x whose true label is y. The minimization is performed
for N independent training examples (x, y) drawn from T (x, y), leading to the empirical loss
minimization (Vapnik 1998 1999)

min
ζ

1

N

N∑
i=1

L(yi, ζ(xi)), with (x, y) ∼ T (x, y) (1)

The empirical loss is known to approach the true loss when N →∞.
A learning algorithm based on the empirical loss minimization in (1) implicitly assumes

that the future test instances are also drawn from T (x, y). It is this assumption that assures that
the classifier generalizes to test instances when it is trained to minimize empirical loss on train-
ing examples. This assumption, however, is often violated in practice, since training examples
and test instances may correspond to different collections of measurements (likely performed
at different times under different experimental conditions) and the class memberships of the
measurements may also change. These issues can introduce statistical differences between the
training examples and the test instances; the UXO-sensing problem discussed above consti-
tutes an important example for which the aforementioned statistical issues hold, concerning
the utility of existing labeled (training) data.

Assume that one has training examples from a distribution A(x, y) which is different from
T (x, y). For convenience of exposition, we call T (x, y) the primary or target distribution and

1Traditionally, the (probabilistic) mapping Pr(y|x) is called a concept, and Pr(x) is called a virtual concept
(language describing the concept) (Widmer and Kubat 1993). For simplicity, usually they are collectively called a
concept.
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callA(x, y) the auxiliary distribution. Accordingly, the examples drawn from T (x, y) are called
primary data and the examples drawn from A(x, y) are called auxiliary data.

In order to write the empirical loss for T in terms of examples drawn from A, one may
employ the technique of importance sampling (Robert and Casella 1999). By doing so, one
makes the following modifications to the expression of empirical loss (1)

1

N

N∑
i=1

T (x, y)

A(x, y)
L(yi, ζ(xi)), with (x, y) ∼ A(x, y) (2)

where T (x,y)
A(x,y)

is the importance weight. It is known that the modification does not change the
asymptotic behavior provided that A(x, y) has the same nonzero support as T (x, y).

Unfortunately, both A(x, y) and T (x, y) are unknown to the algorithm; all that is available
are samples from A(x, y). The challenge, therefore, is to learn a classifier on training examples
drawn from A(x, y) such that the resulting classifier still generalizes to test instances drawn
from T (x, y). Clearly, without assuming any knowledge about the relationship betweenA(x, y)
and T (x, y), there is little one can do but to treat the training examples as if they are from the
target distribution. This will, of course, introduce errors, which may be intolerable when the
difference between A(x, y) and T (x, y) is large.

The problem of learning on examples from one distribution with the goal of generalizing to
instances from a different distribution has been addressed in different contexts, using different
names. In the following, we provide a brief review of this previous work.

1.1 Tackling Concept Drifts in Time-Varying Data

Many data come naturally in streams, collected over a period of time. Such applications include
weather recordings, sales and customer data, surveillance video streams, to name a few. For
streamed data, it is natural to consider online learning, in which the leaner is dynamically
presented with the true label after it makes a prediction and updates its hypothesis based on
newly received true labels. When the streamed data are recorded over an extended period of
time, the statistics in the data are likely to change. The time-dependent variation of statistics
in streamed data are termed concept drift in the literature (Klinkenberg and Joachims 2000;
Tenenbaum 1999; Wang et al. 2003; Widmer and Kubat 1996 1993).

Concept drift falls under the general formulation in (2). Here the target distribution char-
acterizes the statistics of the most recent recordings, and there is an auxiliary distribution char-
acterizing the recordings in each time interval in the past. The goal in concept-drift learning
is to employ the available recordings to build up the target concept (i.e., the mapping from a
feature vector to the associated class label) for the current moment. An important notion is the
age of each recording, which determines the utility of the recording to the current prediction.

Three widely used methods for handling concept drift are: time windows (Widmer and Kubat
1996), instance weighting (Klinkenberg and Ruping 2003), and ensemble learning (Wang et al.
2003). In the first method, a time window is applied to the data stream and the data within the
window are employed to build the classifier for the current concept. The window keeps mov-
ing towards the future so that the most recent recording is always included in the window. The
window acts like a limited memory, with the data outside the window forgotten. A key issue

3
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is to determine the window size, which should accurately capture the rate of concept drift. The
method of instance weighting is based on the observation that the importance of a past exam-
ple to the current concept does not change abruptly but rather decreases gradually. A weight is
assigned to each past example to reflect its importance. Assuming that concept drift is mono-
tonic (i.e., newer examples are always more important than older ones), one can construct the
weights according to the age of each example; for example, one can choose weights that de-
crease exponentially with the age of examples (Klinkenberg and Ruping 2003). The method of
ensemble learning maintains an ensemble of classifiers, instead of a single one, for the current
concept. This is done by dividing the data stream into chunks and learning a classifier based
on each data chunk. The relevance of each classifier to the current concept is evaluated by the
generalization error when applying the classifier to the most recent data chunk. The relevance
is employed as a weight applied to each classifier and the weighted classifiers are employed to
make predictions for the current data chunk.

1.2 Sample Selection Bias in Econometrics

In econometrics, the observed data are often a nonrandomly selected sample of the true dis-
tribution of interest. If the distribution of interest is T , the selection bias results in samples
drawn from A which is different from T . Heckman (1979) developed a method to correct the
sample-selection bias for linear regression models. The basic idea of Heckman’s method is that
if one can estimate the probability of an observation being selected into the sample, one can
use this probability estimate to correct the selection bias.

Heckman’s model has recently been extended to classification problems (Zadrozny 2004),
where it is assumed that the test instances are drawn from T (x, y) = Pr(x, y) while the training
examples are drawn fromA(x, y) = Pr(x, y|s = 1), where the variable s controls the selection of
training examples: if s = 1, (x, y) is selected into the training set; if s = 0, (x, y) is not selected
into the training set. Evidently, unless s is independent of (x, y), Pr(x, y|s = 1) 6= Pr(x, y) and
hence T (x, y) is different from T (x, y). By Bayes rule,

Pr(x, y)

Pr(x, y|s = 1)
=

Pr(s = 1)

Pr(s = 1|x, y)
(3)

or
T (x, y)

A(x, y)
=

Pr(s = 1)

Pr(s = 1|x, y)
(4)

plugging this into (2), one has

1

N

N∑
i=1

Pr(s = 1)

Pr(s = 1|x, y)
L(yi, ζ(xi)), with (x, y) ∼ Pr(x, y|s = 1) (5)

which implies that if one has access to Pr(s=1)
Pr(s=1|x,y)

one can correct the selection bias by using
the empirical loss as expressed in (5). In the special case when Pr(s = 1|x, y) = Pr(s = 1|x),
one may estimate Pr(s = 1|x) from a sufficient sample of Pr(x, s) if such a sample is available
(Zadrozny 2004). In the general case, however, it is difficult to estimate Pr(s=1)

Pr(s=1|x,y)
, as we do not

have a sufficient sample of Pr(x, y, s) (if we do, we already have a sufficent sample of Pr(x, y),
which contradicts the assumption of the problem).

4
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1.3 Overview of This Work

In this paper we propose an efficient algorithm for solving the general problem of learning on
examples from A with the goal of generalizing to instances from T , when A is different from
T . We consider the case in which we have a fully labeled auxiliary data set Da and a partially
labeled primary data set Dp = Dp

l ∪ Dp
u, where Dp

l are labeled and Dp
u unlabeled. We assume

that Dp are examples of the primary concept T (the concept we are interested in) and Da are
examples of the auxiliary concept A (the one providing indirect and low-quality information
about T ). Our objective is to use a mixed training set Dtr = Dp

l ∪ Da to train a classifier that
predicts the labels of Dp

u accurately, with the hope that Dp
l is required to have a small number

of examples.
Assume Dp ∼ Pr(x, y). In light of (3), we can write Da ∼ Pr(x, y|s = 1) as long as the source

distributions of Dp and Da have the same support of nonzero probability2. As explained previ-
ously, it is difficult to correct the mismatch by directly estimating Pr(s=1)

Pr(s=1|x,y)
. Therefore we take

an alternative approach. We introduce an auxiliary variable µi for each (xa
i , y

a
i ) ∈ Da to reflect

its mismatch with Dp and to control its participation in the learning process. The µ’s play a
similar role as the weighting factors Pr(s=1)

Pr(s=1|x,y)
in (5). However, unlike the weighting factors, the

auxiliary variables are estimated along with the classifier in the learning. We employ logistic
regression as a specific classifier and develop our method in this context.

The remainder of the paper is organized as follows. A detailed description of the proposed
method is provided in Section 2, followed by description of a fast learning algorithm in Section
3 and a theoretical discussion in Section 4. In Section 5 we present a method to actively define
Dp

l whenDp
l is initially empty. In Section 6 we demonstrate the ideas presented here using sim-

ulated data, as well as real data of interest for detecting unexploded ordnance (UXO). Finally,
Section 7 provides conclusions.

2 Migratory Logistic Regression (MigLogit): Learning Jointly
on the Primary and Auxiliary Data

We assume Dp
l are fixed and nonempty, and without loss of generality, we assume Dp

l are al-
ways indexed prior to Dp

u, i.e., Dp
l = {(xp

i , y
p
i )}Np

l
i=1 and Dp

u = {(xp
i , y

p
i ) : yp

i missing}Np

i=Np
l +1

. We
use Na, Np, and Np

l to denote the size (number of data points) in Da, Dp, and Dp
l , respectively.

In Section 5 we discuss how to actively determine Dp
l when Dp

l is initially empty. We con-
sider the binary classification problem and the labels ya, yp ∈ {−1, 1}. For notational simplicity,
we let x always include a 1 as its first element to accommodate a bias (intercept) term, thus
xp,xa ∈ Rd+1 where d is the number of features. For a primary data point (xp

i , y
p
i ) ∈ Dp

l , we
follow standard logistic regression to write

Pr(yp
i |xp

i ;w) = σ(yp
i w

Txp
i ) (6)

2For any Pr(x, y|s = 1) 6= 0 and Pr(x, y) 6= 0, there exists Pr(s=1)
Pr(s=1|x,y) = Pr(x,y)

Pr(x,y|s=1) ∈ (0,∞) such that (3) is

satisfied. For Pr(x, y|s = 1) = Pr(x, y) = 0, any Pr(s=1)
Pr(s=1|x,y) 6= 0 makes (3) satisfied.

5
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where w ∈ Rd+1 is a column vector of classifier parameters and σ(η) = 1
1+exp(−η)

is the sigmoid
function. For a auxiliary data point (xa

i , y
a
i ) ∈ Da, we define

Pr(ya
i |xa

i ;w, µi) = σ(ya
i w

Txa
i + ya

i µi) (7)

where µi is an auxiliary variable. Assuming the examples in Dp
l and Da are drawn i.i.d., we

have the log-likelihood function

`(w,µ;Dp
l ∪ Da)

=
∑Np

l
i=1 ln σ(yp

i w
Txp

i )+
∑Na

i=1 ln σ(ya
iw

Txa
i +ya

i µi) (8)

where µ = [µ1, · · · , µNa ]T is a column vector of all auxiliary variables.
The auxiliary variable µi is introduced to reflect the mismatch of (xa

i , y
a
i ) withDp and to con-

trol its participation in the learning of w. A larger ya
i µi makes Pr(ya

i |xa
i ;w, µi) less sensitive to w.

When ya
i µi = ∞, Pr(ya

i |xa
i ;w, µi) = 1 becomes completely independent of w. Geometrically, the

µi is an extra intercept term that is uniquely associated with xa
i and causes it to migrate towards

class ya
i . If (xa

i , y
a
i ) is mismatched with the primary data Dp, w cannot make

∑Np
l

i=1 ln σ(yp
i w

Txp
i )

and ln σ(ya
i w

Txa
i ) large at the same time. In this case xa

i will be given an appropriate µi to allow
it to migrate towards class ya

i , so that w is less sensitive to (xa
i , y

a
i ) and can focus more on fitting

Dp
l . Evidently, if the µ’s are allowed to change freely, their influence will override that of w

in fitting the auxiliary data Da and then Da will not participate in learning w. To prevent this
from happening, we introduce constraints on µi and maximize the log-likelihood subject to the
constraints:

maxw,µ `(w,µ;Dp
l ∪ Da) (9)

subject to 1
Na

∑Na

i=1y
a
i µi ≤ C, C ≥ 0 (10)

ya
i µi ≥ 0, i = 1, 2, · · · , Na (11)

where the inequalities in (11) reflect the fact that in order for xa
i to fit ya

i = 1 (or ya
i = −1) we

need to have µi > 0 (or µi < 0), if we want µi to exert a positive influence in the fitting pro-
cess. Under the constraints in (11), a larger value of ya

i µi represents a larger mismatch between
(xa

i , y
a
i ) and Dp and accordingly makes (xa

i , y
a
i ) play a less important role in determining w.

The classifier resulting from solving the problem in (9)-(11) is referred to as migratory logistic
regression (MigLogit).

The C in (10) reflects the average mismatch between Da and Dp and controls the average
participation of Da in determining w. It can be learned from data if we have a reasonable
amount of Dp

l . However, in practice we usually have no or very scarce Dp
l to begin with. In

this case, we must rely on other information to set C. We will come back to a more detailed
discussion on C in Section 4.

3 Fast Learning Algorithm

The optimization problem in (9), (10), and (11) is concave and any standard technique can
be utilized to find the global maxima. However, there is a unique µi associated with every

6
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(xa
i , y

a
i ) ∈ Da, and when Da is large using a standard method to estimate µ’s can consume most

of the computational time.
In this section, we give a fast algorithm for training MigLogit, by taking a block-coordinate

ascent approach (Bertsekas 1999), in which we alternately solve for w and µ, keeping one fixed
when solving for the other. The algorithm draws its efficiency from the analytic solution of µ,
which we establish in the following theorem. Proof of the theorem is given in the appendix,
and Section 4 contains a discussion that helps to understand the theorem from an intuitive
perspective.

Theorem 1: Let f(z) be a twice continuously differentiable function and its second derivative
f ′′(z) < 0 for any z ∈ R. Let b1 ≤ b2 ≤ · · · ≤ bN , R ≥ 0, and

n = max{m : mbm −
∑m

i=1 bi ≤ R, 1 ≤ m ≤ N} (12)

Then the problem

max{zi}
∑N

i=1 f(bi + zi) (13)

subject to
∑N

i=1 zi ≤ R, R ≥ 0 (14)
zi ≥ 0, i = 1, 2, · · · , N (15)

has a unique global solution

zi =

{
1
n

∑n
j=1 bj + 1

n
R− bi, 1 ≤ i ≤ n

0, n < i ≤ N
(16)

For a fixed w, the problem in (9)-(11) is simplified to maximizing
∑Na

i=1 ln σ(ya
i w

Txa
i + ya

i µi)

with respect to µ, subject to 1
Na

∑Na

i=1 ya
i µi ≤ C, C ≥ 0, and ya

i µi ≥ 0 for i = 1, 2, · · · , Na.
Clearly ln σ(z) is a twice continuously differentiable function of z and its second derivative
∂2

∂z2 ln σ(z) = −σ(z)σ(−z) < 0 for −∞ < z < ∞. Thus Theorem 1 applies. We first solve {ya
i µi}

using Theorem 1, then {µi} are trivially solved using the fact ya
i ∈ {−1, 1}. Assume ya

k1
wTxa

k1
≤

ya
k2

wTxa
k2
≤ · · · ≤ ya

kNaw
Txa

kNa , where k1, k2, · · · , kNa is a permutation of 1, 2, · · · , Na. Then we
can write the solution of {µi} analytically,

µki
=





1
n
ya

ki

∑n
j=1 ya

kj
wTxa

kj

+ Na

n
ya

ki
C −wTxa

ki

, 1 ≤ i ≤ n

0, n < i ≤ Na

(17)

where

n = max
{

m : mya
km

wTxa
km
−∑m

i=1y
a
ki
wTxa

ki
≤NaC,

1 ≤ m ≤ Na
}

(18)

For a fixed µ, we use the standard gradient-based method (Bertsekas 1999) to find w. The main
procedures of the fast training algorithm for MigLogit are summarized in Table 1, where the
gradient Ow` and the Hessian matrix O2

w` are computed from (8).

7
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Table 1: Fast Learning Algorithm of Migratory Logistic Regression (MigLogit)
Input: Da ∪ Dp

l and C; Output: w and {µi}Na

i=1

1. Initialize w and µi = 0 for i = 1, 2, · · · , Na.
2. Compute the gradient Ow` and Hessian matrix O2

w`.
3. Compute the ascent direction d = −(O2

w`)−1Ow`.
4. Do a linear search for the step-size α∗ = arg maxα `(w + αd).
5. Update w: w ← w + α∗d.
6. Sort {ya

i w
Txa

i }Na

i=1 in ascending order. Assume the result is
ya

k1
wTxa

k1
≤ ya

k2
wTxa

k2
≤ · · · ≤ ya

kNaw
Txa

kNa , where k1, k2, · · · , kNa

is a permutation of 1, 2, · · · , Na.
7. Find the n using (18).
8. Update the auxiliary variables {µi}Na

i=1 using (17).
9. Check the convergence of `: exit and output w and {µi}Na

i=1 if con-
verged; go back to 2 otherwise.

4 Auxiliary Variables and Choice of C

Theorem 1 and its constructive proof in the appendix offers some insight into the mecha-
nism of how the mismatch between Da and Dp is compensated through the auxiliary vari-
ables {µi}. To make the description easier, we think of each data point xa

i ∈ Da as getting
principal importance ya

i w
Txa

i from w and additional importance ya
i µi from a given budget to-

taling NaC (C represents the average budget for a single xa). From the appendix, NaC is dis-
tributed among the auxiliary data {xa

i } by a “smallest-first” rule: the smallest xa
k1

(that which
has the smallest ya

k1
wTxa

k1
), gets a portion ya

k1
µk1 from NaC first, and when the total impor-

tance ya
k1

wTxa
k1

+ ya
k1

µk1 reaches the value of the second smallest xa
k2

, NaC becomes equally
distributed to xa

k1
and xa

k2
such that their total importances are always equal. Then, when

ya
k1

wTxa
k1

+ya
k1

µk1 = ya
k2

wTxa
k2

+ya
k2

µk2 reach the importance of the third smallest, NaC becomes
equally distributed to three of them to make them equal. The distribution continues in this way
until the budget NaC is used up. The “smallest-first” rule is essentially a result of the concavity
of the logarithmic sigmoid function ln σ(·). The goal is to maximize

∑Na

i=1 ln σ(ya
i w

Txa
i + ya

i µi).
The concavity of ln σ(·) dictates that for any given portion of NaC, distributing it to the smallest
makes the maximum gain in ln σ.

The C is used as a means to compensate for the loss thatDa may suffer from w. The classifier
w is responsible for correctly classifying both Da and Dp. Because Da and Dp are mismatched,
w cannot satisfy both of them: one must suffer if the other is to gain. As Dp is the primary data
set, we want w to classify Dp as accurately as possible. The auxiliary variables are therefore
introduced to represent compensations that Da get from C. When xa gets small contribution
from w and is small, it is because xa is mismatched and in conflict with Dp (assuming perfect
separation of Da, no conflict exists among themselves). By the “smallest first” rule, the most
mismatched xa gets compensation first.

A high compensation ya
i µi whittles down the participation of xa

i in learning w. This is
readily seen from the contribution of (xa

i , y
a
i ) to Ow` and O2

w`, which are obtained from (8) as
σ(−ya

i w
Txa

i − ya
i µi)y

a
i x

a
i and −σ(−ya

i w
Txa

i − ya
i µi)σ(ya

i w
Txa

i + ya
i µi)x

a
i x

a
i

T , respectively. When

8
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ya
i µi is large, σ(−ya

i w
Txa

i − ya
i µi) is close to zero and hence the contribution of (xa

i , y
a
i ) to Ow`

and O2
w` are ignorable. We in fact do not need an infinitely large ya

i µi to make the contributions
of xa

i ignorable, because σ(µ) is almost saturated at µ = ±6. If ya
i w

Txa
i = −6, σ(−ya

i w
Txa

i ) =
0.9975, implying a large contribution of (xa

i , y
a
i ) to Ow`, which happens when w assigns xa

i to
the correct class ya

i with probability of σ(ya
i w

Txa
i ) = σ(−6) = 0.0025 only. In this nearly worst

case, a compensation of ya
i µi = 12 can effectively remove the contribution of (xa

i , y
a
i ) because

σ(−ya
i w

Txa
i−ya

i µi) = σ(6−12) = σ(−6) = 0.0025. To effectively remove the contributions of Nm

auxiliary data, one needs a total budge 12Nm, resulting in an average budget C = 12Nm/Na.
To make a right choice of C, the Nm/Na should represent the rate that Da are mismatched

with Dp. This is because we want NaC to be distributed only to that part of Da that is mis-
matched with Dp, thus permitting us to use the remaining part in learning w. The quantity
Nm/Na is usually unknown in practice. However, C = 12Nm/Na gives one a sense of at least
what range C should be in. As 0 ≤ Nm ≤ Na, letting 0 ≤ C ≤ 12 is usually a reasonable choice.
In our experiences, the performance of MigLogit is relatively robust to C, as demonstrated in
Section 6.2.

5 Active Selection of Dp
l

In Section 2 we assumed thatDp
l had already been determined. In this section we describe how

Dp
l can be actively selected from Dp, based on the Fisher information matrix (Fedorov 1972;

MacKay 1992). The approach is known as active learning (Cohn et al. 1995; Krogh and Vedelsby
1995).

Let Q denote the Fisher information matrix of Dp
l ∪ Da about w. By definition of the Fisher

information matrix (Cover and Thomas 1991), Q = E{yp
i },{ya

i }
∂`
∂w

∂`
∂w

T , and substituting (8) into
this equation gives (a brief derivation is given in the appendix)

Q =
∑Np

l
i=1σ

p
i (1− σp

i )x
p
i x

p
i

T +
∑Na

i=1σ
a
i (1− σa

i )x
a
i x

a
i

T (19)

where σp
i = σ(wTxp

i ) for i = 1, 2, . . . , Np
l , and σa

i = σ(wTxa
i + µi) for i = 1, 2, . . . , Na, and w and

{µi} represent the true classifier and auxiliary variables.
It is well known the inverse Fisher information Q−1 lower bounds the covariance matrix

of the estimated w (Cover and Thomas 1991). In particular, [det(Q)]−1 lower bounds the prod-
uct of variances of the elements in w. The goal in selecting Dp

l is to reduce the variances, or
uncertainty, of w. Thus we seek the Dp

l that maximize det(Q).
The selection proceeds in a sequential manner. Initially Dp

u = Dp, Dp
l is empty, and Q =∑Na

i=1 σa
i (1 − σa

i )x
a
i x

a
i

T . Then one at a time, a data point xp
i ∈ Dp

u is selected and moved from
Dp

u to Dp
l . This causes Q to be updated as: Q ← Q + σp

i (1 − σp
i )x

p
i (x

p
i )

T . At each iteration, the
selection is based on

maxxp
i∈Dp

u
det

{
Q + σp

i (1− σp
i )x

p
i (x

p
i )

T
}

= maxxp
i∈Dp

u

{
1 + σp

i (1− σp
i )(x

p
i )

TQ−1xp
i

}
(20)

where we assume the existence of Q−1, which can often be assured by using sufficient auxiliary
data Da.
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Evaluation of (20) requires the true values of w and {µi}, which are not known a priori. We
follow (Fedorov 1972) and replace them with the w and {µi} that are estimated from Da ∪ Dp

l ,
where Dp

l are the primary labeled data selected up to the present.

6 Results

In this section the performance of MigLogit is demonstrated and compared to the standard lo-
gistic regression. The MigLogit is trained usingDa∪Dp

l , whereDp
l are either randomly selected

from Dp, or actively selected from Dp using the method in Section 5. When Dp
l are randomly

selected, 50 independent trials are performed and the results are obtained as an average over
the trials. Three logistic regression classifiers are trained using different combinations of Da

and Dp
l : Da ∪ Dp

l , Dp
l alone, and Da alone, where Dp

l are identical to the Dp
l used by MigLogit.

The four classifiers are tested on Dp
u = Dp \ Dp

l to produce the test-error rate or the area under
the ROC curve. Calculation of test error rates is based on the following decision rule: declare
yp = −1 if σ(wTxp) ≤ 0.5 and yp = 1 otherwise, for any xp ∈ Dp

u.
The performance of MigLogit is demonstrated on two problem domains. The first is a

simulated example and the second is detection of unexploded ordnance (UXO) where the UXO
signatures are site-sensitive.

Throughout this section the C in MigLogit is set to C = 6 when the comparison is made
to logistic regression. In addition, we present a comparison of MigLogit with different C’s, to
examine the sensitivity of MigLogit’s performance to C.

6.1 Synthesized Data

In the first example, the primary data are simulated as two bivariate Gaussian distributions
representing class “−1” and class “+1”, respectively. In particular, we have Pr(xp|yp = −1) =
N (xp; µ0,Σ) and Pr(xp|yp = 1) = N (xp; µ1,Σ), where the Gaussian parameters µ0 = [0, 0]T ,

µ1 = [2.3, 2.3]T , and Σ =

[
1.75 −0.433
−0.433 1.25

]
. The auxiliary data Da are then a selected

draw from the two Gaussian distributions, as described in (Zadrozny 2004). We take the
selection probability Pr(s|xp, yp = −1) = σ(w0 + w1K(xp,µs

0;Σ)) and Pr(s|xp, yp = +1) =
σ(w0 + w1K(xp,µs

1;Σ)), where σ is the sigmoid function, w0 = −1, w1 = exp(1), K(xp,µs
0;Σ) =

exp{−0.5(xp−µs
0)

TΣ−1(xp−µs
0)}with µs

0 = [2, 1]T , and K(xp,µs
1;Σ) = exp{−0.5(xp−µs

1)
TΣ−1(xp−

µs
1)} with µs

1 = [0, 3]T . We obtain 150 samples of Dp and 150 samples of Da, which are shown
in Figure 3.

The MigLogit and logistic regression classifiers are trained and tested as explained at the
beginning of this section. The results are represented as test error rate as a function of num-
ber of primary labeled data used in training, and are shown in Figures 1 and 2. Each curve
in Figure 1 is an average over 50 independent trials, with each trial having an independent
random selection of Dp

l . Figure 2 presents the active learning results, with Dp
l actively selected

as described in Section 5.
Several observations are made from inspection of Figures 1 and 2.

• The MigLogit consistently outperforms the three standard logistic regression classifiers,
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Figure 1: Test error rates of MigLogit and logistic regression on the toy data, as a function of
size of Dp

l . The primary labeled data Dp
l are randomly selected from Dp. The error rates are an

average over 50 independent trials of random selection of Dp
l .
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Figure 2: Error rates of MigLogit and logistic regression on the toy data, as a function of size of
Dp

l . The primary labeled data Dp
l are actively selected from Dp, using the method in Section 5.

by a considerable margin. This improvement is attributed to a selective usage of the ex-
amples in Da. In particular, each example in Da is employed according to its agreement
with Dp

l : a good agreement warrants a higher contribution to determination of the clas-
sifier while a poor agreement makes the contribution discounted. The selectivity is im-
plemented through the auxiliary variables which are estimated based on a few examples
from Dp.

• The performance of the logistic regression trained on Dp
l alone changes significantly with

the size of Dp
l . This is understandable, considering that Dp

l are the only examples deter-
mining the classifier. The abrupt drop of errors from iteration 10 to iteration 11 in Figure
2 may be because the label found at iteration 11 is critical to determining w.
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Figure 3: Illustration of active data selection by MigLogit. Only iterations 0,1,5,10,13 are shown.
The different symbols are defined as: blue ◦ = Dp labeled “−1”, red ◦ = Dp labeled “+1”, green
• = Da labeled “−1”, and magenta • = Da labeled “+1”. The numbers in black denote Dp

l

and represent the order of selection. The smaller • near the decision boundaries symbolize
weakened participation of the associated Da in determining w. This may only be visible in the
zoomed figure (iteration 13).

• The logistic regression trained on Da alone performs significantly worse than MigLogit,
reflecting a marked mismatch between Da and Dp.

• The logistic regression trained on Da ∪ Dp
l improves, but mildly, as Dp

l grows, and it is
ultimately outperformed by the the logistic regression trained on Dp

l alone, demonstrat-
ing that some data inDa are mismatched withDp and hence cannot be correctly classified
along with Dp, if the mismatch is not compensated.

• As Dp
l grows, the logistic regression trained on Dp

l alone finally approaches to MigLogit,
showing that without the interference of Da, a sufficient Dp

l can define a correct classifier.

• All four classifiers benefit from the actively selected Dp
l , and this is consistent with the

general observation with active learning (Cohn et al. 1995; Krogh and Vedelsby 1995).

The labeled primary examples Dp
l play double roles in the learning process. On the one

hand they help to find the correct w, and on the other hand they serve as representative primary
labeled data in finding the degree of agreement of each auxiliary example with primary data
(i.e., estimating the auxiliary variables). Suppose that it requires n1 primary labeled examples
to find the auxiliary auxiliary variables for compensating the mismatch between Da and Dp,
and that it requires n2 labeled primary examples alone (without using auxiliary examples) to
find the correct classifier. One may conjecture that n1 is smaller than n2. Although we have
not proven this rigorously, the results in Figures 1 and 2 provide empirical evidence for this
being true: note that MigLogit uses much fewer primary labeled examples to find the correct
classifier than Logit trained on Dp

l does.
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The double roles assumed by the primary labeled examples make it a critical issue how to
select these examples. We already see that actively selected examples give significant boost to
the performance. This makes it clear that active learning is a more appropriate strategy than
pure random selection, and contributes in an important manner to the proposed method.

To better understand the active selection process, we show in Figure 3 the first few iterations
of active learning. Iteration 0 corresponds to the initially empty Dp

l , and iterations 1, 5, 10,
13 respectively correspond to 1, 5, 10, 13 data points selected accumulatively from Dp

u into
Dp

l . Each time a new data point is selected, the w is re-trained, yielding the different decision
boundaries. As can be seen in Figure 3, the decision boundary does not change much after 10
data are selected, demonstrating convergence.

In Figure 3, each auxiliary data point xa
i ∈ Da is symbolically displayed with a size in

proportion to exp(−ya
i µi/12), hence a small symbol of auxiliary data corresponds to large ya

i µi

and hence indicates a discounted contribution of the i-th auxiliary example to determination
of w. The auxiliary data that cannot be correctly classified along with the primary data are
de-emphasized by the MigLogit. Usually the auxiliary data near the decision boundary are
de-emphasized.

6.2 Application to Detection of Site-Sensitive Unexploded Ordnance (UXO)

Unexploded ordnance (UXO) consists of ordnance that did not explode upon impact with the
ground. The UXO items are typically buried and consist of significant quantities of metal.
Sensing of UXO is typically performed using electromagnetic induction (EMI) and magne-
tometer sensors. The principal challenge involves distinguishing actual UXO from buried non-
ordnance conducting materials. For a more detailed general description of UXO sensing, see
(Zhang et al. 2003).

The sensor signature of a given UXO item is dependent on the soil properties as well as the
history of the site in which it is located, the latter having a particular strong influence on the
signature. The site history is dictated by complex factors such as co-located ordnance, the way
the ordnance impacted the soil, and the surrounding man-made conducting clutter and UXO
fragments. Therefore UXO detection is a typical site-sensitive problem.

The site-sensitivity makes standard supervised classification techniques an inappropriate
choice for UXO detection, due to the difficulty in constituting a universal training set for classi-
fier design. The training examples collected at previous sites are often not appropriate for use
for analysis of the current site since the current site is often different from the previous ones (in
the sense described above). Despite these disparities, the examples from previous sites are not
totally useless; indeed, they can provide quite useful information about the examples for the
current site (particularly for the UXO, since the ordnance types at different sites are often the
same or similar; the clutter signatures are most often site specific). The usefulness of existing
labeled data for a new site of interest is dictated by the characteristics of the new site, as well
as on the characteristics of the sites from which the labeled data were acquired; these inter-
relationships are complex and often difficult to characterize a priori (often accurate records are
not available about the history of a former bombing site).

Let the examples at the current UXO cite be distributed according to T (x, y), and the exam-
ples at a previous UXO cite be distributed according toA(x, y). It is seen that the empirical loss
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for detection of UXO at the current cite is well described by (2). Therefore one can employ the
technique of MigLogit to design the desired classifier.

To demonstrate the utility of MigLogit in UXO detection, we here consider two UXO sites
and design the classifier for the primary site (the one we are interested in) by using exam-
ples from another site (the auxiliary site). The auxiliary site is called Jefferson Proving Ground
(JPG), for which one is provided with the EMI and magnetometer measurements as well the
associated labels (which are binary: UXO or non-UXO). The examples from the auxiliary site
constitutes the auxiliary data Da. The primary site we are interested in is called Badlands, for
which we have unlabeled EMI and magnetometer measurement for constituting the primary
data Dp. The labeled JPG data consists of 104 total items, of which 16 are UXO and 88 are non-
UXO. The Badlands site consists of a total of 492 items, 57 of which are UXO and the remaining
435 are non-UXO. These two former bombing ranges exist at two very different geographical
locations within the United States.
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Figure 4: (a) The area under ROC curve (AUC) of MigLogit and logistic regression on the
UXO data, as a function of size of Dp

l (b) The AUC of MigLogit minus the AUC’s of logistic
regression. The auxiliary data are collected at Jefferson Proving Ground (JPG) and the primary
data are collected at Badlands. The primary labeled data Dp

l are randomly selected from Dp.
Each curve is an average over 50 independent trials of random selection of Dp

l .

The UXO sensor measurements are mapped to four dimensional feature vectors [log(Mp),
log(Mz), z, log(Mp

Mz
)], where Mp and Mz are the dipole moments perpendicular and parallel to

the target axis, respectively, and z is the approximate target depth (Zhang et al. 2003). These
parameters are estimated by fitting the EMI and magnetometer measurements to a physical
model (Zhang et al. 2003); the features from this study are available upon request to the au-
thors. Each feature is normalized to have zero mean and unitary variance. In UXO detection,
one is interested in the receiver’s operating characteristic (ROC) curve, particularly the area
under ROC curve (AUC) (Hanley and McNeil 1982).

The results are presented in Figures 4(a) and 5(a), where each curve is the area under ROC
curve as a function of the size of Dp

l . The results in Figure 4(a) are obtained by randomly la-
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(b) AUC of MigLogit minus AUC of logistic regres-
sion

Figure 5: (a) The area under ROC curve (AUC) of MigLogit and logistic regression on the
UXO data, as a function of size of Dp

l (b) The AUC of MigLogit minus the AUC’s of logistic
regression. The auxiliary data are collected at Jefferson Proving Ground (JPG) and the primary
data are collected at Badlands. The primary labeled dataDp

l are actively selected fromDp, based
on the method in Section 5.

beling primary data and by averaging the AUC’s over 50 independent trials. The results in
Figure 5(a) are obtained by actively labeling primary data using the method in Section 5. For
a better view of the improvement achieved by MigLogit, we plot in Figures 4(b) and 5(b) the
AUC of MigLogit with the AUC of each logistic regression classifier subtracted. A positive dif-
ference indicate performance improvement while a negative difference indicates performance
degradation. We have the following observations:

• WithDp
l determined randomly, MigLogit outperforms all logistic regression classifiers ex-

cept at the early part of the curves, where there are very few examples inDp
l . As discussed

at the end of Section 6.1, the primary labeled examples are critical to the performance of
MigLogit. With a few randomly selected examples one may not be able to find the appro-
priate auxiliary variables, leading to a poor compensation of the mismatch between Dp

and Da and therefore performance degradation.

• With Dp
l actively determined, MigLogit outperforms all logistic regression classifiers, re-

gardless of the number of primary labeled examples. This verifies that a good choice of
Dp

l is important to the performance of MigLogit.

• Active learning is not only beneficial to MigLogit, but to other classifiers as well, again
demonstrating the advantage of active learning.

• All conclusions observed in the simulated results extend to the UXO results here.

These observations suggest that MigLogit successfully leverages the auxiliary data from
previous UXO sites to quickly find the correct classifier for the new site, requiring much fewer
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Figure 6: Performance of MigLogit with different choices of C, in the UXO detection prob-
lem. The vertical axis is the AUC of MigLogit minus the AUC’s of logistic regression.
The primary labeled data Dp

l are actively selected from Dp. From top-left to right-bottom,
C = 2, 4, 6, 8, 10, 12, 14, 16.

labeled data from the new site than standard classifiers. The results for the actual (measured)
UXO data suggest that the algorithm captures the concept drift associated with realistic prob-
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lems of practical importance.

6.3 Robustness of MigLogit

We have discussed in (4) how to choose C in MigLogit. In this subsection, we show that when
the choice is not accurate, MigLogit still yields robust results.

We consider the same UXO data and use the same experimental settings as in the previous
subsection, except that we vary C in MigLogit to examine its robustness. The Dp

l are deter-
mined by active learning as described in Section 5. We consider eight different values of C,
C = 2, 4, 6, 8, 10, 12, 14, 16, to examine the differences in the results obtained under these set-
tings. The results are shown in Figure 6. It is seen that over this wide range of choices for C,
MigLogit consistently yields superior performances except in a few cases, which occur when
the size of Dp

l is very small and C is either too large or too small. These results demonstrate the
robustness of MigLogit to the choice of C, particularly when active learning is invoked. With
different C, the Dp

l are also selected differently, which counteracts the effect of C and increase
the robustness of MigLogit.

7 Conclusions

We have proposed an algorithm, called migratory logistic regression (MigLogit), for learning in
the presence of concept change between the (auxiliary) training dataDa and the (primary) test-
ing data Dp. The basic idea of our method is to introduce an auxiliary variable µi for each
example (xa

i , y
a
i ) ∈ Da, which allows xa

i to migrate to the class ya
i when it cannot be correctly

classified along with xp by the classifier. The migrations of Da are controlled by the inequal-
ity constraint 1

Na

∑Na

i=1 ya
i µi ≤ C, where C ≥ 0 is an appropriate bound limiting the average

migration. The primary labeled data Dp
l play a pivotal role in correctly learning the classifier,

and we have presented a method to actively selecting Dp
l , which enhances the adaptivity of the

entire learning process. We have developed a fast learning algorithm to enhance the ability of
MigLogit to handle large auxiliary data sets.

The results from both synthesized data and data collected at actual unexploded ordnance
(UXO) sites show that MigLogit yields significant improvements over the standard logistic
regression, demonstrating that if the classifier trained on Da is to generalize well to Dp, the
mismatch between Da and Dp must be compensated.

In the work presented here it was assumed that we had an existing set of labeled data
Da, for which the goal was to learn relationships with a primary set of (unlabeled or partially
labeled) data Dp. In some problems we may have M − 1 existing labeled data sets, indexed by
m = 1, 2, · · · ,M − 1, and we are interested in learning the characteristics (concept) of a new
(M -th) unlabeled or partially labeled data set. Using the method presented here, all data in the
existing M−1 data sets would be combined to defineDa. There is a question as to whether this
is the most effective way to address this problem. A related technique for handling multiple
data sets is based on the notion of multitask learning (MTL) or inductive transfer (Baxter 2000;
Caruana 1997; Yu et al. 2005). Here a task refers to classifier design based on a specific data set.
The goal in multitask learning is to enhance training examples used to learn a given task by
borrowing information from related tasks. Information borrowing is accomplished by learning
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the multiple tasks simultaneously under a unified framework. This is particularly beneficial
when each task has limited training examples, since information borrowing allows examples
of related tasks to be utilized when learning the target task. Note MTL does not require the
tasks to be ordered in time; it only assumes that the tasks are related in some manner.

Existing MTL algorithms are distinguished by the way information borrowing is imple-
mented. In a neural network, in which each output node can encode a task (Bakker and Heskes
2003; Caruana 1997; Liao and Carin 2006), information borrowing is implemented by a com-
mon internal representations such as hidden nodes and input-to-hidden weights. The method
in (Evgeniou et al. 2005) employs a task-kernel to capture the similarity between any two tasks.
The task-kernel is used to construct a quadratic regularization term for the parameters across
all tasks, which implements information borrowing from one task to another. In Bayesian hi-
erarchical models (Dominici et al. 1997), a common prior distribution is placed over the model
parameters in different tasks to represent the information shared between tasks. In nonpara-
metric Bayesian models (Xue et al. 2007), information borrowing is carried out by by a common
Dirichlet process (DP) (Ferguson 1973) employed to generate the nonparametric prior distribu-
tion over the model parameter in each task. The method in (Wu and Dietterich 2004) learns a
classifier based on a weighting of two tasks, with the auxiliary task given lower weight to re-
flect that it has a discounted contribution to the classifier learning. Here the target task borrows
information from the auxiliary one, through the discounted contribution.

An interesting direction for future research involves examination of the relationship be-
tween the concept-drift algorithm presented here and the aforementioned MTL approaches,
each of which constitutes a method for implementing transfer learning. In particular, it is of
interest to examine the value in retaining the separation of the M − 1 labeled data sets, as in
MTL, versus aggregating them to define Da. For the UXO problem considered as a practical
problem in this paper, one may have cleaned M − 1 previous sites before considering the M -th
(although this was not the case in the example considered here, in which we only had labeled
data from one previous site). This line of investigation will be the focus of a future study.
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Appendix

Proof of Theorem 1: Let f ′(z) be the first derivative of f(z). We have
∑N

i=1 f(bi + zi) =∑N
i=1 f(bi) +

∑N
i=1

∫ zi

0
f ′(x + bi)dx. The first term on the right side is a constant and hence,

the problem in (13) is equivalent to

max{zi}
N∑

i=1

∫ zi

0

f ′(bi + x)dx (A-1)

Because f ′′(z) < 0, we have for any τ1 ≤ τ2 that f ′(τ1 + x) ≥ f ′(τ2 + x) and consequently

∫ ∆

0
f ′(τ1 + x)dx ≥ ∫ ∆

0
f ′(τ2 + x)dx

∀ τ1 ≤ τ2 and ∆ ≥ 0
(A-2)

By (12), there exists 0 ≤ r < n(bn+1 − bn) such that R = nbn −
∑n

k=1 bk + r =
∑n

k=1 k∆k

where ∆k = bk+1 − bk for k = 1, · · · , n − 1, and ∆n = r/n. We now use (A-2) to distribute
∆1, 2∆2, · · · , n∆n to z1, z2, · · · , zN such that the resulting {zi} maximize (A-1). As ∆k ≥ 0 for

20



Migratory Logistic Regression for Learning Concept Drift Between Two Data Sets Liao and Carin

k = 1, · · · , n, and any distribution of {k∆k}N
k=1 to {zk}N

k=1 makes
∑N

i=1 zi =
∑n

k=1 k∆k = R, the
constraints of (14) and (15) are automatically satisfied.

Initially zi = 0 for i = 1, 2, · · · , N .
As ∆1 = b2− b1 ≥ 0, by (A-2),

∫ ∆1

0
f ′(b1 +x)dx ≥ ∫ ∆1

0
f ′(b2 +x)dx, therefore ∆1 is distributed

to z1, i.e., z1 ← z1 + ∆1, which makes b1 + z1 = b2.
Similarly ∆2 = b3 − b2 ≥ 0, by (A-2),

∫ ∆2

0
f ′(b2 + x)dx ≥ ∫ ∆2

0
f ′(b3 + x)dx, therefore 2∆2 is

equally distributed to z1 and z2, i.e., z1 ← z1 + ∆2 and z2 ← z2 + ∆2, which makes b1 + z1 =
b2 + z2 = b3.

Generally, k∆k is equally distributed to z1, z2, · · · , zk. After the distribution of k∆k, k =
1, 2, · · · , n, we have zk =

∑n
i=k ∆i for k = 1, 2, · · · , n and zk = 0 for k = n + 1, n + 2, · · · , N ,

which is equal to the solution in (16). Because the problem is strictly concave, the solution is
unique and globally optimal. ¤

Derivation of Equation (19): By definition of logistic regression, w is the parameter of the
conditional distribution Pr(y|x) = σ(ywTx), with x given and fixed. Let g = ∂ ln σ(ywTx)/∂w =
[1 − σ(ywTx)]yx. Then Ey(gg

T ) =
∑

y=−1,1 σ(ywTx)[1 − σ(ywTx)]2xxT . Using σ(−wTx) =

1− σ(wTx), we obtain Ey(gg
T ) = σ(wTx)[1− σ(wTx)]xxT . Summing E(ggT ) over all primary

and auxiliary data points (assuming the data are independent), we obtain the formula of Q. ¤

21
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Abstract— Semi-supervised learning and active learning are
considered for UXO detection. Semi-supervised learning algo-
rithms are designed using both labeled and unlabeled data, where
here labeled data corresponds to sensor signatures for which
the identity of the buried item (UXO/non-UXO) is known; for
unlabeled data one only has access to the corresponding sensor
data. Active learning is used to define which unlabeled signatures
would be most informative to improve classifier design, if the
associated label could be acquired (where for UXO sensing the
label is acquired by excavation). A graph-based semi-supervised
algorithm is proposed, employing the idea of a random Markov
walk on a graph, thereby exploiting knowledge of the data
manifold (where the manifold is defined by both the labeled
and unlabeled data). The resulting algorithm is then used to
infer labels for the unlabeled data, providing a probability that
a given unlabeled signature corresponds to a buried UXO. An
efficient active-learning procedure is developed for this algorithm,
based on a mutual-information measure. In this manner one
initially performs excavation with the purpose of acquiring labels
to improve the classifier, and once this active-learning phase is
completed the resulting semi-supervised classifier is then applied
to the remaining unlabeled signatures, to quantify the probability
that each such item is UXO. Example classification results are
presented for an actual UXO site, based on electromagnetic
induction and magnetometer data. Performance is assessed in
comparison to other semi-supervised approaches, as well as to
supervised algorithms.

I. INTRODUCTION

Unexploded ordnance (UXO) correspond to explosive de-
vices (e.g., bombs) that did not explode upon impact with the
ground, and that are subsequently buried intact or partially
intact. Some UXO may also exist on the surface of the
ground, but we here assume these are removed via manual
inspection, and therefore this paper focuses on detecting buried
UXO. There are several sensing techniques that have been
developed over the last several decades for detection of buried
UXO. Most widely used among these are electromagnetic
induction (EMI) [1, 2, 3] and magnetometers [4]. Both of
these approaches are based on sensing magnetic signatures.
An EMI sensor is an active approach, whereby electromagnetic
radiation is emitted, and one measures the signals scattered off
targets. Such that one achieves sufficient ground penetration,
EMI systems are typically designed to operate at kilohertz fre-
quencies (in the inductive regime). By contrast, magnetometers
are passive sensors, which measure the static magnetic field
of the earth, and hence the presence of ferrous targets, which
yield a corresponding perturbation to the earth’s magnetic
field.

A UXO is any explosive device that has not detonated,
and therefore UXO are dangerous if disturbed. However,
although the device didn’t detonate, in many cases the item
is deformed upon impact, with possible components (e.g., tail
wings) broken off. In addition, there are many different types
of explosives (bombs) that may have been deployed. These
factors significantly complicate one’s ability to distinguish
UXO from non-UXO based on the EMI and/or magnetometer
signature. Specifically, many types of buried benign metal
items are often readily confused for UXO, based on the
sensor signature. Consequently, the unnecessary excavation of
non-UXO items often constitutes the principal cost of UXO
cleanup (there are typically far more non-UXO buried metal
items than there are actual UXO). Therefore, classification
of UXO constitutes a significant sensing and classification
challenge.

Classification using EMI and magnetometer sensors is typ-
ically not performed directly on the measured data, but on
features extracted therefrom. Specifically, parametric models
have been developed for the response of targets as viewed
from such sensors, with most of these models based on a
dipole approximation [3]. The parameters extracted from the
models, when fitting is performed to the measured data, are
typically employed to constitute feature vectors within the
subsequent classification algorithm. Most of these algorithms
are supervised, in the following sense. A set of labeled
feature vectors are assumed given (the identity, UXO/non-
UXO, of each feature vector is known), and these data are
used to design a classifier. Numerous such classifiers have
been considered for UXO detection, such as kernel matching
pursuits [5], support vector machines [3], and likelihood-ratio
tests [3]. There are two limitations of such approaches: (i) the
assumption of the presence of an appropriate labeled data set
is tenuous in many cases, and (ii) even when such labeled data
are available, a purely supervised algorithm doesn’t exploit the
contextual information provided by the unlabeled data.

General interest in these latter two issues has motivated re-
cent research in the machine learning community. Specifically,
active learning [6, 7] is a framework whereby the acquisition
of labeled data is integrated within classifier design. Using
appropriate information-theoretic measures, an active-learning
algorithm asks which of the unlabeled feature vectors would be
most informative for classifier design if the associated labels
could be made available. This idea has been applied previously
in the context of UXO detection [5]. The new aspect of the
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work considered here is that this active-learning framework is
placed within the context of a semi-supervised learning setting.
Specifically, in addition to actively acquiring the labeled
data (performing item excavations selectively for the purpose
of algorithm learning), a semi-supervised algorithm exploits
contextual information provided by all of the unlabeled data
(the classification of any one unlabeled feature vector is placed
within the context of all unlabeled feature vectors). In the UXO
problem the EMI/magnetometer data are often all collected
at once, typically using a cart-based system [4]; recall that
the UXO of interest are all buried, and therefore they are
not dangerous until excavation begins. Therefore, one may
perform feature extraction on all of the signatures at once,
and the contextual information provided by these data may be
of utility in improving classification performance.

Semi-supervised learning has been an area of significant
recent interest in the machine-learning community [8, 9, 10,
11, 12, 13, 14, 15], where exploitation of the information
available in the unlabeled data has been demonstrated to often
add value. To our knowledge this paper represents the first
use of such an approach as applied to the UXO problem. As
discussed below, the semi-supervised approach proposed here
is new in its own right, and has advantages relative to other
such techniques currently in the literature.

To date, there have been several semi-supervised meth-
ods developed. The generative-model method, an early semi-
supervised method, estimates the joint probability of data
and labels via expectation-maximization (EM), treating the
missing labels of unlabeled data as hidden variables; this
method was studied in statistics for mixture estimation [16]
and has been reformulated for semi-supervised classification
[15]. Co-training [13], another early method, exploits two
independent subvectors of features, using one to provide
the label estimates for the other; co-training has received
renewed interest recently, particularly theoretically. The semi-
supervised support vector machine (SVM) [12] represents a
more recent method, which maximizes the margin between
classes, taking into account both labeled and unlabeled data.
Graph-based methods [11, 10, 14, 9], the main focus of current
research in semi-supervised learning, exploits the assumption
that strongly connected data points (in feature space) should
share the same label, and utilizes spectral graph theory to
quantify the between-data connectivity. For a more complete
review of the literature, see [8].

Most graph-based algorithms operate in a transductive
fashion, i.e., they directly learn the labels of the unlabeled
data, instead of learning a classifier first and then using the
classifier to infer the unseen labels (inductive learning). While
transductive algorithms avoid the problem of model selection
for a classifier, they lack a principled way of predicting the
labels of data out of the training set. The work in [9] addresses
this problem by constructing a graph-based prior distribution
on the parameters of a classifier and learns the classifier
by maximizing the posterior (MAP estimation); the prior
utilizes both labeled and unlabeled data, thus enforcing semi-
supervised learning. Several drawbacks are inherent in the
algorithm in [9]. For example, the hyper-parameter balancing
the importance of the prior relative to the data likelihood needs

to be learned.
In this paper, with a focus on the UXO-sensing application,

we present an algorithm for learning parametric classifiers on
a partially labeled data manifold, by representing the manifold
as a graph; each vertex on the graph represents a data point
and the weighted edge between two vertices manifests the
immediate connectivity between the corresponding data points.
We are motivated by the work in [11] and build the t-step
connectivity between data points via a Markov random walk
on a manifold. To account for heterogeneities in the data
manifold, we let the random walk take different step-sizes
at different data locations; each step-size dictates a Markov
transition matrix and we select the step-size to assemble the
transition matrix for the entire manifold.

The remainder of the paper is organized as follows. In Sec-
tions II and III we, respectively, discuss the semi-supervised
learning algorithm and the active-learning framework. These
discussions are presented in a general setting, applicable to
any remote-sensing problem for which (i) all of the unla-
beled data are available simultaneously, and (ii) there is an
opportunity to selectively acquire labels on a subset of the
unlabeled feature vectors. In the work considered here these
labels may be acquired via selective excavation, while in
other settings one may employ a human analyst or potentially
another (higher-resolution) sensor, selectively deployed. The
specific application to UXO sensing is discussed in Sec.
IV, wherein the sensors and feature vectors considered are
described. Results are presented for an actual UXO site, using
magnetometer and/or EMI sensor data, and comparisons are
made to other approaches (other classes of supervised and
semi-supervised algorithms). Conclusions from this work are
provided in Section V.

II. THE SEMI-SUPERVISED LEARNING ALGORITHM

A. The Graph Representation of a Partially Labeled Data
Manifold

Let G = (X ,W) be a graph, where X = {x1, x2, · · · ,
xN} is the set of vertices and W = [xij ]N×N is the affinity
matrix with the (i, j)-th element wij indicating the strength
of immediate connectivity between vertices xi and xj . For
the purpose of data classification, the vertex set X coincides
with the set of data points (labeled or unlabeled), and wij is a
quantitative measure of the closeness of data points xi and xj .
In the semi-supervised setting, only a subset of X are provided
with class labels, and the remaining data points are unlabeled,
and therefore we have a partially labeled graph.

Although there are many alternative ways of defining the
connectivity wij , here we consider a radial basis function

wij = exp(−‖xi − xj‖2
2σ2

i

) (1)

where ‖ · ‖ represents the Euclidean norm. While the affinity
matrix may provide a reasonable local similarity among the
data points, it is not a good representation of the global simi-
larity measure of the data sets. Following [11], we construct a
Markov random walk based on the affinity measure, which is
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capable of incorporating both the high-density clustering prop-
erty and the manifold structure of the data set. Specifically, we
induce a Markov transition matrix A = [aij ]N×N , where the
(i, j)-th element

aij =
Wij∑N

k=1 Wik

(2)

gives the probability of walking from xi to xj by taking a
single step. In general we are interested in a t-step random
walk, the transition matrix of which is given by A raised to the
power of t, i.e., At = [a(t)

ij ]N×N . The At is row stochastic,
where each element a

(t)
ij represents the probability that the

Markov process starts from xi and ends at xj by taking t-
step random walks. As a special case, At degenerates to an
identity matrix when t = 0, which means one can only stay
at a single data point when no walk is performed.

In specifying the Markov transition matrix in (1) we have
used a distinct σ for each data point x. In the random walk,
σ can be thought of as the step-size. Therefore location-
dependent step-sizes allow one to account for possible het-
erogeneities in the data manifold — at locations where data
are densely distributed a small step-size is enough, whereas at
locations where data are sparsely distributed a large step-size
is necessary to connect a data point to its nearest neighbor.
A simple choice of the heterogeneous σ is to let σi to be
a fraction of the shortest Euclidean distance between xi and
all other data points in X . This ensures each data point is
immediately connected to at least one neighbor.

B. Neighborhood-Based Learning

Any two data points xi and xj are said to be t-step
neighbors, denoted as xj

t∼ xi, if a
(t)
ij > 0. Then Nt(xi) =

{x : x t∼ xi} ⊆ X , which represents the set of t-step
neighbors of xi, is called the t-step neighborhood of xi.
When t = 0, the neighborhood shrinks to a single data point,
N0(xi) = {xi}. We define the probability of label yi given
the t-step neighborhood of xi as

p(yi|Nt(xi),θ) =
N∑

j=1

a
(t)
ij p(yi|xj ,θ) (3)

where the magnitude of a
(t)
ij automatically determines the

contribution of xj to the neighborhood, thus we are allowed
to run the index j over the entire X . Expression p(yi|xj , θ)
is the probability of label yi given a single data point xj

(zero-step neighborhood) and it’s represented by a standard
probabilistic classifier parameterize by θ. In this paper we
consider binary classification with y ∈ {−1, 1}, and choose
the form of p(yi|xi, θ) as logistic regression classifier

p(yi|xj , θ) =
1

1 + exp(−yiθT xj)
(4)

where we assume a constant element 1 is prefixed to each
feature vector x (the prefixed x is still denoted as x for
notational simplicity), thus the first element in θ is a bias
term. Arbitrarily one may set y = 1 as corresponding to a
UXO, and y = −1 as corresponding to a non-UXO.

We distinguish between the classifier in (3) and the typical
logistic regression classifier

p(yi|xi, θ) =
1

1 + exp(−yiθT xi)
(5)

The fundamental difference between these two is that the
logistic-regression classifier predicts yi using xi alone, while
the semi-supervised approach considered here predicts yi by
xi and the feature vectors in the neighborhood of xi. The
neighborhood of xi is formed by all xj’s that can be reached
from xi by t-step random walks, with each xj contributing
to the prediction of yi in proportion to a

(t)
ij , the probability of

walking from xi to xj in t steps. The role of neighborhoods
is then conspicuous — in order for xi to be labeled yi, each
neighbor xj must be labeled consistently with yi, in the degree
proportional to a

(t)
ij ; in such a manner, yi implicitly propagates

over the neighborhood. By taking the neighborhoods into
account, it is possible to learn a classifier with only a few
labels present and yet the classifier learned is much less subject
to over-fitting than when ignoring the neighborhoods. This is
addressed in greater detail below.

Let L ⊆ {1, 2, · · · , N} denote the set of indices of labeled
data. Assuming the labels are conditionally independent, we
obtain the likelihood function

p({yi, i ∈ L}|{Nt(xi) : i ∈ L}, θ) =
∏

i∈L
p(yi|Nt(xi),θ)

=
∏

i∈L

N∑

j=1

a
(t)
ij p(yi|xj , θ) (6)

which is the joint probability of observed labels given the t-
step neighborhood of each corresponding data point. Estima-
tion of θ may be achieved by maximizing the log-likelihood,
which however may yield over-fitting, especially when the
number of labeled samples is small. To enforce sparseness
of θ (sparseness has been demonstrated as an important
property [17], discouraging overfitting), we impose a zero-
mean Gaussian prior on each dimension of θ,

p(θ|Λ) =
|Λ|1/2

(2π)d/2
exp(−1

2
θtΛθ) (7)

where Λ = diag{λ1, λ2, ..., λd} are hyper-parameters, d is the
dimensionality of x. Each hyper-parameter has an independent
Gamma distribution, resulting in

p(Λ|α, β) =
d∏

i=1

Gamma(λi|αi, βi)

=
d∏

i=1

βαi
i

Γ(αi)
λαi−1

i exp(−λiβi) (8)

Marginalizing Λ, we obtain the prior distribution conditional
directly on α and β,

p(θ|α, β) =
∫

p(θ|Λ)p(Λ|α, β) dΛ (9)

The posterior of θ follows from (6) and (9),

p(θ|α, β, {yi,Nt(xi) : i ∈ L})
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= Z−1
∏

i∈L

N∑

j=1

a
(t)
ij p(yi|xj ,θ)

∫
p(θ|Λ)p(Λ|α, β) dΛ(10)

where Z is a normalization constant. We are interested in the
maximum a posterior (MAP) estimate of θ, which maximizes
(10) or, equivalently,

`(θ)
def.
= ln p(θ|α, β, {yi,Nt(xi) : i ∈ L}) + ln Z

=
∑

i∈L
ln

N∑

j=1

a
(t)
ij p(yi|xj ,θ)

+ ln
∫

p(θ|Λ)p(Λ|α, β) dΛ (11)

The θ obtained by maximization of `(θ) generally is not
subject to over-fitting due to two reasons — the neighborhoods
incorporated into the first term of `(θ) encourages smoothness
along the manifold, and the second term of `(θ) enforces
sparseness of θ.

C. The Learning Algorithm

We maximize (11) by employing an expectation-
maximization (EM) algorithm. For any {δij : δij ≥
0,

∑N
j=1 δij = 1} and {q(Λ) :∈ q(Λ)dΛ = 1}, we apply

Jensen’s inequality to the righthand side of (11) to obtain the
lower bound

`(θ) ≥ Q(θ|δ, q) def.
=

∑

i∈L

N∑

j=1

δij ln
a
(t)
ij p(yi|xj ,θ)

δik

+
∫

q(Λ) ln
p(θ|Λ)p(Λ|α, β)

q(Λ)
dΛ (12)

where the equality holds when

δij =
p(yi|xj , θ)a(t)

ij∑N
k=1 p(yi|xk, θ)a(t)

ik

(13)

q(Λ) =
p(θ|Λ)p(Λ|α, β)∫
p(θ|Λ)p(Λ|α, β)dΛ

(14)

The EM algorithm consists of iteration of the following two
steps.

1) E-step: computing {δij} and q(Λ) using (13) and (14);
2) M-step: compute the re-estimate of θ as

θ = arg max
θ̂

Q(θ̂|δ, q) (15)

The convergence is monitored by checking `(θ), which is
guaranteed to monotonically increase over the EM iterations.

There are two noticeable points regarding the technical
details. First, since (8) is conjugate to (7), q(Λ) is of the same
form as (8) with updated hyper-parameters α, β,

q(Λ) =
d∏

i=1

Gamma(λi|αi +
1
2
, βi +

1
2
θ2

i )

=
d∏

i=1

(βi + 1
2 θ2

i )αi+
1
2

Γ(αi + 1
2 )

λ
αi− 1

2
i e−λi(βi+

1
2 θ2

i ) (16)

and the integral in the dominator of (14) has an analytic form
∫

p(θ|Λ)p(Λ|α, β)dΛ

=
1

(2π)d/2

d∏

i=1

βαi
i

Γ(αi)
Γ(αi + 1

2 )
(
βi + 1

2θ2
i

)αi+
1
2

(17)

which is useful in checking the convergence of `(θ) in (11).
Secondly, in computing Q(θ̂|δ, q) by (12), one needs to

compute γ(θ̂)
def.
=

∫
q(Λ) ln p(θ̂|Λ)dΛ, and it is found that

γ(θ̂) = −1
2
θ̂ TEq(Λ|θ)θ̂

= −1
2
θ̂ T diag [Eq(λ1),Eq(λ2), · · · ,Eq(λd)] θ̂ (18)

with

Eq(λi) =
αi + 1

2

βi + 1
2θ2

i

. (19)

III. ACTIVE LEARNING

In the UXO-classification problem, it is a given that exca-
vation will ultimately be performed. The principal objective is
to excavate as high a percentage of UXO as possible, while
leaving as much of the non-UXO as possible unexcavated.
Recall that the primary expense in UXO cleanup is the
excavation of non-UXO items, since the density of such is
typically much higher than the amount of UXO, and the
sensor signatures of UXO are often very similar to those
of many types of non-UXO. Given that excavation will be
performed in any case, one may ask whether the initial set of
excavations may be performed with the purpose of improving
the performance of the algorithm. Specifically, one may ask
which unlabeled sensor signature would be most informative
to improved classifier performance if the associated label
could be made available. As discussed below, this question
is answered in a quantitative information-theoretic manner.
When the expected information content of such an excavation
drops below a prescribed threshold, excavation for the purpose
of improved learning is terminated, and then the algorithm
is used to define the probability that all remaining unlabeled
signatures correspond to UXO. Importantly, in active learning
the algorithm desires to learn about the properties of the UXO
and non-UXO at the site, and therefore in this phase an
excavated non-UXO should not be termed a “false alarm”.
Such active learning has been performed previously in a
related UXO-cleanup study [5]; the distinct character of the
algorithm discussed below is that this process is here placed
within the context of semi-supervised learning.

A. Active Learning with Semi-Supervised Classifier

For active label selection, we consider a Gaussian approxi-
mation of the posterior of the classifier

p(θ|D) ' N (θ|θ̂, H−1) (20)

where θ̂ is the estimate of the classifier learned from the above
EM algorithm, and H is the posterior precision matrix H =
∇2(− log p(θ|{yi,Nt(xi) : i ∈ L}). By treating γ(θ̂) in (18)
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as deterministic, we obtain an evidence-type approximation
[17]:

H =
∑

i∈L

N∑

j=1

δij p(yi|xj , θ)(1− p(yi|xj , θ))xjxT
j

−∇2 ln γ(θ̂) (21)

With one more data point xi∗ with label yi∗ as the next labeled
data, assuming that the MAP estimate of θ̂ remains the same
after including the new data point, then the posterior precision
changes to

H′ =
∑

i′∈L∪{i∗}

N∑

j=1

δi′j p(yi′ |xj , θ)(1− p(yi′ |xj , θ))xjxT
j

−∇2 ln γ(θ̂) (22)

For active label selection, we could further simplify the equa-
tion for the precision matrix by considering the degenerated
connectivity matrix A(t=0), which is an identity matrix, such
that

δij = { 1, for i = j
0, for i 6= j

(23)

Following this, the new precision matrix becomes

H′ = H + p(yi∗|xi∗, θ)(1− p(yi∗|xi∗,θ))xi∗xT
i∗ (24)

Our criterion for active learning is to choose the feature vector
for labeling that maximizes the mutual information between
the classifier θ and the new data point to be labeled, which
is the expected decrease of the entropy of θ after xi∗ and yi∗
are observed,

I =
1
2

log
|H′|
|H|

=
1
2

log
{
1+p(yi∗|xi∗, θ)[1−p(yi∗|xi∗, θ)]xT

i∗H
−1xi∗

}
(25)

The mutual information I is large when p(yi∗|xi∗, θ) ≈ 0.5,
therefore, our active learning prefers label acquisition on
samples with uncertain classification, based on the current
classifier based upon available labeled data. Further, consid-
ering the term xT

i∗H
−1xi∗, the mutual information criterion

prefers samples with high variance.
The assumption that the mode of the posterior distribution

of the classifier remains unchanged with one more labeled
data point is not good at the beginning of the active learning
procedure. However, empirically we have found that it is a
very good approximation after the active learning procedure
has acquired as few as 15 labels, for the examples considered
here. Further, this assumption obviates the need to re-train
the classifier after each new label is acquired, thus saving
computational cost.

B. Other Active-Learning Approaches

When presenting results, we will make comparisons to
other semi-supervised learning algorithms, and therefore we
briefly discuss how active learning is implemented in these
approaches. In the semi-supervised work of [9], the authors
also proposed a scheme for active label acquisition, which

reduces to the same criterion as (25). However, our classifier
is different from theirs, and consequently active learning
based on our classifier will yield different results from those
produced by the algorithm in [9].

As pointed out in the Introduction, our work was motivated
by that in [11], where a similar Markov random walk graph is
defined. Instead of training a parametric inductive classifier as
in (3), the EM algorithm in [11] learns the classification proba-
bility of the unlabeled data directly (transductive). Specifically,
the probability of the label for xi is defined as

p(yi|Nt(xi)) =
N∑

j=1

a
(t)
ij p(yi|xj) (26)

and the estimation criterion is to maximize the log-likelihood
of the labeled data points,

∑

i∈L
log p({yi|Nt(xi)) =

∑

i∈L
log

N∑

j=1

a
(t)
ij p(yi|xj) (27)

which may be performed via an EM method. There is no active
learning algorithm provided in [11]. Here we therefore propose
an active-learning criterion for the non-parameteric classifier
in [11], which selects xi∗ to be the next labeled data point by
maximizing

p(yi∗|xi∗)(1− p(yi∗|xi∗)) (28)

In this approach we simply acquire a label on that unlabeled
sample for which the current classifier is most uncertain;
clearly this simple approach may be applied to any classifier.

IV. APPLICATION TO UXO DETECTION

A. Magnetometer and EMI Sensor Data Considered

To evaluate the proposed algorithm, we applied it to a UXO
data set from an actual former bombing range. This data set
was collected by the Multi-sensor Towed Array Detection
System (MTADS) [4]. This system is composed of arrays
of full-field cesium vapor magnetometers and time-domain
electromagnetic pulsed induction sensors. The magnetometers
were Geometrics Model 822ROV, while the EMI sensors
were highly-modified Geonics EM-61 sensors. The data were
collected at a bombing target on the Badlands Bombing Range
on the Ogala Sioux Reservation in Pine Ridge, South Dakota.
The UXO items present at the site included M 38 (100 lb.)
sand-filled practice bombs, M 57 (250 lb.) practice bombs,
2.25 in. and 2.75 in. rocket bodies and rocket warheads, and
ordnance scrap (such as tail fins and casing parts). The details
of how these measured data are analyzed with magnetometer
and EMI dipole models has been described in detail elsewhere
[3], and these same techniques were applied to extract feature
vectors from the data considered here.

The data associated with a given item under test was man-
ifested in one of three variations: (i) only magnetometer data
were available, (ii) only EMI data were available, or (iii) both
magnetometer and EMI data were available. These different
variations were tied to the details of the data collection, and to
the quality of the data acquired for each of the two modalities.
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For EMI sensor data alone, there are 230 clutter cases (non-
UXOs) and 44 UXOs. For the magnetometer sensor data alone,
there are 719 non-UXOs and 79 UXOs. Concerning the case
for which data from both the magnetometer and EMI sensors
are available, there are 228 Non-UXOs and 44 UXOs. For
the EMI data the feature vector is of dimension 10, for the
magnetometer the feature vector is of length 9, and when
both are used the two types of features are concatenated.
Before processing each feature is centered and normalized.
Specifically, we compute the mean and variance for each
dimension of the features; each feature is shifted by subtracting
its mean and then divided by its variance. The feature vectors
from this data set are available to other researchers, upon
request to the authors.

B. Detection Results for Non-Active Classification: Transduc-
tive

In semi-supervised learning, as discussed above, there are
two frequently applied settings. In a transductive algorithm
[11] it is assumed that all of the labeled and unlabeled data
are available simultaneously, and the algorithm is designed
to classify the unlabeled data, employing the data-manifold
information provided by both the labeled and unlabeled data.
Importantly, if a new unlabeled example was added, then
the whole transductive learning process would have to begin
anew. In an inductive semi-supervised learning algorithm [9]
one again has both labeled and unlabeled data with which
an algorithm is designed, exploiting the data manifold. Once
this algorithm is designed, it may be applied to the existing
unlabeled data, as well as to new unlabeled data, without
having to redo the learning process.

In many UXO-sensing settings all of the data are collected
at once, and therefore a transductive semi-supervised learning
algorithm may be sufficient. However, if data is collected
incrementally on a large UXO-cleanup site, the inductive
framework may be attractive. The semi-supervised algorithm
developed here is inductive, but clearly it may be applied in
a transductive setting as a special case. However, there are
existing semi-supervised algorithms of interest that are only
transductive, the algorithm of Szummer & Jaakkola [11] being
an important example.

In this subsection we compare our results with perfor-
mance achieved using [11]. We also make a comparison to
results computed using a logistic-regression classifier, where
the graph considered here was as a prior to regularize the
learning process (imposing smoothness of the classifier along
the data manifold [9]). Like our algorithm, the approach
in [9] may operate in an inductive setting. However, such
that the comparisons are fair, for all examples considered
in this section, the unlabeled data on which classification is
performed is the same unlabeled data used for semi-supervised
algorithm learning (consistent with the requirements of a
transductive algorithm). The performance is evaluated in terms
of classification accuracy, defined as the ratio of the number
of correctly classified UXOs and non-UXOs over the total
number of data being used. For this, a threshold 0.5 is used
to the classification probability. In the discussion that follows

the algorithms considered will be referred to as follows: (i) the
method in [11] is denoted RW-Transductive; (ii) the method
developed in this paper is termed RW-Inductive; (iii) the
method in [9] is termed Logistic-GRF (for Gaussian random
field prior); and (iv) the supervised solution is termed Logistic-
Regression, with this equivalent to the algorithm in [9] without
the graphical prior.

To ensure a fair comparison, we apply the same Markov
random walk graph A(t) with t = 50 and kernel width σi =
1/3mink=1:N |xi − xk| for both RW-Transductive and RW-
Inductive. Since the graphical prior for Logistic-GRF [9] must
be symmetric, we symmetrize the graph by (A(t) + A(t)′)/2,
where A(t)′ represents the transpose of A(t). Denote by X any
of the three data sets and Y the associated label set.

For the results in Figure 1, we randomly sample XL ⊂
X and assume the associated label set YL are available.
The semi-supervised algorithms are trained using X ∪ YL

and tested on X \ XL. The supervised algorithm is trained
on XL ∪ YL and tested on X \ XL. From Figure 1, we
observed that all the semi-supervised algorithms outperform
the supervised algorithm. In addition, the RW-Inductive con-
sistently outperforms the Logistic-GRF and is comparable in
performance to RW-Transductive. Further, by comparing these
three subfigures, we observe that the magnetometer data yields
the best detection results on the data considered; this issue will
be reconsidered when the labeled data are chosen actively,
rather than randomly, as considered in this example.

C. Detection Results for Non-Active Classification: Inductive

In Figure 2 we test the algorithms in an inductive mode,
and therefore in this case we only compare RW-Inductive
with Logistic-GRF. For this example we randomly sample 200
exmplars Xtest ⊂ X as testing data, from all the magnetometer
data. From the remaining data, we randomly select a subset
XL of feature vectors, for which the associated labels YL are
assumed available, and the remaining feature vectors XU are
left as unlabeled. The semi-supervised algorithms are trained
by using XL ∪ YL ∪ XU and tested on Xtest. In Figure 2
we observe that the RW-Inductive semi-supervised algorithm
performs on average superior to Logistic-GRF, although the
“error bars” overlap. The length of the error bar is twice the
standard deviation of the detection accuracy. Therefore, if the
result is Gaussian distributed, 95% of the values lie within the
error bar.

D. Detection Results with Active Label Acquisition

In Figures 3 through 5 we consider active learning for the
three data sets presented in Figure 1; we first randomly select
one UXO and one non-UXO feature vector, and the other
labeled data are selected by the active learning algorithm;
to design the classifier we require at least one feature vector
from each class, but after active learning proceeds sufficiently
the large number of labeled examples determined adaptively
typically dominate the two labeled examples with which we
commence. Compared to Figure 1, we observe that the active
learning results are much better than those performed with
non-active learning (i.e., random selection of the labeled data),
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Fig. 1. Comparison of semi-supervised and supervised algorithms for the case in which all unlabeled data are available when algorithm learning is performed.
Each curve is an average from 25 independent trials. The horizontal axis is the size of XL. The algorithms are tested on XU . From left to right in the sub-figures,
the results are for EMI data, magnetometer data and for both EMI and magnetometer data.
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Fig. 2. Semi-supervised results on magnetometer data for the case in which different unlabeled data are used when testing than those used while learning.
Each curve is an average from 50 independent trials. The algorithms are tested on 200 data in Xtest, that are randomly sampled from all magnetometer data
X . The horizontal axis is the size of XL, which is randomly selected from X \ Xtest. Error bars represent standard deviations.

which demonstrates the effectiveness of the active learning
schemes. Although all three semi-supervised active-learning
algorithms perform well, the RW-Inductive results appear to be
best on average, particularly after a relatively large number of
labeled examples are acquired. Note that for a relatively small
number of excavations for label acquisition, the magnetometer
results are superior but, encouragingly, as the number of labels
acquired extends to 120, the fusion of the magnetometer and
EMI data yields slightly improved performance relative to
either sensor alone.

Further analyzing Figure 3, we observe that with 120 labeled
magnetometer examples, these requiring 120 evacuations for
the purpose of learning, the RW-Inductive algorithm achieves
an accuracy rate as high as 96%, but for the non-active
learning, the best algorithm performance for the four meth-
ods shown in Figure 1 is only 85%. When both EMI and
magnetometer data are considered, from Figure 5, we observe
that with 120 labeled data, RW-Inductive achieves an accuracy
of 97.5%, but for the non-active learning results in Figure
1, RW-Transductive and RW-Inductive achieve 92% accuracy,
and Logistic-GRF and Logistic-Regression only reached 86%.

The results in Figures 3 - 5 present the final classification
accuracy for different numbers of labeled data. In practice one
will have to employ the information-theoretic measure in (25)
to decide when to stop excavating for the purpose of learning,
with the acquired labels used to classify all remaining items.
In Figure 6 we plot the mutual information of the next item to

be labeled via active learning, as a function of the number of
items labeled. Results are shown for each of the ten different
cases considered to generate the results in Figures 3 - 5. Note
that the performance is relatively independent of which two
items were considered to constitute the initial labeled UXO
and non-UXO feature vectors.

Considering Figure 6, in the next set of examples we
terminate the learning phase when the expected gain in mutual
information is less than 0.1 (this is an arbitrary setting, but
one observes from Figure 6 that this is a point at which the
subsequent information gains are relatively small). In Table
I we note that with this threshold the algorithm consistently
labeled approximately 90 items, out of the possible 272 total
items. Interestingly, 19 of the UXO excavated in this active-
learning phase were common among all of the ten trials. We
also reiterate that the non-UXO excavated in this phase are
best not termed “false alarms”, since the algorithm desires to
learn the properties of both the UXO and non-UXO.

Once the active learning is completed, a final classifier is
designed, and this may be applied to the remaining unlabeled
data. In Figure 7 we plot a typical receiver operating character-
istic (ROC) curve, which corresponds to varying the threshold
on the output of the final classifier. We also place a circle at
the point on the ROC for which the threshold is set to 0.5;
the ROC is computed for all unlabeled data not excavated in
the active-learning phase. As indicated, the results in Figure
7 are typical of all of the ten trials considered above, but
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Fig. 3. Active learning results for EMI data. The first two labeled data include one UXO and one Non-UXO, both are sampled randomly. Each curve is an
average from 50 independent trials. The horizontal axis is the size of XL. The algorithms are tested on XU . Error bars shown are standard deviations.
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Fig. 4. Active learning results for magnetometer data. The first two labeled data include one UXO and one non-UXO, both are sampled randomly. Each curve
is an average from 50 independent trials. The horizontal axis is the size of XL. The algorithms are tested on XU . Error bars shown are standard deviations.
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Fig. 5. Active learning results as applied to EMI and magnetometer data. The first two labeled data include one UXO and one non-UXO, both are sampled
randomly. Each curve is an average from 50 independent trials. The horizontal axis is the size of XL. The algorithms are tested on XU . Error bars shown
are standard deviations.

only a single ROC is presented for ease of viewing. Note that
the algorithm effectively detects most of the UXO, but the
performance saturates around a detection probability of 0.9,
and this is because two of the UXOs have features that are

very similar to the non-UXO, these constituting challenging
targets for classification. The results in Figure 7 correspond to
Trail 4 in Table I.
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Fig. 7. Receiver operating characteristic for Trial 4 in Table 1. The circle denotes a threshold of 0.5 as applied to the classifier. The labeled data were
acquired via active learning, and the results here are as applied to the remaining unlabeled data.

V. CONCLUSIONS

In this paper we have considered the use of semi-supervised
learning in the context of UXO detection, based on elec-
tromagnetic induction (EMI) and magnetometer data. The
algorithms were applied to features extracted from these data,
with the features linked to EMI and magnetometer dipole-
based parametric models. Semi-supervised learning is par-
ticularly well suited to the UXO-sensing problem, because
one typically deploys a cart-based system to collect all EMI

and magnetometer data at once, for an entire site. Hence,
one may perform feature extraction simultaneously on all
buried items of interest, and the classification of any one
feature vector may be placed within the context of all feature
vectors. This contextual information yields information on the
characteristics of the data manifold, which has proven useful
to improve classification performance in many settings. By
contrast, in traditional supervised learning the labeled data
alone are employed to learn a classifier, and this classifier is
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employed one-by-one to each unlabeled example, in isolation,
and consequently contextual information is not employed.

Semi-supervised algorithms typically impose the following
condition: two feature vectors that are “close” in feature space
should be classified similarly. This implies that the classifier
outputs should vary smoothly over the high-density portion of
the data manifold, and consequently that the decision boundary
in feature space should reside in areas of low data density.
These concepts may only be implemented if knowledge of the
distribution of all unlabeled data is exploited when performing
algorithm learning. The most advanced semi-supervised algo-
rithms developed to date are based on graphical techniques.
Specifically, the nodes on the graph correspond to the feature
vectors (labeled and unlabeled), and the edge between any
two feature vectors is defined by a distance between the two
in feature space, where here this is defined by a radial basis
function. There are many different ways in which the graph
may be employed within a semi-supervised algorithm. For
example, one may perform inference directly on the nodes
of the graph, thereby inferring labels on the unlabeled nodes.
This approach does not generalize to the classification of
a general (new) feature vector that is not on the original
graph, and therefore if new unlabeled data are acquired, the
graph must be reconstituted and learning performed anew.
This has been referred to as transductive semi-supervised
learning. By contrast, one may also use the graph to learn an
“inductive” semi-supervised algorithm, which may be applied
to new unlabeled data without having to reconstitute the graph
or relearn. In the work presented here we have developed
a new inductive semi-supervised algorithm, which extends
the transductive algorithm developed in [11]. We have also
performed comparisons to another (distinct) inductive semi-
supervised algorithm [9], as well as to supervised learning.
We have demonstrated that for the measured UXO-sensing
data considered here, from an actual UXO cleanup site, that
the semi-supervised algorithms perform better than purely su-
pervised learning, implying that there is value in the manifold
information associated with UXO sensing, at least for the
UXO site considered.

In the UXO-excavation problem, clearly there will be many
items manually removed, and the cost of unnecessary excava-
tion of non-UXO items often constitutes the principal cleanup
cost. One may therefore ask whether initial excavation may be
performed with the purpose of learning. This is termed active
learning, and is characterized by asking in an information-
theoretic sense which unlabeled feature vectors would be most
informative for improving the classifier if the associated label
could be acquired (here implemented via targeted excavation).
In this sense the algorithm learns adaptively, directly on the
site under test. In the examples considered here active learning
yielded substantial improvement in UXO-classification perfor-
mance, relative to selecting the labeled data randomly. One
limitation of the active-learning framework, as implemented,
is that to commence one needs at least one UXO and one
non-UXO labeled example. In practice this is often not a
significant limitation, because one typically knows the type of
UXO that may be encountered at a given site (from historical
information, and also from the items observed on the surface),

and an archive of existing labeled UXO data may be used for
this target class. Further, since at a typical site the quantity of
non-UXO is much larger than the number of UXO, almost any
initial excavations will yield at least one non-UXO signature.
In the results presented here we examined the sensitivity of the
algorithm to the initial UXO and non-UXO labeled exemplars,
and found the algorithm to be robust in practice.

For the UXO-sensing data considered, we observed a sub-
stantial gain in the performance of the semi-supervised algo-
rithm developed here relative to a corresponding supervised-
learning algorithm. However, for the semi-supervised algo-
rithm, the performance of learning using active-learning-
determined labeled data was only slightly better to learning
with randomly selected labeled data (the latter still using semi-
supervised learning). This is a phenomenon we have observed
on several different data sets: Since the semi-supervised al-
gorithm exploits the information in the entire data manifold,
using labeled and unlabeled data, we have found in practice
that it is less sensitive to exactly which labeled data are
considered; by contrast, when employing supervised learning
the particular labeled data considered is often of significant
importance [5].

The most significant direction for future research involves
appropriate design of the graph for UXO applications. The
weights on the graph edges are adapted to the characteristics of
the manifold, via the data-dependent variance in (1). However,
in the analysis that followed a t-step walk on the graph was
employed, where in the examples considered here t=50. The
size of t plays an important role in defining what it means
for two feature vectors to be “close” in feature space. It
is of interest to develop a principled means of defining an
appropriate t for a given data set. We note that the use of
t=50 was not carefully tuned for the data considered here,
and many similar values (20 < t < 80) yielded similar results
on the Badlands UXO data. We also note that the need to
develop a technique for selecting t is not unique to the RW-
Inductive algorithm introduced here, but is of interest for any
of the graph-based semi-supervised algorithms.
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Abstract

We address the problem of unexploded ordnance (UXO) detection in which data to be classified are

available from multiple sensor modalities and multiple resolutions. Specifically, features are extracted

from measured magnetometer and electromagnetic induction (EMI) data; multiple resolution data is

manifested when the sensors are separated from the buried targets of interest by different distances (e.g.,

different sensor-platform heights). The proposed classification algorithm explicitly emphasizes features

extracted from fine-resolution imagery over those extracted from less reliable, coarse-resolution data.

When fine-resolution features are unavailable (due to undeployed sensors), the algorithm analytically

integrates out the missing features via an estimated conditional density function, conditioned on the

observed features (from deployed sensors). This density function exploits the statistical relationships

that exist among features at different resolutions, as well as those among features from different sensors

(in the multi-sensor case). Experimental classification results are shown for real UXO data, on which

the proposed algorithm consistently achieves better classification performance than common alternative

approaches.

I. INTRODUCTION

The problem of unexploded ordnance (UXO) classification continues to receive significant

attention in the scientific community [1]–[5]. The objective of a UXO detection (or classification)

task is to distinguish buried UXO targets from non-UXO targets (i.e., clutter). To this end, sensors

are used to measure data (e.g., magnetic fields) over a two-dimensional grid. These (raw data)

sensor measurements can therefore be considered to be in the form of an image. The ultimate

classification task is then performed using features extracted from this imagery. This paper

addresses the problem of multi-sensor UXO detection when magnetometer and electromagnetic

induction (EMI) sensors are employed. In particular, we address the realistic case in which

imagery from each of these sensor modalities may be available from multiple resolutions.

Throughout this paper, the term “resolution” refers to the amount of spatial detail attainable

in an image, with this quantity being inversely proportional to the distance between the sensor

and the targets (or ground).

Magnetometer and electromagnetic induction (EMI) constitute the principal sensors used in

UXO detection and classification [6]–[8]. It is a time-consuming task to deploy these sensors

over the large domains that must be interrogated for possible buried UXO. There has therefore

been interest in deploying these sensors on helicopters, thereby accelerating the data-collection
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process. Although helicopter-borne sensors afford increased collection speed, they also incur the

deleterious effect of a loss of signal strength. In particular, for a distance r between the sensor

and target, magnetometers and EMI sensors measure field strengths proportional to 1/r3 and

1/r6, respectively. Therefore, the increased sensor height required by the helicopter manifests a

significant loss of signal strength, which undermines the ability to detect small or deeply-buried

UXO. In practice, therefore, one may be interested in deploying a helicopter-borne sensor over

as large a region as possible, with ground-based sensors applied only locally, over a coarse set

of lines running through the site under test.

This paper addresses the problem of classification for data sets in which the features of

different data points are extracted from sensor imagery at different resolutions. Additionally, this

work considers the more general case in which multiple sensor modalities — each of which may

operate at multiple resolutions — are employed. In the multi-sensor scenario, incomplete data

is manifested when some data points are interrogated by only a subset of the available sensors.

Incomplete data also exists in the single-sensor case when not all data points have features

extracted from imagery at all resolution levels. Although the classification algorithm introduced

in this paper is applicable for data sets that fit the general multi-resolution framework, we focus

specifically on the problem of UXO detection. In summary, the novel problem we address in

this paper is of multi-sensor, multi-resolution, incomplete-data UXO classification.

It is important to emphasize that this paper addresses a multi-resolution classification problem

that has not been examined previously (see [9] for a thorough review of multi-resolution work).

In most previous “multi-resolution” image classification work [10], [11], the original imagery

actually exists at only a single resolution; the term “multi-resolution” refers simply to a wavelet

or other multi-resolution decomposition [12] of the original single resolution imagery. In contrast,

this paper utilizes multiple raw images, each at a unique resolution. The ultimate classification

objective also distinguishes this work from other multi-resolution image classification work. Most

multi-resolution classification work strives for pixel-level classification via image segmentation

[13]–[15]. In contrast, in this work, a given image belongs to a single class (UXO or non-UXO).

Several approaches can be employed to handle the missing-data problem in which some

data points are characterized by features extracted from only a subset of the possible sensors

and/or resolution levels. One approach would build a separate classifier for each type of data.

Assuming the set of possible data is relatively small, this approach would be reasonable. The
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major drawback with this method, however, is that the dependencies between different types

of data are not exploited. In addition to ignoring the correlations between sensors, the severe

fragmentation of the data set — based on the combinations of which sensors and resolutions are

observed — may leave insufficient data to train each classifier.

A different method would concatenate the features from the various resolutions; incomplete

data arising from missing sensors and/or resolutions would be handled in some way, such as

by imputation [16]. However, such an approach would treat features obtained from images at

different resolutions equally. Intuitively, one should favor using features extracted from high-

resolution imagery.

The algorithm proposed in this paper extends the work in [17] — in which missing data is

analytically integrated out — to the case of multi-resolution imagery. The algorithm, which does

not suffer from any of the drawbacks that plague the aforementioned methods, requires only a

single classifier, regardless of the number of sensors or the number of resolutions involved in the

problem. Moreover, all data are utilized, so correlations among sensors, as well as among features

at different resolutions, are exploited. Additionally, features extracted from different resolutions

are not treated equally; rather, fine-resolution features are given more importance. Furthermore,

the missing data that exist are handled in a principled manner, avoiding explicit imputation.

Specifically, the missing data are integrated out via the use of an estimated conditional density

function that relates the dependencies of features both of a single given sensor at different

resolutions, as well as of features from different sensors.

The remainder of this paper is organized as follows. Section II explains notation necessary

for the proposed classification algorithm introduced in Section III. Section IV describes the

UXO model inversion (and feature extraction) processes. Experimental classification results are

shown in Section V. Section VI consists of a discussion, followed in Section VII by concluding

comments and directions for future work.

II. NOTATION

Consider the case in which a sensor generates raw data in the form of an image, from which

features are extracted subsequently. Assume we possess S such sensors, the s-th of which can

operate at Rs +1 resolutions; the resolution is a function of the distance between the sensor and

the ground under which the targets are buried. Each of the S sensors may or may not be of the
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same modality, and the possible resolutions of each sensor are in general unique. Define ∆s
r to

be the r-th sensor-target separation distance (hereafter, simply “separation distance”) of the s-th

sensor, for s = 1, 2, . . . , S and r = 0, 1, 2, . . . , Rs. Let ∆s
0 denote the smallest separation distance

of the s-th sensor. The resolution of an image, which is inversely proportional to the separation

distance, is written R(·). The image that results from operating a sensor at its smallest separation

distance is referred to as a fine-resolution image. Sensors operating at larger separation distances

generate coarse-resolution imagery.

Assume that for a given sensor, the type of features extracted from the raw-image data are

fixed, regardless of the separation distance of the sensor that generated the data. That is, for a

given sensor, the specific features extracted will be identical for all separation distances, but the

feature values will in general be unique for each separation distance.

Let x
(s)
i ∈ RFs be the Fs features of the s-th sensor for the i-th item (i.e., object, which may

be UXO or non-UXO), extracted from data corresponding to the highest resolution image of the

s-th sensor. For all larger separation distances, let z
(s,r)
i ∈ RFs be the Fs features of the s-th

sensor for the i-th item, extracted from the image obtained with the s-th sensor operating at the

r-th separation distance. Define xi =
[
x

(1)
i ,x

(2)
i , . . . , x

(S)
i

]
to be the concatenated feature vectors

extracted from imagery at each sensor’s respective smallest separation distance. Similarly, define

zi =
[
z

(1)
i ,z

(2)
i , . . . , z

(S)
i

]
to be the concatenated feature vectors extracted from each sensor’s

coarse-resolution imagery, where z
(s)
i =

[
z

(s,1)
i ,z

(s,2)
i , . . . , z

(s,Rs)
i

]
. Hereafter, we shall refer to

xi and zi as primary and auxiliary features (or data), respectively.

The data can alternatively be partitioned in terms of its observed and missing components.

Let ox
i be the set of sensors for which the i-th item’s primary features are observed. Let mx

i be

the (complementary) set of sensors for which the primary features are missing for the i-th item.

Similarly, let oz
i be the set of sensor and separation-distance pairs for which the auxiliary features

for the i-th item are observed. Let mz
i be the (complementary) set of sensor and separation-

distance pairs for which the auxiliary features for the i-th item are missing. To simplify notation,

we shall suppress the superscripts when doing so will not cause confusion (e.g., x
ox

i
i , the primary

features (from all sensors) that are observed for the i-th item, will be written as xoi
i ). The primary

and auxiliary data of the i-th item can thus be written as xi = [xoi
i ; xmi

i ] and zi = [zoi
i ; zmi

i ],

respectively.

Data for a given item is deemed to be complete if we possess all primary features, for all
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sensors, for that data point (i.e., mx
i = ∅). A data point is otherwise deemed incomplete. It should

be noted that there exist two different types of incomplete data. First, data would be incomplete

if some subset of sensors were never deployed (at any separation distance) for the corresponding

item (UXO or non-UXO). Data could also be incomplete even when all sensors were deployed

for the item; specifically, the data would still be considered incomplete in this case if the data

had not been interrogated at the smallest separation distance of every sensor.

III. CLASSIFICATION WITH INCOMPLETE DATA

Assume we have a set of labeled (incomplete) data

DL = {xi,zi, yi, εi, o
x
i , o

z
i ,m

x
i , m

z
i }NL

i=1 (1)

where yi ∈ {−1, 1} is the label (indicating non-UXO or UXO, respectively) of the i-th item,

and εi ∈ [0, 0.5) is the corresponding labeling error rate. The labeling error rate is simply the

probability that a true label was flipped (corrupted) to the wrong label (e.g., {ytrue
i = 1} →

{yi = −1}). Such imperfect labels can be manifested when a human analyst performs the

labeling without excavating the buried object.

Let ws =
[
w

(1)
s , w

(2)
s , . . . , w

(Fs)
s

]
represent the Fs weights of a classifier on the primary

features of the s-th sensor. Let w = [w1, w2, . . . , wS] be the classifier weights on the primary

features of each sensor (i.e., xi). Note that the number of features from each sensor need not

be identical. It must be emphasized that the weights — and hence the resulting classifier — are

on the features extracted from only the fine-resolution imagery. We emphasize this caveat by

using different notation for primary features extracted from the fine-resolution imagery (xi) and

auxiliary features extracted from coarse-resolution imagery (zi).

In logistic regression (with a hyperplane classifier), the probability of label yi given feature

vector xi is p (yi|xi,w) = σ(yiw
T xi), where σ(η) = (1 + exp(−η))−1 is the sigmoid link

function and w constitutes a classifier. Accounting for imperfections in the labeling process

arising from a known labeling error rate εi, the probability of label yi given xi and εi is [18]

p (yi|xi, εi, w) = εi + (1− 2εi)σ(yiw
T xi). (2)

Note that the standard case of perfect labels is recovered when εi = 0. If all features are

extracted from complete data, the weights of the classifier can be learned easily by maximizing
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the likelihood of the data. Here we consider the case in which the data are in general incomplete

in the sense described above.

Recall that the classifier is to be designed for only the primary data — the features extracted

from the finest-resolution imagery. We first partition xi into its observed and missing parts,

xi = [xoi
i ; xmi

i ], and then apply the same partition to w to obtain w = [woi
; wmi

]. With

ηi = wT
mi

xmi
i , (2) can be written as

p (yi|xoi
i , εi, w) = εi + (1− 2εi)σ(yi(w

T
oi
xoi

i + ηi)). (3)

If the missing data xmi
i is integrated out, the needed probability of yi given all observed features

can be written as

p (yi|xoi
i ,zoi

i , εi,w) =

∫
p (yi|xoi

i , εi,w) p (xmi
i |xoi

i ,zoi
i ) dxmi

i (4)

= εi + (1− 2εi)

∫
σ(yi(w

T
oi
xoi

i + ηi))p (ηi|xoi
i ,zoi

i ) dηi. (5)

Although the classifier uses only the primary data, the auxiliary data is exploited when primary

data is missing, via the conditional density function p (xmi
i |xoi

i ,zoi
i ). That is, when primary data

is available, it is utilized; when primary data is unavailable, the auxiliary data becomes relevant

and is exploited.

The integration in (5) can be performed analytically by making two mild assumptions. First,

we assume that p (xi,zi) is a Gaussian mixture model (GMM), which can accurately model

many reasonably well-behaved distributions. This density function describes the relationships

among the same features obtained from different resolutions of a given sensor; it also describes

the relationships among features from different sensor modalities. It then follows that

p(xi,zi) = p(xmi
i , xoi

i , zoi
i )p(zmi

i |xmi
i ,xoi

i ,zoi
i ), (6)

where p(xmi
i ,xoi

i ,zoi
i ) is also necessarily a GMM. Introducing the notation χoi

i = [xoi
i ,zoi

i ], this

(K-component) GMM is

p(xmi
i ,χoi

i ) =
K∑

k=1

πkN




 xmi

i

χoi
i


 ;


 µmi

k

µoi
k


 ,


 Σmimi

k Σmioi
k

Σoimi
k Σoioi

k





 , (7)

where πk are the non-negative mixing proportions that sum to unity. Moreover, p(xmi
i |χoi

i ) is a

GMM as well. Because of the linear relation ηi = wT
mi

xmi
i , p (ηi|χoi

i ) is also a GMM,

p (ηi|χoi
i ) =

K∑

k=1

δi
kG

(
ηi −wT

mi
ξmi

k√
wT

mi
Ωmi

k wmi

)
, (8)
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Fig. 1. Illustration of the accuracy of the approximation made between the logistic function and the (scaled) probit function.

with the parameters

δi
k =

πkN (χoi
i ; µoi

k ,Σoioi
k )∑K

`=1 π`N (χoi
i ; µoi

` ,Σoioi
` )

(9)

ξmi
k = µmi

k + Σmioi
k (Σoioi

k )−1(χoi
i − µoi

k ) (10)

Ωmi
k = Σmimi

k −Σmioi
k (Σoioi

k )−1Σoimi
k (11)

where G(ηi) = (2π)−1/2 exp {−η2
i /2} is the standard univariate Gaussian density function with

zero mean and unit variance. The requisite GMM density function estimation can be accurately

performed using all available data, via the Variational Bayesian Expectation-Maximization algo-

rithm presented in [17].

The second (very accurate) assumption is that the sigmoid function can be approximated as

a probit function (i.e., a Gaussian cumulative distribution function)

σ(α) ≈
∫ α

−∞
G

(
u

β

)
du (12)

where β = π√
3
. The accuracy of this approximation is shown in Figure 1.

Mirroring the derivation in [17], it can then be shown that the integral in (5) can be computed

analytically. The result of this integration is that the probability of yi given only the observed

portions of xi and zi can be expressed as a mixture of sigmoids:

p (yi|xoi
i ,zoi

i , εi,w) ≈ εi + (1− 2εi)
K∑

k=1

δi
kσ

(
yiβ(wT

mi
ξmi

k + wT
oi
xoi

i )√
wT

mi
Ωmi

k wmi
+ β2

)
. (13)

8



The log-likelihood function of the incomplete data in (1) is then

`(w) = log p
({yi}NL

i=1|{xoi
i }NL

i=1, {zoi
i }NL

i=1, {εi}NL
i=1,w

)
(14)

≈
NL∑
i=1

log

[
εi + (1− 2εi)

K∑

k=1

δi
kσ

(
yiβ(wT

mi
ξmi

k + wT
oi
xoi

i )√
wT

mi
Ωmi

k wmi
+ β2

)]
. (15)

The objective function (15) to be maximized is no longer concave for two reasons. First, the

concavity is destroyed by the imperfect labels resulting from εi. Even in the case of perfect

labels though, (15) is not concave because of the particular form of the argument of the sigmoid

function, arising from the incomplete data. Since (15) is not concave, an intelligent initialization

of w is valuable for avoiding local maxima. We therefore initialize w as follows. We “complete”

the data set by replacing the missing features xmi
i with the conditional mean E[xmi

i |xoi
i ] =

∑K
k=1 δi

kξ
mi
k , where δi

k and ξmi
k are defined in (9) and (10), respectively. For the initialization, we

also treat all labels as perfect, artificially setting all εi = 0. This “completed,” “perfectly” labeled

data set is submitted to the standard logistic regression [19] to obtain w0, which is then used

as the initialization of w in maximizing (15) by a modified form of gradient ascent (additional

details are shown in the Appendix). Empirical evidence [20] suggests that this initialization

successfully avoids most local maxima.

Thus, the maximum-likelihood (ML) logistic regression classifier w can then be obtained, in

spite of the missing data (and imperfect labels). Thereafter, the class predictions of an unlabeled

testing data point with incomplete (missing) features is computed trivially using (13) (with εi = 0

since no actual labeling will have transpired).

IV. MULTI-SENSOR MULTIRESOLUTION UXO DATA

The proposed classification algorithm is designed for data sets consisting of imagery that

exists at multiple resolutions for multiple sensors, which is a realistic scenario for UXO detection

tasks. Here we consider the case in which we possess two modalities, magnetometer and EMI.

Moreover, it is assumed that each sensor can operate at two different image resolution levels.

The image resolution is a function of the distance between the sensor and the (buried) target.

Therefore, these unique image resolutions are manifested by deploying a given sensor on different

platforms (at different heights).

Coarse-resolution imagery is generated by a given sensor when a relatively large distance

separates the sensor from the targets; here, this situation corresponds to the case in which the
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sensor collects data while located on a low-altitude airborne platform (e.g., a helicopter) that

flies above the area of interest. In contrast, fine-resolution imagery is generated by a given sensor

when a smaller distance separates the sensor from the targets; here, this situation corresponds

to the case in which the sensor collects data while located on a ground-based platform. Because

the magnetometer and EMI sensor may not be located on the same platform, each sensor may

interrogate unique areas of land that overlap only partially. As a result, some targets may be

characterized by imagery from only one of the sensors, which is a case of incomplete data.

A. Feature Extraction Models

The magnetometer and EMI sensor data used in this study are magnetic field measurements

as a function of spatial position. The data from each sensor can therefore be considered to be

in the format of an image. Features are extracted from this imagery and then subsequently used

in the classification stage discussed in Section III. The features we use here are the parameters

of UXO models developed in [8] that are fit via a model inversion process. Specifically, the

measured (image) data is the input to the inversion, and the model parameters (features) are the

output of the inversion. We subsequently employ these fitted model parameters as the features of

the classification stage. As a result, regardless of the resolution of the image, the same features

(parameters) are extracted. Although the features are identical, the actual values of these features

extracted from images at different resolutions (for any given data point) will be unique.

1) Magnetometer Model: Ferrous objects cause changes in the observed background magnetic

field of the earth; magnetometers sense these changes. It has been shown that the spatially

dependent magnetometer signal is well-modeled by a simple magnetic dipole [21]. The success

of this magnetic-dipole model for sensing buried UXO [6], [7], [22], [23] motivates us to employ

the model for the measured spatially dependent magnetometer data here.

In the x, y, and z coordinate system of the sensor, let the z-direction be normal to the air-soil

interface. Let the position vectors of the sensor (i.e., observation point) and target-dipole be

rs =
[

xs ys zs

]
and rt =

[
xt yt zt

]
, respectively. Define rts = rs−rt to be the vector

directed from the dipole to the sensor, with r = rts

|rts| the corresponding unit vector. It should also

be noted that the orientation of the magnetic-dipole — completely summarized by the angles θ

and φ — is different from the direction of the ordnance itself.
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When the sensor is sufficiently distant from the buried target relative to the target dimensions,

the (vector) magnetic field may be represented approximately as [8], [24]

H =
1

2π

m · r
|rts|3 , (16)

where m is the magnetic-dipole moment. The magnetometer employed to collect the data used

in this work measures the z-component of the magnetic field as a function of position on the

surface. This measurement is subsequently fit to the model in (16) via a simple gradient search.

Specifically, the parameters that the model inversion fits are the target position (x, y, and depth

z), the magnetic-dipole strength, (m = |m|), and the magnetic-dipole orientation (θ and φ). We

retain the last four parameters (z, m, θ, and φ) of the model as features for the classification

stage.

2) EMI Model: A model for the EMI response of targets that generalizes the magnetometer

model via a frequency-dependent magnetic dipole has been developed in [8]. Specifically, the

magnetic-dipole moment m of a target is represented as

m = MHinc (17)

where Hinc denotes the incident (excitation) magnetic field, and M is the magnetization tensor

that relates the magnetic field to the magnetic-dipole moment. For a UXO assumed to be

rotationally symmetric with the axis of rotation along the z direction, the (frequency-dependent)

magnetization tensor can be expressed as a diagonal matrix [22]

M = diag
[

mp0 +
∑

i
ωmpi

ω−jωpi
, mp0 +

∑
i

ωmpi

ω−jωpi
, mz0 +

∑
k

ωmzk

ω−jωzk

]
. (18)

The terms mz0 and mp0 correspond to the zero-frequency magnetic-dipole moments of the target,

directed perpendicular to and along the target’s axis of rotation, respectively. The terms mzk and

mpi in (18) account for the frequency-dependent character of the response, while ωzk and ωpi

correspond to EMI resonant frequencies. Because higher order dipole moments in the summations

in (18) typically lack significant strength [25], here we use only the first term in each summation,

which is representative of the principal dipole mode along each of the principal axes.

If it is assumed that the EMI source responsible for the excitation magnetic field Hinc can be

represented — as seen from the target — as a magnetic dipole with moment ms, then [8]

Hinc = r
1

2π

ms · r
|rst|3 , (19)
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where rst is the vector directed from the source to the target center, with r = rst

|rst| the

corresponding unit vector. Assuming sufficient proximity of the sensor’s source and receiver

coils, the total (frequency-dependent) magnetic field observed at the sensor will be [8]

Hrec ∝ r

|rst|6rTUTMUr, (20)

where the proportionality constant depends on the strength of the dipole source ms and the

characteristics of the receiver.

The 3×3 unitary rotation matrix U rotates the fields from the coordinate system of the sensor

to the coordinate system of the target, and UT transforms the dipole fields of the target (in the M

coordinate system) back to the coordinate system of the sensor. Explicitly, the target orientation,

in terms of the angles of the target θ and φ with respect to the sensor coordinate system, is

accounted for by

U =




cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ







cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 . (21)

As with the magnetometer, the EMI sensor employed in this work measures the z-component

of the magnetic field as a function of position on the surface. This measurement is subsequently

fit to the model in (20) via a form of the Levenberg-Marquardt method [26]. Specifically, the

parameters that the model inversion fits are the target position (x, y, and depth z), the target

orientation (θ and φ), the magnetic dipole strengths (mz0, mp0, mzk, and mpi), and the EMI

resonant frequencies (ωzk and ωpi). We retain five parameters (z, θ, φ, mz0, and mp0) of the

model as features for the classification stage.

In fitting the more sophisticated EMI model, parameters from the magnetometer inversion are

used to constrain the search of some of the EMI model parameters. Specifically, the depth (z)

and cross-sectional position (x and y) of the target found by the magnetometer inversion are

used to initialize the target location in the EMI inversion. This initialization helps avoid some

local maxima in the inversion process. To overcome other local maxima, several (model-fitting)

solutions are obtained, with each solution resulting from randomly initializing the remaining

parameters of the model. The final parameters of the model are taken to be those of the solution

that minimizes the mean-square error between the measured and model-fit data.
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B. Simulation of Multiresolution Imagery

We possess measured magnetometer and EMI (image) data measured by ground-based sensors;

we simulate multi-resolution imagery from the available single-resolution imagery in the follow-

ing manner. The image-simulation process for the two sensors is identical, so here we explain

the process in terms of the magnetometer sensor. During the explanation, we shall reference

Figure 2, which illustrates the various stages of the process for one example target.

We begin with ground-based magnetometer data measurements for a target (Figure 2(A)).

The magnetometer model inversion explained in Section IV is performed, which provides model

parameters. These model parameters are then assumed to be the true model parameters of the

target. Using these model parameters, ground-based data can be synthesized (Figure 2(B)). If

the model fitting was successful, the measured and synthesized data should be nearly identical.

Using these same model parameters, one can instead synthesize coarse-resolution (helicopter-

based) data (Figure 2(C)) by increasing the value representing the distance between the sensor

and the ground. The distance from the ground-based sensors to the ground surface is 0.3 m,

while the distance from the helicopter-based sensors to the ground surface is assumed to be

5.0 m.

As stated until now, this synthesis procedure would be unrealistic because the sensor noise

of the helicopter-based sensor should be higher than that of the ground-based sensor. To reflect

this fact, white Gaussian noise (N (0, σ2), where here σ = 1) — representing sensor noise — is

added to this synthesized data to produce noisy data (Figure 2(D)). This noisy helicopter-based

sensor data is then taken to be the “raw” coarse-resolution sensor measurements, analogous to

the raw ground-based sensor data from which the original model parameters were obtained.

This noisy data is subsequently used to obtain coarse-resolution features via the magnetometer

model inversion. It is important to reiterate that the particular features (but not the feature

values) extracted from any image from a given sensor will be identical, regardless of the image’s

resolution.

It should be noted that the amplitude of the response in Figure 2(A) and 2(B) is much larger

than that in Figure 2(C) and 2(D) because the response is proportional to 1/r3
ts where rts is the

distance between the target and the sensor (see (16)). Also note that the (physical) area shown

in Figures 2(A) and 2(B) is 3 m × 3 m, while the area in Figures 2(C) and 2(D) is 8 m × 8 m;
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Fig. 2. Process of simulating coarse-resolution (helicopter-based) magnetometer data. (A) Measured fine-resolution (ground-

based) magnetometer data. (B) Synthesized fine-resolution (ground-based) magnetometer data using the model parameters

obtained from the model inversion with the data in (A). (C) Synthesized noise-free coarse-resolution (helicopter-based)

magnetometer data using the model parameters obtained from the model inversion and the data in (A). (D) Same as (C)

except with (sensor) noise added.

this larger area must be considered in order to ensure that the full response is captured, for the

response expands spatially as the sensor-target distance increases.

V. EXPERIMENTAL RESULTS

To evaluate the proposed incomplete-data classification algorithm, we applied it to a UXO data

set consisting of 166 items, 41 of which are UXO. This data set was collected by the Multi-sensor

Towed Array Detection System (MTADS) [27]. This system is composed of arrays of full-field

cesium vapor magnetometers and time-domain electromagnetic pulsed induction sensors. The

magnetometers were Geometrics Model 822ROV, while the EMI sensors were highly-modified

Geonics EM-61 sensors. The data was collected at a bombing target on the Badlands Bombing

Range on the Ogala Sioux Reservation in Pine Ridge, South Dakota. The UXO items present

at the site included M 38 (100 lb.) sand-filled practice bombs, M 57 (250 lb.) practice bombs,

2.25 in. and 2.75 in. rocket bodies and rocket warheads, and ordnance scrap (such as tail fins

and casing parts).
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For every item, we possess both (measured) fine-resolution and (synthesized) coarse-resolution

features from each of the two sensors (a magnetometer and an EMI sensor). As mentioned earlier,

four magnetometer features are used to characterize the magnetometer data at each resolution

level, while five EMI features are used to characterize the EMI data at each resolution level.

In all experiments, it is assumed that coarse-resolution (helicopter-based sensor) data is avail-

able from both sensors for all data points. This choice is motivated by the fact that it would

be relatively quick, easy, and inexpensive to acquire such data vis-à-vis ground-based sensor

data. In contrast, it is assumed that fine-resolution sensor data will be missing for some data

points, with these amounts made specific later. It should be noted, however, that the proposed

algorithm can function successfully even when data points are missing data from a given sensor

completely (i.e., at all resolutions).

Because data is available from two different sensors, many different combinations of missing

data are possible. To conduct an extensive investigation of the proposed algorithm, 36 different

combinations of missing data are considered (explained in more detail below). The binary

Cartesian product of a set S is the set of ordered pairs

S × S = {(α, β) |α ∈ S and β ∈ S}. (22)

In (22), let α and β be the fraction of data points that are missing fine-resolution magnetometer

features and fine-resolution EMI features, respectively. We conduct experiments using the ele-

ments of the binary Cartesian product of the set S = {0, 0.1, 0.25, 0.5, 0.75, 0.9} as the pairs of

amounts of missing primary (fine-resolution) data. For each of the 36 combinations considered,

100 independent trials are run. Each trial has a random partition of the data set into training and

testing data, and randomly selected data points that are assumed to be missing the primary data.

Note that primary data will be missing for both training and testing data.

This experimental set-up was employed for three different amounts of training data: when

25%, 50%, and 75% of the data was labeled training data. All classification results shown are

for the remaining unlabeled testing data. In all experiments, it was assumed that there was no

labeling error (ε = 0). In each experiment, four algorithms are applied, each of which handles

the multi-resolution data in a different manner. However, a logistic regression classifier is used

in all four methods, which are explained below.

The proposed approach builds a classifier for only the primary data; it handles missing primary
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data by integrating out the missing data, using the estimated density function relating both the

primary and auxiliary data. This density function — a GMM — is accurately estimated using

all available data, via the Variational Bayesian Expectation-Maximization algorithm presented

in [17]. Because class labels are not used in the estimation, both labeled and unlabeled data can

be utilized. This fact ensures that the density function can be accurately estimated even when

limited (labeled) training data is available.

The second method builds a separate classifier for data from each resolution. Building separate

classifiers for data from each resolution in the case of a single sensor with two resolutions would

entail that one classifier be built for features extracted from fine-resolution imagery, and a second

classifier be built for features extracted from coarse-resolution imagery. The generalization of

this case to multiple sensors with multiple resolutions is employed here as the second method.

Specifically, four separate classifiers are constructed, one to handle each sensor-resolution pair

combination. A more detailed explanation of this method is provided in the Appendix.

The third method builds a classifier for the concatenated primary and auxiliary data; it handles

missing primary data by integrating out the missing data, via the approach used in [17]. The

difference between this method and the proposed method is that this method builds a classifier

for both auxiliary and primary data, whereas the proposed method does so only on the latter. The

fourth method also builds a classifier for the concatenated primary and auxiliary data; however,

this method imputes (i.e., “fills in”) missing primary data with the unconditional mean of the

observed data.

The area under a receiver operating characteristic (ROC) curve (AUC) is given by the Wilcoxon

statistic [28]

AUC =
1

MN

M∑
m=1

N∑
n=1

1xm>yn (23)

where x1, . . . , xM are the classifier outputs of data belonging to class 1, y1, . . . , yN are the

classifier outputs of data belonging to class -1, and 1 is an indicator function. As a measure of

classification performance, the AUC is a more useful quantity than accuracy (i.e., the fraction

of classifications that are correct) when significant class imbalance exists, as it does in this data

set. Moreover, the AUC can summarize performance more compactly than an ROC curve. For

these reasons, we present the results of the classification experiments in terms of the AUC.

The results of all of the experiments are compactly summarized in Figures 3, 4, and 5. The
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Fig. 3. Experimental results in terms of AUC when 25% of the data set is (labeled) training data. (A) The proposed method;

(B) four separate classifiers are built, one for each possible combination of missing data; (C) one classifier is built on all

features, with missing data integrated out analytically; and (D) one classifier is built on all features, with missing data handled

via unconditional mean imputation.

results are displayed in these figures as images, interpolated from the results of the finite set

of 36 pairs of missing-data conditions explained previously. Specifically, the images display the

AUC values as a function of the amounts of missing fine-resolution magnetometer and missing

fine-resolution EMI sensor data. The results from which the resulting images were interpolated

were the mean AUC values over the 100 independent trials of the 36 pairs of conditions. The

color scales are identical in the four panels within each figure, so visual comparisons among the

methods’ results can be made easily.

As can be seen from the three figures, the proposed method consistently performs better than

the other three competing methods, regardless of the amounts of missing high-resolution data.

VI. DISCUSSION

It should be emphasized that in the proposed method, the classifier weights are on the pri-

mary features, which are extracted from fine-resolution imagery. However, the auxiliary features

extracted from coarse-resolution imagery are still utilized in the algorithm when primary data is

missing. Specifically, missing primary data is analytically integrated out via the estimated density

17



F
ra

c
ti

o
n

 o
f 

D
a
ta

 P
o

in
ts

 M
is

s
in

g
 H

ig
h

 R
e
s
o

lu
ti

o
n

 E
M

I 
D

a
ta

Fraction of Data Points Missing High Resolution Magnetometer Data

(A)

0 0.1 0.25 0.5 0.75 0.9
0

0.1

0.25

0.5

0.75

0.9
(B)

0 0.1 0.25 0.5 0.75 0.9
0

0.1

0.25

0.5

0.75

0.9

(C)

0 0.1 0.25 0.5 0.75 0.9
0

0.1

0.25

0.5

0.75

0.9
(D)

0 0.1 0.25 0.5 0.75 0.9
0

0.1

0.25

0.5

0.75

0.9

0.66

0.7 

0.73

0.77

0.8 

Fig. 4. Experimental results in terms of AUC when 50% of the data set is (labeled) training data. Refer to the caption of

Figure 3 for additional details.
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Fig. 5. Experimental results in terms of AUC when 75% of the data set is (labeled) training data. Refer to the caption of

Figure 3 for additional details.
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function, which models the relationship between the features from coarse-resolution imagery and

those same features from fine-resolution imagery. The experimental results consistently show

that the proposed method outperforms the alternative methods. Here we explain the reasons

underlying this result.

Fine-resolution imagery contains salient aspects that are absent in coarse-resolution imagery.

Therefore, features extracted from fine-resolution imagery should be preferred to features ex-

tracted from coarse-resolution imagery. Our proposed approach emphasizes the importance of

the finer-resolution data by building a classifier with only that data. The coarser-resolution data

is still exploited (via the estimated density function), albeit in an auxiliary role.

If a classifier is instead built on the conglomerated features extracted from different resolutions

— as it was in two of the alternative methods — the information about the relative “quality”

of the features is ignored. Concatenating features extracted from different resolution imagery

also causes the feature-dimension to grow quickly, which can in turn lead to overfitting of

the training data. In theory, a prior could be incorporated to combat overfitting, but additional

complications arise as a result of having incomplete data. In contrast, the proposed method has

no such overfitting issues.

The proposed method also consistently outperforms the method that builds a separate classifier

for data from each sensor-resolution combination. This result is possible because the proposed

method utilizes side information in the form of the estimated density function. By exploiting

the statistical relationship that exists among features at different resolutions (as well as among

features from different sensors), better performance can be achieved. This result can perhaps best

be understood from the viewpoint of super-resolution techniques. Knowledge about a problem

(e.g., that noise in an image is Gaussian) can be exploited to resolve a super-resolution image from

several blurry images [29]. Similarly, in this problem, knowledge of the statistical relationship

between features at different resolutions can be exploited. Importantly, the proposed approach

avoids the unnecessary intermediate step of forming an entire super-resolution image; instead,

the ultimate goal is addressed directly: obtaining the equivalent of “super-resolution features.”

VII. CONCLUSION

Acquiring fine-resolution imagery for all data points may be prohibitively expensive. For

example, in the UXO detection problem, deploying ground-based sensors is dangerous and
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time-consuming. This work presents a principled algorithm to classify imagery that is available

at multiple resolutions. Because some data points may possess imagery at only a subset of

resolutions, the problem can be viewed as one of incomplete-data classification. The proposed

algorithm also naturally handles the case in which multiple sensor modalities — each of which

may operate at multiple resolutions — are used to acquire data. In summary, the novel problem

we addressed was of multi-sensor, multi-resolution, incomplete-data classification. Experimental

results on a challenging UXO classification task employing magnetometer and EMI sensors

demonstrated the advantage of the proposed algorithm over common alternatives.

Future work will focus on the development of an active data acquisition algorithm that

determines which data points should receive finer-resolution imagery — and at which particular

resolution level — in order to most improve performance. This active sensing concept is relevant

for many applications, including medical imaging, remote sensing, and video tracking.
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APPENDIX

A. Modified Gradient Ascent

The classifier w from Section III is learned via a modified form of gradient ascent. This

method uses the gradient and Hessian of the log-likelihood, which we provide explicitly here.

For convenience, we first rewrite the log-likelihood function (15) as

`(w) =

NL∑
i=1

log

[
εi + (1− 2εi)

K∑

k=1

δi
k σi

k

]
(24)

where

σi
k = σ(f i

k) (25)

f i
k = yiβ(wT

mi
ξi

k + wT
oi
xoi

i )(γi
k)
−1 (26)

γi
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√
wT

mi
Ωi

kwmi
+ β2. (27)

The gradient of the log-likelihood is

∂`(w)

∂w
=

NL∑
i=1

[
(1− 2εi)

∑K
k=1 δi

k σi
k(1− σi
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∂f i

k

∂w

]
[
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kσ
i
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while the Hessian of the log-likelihood is

∂2`(w)
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B. Classification Method 2

Here we explain in greater detail the second classification method used in the experiments.

Define sensor 1 to be the magnetometer, and define sensor 2 to be the EMI sensor. Recall that

data from two image resolutions are available for each of the two sensors. Let γs
x be the set of

data points for which primary data from the s-th sensor is possessed; let γs
z be the set of data

points for which auxiliary data from the s-th sensor is possessed. Context will elucidate whether

the sets contain training or testing data points. Note that γs
x ⊆ γs

z in all experiments in this paper

because it is assumed that auxiliary data is available for all data points. Let γs
z\γs

x denote the

set of data points in γs
z but not in γs

x. Table I compactly summarizes the manner in which the

various classifiers of this method are constructed and utilized.

TABLE I

EXPLANATION OF CLASSIFICATION METHOD 2 OF THE EXPERIMENTS

FEATURES ON WHICH TRAINING DATA TESTING DATA

THE CLASSIFIER POINTS USED TO POINTS EVALUATED

CLASSIFIER IS BUILT TRAIN CLASSIFIER BY CLASSIFIER

1 [x(1), x(2)] γ1
x ∩ γ2

x γ1
x ∩ γ2

x

2 [x(1), z(2)] γ1
x ∩ γ2

z γ1
x ∩ (γ2

z\γ2
x)

3 [z(1), x(2)] γ1
z ∩ γ2

x (γ1
z\γ1

x) ∩ γ2
x

4 [z(1), z(2)] γ1
z ∩ γ2

z (γ1
z\γ1

x) ∩ (γ2
z\γ2

x)

For example, a training data point that has both fine-resolution and coarse-resolution magne-

tometer data and both fine-resolution and coarse-resolution EMI sensor data would be used in the

construction of all four classifiers. A testing data point that has both fine-resolution and coarse-

resolution magnetometer data, but only coarse-resolution EMI sensor data would be evaluated

(i.e., classified) using classifier 2.
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To summarize, in the training stage, all data points that possess the requisite features are used

to train the classifier. This arrangement allows more data to be used in building the classifiers,

and hence allows more accurate classifiers to be obtained. In the testing stage, a given testing

data point is submitted to that classifier that fully exploits the fine-resolution features that the

data point possesses.
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